

1 Neutral vs. non-neutral genetic footprints of *Plasmodium*

2 *falciparum* multiclonal infections

3

4 Frédéric Labbé¹, Qixin He², Qi Zhan¹, Kathryn E. Tiedje^{3,4}, Dionne C. Argyropoulos^{3,4}, Mun Hua
5 Tan^{3,4}, Anita Ghansah⁵, Karen P. Day^{3,4}, Mercedes Pascual^{1,6*}

6

7 1. Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street,
8 Chicago, IL 60637, United States

9 2. Department of Biological Sciences, Purdue University, West Lafayette, IN, United States

10 3. School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia

11 4. Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute,
12 The University of Melbourne, Melbourne, Australia

13 5. Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of
14 Health Science, University of Ghana, Legon, Ghana

15 6. Santa Fe Institute, Santa Fe, NM, United States

16

17 * Corresponding author

18 E-mail: pascualmm@uchicago.edu (MP)

Abstract

19 Abstract

20

21 At a time when effective tools for monitoring malaria control and eradication efforts are
22 crucial, the increasing availability of molecular data motivates their application to epidemiology.

23 The multiplicity of infection (MOI), defined as the number of genetically distinct parasite strains
24 co-infecting a host, is one key epidemiological parameter for evaluating malaria interventions.

25 Estimating MOI remains a challenge for high-transmission settings where individuals typically
26 carry multiple co-occurring infections. Several quantitative approaches have been developed to

27 estimate MOI, including two cost-effective ones relying on molecular data: i) THE REAL
28 McCOIL method is based on putatively neutral single nucleotide polymorphism loci, and ii) the

29 varcoding method is a fingerprinting approach that relies on the diversity and limited repertoire
30 overlap of the *var* multigene family encoding the major *Plasmodium falciparum* blood-stage

31 antigen PfEMP1 and is therefore under selection. In this study, we assess the robustness of the
32 MOI estimates generated with these two approaches by simulating *P. falciparum* malaria dynamics

33 under three transmission conditions using an extension of a previously developed stochastic agent-
34 based model. We demonstrate that these approaches are complementary and best considered across

35 distinct transmission intensities. While varcoding can underestimate MOI, it allows robust
36 estimation, especially under high-transmission where repertoire overlap is extremely limited from

37 frequency-dependent selection. In contrast, THE REAL McCOIL often considerably
38 overestimates MOI, but still provides reasonable estimates for low- and moderate-transmission.

39 As many countries pursue malaria elimination targets, defining the most suitable approach to
40 estimate MOI based on sample size and local transmission intensity is highly recommended for
41 monitoring the impact of intervention programs.

Author Summary

42 Author Summary

43

44 Despite control and elimination efforts, malaria continues to be a serious public health threat
45 especially in high-transmission regions. Molecular tools for evaluating these efforts include those
46 seeking to estimate multiplicity (or complexity) of infection (MOI), the number of genetically
47 distinct parasite strains co-infecting a host, a key epidemiological parameter. MOI estimation
48 remains challenging in high-transmission regions where hosts typically carry multiple co-
49 infections by *Plasmodium falciparum*. THE REAL McCOIL and the *varcoding* are two cost-
50 effective methods relying on distinct parts of the parasite genome, those respectively under
51 neutrality and selection. The more recent *varcoding* approach relies on the *var* multigene family
52 encoding for the major blood-stage antigen and contributing to a complex immune evasion strategy
53 of the parasite. We compare the performance of the two methods by simulating disease dynamics
54 under different transmission intensities with a stochastic agent-based model tracking infection by
55 different parasite genomes and immune memory in individual hosts, then sampling resulting
56 infections to estimate MOI. Although THE REAL McCOIL provides reasonable estimates for low-
57 and moderate-transmission, *varcoding* allows more robust estimates especially under high-
58 transmission. Defining the most suitable approach to estimate MOI based on local transmission
59 intensity is highly recommended for hyper-diverse pathogens such as malaria.

Introduction

60 Introduction

61

62 Malaria deaths have steadily and significantly declined over the period 2000–2019 in response
63 to control and elimination efforts [1]. However, malaria continues to be a serious threat causing
64 approximately half a million deaths in 2019, especially among young children in high-transmission
65 endemic regions in Africa. In these regions, infections are characterized by multiple genetically
66 distinct *Plasmodium* parasite genotypes simultaneously infecting a host. Multiplicity of infection
67 (MOI), also known as complexity of infection (COI), is defined as the number of genetically
68 distinct parasite strains co-infecting a single host [2]. Multiclonal infections (i.e., MOI > 1) can be
69 the result of a single bite by a mosquito transmitting more than one genetic parasite strain or
70 independent bites by infected mosquitoes (also termed superinfection). The number of co-
71 infections is associated with transmission intensity, clinical risk, age and immunity [3–6].

72

73 Given the potential relevance of MOI to malaria surveillance, various approaches have been
74 developed to estimate MOI from clinical samples. As *Plasmodium* parasites reproduce asexually
75 as haploid stages when they infect humans, signatures of polymorphic genotypes are evidence of
76 multiclonal infections. While any highly polymorphic marker is thus suitable for estimating MOI,
77 it remains a challenge to accurately measure MOI in malaria-endemic areas where multiclonal
78 infections are common. The most common approach for determining MOI involves size-
79 polymorphic antigenic markers, such as *msp1*, *msp2*, *msp3*, *glurp*, *ama1*, and *csp*, that can be
80 amplified by PCR and determined by capillary electrophoresis or agarose gel [7]. Similarly,
81 microsatellites, also termed simple sequence repeat (SSR), are another type of size-polymorphic
82 marker that can be amplified by PCR to estimate MOI by determining the number of alleles

Introduction

83 detected [5,8–12]. However, despite improved resolution of allele detection by capillary
84 electrophoresis, these approaches based on size-polymorphisms usually involve a certain degree
85 of subjective interpretation, are unable to discriminate alleles of similar sizes [13], and create PCR
86 artifacts resulting in inconsistent results, especially for $MOI > 5$ [14,15]. As an alternative to size-
87 polymorphic markers, other methods of determining MOI have focused on reconstructing
88 haplotypes from genotyping or sequencing data (e.g., estMOI, FWS, and DEploid) [16–19].
89 Whole-genome sequencing is currently not a cost-effective approach when MOI is the main
90 interest of a study, and these haplotype-reconstruction approaches are computationally intensive,
91 resulting in limited MOI reliability for highly complex infections [20]. Finally, two cost-effective
92 molecular approaches, known as THE REAL McCOIL [21] and varcoding [22,23], have been
93 more recently developed to identify and track MOI with standard laboratory equipment. They
94 differ in important ways as they rely on contrasting parts of the genome, respectively under
95 neutrality and immune selection.

96

97 As many possible genotypes exist among a combination of several genome-wide single
98 nucleotide polymorphisms (SNPs), methods of determining MOI have focused on neutral SNP
99 data to discriminate among strains [24]. Galinsky *et al.* (2015) developed the COIL approach to
100 estimate MOI from a panel of bi-allelic SNP data, but this method relies on monoclonal infections
101 ($MOI = 1$) for estimation of allele frequencies or requires external allele frequency data. As
102 external allele frequency data may only be available for specific locations and be heterogeneous
103 in space and time, an analytical approach, called THE REAL McCOIL (Turning HEterozygous
104 SNP data into Robust Estimates of ALelle frequency, via Markov chain Monte Carlo, and
105 Complexity Of Infection using Likelihood), was developed to simultaneously estimate the MOI

Introduction

106 within a human host and the allele frequencies in the population based on a panel of SNPs [21].
107 Using simulations and 105 SNP data from cross-sectional surveys in Uganda, Chang *et al.* (2017)
108 showed that THE REAL McCOIL approach improved performance in estimates of both quantities,
109 despite the uncertainty of these estimates increasing with true MOI.

110
111 The more recent *varcoding* approach (also termed *var* genotyping or *var* fingerprinting)
112 [22,23], employs the highly polymorphic sequences encoding the immunogenic DBL α domain of
113 PfEMP1 (*Plasmodium falciparum* erythrocyte membrane protein 1), the major surface antigen of
114 the blood stage of infection [26]. During an infection, PfEMP1 molecules are exported by the
115 parasite to the surface of the infected erythrocytes, where they influence virulence of the disease
116 and become a target of the adaptive immune system [27]. The multigene family known as *var*
117 encodes variants of this surface antigen which can reach tens of thousands of variants in endemic
118 populations [22,28–33]. The sequential expression of a set of up to 60 *var* genes per parasite
119 (hereafter, a repertoire) leads to immune evasion, prolongs infection duration, and establishes
120 chronic infections enabling onward transmission [34,35]. Immune evasion is particularly
121 important in high transmission regions where *var* repertoires are composed of largely distinct sets
122 of *var* genes [22,28–31,36]. This non-random composition of *var* repertoires has been shown to
123 result from negative frequency-dependent immune selection. Largely non-overlapping *var*
124 repertoires enhance survival in semi-immune hosts, in accordance with earlier models of parasite
125 competition for hosts via specific immunity [37] and more recent deep molecular sampling of local
126 populations and computational theory [22,30,36]. This feature of *var* population structure allows
127 distinct strains to accumulate in the blood of human hosts. The extensive diversity of the *var* gene
128 family together with the very low percentage of *var* genes shared between parasites facilitate

Introduction

129 measuring MOI by amplifying, pooling, sequencing, and counting the number of DBL α types in a
130 host. This feature of *var* population genetics is the basis of the fingerprinting concept of *varcoding*.
131 From a single PCR with degenerate primers and amplicon sequencing, the method counts unique
132 DBL α types per infection. It is not based on assigning haplotypes but instead, it assumes a set
133 number of types per genome based on control data accounting for PCR sampling errors to calculate
134 MOI [22,23].

135

136 As *varcoding* does not require haplotype construction, we propose that this method is
137 particularly well suited for high transmission where REAL McCOIL has shown some limitations
138 due to the bi-allelic nature of the SNP calling [21]. To evaluate the relative performance of these
139 two contrasting approaches to estimate MOI across different transmission settings, this study
140 simulates malaria transmission under low, moderate, and high-transmission using an extended
141 agent-based model (ABM). We specifically extend a previously developed stochastic
142 computational model to incorporate neutral bi-allelic SNPs which, together with the *var* genes, can
143 be used for MOI estimation. Depending on transmission intensity, we ask whether one of these
144 approaches is more accurate than the other. When most infections are multiclonal (i.e., MOI > 1),
145 we demonstrate that THE REAL McCOIL and the *varcoding* approaches tend to overestimate and
146 underestimate the MOI, respectively. Moreover, while the high diversity of the *var* gene family
147 allows robust MOI estimation with the *varcoding* approach, especially across high-transmission
148 settings, THE REAL McCOIL provides reasonable estimates across low- and moderate-
149 transmission settings where the *varcoding* can be limited by partially overlapping *var* repertoires.
150 We discuss the limitations and advantages of these two approaches to determine the multiplicity
151 of malaria parasite infection as well as their implications for malaria surveillance.

Results

152 Results

153

154 Accurate estimation of multiplicity of infection is important for evaluating current intervention
155 strategies against malaria and thus defining or adapting future ones. We evaluated two recently
156 developed MOI estimation approaches by simulating malaria transmission using an extended
157 ABM, and sampling, estimating, and comparing MOI under three different transmission settings
158 (i.e., “low”, “moderate”, or “high”).

