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Abstract

Abstract

At a time when effective tools for monitoring malaria control and eradication efforts are
crucial, the increasing availability of molecular data motivates their application to epidemiology.
The multiplicity of infection (MOI), defined as the number of genetically distinct parasite strains
co-infecting a host, is one key epidemiological parameter for evaluating malaria interventions.
Estimating MOI remains a challenge for high-transmission settings where individuals typically
carry multiple co-occurring infections. Several quantitative approaches have been developed to
estimate MOI, including two cost-effective ones relying on molecular data: i) THE REAL
McCOIL method is based on putatively neutral single nucleotide polymorphism loci, and ii) the
varcoding method is a fingerprinting approach that relies on the diversity and limited repertoire
overlap of the var multigene family encoding the major Plasmodium falciparum blood-stage
antigen PfEMPL1 and is therefore under selection. In this study, we assess the robustness of the
MOI estimates generated with these two approaches by simulating P. falciparum malaria dynamics
under three transmission conditions using an extension of a previously developed stochastic agent-
based model. We demonstrate that these approaches are complementary and best considered across
distinct transmission intensities. While varcoding can underestimate MOI, it allows robust
estimation, especially under high-transmission where repertoire overlap is extremely limited from
frequency-dependent selection. In contrast, THE REAL McCOIL often considerably
overestimates MOI, but still provides reasonable estimates for low- and moderate-transmission.
As many countries pursue malaria elimination targets, defining the most suitable approach to
estimate MOI based on sample size and local transmission intensity is highly recommended for

monitoring the impact of intervention programs.
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Author Summary

Author Summary

Despite control and elimination efforts, malaria continues to be a serious public health threat
especially in high-transmission regions. Molecular tools for evaluating these efforts include those
seeking to estimate multiplicity (or complexity) of infection (MOI), the number of genetically
distinct parasite strains co-infecting a host, a key epidemiological parameter. MOI estimation
remains challenging in high-transmission regions where hosts typically carry multiple co-
infections by Plasmodium falciparum. THE REAL McCOIL and the varcoding are two cost-
effective methods relying on distinct parts of the parasite genome, those respectively under
neutrality and selection. The more recent varcoding approach relies on the var multigene family
encoding for the major blood-stage antigen and contributing to a complex immune evasion strategy
of the parasite. We compare the performance of the two methods by simulating disease dynamics
under different transmission intensities with a stochastic agent-based model tracking infection by
different parasite genomes and immune memory in individual hosts, then sampling resulting
infections to estimate MOI. Although THE REAL McCOIL provides reasonable estimates for low-
and moderate-transmission, varcoding allows more robust estimates especially under high-
transmission. Defining the most suitable approach to estimate MOI based on local transmission

intensity is highly recommended for hyper-diverse pathogens such as malaria.
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Introduction

Introduction

Malaria deaths have steadily and significantly declined over the period 2000-2019 in response
to control and elimination efforts [1]. However, malaria continues to be a serious threat causing
approximately half a million deaths in 2019, especially among young children in high-transmission
endemic regions in Africa. In these regions, infections are characterized by multiple genetically
distinct Plasmodium parasite genotypes simultaneously infecting a host. Multiplicity of infection
(MOI), also known as complexity of infection (COl), is defined as the number of genetically
distinct parasite strains co-infecting a single host [2]. Multiclonal infections (i.e., MOI > 1) can be
the result of a single bite by a mosquito transmitting more than one genetic parasite strain or
independent bites by infected mosquitoes (also termed superinfection). The number of co-

infections is associated with transmission intensity, clinical risk, age and immunity [3-6].

Given the potential relevance of MOI to malaria surveillance, various approaches have been
developed to estimate MOI from clinical samples. As Plasmodium parasites reproduce asexually
as haploid stages when they infect humans, signatures of polymorphic genotypes are evidence of
multiclonal infections. While any highly polymorphic marker is thus suitable for estimating MO,
it remains a challenge to accurately measure MOI in malaria-endemic areas where multiclonal
infections are common. The most common approach for determining MOI involves size-
polymorphic antigenic markers, such as mspl, msp2, msp3, glurp, amal, and csp, that can be
amplified by PCR and determined by capillary electrophoresis or agarose gel [7]. Similarly,
microsatellites, also termed simple sequence repeat (SSR), are another type of size-polymorphic

marker that can be amplified by PCR to estimate MOI by determining the number of alleles
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Introduction

83  detected [5,8-12]. However, despite improved resolution of allele detection by capillary
84  electrophoresis, these approaches based on size-polymorphisms usually involve a certain degree
85  of subjective interpretation, are unable to discriminate alleles of similar sizes [13], and create PCR
86  artifacts resulting in inconsistent results, especially for MOl > 5 [14,15]. As an alternative to size-
87  polymorphic markers, other methods of determining MOI have focused on reconstructing
88  haplotypes from genotyping or sequencing data (e.g., estMOI, FWS, and DEploid) [16-19].
89  Whole-genome sequencing is currently not a cost-effective approach when MOI is the main
90 interest of a study, and these haplotype-reconstruction approaches are computationally intensive,
91  resulting in limited MOI reliability for highly complex infections [20]. Finally, two cost-effective
92  molecular approaches, known as THE REAL McCOIL [21] and varcoding [22,23], have been
93  more recently developed to identify and track MOI with standard laboratory equipment. They
94  differ in important ways as they rely on contrasting parts of the genome, respectively under
95 neutrality and immune selection.
96
97 As many possible genotypes exist among a combination of several genome-wide single
98 nucleotide polymorphisms (SNPs), methods of determining MOI have focused on neutral SNP
99 data to discriminate among strains [24]. Galinsky et al. (2015) developed the COIL approach to
100  estimate MOI from a panel of bi-allelic SNP data, but this method relies on monoclonal infections
101  (MOI = 1) for estimation of allele frequencies or requires external allele frequency data. As
102  external allele frequency data may only be available for specific locations and be heterogeneous
103  in space and time, an analytical approach, called THE REAL McCOIL (Turning HEterozygous
104 SNP data into Robust Estimates of ALelle frequency, via Markov chain Monte Carlo, and

105 Complexity Of Infection using Likelihood), was developed to simultaneously estimate the MOI
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Introduction

106  within a human host and the allele frequencies in the population based on a panel of SNPs [21].
107  Using simulations and 105 SNP data from cross-sectional surveys in Uganda, Chang et al. (2017)
108  showed that THE REAL McCOIL approach improved performance in estimates of both quantities,
109  despite the uncertainty of these estimates increasing with true MOI.

