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ABSTRACT

CRISPR technology is a powerful tool for studying genome function. To aid in picking sgRNAs
that have maximal efficacy against a target of interest from many possible options, several
groups have developed models that predict sgRNA on-target activity. Although multiple
tracrRNA variants are commonly used for screening, no existing models account for this feature
when nominating sgRNAs. Here we develop an on-target model, Rule Set 3, that makes optimal
predictions for multiple tracrRNA variants. We validate Rule Set 3 on a new dataset of sgRNAs
tiling essential and non-essential genes, demonstrating substantial improvement over prior
prediction models. By analyzing the differences in sgRNA activity between tracrRNA variants,
we show that Pol III transcription termination is a strong determinant of sgRNA activity. We
expect these results to improve the performance of CRISPR screening and inform future
research on tracrRNA engineering and sgRNA modeling.

INTRODUCTION

Pooled screening with CRISPR technology has revolutionized the ease and scale for probing
gene function1,2. Targeted loci, which are often protein coding genes, can each have hundreds
of protospacer adjacent motifs (PAMs), providing many potential single guide RNA (sgRNA)
options. It is impractical to assess activity of the millions of potential sgRNAs, so accurate
predictions of sgRNA activity are essential for the construction of compact yet potent libraries.
Several groups have developed algorithms and web tools to facilitate sgRNA selection3.

We previously used a classification model to determine sequence features and developed
on-target sgRNA design rules using data from 1,841 sgRNAs (Rule Set 1)4. Rule Set 2 then
improved upon this initial attempt by incorporating more training data and using a regression
model that included additional sequence features5. Our guide design portal, CRISPick
(broad.io/crispick), has been in continuous operation since 2014 and has averaged 168 design
runs per day. Since the development of Rule Set 2, new datasets, features, and model
architectures have been developed, which we wanted to include in an updated rule set.

While developing this new rule set, we discovered that small variations in the sequence of the
trans-activating CRISPR RNA (tracrRNA) can lead to large differences in activity (here, we will
refer to the region of the sgRNA that basepairs to the target DNA as the ‘spacer’ and the
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remaining structural element of the sgRNA as the ‘tracrRNA’). The majority of published
on-target models were trained with sgRNAs that use the tracrRNA as implemented in Hsu et
al.6, however several other tracrRNAs have been used for screening. Chen et al. modified the
Hsu tracrRNA with both a flip – a T to A substitution and compensatory A to T substitution, to
disrupt the run of 4 thymidines that can trigger RNA polymerase III termination – and an
extension of 5 base pairs in the tetra-loop that is hypothesized to stabilize the sgRNA
structure7,8. We have also conducted screens with a modification to the Hsu tracrRNA that
disrupts the Pol III termination site with a T to G substitution and compensatory A to C
substitution, but without any tetra-loop extension (herein named the DeWeirdt tracrRNA)9.

To account for the differential effects of these tracrRNA variants, we incorporated tracrRNA
identity as a feature in our rule set. Furthermore, to validate our model and gain a deeper
understanding for how the different tracrRNAs affect activity, we generated a new dataset with
tens of thousands of sgRNAs tiling across essential and non-essential genes for each tracrRNA
variant. We show that our updated model, Rule Set 3 (Sequence + Target), makes optimal
predictions for all three tracrRNA variants. Additionally, the new screening data demonstrate that
disrupting the Pol III termination signal present in the Hsu tracrRNA improves activity for a
subset of spacer RNAs, suggesting that the Chen or DeWeirdt tracrRNA may be preferable
when target density is a priority, such as base editing screens10–12, or when direct detection of
the sgRNA is necessary to interpret screening results, such as in some scRNAseq
approaches13. We expect these results to improve CRISPR-Cas9 screening performance in
addition to providing mechanistic insight into tracrRNA-dependent differences in sgRNA activity.

RESULTS

To understand the current state-of-the-art for on-target modeling, we identified four recently
published models14–17, and to evaluate these models we collated datasets generated by three
different experimental approaches: three genome-wide datasets, four tiling datasets, and four
integrated-target datasets4,5,15,16,18–23 (Supplementary Table 1). Due to the strong
interdependence between the models and the collated datasets, we compared the models in a
pairwise fashion, allowing us to retain the maximum number of spacer sequences for testing
while avoiding leakage between training and testing sets (Fig 1a). Spearman correlation was
calculated between the observed and predicted activity to assess performance. By this metric,
the best performing model was CRISPRon (Supplementary Fig 1a).