159

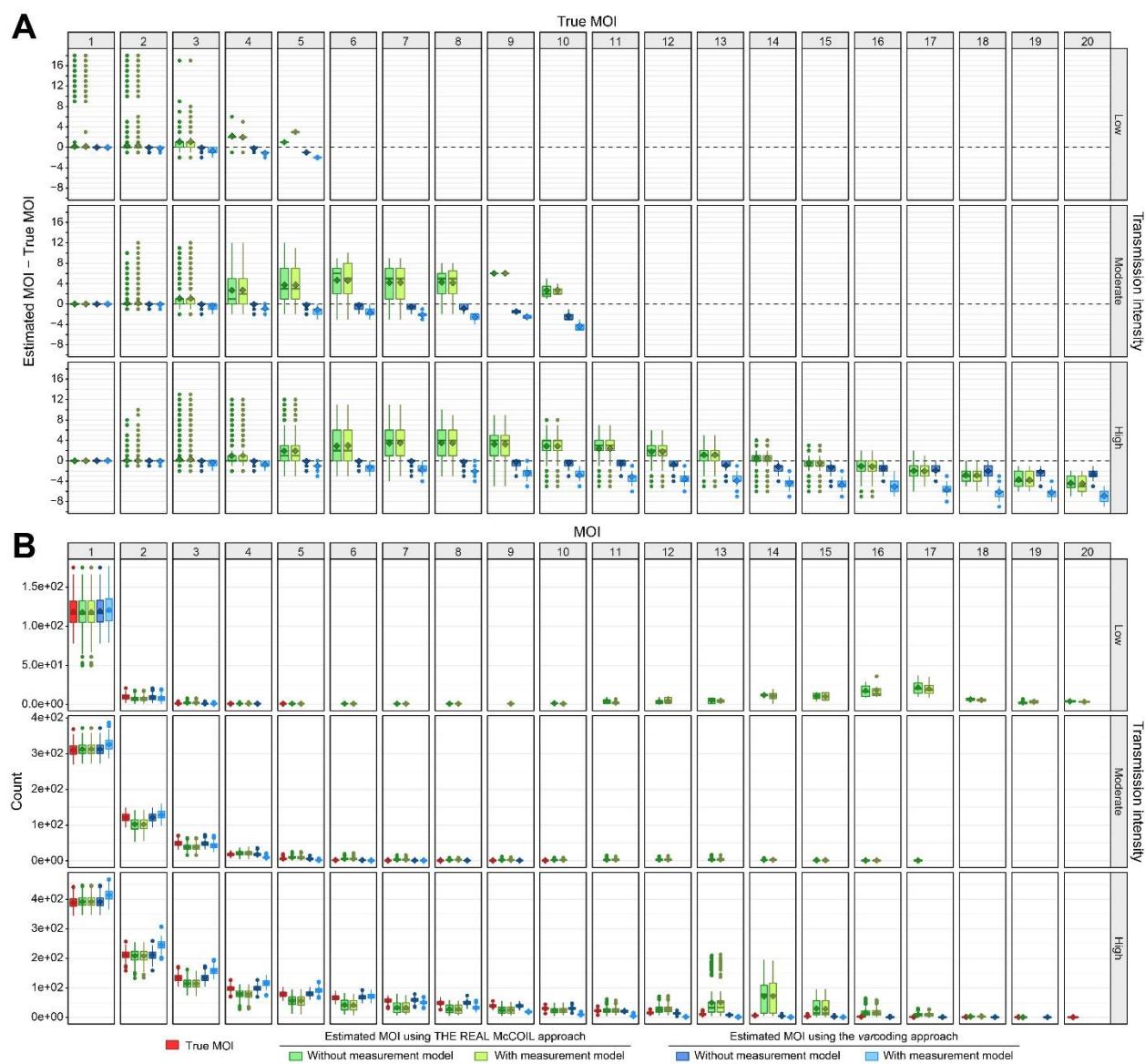
160 For each simulation under low-, moderate-, or high-transmission intensity, 2000 individuals
161 were sampled at the end of the wet season (S1 Fig). On the one hand, the number of sampled
162 individuals per age class is consistent with the age distribution and the size of each age class (S1A
163 and S1B Figs). On the other hand, the number of infected sampled individuals was significantly
164 and negatively correlated with the age of the hosts, as expected (Pearson correlation test; high-
165 transmission: $r = -0.81$, P -value $< 2.2\text{e-}16$; moderate-transmission: $r = -0.63$, P -value = $3.0\text{e-}10$;
166 low-transmission: $r = -0.65$, P -value = $9.5\text{e-}11$). The hosts between 0 and 5 years old thus exhibit
167 the highest number of infections with an average of 64 ± 11 (mean \pm SD), 267 ± 17 , and 377 ± 18
168 sampled hosts for the low-, moderate-, and high-transmission simulations, respectively (S1C Fig).
169 As expected, the number of sampled hosts is higher for simulations with high-transmission settings
170 (939 ± 344) than for those with moderate (314 ± 151) and low-transmission settings (88 ± 36)
171 (S1C Fig). Consistently, the average EIR and prevalence were also higher for simulations with
172 high-transmission settings than for those with low- or moderate-transmission settings (S2 Fig). For
173 instance, low-transmission setting simulations have an average of 1.1 ± 0.2 infectious bites per
174 host per year and 0.04 ± 0.02 infected cases, whereas moderate-transmission simulations have an

Results

175 average of 6.8 ± 0.2 infectious bites per host per year and 0.16 ± 0.08 infected cases, and high-
176 transmission simulations have an average of 21.6 ± 0.2 infectious bites per host per year and 0.47
177 ± 0.17 infected cases, reflecting highly contrasting malaria transmission intensities. We note that
178 in our simulations “infectious bites” were computed as infectious contact events experienced by a
179 host, and that for generality purposes, we set the transmissibility probability specifying whether
180 such contact results in infection to 0.5 (S1 Table). Thus, for comparison purposes with empirical
181 values, the EIR values obtained in the simulations should be divided by such probability.
182 Consistently with these epidemiological and genetic diversity statistics, the true MOI distribution
183 generated by the simulations is also significantly different among the three levels of transmission
184 (t-test: P -value $< 2.2\text{e-}16$; average true MOI of 1.08 ± 0.30 , 1.61 ± 0.95 , and 3.84 ± 3.31 for the
185 low-, moderate-, and high-transmission simulations, respectively) (Fig 1B).

186

Results



187

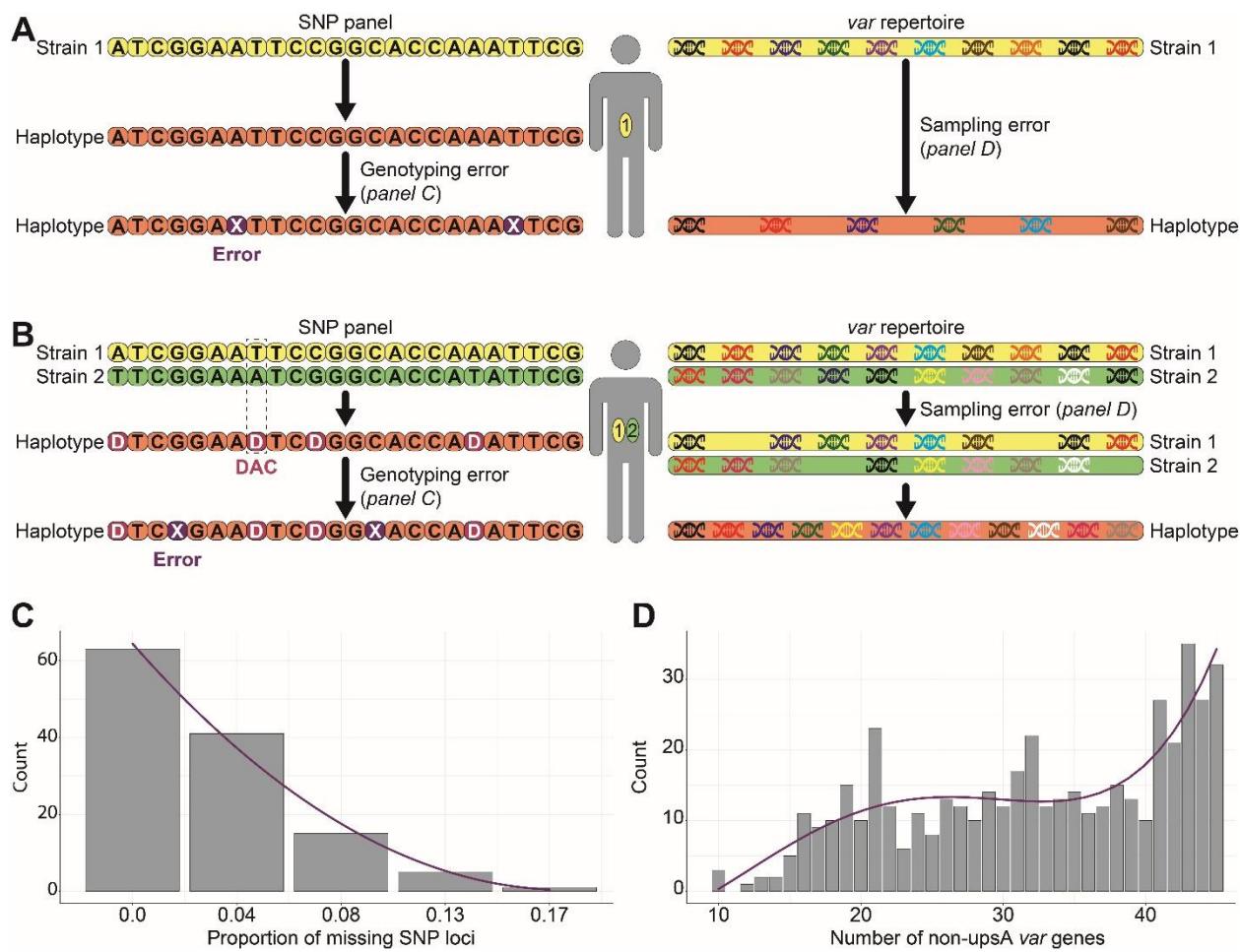
188 **Fig 1: Multiplicity of infection (MOI).** For each category, the horizontal central solid line
 189 represents the median, the diamond represents the mean, the box represents the interquartile range
 190 (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point, which is
 191 no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e.,
 192 the points beyond the whiskers. The upper, middle, and lower row panels show correspond to
 193 simulations under low-, moderate-, and high-transmission settings, respectively (S1 and S2
 194 Tables). **A)** Accuracy of MOI estimates, defined as the difference between estimated and true MOI

Results

195 per host. While null values highlight accurate MOI estimates (indicated by a dashed black
196 horizontal line), the positive and negative values highlight over- and under-estimation,
197 respectively. Estimates with the neutral SNP-based approach (THE REAL McCOIL) are indicated
198 in green, and those with the *var* gene-based approach (*varcoding*) are indicated in blue. The dark
199 and light green or blue colors indicate respectively MOI estimations made without and with a
200 measurement model (Fig 2). The column panels show differences for specific true MOI values. **B**)
201 Population distribution of the estimated and true MOI per host from the simulated “true” values
202 and those estimated with the methods indicated by the colors similar to panel A. For high
203 transmission, the distribution obtained with THE REAL McCOIL shows a more pronounced tail
204 than that from the simulated infections, with a secondary peak around MOI = 14. Note that the
205 method considerably over-estimates individual MOI below that value but then under-estimates
206 above it (panel A). Thus, these opposite trends compensate each other to some extent in the
207 population distribution, producing nevertheless a deviation at high values. The *varcoding* method
208 provides a good representation of the “true” distribution from the simulations, and of the individual
209 values in general, with a consistent tendency to underestimate when sampling error is taken into
210 account.

