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Abstract 19 

 20 

At a time when effective tools for monitoring malaria control and eradication efforts are 21 

crucial, the increasing availability of molecular data motivates their application to epidemiology. 22 

The multiplicity of infection (MOI), defined as the number of genetically distinct parasite strains 23 

co-infecting a host, is one key epidemiological parameter for evaluating malaria interventions. 24 

Estimating MOI remains a challenge for high-transmission settings where individuals typically 25 

carry multiple co-occurring infections. Several quantitative approaches have been developed to 26 

estimate MOI, including two cost-effective ones relying on molecular data: i) THE REAL 27 

McCOIL method is based on putatively neutral single nucleotide polymorphism loci, and ii) the 28 

varcoding method is a fingerprinting approach that relies on the diversity and limited repertoire 29 

overlap of the var multigene family encoding the major Plasmodium falciparum blood-stage 30 

antigen PfEMP1 and is therefore under selection. In this study, we assess the robustness of the 31 

MOI estimates generated with these two approaches by simulating P. falciparum malaria dynamics 32 

under three transmission conditions using an extension of a previously developed stochastic agent-33 

based model. We demonstrate that these approaches are complementary and best considered across 34 

distinct transmission intensities. While varcoding can underestimate MOI, it allows robust 35 

estimation, especially under high-transmission where repertoire overlap is extremely limited from 36 

frequency-dependent selection. In contrast, THE REAL McCOIL often considerably 37 

overestimates MOI, but still provides reasonable estimates for low- and moderate-transmission. 38 

As many countries pursue malaria elimination targets, defining the most suitable approach to 39 

estimate MOI based on sample size and local transmission intensity is highly recommended for 40 

monitoring the impact of intervention programs.41 
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Author Summary 42 

 43 

Despite control and elimination efforts, malaria continues to be a serious public health threat 44 

especially in high-transmission regions. Molecular tools for evaluating these efforts include those 45 

seeking to estimate multiplicity (or complexity) of infection (MOI), the number of genetically 46 

distinct parasite strains co-infecting a host, a key epidemiological parameter. MOI estimation 47 

remains challenging in high-transmission regions where hosts typically carry multiple co-48 

infections by Plasmodium falciparum. THE REAL McCOIL and the varcoding are two cost-49 

effective methods relying on distinct parts of the parasite genome, those respectively under 50 

neutrality and selection. The more recent varcoding approach relies on the var multigene family 51 

encoding for the major blood-stage antigen and contributing to a complex immune evasion strategy 52 

of the parasite. We compare the performance of the two methods by simulating disease dynamics 53 

under different transmission intensities with a stochastic agent-based model tracking infection by 54 

different parasite genomes and immune memory in individual hosts, then sampling resulting 55 

infections to estimate MOI. Although THE REAL McCOIL provides reasonable estimates for low- 56 

and moderate-transmission, varcoding allows more robust estimates especially under high-57 

transmission. Defining the most suitable approach to estimate MOI based on local transmission 58 

intensity is highly recommended for hyper-diverse pathogens such as malaria.  59 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497801doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497801
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 

4 
 

Introduction 60 

 61 

Malaria deaths have steadily and significantly declined over the period 2000–2019 in response 62 

to control and elimination efforts [1]. However, malaria continues to be a serious threat causing 63 

approximately half a million deaths in 2019, especially among young children in high-transmission 64 

endemic regions in Africa. In these regions, infections are characterized by multiple genetically 65 

distinct Plasmodium parasite genotypes simultaneously infecting a host. Multiplicity of infection 66 

(MOI), also known as complexity of infection (COI), is defined as the number of genetically 67 

distinct parasite strains co-infecting a single host [2]. Multiclonal infections (i.e., MOI > 1) can be 68 

the result of a single bite by a mosquito transmitting more than one genetic parasite strain or 69 

independent bites by infected mosquitoes (also termed superinfection). The number of co-70 

infections is associated with transmission intensity, clinical risk, age and immunity [3–6]. 71 

 72 

Given the potential relevance of MOI to malaria surveillance, various approaches have been 73 

developed to estimate MOI from clinical samples. As Plasmodium parasites reproduce asexually 74 

as haploid stages when they infect humans, signatures of polymorphic genotypes are evidence of 75 

multiclonal infections. While any highly polymorphic marker is thus suitable for estimating MOI, 76 

it remains a challenge to accurately measure MOI in malaria-endemic areas where multiclonal 77 

infections are common. The most common approach for determining MOI involves size-78 

polymorphic antigenic markers, such as msp1, msp2, msp3, glurp, ama1, and csp, that can be 79 

amplified by PCR and determined by capillary electrophoresis or agarose gel [7]. Similarly, 80 

microsatellites, also termed simple sequence repeat (SSR), are another type of size‑polymorphic 81 

marker that can be amplified by PCR to estimate MOI by determining the number of alleles 82 
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detected [5,8–12]. However, despite improved resolution of allele detection by capillary 83 

electrophoresis, these approaches based on size-polymorphisms usually involve a certain degree 84 

of subjective interpretation, are unable to discriminate alleles of similar sizes [13], and create PCR 85 

artifacts resulting in inconsistent results, especially for MOI > 5 [14,15]. As an alternative to size-86 

polymorphic markers, other methods of determining MOI have focused on reconstructing 87 

haplotypes from genotyping or sequencing data (e.g., estMOI, FWS, and DEploid) [16–19]. 88 

Whole-genome sequencing is currently not a cost-effective approach when MOI is the main 89 

interest of a study, and these haplotype-reconstruction approaches are computationally intensive, 90 

resulting in limited MOI reliability for highly complex infections [20]. Finally, two cost-effective 91 

molecular approaches, known as THE REAL McCOIL [21] and varcoding [22,23], have been 92 

more recently developed to identify and track MOI with standard laboratory equipment. They 93 

differ in important ways as they rely on contrasting parts of the genome, respectively under 94 

neutrality and immune selection. 95 

 96 

As many possible genotypes exist among a combination of several genome-wide single 97 

nucleotide polymorphisms (SNPs), methods of determining MOI have focused on neutral SNP 98 

data to discriminate among strains [24]. Galinsky et al. (2015) developed the COIL approach to 99 

estimate MOI from a panel of bi-allelic SNP data, but this method relies on monoclonal infections 100 

(MOI = 1) for estimation of allele frequencies or requires external allele frequency data. As 101 

external allele frequency data may only be available for specific locations and be heterogeneous 102 

in space and time, an analytical approach, called THE REAL McCOIL (Turning HEterozygous 103 

SNP data into Robust Estimates of ALelle frequency, via Markov chain Monte Carlo, and 104 

Complexity Of Infection using Likelihood), was developed to simultaneously estimate the MOI 105 
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within a human host and the allele frequencies in the population based on a panel of SNPs [21]. 106 

Using simulations and 105 SNP data from cross-sectional surveys in Uganda, Chang et al. (2017) 107 

showed that THE REAL McCOIL approach improved performance in estimates of both quantities, 108 

despite the uncertainty of these estimates increasing with true MOI. 109 

 110 

The more recent varcoding approach (also termed var genotyping or var fingerprinting) 111 

[22,23], employs the highly polymorphic sequences encoding the immunogenic DBLα domain of 112 

PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1), the major surface antigen of 113 

the blood stage of infection [26]. During an infection, PfEMP1 molecules are exported by the 114 

parasite to the surface of the infected erythrocytes, where they influence virulence of the disease 115 

and become a target of the adaptive immune system [27]. The multigene family known as var 116 

encodes variants of this surface antigen which can reach tens of thousands of variants in endemic 117 

populations [22,28–33]. The sequential expression of a set of up to 60 var genes per parasite 118 