We were surprised that Rule Set 2 marginally outperformed VBC Activity (average difference in
Spearman correlation = 0.02), since VBC Activity incorporates Rule Set 2 scores in addition to
training on data from Munoz et al. The only dataset where VBC Activity outperformed Rule Set 2
was from Behan et al., which, along with the Munoz data, was one of two collated datasets that
utilized the tracrRNA from Chen et al. (Supplementary Table 1). This observation led us to
hypothesize that there are systematic differences in sgRNA activity that depend on the tracrRNA
sequence. To investigate this, we analyzed sgRNA activities from two massive screening efforts,
the Dependency Map projects at the Broad and Sanger Institutes24. The Broad dataset was
screened with the Avana library using the Hsu tracrRNA, while the Sanger dataset was
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Figure 1: Development of Rule Set 3 (Sequence 
+ Target). a) Fraction overlap between sgRNAs 
used for training Rule Set 3 and those used for 
training other on-target models. Edge width and 
color are proportional to the fraction overlap. Node 
size is proportional to the number of sgRNAs. b) 
Schematic depicting Rule Set 3 (Sequence + Target) 
development. Nucleotide differences in tracrRNA 
sequences are colored. Models were trained only on 
the train set, as indicated by blue outlines. Italics 
indicate features for which information was obtained 
from existing databases. c) SHAP feature 
importance for the 20 most important features in 
Rule Set 3 (Sequence). Each point represents one 
sgRNA from the training set. Descriptions of model 
features can be found in Supplementary Table 2. d) 
Histograms of SHAP values for sgRNAs, colored by 
guanine status in the 20th sgRNA position and split 
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screened with the Human CRISPR Library v.1.0/1.1 and the Chen tracrRNA. These datasets
had 876 spacer sequences in common that target essential genes, enabling an assessment of
tracrRNA-dependent effects on sgRNA activity. To understand whether there were predictable
differences in activity between the tracrRNA variants, we trained gradient boosting models on
five splits of the overlapping sgRNAs and measured the Pearson correlation for predictions on
held out folds. The average Pearson correlation between the predicted and observed activity
differences was 0.34 (Supplementary Fig 1b), suggesting that tracrRNA identity should be
included as a feature for on-target modeling.

To build a new on-target model that can make optimal predictions for multiple tracrRNA variants,
we selected seven datasets for training. This totaled 46,526 unique context sequences, defined
as the 20 nucleotide sequence that matches the spacer plus four nucleotides preceding the
spacer and six nucleotides (PAM + 3 nucleotides of context) succeeding the spacer RNA; 45%
of sequences utilized the Chen tracrRNA. We also held out six datasets for testing (23,629
unique context sequences; 31% with the Chen tracrRNA) (Supplementary Table 1,
Supplementary Data 1). While convolutional neural networks have proven effective for
predicting sgRNA activity15,16, we opted for a gradient boosting framework for faster training
times25. For each sgRNA we encoded the 30mer context sequence using all the features from
Rule Set 2 in addition to features to indicate the longest run of each nucleotide in the sgRNA,
the melting temperature of the sgRNA:DNA heteroduplex26, and the minimum free energy of the
folded spacer sequence27. We also incorporated categorical variables to indicate which
tracrRNA was associated with each spacer, allowing the model to learn features that interact
with the tracrRNA (Fig 1b). We featurized all of the sgRNAs in the training set and fit a gradient
boosting regressor to predict z-scored activity values. We refer to this model as Rule Set 3
(Sequence).

To understand how Rule Set 3 (Sequence) makes its predictions, we calculated Shapley
additive explanation (SHAP) values28. We found that a G in the tracrRNA-adjacent 20th position
of the spacer sequence was the most important feature for activity as has been observed
previously (Fig 1c)21, although there was a strong interaction with the tracrRNA feature, as
sgRNAs with the Chen tracrRNA were less affected by the presence of a G in this position (Fig
1d). Notably, all three feature classes that were newly added to this model based on prior
literature – poly(T), spacer:DNA melting temperature, and minimum free energy – were among
the 20 most important features (Fig 1c, Supplementary Table 2). Likewise, tracrRNA identity
also proved to be relevant, validating its inclusion in the model. When we considered the held
out datasets, Rule Set 3 (Sequence) had the highest Spearman correlation on three of the six
datasets, including Behan 2019, which used the Chen tracrRNA (Supplementary Fig 1c). Rule
Set 3 (Sequence) predictions were modestly correlated to Rule Set 2 scores for test sgRNAs
that used the Hsu tracrRNA (Pearson r = 0.69) (Supplementary Fig 1d).

Several groups have incorporated information about the protein coding sequence, such as
protein domains, amino acid sequence, evolutionary conservation, and protein length to predict
sgRNA activity5,17,29. To test whether these target-site features improve Rule Set 3 (Sequence)
scores, we filtered for training data targeting endogenous sites. We calculated the residual
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activity from Rule Set 3 (Sequence) scores as the outcome variable for the target-site model,
Rule Set 3 (Target), ensuring that predictions from the trained model would be additive with Rule
Set 3 (Sequence) scores. To test each set of target-site features we split training data into five
folds for cross-validation and trained gradient boosting regression models to predict residual
activity (Supplementary Table 1). Here, target-site features such as amino acid abundance and
conservation refer to features of the protein coding region of the gene targeted by the sgRNA
and we define activity as the likelihood of disrupting protein function. First, we tested whether
protein domains are predictive of sgRNA activity. We queried genes in our training set for
functional annotations in Ensembl’s REST API30. In total, we obtained functional annotations
from 16 sources, including Pfam, Smart, PROSITE, Gene3D, and MobiDB-lite31–35. We then
tested if the relative abundance of amino acids around the sgRNA cut site was predictive of
sgRNA activity. To determine the optimal amino acid window for generating predictions, we
tested widths of 2, 4, 8, 16, and 32 amino acids around the cut site. We saw that a width of 16
amino acids led to the highest Spearman correlation with an average value of 0.19
(Supplementary Fig 2a). To evaluate the predictive power of evolutionary conservation, we
obtained phyloP scores from the UCSC Genome Browser36,37. We tested combinations of small
and large nucleotide windows around the cut site with the goal of capturing conservation at the
cut site as well as more global features such as functional domains. We averaged conservation
across 2, 4, or 8 nucleotides for the small window and 16, 32, or 64 nucleotides for the large
window. We found that a small width of 4 and a large width of 32 had the best predictive power
with an average Spearman correlation of 0.11 (Supplementary Fig 2b).