211

Results



213 **Fig 2: Measurement models.** **A)** and **B)** Schematic diagrams of the SNP and *var* measurement
 214 models for a host infected by one (MOI = 1) or two (MOI = 2) genetically distinct *P. falciparum*
 215 strains, respectively. To account for potential SNP genotyping failures, we randomly replaced the
 216 host genotypes with missing data (X). This replacement was implemented by using the distribution
 217 illustrated in panel C. When MOI is high, the frequency of double allele calls (DACS) is also high
 218 (Fig 3). To account for *var* gene potential sequencing errors, we sub-sampled the number of *var*
 219 genes per repertoire. This sub-sampling was implemented by using the distribution illustrated in
 220 panel D. For simplicity, the *var* repertoire in these two examples only consists of 10 *var* genes
 221 despite each migrant parasite genome consists of a repertoire of 45 *var* genes in the simulations
 222 (S1 Table). **C)** Histogram of the proportion of missing SNP loci per host haplotype from a panel

Results

223 of 24 bi-allelic SNP loci. The genotypes were previously obtained from monoclonal infections
224 sampled during one cross-sectional survey made in 2015 in the Bongo District, in northern Ghana.
225 The purple curves show the best curves that fit the data using the adjusted R-squared. **D)** Histogram
226 of the number of non-upsA (i.e., upsB and upsC) DBL α *var* gene types per repertoire. The
227 molecular sequences were previously sequenced from monoclonal infections, i.e., hosts infected
228 by a single *P. falciparum* strain (MOI = 1), sampled during six cross-sectional surveys made from
229 2012 to 2016 in the Bongo District, in northern Ghana.

230

231 **Estimates with THE REAL McCOIL approach**

232

233 THE REAL McCOIL approach based on neutral SNP data tends to overestimate MOI when
234 true values range from 3 to 14 (Fig 1A). In contrast, this approach tends to underestimate MOI for
235 true MOI above ~14, values only found in hosts without any single minor allele calls (Figs 2A and
236 3). Underestimated MOI can differ from the true MOI by up to 2, 3, and 7 co-infections for the
237 low-, moderate-, and high-transmission simulations, respectively. Interestingly, while most hosts
238 with MOI < 3 show accurate MOI estimates, some can differ from the true MOI by up to 18, 12,
239 and 13 co-infections for the low-, moderate-, and high-transmission simulations, respectively. The
240 inaccuracy of the MOI estimates based on THE REAL McCOIL approach, defined as the absolute
241 differences between estimated and true MOI per host, is significantly and positively correlated
242 with the true MOI (P -values < 2.2e-16; $r = 0.07$, $r = 0.59$, and $r = 0.55$ for the low-, moderate-, and
243 high-transmission simulations, respectively).

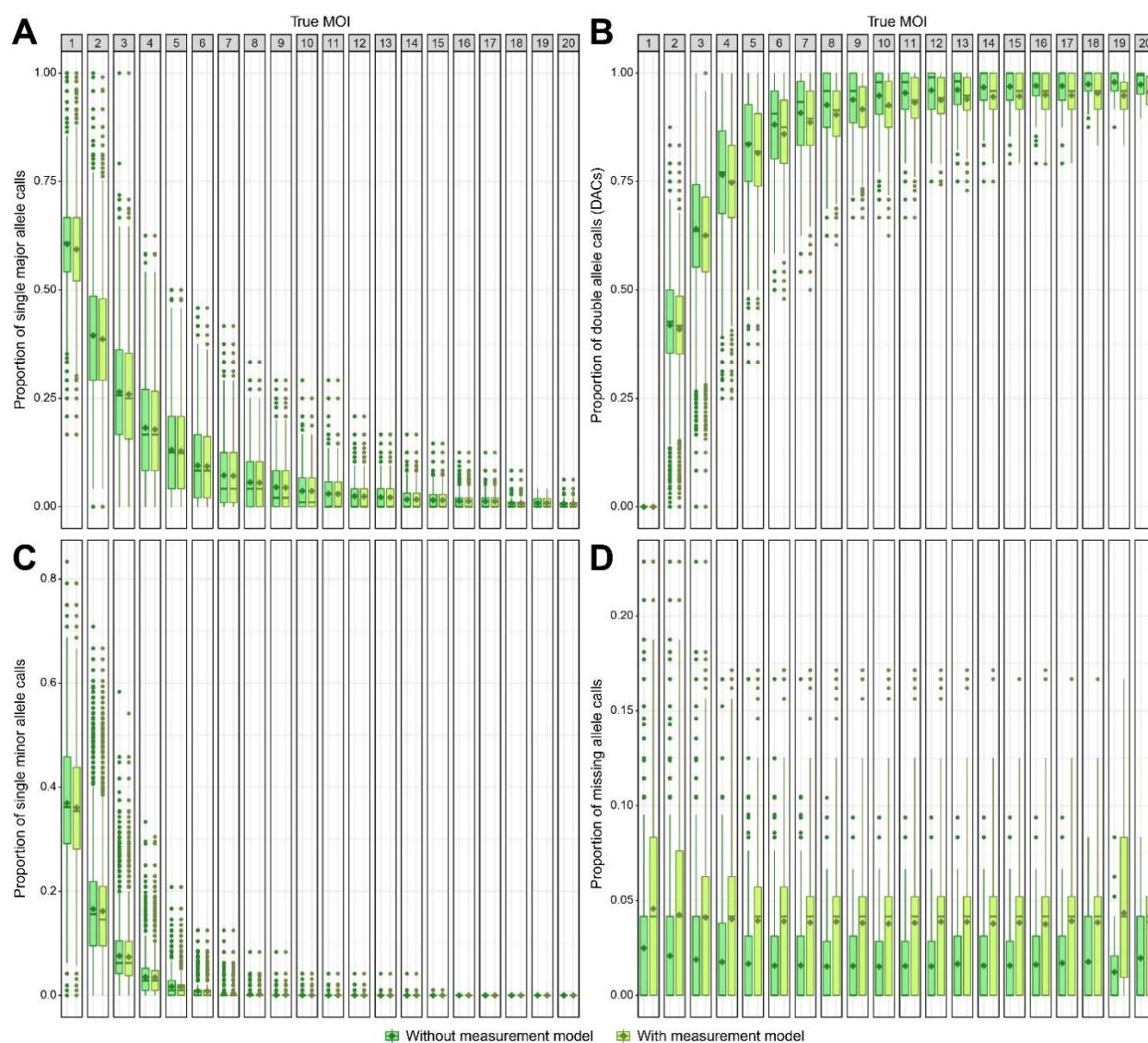
244

Results

245 As the proportion of double allele calls (DACs) per host is significantly and positively
246 correlated with the true MOI (P -value $< 2.2\text{e-}16$, $r = 0.82$) (Fig 3), inaccuracy is also significantly
247 and positively correlated with the proportion of DACs per host (P -value $< 2.2\text{e-}16$, $r = 0.61$).
248 Consistently, inaccuracy is significantly and negatively correlated with the proportion of single
249 allele calls (minor and major alleles) per host SNP haplotype (P -value $< 2.2\text{e-}16$, $r = -0.61$) (Fig
250 3). Inaccuracy is significantly and negatively correlated with the number of SNPs (P -value $< 2.2\text{e-}$
251 16 , $r = -0.15$), but estimated MOI with the highest number of SNPs (105 SNPs) can still differ
252 from the true MOI by up to 18 (S3A Fig). Surprisingly, the MOI estimates show higher accuracy
253 for simulations generated with distinct initial SNP allele frequencies but did not seem influenced
254 by the presence of linked SNP loci (S4 Fig). Overall, despite including slightly fewer hosts with
255 low MOI and significantly more hosts with high MOI (Fig 1B), the average estimated MOI was
256 quite similar to that of the true MOI (P -values $< 2.2\text{e-}16$; average estimated MOI of 1.27 ± 1.60 ,
257 1.93 ± 1.93 , and 4.80 ± 4.60 for the low-, moderate-, and high-transmission simulations,
258 respectively). However, due to the combination of overestimated and underestimated MOI values,
259 the distribution showed a second peak of high density around a MOI of 15, which is absent from
260 the true MOI distribution. This peak can correspond to a maximum of ~200 hosts in some
261 simulations.

262

Results



263

264 **Fig 3: Proportion of SNP calls (genotypes) per host SNP haplotype. A)** Single major allele
 265 calls; **B)** Double allele calls (DACS); **C)** Single minor allele calls; **D)** Missing allele calls. The
 266 column panels show the proportions for specific true MOI values. The dark and light green colors
 267 indicate the proportion of calls made without and with a measurement model, respectively (Fig 2).
 268 For each category, the horizontal central solid line represents the median, the diamond represents
 269 the mean, the box represents the interquartile range (IQR) from the 25th to 75th centiles, the
 270 whiskers indicate the most extreme data point, which is no more than 1.5 times the interquartile
 271 range from the box, and the dots show the outliers, i.e., the points beyond the whiskers.

Results

272

273 Consideration of a SNP measurement model, which accounts for potential genotyping failures
274 by randomly replacing some SNP genotypes with missing values, only slightly decreases the
275 accuracy of the MOI estimates based on THE REAL McCOIL approach, relative to MOI estimates
276 made without the measurement model (Figs 1A and 2).

277

278 Subsampling the individuals from 2000 to 500 did not reduce the accuracy of the estimated
279 MOI with or without the measurement model (S5 Fig). However, subsampling to 200 individuals
280 significantly increased the number of SNP loci with a $MAF < 10\%$, especially for the low- (7 ± 8
281 loci) and moderate-transmission setting simulations (3 ± 3 loci). Consequently, due to the high
282 number of SNP loci, and thus individuals, that could not be considered in THE REAL McCOIL
283 analysis, MOI could not have been estimated for any of the low-transmission setting simulations
284 when a subsampling of 200 individuals was applied (S6 Fig). Moreover, while THE REAL
285 McCOIL approach could provide MOI estimates for subsamples of the moderate- and high-
286 transmission setting simulations, the subsampling of 200 individuals significantly reduced the
287 accuracy of these MOI estimates made with or without the measurement model.

288

289 Simulations under low- and moderate-transmission settings show more accurate MOI
290 estimates than the simulations under high-transmission settings (Fig 1A). For the low-transmission
291 setting, the less accurate MOI estimates (> 13) were generated in only four simulations (i.e., one
292 replicate from runs 10, 11, 22, and 23) (Fig 1B and S2 Table). These results were explained by
293 highly inaccurate estimated MAF. Indeed, the inaccuracy of the estimated MOI was significantly
294 and positively correlated with the inaccuracy of the estimated MAF per simulation, defined as the

Results

295 sum of the absolute differences between estimated and true MAF per SNP locus (P -values < 2.2e-
296 16; $r = 0.12$ and $r = 0.13$ for estimates made with or without measurement model, respectively).
297 Interestingly, although THE REAL McCOIL approach generated very inaccurate MAF estimates
298 for a few low-transmission simulations, it typically produced very accurate estimates of the MAF
299 regardless of transmission settings (S7 Fig). Consistent with the MOI results, the accuracy of the
300 MAF estimates per simulation also increases with the number of SNP loci. The inaccuracy of THE
301 REAL McCOIL MAF estimates per locus, defined as the absolute differences between estimated
302 and true MAF per locus, is significantly and negatively correlated with the true MAF, the
303 proportion of DACs, and the proportion of single minor allele calls per locus (S3 Table). Moreover,
304 this inaccuracy of the MAF estimations is also significantly but positively correlated with the
305 proportion of missing allele calls and single major allele calls per locus (S3 Table).

306

307 **Estimates with the *varcoding* approach**

308

309 Consistently with an increasing probability of overlapping *var* repertoires for hosts with MOI
310 above 1, the *varcoding* approach, which uses the number of *var* genes to estimate MOI, tends to
311 slightly underestimate the MOI (Fig 1A). Its inaccuracy, defined as the absolute difference
312 between estimated and true MOI per host, is significantly and positively correlated with the true
313 MOI (P -values < 2.2e-16; $r = 0.23$, $r = 0.26$, and $r = 0.54$ for the low-, moderate-, and high-
314 transmission simulations, respectively). Therefore, MOI values estimated for the hosts with the
315 highest true MOI (i.e., 5, 10, and 20 co-infections for the low-, moderate-, and high-transmission
316 simulations, respectively), differ from the true MOI by up to 1, 3, and 5 co-infections for the low-
317 , moderate-, and high-transmission simulations, respectively. Overall, despite exhibiting slight

Results

318 deviations, with more hosts at low MOI and fewer hosts at high MOI, the distribution of the
319 estimated MOI based on the *varcoding* approach is quite similar to that of the true MOI (*P*-value
320 $< 2.2\text{e-}16$; average estimated MOI of 1.08 ± 0.29 ; *P*-value = 0.10, 1.60 ± 0.93 ; *P*-value = $4.9\text{e-}05$,
321 and 3.74 ± 3.14 for the low-, moderate-, and high-transmission simulations, respectively) (Fig 1B).