(hereafter, a repertoire) leads to immune evasion, prolongs infection duration, and establishes 119 

chronic infections enabling onward transmission [34,35]. Immune evasion is particularly 120 

important in high transmission regions where var repertoires are composed of largely distinct sets 121 

of var genes [22,28–31,36]. This non-random composition of var repertoires has been shown to 122 

result from negative frequency-dependent immune selection. Largely non-overlapping var 123 

repertoires enhance survival in semi-immune hosts, in accordance with earlier models of parasite 124 

competition for hosts via specific immunity [37] and more recent deep molecular sampling of local 125 

populations and computational theory [22,30,36]. This feature of var population structure allows 126 

distinct strains to accumulate in the blood of human hosts. The extensive diversity of the var gene 127 

family together with the very low percentage of var genes shared between parasites facilitate 128 
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measuring MOI by amplifying, pooling, sequencing, and counting the number of DBLα types in a 129 

host. This feature of var population genetics is the basis of the fingerprinting concept of varcoding. 130 

From a single PCR with degenerate primers and amplicon sequencing, the method counts unique 131 

DBLα types per infection. It is not based on assigning haplotypes but instead, it assumes a set 132 

number of types per genome based on control data accounting for PCR sampling errors to calculate 133 

MOI [22,23]. 134 

 135 

As varcoding does not require haplotype construction, we propose that this method is 136 

particularly well suited for high transmission where REAL McCOIL has shown some limitations 137 

due to the bi-allelic nature of the SNP calling [21]. To evaluate the relative performance of these 138 

two contrasting approaches to estimate MOI across different transmission settings, this study 139 

simulates malaria transmission under low, moderate, and high-transmission using an extended 140 

agent-based model (ABM). We specifically extend a previously developed stochastic 141 

computational model to incorporate neutral bi-allelic SNPs which, together with the var genes, can 142 

be used for MOI estimation. Depending on transmission intensity, we ask whether one of these 143 

approaches is more accurate than the other. When most infections are multiclonal (i.e., MOI > 1), 144 

we demonstrate that THE REAL McCOIL and the varcoding approaches tend to overestimate and 145 

underestimate the MOI, respectively. Moreover, while the high diversity of the var gene family 146 

allows robust MOI estimation with the varcoding approach, especially across high-transmission 147 

settings, THE REAL McCOIL provides reasonable estimates across low- and moderate-148 

transmission settings where the varcoding can be limited by partially overlapping var repertoires. 149 

We discuss the limitations and advantages of these two approaches to determine the multiplicity 150 

of malaria parasite infection as well as their implications for malaria surveillance.151 
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Results 152 

 153 

Accurate estimation of multiplicity of infection is important for evaluating current intervention 154 

strategies against malaria and thus defining or adapting future ones. We evaluated two recently 155 

developed MOI estimation approaches by simulating malaria transmission using an extended 156 

ABM, and sampling, estimating, and comparing MOI under three different transmission settings 157 

(i.e., “low”, “moderate”, or “high”). 158 

 159 

For each simulation under low-, moderate-, or high-transmission intensity, 2000 individuals 160 

were sampled at the end of the wet season (S1 Fig). On the one hand, the number of sampled 161 

individuals per age class is consistent with the age distribution and the size of each age class (S1A 162 

and S1B Figs). On the other hand, the number of infected sampled individuals was significantly 163 

and negatively correlated with the age of the hosts, as expected (Pearson correlation test; high-164 

transmission: r = -0.81, P-value < 2.2e-16; moderate-transmission: r = -0.63, P-value = 3.0e-10; 165 

low-transmission: r = -0.65, P-value = 9.5e-11). The hosts between 0 and 5 years old thus exhibit 166 

the highest number of infections with an average of 64 ± 11 (mean ± SD), 267 ± 17, and 377 ± 18 167 

sampled hosts for the low-, moderate-, and high-transmission simulations, respectively (S1C Fig). 168 

As expected, the number of sampled hosts is higher for simulations with high-transmission settings 169 

(939 ± 344) than for those with moderate (314 ± 151) and low-transmission settings (88 ± 36) 170 

(S1C Fig). Consistently, the average EIR and prevalence were also higher for simulations with 171 

high-transmission settings than for those with low- or moderate-transmission settings (S2 Fig). For 172 

instance, low-transmission setting simulations have an average of 1.1 ± 0.2 infectious bites per 173 

host per year and 0.04 ± 0.02 infected cases, whereas moderate-transmission simulations have an 174 
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average of 6.8 ± 0.2 infectious bites per host per year and 0.16 ± 0.08 infected cases, and high-175 

transmission simulations have an average of 21.6 ± 0.2 infectious bites per host per year and 0.47 176 

± 0.17 infected cases, reflecting highly contrasting malaria transmission intensities. We note that 177 

in our simulations “infectious bites” were computed as infectious contact events experienced by a 178 

host, and that for generality purposes, we set the transmissibility probability specifying whether 179 

such contact results in infection to 0.5 (S1 Table). Thus, for comparison purposes with empirical 180 

values, the EIR values obtained in the simulations should be divided by such probability. 181 

Consistently with these epidemiological and genetic diversity statistics, the true MOI distribution 182 

generated by the simulations is also significantly different among the three levels of transmission 183 

(t-test: P-value < 2.2e-16; average true MOI of 1.08 ± 0.30, 1.61 ± 0.95, and 3.84 ± 3.31 for the 184 

low-, moderate-, and high-transmission simulations, respectively) (Fig 1B). 185 

 186 
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 187 

Fig 1: Multiplicity of infection (MOI). For each category, the horizontal central solid line 188 

represents the median, the diamond represents the mean, the box represents the interquartile range 189 

(IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point, which is 190 

no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e., 191 

the points beyond the whiskers. The upper, middle, and lower row panels show correspond to 192 

simulations under low-, moderate-, and high-transmission settings, respectively (S1 and S2 193 

Tables). A) Accuracy of MOI estimates, defined as the difference between estimated and true MOI 194 
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per host. While null values highlight accurate MOI estimates (indicated by a dashed black 195 

horizontal line), the positive and negative values highlight over- and under-estimation, 196 

respectively. Estimates with the neutral SNP-based approach (THE REAL McCOIL) are indicated 197 

in green, and those with the var gene-based approach (varcoding) are indicated in blue. The dark 198 

and light green or blue colors indicate respectively MOI estimations made without and with a 199 

measurement model (Fig 2). The column panels show differences for specific true MOI values. B) 200 

Population distribution of the estimated and true MOI per host from the simulated “true” values 201 

and those estimated with the methods indicated by the colors similar to panel A.  For high 202 

transmission, the distribution obtained with THE REAL McCOIL shows a more pronounced tail 203 

than that from the simulated infections, with a secondary peak around MOI = 14. Note that the 204 

method considerably over-estimates individual MOI below that value but then under-estimates 205 

above it (panel A). Thus, these opposite trends compensate each other to some extent in the 206 

population distribution, producing nevertheless a deviation at high values. The varcoding method 207 

provides a good representation of the “true” distribution from the simulations, and of the individual 208 

values in general, with a consistent tendency to underestimate when sampling error is taken into 209 

account. 210 

 211 
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 212 

Fig 2: Measurement models. A) and B) Schematic diagrams of the SNP and var measurement 213 

models for a host infected by one (MOI = 1) or two (MOI = 2) genetically distinct P. falciparum 214 

strains, respectively. To account for potential SNP genotyping failures, we randomly replaced the 215 

host genotypes with missing data (X). This replacement was implemented by using the distribution 216 

illustrated in panel C. When MOI is high, the frequency of double allele calls (DACs) is also high 217 