Calculating SHAP values from the trained model, we saw that conservation around the cut site
was the most important feature (Fig 1e), suggesting that targeting a conserved region of a gene
improves sgRNA activity. The second most important feature was the proportion of amino acids
around the cut site that are typically found in an alpha-helix (V, I, Y, F, W, L). Michlits et al. noted
the favorability of each of these amino acids individually17, which we have combined into a
single feature. The third most important feature was the relative position of the cut site, where
targeting past 85% of the coding sequence led to a steep decrease in sgRNA activity (Fig 1e),
an effect that has been observed previously5. We also examined protein domains38; five protein
domain sources were among the 20 most important features (Smart, Pfam, PROSITE profiles,
Gene3D, and MobiDB-lite), where sgRNAs targeting within an annotated region were more
active, with the exception of MobiDB-lite, which identifies long intrinsically disordered regions.
Although the relative abundances of seven different amino acids were among the top 20
features, we were unable to identify a biochemical property that explained their importance
(Supplementary Fig 2c). In fact, the strongest correlate was the fraction of adenine in the
codon sequences for an amino acid, potentially indicating that these features were used as a
correction to the Rule Set 3 (Sequence) scores after removing a portion of training data that
targeted exogenously integrated sites. We tested the target model in combination with the
sequence model, which we refer to as Rule Set 3 (Sequence + Target), on held out datasets
(Fig 1b). Target scores improved the Spearman correlation for all test sets relative to sequence
scores alone, with an average improvement of 6.7% (Supplementary Fig 2d).
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To validate Rule Set 3 and gain mechanistic insight into tracrRNA-dependent differences in
spacer activity, we designed a tiling library targeting a subset of essential genes39 and
non-essential genes40. We generated lentiviral vectors that varied in their use of the Hsu, Chen,
or DeWeirdt tracrRNA, and each of the three libraries were screened in triplicate in A375
(melanoma) cells stably expressing Cas9. After three weeks, we collected cells, isolated
genomic DNA, retrieved the library by PCR, and performed Illumina sequencing to determine
the abundance of each sgRNA (Fig 2a, Supplementary Data 2).

To interpret the results, we first calculated log2-fold-changes (LFCs) compared to the initial
library abundance, as determined by sequencing the plasmid DNA (pDNA). As replicates were
well correlated (Pearson r = 0.77 - 0.89), we averaged LFCs within each screen
(Supplementary Fig 3a). Average LFCs across screens were also well correlated, with the
Chen and DeWeirdt tracrRNAs showing the highest correlation (Pearson r = 0.89;
Supplementary Fig 3b). To compare screening performance across tracrRNAs, we calculated
the receiver operating characteristic area under the curve (ROC-AUC) defining sgRNAs
targeting essential genes as positive controls and non-essential genes as negative controls. The
Chen and DeWeirdt tracrRNAs both achieved ROC-AUCs of 0.82, while the Hsu tracrRNA had
an ROC-AUC of 0.76 (Supplementary Fig 3c). The similarity in performance of the Chen and
the DeWeirdt tracrRNAs suggests that the presence or absence of a T in the 5th position has a
larger effect on sgRNA activity than the stem extension. We also examined the distribution of
various target categories to assess if the controls behaved as expected. In all three screens, the
non-targeting controls were tightly distributed and the intergenic controls showed a cutting effect
(Supplementary Fig 3d).

To evaluate the performance of Rule Set 3 as well as other models on this new dataset, we first
removed all spacer sequences that had been seen by any of these models, and then within
each essential gene we calculated the Spearman correlation between the predicted scores and
the observed sgRNA activity. Rule Set 3 (Sequence + Target) significantly outperformed all
other models (t-test p-value < 0.002) when the correct tracrRNA was specified (Fig 2b,
Supplementary Data 3). We saw better performance when using the Chen tracrRNA as an
input to Rule Set 3 when predicting spacers paired with the DeWeirdt tracrRNA, highlighting the
importance of disrupting the Pol III termination signal present in the Hsu tracrRNA. Conversely,
we saw Rule Set 3 performance decrease when we specified the incorrect tracrRNA.
Interestingly, target scores were relatively more helpful than sequence scores for the Chen and
DeWeirdt tracrRNAs, although there was large variation across genes, suggesting that sgRNA
selection heuristics that over-emphasize target features at the expense of sequence features
may lead to poorer performance.