110

111 The more recent varcoding approach (also termed var genotyping or var fingerprinting)
112 [22,23], employs the highly polymorphic sequences encoding the immunogenic DBLo domain of
113  PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1), the major surface antigen of
114  the blood stage of infection [26]. During an infection, PFEMP1 molecules are exported by the
115  parasite to the surface of the infected erythrocytes, where they influence virulence of the disease
116  and become a target of the adaptive immune system [27]. The multigene family known as var
117  encodes variants of this surface antigen which can reach tens of thousands of variants in endemic
118  populations [22,28-33]. The sequential expression of a set of up to 60 var genes per parasite
119  (hereafter, a repertoire) leads to immune evasion, prolongs infection duration, and establishes
120  chronic infections enabling onward transmission [34,35]. Immune evasion is particularly
121  important in high transmission regions where var repertoires are composed of largely distinct sets
122 of var genes [22,28-31,36]. This non-random composition of var repertoires has been shown to
123  result from negative frequency-dependent immune selection. Largely non-overlapping var
124 repertoires enhance survival in semi-immune hosts, in accordance with earlier models of parasite
125  competition for hosts via specific immunity [37] and more recent deep molecular sampling of local
126  populations and computational theory [22,30,36]. This feature of var population structure allows
127  distinct strains to accumulate in the blood of human hosts. The extensive diversity of the var gene

128  family together with the very low percentage of var genes shared between parasites facilitate


https://doi.org/10.1101/2022.06.27.497801
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.27.497801,; this version posted June 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Introduction
129  measuring MOI by amplifying, pooling, sequencing, and counting the number of DBLa types in a
130  host. This feature of var population genetics is the basis of the fingerprinting concept of varcoding.
131  From a single PCR with degenerate primers and amplicon sequencing, the method counts unique
132  DBLa types per infection. It is not based on assigning haplotypes but instead, it assumes a set
133 number of types per genome based on control data accounting for PCR sampling errors to calculate
134 MOI [22,23].
135
136 As varcoding does not require haplotype construction, we propose that this method is
137  particularly well suited for high transmission where REAL McCOIL has shown some limitations
138  due to the bi-allelic nature of the SNP calling [21]. To evaluate the relative performance of these
139  two contrasting approaches to estimate MOI across different transmission settings, this study
140  simulates malaria transmission under low, moderate, and high-transmission using an extended
141  agent-based model (ABM). We specifically extend a previously developed stochastic
142  computational model to incorporate neutral bi-allelic SNPs which, together with the var genes, can
143 be used for MOI estimation. Depending on transmission intensity, we ask whether one of these
144  approaches is more accurate than the other. When most infections are multiclonal (i.e., MOI > 1),
145  we demonstrate that THE REAL McCOIL and the varcoding approaches tend to overestimate and
146  underestimate the MOI, respectively. Moreover, while the high diversity of the var gene family
147  allows robust MOI estimation with the varcoding approach, especially across high-transmission
148  settings, THE REAL McCOIL provides reasonable estimates across low- and moderate-
149  transmission settings where the varcoding can be limited by partially overlapping var repertoires.
150  We discuss the limitations and advantages of these two approaches to determine the multiplicity

151  of malaria parasite infection as well as their implications for malaria surveillance.
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Results
152 Results
153
154 Accurate estimation of multiplicity of infection is important for evaluating current intervention

155  strategies against malaria and thus defining or adapting future ones. We evaluated two recently
156  developed MOI estimation approaches by simulating malaria transmission using an extended
157  ABM, and sampling, estimating, and comparing MOI under three different transmission settings
158  (i.e., “low”, “moderate”, or “high”).

159

160 For each simulation under low-, moderate-, or high-transmission intensity, 2000 individuals
161  were sampled at the end of the wet season (S1 Fig). On the one hand, the number of sampled
162 individuals per age class is consistent with the age distribution and the size of each age class (S1A
163  and S1B Figs). On the other hand, the number of infected sampled individuals was significantly
164  and negatively correlated with the age of the hosts, as expected (Pearson correlation test; high-
165  transmission: r = -0.81, P-value < 2.2e-16; moderate-transmission: r = -0.63, P-value = 3.0e-10;
166  low-transmission: r = -0.65, P-value = 9.5e-11). The hosts between 0 and 5 years old thus exhibit
167  the highest number of infections with an average of 64 + 11 (mean + SD), 267 £ 17, and 377 + 18
168  sampled hosts for the low-, moderate-, and high-transmission simulations, respectively (S1C Fig).
169  Asexpected, the number of sampled hosts is higher for simulations with high-transmission settings
170 (939 % 344) than for those with moderate (314 + 151) and low-transmission settings (88 + 36)
171  (S1C Fig). Consistently, the average EIR and prevalence were also higher for simulations with
172  high-transmission settings than for those with low- or moderate-transmission settings (S2 Fig). For
173  instance, low-transmission setting simulations have an average of 1.1 + 0.2 infectious bites per

174 host per year and 0.04 £ 0.02 infected cases, whereas moderate-transmission simulations have an
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average of 6.8 £ 0.2 infectious bites per host per year and 0.16 + 0.08 infected cases, and high-
transmission simulations have an average of 21.6 + 0.2 infectious bites per host per year and 0.47
+ 0.17 infected cases, reflecting highly contrasting malaria transmission intensities. We note that
in our simulations “infectious bites” were computed as infectious contact events experienced by a
host, and that for generality purposes, we set the transmissibility probability specifying whether
such contact results in infection to 0.5 (S1 Table). Thus, for comparison purposes with empirical
values, the EIR values obtained in the simulations should be divided by such probability.
Consistently with these epidemiological and genetic diversity statistics, the true MOI distribution
generated by the simulations is also significantly different among the three levels of transmission
(t-test: P-value < 2.2e-16; average true MOI of 1.08 £ 0.30, 1.61 + 0.95, and 3.84 + 3.31 for the

low-, moderate-, and high-transmission simulations, respectively) (Fig 1B).
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rue
187 ] Without measurement model ] With measurement model [ Without measurement model [ With measurement model

188  Fig 1: Multiplicity of infection (MOI). For each category, the horizontal central solid line
189  represents the median, the diamond represents the mean, the box represents the interquartile range
190 (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point, which is
191 no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e.,
192  the points beyond the whiskers. The upper, middle, and lower row panels show correspond to
193  simulations under low-, moderate-, and high-transmission settings, respectively (S1 and S2

194  Tables). A) Accuracy of MOI estimates, defined as the difference between estimated and true MOI

10
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195  per host. While null values highlight accurate MOI estimates (indicated by a dashed black
196  horizontal line), the positive and negative values highlight over- and under-estimation,
197  respectively. Estimates with the neutral SNP-based approach (THE REAL McCOIL) are indicated
198 in green, and those with the var gene-based approach (varcoding) are indicated in blue. The dark
199 and light green or blue colors indicate respectively MOI estimations made without and with a
200  measurement model (Fig 2). The column panels show differences for specific true MOI values. B)
201  Population distribution of the estimated and true MOI per host from the simulated “true” values
202  and those estimated with the methods indicated by the colors similar to panel A. For high
203  transmission, the distribution obtained with THE REAL McCOIL shows a more pronounced tail
204  than that from the simulated infections, with a secondary peak around MOI = 14. Note that the
205 method considerably over-estimates individual MOI below that value but then under-estimates
206  above it (panel A). Thus, these opposite trends compensate each other to some extent in the
207  population distribution, producing nevertheless a deviation at high values. The varcoding method
208  provides a good representation of the “true” distribution from the simulations, and of the individual
209  values in general, with a consistent tendency to underestimate when sampling error is taken into
210  account.