(Fig 3). To account for var gene potential sequencing errors, we sub-sampled the number of var 218 

genes per repertoire. This sub-sampling was implemented by using the distribution illustrated in 219 

panel D. For simplicity, the var repertoire in these two examples only consists of 10 var genes 220 

despite each migrant parasite genome consists of a repertoire of 45 var genes in the simulations 221 

(S1 Table). C) Histogram of the proportion of missing SNP loci per host haplotype from a panel 222 
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of 24 bi-allelic SNP loci. The genotypes were previously obtained from monoclonal infections 223 

sampled during one cross-sectional survey made in 2015 in the Bongo District, in northern Ghana. 224 

The purple curves show the best curves that fit the data using the adjusted R-squared. D) Histogram 225 

of the number of non-upsA (i.e., upsB and upsC) DBLα var gene types per repertoire. The 226 

molecular sequences were previously sequenced from monoclonal infections, i.e., hosts infected 227 

by a single P. falciparum strain (MOI = 1), sampled during six cross-sectional surveys made from 228 

2012 to 2016 in the Bongo District, in northern Ghana. 229 

 230 

Estimates with THE REAL McCOIL approach 231 

 232 

THE REAL McCOIL approach based on neutral SNP data tends to overestimate MOI when 233 

true values range from 3 to 14 (Fig 1A). In contrast, this approach tends to underestimate MOI for 234 

true MOI above ~14, values only found in hosts without any single minor allele calls (Figs 2A and 235 

3). Underestimated MOI can differ from the true MOI by up to 2, 3, and 7 co-infections for the 236 

low-, moderate-, and high-transmission simulations, respectively. Interestingly, while most hosts 237 

with MOI < 3 show accurate MOI estimates, some can differ from the true MOI by up to 18, 12, 238 

and 13 co-infections for the low-, moderate-, and high-transmission simulations, respectively. The 239 

inaccuracy of the MOI estimates based on THE REAL McCOIL approach, defined as the absolute 240 

differences between estimated and true MOI per host, is significantly and positively correlated 241 

with the true MOI (P-values < 2.2e-16; r = 0.07, r = 0.59, and r = 0.55 for the low-, moderate-, and 242 

high-transmission simulations, respectively). 243 

 244 
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As the proportion of double allele calls (DACs) per host is significantly and positively 245 

correlated with the true MOI (P-value < 2.2e-16, r = 0.82) (Fig 3), inaccuracy is also significantly 246 

and positively correlated with the proportion of DACs per host (P-value < 2.2e-16, r = 0.61). 247 

Consistently, inaccuracy is significantly and negatively correlated with the proportion of single 248 

allele calls (minor and major alleles) per host SNP haplotype (P-value < 2.2e-16, r = -0.61) (Fig 249 

3). Inaccuracy is significantly and negatively correlated with the number of SNPs (P-value < 2.2e-250 

16, r = -0.15), but estimated MOI with the highest number of SNPs (105 SNPs) can still differ 251 

from the true MOI by up to 18 (S3A Fig). Surprisingly, the MOI estimates show higher accuracy 252 

for simulations generated with distinct initial SNP allele frequencies but did not seem influenced 253 

by the presence of linked SNP loci (S4 Fig). Overall, despite including slightly fewer hosts with 254 

low MOI and significantly more hosts with high MOI (Fig 1B), the average estimated MOI was 255 

quite similar to that of the true MOI (P-values < 2.2e-16; average estimated MOI of 1.27 ± 1.60, 256 

1.93 ± 1.93, and 4.80 ± 4.60 for the low-, moderate-, and high-transmission simulations, 257 

respectively). However, due to the combination of overestimated and underestimated MOI values, 258 

the distribution showed a second peak of high density around a MOI of 15, which is absent from 259 

the true MOI distribution. This peak can correspond to a maximum of ~200 hosts in some 260 

simulations. 261 

 262 
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 263 

Fig 3: Proportion of SNP calls (genotypes) per host SNP haplotype. A) Single major allele 264 

calls; B) Double allele calls (DACs); C) Single minor allele calls; D) Missing allele calls. The 265 

column panels show the proportions for specific true MOI values. The dark and light green colors 266 

indicate the proportion of calls made without and with a measurement model, respectively (Fig 2). 267 

For each category, the horizontal central solid line represents the median, the diamond represents 268 

the mean, the box represents the interquartile range (IQR) from the 25th to 75th centiles, the 269 

whiskers indicate the most extreme data point, which is no more than 1.5 times the interquartile 270 

range from the box, and the dots show the outliers, i.e., the points beyond the whiskers. 271 
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 272 

Consideration of a SNP measurement model, which accounts for potential genotyping failures 273 

by randomly replacing some SNP genotypes with missing values, only slightly decreases the 274 

accuracy of the MOI estimates based on THE REAL McCOIL approach, relative to MOI estimates 275 

made without the measurement model (Figs 1A and 2). 276 

 277 

Subsampling the individuals from 2000 to 500 did not reduce the accuracy of the estimated 278 

MOI with or without the measurement model (S5 Fig). However, subsampling to 200 individuals 279 

significantly increased the number of SNP loci with a MAF < 10%, especially for the low- (7 ± 8 280 

loci) and moderate-transmission setting simulations (3 ± 3 loci). Consequently, due to the high 281 

number of SNP loci, and thus individuals, that could not be considered in THE REAL McCOIL 282 

analysis, MOI could not have been estimated for any of the low-transmission setting simulations 283 

when a subsampling of 200 individuals was applied (S6 Fig). Moreover, while THE REAL 284 

McCOIL approach could provide MOI estimates for subsamples of the moderate- and high-285 

transmission setting simulations, the subsampling of 200 individuals significantly reduced the 286 

accuracy of these MOI estimates made with or without the measurement model. 287 

 288 

Simulations under low- and moderate-transmission settings show more accurate MOI 289 

estimates than the simulations under high-transmission settings (Fig 1A). For the low-transmission 290 

setting, the less accurate MOI estimates (> 13) were generated in only four simulations (i.e., one 291 

replicate from runs 10, 11, 22, and 23) (Fig 1B and S2 Table). These results were explained by 292 

highly inaccurate estimated MAF. Indeed, the inaccuracy of the estimated MOI was significantly 293 

and positively correlated with the inaccuracy of the estimated MAF per simulation, defined as the 294 
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sum of the absolute differences between estimated and true MAF per SNP locus (P-values < 2.2e-295 

16; r = 0.12 and r = 0.13 for estimates made with or without measurement model, respectively). 296 

Interestingly, although THE REAL McCOIL approach generated very inaccurate MAF estimates 297 

for a few low-transmission simulations, it typically produced very accurate estimates of the MAF 298 

regardless of transmission settings (S7 Fig). Consistent with the MOI results, the accuracy of the 299 

MAF estimates per simulation also increases with the number of SNP loci. The inaccuracy of THE 300 

REAL McCOIL MAF estimates per locus, defined as the absolute differences between estimated 301 

and true MAF per locus, is significantly and negatively correlated with the true MAF, the 302 

proportion of DACs, and the proportion of single minor allele calls per locus (S3 Table). Moreover, 303 

this inaccuracy of the MAF estimations is also significantly but positively correlated with the 304 

proportion of missing allele calls and single major allele calls per locus (S3 Table). 305 