Rule Set 3 (Sequence) had higher Spearman correlations when predicting sgRNAs with the Hsu
tracrRNA as opposed to the Chen or DeWeirdt tracrRNAs. This is likely due to a multitude of
factors, including a greater diversity of datasets that have the Hsu tracrRNA in the training data,
as well as features that are inherently more powerful discriminators for the Hsu tracrRNA. One
example of such a feature is having G in the last nucleotide position of the spacer sequence,
which has a greater effect on sgRNA activity for the Hsu tracrRNA than the Chen tracrRNA ( Fig
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1d). Further, Rule Set 3 (Sequence) predicts more sgRNAs at the extreme ends of the activity
spectrum for the Hsu tracrRNA than the Chen tracrRNA (16% and 9% of sgRNAs with |z-score|
> 1 for the Hsu and Chen tracrRNAs respectively; Fig 2c, Supplementary Data 3), suggesting
the model can identify more discriminating features for the Hsu tracrRNA. We also examined the
performance of Rule Set 3 (Sequence) for CRISPRi using a previously published tiling CRISPRi
dataset41 with sgRNAs targeting the Hart-Moffat essential gene set to assess on-target activity.
We calculated the Spearman correlation of the predicted scores and the measured growth
phenotype and saw Rule Set 3 (Sequence) performs substantially better than other models,
indicating the robustness of Rule Set 3 for predicting other perturbation modalities (Fig 2d),
although we note that robust CRISPRi predictions should also take into account additional
features, such as distance from the transcription start site42–44.

To calibrate our understanding of the model outputs, for each essential gene we divided the
observed LFCs for each sgRNA into quintiles. We then compared the observed quintiles with
predicted activities and saw a direct relationship between the percent of active sgRNAs and
Rule Set 3 (Sequence + Target) scores for all tracrRNAs (Fig 2e, Supplementary Data 3). For
the sgRNAs with the lowest predicted activity, 87.7%, 74.9%, and 82.0%, were observed to be
in the lowest or second lowest activity quintile for the Hsu, Chen, and DeWeirdt tracrRNAs
respectively. Conversely, for the sgRNAs with the highest predicted activity, 77.0%, 69.0%, and
75.5%, were observed to be in the highest or second highest activity quintile for the Hsu, Chen,
and DeWeirdt tracrRNAs, respectively. The large separation between sgRNAs that were
observed to be active versus inactive in the highest and lowest predicted bins suggests that
sgRNAs picked de novo have a high likelihood of generating gene knockouts for all tracrRNA
variants.

To assess how Rule Set 3 (Sequence + Target) impacts library performance in a genome-wide
screening context, we simulated a library by picking 4 sgRNAs randomly, using Rule Set 2, or
Rule Set 3 (Sequence + Target) with the matched tracrRNA. We observed that across all three
screens, as expected, random picking of sgRNAs showed the least separation between average
LFCs of essential and non-essential genes (Fig 2f, Supplementary Data 3). This separation
increased when Rule Set 2 or Rule Set 3 (Sequence + Target) was used to pick sgRNAs. We
quantitated this separation by calculating the strictly standardized mean difference (SSMD)
between the essential and non-essential genes for each model; a higher SSMD indicates
greater separation between the essential and non-essential genes. For all three simulated
screens, Rule Set 3 (Sequence + Target) had the highest SSMD. When comparing across
tracrRNAs, we found that guides screened with the Hsu tracrRNA and picked using Rule Set 3
(Sequence + Target) had the highest overall SSMD, showing that although there are fewer
active sgRNAs with the Hsu tracrRNA (Supplementary Fig 3c), by picking a highly active
subset of sgRNAs, one can achieve high screening performance.

To understand how each tracrRNA affects spacer activity, we subtracted the z-scores for
sgRNAs screened with the Chen tracrRNA from matched sgRNAs screened with the Hsu
tracrRNA from the new tiling library. We then trained a gradient boosting model to predict the
activity difference from sequence features. We saw that T in spacer positions 17-20 led to
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relatively lower activity when paired with the Hsu tracrRNA (Fig 3a, Supplementary Data 4).
On the other hand, G in these same positions led to relatively higher activity for the Hsu
tracrRNA. We also observed that spacer RNAs that were predicted to have highly stable
secondary structures, as indicated by Gibbs free energy, were less likely to be active when
paired with the Hsu tracrRNA.

Arimbasseri and colleagues have shown that a stretch of four or more T’s can terminate Pol III
transcription, with longer stretches of T’s having stronger effects on transcription termination45.
The Hsu tracrRNA has a run of four T’s in positions 2-5, whereas the Chen tracrRNA only has
three T’s in positions 2-4. In this context, the negative impact that 3’-end T’s have on spacers
paired with the Hsu tracrRNA suggests that these spacers are more likely to have a premature
termination signal when paired with the Hsu tracrRNA than with the Chen tracrRNA. In support
of this hypothesis, a recent study from Graf et al. showed diminished Pol III transcription in vitro
for two sgRNAs that each had two T’s at the 3’ end of the spacer46. Furthermore, they showed
that changing the fourth T in the poly-T run of the Hsu tracrRNA to an A restored sgRNA activity.