211

11
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213  Fig 2: Measurement models. A) and B) Schematic diagrams of the SNP and var measurement
214 models for a host infected by one (MOI = 1) or two (MOI = 2) genetically distinct P. falciparum
215  strains, respectively. To account for potential SNP genotyping failures, we randomly replaced the
216  host genotypes with missing data (X). This replacement was implemented by using the distribution
217  illustrated in panel C. When MOl is high, the frequency of double allele calls (DACS) is also high
218  (Fig 3). To account for var gene potential sequencing errors, we sub-sampled the number of var
219  genes per repertoire. This sub-sampling was implemented by using the distribution illustrated in
220  panel D. For simplicity, the var repertoire in these two examples only consists of 10 var genes
221  despite each migrant parasite genome consists of a repertoire of 45 var genes in the simulations

222  (S1 Table). C) Histogram of the proportion of missing SNP loci per host haplotype from a panel

12
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223 of 24 bi-allelic SNP loci. The genotypes were previously obtained from monoclonal infections
224 sampled during one cross-sectional survey made in 2015 in the Bongo District, in northern Ghana.
225  The purple curves show the best curves that fit the data using the adjusted R-squared. D) Histogram
226  of the number of non-upsA (i.e., upsB and upsC) DBLa var gene types per repertoire. The
227  molecular sequences were previously sequenced from monoclonal infections, i.e., hosts infected
228 by asingle P. falciparum strain (MOI = 1), sampled during six cross-sectional surveys made from
229 2012 to 2016 in the Bongo District, in northern Ghana.

230
231 Estimates with THE REAL McCOIL approach

232

233 THE REAL McCOIL approach based on neutral SNP data tends to overestimate MOI when
234 true values range from 3 to 14 (Fig 1A). In contrast, this approach tends to underestimate MOI for
235  true MOI above ~14, values only found in hosts without any single minor allele calls (Figs 2A and
236  3). Underestimated MOI can differ from the true MOI by up to 2, 3, and 7 co-infections for the
237  low-, moderate-, and high-transmission simulations, respectively. Interestingly, while most hosts
238  with MOI < 3 show accurate MOI estimates, some can differ from the true MOI by up to 18, 12,
239  and 13 co-infections for the low-, moderate-, and high-transmission simulations, respectively. The
240 inaccuracy of the MOI estimates based on THE REAL McCOIL approach, defined as the absolute
241  differences between estimated and true MOI per host, is significantly and positively correlated
242 with the true MOI (P-values < 2.2e-16; r = 0.07, r = 0.59, and r = 0.55 for the low-, moderate-, and
243 high-transmission simulations, respectively).

244

13
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245 As the proportion of double allele calls (DACs) per host is significantly and positively
246  correlated with the true MOI (P-value < 2.2e-16, r = 0.82) (Fig 3), inaccuracy is also significantly
247  and positively correlated with the proportion of DACs per host (P-value < 2.2e-16, r = 0.61).
248  Consistently, inaccuracy is significantly and negatively correlated with the proportion of single
249  allele calls (minor and major alleles) per host SNP haplotype (P-value < 2.2e-16, r = -0.61) (Fig
250  3). Inaccuracy is significantly and negatively correlated with the number of SNPs (P-value < 2.2e-
251 16, r = -0.15), but estimated MOI with the highest number of SNPs (105 SNPs) can still differ
252  from the true MOI by up to 18 (S3A Fig). Surprisingly, the MOI estimates show higher accuracy
253  for simulations generated with distinct initial SNP allele frequencies but did not seem influenced
254 by the presence of linked SNP loci (S4 Fig). Overall, despite including slightly fewer hosts with
255  low MOI and significantly more hosts with high MOI (Fig 1B), the average estimated MOI was
256  quite similar to that of the true MOI (P-values < 2.2e-16; average estimated MOI of 1.27 + 1.60,
257 193 + 1.93, and 4.80 + 4.60 for the low-, moderate-, and high-transmission simulations,
258  respectively). However, due to the combination of overestimated and underestimated MOI values,
259  the distribution showed a second peak of high density around a MOI of 15, which is absent from
260  the true MOI distribution. This peak can correspond to a maximum of ~200 hosts in some
261  simulations.

262
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263 % Without measurement model & With measurement model
264  Fig 3: Proportion of SNP calls (genotypes) per host SNP haplotype. A) Single major allele
265 calls; B) Double allele calls (DACs); C) Single minor allele calls; D) Missing allele calls. The
266  column panels show the proportions for specific true MOI values. The dark and light green colors
267 indicate the proportion of calls made without and with a measurement model, respectively (Fig 2).
268  For each category, the horizontal central solid line represents the median, the diamond represents
269  the mean, the box represents the interquartile range (IQR) from the 25th to 75th centiles, the
270  whiskers indicate the most extreme data point, which is no more than 1.5 times the interquartile

271  range from the box, and the dots show the outliers, i.e., the points beyond the whiskers.
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272

273 Consideration of a SNP measurement model, which accounts for potential genotyping failures
274 by randomly replacing some SNP genotypes with missing values, only slightly decreases the
275  accuracy of the MOI estimates based on THE REAL McCOIL approach, relative to MOI estimates
276  made without the measurement model (Figs 1A and 2).

277

278 Subsampling the individuals from 2000 to 500 did not reduce the accuracy of the estimated
279  MOI with or without the measurement model (S5 Fig). However, subsampling to 200 individuals
280  significantly increased the number of SNP loci with a MAF < 10%, especially for the low- (7 £ 8
281  loci) and moderate-transmission setting simulations (3 + 3 loci). Consequently, due to the high
282  number of SNP loci, and thus individuals, that could not be considered in THE REAL McCOIL
283  analysis, MOI could not have been estimated for any of the low-transmission setting simulations
284  when a subsampling of 200 individuals was applied (S6 Fig). Moreover, while THE REAL
285  McCOIL approach could provide MOI estimates for subsamples of the moderate- and high-
286  transmission setting simulations, the subsampling of 200 individuals significantly reduced the
287  accuracy of these MOI estimates made with or without the measurement model.

288

289 Simulations under low- and moderate-transmission settings show more accurate MOI
290  estimates than the simulations under high-transmission settings (Fig 1A). For the low-transmission
291  setting, the less accurate MOI estimates (> 13) were generated in only four simulations (i.e., one
292  replicate from runs 10, 11, 22, and 23) (Fig 1B and S2 Table). These results were explained by
293  highly inaccurate estimated MAF. Indeed, the inaccuracy of the estimated MOI was significantly

294  and positively correlated with the inaccuracy of the estimated MAF per simulation, defined as the
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295  sum of the absolute differences between estimated and true MAF per SNP locus (P-values < 2.2e-
296  16; r =0.12 and r = 0.13 for estimates made with or without measurement model, respectively).
297  Interestingly, although THE REAL McCOIL approach generated very inaccurate MAF estimates
298  for a few low-transmission simulations, it typically produced very accurate estimates of the MAF
299  regardless of transmission settings (S7 Fig). Consistent with the MOI results, the accuracy of the
300  MAF estimates per simulation also increases with the number of SNP loci. The inaccuracy of THE
301 REAL McCOIL MAF estimates per locus, defined as the absolute differences between estimated
302 and true MAF per locus, is significantly and negatively correlated with the true MAF, the
303  proportion of DACs, and the proportion of single minor allele calls per locus (S3 Table). Moreover,
304  this inaccuracy of the MAF estimations is also significantly but positively correlated with the
305  proportion of missing allele calls and single major allele calls per locus (S3 Table).