 306 

Estimates with the varcoding approach 307 

 308 

Consistently with an increasing probability of overlapping var repertoires for hosts with MOI 309 

above 1, the varcoding approach, which uses the number of var genes to estimate MOI, tends to 310 

slightly underestimate the MOI (Fig 1A). Its inaccuracy, defined as the absolute difference 311 

between estimated and true MOI per host, is significantly and positively correlated with the true 312 

MOI (P-values < 2.2e-16; r = 0.23, r = 0.26, and r = 0.54 for the low-, moderate-, and high-313 

transmission simulations, respectively). Therefore, MOI values estimated for the hosts with the 314 

highest true MOI (i.e., 5, 10, and 20 co-infections for the low-, moderate-, and high-transmission 315 

simulations, respectively), differ from the true MOI by up to 1, 3, and 5 co-infections for the low-316 

, moderate-, and high-transmission simulations, respectively. Overall, despite exhibiting slight 317 
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deviations, with more hosts at low MOI and fewer hosts at high MOI, the distribution of the 318 

estimated MOI based on the varcoding approach is quite similar to that of the true MOI (P-value 319 

< 2.2e-16; average estimated MOI of 1.08 ± 0.29; P-value = 0.10, 1.60 ± 0.93; P-value = 4.9e-05, 320 

and 3.74 ± 3.14 for the low-, moderate-, and high-transmission simulations, respectively) (Fig 1B). 321 

 322 

As expected, the var genes measurement model, which accounts for potential sampling errors 323 

by sub-sampling the number of var genes per strain, reduced the number of available distinct var 324 

genes per host and increased inaccuracy (Figs 1A and 2). MOI estimates from simulated data can 325 

now differ from the true MOI by up to 2, 5, and 9 co-infections for the low-, moderate-, and high-326 

transmission simulations, respectively. Overall, the distribution of the estimated MOI remained 327 

quite similar to that of the true MOI (P-values < 2.2e-16; average estimated MOI of 1.07 ± 0.26, 328 

1.49 ± 0.75, and 3.05 ± 2.30 for the low-, moderate-, and high-transmission simulations, 329 

respectively), even though it accentuated some of the small deviations we described in the absence 330 

of measurement error, namely more hosts with low MOI and fewer hosts with high MOI (Fig 1B). 331 

 332 

As the varcoding approach estimates MOI using individual host level information, 333 

subsampling the dataset, from 2000 to 500 or 200 individuals, did not reduce accuracy regardless 334 

of consideration of measurement error (S5 and S6 Figs). 335 

 336 

The high-transmission setting simulations resulted in more accurate MOI estimates than the 337 

low- and moderate-transmission simulations (Fig 1A). This is consistent with the var repertoires 338 

for simulations under high-transmission settings exhibiting a lower average PTS (0.049 ± 0.001), 339 

i.e., less overlap, than the var repertoires for simulations under low- and moderate-transmission 340 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497801doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497801
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 

19 
 

settings (0.138 ± 0.027 and 0.063 ± 0.004, respectively) (Figs 4C, S8, and S9). The genetic 341 

structure of the parasite population can also be analyzed using networks whose nodes are var 342 

repertoires, and the weighted edges correspond to the degree of overlap between these repertoires 343 

(Fig 4A) [36]. Consistent with the average PTS, the similarity networks for simulations under 344 

high-transmission settings did not group the var repertoires into well-defined modules while the 345 

similarity networks for simulations under high-transmission settings did. This finding was also 346 

captured using three-node motifs across the var repertoire similarity networks, which showed a 347 

lower proportion of reciprocal motifs (i.e., A ↔ B ↔ C ↔ A) for simulations under high-348 

transmission settings (91.4%) than for simulations under low- and moderate-transmission settings 349 

(99.8% and 100.0%, respectively) (Figs 4A, 4B, and S8). Altogether, as simulated P. falciparum 350 

strains under high-transmission settings shared less similar var repertoires than those under low- 351 

or moderate-transmission settings, the varcoding approach results in more accurate MOI estimates 352 

under high-transmission settings than under the lower transmission ones (Figs 2A, 4, and S8). 353 

 354 
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 355 

Fig 4: Population structure using network properties. Comparisons of repertoire similarity 356 

networks of 150 randomly sampled parasite var repertoires generated from a one-time point under 357 

low, moderate, and high-transmission settings (i.e., one replicate of runs 1, 25, and 49, 358 

respectively; S1 and S2 Tables). Only the top 1% of edges are drawn and used in the analysis. A) 359 

Similarity networks where nodes are var repertoires, weighted edges encode the degree of overlap 360 

between the var genes contained in these repertoires, and the direction of an edge indicates the 361 

asymmetric competition between repertoires. B) Distributions of the average proportion of 362 
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occurrences of three-node graph motifs across the repertoire similarity networks. C) Distribution 363 

of the mean pairwise type sharing (PTS) between var repertoires. For each category, the horizontal 364 

central solid line represents the median, the diamond represents the mean, the box represents the 365 

interquartile range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme 366 

data point, which is no more than 1.5 times the interquartile range from the box, and the dots show 367 

the outliers, i.e., the points beyond the whiskers. 368 

 369 

Comparison of THE REAL McCOIL and the varcoding approaches 370 

 371 

As described above, each method performs better under specific conditions, such as 372 

transmission setting and sampling size. However, for any given simulation, THE REAL McCOIL 373 

approach never reached the level of accuracy of varcoding (Fig 1). First, for simulations under 374 

low- and moderate-transmission settings, THE REAL McCOIL approach could generate highly 375 

inaccurate MAF, due to the small proportion of infected hosts sampled from the participants, which 376 

can result in more inaccurate MOI estimates than those generated with varcoding. Second, under 377 

high-transmission settings, THE REAL McCOIL approach showed a combination of MOI 378 

overestimates and underestimates for true MOI under or above ~14 co-infections, respectively (Fig 379 

1). This introduces biases in opposite directions, which can compensate to some extent and 380 

artificially provide a reasonable overall population distribution. In contrast, the varcoding 381 

approach showed consistent increasing underestimation of the MOI for increasing true MOI as 382 

expected from an increasing var repertoire overlap between strains, Third, for a similar sample 383 

size (i.e., 2000, 500, or 200 individuals), the varcoding approach always provided more accurate 384 

MOI estimates than THE REAL McCOIL approach (S5 and S6 Figs). This was especially 385 
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observed for the smaller sample sizes (i.e., 200 samples), which are quite commonly used for 386 

malaria surveillance. On the one hand, THE REAL McCOIL, which relies on information at the 387 

population level, could not provide MOI estimates due to the limited number of SNP loci that 388 

could be considered in the analysis or could provide less accurate MAF and MOI estimates. On 389 

the other hand, the varcoding, which only relies on the information at the individual level to 390 

estimate MOI, consistently provided comparable MOI estimates independently of the sample size. 391 

In summary, the accuracy of the estimated MOI was dependent on the transmission setting, the 392 

approach used to characterize the multiplicity of malaria parasite infection, and the sample size.393 
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Discussion 394 