To investigate whether G’s at the 3’ end of spacer sequences have an attenuating effect on
premature transcription termination, we binned sgRNAs by whether they had a G or a T in the
last four nucleotides of the spacer. We saw that spacers that had a T and no G had significantly
lower activity with the Hsu tracrRNA than spacers that had both a T and G in this region (mean
difference = 0.56, p < 0.01; Fig 3b, Supplementary Data 4). While spacers with a G and no T
were slightly more active than spacers with neither a G nor a T, this difference was smaller
(mean difference = 0.16), suggesting that G’s increase the relative activity of spacers paired with
the Hsu tracrRNA primarily by inhibiting T-dependent transcription termination signals, as
opposed to endowing spacers with some T-independent activity advantage. When we further
discretized these bins by the number of T's and G's in nucleotides 17-20, we saw that the
attenuating behavior of G was sensitive to the number of both T’s and G’s in this region (Fig 3c,
Supplementary Data 4). We recapitulated these observations when taking the difference in
spacer activity between the Hsu and DeWeirdt tracrRNAs (Fig 3d-e, Supplementary Data 4),
demonstrating that the observed effects are independent of the stem loop extension present in
the Chen tracrRNA.

To solidify the connection between 3’ end spacer G/T content and sgRNA expression we
analyzed ECCITE-seq data, which captures sgRNA sequence abundance directly47. In
particular, we analyzed 23 sgRNAs that use the Hsu tracrRNA and were sequenced using both
gDNA and direct sgRNA sequencing. We calculated log-fold changes between gDNA and direct
sequencing and saw that sgRNA levels significantly decreased as the number of Ts at the end
of the spacer increased, controlling for G abundance (linear regression coefficient = -0.53, 95%
CI = [-0.848,-0.210], p-value < 0.01; Fig 3f, Supplementary Data 4). Conversely, G content
tended to enhance transcription, albeit not to a significant level (linear regression coefficient =
0.19; 95% CI = [-0.102, 0.490], p-value = 0.19). Thus, direct sgRNA sequencing supports the
hypothesis that use of the Hsu tracrRNA leads to reduced sgRNA expression as a function of G
and T prevalence at the end of the spacer sequence.
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DISCUSSION

Here we present Rule Set 3, an optimal model for predicting sgRNA activity for multiple
tracrRNA variants. We validate this model on a dataset tiling essential and non-essential genes.
By analyzing the differences in activity across multiple tracrRNA variants, we conclude that early
Pol III termination is the primary determinant of activity differences between the Hsu and
Chen/DeWeirdt tracrRNAs. That a Pol III dependent feature has such a strong impact on sgRNA
activity explains a long-standing observation that in vitro transcribed sgRNAs used especially in
zebrafish systems are poorly predicted by models trained on results from mammalian cell
models48. Similarly, we expect Rule Set 3 to generalize poorly to sgRNAs being transcribed from
a Pol II promoter. As more CRISPR screening data from diverse contexts become available and
as transfer learning approaches from machine learning improve, developing models that
generalize to a multitude of screening contexts represents a promising direction for future
research.
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Vectors
pLX_311-Cas9 (Addgene 96924): SV40 promoter expresses blasticidin resistance; EF1a
promoter expresses SpyoCas9.

All guide vectors are derivatives of the lentiGuide vector, with modifications to the tracrRNA. All
guide vectors contain the EF1a promoter and puromycin resistance.

pRDA_118 (Addgene 133459): U6 promoter expresses customizable SpCas9 guide with the
DeWeirdt (2020) tracrRNA.
pRDA_651: U6 promoter expresses customizable SpCas9 guide with the Hsu (2013) tracrRNA.
pRDA_652: U6 promoter expresses customizable SpCas9 guide with the Chen (2013)
tracrRNA.

Cell lines and culture
A375 cells were obtained from Cancer Cell Line Encyclopedia at the Broad Institute. HEK293Ts
were obtained from ATCC (CRL-3216). All cells regularly tested negative for mycoplasma
contamination and were maintained in the absence of antibiotics except during screens and
lentivirus production, during which media was supplemented with 1% penicillin-streptomycin.
Cells were passaged every 2-4 days to maintain exponential growth and were kept in a
humidity-controlled 37°C incubator with 5.0% CO2. Media conditions and doses of polybrene,
puromycin, and blasticidin were as follows, unless otherwise noted:

A375: RPMI + 10% fetal bovine serum (FBS); 1 μg/mL; 1 μg/mL; 5 μg/mL
HEK293T: DMEM + 10% heat-inactivated FBS; N/A; N/A; N/A

Essential/non-essential tiling library design
201 essential and 198 non-essential genes were randomly chosen from the standard set of
essential40 and non-essential genes39. All possible sgRNA sequences tiling these genes were
designed using CRISPick. The library was filtered to exclude any sgRNAs with BsmBI sites or a
poly-T sequence. The library was not filtered for promiscuous sgRNAs to enable future efforts
focused on off-target analysis using the non-essential genes, but promiscuous guides were
excluded from analysis. We also included 1000 controls targeting intergenic sites in the human
genome and 1000 non-targeting sgRNAs, resulting in a total library size of 84,609 sgRNAs.