322

323 As expected, the *var* genes measurement model, which accounts for potential sampling errors
324 by sub-sampling the number of *var* genes per strain, reduced the number of available distinct *var*
325 genes per host and increased inaccuracy (Figs 1A and 2). MOI estimates from simulated data can
326 now differ from the true MOI by up to 2, 5, and 9 co-infections for the low-, moderate-, and high-
327 transmission simulations, respectively. Overall, the distribution of the estimated MOI remained
328 quite similar to that of the true MOI (*P*-values $< 2.2\text{e-}16$; average estimated MOI of 1.07 ± 0.26 ,
329 1.49 ± 0.75 , and 3.05 ± 2.30 for the low-, moderate-, and high-transmission simulations,
330 respectively), even though it accentuated some of the small deviations we described in the absence
331 of measurement error, namely more hosts with low MOI and fewer hosts with high MOI (Fig 1B).

332

333 As the *varcoding* approach estimates MOI using individual host level information,
334 subsampling the dataset, from 2000 to 500 or 200 individuals, did not reduce accuracy regardless
335 of consideration of measurement error (S5 and S6 Figs).

336

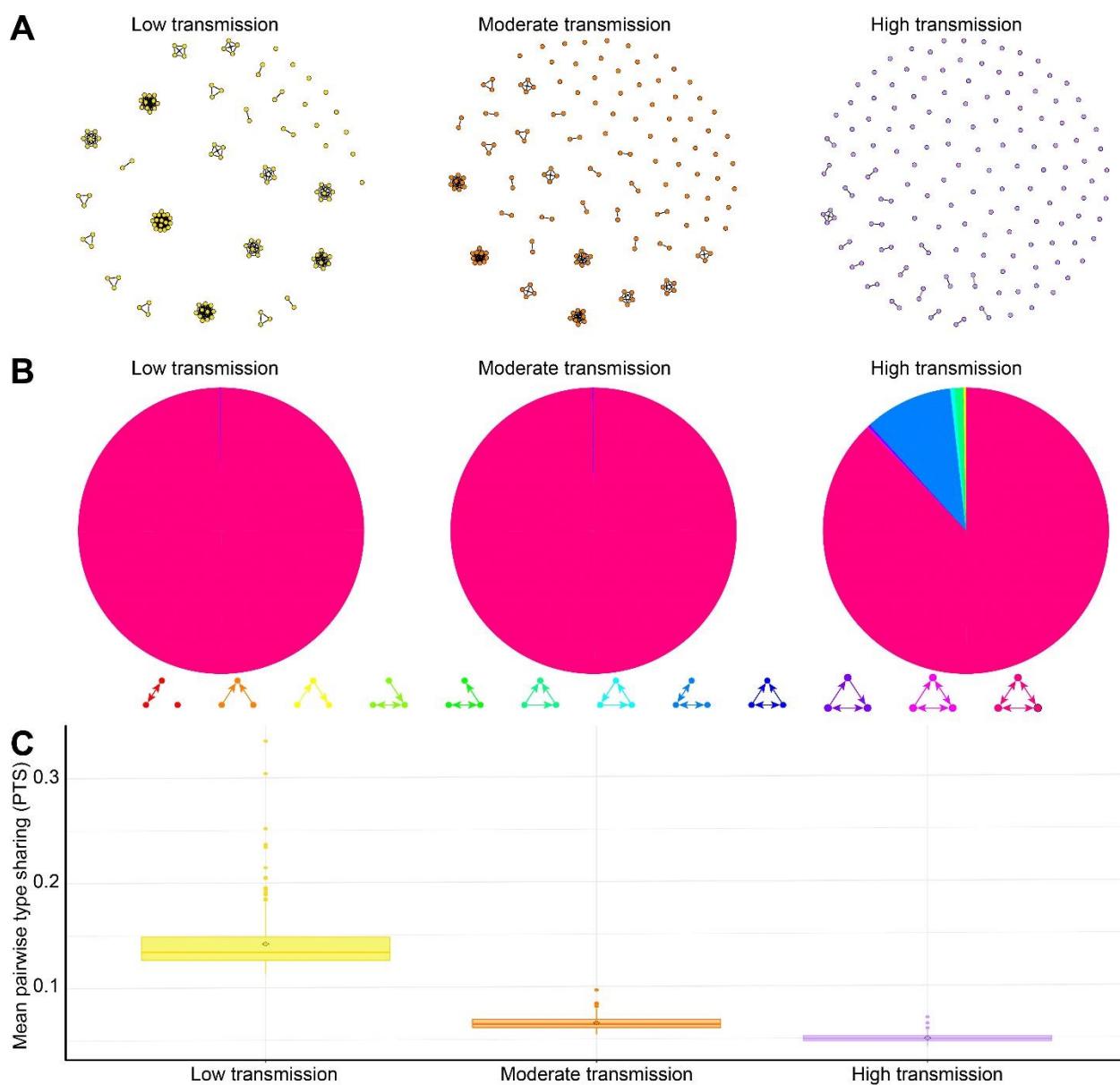
337 The high-transmission setting simulations resulted in more accurate MOI estimates than the
338 low- and moderate-transmission simulations (Fig 1A). This is consistent with the *var* repertoires
339 for simulations under high-transmission settings exhibiting a lower average PTS (0.049 ± 0.001),
340 i.e., less overlap, than the *var* repertoires for simulations under low- and moderate-transmission

Results

341 settings (0.138 ± 0.027 and 0.063 ± 0.004 , respectively) (Figs 4C, S8, and S9). The genetic
342 structure of the parasite population can also be analyzed using networks whose nodes are *var*
343 repertoires, and the weighted edges correspond to the degree of overlap between these repertoires
344 (Fig 4A) [36]. Consistent with the average PTS, the similarity networks for simulations under
345 high-transmission settings did not group the *var* repertoires into well-defined modules while the
346 similarity networks for simulations under high-transmission settings did. This finding was also
347 captured using three-node motifs across the *var* repertoire similarity networks, which showed a
348 lower proportion of reciprocal motifs (i.e., $A \leftrightarrow B \leftrightarrow C \leftrightarrow A$) for simulations under high-
349 transmission settings (91.4%) than for simulations under low- and moderate-transmission settings
350 (99.8% and 100.0%, respectively) (Figs 4A, 4B, and S8). Altogether, as simulated *P. falciparum*
351 strains under high-transmission settings shared less similar *var* repertoires than those under low-
352 or moderate-transmission settings, the varcoding approach results in more accurate MOI estimates
353 under high-transmission settings than under the lower transmission ones (Figs 2A, 4, and S8).

354

Results



355

356 **Fig 4: Population structure using network properties.** Comparisons of repertoire similarity
357 networks of 150 randomly sampled parasite *var* repertoires generated from a one-time point under
358 low, moderate, and high-transmission settings (i.e., one replicate of runs 1, 25, and 49,
359 respectively; S1 and S2 Tables). Only the top 1% of edges are drawn and used in the analysis. **A)**
360 Similarity networks where nodes are *var* repertoires, weighted edges encode the degree of overlap
361 between the *var* genes contained in these repertoires, and the direction of an edge indicates the
362 asymmetric competition between repertoires. **B)** Distributions of the average proportion of

Results

363 occurrences of three-node graph motifs across the repertoire similarity networks. **C)** Distribution
364 of the mean pairwise type sharing (PTS) between *var* repertoires. For each category, the horizontal
365 central solid line represents the median, the diamond represents the mean, the box represents the
366 interquartile range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme
367 data point, which is no more than 1.5 times the interquartile range from the box, and the dots show
368 the outliers, i.e., the points beyond the whiskers.

369

370 **Comparison of THE REAL McCOIL and the *varcoding* approaches**

371

372 As described above, each method performs better under specific conditions, such as
373 transmission setting and sampling size. However, for any given simulation, THE REAL McCOIL
374 approach never reached the level of accuracy of *varcoding* (Fig 1). First, for simulations under
375 low- and moderate-transmission settings, THE REAL McCOIL approach could generate highly
376 inaccurate MAF, due to the small proportion of infected hosts sampled from the participants, which
377 can result in more inaccurate MOI estimates than those generated with *varcoding*. Second, under
378 high-transmission settings, THE REAL McCOIL approach showed a combination of MOI
379 overestimates and underestimates for true MOI under or above ~14 co-infections, respectively (Fig
380 1). This introduces biases in opposite directions, which can compensate to some extent and
381 artificially provide a reasonable overall population distribution. In contrast, the *varcoding*
382 approach showed consistent increasing underestimation of the MOI for increasing true MOI as
383 expected from an increasing *var* repertoire overlap between strains. Third, for a similar sample
384 size (i.e., 2000, 500, or 200 individuals), the *varcoding* approach always provided more accurate
385 MOI estimates than THE REAL McCOIL approach (S5 and S6 Figs). This was especially

Results

386 observed for the smaller sample sizes (i.e., 200 samples), which are quite commonly used for
387 malaria surveillance. On the one hand, THE REAL McCOIL, which relies on information at the
388 population level, could not provide MOI estimates due to the limited number of SNP loci that
389 could be considered in the analysis or could provide less accurate MAF and MOI estimates. On
390 the other hand, the *varcoding*, which only relies on the information at the individual level to
391 estimate MOI, consistently provided comparable MOI estimates independently of the sample size.
392 In summary, the accuracy of the estimated MOI was dependent on the transmission setting, the
393 approach used to characterize the multiplicity of malaria parasite infection, and the sample size.

Discussion

394 Discussion

395

396 When *P. falciparum* transmission is high, which is common within malaria-endemic regions
397 of the world, simulations showed that THE REAL McCOIL approach provided less robust MOI
398 estimation than the *varcoding* approach. The former approach tends to overestimate the MOI for
399 hosts with low and moderate true MOI (under ~14 co-infections) and to underestimate the MOI
400 for hosts with high true MOI (above ~14 co-infections). The high proportion of DACs and low
401 proportion of single major and minor allele calls in a host SNP haplotype (barcode) seemed to be
402 the origin of this inaccuracy in the high-transmission simulations. It is interesting to note that the
403 combination of underestimated and overestimated MOI values allowed THE REAL McCOIL
404 approach to generate a fairly accurate average estimated MOI but for the wrong reasons. Therefore,
405 caution should be taken with using this approach when malaria transmission is moderate to high.
406 In particular, considerable overestimates in the population result in a secondary peak in the
407 distribution. In contrast, the low PTS values at high transmission due to the high diversity of *var*
408 genes and selection for reduced repertoire overlap enabled accurate MOI estimates via *varcoding*
409 by amplifying, pooling, sequencing, and counting the number of DBL α types in a host. Despite
410 harboring a high proportion of distinct *var* genes, repertoires can still be partially overlapping,
411 sharing similar *var* genes. This limited overlap can result in a reduced number of *var* genes being
412 identified on the basis of their DBL α types, which leads to the potential underestimation of MOI.
413 Because these regions of the parasite genome can be sometimes challenging to access, the resulting
414 sampling errors can reduce the reliability of the methodology leading to consistent underestimation
415 of MOI, as shown with the simulations that included a realistic measurement error based on
416 empirical data. Interestingly, simulations including a measurement error based on the distribution

Discussion

417 of the number of non-upsA DBL α *var* gene types per 3D7 laboratory isolate significantly improved
418 the accuracy of the *var* coding MOI estimates, highlighting the importance of high-density isolates
419 when estimating MOI (S10 Fig). Thus, the *varcoding* approach provides a cost-effective approach
420 for evaluating MOI under high-transmission conditions, with an underestimation bias introduced
421 however by measurement error from the sampling of the *var* genes.