 395 

When P. falciparum transmission is high, which is common within malaria-endemic regions 396 

of the world, simulations showed that THE REAL McCOIL approach provided less robust MOI 397 

estimation than the varcoding approach. The former approach tends to overestimate the MOI for 398 

hosts with low and moderate true MOI (under ~14 co-infections) and to underestimate the MOI 399 

for hosts with high true MOI (above ~14 co-infections). The high proportion of DACs and low 400 

proportion of single major and minor allele calls in a host SNP haplotype (barcode) seemed to be 401 

the origin of this inaccuracy in the high-transmission simulations. It is interesting to note that the 402 

combination of underestimated and overestimated MOI values allowed THE REAL McCOIL 403 

approach to generate a fairly accurate average estimated MOI but for the wrong reasons. Therefore, 404 

caution should be taken with using this approach when malaria transmission is moderate to high. 405 

In particular, considerable overestimates in the population result in a secondary peak in the 406 

distribution. In contrast, the low PTS values at high transmission due to the high diversity of var 407 

genes and selection for reduced repertoire overlap enabled accurate MOI estimates via varcoding 408 

by amplifying, pooling, sequencing, and counting the number of DBLα types in a host. Despite 409 

harboring a high proportion of distinct var genes, repertoires can still be partially overlapping, 410 

sharing similar var genes. This limited overlap can result in a reduced number of var genes being 411 

identified on the basis of their DBLα types, which leads to the potential underestimation of MOI. 412 

Because these regions of the parasite genome can be sometimes challenging to access, the resulting 413 

sampling errors can reduce the reliability of the methodology leading to consistent underestimation 414 

of MOI, as shown with the simulations that included a realistic measurement error based on 415 

empirical data. Interestingly, simulations including a measurement error based on the distribution 416 
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of the number of non-upsA DBLα var gene types per 3D7 laboratory isolate significantly improved 417 

the accuracy of the var coding MOI estimates, highlighting the importance of high-density isolates 418 

when estimating MOI (S10 Fig). Thus, the varcoding approach provides a cost-effective approach 419 

for evaluating MOI under high-transmission conditions, with an underestimation bias introduced 420 

however by measurement error from the sampling of the var genes. 421 

 422 

In low or moderate malaria transmission regions, both THE REAL McCOIL and varcoding 423 

approaches can provide reasonable MOI estimates. As bi-allelic SNP data can be relatively cheap 424 

and straightforward to obtain, THE REAL McCOIL method, which can be applied to any parasite 425 

isolates with multiclonal infections [21], appears cost-effective for evaluating MOI but could 426 

nevertheless introduce biases in determining malaria elimination status by underestimating the 427 

effectiveness of the interventions. However, the method required a minimum number of sampled 428 

hosts to reasonably estimate MOI, which is not the case for varcoding. Caution should thus be 429 

taken when defining the most suitable sample size while keeping this method cost-effective. Given 430 

the high accuracy of the varcoding approach when measurement error was not incorporated, future 431 

work will address correcting for var repertoire overlap within a single host to improve MOI 432 

estimation. 433 

 434 

Surprisingly, although THE REAL McCOIL approach assumes that genotyped SNP loci do 435 

not exhibit significant LD, the simulations performed with linked SNP loci did not show less 436 

reliable MOI estimation. Linked SNP loci may require longer simulations than the ones considered 437 

here (with thousands of generations) to show substantial bias in estimates of MOI. The categorical 438 

method of THE REAL McCOIL approach was very sensitive to the parameter controlling the 439 
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upper bound for MOI (maxCOI). While a maximum MOI of 20 was applied in the simulations, 440 

reducing this upper bound for the low- and moderate-transmission simulations to the highest true 441 

MOI values observed for these settings (to 5 and 10 for the low and moderate-transmission 442 

simulations, respectively) significantly improved the accuracy of the estimated MOI (S11 Fig). 443 

Defining the most suitable MOI upper bound from previous reports could thus be useful to provide 444 

more accurate future estimates when using this approach. However, this solution can be circular 445 

and therefore impractical. 446 

 447 

THE REAL McCOIL approach provided highly accurate MAF estimates for low- transmission 448 

intensities and reasonably accurate ones in moderate- and high-transmission intensities. While 449 

MAF estimates were robust with as few as 24 SNPs, their accuracy was improved by increasing 450 

the number of SNPs genotyped. Most population genetic analyses of malaria parasites rely on 451 

monoclonal infections, which reduces the amount of data and produces MAF estimates that may 452 

not be representative and thus introduce potential biases. Therefore, despite often significantly 453 

overestimating the MOI, THE REAL McCOIL approach could also facilitate population genetic 454 

analyses of the malaria parasite by properly estimating the MAF and other related statistics, 455 

including the effective population size (Ne), the FST, and the FWS [38–40]. 456 

 457 

An additional source of measurement error, not considered by our simulations, concerns the 458 

difficulty of properly sampling all the strains simultaneously infecting a particular host due to low 459 

parasitemia, the parasite load in the host blood. Indeed, multiclonal infections can potentially result 460 

in a reduction of the parasitemia of particular strains [41]. Consequently, strains with low 461 

parasitemia could be highly diluted in clinical samples and thus have a lower probability of being 462 
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properly sequenced and/or genotyped. Moreover, infections (monoclonal or multiclonal) with low 463 

total parasitemia could be missed by the PCR detection approach, which can identify infections 464 

with as low as one parasite per μL, and by the commonly used microscopy detection approach, 465 

which cannot detect infections with lower than 4-10 parasites per μL [42,43]. Synchronicity of 466 

clones in the 48 hour life cycle on alternate days also leads to underestimation of MOI unless 467 

repeat daily sampling [44] or every three days is done [45]. These issues could therefore contribute 468 

to a more substantial underestimation of the MOI than the ones highlighted in this study. 469 

 470 

Another simplification in our ABM was the lack of SNP mutations. Evolution of the neutral 471 

part of the parasite genome may influence MOI estimation over long time scales, but should play 472 

a minor role for the shorter time periods relevant to epidemiology unless associated with selective 473 

sweeps. Finally, our model did not incorporate the different sequence groupings of var genes, 474 

which can be classified based on their chromosomal position and semi-conserved upstream 475 

promoter sequences (ups) into different groups, upsA and non-upsA [46–48]. Case-control studies 476 

have reported that while upsA var genes are preferentially expressed in children with cerebral 477 

and/or severe malaria, non-upsA var genes have been associated with asymptomatic infections and 478 

clinical cases of malaria [49–57]. This absence of var types in our ABM may explain the higher 479 

prevalence within the younger age class in the simulations (i.e., 0-5 years old), compared to an 480 

observed higher prevalence typically within the 6-10 and 11-20 years old age classes in the 481 

empirical data [58]. 482 

 483 

Although MOI is a useful epidemiological marker to evaluate the efficacy of malaria 484 

intervention efforts, properly characterizing multiclonal infections remains a challenge, especially 485 
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for high transmission. This work demonstrates that THE REAL McCOIL and the varcoding 486 

approaches provide complementary methodologies to determine MOI across distinct transmission 487 

settings. In particular, the high diversity of the var gene family and low overlap of var gene 488 

repertoires between parasites, especially under high-transmission intensity, allows robust MOI 489 

estimation with the varcoding method, despite a tendency for underestimation originating mainly 490 

from sampling error. Reliance of THE REAL McCOIL on bi-allelic neutral SNPs limits 491 

application at high transmission, with the introduction of a secondary peak in the tail of the 492 

population distribution, considerable over-estimates of individual MOI, and opposite signs in the 493 

deviations, for both under- and over-estimates in different ranges of true values.  The method 494 

provides reasonable estimates across low- and moderate-transmission settings where the varcoding 495 

approach could be limited by partially overlapping var repertoires. Considering local transmission 496 

intensity is thus highly recommended when defining the most suitable marker and/or MOI 497 

estimation approach to evaluate the impact of malaria control and elimination campaigns. The 498 

highly diverse multigene var family under immune selection provides a handle to complexity of 499 

infection at high transmission.500 
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Materials and Methods 501 