Library production
Oligonucleotide pools were synthesized by CustomArray. BsmBI recognition sites were
appended to each sgRNA sequence (represented here as the run of 20 Ns) along with the
appropriate overhang sequences for cloning into the sgRNA expression plasmids. The final
oligonucleotide sequence was thus:
AGGCACTTGCTCGTACGACGCGTCTCACACCGNNNNNNNNNNNNNNNNNNNNGTTTCGAG
ACGTTAAGGTGCCGGGCCCACAT.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.27.497780doi: bioRxiv preprint 

https://paperpile.com/c/VRzuCj/WVvb
https://paperpile.com/c/VRzuCj/ljBm
https://doi.org/10.1101/2022.06.27.497780
http://creativecommons.org/licenses/by-nc-nd/4.0/


Primers AGGCACTTGCTCGTACGACG; ATGTGGGCCCGGCACCTTAA were used to amplify
the pool using 25 μL 2x NEBnext PCR master mix (New England Biolabs), 2 μL of
oligonucleotide pool (~40 ng), 5 μL of primer mix at a final concentration of 0.5 μM, and 18 μL
water. PCR cycling conditions: (1) 98°C for 30 seconds; (2) 53°C for 30 seconds; (3) 72°C for 30
seconds; 24 cycles.

The resulting amplicons were PCR-purified (Qiagen) and cloned into the library vector via
Golden Gate cloning with Esp3I (Fisher Scientific) and T7 ligase (Epizyme); the library vector
was pre-digested with BsmBI (New England Biolabs). The ligation product was isopropanol
precipitated and electroporated into Stbl4 electrocompetent cells (Invitrogen) and grown at 30°C
for 16 h on agar with 100 μg/mL carbenicillin. Colonies were scraped and plasmid DNA (pDNA)
was prepared (HiSpeed Plasmid Maxi, Qiagen). To confirm library representation and
distribution, the pDNA was sequenced.

Lentivirus production
For pooled library production, 24 h before transfection, 18 × 106 HEK293T cells were seeded in
a 175 cm2 tissue culture flask in 25 mL of DMEM + 10% heat-inactivated FBS. Transfection was
performed using TransIT-LT1 (Mirus) transfection reagent according to the manufacturer’s
protocol. Briefly, one solution of Opti-MEM (Corning, 6 mL) and LT1 (305 μL) was combined with
a DNA mixture of the packaging plasmid pCMV_VSVG (Addgene 8454, 5 μg), psPAX2
(Addgene 12260, 50 μg), and 40 μg of the transfer vector (e.g. the library pool). The solutions
were incubated at room temperature for 20–30 min, then the transfection mixture was added
dropwise to the surface of the HEK293T cells. Flasks were transferred to a 37°C incubator for
6–8 h, after which the media was removed and replaced with DMEM + 10% FBS media
supplemented with 1% BSA. Virus was harvested 36 h after this media change.

Derivation of stable cell lines
In order to establish the Cas9 expressing cell line for screens with the essential/non-essential
tiling library, A375 cells were transduced with pLX_311-Cas9 and successfully transduced cells
were selected with blasticidin for a minimum of 2 weeks. Cells were removed from blasticidin for
at least one passage before transduction with the library.

Pooled screens
For pooled screens, cells were transduced in three biological replicates with the lentiviral library.
Transductions were performed at a low multiplicity of infection, using enough cells to achieve a
representation of at least 500 transduced cells per sgRNA. We plated cells in
polybrene-containing media with 3 x 106 cells per well in a 12-well plate. Plates were centrifuged
for 2 h at 931 x g, after which 2 mL of media was added to each well. Plates were then
transferred to an incubator for 12-18 h, after which cells were pooled into flasks. Puromycin was
added 2 days post-transduction and maintained for 5 days to ensure complete selection for
transduced cells. Upon puromycin removal, cells were passaged every 2-3 days for an
additional 2 weeks at a minimum of 500x representation, at which point, 21 days
post-transduction, cells were collected for subsequent processing. Cell counts were taken at
each passage to monitor growth.
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Genomic DNA isolation and sequencing
Genomic DNA (gDNA) was isolated using the KingFisher Flex Purification System with the
Mag-Bind® Blood & Tissue DNA HDQ Kit (Omega Bio-Tek). The gDNA concentrations were
quantitated by Qubit.

For PCR amplification, gDNA was divided into 100 μL reactions such that each well had at most
10 μg of gDNA. Plasmid DNA (pDNA) was also included at a maximum of 100 pg per well. Per
96-well plate, a master mix consisted of 150 μL DNA Polymerase (Titanium Taq; Takara), 1 mL
of 10x buffer, 800 μL of dNTPs (Takara), 50 μL of P5 stagger primer mix (stock at 100 μM
concentration), 500 μL of DMSO (if used), and water to bring the final volume to 4 mL. Each well
consisted of 50 μL gDNA plus water, 40 μL PCR master mix, and 10 μL of a uniquely barcoded
P7 primer (stock at 5 μM concentration). PCR cycling conditions were as follows: (1) 95°C for 1
minute; (2) 94°C for 30 seconds; (3) 52.5°C for 30 seconds; (4) 72°C for 30 seconds; (5) go to
(2), x 27; (6) 72°C for 10 minutes. PCR primers were synthesized at Integrated DNA
Technologies (IDT). PCR products were purified with Agencourt AMPure XP SPRI beads
according to manufacturer’s instructions (Beckman Coulter, A63880), using a 1:1 ratio of beads
to PCR product. Samples were sequenced on a HiSeq2500 HighOutput (Illumina) with a 5%
spike-in of PhiX.