422

423 In low or moderate malaria transmission regions, both THE REAL McCOIL and *varcoding*
424 approaches can provide reasonable MOI estimates. As bi-allelic SNP data can be relatively cheap
425 and straightforward to obtain, THE REAL McCOIL method, which can be applied to any parasite
426 isolates with multiclonal infections [21], appears cost-effective for evaluating MOI but could
427 nevertheless introduce biases in determining malaria elimination status by underestimating the
428 effectiveness of the interventions. However, the method required a minimum number of sampled
429 hosts to reasonably estimate MOI, which is not the case for *varcoding*. Caution should thus be
430 taken when defining the most suitable sample size while keeping this method cost-effective. Given
431 the high accuracy of the *varcoding* approach when measurement error was not incorporated, future
432 work will address correcting for *var* repertoire overlap within a single host to improve MOI
433 estimation.

434

435 Surprisingly, although THE REAL McCOIL approach assumes that genotyped SNP loci do
436 not exhibit significant LD, the simulations performed with linked SNP loci did not show less
437 reliable MOI estimation. Linked SNP loci may require longer simulations than the ones considered
438 here (with thousands of generations) to show substantial bias in estimates of MOI. The categorical
439 method of THE REAL McCOIL approach was very sensitive to the parameter controlling the

Discussion

440 upper bound for MOI (maxCOI). While a maximum MOI of 20 was applied in the simulations,
441 reducing this upper bound for the low- and moderate-transmission simulations to the highest true
442 MOI values observed for these settings (to 5 and 10 for the low and moderate-transmission
443 simulations, respectively) significantly improved the accuracy of the estimated MOI (S11 Fig).
444 Defining the most suitable MOI upper bound from previous reports could thus be useful to provide
445 more accurate future estimates when using this approach. However, this solution can be circular
446 and therefore impractical.

447

448 THE REAL McCOIL approach provided highly accurate MAF estimates for low- transmission
449 intensities and reasonably accurate ones in moderate- and high-transmission intensities. While
450 MAF estimates were robust with as few as 24 SNPs, their accuracy was improved by increasing
451 the number of SNPs genotyped. Most population genetic analyses of malaria parasites rely on
452 monoclonal infections, which reduces the amount of data and produces MAF estimates that may
453 not be representative and thus introduce potential biases. Therefore, despite often significantly
454 overestimating the MOI, THE REAL McCOIL approach could also facilitate population genetic
455 analyses of the malaria parasite by properly estimating the MAF and other related statistics,
456 including the effective population size (N_e), the F_{ST} , and the F_{WS} [38–40].

457

458 An additional source of measurement error, not considered by our simulations, concerns the
459 difficulty of properly sampling all the strains simultaneously infecting a particular host due to low
460 parasitemia, the parasite load in the host blood. Indeed, multiclonal infections can potentially result
461 in a reduction of the parasitemia of particular strains [41]. Consequently, strains with low
462 parasitemia could be highly diluted in clinical samples and thus have a lower probability of being

Discussion

463 properly sequenced and/or genotyped. Moreover, infections (monoclonal or multiclinal) with low
464 total parasitemia could be missed by the PCR detection approach, which can identify infections
465 with as low as one parasite per μL , and by the commonly used microscopy detection approach,
466 which cannot detect infections with lower than 4-10 parasites per μL [42,43]. Synchronicity of
467 clones in the 48 hour life cycle on alternate days also leads to underestimation of MOI unless
468 repeat daily sampling [44] or every three days is done [45]. These issues could therefore contribute
469 to a more substantial underestimation of the MOI than the ones highlighted in this study.

470

471 Another simplification in our ABM was the lack of SNP mutations. Evolution of the neutral
472 part of the parasite genome may influence MOI estimation over long time scales, but should play
473 a minor role for the shorter time periods relevant to epidemiology unless associated with selective
474 sweeps. Finally, our model did not incorporate the different sequence groupings of *var* genes,
475 which can be classified based on their chromosomal position and semi-conserved upstream
476 promoter sequences (ups) into different groups, upsA and non-upsA [46–48]. Case-control studies
477 have reported that while upsA *var* genes are preferentially expressed in children with cerebral
478 and/or severe malaria, non-upsA *var* genes have been associated with asymptomatic infections and
479 clinical cases of malaria [49–57]. This absence of *var* types in our ABM may explain the higher
480 prevalence within the younger age class in the simulations (i.e., 0-5 years old), compared to an
481 observed higher prevalence typically within the 6-10 and 11-20 years old age classes in the
482 empirical data [58].

483

484 Although MOI is a useful epidemiological marker to evaluate the efficacy of malaria
485 intervention efforts, properly characterizing multiclinal infections remains a challenge, especially

Discussion

486 for high transmission. This work demonstrates that THE REAL McCOIL and the *varcoding*
487 approaches provide complementary methodologies to determine MOI across distinct transmission
488 settings. In particular, the high diversity of the *var* gene family and low overlap of *var* gene
489 repertoires between parasites, especially under high-transmission intensity, allows robust MOI
490 estimation with the *varcoding* method, despite a tendency for underestimation originating mainly
491 from sampling error. Reliance of THE REAL McCOIL on bi-allelic neutral SNPs limits
492 application at high transmission, with the introduction of a secondary peak in the tail of the
493 population distribution, considerable over-estimates of individual MOI, and opposite signs in the
494 deviations, for both under- and over-estimates in different ranges of true values. The method
495 provides reasonable estimates across low- and moderate-transmission settings where the *varcoding*
496 approach could be limited by partially overlapping *var* repertoires. Considering local transmission
497 intensity is thus highly recommended when defining the most suitable marker and/or MOI
498 estimation approach to evaluate the impact of malaria control and elimination campaigns. The
499 highly diverse multigene *var* family under immune selection provides a handle to complexity of
500 infection at high transmission.

Materials and Methods

501 Materials and Methods

502

503 Agent-Based Model (ABM)

504

505 Malaria transmission was modeled with an extended implementation of an agent-based,
506 discrete-event, stochastic model in continuous time [36,59]. Here, we briefly describe the agent-
507 based model (ABM) implemented in Julia (varmodel3) which is based on previous C++
508 implementations (i.e. varmodel and varmodel2) [36,59]. While the previous implementation of the
509 stochastic ABM was adapted from the next-reaction method which optimizes the Gillespie first-
510 reaction method, this implementation uses a simpler Gillespie algorithm [60,61]. The ABM tracks
511 the infection history and immune memory of each host and its parameters and symbols are
512 summarized in S1 Table. We modeled a local population of 10000 individuals, and a global *var*
513 gene pool whose size acts as a proxy for regional parasite diversity. The simulations are initialized
514 with 20 migrant infections from this regional pool to seed local population transmission and grow
515 local gene diversity to a stationary equilibrium. Each migrant parasite genome consists of a specific
516 combination (i.e. repertoire) of 45 *var* genes. The size of the repertoire was based on the median
517 number of non-upsA DBL α sequences identified in our 3D7 laboratory isolate [22,23]. This
518 grouping of *var* genes is defined based on their semi-conserved upstream promoter sequences (ups)
519 (i.e. upsA and non-upsA (upsB and upsC)) [46–48]. Although each parasite carries both types of
520 *var* genes in a fairly constant proportion [26,62], the MOI estimation method we consider here
521 focuses on the non-upsA DBL α sequences as they were ~20X more diverse and less conserved
522 among repertoires than the upsA DBL α sequences. Therefore, for simplicity purposes, our model
523 considered only those types. Each *var* gene itself is represented as a linear combination of two

Materials and Methods

524 epitopes, i.e. parts of the molecule that act as antigens and are targeted by the immune system
525 [26,36,63]. The *var* genes in a repertoire are expressed sequentially and the infection ends when
526 the whole repertoire is depleted. The duration of the active period of a *var* gene, and thus of the
527 infection, is determined by the number of unseen epitopes. When a *var* gene is deactivated, the
528 host adds the deactivated *var* gene epitopes to its immunity memory. Specific immunity toward a
529 given epitope experiences a loss rate from host immunity memory, and re-exposure is therefore
530 required to maintain it. The local population is open to immigration from the regional pool.

531

532 Our model extension allows us to keep track of the neutral part of each migrant parasite genome
533 assembled by sampling one of the two possible alleles (labeled as 0 or 1) at each of a defined
534 number of neutral bi-allelic SNPs (S1 Table). While the extended model can generate
535 homogeneous initial SNP allele frequencies by sampling the migrant alleles with an identical
536 probability from the regional pool (i.e., 0.5), it can also generate distinct initial SNP allele
537 frequencies by sampling the migrant alleles from the regional pool with distinct probabilities that
538 sum up to one (e.g. 0.2 and 0.8) and are randomly picked from a defined range (e.g., [0.1-0.9]).

539

540 Seasonality was implemented in the transmission rate parameter to represent monthly
541 variability in mosquito bites [59,64]. The model does not explicitly incorporate mosquito vectors
542 but considers instead an effective contact rate (hereafter, the transmission rate) which determines
543 the times of local transmission events (exponentially distributed). At these times, a donor and a
544 recipient host are selected randomly. To mimic meiotic recombination which happens within the
545 mosquito during the sexual reproduction stage of the parasite, strains that are selected for a
546 transmission event have a probability $P_r = 1 - 1 / N_s$ (where N_s is the number of strains transmitted

Materials and Methods

547 to the donor) to become a recombinant strain [36]. To generate a recombinant *var* repertoire, a
548 random set of *var* genes is sampled from a pool containing the two sets of *var* genes from the
549 original genomes. Similarly, to generate the neutral part of a recombinant parasite, a random allele
550 is sampled for each bi-allelic SNP. Moreover, to allow for linkage disequilibrium (LD) across the
551 neutral part of the genome, neutral bi-allelic SNPs can be non-randomly associated and co-
552 segregate as defined in a matrix of LD coefficients indicating the probability that pairs of linked
553 SNPs will co-segregate during the meiotic recombination (S2 Table).

554

555 Experimental design

556

557 We explored how distinct transmission settings influence MOI estimation with the two
558 different approaches. Specifically, we compared three transmission intensities corresponding to
559 “low” (prevalence of 1-10%), “moderate” (prevalence of 10-35%), and “high” (prevalence $\geq 35\%$),
560 implemented with different transmission rates (5.0e-05, 7.5e-05, and 1.0e-04, respectively), and
561 initial gene pool sizes (500, 2000, and 10000, respectively) (S1 and S2 Tables) [65]. As the
562 sensitivity of the SNP-based methods increases with the number of SNP loci, and as Chang *et al.*
563 (2017) retained 105 SNP loci to test THE REAL McCOIL approach, we performed these
564 simulations using 24, 48, 96, and 105 SNP loci for the three transmission settings (S1 and S2
565 Tables) [21,24,25]. As THE REAL McCOIL approach assumes that distinct parasite lineages in
566 multiclonal infections are unrelated and that genotyped SNP loci do not exhibit significant LD, we
567 performed the simulations with homogenous initial SNP allelic frequencies and with unlinked bi-
568 allelic SNP loci (S1 and S2 Tables). However, as allelic frequencies can be heterogeneous in space
569 and time, we also performed simulations with distinct initial allelic frequencies, and with 8% and

Materials and Methods

570 16% of linked SNP loci clustered into one or two groups, respectively. This design results in 72
571 distinct combinations of parameters (i.e., runs) and we ran 10 replicates per combination with a
572 maximum MOI of 20 (S1 and S2 Tables). Simulations were run for 85 years to get beyond the
573 initial transient dynamics in which *var* gene diversity and parasite population structure are
574 established. For each simulation, we calculated the epidemiological summary statistics, including
575 the number of hosts, the prevalence, and the entomological inoculation rate (EIR). In addition,
576 2000 individuals were randomly sampled to analyze the true MOI and the parasite genetic and
577 allelic diversity patterns. The simulated data were collected during the last year at 300 days (i.e.,
578 November), corresponding to the end of the wet season (high-transmission season) in the Bongo
579 District, a malaria-endemic area of Northern Ghana. Details on the area and population have been
580 previously described [23,58].