306
307 Estimates with the varcoding approach

308

309 Consistently with an increasing probability of overlapping var repertoires for hosts with MOI
310 above 1, the varcoding approach, which uses the number of var genes to estimate MOI, tends to
311  slightly underestimate the MOI (Fig 1A). Its inaccuracy, defined as the absolute difference
312  between estimated and true MOI per host, is significantly and positively correlated with the true
313 MOl (P-values < 2.2e-16; r = 0.23, r = 0.26, and r = 0.54 for the low-, moderate-, and high-
314  transmission simulations, respectively). Therefore, MOI values estimated for the hosts with the
315  highest true MOI (i.e., 5, 10, and 20 co-infections for the low-, moderate-, and high-transmission
316  simulations, respectively), differ from the true MOI by up to 1, 3, and 5 co-infections for the low-

317 , moderate-, and high-transmission simulations, respectively. Overall, despite exhibiting slight
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318  deviations, with more hosts at low MOI and fewer hosts at high MOI, the distribution of the
319  estimated MOI based on the varcoding approach is quite similar to that of the true MOI (P-value
320 < 2.2e-16; average estimated MOI of 1.08 + 0.29; P-value = 0.10, 1.60 £ 0.93; P-value = 4.9e-05,
321 and 3.74 £ 3.14 for the low-, moderate-, and high-transmission simulations, respectively) (Fig 1B).
322

323 As expected, the var genes measurement model, which accounts for potential sampling errors
324 by sub-sampling the number of var genes per strain, reduced the number of available distinct var
325  genes per host and increased inaccuracy (Figs 1A and 2). MOI estimates from simulated data can
326  now differ from the true MOI by up to 2, 5, and 9 co-infections for the low-, moderate-, and high-
327  transmission simulations, respectively. Overall, the distribution of the estimated MOI remained
328  quite similar to that of the true MOI (P-values < 2.2e-16; average estimated MOI of 1.07 + 0.26,
329 149 = 0.75, and 3.05 £ 2.30 for the low-, moderate-, and high-transmission simulations,
330 respectively), even though it accentuated some of the small deviations we described in the absence
331  of measurement error, namely more hosts with low MOI and fewer hosts with high MOI (Fig 1B).
332

333 As the varcoding approach estimates MOI using individual host level information,
334  subsampling the dataset, from 2000 to 500 or 200 individuals, did not reduce accuracy regardless
335  of consideration of measurement error (S5 and S6 Figs).

336

337 The high-transmission setting simulations resulted in more accurate MOI estimates than the
338 low- and moderate-transmission simulations (Fig 1A). This is consistent with the var repertoires
339  for simulations under high-transmission settings exhibiting a lower average PTS (0.049 + 0.001),

340 i.e., less overlap, than the var repertoires for simulations under low- and moderate-transmission
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341  settings (0.138 + 0.027 and 0.063 + 0.004, respectively) (Figs 4C, S8, and S9). The genetic
342  structure of the parasite population can also be analyzed using networks whose nodes are var
343  repertoires, and the weighted edges correspond to the degree of overlap between these repertoires
344  (Fig 4A) [36]. Consistent with the average PTS, the similarity networks for simulations under
345  high-transmission settings did not group the var repertoires into well-defined modules while the
346  similarity networks for simulations under high-transmission settings did. This finding was also
347  captured using three-node motifs across the var repertoire similarity networks, which showed a
348  lower proportion of reciprocal motifs (i.e., A «& B < C < A) for simulations under high-
349  transmission settings (91.4%) than for simulations under low- and moderate-transmission settings
350  (99.8% and 100.0%, respectively) (Figs 4A, 4B, and S8). Altogether, as simulated P. falciparum
351  strains under high-transmission settings shared less similar var repertoires than those under low-
352  or moderate-transmission settings, the varcoding approach results in more accurate MOI estimates
353  under high-transmission settings than under the lower transmission ones (Figs 2A, 4, and S8).

354

19


https://doi.org/10.1101/2022.06.27.497801
http://creativecommons.org/licenses/by-nc-nd/4.0/

355
356

357

358

359

360

361

362

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.27.497801,; this version posted June 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Results
A Low transmission Moderate transmission High transmission
3: e s ® o . e @ 3 ‘ & . - o i - uo
ﬁ ?) f o 4 ¢ - P . a. ® o oc o . o L ° o e o°
% o . o= oo ' e © g % R * . ? °
’ & 4 T e o %o % °
@) 3&3 ® © v oo * % % @ L L L 8
o a, v & i C™ s .
¥ & ° B g L s N ¢ ° . W w
b . " * o A - o i " %
& e e, §EN e P o e ° ° °
<§ # & * 1 * T oy & L I T oo i
¢ e’ gy
& 4 e p * @ ¥
< i S s gy * R o B
N & Sy
B Low transmission Moderate transmission High transmission

e
w

o©
(¥

o
=

-

Mean pairwise type sharing (PTS) ()

Low transmission Moderate transmission High transmission
Fig 4: Population structure using network properties. Comparisons of repertoire similarity
networks of 150 randomly sampled parasite var repertoires generated from a one-time point under
low, moderate, and high-transmission settings (i.e., one replicate of runs 1, 25, and 49,
respectively; S1 and S2 Tables). Only the top 1% of edges are drawn and used in the analysis. A)
Similarity networks where nodes are var repertoires, weighted edges encode the degree of overlap
between the var genes contained in these repertoires, and the direction of an edge indicates the

asymmetric competition between repertoires. B) Distributions of the average proportion of
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363  occurrences of three-node graph motifs across the repertoire similarity networks. C) Distribution
364  of the mean pairwise type sharing (PTS) between var repertoires. For each category, the horizontal
365  central solid line represents the median, the diamond represents the mean, the box represents the
366 interquartile range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme
367  data point, which is no more than 1.5 times the interquartile range from the box, and the dots show
368  the outliers, i.e., the points beyond the whiskers.

369
370  Comparison of THE REAL McCOIL and the varcoding approaches

371

372 As described above, each method performs better under specific conditions, such as
373  transmission setting and sampling size. However, for any given simulation, THE REAL McCOIL
374 approach never reached the level of accuracy of varcoding (Fig 1). First, for simulations under
375 low- and moderate-transmission settings, THE REAL McCOIL approach could generate highly
376  inaccurate MAF, due to the small proportion of infected hosts sampled from the participants, which
377  can result in more inaccurate MOI estimates than those generated with varcoding. Second, under
378  high-transmission settings, THE REAL McCOIL approach showed a combination of MOI
379  overestimates and underestimates for true MOI under or above ~14 co-infections, respectively (Fig
380 1). This introduces biases in opposite directions, which can compensate to some extent and
381 artificially provide a reasonable overall population distribution. In contrast, the varcoding
382  approach showed consistent increasing underestimation of the MOI for increasing true MOI as
383  expected from an increasing var repertoire overlap between strains, Third, for a similar sample
384  size (i.e., 2000, 500, or 200 individuals), the varcoding approach always provided more accurate