QUANTIFICATION AND STATISTICAL ANALYSIS

On-target modeling
All read count data was transformed to log-fold changes using the poola package (version 0.0.7;
https://github.com/gpp-rnd/poola) in Python (version 3.8). For each screen, we selected sgRNAs
that were expected to have a phenotype (e.g. sgRNAs targeting essential genes in a viability
screen). We filtered any sgRNA that had more than one perfect match in the coding genome. All
activities were transformed using the yeo-johnson transformation from scikit-learn (version
0.24.2) and z-scored. Finally, we changed the sign of all activity measurements so the most
active sgRNAs had the most positive activity scores. All processed training and testing data can
be found on GitHub: https://github.com/gpp-rnd/rs_dev/tree/main/data/processed.

To build Rule Set 3 (Sequence) we used 46,526 unique context sequences from seven
datasets. For each sgRNA we encoded the 30mer context sequence using all the features from
Rule Set 2 in addition to features to indicate the longest run of each nucleotide in the sgRNA,
the melting temperature of the sgRNA:DNA heteroduplex26, and the minimum free energy of the
folded spacer sequence27. We also incorporated categorical variables to indicate which
tracrRNA was associated with each spacer, allowing the model to learn features that interact
with the tracrRNA. sgRNA features were extracted using the custom Python package sglearn
(version 1.2.3; https://github.com/gpp-rnd/sglearn). This package relies on biopython to extract
biochemical information about sgRNA sequences49.

To fit an optimal gradient boosting model from sequence features, we used the gradient
boosting framework from LightGBM (version 3.2.0)30 and tuned hyperparameters using Tree
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Structured Parzen Estimators from Optuna (version 2.7.0)50. We tuned the number of leaves
(between 8 and 256) and minimum number of samples in a child (between 8 and 256) over 50
hyperparameter iterations. We fixed the learning rate to be 0.01 and used 5,000 boosted trees.
All other parameters were kept default. To evaluate each set of hyperparameters we split our
dataset into five folds using the StratifiedGroupKFold splitter from scikit-learn. We split the data
such that all sgRNAs targeting a gene were either in the train set or the test set for each fold.
We also tried to represent each dataset source (e.g. Doench 2016 sgRNAs) proportionally in all
of the folds, such that each test set had some sgRNAs from each source. We found that a
model with a maximum of 111 leaves per base estimator and a minimum of 199 samples per
child performed best. We used these hyperparameters to train our final model.

To build the target model, we used Ensembl’s REST API to query the amino acid sequence
around the cut site of each sgRNA (accessed August 9, 2021). We used biopython to get
biochemical properties of these amino acid sequences (version 1.79). Ensembl’s REST API was
also used to obtain protein domain features. We used the UCSC genome browser’s REST API
to get PhyloP conservation scores for each sgRNA (accessed August 9, 2021) 36,51. All of these
features can be generated in Python using the rs3 package (https://github.com/gpp-rnd/rs3). We
tuned hyperparameters for the target model using the same pipeline as Rule Set 3 (Sequence).
We found that a model with a maximum of 8 leaves per base estimator and a minimum of 137
samples per child performed best. We used these hyperparameters to train our final model.

To rerun the modeling pipeline, reference the github repository here:
https://github.com/gpp-rnd/rs_dev. CRISPick has been updated to incorporate Rule Set 3
(Sequence + Target) scores (broad.io/crispick). Feature importances were calculated using the
shap package in Python (version 0.39)28.

Screen analysis
Guide sequences were extracted from sequencing reads by running the PoolQ tool with the
search prefix “CACCG” (https://portals.broadinstitute.org/gpp/public/software/poolq). Reads
were counted by alignment to a reference file of all possible guide RNAs present in the library.
Reads were then assigned to a condition (e.g. a well on the PCR plate) on the basis of the 8 nt
index included in the P7 primer. Following deconvolution, the resulting matrix of read counts
was first normalized to reads per million within each condition by the following formula: read per
guide RNA / total reads per condition x 1e6. Reads per million was then log2-transformed by
first adding one to all values, which is necessary in order to take the log of sgRNAs with zero
reads.

Prior to further analysis, we filtered out 37 sgRNAs for which the log-normalized reads per
million of the pDNA was > 4 standard deviations from the mean in at least one of the screens.
We then calculated the log2-fold-change between conditions. All reported LFC values for
dropout screens are relative to pDNA. We assessed the correlation between log2-fold-change
values of replicates.
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We also filtered out sgRNAs targeting essential and non-essential genes that were included in
the training set, which constituted ~6% of all sgRNAs targeting essential genes and ~0.6% of all
sgRNAs targeting non-essential genes.

SSMD calculation
The strictly standardized mean difference (SSMD) between sgRNAs targetting essential and
non-essential genes was calculated using the following formula: ( ne - e)/ ne

2 + e
2), whereµ µ (σ σ

ne stands for non-essential and e stands for essential.

Data visualization
Figures were created with Python3 and GraphPad Prism (version 9). Schematics were created
with BioRender.com.

DATA AVAILABILITY

The read counts for all screening data and subsequent analyses are provided as
Supplementary Data. Fastq files are deposited with the Sequence Read Archive
(PRJNA832308).