581

582 MOI estimation

583

584 While the “true” MOI per host was directly extracted from the simulations, the estimated MOI
585 was obtained for each host using the two distinct approaches. First, the MOI per host was estimated
586 from the simulated neutral SNP data using THE REAL McCOIL approach v.2 [21]. We performed
587 the categorical method of THE REAL McCOIL with a minor allele frequency (MAF) of 10% for
588 a SNP to be considered and an upper bound of 20 for MOI, keeping all other parameters to their
589 default values (a burn-in period of 10^3 iterations, a total of 10^4 Markov chain Monte Carlo
590 (MCMC) iterations, a minimum number of 20 genotypes for an individual to be considered, a
591 minimum number of 20 samples for a SNP to be considered, an initial MOI of 15, and a probability
592 of calling single allele loci double allele loci and of calling double allele loci single allele loci of

Materials and Methods

593 0.05 which were estimated with MOI and the allele frequencies) [21,66]. Second, the MOI per
594 host was also estimated from the simulated *var* genes data by counting the total number of distinct
595 *var* genes within each host and by dividing it by the size of one repertoire, here 45 as estimated
596 from control data using repeat samplings of the *var* genes of 3D7 with the *varcoding* protocol [23].

597

598 To account for measurement error in both approaches, a measurement model was
599 implemented. First, to account for potential SNP genotyping failures, we applied a measurement
600 model that randomly replaces the host genotypes with missing data, reducing the number of
601 available data for THE REAL McCOIL approach (Fig 2). This replacement was implemented by
602 using the distribution of the proportion of missing genotypes per monoclonal infections from a
603 panel of 24 bi-allelic SNP loci which was previously obtained during one cross-sectional survey
604 in 2015 in the Bongo District in Ghana at the end of the wet season [24] (Fig 1C). For each host,
605 some SNP loci were thus replaced with missing genotypes according to a weight reflecting the
606 proportion of missing genotype counts density function. Second, to account for *var* gene potential
607 sampling errors, we applied a measurement model that sub-samples the number of *var* genes per
608 strain, resulting in a reduction of the total number of *var* genes per host (Fig 2). This sub-sampling
609 was implemented by exploring the distribution of the number of non-upsA DBLα *var* gene types
610 per monoclonal infection for which molecular sequences were previously obtained during six
611 cross-sectional surveys between 2012 and 2016 in the Bongo District in Ghana at the end of the
612 wet season [22,23,36,59] (Fig 1D). For each strain, the number of *var* genes was sub-sampled
613 according to a weight reflecting the *var* gene counts density function.

614

Materials and Methods

615 MOI estimations were carried out with and without measurement error. To better reflect what
616 is typically done for malaria surveillance, we also estimated the MOI after subsampling the
617 simulated dataset, from 2000 to 500 or 200 individuals. T-tests were used to compare true and
618 estimated MOI distributions. All t-test comparisons were considered statistically significant when
619 P -value ≤ 0.05 .

620

621 **Repertoire similarity networks**

622

623 To evaluate the similarity of parasites in the population, pairwise type sharing (PTS) was
624 calculated between all repertoire pairs (regardless of the host in which they are encountered) as
625 $PTS_{ij} = 2n_{ij} / (n_i + n_j)$, where n_i and n_j are the number of unique *var* genes within each repertoire i
626 and j and n_{ij} is the total number of *var* genes shared between repertoires i and j [28]. In addition,
627 the genetic structure of the *P. falciparum* population was also analyzed using similarity networks
628 based on *var* composition. Similarity networks were built in which nodes are *var* repertoires,
629 weighted edges encode the degree of overlap between the *var* genes contained in these repertoires,
630 and the direction of an edge indicates the asymmetric competition between repertoires, i.e.,
631 whether one repertoire can outcompete the other [36,67]. To introduce directional edges, we
632 calculated the genetic similarity of repertoire i to repertoire j as $S_{ij} = (N_i \cap N_j) / N_i$, where N_i and
633 N_j are the number of unique *var* genes in repertoires i and j , respectively. To focus on the *var*
634 repertoires with the strongest overlap, only the top 1% of edges are drawn and used in network
635 analysis.

636 **Data availability**

637
638 The agent-based stochastic simulator of malaria dynamics and the processing scripts to
639 reproduce all the figures are stored and annotated on GitHub:
640 <https://github.com/pascualgroup/varmodel3>. The SNP data used for this analysis are available in
641 Dryad at <https://doi.org/10.5061/dryad.jsxksn0bp>. The DBL α sequences used for this analysis are
642 available in GenBank under BioProject Number: PRJNA 396962.

643
644 **Acknowledgments**

645
646 This research was initially supported by the Fogarty International Center at the National
647 Institutes of Health (Program on the Ecology and Evolution of Infectious Diseases), grant R01-
648 TW009670. Funding was provided by the joint NIH-NSF-NIFA Ecology and Evolution of
649 Infectious Disease award R01-AI149779. We thank the participants, communities, and the Ghana
650 Health Service in BD, Ghana, for their willingness to participate in this study. We would like to
651 acknowledge the programming assistance of Edward B. Baskerville. We appreciate the support of
652 the University of Chicago through the computational resources of the Midway cluster.

653 **References**

654 1. World Health Organization. World malaria report 2021. World Health Organization; 2021.

655 2. Kolakovich KA, Ssengoba A, Wojcik K, Tsuboi T, Al-Yaman F, Alpers M, et al. *Plasmodium*
656 *vivax*: favored gene frequencies of the merozoite surface protein-1 and the multiplicity of
657 infection in a malaria endemic region. *Experimental Parasitology*. 1996;83: 11–18.
658 doi:10.1006/expr.1996.0044

659 3. Conway DJ, Roper C, Oduola AMJ, Arnot DE, Kremsner PG, Grobusch MP, et al. High
660 recombination rate in natural populations of *Plasmodium falciparum*. *Proceedings of the*
661 *National Academy of Sciences*. 1999;96: 4506–4511. doi:10.1073/pnas.96.8.4506

662 4. Konaté L, Zwetyenga J, Rogier C, Bischoff E, Fontenille D, Tall A, et al. 5. Variation of
663 *Plasmodium falciparum* msp1 block 2 and msp2 allele prevalence and of infection
664 complexity in two neighbouring Senegalese villages with different transmission conditions.
665 *Transactions of The Royal Society of Tropical Medicine and Hygiene*. 1999;93: 21–28.
666 doi:10.1016/S0035-9203(99)90323-1

667 5. Anderson TJC, Haubold B, Williams JT, Estrada-Franco§ JG, Richardson L, Mollinedo R,
668 et al. Microsatellite markers reveal a spectrum of population structures in the malaria parasite
669 *Plasmodium falciparum*. *Molecular Biology and Evolution*. 2000;17: 1467–1482.
670 doi:10.1093/oxfordjournals.molbev.a026247

671 6. Conway DJ. Molecular epidemiology of malaria. *Clinical Microbiology Reviews*. 2007;20:
672 188–204. doi:10.1128/CMR.00021-06

673 7. Felger I, Tavul L, Kabintik S, Marshall V, Genton B, Alpers M, et al. *Plasmodium*
674 *falciparum*: extensive polymorphism in merozoite surface antigen 2 alleles in an area with

References

675 endemic malaria in Papua New Guinea. *Experimental Parasitology*. 1994;79: 106–116.
676 doi:10.1006/expr.1994.1070

677 8. Morlais I, Nsango SE, Toussile W, Abate L, Annan Z, Tchioffo MT, et al. *Plasmodium*
678 *falciparum* mating patterns and mosquito infectivity of natural isolates of gametocytes. *PLOS*
679 *ONE*. 2015;10: e0123777. doi:10.1371/journal.pone.0123777

680 9. Mwangi JM, Omar SA, Ranford-Cartwright LC. Comparison of microsatellite and antigen-
681 coding loci for differentiating recrudescing *Plasmodium falciparum* infections from
682 reinfections in Kenya. *International Journal for Parasitology*. 2006;36: 329–336.
683 doi:10.1016/j.ijpara.2005.10.013

684 10. Su X, Wellems TE. Toward a high-resolution *Plasmodium falciparum* linkage map:
685 polymorphic markers from hundreds of simple sequence repeats. *Genomics*. 1996;33: 430–
686 444. doi:10.1006/geno.1996.0218

687 11. Sutton PL, Torres LP, Branch OH. Sexual recombination is a signature of a persisting malaria
688 epidemic in Peru. *Malaria Journal*. 2011;10: 329. doi:10.1186/1475-2875-10-329

689 12. Zhong D, Afrane Y, Githcko A, Yang Z, Cui L, Menge DM, et al. *Plasmodium falciparum*
690 genetic diversity in western Kenya highlands. *Am J Trop Med Hyg*. 2007;77: 1043–1050.

691 13. Brody JR, Calhoun ES, Gallmeier E, Creavalle TD, Kern SE. Ultra-fast high-resolution
692 agarose electrophoresis of DNA and RNA using low-molarity conductive media.
693 *BioTechniques*. 2004;37: 598–602. doi:10.2144/04374ST04

694 14. Contamin H, Fandeur T, Bonnefoy S, Skouri F, Ntoumi F, Mercereau-Puijalon O. PCR
695 typing of field isolates of *Plasmodium falciparum*. *J Clin Microbiol*. 1995;33: 944–951.
696 doi:10.1128/jcm.33.4.944-951.1995

References

697 15. Gupta V, Dorsey G, Hubbard AE, Rosenthal PJ, Greenhouse B. Gel versus capillary
698 electrophoresis genotyping for categorizing treatment outcomes in two anti-malarial trials in
699 Uganda. *Malar J.* 2010;9: 19. doi:10.1186/1475-2875-9-19

700 16. Assefa SA, Preston MD, Campino S, Ocholla H, Sutherland CJ, Clark TG. estMOI:
701 estimating multiplicity of infection using parasite deep sequencing data. *Bioinformatics.*
702 2014;30: 1292–1294. doi:10.1093/bioinformatics/btu005

703 17. Hill WG, Babiker HA. Estimation of numbers of malaria clones in blood samples.
704 *Proceedings of the Royal Society of London Series B: Biological Sciences.* 1995;262: 249–
705 257. doi:10.1098/rspb.1995.0203

706 18. O'Brien JD, Amenga-Etego L, Li R. Approaches to estimating inbreeding coefficients in
707 clinical isolates of *Plasmodium falciparum* from genomic sequence data. *Malaria Journal.*
708 2016;15: 473. doi:10.1186/s12936-016-1531-z

709 19. Zhu SJ, Almagro-Garcia J, McVean G. Deconvolution of multiple infections in *Plasmodium*
710 *falciparum* from high throughput sequencing data. *Bioinformatics.* 2018;34: 9–15.
711 doi:10.1093/bioinformatics/btx530

712 20. Lerch A, Koepfli C, Hofmann NE, Messerli C, Wilcox S, Kattenberg JH, et al. Development
713 of amplicon deep sequencing markers and data analysis pipeline for genotyping multi-clonal
714 malaria infections. *BMC Genomics.* 2017;18: 864. doi:10.1186/s12864-017-4260-y

715 21. Chang H-H, Worby CJ, Yeka A, Nankabirwa J, Kamya MR, Staedke SG, et al. THE REAL
716 McCOIL: A method for the concurrent estimation of the complexity of infection and SNP
717 allele frequency for malaria parasites. *PLOS Computational Biology.* 2017;13: e1005348.
718 doi:10.1371/journal.pcbi.1005348

References

719 22. Ruybal-Pesáñez S, Tiedje KE, Pilosof S, Tonkin-Hill G, He Q, Rask TS, et al. Age-specific
720 patterns of DBL α var diversity can explain why residents of high malaria transmission areas
721 remain susceptible to *Plasmodium falciparum* blood stage infection throughout life.
722 International Journal for Parasitology. 2022 [cited 11 May 2022].
723 doi:10.1016/j.ijpara.2021.12.001