385 MOI estimates than THE REAL McCOIL approach (S5 and S6 Figs). This was especially
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observed for the smaller sample sizes (i.e., 200 samples), which are quite commonly used for
malaria surveillance. On the one hand, THE REAL McCOIL, which relies on information at the
population level, could not provide MOI estimates due to the limited number of SNP loci that
could be considered in the analysis or could provide less accurate MAF and MOI estimates. On
the other hand, the varcoding, which only relies on the information at the individual level to
estimate MOI, consistently provided comparable MOI estimates independently of the sample size.
In summary, the accuracy of the estimated MOI was dependent on the transmission setting, the

approach used to characterize the multiplicity of malaria parasite infection, and the sample size.
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394 Discussion
395
396 When P. falciparum transmission is high, which is common within malaria-endemic regions

397  of the world, simulations showed that THE REAL McCOIL approach provided less robust MOI
398  estimation than the varcoding approach. The former approach tends to overestimate the MOI for
399  hosts with low and moderate true MOI (under ~14 co-infections) and to underestimate the MOI
400 for hosts with high true MOI (above ~14 co-infections). The high proportion of DACs and low
401  proportion of single major and minor allele calls in a host SNP haplotype (barcode) seemed to be
402  the origin of this inaccuracy in the high-transmission simulations. It is interesting to note that the
403  combination of underestimated and overestimated MOI values allowed THE REAL McCOIL
404  approach to generate a fairly accurate average estimated MOI but for the wrong reasons. Therefore,
405  caution should be taken with using this approach when malaria transmission is moderate to high.
406 In particular, considerable overestimates in the population result in a secondary peak in the
407  distribution. In contrast, the low PTS values at high transmission due to the high diversity of var
408  genes and selection for reduced repertoire overlap enabled accurate MOI estimates via varcoding
409 by amplifying, pooling, sequencing, and counting the number of DBLa types in a host. Despite
410 harboring a high proportion of distinct var genes, repertoires can still be partially overlapping,
411  sharing similar var genes. This limited overlap can result in a reduced number of var genes being
412  identified on the basis of their DBLa types, which leads to the potential underestimation of MOI.
413  Because these regions of the parasite genome can be sometimes challenging to access, the resulting
414  sampling errors can reduce the reliability of the methodology leading to consistent underestimation
415  of MOI, as shown with the simulations that included a realistic measurement error based on

416 empirical data. Interestingly, simulations including a measurement error based on the distribution
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417  of the number of non-upsA DBLa var gene types per 3D7 laboratory isolate significantly improved
418  the accuracy of the var coding MOI estimates, highlighting the importance of high-density isolates
419  when estimating MOI (S10 Fig). Thus, the varcoding approach provides a cost-effective approach
420  for evaluating MOI under high-transmission conditions, with an underestimation bias introduced
421  however by measurement error from the sampling of the var genes.

422

423 In low or moderate malaria transmission regions, both THE REAL McCOIL and varcoding
424 approaches can provide reasonable MOI estimates. As bi-allelic SNP data can be relatively cheap
425  and straightforward to obtain, THE REAL McCOIL method, which can be applied to any parasite
426  isolates with multiclonal infections [21], appears cost-effective for evaluating MOI but could
427  nevertheless introduce biases in determining malaria elimination status by underestimating the
428  effectiveness of the interventions. However, the method required a minimum number of sampled
429  hosts to reasonably estimate MOI, which is not the case for varcoding. Caution should thus be
430  taken when defining the most suitable sample size while keeping this method cost-effective. Given
431  the high accuracy of the varcoding approach when measurement error was not incorporated, future
432  work will address correcting for var repertoire overlap within a single host to improve MOI
433  estimation.

434

435 Surprisingly, although THE REAL McCOIL approach assumes that genotyped SNP loci do
436  not exhibit significant LD, the simulations performed with linked SNP loci did not show less
437  reliable MOl estimation. Linked SNP loci may require longer simulations than the ones considered
438  here (with thousands of generations) to show substantial bias in estimates of MOI. The categorical

439  method of THE REAL McCOIL approach was very sensitive to the parameter controlling the
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440  upper bound for MOI (maxCOl). While a maximum MOI of 20 was applied in the simulations,
441  reducing this upper bound for the low- and moderate-transmission simulations to the highest true
442  MOI values observed for these settings (to 5 and 10 for the low and moderate-transmission
443  simulations, respectively) significantly improved the accuracy of the estimated MOI (S11 Fig).
444  Defining the most suitable MOI upper bound from previous reports could thus be useful to provide
445  more accurate future estimates when using this approach. However, this solution can be circular
446  and therefore impractical.

447

448 THE REAL McCOIL approach provided highly accurate MAF estimates for low- transmission
449  intensities and reasonably accurate ones in moderate- and high-transmission intensities. While
450  MAF estimates were robust with as few as 24 SNPs, their accuracy was improved by increasing
451  the number of SNPs genotyped. Most population genetic analyses of malaria parasites rely on
452  monoclonal infections, which reduces the amount of data and produces MAF estimates that may
453  not be representative and thus introduce potential biases. Therefore, despite often significantly
454  overestimating the MOI, THE REAL McCOIL approach could also facilitate population genetic
455  analyses of the malaria parasite by properly estimating the MAF and other related statistics,
456  including the effective population size (Ne), the Fst, and the Fws [38—40].

457

458 An additional source of measurement error, not considered by our simulations, concerns the
459  difficulty of properly sampling all the strains simultaneously infecting a particular host due to low
460  parasitemia, the parasite load in the host blood. Indeed, multiclonal infections can potentially result
461 in a reduction of the parasitemia of particular strains [41]. Consequently, strains with low

462  parasitemia could be highly diluted in clinical samples and thus have a lower probability of being
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463  properly sequenced and/or genotyped. Moreover, infections (monoclonal or multiclonal) with low
464  total parasitemia could be missed by the PCR detection approach, which can identify infections
465  with as low as one parasite per uL, and by the commonly used microscopy detection approach,
466  which cannot detect infections with lower than 4-10 parasites per uL [42,43]. Synchronicity of
467  clones in the 48 hour life cycle on alternate days also leads to underestimation of MOI unless
468  repeat daily sampling [44] or every three days is done [45]. These issues could therefore contribute
469  to a more substantial underestimation of the MOI than the ones highlighted in this study.

470

471 Another simplification in our ABM was the lack of SNP mutations. Evolution of the neutral
472  part of the parasite genome may influence MOI estimation over long time scales, but should play
473  aminor role for the shorter time periods relevant to epidemiology unless associated with selective
474 sweeps. Finally, our model did not incorporate the different sequence groupings of var genes,
475  which can be classified based on their chromosomal position and semi-conserved upstream
476  promoter sequences (ups) into different groups, upsA and non-upsA [46—48]. Case-control studies
477  have reported that while upsA var genes are preferentially expressed in children with cerebral
478  and/or severe malaria, non-upsA var genes have been associated with asymptomatic infections and
479  clinical cases of malaria [49-57]. This absence of var types in our ABM may explain the higher
480  prevalence within the younger age class in the simulations (i.e., 0-5 years old), compared to an
481  observed higher prevalence typically within the 6-10 and 11-20 years old age classes in the
482  empirical data [58].