 502 

Agent-Based Model (ABM) 503 

 504 

Malaria transmission was modeled with an extended implementation of an agent-based, 505 

discrete-event, stochastic model in continuous time [36,59]. Here, we briefly describe the agent-506 

based model (ABM) implemented in Julia (varmodel3) which is based on previous C++ 507 

implementations (i.e. varmodel and varmodel2) [36,59]. While the previous implementation of the 508 

stochastic ABM was adapted from the next-reaction method which optimizes the Gillespie first-509 

reaction method, this implementation uses a simpler Gillespie algorithm [60,61]. The ABM tracks 510 

the infection history and immune memory of each host and its parameters and symbols are 511 

summarized in S1 Table. We modeled a local population of 10000 individuals, and a global var 512 

gene pool whose size acts as a proxy for regional parasite diversity. The simulations are initialized 513 

with 20 migrant infections from this regional pool to seed local population transmission and grow 514 

local gene diversity to a stationary equilibrium. Each migrant parasite genome consists of a specific 515 

combination (i.e. repertoire) of 45 var genes. The size of the repertoire was based on the median 516 

number of non-upsA DBLα sequences identified in our 3D7 laboratory isolate [22,23]. This 517 

grouping of var genes is defined based on their semi-conserved upstream promoter sequences (ups) 518 

(i.e. upsA and non-upsA (upsB and upsC)) [46–48]. Although each parasite carries both types of 519 

var genes in a fairly constant proportion [26,62], the MOI estimation method we consider here 520 

focuses on the non-upsA DBLα sequences as they were ~20X more diverse and less conserved 521 

among repertoires than the upsA DBLα sequences. Therefore, for simplicity purposes, our model 522 

considered only those types.  Each var gene itself is represented as a linear combination of two 523 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497801doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497801
http://creativecommons.org/licenses/by-nc-nd/4.0/


Materials and Methods 

29 
 

epitopes, i.e. parts of the molecule that act as antigens and are targeted by the immune system 524 

[26,36,63]. The var genes in a repertoire are expressed sequentially and the infection ends when 525 

the whole repertoire is depleted. The duration of the active period of a var gene, and thus of the 526 

infection, is determined by the number of unseen epitopes. When a var gene is deactivated, the 527 

host adds the deactivated var gene epitopes to its immunity memory. Specific immunity toward a 528 

given epitope experiences a loss rate from host immunity memory, and re-exposure is therefore 529 

required to maintain it. The local population is open to immigration from the regional pool.  530 

 531 

Our model extension allows us to keep track of the neutral part of each migrant parasite genome 532 

assembled by sampling one of the two possible alleles (labeled as 0 or 1) at each of a defined 533 

number of neutral bi-allelic SNPs (S1 Table). While the extended model can generate 534 

homogeneous initial SNP allele frequencies by sampling the migrant alleles with an identical 535 

probability from the regional pool (i.e., 0.5), it can also generate distinct initial SNP allele 536 

frequencies by sampling the migrant alleles from the regional pool with distinct probabilities that 537 

sum up to one (e.g. 0.2 and 0.8) and are randomly picked from a defined range (e.g., [0.1-0.9]). 538 

 539 

Seasonality was implemented in the transmission rate parameter to represent monthly 540 

variability in mosquito bites [59,64]. The model does not explicitly incorporate mosquito vectors 541 

but considers instead an effective contact rate (hereafter, the transmission rate) which determines 542 

the times of local transmission events (exponentially distributed). At these times, a donor and a 543 

recipient host are selected randomly. To mimic meiotic recombination which happens within the 544 

mosquito during the sexual reproduction stage of the parasite, strains that are selected for a 545 

transmission event have a probability Pr = 1 – 1 / Ns (where Ns is the number of strains transmitted 546 
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to the donor) to become a recombinant strain [36]. To generate a recombinant var repertoire, a 547 

random set of var genes is sampled from a pool containing the two sets of var genes from the 548 

original genomes. Similarly, to generate the neutral part of a recombinant parasite, a random allele 549 

is sampled for each bi-allelic SNP. Moreover, to allow for linkage disequilibrium (LD) across the 550 

neutral part of the genome, neutral bi-allelic SNPs can be non-randomly associated and co-551 

segregate as defined in a matrix of LD coefficients indicating the probability that pairs of linked 552 

SNPs will co-segregate during the meiotic recombination (S2 Table). 553 

 554 

Experimental design 555 

 556 

We explored how distinct transmission settings influence MOI estimation with the two 557 

different approaches. Specifically, we compared three transmission intensities corresponding to 558 

“low” (prevalence of 1-10%), “moderate” (prevalence of 10-35%), and “high” (prevalence ≥35%), 559 

implemented with  different transmission rates (5.0e-05, 7.5e-05, and 1.0e-04, respectively), and 560 

initial gene pool sizes (500, 2000, and 10000, respectively) (S1 and S2 Tables) [65]. As the 561 

sensitivity of the SNP-based methods increases with the number of SNP loci, and as Chang et al. 562 

(2017) retained 105 SNP loci to test THE REAL McCOIL approach, we performed these 563 

simulations using 24, 48, 96, and 105 SNP loci for the three transmission settings (S1 and S2 564 

Tables) [21,24,25]. As THE REAL McCOIL approach assumes that distinct parasite lineages in 565 

multiclonal infections are unrelated and that genotyped SNP loci do not exhibit significant LD, we 566 

performed the simulations with homogenous initial SNP allelic frequencies and with unlinked bi-567 

allelic SNP loci (S1 and S2 Tables). However, as allelic frequencies can be heterogeneous in space 568 

and time, we also performed simulations with distinct initial allelic frequencies, and with 8% and 569 
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16% of linked SNP loci clustered into one or two groups, respectively. This design results in 72 570 

distinct combinations of parameters (i.e., runs) and we ran 10 replicates per combination with a 571 

maximum MOI of 20 (S1 and S2 Tables). Simulations were run for 85 years to get beyond the 572 

initial transient dynamics in which var gene diversity and parasite population structure are 573 

established. For each simulation, we calculated the epidemiological summary statistics, including 574 

the number of hosts, the prevalence, and the entomological inoculation rate (EIR). In addition, 575 

2000 individuals were randomly sampled to analyze the true MOI and the parasite genetic and 576 

allelic diversity patterns. The simulated data were collected during the last year at 300 days (i.e., 577 

November), corresponding to the end of the wet season (high-transmission season) in the Bongo 578 

District, a malaria-endemic area of Northern Ghana. Details on the area and population have been 579 

previously described [23,58]. 580 

 581 

MOI estimation 582 

 583 

While the “true” MOI per host was directly extracted from the simulations, the estimated MOI 584 

was obtained for each host using the two distinct approaches. First, the MOI per host was estimated 585 

from the simulated neutral SNP data using THE REAL McCOIL approach v.2 [21]. We performed 586 

the categorical method of THE REAL McCOIL with a minor allele frequency (MAF) of 10% for 587 

a SNP to be considered and an upper bound of 20 for MOI, keeping all other parameters to their 588 

default values (a burn-in period of 103 iterations, a total of 104 Markov chain Monte Carlo 589 