724 23. Tiedje KE, Oduro AR, Bangre O, Amenga-Etego L, Dadzie SK, Appawu MA, et al. Indoor
725 residual spraying with a non-pyrethroid insecticide reduces the reservoir of *Plasmodium*
726 *falciparum* in a high-transmission area in northern Ghana. PLOS Global Public Health. 2022.
727 doi:10.1371/journal.pgph.0000285

728 24. Daniels R, Volkman SK, Milner DA, Mahesh N, Neafsey DE, Park DJ, et al. A general SNP-
729 based molecular barcode for *Plasmodium falciparum* identification and tracking. Malar J.
730 2008;7: 223. doi:10.1186/1475-2875-7-223

731 25. Galinsky K, Valim C, Salmier A, de Thoisy B, Musset L, Legrand E, et al. COIL: a
732 methodology for evaluating malarial complexity of infection using likelihood from single
733 nucleotide polymorphism data. Malaria Journal. 2015;14: 4. doi:10.1186/1475-2875-14-4

734 26. Rask TS, Hansen DA, Theander TG, Pedersen AG, Lavstsen T. *Plasmodium falciparum*
735 erythrocyte membrane protein 1 diversity in seven genomes – divide and conquer. PLOS
736 Computational Biology. 2010;6: e1000933. doi:10.1371/journal.pcbi.1000933

737 27. Bull PC, Lowe BS, Kortok M, Molyneux CS, Newbold CI, Marsh K. Parasite antigens on
738 the infected red cell surface are targets for naturally acquired immunity to malaria. Nat Med.
739 1998;4: 358–360. doi:10.1038/nm0398-358

References

740 28. Barry AE, Leliwa-Sytek A, Tavul L, Imrie H, Migot-Nabias F, Brown SM, et al. Population
741 genomics of the immune evasion (*var*) genes of *Plasmodium falciparum*. PLOS Pathogens.
742 2007;3: e34. doi:10.1371/journal.ppat.0030034

743 29. Chen DS, Barry AE, Leliwa-Sytek A, Smith T-A, Peterson I, Brown SM, et al. A molecular
744 epidemiological study of *var* gene diversity to characterize the reservoir of *Plasmodium*
745 *falciparum* in Humans in Africa. PLOS ONE. 2011;6: e16629.
746 doi:10.1371/journal.pone.0016629

747 30. Day KP, Artzy-Randrup Y, Tiedje KE, Rougeron V, Chen DS, Rask TS, et al. Evidence of
748 strain structure in *Plasmodium falciparum* *var* gene repertoires in children from Gabon, West
749 Africa. PNAS. 2017;114: E4103–E4111. doi:10.1073/pnas.1613018114

750 31. Ruybal-Pesáñez S, Tiedje KE, Tonkin-Hill G, Rask TS, Kamya MR, Greenhouse B, et al.
751 Population genomics of virulence genes of *Plasmodium falciparum* in clinical isolates from
752 Uganda. Sci Rep. 2017;7: 11810. doi:10.1038/s41598-017-11814-9

753 32. Tessema SK, Nakajima R, Jasinskas A, Monk SL, Lekieffre L, Lin E, et al. Protective
754 immunity against severe malaria in children is associated with a limited repertoire of
755 antibodies to conserved PfEMP1 variants. Cell Host & Microbe. 2019;26: 579-590.e5.
756 doi:10.1016/j.chom.2019.10.012

757 33. Tonkin-Hill G, Ruybal-Pesáñez S, Tiedje KE, Rougeron V, Duffy MF, Zakeri S, et al.
758 Evolutionary analyses of the major variant surface antigen-encoding genes reveal population
759 structure of *Plasmodium falciparum* within and between continents. PLOS Genetics.
760 2021;17: e1009269. doi:10.1371/journal.pgen.1009269

761 34. Scherf A, Hernandez-Rivas R, Buffet P, Bottius E, Benatar C, Pouvelle B, et al. Antigenic
762 variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var

References

763 genes during intra-erythrocytic development in *Plasmodium falciparum*. EMBO J. 1998;17:
764 5418–5426. doi:10.1093/emboj/17.18.5418

765 35. Su X, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, Peterson DS, et al. The large
766 diverse gene family var encodes proteins involved in cytoadherence and antigenic variation
767 of *Plasmodium falciparum*-infected erythrocytes. Cell. 1995;82: 89–100. doi:10.1016/0092-
768 8674(95)90055-1

769 36. He Q, Pilosof S, Tiedje KE, Ruybal-Pesáñez S, Artzy-Randrup Y, Baskerville EB, et al.
770 Networks of genetic similarity reveal non-neutral processes shape strain structure in
771 *Plasmodium falciparum*. Nat Commun. 2018;9: 1817. doi:10.1038/s41467-018-04219-3

772 37. Gupta S, Ferguson N, Anderson R. Chaos, persistence, and evolution of strain structure in
773 antigenically diverse infectious agents. Science. 1998;280: 912–915.
774 doi:10.1126/science.280.5365.912

775 38. Auburn S, Campino S, Miotto O, Djimde AA, Zongo I, Manske M, et al. Characterization of
776 within-host *Plasmodium falciparum* diversity using next-generation sequence data. PLOS
777 ONE. 2012;7: e32891. doi:10.1371/journal.pone.0032891

778 39. Pamilo P, Varvio-Aho S-L. On the estimation of population size from allele frequency
779 changes. Genetics. 1980;95: 1055–1057.

780 40. Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure.
781 Evolution. 1984;38: 1358–1370. doi:10.2307/2408641

782 41. Peyerl-Hoffmann G, Jelinek T, Kilian A, Kabagambe G, Metzger WG, Von Sonnenburg F.
783 Genetic diversity of *Plasmodium falciparum* and its relationship to parasite density in an area
784 with different malaria endemicities in West Uganda. Tropical Medicine & International
785 Health. 2001;6: 607–613. doi:10.1046/j.1365-3156.2001.00761.x

References

786 42. Chen I, Clarke SE, Gosling R, Hamainza B, Killeen G, Magill A, et al. "Asymptomatic" 787 malaria: a chronic and debilitating infection that should be treated. *PLOS Medicine*. 2016;13: 788 e1001942. doi:10.1371/journal.pmed.1001942

789 43. Okell LC, Bousema T, Griffin JT, Ouédraogo AL, Ghani AC, Drakeley CJ. Factors 790 determining the occurrence of submicroscopic malaria infections and their relevance for 791 control. *Nat Commun*. 2012;3: 1237. doi:10.1038/ncomms2241

792 44. Farnert A, Snounou G, Rooth I, Bjorkman A. Daily dynamics of *Plasmodium falciparum* 793 subpopulations in asymptomatic children in a holoendemic area. *Am J Trop Med Hyg*. 794 1997;56: 538–547. doi:10.4269/ajtmh.1997.56.538

795 45. Bruce MC, Donnelly CA, Packer M, Lagog M, Gibson N, Narara A, et al. Age- and species- 796 specific duration of infection in asymptomatic malaria infections in Papua New Guinea. 797 *Parasitology*. 2000;121 (Pt 3): 247–256. doi:10.1017/s0031182099006344

798 46. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of 799 the human malaria parasite *Plasmodium falciparum*. *Nature*. 2002;419: 498–511. 800 doi:10.1038/nature01097

801 47. Lavstsen T, Salanti A, Jensen AT, Arnot DE, Theander TG. Sub-grouping of *Plasmodium* 802 *falciparum* 3D7 var genes based on sequence analysis of coding and non-coding regions. 803 *Malar J*. 2003;2: 27. doi:10.1186/1475-2875-2-27

804 48. Kraemer SM, Kyes SA, Aggarwal G, Springer AL, Nelson SO, Christodoulou Z, et al. 805 Patterns of gene recombination shape *var* gene repertoires in *Plasmodium falciparum*: 806 comparisons of geographically diverse isolates. *BMC Genomics*. 2007;8: 45. 807 doi:10.1186/1471-2164-8-45

References

808 49. Falk N, Kaestli M, Qi W, Ott M, Baea K, Corteés A, et al. Analysis of *Plasmodium*
809 *falciparum* var genes expressed in children from Papua New Guinea. The Journal of
810 Infectious Diseases. 2009;200: 347–356. doi:10.1086/600071

811 50. Jensen ATR, Magistrado P, Sharp S, Joergensen L, Lavstsen T, Chiucchiini A, et al.
812 *Plasmodium falciparum* associated with severe childhood malaria preferentially expresses
813 PfEMP1 encoded by group A var genes. Journal of Experimental Medicine. 2004;199: 1179–
814 1190. doi:10.1084/jem.20040274

815 51. Kaestli M, Cockburn IA, Cortés A, Baea K, Rowe JA, Beck H-P. Virulence of malaria is
816 associated with differential expression of *Plasmodium falciparum* var gene subgroups in a
817 case-control study. The Journal of Infectious Diseases. 2006;193: 1567–1574.
818 doi:10.1086/503776

819 52. Kalmbach Y, Rottmann M, Kombila M, Kremsner PG, Beck H-P, Kun JFJ. Differential var
820 gene expression in children with malaria and antidromic effects on host gene expression. The
821 Journal of Infectious Diseases. 2010;202: 313–317. doi:10.1086/653586

822 53. Kyriacou HM, Stone GN, Challis RJ, Raza A, Lyke KE, Thera MA, et al. Differential var
823 gene transcription in *Plasmodium falciparum* isolates from patients with cerebral malaria
824 compared to hyperparasitaemia. Molecular and Biochemical Parasitology. 2006;150: 211–
825 218. doi:10.1016/j.molbiopara.2006.08.005

826 54. Normark J, Nilsson D, Ribacke U, Winter G, Moll K, Wheelock CE, et al. PfEMP1-DBL1 α
827 amino acid motifs in severe disease states of *Plasmodium falciparum* malaria. PNAS.
828 2007;104: 15835–15840. doi:10.1073/pnas.0610485104

829 55. Rottmann M, Lavstsen T, Mugasa JP, Kaestli M, Jensen ATR, Müller D, et al. Differential
830 expression of var gene groups is associated with morbidity caused by *Plasmodium*

References

831 *falciparum* infection in Tanzanian children. *Infection and Immunity*. 2006 [cited 20 Jan
832 2022]. doi:10.1128/IAI.02073-05

833 56. Warimwe GM, Fegan G, Musyoki JN, Newton CRJC, Opiyo M, Githinji G, et al. Prognostic
834 indicators of life-threatening malaria are associated with distinct parasite variant antigen
835 profiles. *Science Translational Medicine*. 2012 [cited 20 Jan 2022].
836 doi:10.1126/scitranslmed.3003247

837 57. Warimwe GM, Keane TM, Fegan G, Musyoki JN, Newton CRJC, Pain A, et al. *Plasmodium*
838 *falciparum* var gene expression is modified by host immunity. *PNAS*. 2009;106: 21801–
839 21806. doi:10.1073/pnas.0907590106

840 58. Tiedje KE, Oduro AR, Agongo G, Anyorigya T, Azongo D, Awine T, et al. Seasonal
841 variation in the epidemiology of asymptomatic *Plasmodium falciparum* infections across two
842 catchment areas in Bongo District, Ghana. *The American Journal of Tropical Medicine and*
843 *Hygiene*. 2017;97: 199–212. doi:10.4269/ajtmh.16-0959

844 59. Pilosof S, He Q, Tiedje KE, Ruybal-Pesántez S, Day KP, Pascual M. Competition for hosts
845 modulates vast antigenic diversity to generate persistent strain structure in *Plasmodium*
846 *falciparum*. *PLOS Biology*. 2019;17: e3000336. doi:10.1371/journal.pbio.3000336

847 60. Gibson MA, Bruck J. Efficient Exact Stochastic Simulation of Chemical Systems with Many
848 Species and Many Channels. *J Phys Chem A*. 2000;104: 1876–1889. doi:10.1021/jp993732q

849 61. Gillespie DT. A general method for numerically simulating the stochastic time evolution of
850 coupled chemical reactions. *Journal of Computational Physics*. 1976;22: 403–434.
851 doi:10.1016/0021-9991(76)90041-3

References

852 62. Buckee CO, Recker M. Evolution of the multi-domain structures of virulence genes in the
853 Human malaria parasite, *Plasmodium falciparum*. PLOS Computational Biology. 2012;8:
854 e1002451. doi:10.1371/journal.pcbi.1002451

855 63. Bull PC, Buckee CO, Kyes S, Kortok MM, Thathy V, Guyah B, et al. *Plasmodium falciparum*
856 antigenic variation. Mapping mosaic *var* gene sequences onto a network of shared, highly
857 polymorphic sequence blocks. Molecular Microbiology. 2008;68: 1519–1534.
858 doi:10.1111/j.1365-2958.2008.06248.x

859 64. White MT, Griffin JT, Churcher TS, Ferguson NM, Basáñez M-G, Ghani AC. Modelling the
860 impact of vector control interventions on *Anopheles gambiae* population dynamics. Parasites
861 Vectors. 2011;4: 153. doi:10.1186/1756-3305-4-153

862 65. Organization WH. A framework for malaria elimination. World Health Organization; 2017.