483

484 Although MOI is a useful epidemiological marker to evaluate the efficacy of malaria

485  intervention efforts, properly characterizing multiclonal infections remains a challenge, especially
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486  for high transmission. This work demonstrates that THE REAL McCOIL and the varcoding
487  approaches provide complementary methodologies to determine MOI across distinct transmission
488  settings. In particular, the high diversity of the var gene family and low overlap of var gene
489  repertoires between parasites, especially under high-transmission intensity, allows robust MOI
490  estimation with the varcoding method, despite a tendency for underestimation originating mainly
491  from sampling error. Reliance of THE REAL McCOIL on bi-allelic neutral SNPs limits
492  application at high transmission, with the introduction of a secondary peak in the tail of the
493  population distribution, considerable over-estimates of individual MOI, and opposite signs in the
494  deviations, for both under- and over-estimates in different ranges of true values. The method
495  provides reasonable estimates across low- and moderate-transmission settings where the varcoding
496  approach could be limited by partially overlapping var repertoires. Considering local transmission
497  intensity is thus highly recommended when defining the most suitable marker and/or MOI
498  estimation approach to evaluate the impact of malaria control and elimination campaigns. The
499  highly diverse multigene var family under immune selection provides a handle to complexity of

500 infection at high transmission.
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Materials and Methods

500 Materials and Methods

502
503 Agent-Based Model (ABM)

504

505 Malaria transmission was modeled with an extended implementation of an agent-based,
506  discrete-event, stochastic model in continuous time [36,59]. Here, we briefly describe the agent-
507 based model (ABM) implemented in Julia (varmodel3) which is based on previous C++
508 implementations (i.e. varmodel and varmodel2) [36,59]. While the previous implementation of the
509 stochastic ABM was adapted from the next-reaction method which optimizes the Gillespie first-
510 reaction method, this implementation uses a simpler Gillespie algorithm [60,61]. The ABM tracks
511 the infection history and immune memory of each host and its parameters and symbols are
512  summarized in S1 Table. We modeled a local population of 10000 individuals, and a global var
513  gene pool whose size acts as a proxy for regional parasite diversity. The simulations are initialized
514  with 20 migrant infections from this regional pool to seed local population transmission and grow
515 local gene diversity to a stationary equilibrium. Each migrant parasite genome consists of a specific
516  combination (i.e. repertoire) of 45 var genes. The size of the repertoire was based on the median
517  number of non-upsA DBLa sequences identified in our 3D7 laboratory isolate [22,23]. This
518  grouping of var genes is defined based on their semi-conserved upstream promoter sequences (ups)
519  (i.e. upsA and non-upsA (upsB and upsC)) [46-48]. Although each parasite carries both types of
520 var genes in a fairly constant proportion [26,62], the MOI estimation method we consider here
521  focuses on the non-upsA DBLa sequences as they were ~20X more diverse and less conserved
522  among repertoires than the upsA DBLa sequences. Therefore, for simplicity purposes, our model
523  considered only those types. Each var gene itself is represented as a linear combination of two
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524  epitopes, i.e. parts of the molecule that act as antigens and are targeted by the immune system
525  [26,36,63]. The var genes in a repertoire are expressed sequentially and the infection ends when
526  the whole repertoire is depleted. The duration of the active period of a var gene, and thus of the
527 infection, is determined by the number of unseen epitopes. When a var gene is deactivated, the
528  host adds the deactivated var gene epitopes to its immunity memory. Specific immunity toward a
529  given epitope experiences a loss rate from host immunity memory, and re-exposure is therefore
530  required to maintain it. The local population is open to immigration from the regional pool.
531
532 Our model extension allows us to keep track of the neutral part of each migrant parasite genome
533 assembled by sampling one of the two possible alleles (labeled as O or 1) at each of a defined
534  number of neutral bi-allelic SNPs (S1 Table). While the extended model can generate
535 homogeneous initial SNP allele frequencies by sampling the migrant alleles with an identical
536  probability from the regional pool (i.e., 0.5), it can also generate distinct initial SNP allele
537  frequencies by sampling the migrant alleles from the regional pool with distinct probabilities that
538  sum up to one (e.g. 0.2 and 0.8) and are randomly picked from a defined range (e.g., [0.1-0.9]).
539
540 Seasonality was implemented in the transmission rate parameter to represent monthly
541  variability in mosquito bites [59,64]. The model does not explicitly incorporate mosquito vectors
542  Dbut considers instead an effective contact rate (hereafter, the transmission rate) which determines
543  the times of local transmission events (exponentially distributed). At these times, a donor and a
544  recipient host are selected randomly. To mimic meiotic recombination which happens within the
545  mosquito during the sexual reproduction stage of the parasite, strains that are selected for a

546  transmission event have a probability Pr =1 — 1/ Ns (where Ns is the number of strains transmitted
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547  to the donor) to become a recombinant strain [36]. To generate a recombinant var repertoire, a
548  random set of var genes is sampled from a pool containing the two sets of var genes from the
549  original genomes. Similarly, to generate the neutral part of a recombinant parasite, a random allele
550 is sampled for each bi-allelic SNP. Moreover, to allow for linkage disequilibrium (LD) across the
551  neutral part of the genome, neutral bi-allelic SNPs can be non-randomly associated and co-
552  segregate as defined in a matrix of LD coefficients indicating the probability that pairs of linked
553  SNPs will co-segregate during the meiotic recombination (S2 Table).

554
555  Experimental design

556

557 We explored how distinct transmission settings influence MOI estimation with the two
558  different approaches. Specifically, we compared three transmission intensities corresponding to
559  “low” (prevalence of 1-10%), “moderate” (prevalence of 10-35%), and “high” (prevalence >35%),
560 implemented with different transmission rates (5.0e-05, 7.5e-05, and 1.0e-04, respectively), and
561 initial gene pool sizes (500, 2000, and 10000, respectively) (S1 and S2 Tables) [65]. As the
562  sensitivity of the SNP-based methods increases with the number of SNP loci, and as Chang et al.
563  (2017) retained 105 SNP loci to test THE REAL McCOIL approach, we performed these
564  simulations using 24, 48, 96, and 105 SNP loci for the three transmission settings (S1 and S2
565  Tables) [21,24,25]. As THE REAL McCOIL approach assumes that distinct parasite lineages in
566  multiclonal infections are unrelated and that genotyped SNP loci do not exhibit significant LD, we
567  performed the simulations with homogenous initial SNP allelic frequencies and with unlinked bi-
568 allelic SNP loci (S1 and S2 Tables). However, as allelic frequencies can be heterogeneous in space

569  and time, we also performed simulations with distinct initial allelic frequencies, and with 8% and
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570  16% of linked SNP loci clustered into one or two groups, respectively. This design results in 72
571  distinct combinations of parameters (i.e., runs) and we ran 10 replicates per combination with a
572  maximum MOI of 20 (S1 and S2 Tables). Simulations were run for 85 years to get beyond the
573 initial transient dynamics in which var gene diversity and parasite population structure are
574  established. For each simulation, we calculated the epidemiological summary statistics, including
575  the number of hosts, the prevalence, and the entomological inoculation rate (EIR). In addition,
576 2000 individuals were randomly sampled to analyze the true MOI and the parasite genetic and
577 allelic diversity patterns. The simulated data were collected during the last year at 300 days (i.e.,
578  November), corresponding to the end of the wet season (high-transmission season) in the Bongo
579  District, a malaria-endemic area of Northern Ghana. Details on the area and population have been
580  previously described [23,58].