(MCMC) iterations, a minimum number of 20 genotypes for an individual to be considered, a 590 

minimum number of 20 samples for a SNP to be considered, an initial MOI of 15, and a probability 591 

of calling single allele loci double allele loci and of calling double allele loci single allele loci of 592 
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0.05 which were estimated with MOI and the allele frequencies) [21,66]. Second, the MOI per 593 

host was also estimated from the simulated var genes data by counting the total number of distinct 594 

var genes within each host and by dividing it by the size of one repertoire, here 45 as estimated 595 

from control data using repeat samplings of the var genes of 3D7 with the varcoding protocol [23].  596 

 597 

To account for measurement error in both approaches, a measurement model was 598 

implemented. First, to account for potential SNP genotyping failures, we applied a measurement 599 

model that randomly replaces the host genotypes with missing data, reducing the number of 600 

available data for THE REAL McCOIL approach (Fig 2). This replacement was implemented by 601 

using the distribution of the proportion of missing genotypes per monoclonal infections from a 602 

panel of 24 bi-allelic SNP loci which was previously obtained during one cross-sectional survey 603 

in 2015 in the Bongo District in Ghana at the end of the wet season [24] (Fig 1C). For each host, 604 

some SNP loci were thus replaced with missing genotypes according to a weight reflecting the 605 

proportion of missing genotype counts density function. Second, to account for var gene potential 606 

sampling errors, we applied a measurement model that sub-samples the number of var genes per 607 

strain, resulting in a reduction of the total number of var genes per host (Fig 2). This sub-sampling 608 

was implemented by exploring the distribution of the number of non-upsA DBLα var gene types 609 

per monoclonal infection for which molecular sequences were previously obtained during six 610 

cross-sectional surveys between 2012 and 2016 in the Bongo District in Ghana at the end of the 611 

wet season [22,23,36,59] (Fig 1D). For each strain, the number of var genes was sub-sampled 612 

according to a weight reflecting the var gene counts density function. 613 

 614 
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MOI estimations were carried out with and without measurement error. To better reflect what 615 

is typically done for malaria surveillance, we also estimated the MOI after subsampling the 616 

simulated dataset, from 2000 to 500 or 200 individuals. T-tests were used to compare true and 617 

estimated MOI distributions. All t-test comparisons were considered statistically significant when 618 

P-value ≤ 0.05. 619 

 620 

Repertoire similarity networks 621 

 622 

To evaluate the similarity of parasites in the population, pairwise type sharing (PTS) was 623 

calculated between all repertoire pairs (regardless of the host in which they are encountered) as 624 

PTSij = 2nij / (ni + nj), where ni and nj are the number of unique var genes within each repertoire i 625 

and j and nij is the total number of var genes shared between repertoires i and j [28]. In addition, 626 

the genetic structure of the P. falciparum population was also analyzed using similarity networks 627 

based on var composition. Similarity networks were built in which nodes are var repertoires, 628 

weighted edges encode the degree of overlap between the var genes contained in these repertoires, 629 

and the direction of an edge indicates the asymmetric competition between repertoires, i.e., 630 

whether one repertoire can outcompete the other [36,67]. To introduce directional edges, we 631 

calculated the genetic similarity of repertoire i to repertoire j as Sij = (Ni ∩ Nj) / Ni, where Ni and 632 

Nj are the number of unique var genes in repertoires i and j, respectively. To focus on the var 633 

repertoires with the strongest overlap, only the top 1% of edges are drawn and used in network 634 

analysis. 635 
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Data availability 636 

 637 

The agent-based stochastic simulator of malaria dynamics and the processing scripts to 638 

reproduce all the figures are stored and annotated on GitHub: 639 

https://github.com/pascualgroup/varmodel3. The SNP data used for this analysis are available in 640 

Dryad at https://doi.org/10.5061/dryad.jsxksn0bp. The DBLα sequences used for this analysis are 641 

available in GenBank under BioProject Number: PRJNA 396962. 642 
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Supporting information captions 869 

 870 

S1 Fig. Host age distribution, and number of sampled individuals and hosts per age class. 871 

For each category, the horizontal central solid line represents the median, the diamond represents 872 

the mean, the box represents the interquartile range (IQR) from the 25th to 75th centiles, the 873 

whiskers indicate the most extreme data point which is no more than 1.5 times the interquartile 874 

range from the box, and the dots show the outliers, i.e. the points beyond the whiskers. A) Age 875 

distribution of the sampled individuals. B) Number of sampled individuals per age class. C) 876 

Number of sampled hosts per age class. Upper (yellow), middle (orange), and lower (purple) 877 

panels correspond to simulations under low-, moderate-, and high-transmission settings, 878 

respectively (S1 and S2 Tables). Values were split into five age classes, i.e. 0-5, 6-10, 11-20, 21-879 

39, and ≥ 40 years. 880 

 881 

S2 Fig. Prevalence and entomological inoculation rate (EIR) per transmission intensity. For 882 

each category, the horizontal central solid line represents the median, the diamond represents the 883 

mean, the box represents the interquartile range (IQR) from the 25th to 75th centiles, the whiskers 884 

indicate the most extreme data point which is no more than 1.5 times the interquartile range from 885 

the box, and the dots show the outliers, i.e. the points beyond the whiskers. A) Prevalence; B) EIR. 886 

Statistics calculated for simulations under low-, moderate-, and high-transmission settings are 887 

indicated in yellow, orange, and purple, respectively (S1 and S2 Tables). 888 

 889 

S3 Fig. Initial number of SNPs and accuracy of the multiplicity of infection (MOI) estimates 890 

determined with THE REAL McCOIL approach. The accuracy of MOI estimates is defined as 891 
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the differences between estimated and true MOI per host. While null values highlight accurate 892 

MOI estimates (indicated by a dashed black horizontal line), the positive and negative values 893 

highlight over- and under-estimation, respectively. The dark and light green colors indicate 894 

respectively MOI estimations made without and with a measurement model (Fig 2). For each 895 

category, the horizontal central solid line represents the median, the diamond represents the mean, 896 

the box represents the interquartile range (IQR) from the 25th to 75th centiles, the whiskers 897 

indicate the most extreme data point which is no more than 1.5 times the interquartile range from 898 

the box, and the dots show the outliers, i.e. the points beyond the whiskers. A) Accuracy of MOI 899 

estimates per true MOI. B) Accuracy of MOI estimates per transmission intensity (S1 and S2 900 

Tables). 901 

 902 

S4 Fig. SNP properties and accuracy of the multiplicity of infection (MOI) estimates 903 

determined with THE REAL McCOIL approach. The accuracy of MOI estimates is defined as 904 

the differences between estimated and true MOI per host. While null values highlight accurate 905 

MOI estimates (indicated by a dashed black horizontal line), the positive and negative values 906 

highlight over- and under-estimation, respectively. For each category, the horizontal central solid 907 

line represents the median, the diamond represents the mean, the box represents the interquartile 908 

range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which 909 

is no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e. 910 

the points beyond the whiskers. The dark and light green colors indicate respectively MOI 911 

estimations made without and with a measurement model (Fig 2). 912 

 913 
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S5 Fig: Reliability of the multiplicity of infection (MOI) estimations when subsampling 25% 914 

of the sampled individuals (i.e. 500 individuals). For each category, the horizontal central solid 915 

line represents the median, the diamond represents the mean, the box represents the interquartile 916 

range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which 917 

is no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e. 918 

the points beyond the whiskers. The upper, middle, and lower row panels correspond to 919 

simulations under low-, moderate-, and high-transmission settings, respectively (S1 and S2 920 