863 66. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R
864 Foundation for Statistical Computing; 2019. Available: <https://www.R-project.org>

865 67. He Q, Pilosof S, Tiedje KE, Day KP, Pascual M. Frequency-dependent competition between
866 strains imparts persistence to perturbations in a model of *Plasmodium falciparum* malaria
867 transmission. Front Ecol Evol. 2021;9. doi:10.3389/fevo.2021.633263

868

869 **Supporting information captions**

870

871 **S1 Fig. Host age distribution, and number of sampled individuals and hosts per age class.**

872 For each category, the horizontal central solid line represents the median, the diamond represents
873 the mean, the box represents the interquartile range (IQR) from the 25th to 75th centiles, the
874 whiskers indicate the most extreme data point which is no more than 1.5 times the interquartile
875 range from the box, and the dots show the outliers, i.e. the points beyond the whiskers. **A)** Age
876 distribution of the sampled individuals. **B)** Number of sampled individuals per age class. **C)**
877 Number of sampled hosts per age class. Upper (yellow), middle (orange), and lower (purple)
878 panels correspond to simulations under low-, moderate-, and high-transmission settings,
879 respectively (S1 and S2 Tables). Values were split into five age classes, i.e. 0-5, 6-10, 11-20, 21-
880 39, and ≥ 40 years.

881

882 **S2 Fig. Prevalence and entomological inoculation rate (EIR) per transmission intensity.** For
883 each category, the horizontal central solid line represents the median, the diamond represents the
884 mean, the box represents the interquartile range (IQR) from the 25th to 75th centiles, the whiskers
885 indicate the most extreme data point which is no more than 1.5 times the interquartile range from
886 the box, and the dots show the outliers, i.e. the points beyond the whiskers. **A)** Prevalence; **B)** EIR.
887 Statistics calculated for simulations under low-, moderate-, and high-transmission settings are
888 indicated in yellow, orange, and purple, respectively (S1 and S2 Tables).

889

890 **S3 Fig. Initial number of SNPs and accuracy of the multiplicity of infection (MOI) estimates**
891 **determined with THE REAL McCOIL approach.** The accuracy of MOI estimates is defined as

Supporting information captions

892 the differences between estimated and true MOI per host. While null values highlight accurate
893 MOI estimates (indicated by a dashed black horizontal line), the positive and negative values
894 highlight over- and under-estimation, respectively. The dark and light green colors indicate
895 respectively MOI estimations made without and with a measurement model (Fig 2). For each
896 category, the horizontal central solid line represents the median, the diamond represents the mean,
897 the box represents the interquartile range (IQR) from the 25th to 75th centiles, the whiskers
898 indicate the most extreme data point which is no more than 1.5 times the interquartile range from
899 the box, and the dots show the outliers, i.e. the points beyond the whiskers. **A)** Accuracy of MOI
900 estimates per true MOI. **B)** Accuracy of MOI estimates per transmission intensity (S1 and S2
901 Tables).

902

903 **S4 Fig. SNP properties and accuracy of the multiplicity of infection (MOI) estimates**
904 **determined with THE REAL McCOIL approach.** The accuracy of MOI estimates is defined as
905 the differences between estimated and true MOI per host. While null values highlight accurate
906 MOI estimates (indicated by a dashed black horizontal line), the positive and negative values
907 highlight over- and under-estimation, respectively. For each category, the horizontal central solid
908 line represents the median, the diamond represents the mean, the box represents the interquartile
909 range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which
910 is no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e.
911 the points beyond the whiskers. The dark and light green colors indicate respectively MOI
912 estimations made without and with a measurement model (Fig 2).

913

Supporting information captions

914 **S5 Fig: Reliability of the multiplicity of infection (MOI) estimations when subsampling 25%**
915 **of the sampled individuals (i.e. 500 individuals).** For each category, the horizontal central solid
916 line represents the median, the diamond represents the mean, the box represents the interquartile
917 range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which
918 is no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e.
919 the points beyond the whiskers. The upper, middle, and lower row panels correspond to
920 simulations under low-, moderate-, and high-transmission settings, respectively (S1 and S2
921 Tables). **A)** Accuracy of MOI estimates, defined as the difference between estimated and true MOI
922 per host. While null values highlight accurate MOI estimates (indicated by a dashed black
923 horizontal line), the positive and negative values highlight over- and under-estimation,
924 respectively. Estimates with the neutral SNP-based approach (THE REAL McCOIL) are indicated
925 in green, and those with the *var* gene-based approach (*varcoding*) are indicated in blue. The dark
926 and light green or blue colors indicate respectively MOI estimations made without and with a
927 measurement model (Fig 2). The column panels show differences for specific true MOI values. **B)**
928 Population distribution of the estimated and true MOI per host from the simulated “true” values
929 and those estimated with the methods indicated by the colors similar to panel A.
930

931 **S6 Fig: Reliability of the multiplicity of infection (MOI) estimations when subsampling 10%**
932 **of the sampled individuals (i.e. 200 individuals).** For each category, the horizontal central solid
933 line represents the median, the diamond represents the mean, the box represents the interquartile
934 range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which
935 is no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e.
936 the points beyond the whiskers. The upper, middle, and lower row panels correspond to

Supporting information captions

937 simulations under low-, moderate-, and high-transmission settings, respectively (S1 and S2
938 Tables). **A)** Accuracy of MOI estimates, defined as the difference between estimated and true MOI
939 per host. While null values highlight accurate MOI estimates (indicated by a dashed black
940 horizontal line), the positive and negative values highlight over- and under-estimation,
941 respectively. Estimates with the neutral SNP-based approach (THE REAL McCOIL) are indicated
942 in green, and those with the *var* gene-based approach (*varcoding*) are indicated in blue. The dark
943 and light green or blue colors indicate respectively MOI estimations made without and with a
944 measurement model (Fig 2). The column panels show differences for specific true MOI values. **B)**
945 Population distribution of the estimated and true MOI per host from the simulated “true” values
946 and those estimated with the methods indicated by the colors similar to panel A.

947

948 **S7 Fig. Accuracy of the minor allele frequency (MAF) estimates per locus determined with**
949 **THE REAL McCOIL approach.** The accuracy of MAF estimates per locus is defined as the
950 differences between estimated and true MAF per locus. While null values highlight accurate MAF
951 estimates per locus (indicated by a dashed black horizontal line), the positive and negative values
952 highlight over- and under-estimation, respectively. For each category, the horizontal central solid
953 line represents the median, the diamond represents the mean, the box represents the interquartile
954 range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which
955 is no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e.
956 the points beyond the whiskers. The dark and light green colors indicate respectively MAF
957 estimations made without and with a measurement model (Fig 2). Upper, middle, and lower panels
958 correspond to simulations under low-, moderate-, and high-transmission settings, respectively (S1
959 and S2 Tables).

960

961 **S8 Fig. Population structure using repertoire similarity network properties.** Comparisons of
962 repertoire similarity networks of 150 randomly sampled parasite *var* repertoires generated from a
963 one-time point under low, moderate, and high-transmission settings (S1 and S2 Tables). Only the
964 top 1% of edges are drawn and used in the analysis. The upper panel shows the distribution of the
965 mean pairwise type sharing (PTS) per run. For each category, the horizontal central solid line
966 represents the median, the diamond represents the mean, the box represents the interquartile range
967 (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which is
968 no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e. the
969 points beyond the whiskers. The lower panel shows the distributions of the proportion of
970 occurrences of three-node graph motifs across the repertoire similarity networks.

971

972 **S9 Fig. Pairwise type sharing (PTS).** For each category, the horizontal central solid line
973 represents the median, the diamond represents the mean, the box represents the interquartile range
974 (IQR) from the 25th to 75th centiles, and the whiskers indicate the most extreme data point. **A)**
975 Distribution of the PTS per transmission intensity. **B)** Distribution of the PTS per run.

976

977 **S10 Fig. Reliability of the multiplicity of infection (MOI) estimations when simulations**
978 **include a measurement error based on the distribution of the number of non-upsA DBLα**
979 ***var* gene types per 3D7 laboratory isolates for the *var* coding approach.** For each category, the
980 horizontal central solid line represents the median, the diamond represents the mean, the box
981 represents the interquartile range (IQR) from the 25th to 75th centiles, the whiskers indicate the
982 most extreme data point which is no more than 1.5 times the interquartile range from the box, and

Supporting information captions

983 the dots show the outliers, i.e. the points beyond the whiskers. The upper, middle, and lower row
984 panels correspond to simulations under low-, moderate-, and high-transmission settings,
985 respectively (S1 and S2 Tables). **A)** Accuracy of MOI estimates, defined as the differences
986 between estimated and true MOI per host. While null values highlight accurate MOI estimates
987 (indicated by a dashed black horizontal line), the positive and negative values highlight over- and
988 under-estimation, respectively. Estimates with the neutral SNP-based approach (THE REAL
989 McCOIL) are indicated in green, and those with the *var* gene-based approach (*varcoding*) are
990 indicated in blue. The dark and light blue or green colors indicate respectively MOI estimates made
991 without and with a measurement model (Fig 2). The column panels show differences for specific
992 true MOI values. **B)** Population distribution of the estimated and true MOI per host from the
993 simulated “true” values and those estimated with the methods indicated by the colors similar to
994 panel A.

995

996 **S11 Fig. Reliability of the multiplicity of infection (MOI) estimations when THE REAL**
997 **McCOIL approach using an upper bound for MOI of 5, 10, and 20 for the low-, moderate-,**
998 **and high-transmission simulations, respectively.** For each category, the horizontal central solid
999 line represents the median, the diamond represents the mean, the box represents the interquartile
1000 range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which
1001 is no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e.
1002 the points beyond the whiskers. The upper, middle, and lower row panels correspond to
1003 simulations under low-, moderate-, and high-transmission settings, respectively (S1 and S2
1004 Tables). **A)** Accuracy of MOI estimates, defined as the differences between estimated and true
1005 MOI per host. While null values highlight accurate MOI estimates (indicated by a dashed black

Supporting information captions

1006 horizontal line), the positive and negative values highlight over- and under-estimation,
1007 respectively. The estimated MOI using the *var* genes based approach (i.e. *var* coding) are indicated
1008 in blue, and the estimated MOI using the neutral SNPs based approach (i.e. THE REAL McCOIL)
1009 are indicated in green. The dark and light blue or green colors indicate respectively MOI estimates
1010 made without and with a measurement model (Fig 2). The column panels show differences for
1011 specific true MOI values. **B)** Population distribution of the estimated and true MOI per host from
1012 the simulated “true” values and those estimated with the methods indicated by the colors similar
1013 to panel A.

1014

1015 **S1 Table.** Epidemiological and genetic parameters used in the stochastic simulations.

1016

1017 **S2 Table.** Epidemiological and genetic distinct parameters per run.

1018

1019 **S3 Table.** Pearson correlation coefficients between the inaccuracy of the minor allele frequency
1020 (MAF) per locus estimated with THE REAL McCOIL approach (defined as the absolute
1021 differences between estimated and true MAF per locus), and the locus properties.