581
582 MO estimation

583

584 While the “true” MOI per host was directly extracted from the simulations, the estimated MOI
585  was obtained for each host using the two distinct approaches. First, the MOI per host was estimated
586  from the simulated neutral SNP data using THE REAL McCOIL approach v.2 [21]. We performed
587  the categorical method of THE REAL McCOIL with a minor allele frequency (MAF) of 10% for
588 a SNP to be considered and an upper bound of 20 for MOI, keeping all other parameters to their
589  default values (a burn-in period of 102 iterations, a total of 10* Markov chain Monte Carlo
590 (MCMC) iterations, a minimum number of 20 genotypes for an individual to be considered, a
591  minimum number of 20 samples for a SNP to be considered, an initial MOI of 15, and a probability

592  of calling single allele loci double allele loci and of calling double allele loci single allele loci of
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593  0.05 which were estimated with MOI and the allele frequencies) [21,66]. Second, the MOI per
594  host was also estimated from the simulated var genes data by counting the total number of distinct
595  var genes within each host and by dividing it by the size of one repertoire, here 45 as estimated
596  from control data using repeat samplings of the var genes of 3D7 with the varcoding protocol [23].
597

598 To account for measurement error in both approaches, a measurement model was
599 implemented. First, to account for potential SNP genotyping failures, we applied a measurement
600 model that randomly replaces the host genotypes with missing data, reducing the number of
601 available data for THE REAL McCOIL approach (Fig 2). This replacement was implemented by
602  using the distribution of the proportion of missing genotypes per monoclonal infections from a
603  panel of 24 bi-allelic SNP loci which was previously obtained during one cross-sectional survey
604 in 2015 in the Bongo District in Ghana at the end of the wet season [24] (Fig 1C). For each host,
605 some SNP loci were thus replaced with missing genotypes according to a weight reflecting the
606  proportion of missing genotype counts density function. Second, to account for var gene potential
607  sampling errors, we applied a measurement model that sub-samples the number of var genes per
608 strain, resulting in a reduction of the total number of var genes per host (Fig 2). This sub-sampling
609  was implemented by exploring the distribution of the number of non-upsA DBLa var gene types
610  per monoclonal infection for which molecular sequences were previously obtained during six
611  cross-sectional surveys between 2012 and 2016 in the Bongo District in Ghana at the end of the
612  wet season [22,23,36,59] (Fig 1D). For each strain, the number of var genes was sub-sampled
613  according to a weight reflecting the var gene counts density function.

614
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615 MOI estimations were carried out with and without measurement error. To better reflect what
616 s typically done for malaria surveillance, we also estimated the MOI after subsampling the
617  simulated dataset, from 2000 to 500 or 200 individuals. T-tests were used to compare true and
618 estimated MOI distributions. All t-test comparisons were considered statistically significant when
619  P-value <0.05.

620
621 Repertoire similarity networks

622

623 To evaluate the similarity of parasites in the population, pairwise type sharing (PTS) was
624  calculated between all repertoire pairs (regardless of the host in which they are encountered) as
625  PTSi = 2n;j/ (ni + n;), where ni and n; are the number of unique var genes within each repertoire i
626 and j and njj is the total number of var genes shared between repertoires i and j [28]. In addition,
627  the genetic structure of the P. falciparum population was also analyzed using similarity networks
628 based on var composition. Similarity networks were built in which nodes are var repertoires,
629  weighted edges encode the degree of overlap between the var genes contained in these repertoires,
630 and the direction of an edge indicates the asymmetric competition between repertoires, i.e.,
631  whether one repertoire can outcompete the other [36,67]. To introduce directional edges, we
632 calculated the genetic similarity of repertoire i to repertoire j as Sij = (Ni N N;j) / Ni, where N; and
633  N;j are the number of unique var genes in repertoires i and j, respectively. To focus on the var
634  repertoires with the strongest overlap, only the top 1% of edges are drawn and used in network

635  analysis.
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636 Data availability

637
638 The agent-based stochastic simulator of malaria dynamics and the processing scripts to
639  reproduce all the figures are stored and annotated on GitHub:

640  https://github.com/pascualgroup/varmodel3. The SNP data used for this analysis are available in
641 Dryad at https://doi.org/10.5061/dryad.jsxksnObp. The DBLa sequences used for this analysis are
642 available in GenBank under BioProject Number: PRINA 396962.
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869 Supporting information captions

870

871 Sl Fig. Host age distribution, and number of sampled individuals and hosts per age class.
872  For each category, the horizontal central solid line represents the median, the diamond represents
873  the mean, the box represents the interquartile range (IQR) from the 25th to 75th centiles, the
874  whiskers indicate the most extreme data point which is no more than 1.5 times the interquartile
875  range from the box, and the dots show the outliers, i.e. the points beyond the whiskers. A) Age
876  distribution of the sampled individuals. B) Number of sampled individuals per age class. C)
877  Number of sampled hosts per age class. Upper (yellow), middle (orange), and lower (purple)
878  panels correspond to simulations under low-, moderate-, and high-transmission settings,
879  respectively (S1 and S2 Tables). Values were split into five age classes, i.e. 0-5, 6-10, 11-20, 21-
880 39, and > 40 years.

881

882  S2 Fig. Prevalence and entomological inoculation rate (EIR) per transmission intensity. For
883  each category, the horizontal central solid line represents the median, the diamond represents the
884  mean, the box represents the interquartile range (IQR) from the 25th to 75th centiles, the whiskers
885 indicate the most extreme data point which is no more than 1.5 times the interquartile range from
886  the box, and the dots show the outliers, i.e. the points beyond the whiskers. A) Prevalence; B) EIR.
887  Statistics calculated for simulations under low-, moderate-, and high-transmission settings are
888 indicated in yellow, orange, and purple, respectively (S1 and S2 Tables).

889

890  S3Fig. Initial number of SNPs and accuracy of the multiplicity of infection (MOI) estimates

891  determined with THE REAL McCOIL approach. The accuracy of MOI estimates is defined as
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892  the differences between estimated and true MOI per host. While null values highlight accurate
893  MOI estimates (indicated by a dashed black horizontal line), the positive and negative values
894  highlight over- and under-estimation, respectively. The dark and light green colors indicate
895  respectively MOI estimations made without and with a measurement model (Fig 2). For each
896  category, the horizontal central solid line represents the median, the diamond represents the mean,
897  the box represents the interquartile range (IQR) from the 25th to 75th centiles, the whiskers
898 indicate the most extreme data point which is no more than 1.5 times the interquartile range from
899  the box, and the dots show the outliers, i.e. the points beyond the whiskers. A) Accuracy of MOI
900 estimates per true MOI. B) Accuracy of MOI estimates per transmission intensity (S1 and S2
901 Tables).
902
903 S4 Fig. SNP properties and accuracy of the multiplicity of infection (MOI) estimates
904  determined with THE REAL McCOIL approach. The accuracy of MOI estimates is defined as
905 the differences between estimated and true MOI per host. While null values highlight accurate
906 MOI estimates (indicated by a dashed black horizontal line), the positive and negative values
907 highlight over- and under-estimation, respectively. For each category, the horizontal central solid
908 line represents the median, the diamond represents the mean, the box represents the interquartile
909 range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which
910 is no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e.
911 the points beyond the whiskers. The dark and light green colors indicate respectively MOI
912  estimations made without and with a measurement model (Fig 2).