Tables). A) Accuracy of MOI estimates, defined as the difference between estimated and true MOI 921 

per host. While null values highlight accurate MOI estimates (indicated by a dashed black 922 

horizontal line), the positive and negative values highlight over- and under-estimation, 923 

respectively. Estimates with the neutral SNP-based approach (THE REAL McCOIL) are indicated 924 

in green, and those with the var gene-based approach (varcoding) are indicated in blue. The dark 925 

and light green or blue colors indicate respectively MOI estimations made without and with a 926 

measurement model (Fig 2). The column panels show differences for specific true MOI values. B) 927 

Population distribution of the estimated and true MOI per host from the simulated “true” values 928 

and those estimated with the methods indicated by the colors similar to panel A. 929 

 930 

S6 Fig: Reliability of the multiplicity of infection (MOI) estimations when subsampling 10% 931 

of the sampled individuals (i.e. 200 individuals). For each category, the horizontal central solid 932 

line represents the median, the diamond represents the mean, the box represents the interquartile 933 

range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which 934 

is no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e. 935 

the points beyond the whiskers. The upper, middle, and lower row panels correspond to 936 
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simulations under low-, moderate-, and high-transmission settings, respectively (S1 and S2 937 

Tables). A) Accuracy of MOI estimates, defined as the difference between estimated and true MOI 938 

per host. While null values highlight accurate MOI estimates (indicated by a dashed black 939 

horizontal line), the positive and negative values highlight over- and under-estimation, 940 

respectively. Estimates with the neutral SNP-based approach (THE REAL McCOIL) are indicated 941 

in green, and those with the var gene-based approach (varcoding) are indicated in blue. The dark 942 

and light green or blue colors indicate respectively MOI estimations made without and with a 943 

measurement model (Fig 2). The column panels show differences for specific true MOI values. B) 944 

Population distribution of the estimated and true MOI per host from the simulated “true” values 945 

and those estimated with the methods indicated by the colors similar to panel A. 946 

 947 

S7 Fig. Accuracy of the minor allele frequency (MAF) estimates per locus determined with 948 

THE REAL McCOIL approach. The accuracy of MAF estimates per locus is defined as the 949 

differences between estimated and true MAF per locus. While null values highlight accurate MAF 950 

estimates per locus (indicated by a dashed black horizontal line), the positive and negative values 951 

highlight over- and under-estimation, respectively. For each category, the horizontal central solid 952 

line represents the median, the diamond represents the mean, the box represents the interquartile 953 

range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which 954 

is no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e. 955 

the points beyond the whiskers. The dark and light green colors indicate respectively MAF 956 

estimations made without and with a measurement model (Fig 2). Upper, middle, and lower panels 957 

correspond to simulations under low-, moderate-, and high-transmission settings, respectively (S1 958 

and S2 Tables). 959 
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 960 

S8 Fig. Population structure using repertoire similarity network properties. Comparisons of 961 

repertoire similarity networks of 150 randomly sampled parasite var repertoires generated from a 962 

one-time point under low, moderate, and high-transmission settings (S1 and S2 Tables). Only the 963 

top 1% of edges are drawn and used in the analysis. The upper panel shows the distribution of the 964 

mean pairwise type sharing (PTS) per run. For each category, the horizontal central solid line 965 

represents the median, the diamond represents the mean, the box represents the interquartile range 966 

(IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which is 967 

no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e. the 968 

points beyond the whiskers. The lower panel shows the distributions of the proportion of 969 

occurrences of three-node graph motifs across the repertoire similarity networks. 970 

 971 

S9 Fig. Pairwise type sharing (PTS). For each category, the horizontal central solid line 972 

represents the median, the diamond represents the mean, the box represents the interquartile range 973 

(IQR) from the 25th to 75th centiles, and the whiskers indicate the most extreme data point. A) 974 

Distribution of the PTS per transmission intensity. B) Distribution of the PTS per run. 975 

 976 

S10 Fig. Reliability of the multiplicity of infection (MOI) estimations when simulations 977 

include a measurement error based on the distribution of the number of non-upsA DBLα 978 

var gene types per 3D7 laboratory isolates for the var coding approach. For each category, the 979 

horizontal central solid line represents the median, the diamond represents the mean, the box 980 

represents the interquartile range (IQR) from the 25th to 75th centiles, the whiskers indicate the 981 

most extreme data point which is no more than 1.5 times the interquartile range from the box, and 982 
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the dots show the outliers, i.e. the points beyond the whiskers. The upper, middle, and lower row 983 

panels correspond to simulations under low-, moderate-, and high-transmission settings, 984 

respectively (S1 and S2 Tables). A) Accuracy of MOI estimates, defined as the differences 985 

between estimated and true MOI per host. While null values highlight accurate MOI estimates 986 

(indicated by a dashed black horizontal line), the positive and negative values highlight over- and 987 

under-estimation, respectively. Estimates with the neutral SNP-based approach (THE REAL 988 

McCOIL) are indicated in green, and those with the var gene-based approach (varcoding) are 989 

indicated in blue. The dark and light blue or green colors indicate respectively MOI estimates made 990 

without and with a measurement model (Fig 2). The column panels show differences for specific 991 

true MOI values. B) Population distribution of the estimated and true MOI per host from the 992 

simulated “true” values and those estimated with the methods indicated by the colors similar to 993 

panel A. 994 

 995 

S11 Fig. Reliability of the multiplicity of infection (MOI) estimations when THE REAL 996 

McCOIL approach using an upper bound for MOI of 5, 10, and 20 for the low-, moderate-, 997 

and high-transmission simulations, respectively. For each category, the horizontal central solid 998 

line represents the median, the diamond represents the mean, the box represents the interquartile 999 

range (IQR) from the 25th to 75th centiles, the whiskers indicate the most extreme data point which 1000 

is no more than 1.5 times the interquartile range from the box, and the dots show the outliers, i.e. 1001 

the points beyond the whiskers. The upper, middle, and lower row panels correspond to 1002 

simulations under low-, moderate-, and high-transmission settings, respectively (S1 and S2 1003 

Tables). A) Accuracy of MOI estimates, defined as the differences between estimated and true 1004 

MOI per host. While null values highlight accurate MOI estimates (indicated by a dashed black 1005 
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horizontal line), the positive and negative values highlight over- and under-estimation, 1006 

respectively. The estimated MOI using the var genes based approach (i.e. var coding) are indicated 1007 

in blue, and the estimated MOI using the neutral SNPs based approach (i.e. THE REAL McCOIL) 1008 

are indicated in green. The dark and light blue or green colors indicate respectively MOI estimates 1009 

made without and with a measurement model (Fig 2). The column panels show differences for 1010 

specific true MOI values. B) Population distribution of the estimated and true MOI per host from 1011 

the simulated “true” values and those estimated with the methods indicated by the colors similar 1012 

to panel A. 1013 

 1014 

S1 Table. Epidemiological and genetic parameters used in the stochastic simulations. 1015 

 1016 

S2 Table. Epidemiological and genetic distinct parameters per run. 1017 

 1018 

S3 Table. Pearson correlation coefficients between the inaccuracy of the minor allele frequency 1019 

(MAF) per locus estimated with THE REAL McCOIL approach (defined as the absolute 1020 

differences between estimated and true MAF per locus), and the locus properties. 1021 
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