913
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914 S5 Fig: Reliability of the multiplicity of infection (MOI) estimations when subsampling 25%
915 of the sampled individuals (i.e. 500 individuals). For each category, the horizontal central solid
916  line represents the median, the diamond represents the mean, the box represents the interquartile
917  range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which
918 is no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e.
919 the points beyond the whiskers. The upper, middle, and lower row panels correspond to
920 simulations under low-, moderate-, and high-transmission settings, respectively (S1 and S2
921  Tables). A) Accuracy of MOI estimates, defined as the difference between estimated and true MOI
922  per host. While null values highlight accurate MOI estimates (indicated by a dashed black
923  horizontal line), the positive and negative values highlight over- and under-estimation,
924  respectively. Estimates with the neutral SNP-based approach (THE REAL McCOIL) are indicated
925 in green, and those with the var gene-based approach (varcoding) are indicated in blue. The dark
926 and light green or blue colors indicate respectively MOI estimations made without and with a
927  measurement model (Fig 2). The column panels show differences for specific true MOI values. B)
928  Population distribution of the estimated and true MOI per host from the simulated “true” values
929  and those estimated with the methods indicated by the colors similar to panel A.
930
931  S6 Fig: Reliability of the multiplicity of infection (MOI) estimations when subsampling 10%
932  of the sampled individuals (i.e. 200 individuals). For each category, the horizontal central solid
933 line represents the median, the diamond represents the mean, the box represents the interquartile
934  range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which
935 s no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e.

936 the points beyond the whiskers. The upper, middle, and lower row panels correspond to
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937  simulations under low-, moderate-, and high-transmission settings, respectively (S1 and S2
938  Tables). A) Accuracy of MOI estimates, defined as the difference between estimated and true MOI
939  per host. While null values highlight accurate MOI estimates (indicated by a dashed black
940  horizontal line), the positive and negative values highlight over- and under-estimation,
941  respectively. Estimates with the neutral SNP-based approach (THE REAL McCOIL) are indicated
942 in green, and those with the var gene-based approach (varcoding) are indicated in blue. The dark
943 and light green or blue colors indicate respectively MOI estimations made without and with a
944  measurement model (Fig 2). The column panels show differences for specific true MOI values. B)
945  Population distribution of the estimated and true MOI per host from the simulated “true” values
946  and those estimated with the methods indicated by the colors similar to panel A.
947
948  S7 Fig. Accuracy of the minor allele frequency (MAF) estimates per locus determined with
949 THE REAL McCOIL approach. The accuracy of MAF estimates per locus is defined as the
950 differences between estimated and true MAF per locus. While null values highlight accurate MAF
951  estimates per locus (indicated by a dashed black horizontal line), the positive and negative values
952  highlight over- and under-estimation, respectively. For each category, the horizontal central solid
953 line represents the median, the diamond represents the mean, the box represents the interquartile
954  range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which
955 is no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e.
956 the points beyond the whiskers. The dark and light green colors indicate respectively MAF
957  estimations made without and with a measurement model (Fig 2). Upper, middle, and lower panels
958  correspond to simulations under low-, moderate-, and high-transmission settings, respectively (S1

959  and S2 Tables).
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960

961 S8 Fig. Population structure using repertoire similarity network properties. Comparisons of
962  repertoire similarity networks of 150 randomly sampled parasite var repertoires generated from a
963  one-time point under low, moderate, and high-transmission settings (S1 and S2 Tables). Only the
964  top 1% of edges are drawn and used in the analysis. The upper panel shows the distribution of the
965 mean pairwise type sharing (PTS) per run. For each category, the horizontal central solid line
966  represents the median, the diamond represents the mean, the box represents the interquartile range
967  (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which is
968  no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e. the
969 points beyond the whiskers. The lower panel shows the distributions of the proportion of
970  occurrences of three-node graph motifs across the repertoire similarity networks.

971

972  S9 Fig. Pairwise type sharing (PTS). For each category, the horizontal central solid line
973  represents the median, the diamond represents the mean, the box represents the interquartile range
974  (IQR) from the 25th to 75th centiles, and the whiskers indicate the most extreme data point. A)
975  Distribution of the PTS per transmission intensity. B) Distribution of the PTS per run.

976

977  S10 Fig. Reliability of the multiplicity of infection (MOI) estimations when simulations
978 include a measurement error based on the distribution of the number of non-upsA DBLa
979  var gene types per 3D7 laboratory isolates for the var coding approach. For each category, the
980 horizontal central solid line represents the median, the diamond represents the mean, the box
981 represents the interquartile range (IQR) from the 25th to 75th centiles, the whiskers indicate the

982  most extreme data point which is no more than 1.5 times the interquartile range from the box, and
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983  the dots show the outliers, i.e. the points beyond the whiskers. The upper, middle, and lower row
984  panels correspond to simulations under low-, moderate-, and high-transmission settings,
985  respectively (S1 and S2 Tables). A) Accuracy of MOI estimates, defined as the differences
986  between estimated and true MOI per host. While null values highlight accurate MOI estimates
987  (indicated by a dashed black horizontal line), the positive and negative values highlight over- and
988  under-estimation, respectively. Estimates with the neutral SNP-based approach (THE REAL
989 McCOIL) are indicated in green, and those with the var gene-based approach (varcoding) are
990 indicated in blue. The dark and light blue or green colors indicate respectively MOI estimates made
991  without and with a measurement model (Fig 2). The column panels show differences for specific
992 true MOI values. B) Population distribution of the estimated and true MOI per host from the
993 simulated “true” values and those estimated with the methods indicated by the colors similar to
994  panel A.
995
996 S11 Fig. Reliability of the multiplicity of infection (MOI) estimations when THE REAL
997  McCOIL approach using an upper bound for MOI of 5, 10, and 20 for the low-, moderate-,
998 and high-transmission simulations, respectively. For each category, the horizontal central solid
999 line represents the median, the diamond represents the mean, the box represents the interquartile
1000 range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which
1001 s no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e.
1002 the points beyond the whiskers. The upper, middle, and lower row panels correspond to
1003  simulations under low-, moderate-, and high-transmission settings, respectively (S1 and S2
1004  Tables). A) Accuracy of MOI estimates, defined as the differences between estimated and true

1005  MOI per host. While null values highlight accurate MOI estimates (indicated by a dashed black
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1006  horizontal line), the positive and negative values highlight over- and under-estimation,
1007  respectively. The estimated MOI using the var genes based approach (i.e. var coding) are indicated
1008  in blue, and the estimated MOI using the neutral SNPs based approach (i.e. THE REAL McCOIL)
1009 areindicated in green. The dark and light blue or green colors indicate respectively MOI estimates
1010  made without and with a measurement model (Fig 2). The column panels show differences for
1011  specific true MOI values. B) Population distribution of the estimated and true MOI per host from
1012  the simulated “true” values and those estimated with the methods indicated by the colors similar
1013  to panel A.
1014
1015 S1 Table. Epidemiological and genetic parameters used in the stochastic simulations.
1016
1017  S2 Table. Epidemiological and genetic distinct parameters per run.

1018

1019  S3 Table. Pearson correlation coefficients between the inaccuracy of the minor allele frequency
1020 (MAF) per locus estimated with THE REAL McCOIL approach (defined as the absolute

1021  differences between estimated and true MAF per locus), and the locus properties.
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