STATISTICAL ANALYSIS

All z-scores, Pearson and Spearman correlation coefficients were calculated in Python.

CODE AVAILABILITY

All custom code used for analysis and example notebooks are available on GitHub:
https://github.com/broadinstitute/rs3_manuscript

Code for developing the on-target model can be found on GitHub:
https://github.com/gpp-rnd/rs_dev

A python package for scoring sgRNA sequences with Rule Set 3 can be found on GitHub:
https://github.com/gpp-rnd/rs3

FIGURE LEGENDS

Figure 1: Development of Rule Set 3 (Sequence + Target). a) Fraction overlap between
sgRNAs used for training Rule Set 3 and those used for training other on-target models. Edge
width and color are proportional to the fraction overlap. Node size is proportional to the number
of sgRNAs. b) Schematic depicting Rule Set 3 (Sequence + Target) development. Nucleotide
differences in tracrRNA sequences are colored. Models were trained only on the train set, as
indicated by blue outlines. Italics indicate features for which information was obtained from
existing databases. c) SHAP feature importance for the 20 most important features in Rule Set
3 (Sequence). Each point represents one sgRNA from the training set. Descriptions of model
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features can be found in Supplementary Table 2. d) Histograms of SHAP values for sgRNAs,
colored by guanine status in the 20th sgRNA position and split by tracrRNA identity. e) SHAP
feature importance for the 20 most important features in Rule Set 3 (Target). Each point
represents one sgRNA from the training set. Descriptions of model features can be found in
Supplementary Table 2.

Figure 2: Rule Set 3 (Sequence + Target) validation. a) Schematic depicting
essential/non-essential tiling library construction and screening approach. b) Spearman
correlations between observed and predicted activity for all essential genes (n=201) in each of
the essential/non-essential screens across previous models and Rule Set 3 models. Rule Set 3
models using the same tracrRNA feature as the screen are highlighted in pink. Whiskers show
the 5th and 95th percentiles. c) Percent of all sgRNAs targeting essential and non-essential
genes broken down by Rule Set 3 (Sequence + Target) bins for the Hsu and Chen tracrRNAs.
d) Spearman correlations between predicted scores and the growth phenotype of a tiling
CRISPRi dataset across all sequence models. e) Percent of quintiles for sgRNAs from essential
genes with at least 20 guides (n=199) binned by Rule Set 3 (Sequence + Target) scores for
each screen. Only genes with more than 20 guides are included. f) Average log-fold change of 4
sgRNAs per gene for essential genes (n=201) and non-essential genes (n=198) calculated by
picking sgRNAs randomly, using Rule Set 2 or using Rule Set 3 (Sequence + Target) for the
tiling library screened with Hsu, Chen, and DeWeirdt tracrRNAs. Rule Set 3 (Sequence +
Target) scores used are with the matched tracrRNA. For the screen performed with the
DeWeirdt tracrRNA, we used on-target scores with the Chen tracrRNA. Whiskers show 10th and
90th percentile. Heatmap shows the corresponding SSMD scores.

Figure 3: Analysis of differences in tracrRNA activity. a) SHAP feature importance for the 10
most important features for predicting the difference between sgRNAs screened with the Hsu
versus Chen tracrRNA. Each point represents one sgRNA from the training set. Descriptions of
model features can be found in Supplementary Table 2. b) Box plot of the difference in z-score
log-fold changes between sgRNAs screened with the Hsu versus Chen tracrRNA as a function
of G/T presence in positions 17-20 of each spacer sequence. The ‘~’ symbol indicates the
nucleotide is not present in this range. c) Box plot of the difference in z-score log-fold changes
between sgRNAs screened with the Hsu versus Chen tracrRNA as a function of G/T abundance
in positions 17-20 of each spacer sequence. d) Same as (b) but for the Hsu and DeWeirdt
tracrRNAs. e) Same as (c) but for the Hsu and DeWeirdt tracrRNAs. f) Data from Mimitou et al.
Comparison of sgRNA relative abundance when read out via gDNA or direct sequencing.
Spacers are binned by G/T abundance in positions 17-20.

Supplementary Figure 1: Development of Rule Set 3 (Sequence). a) Spearman correlations
between observed and predicted activity for the collated datasets across existing models. b)
Pearson correlations on held out folds between the predicted and observed activity differences
between sgRNAs in the Behan and Aguirre datasets (CV = cross validation). c) Spearman
correlations between observed and predicted activity for six held out datasets across previous
models and Rule Set 3 (Sequence). d) Comparison of Rule Set 2 and Rule Set 3 (Sequence) on
held out test sgRNAs with Hsu tracrRNA (n=25,268).
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Supplementary Figure 2: Development of Rule Set 3 (Target). a) Spearman correlations
between amino acid window widths around the cut site and cross-validation held out set sgRNA
activity. For each fold all sgRNAs targeting a gene were assigned to either the training or testing
set and not both. Due to the small number of genes in the Doench 2014 datasets, some folds do
not have test sgRNAs from these datasets. b) Spearman correlations between conservation
widths around the cut site and cross-validation held out set sgRNA activity. c) Pearson
correlations between amino acid biochemical properties and sgRNA activity. d) Spearman
correlations between observed and predicted activity for four held out datasets across previous
models and Rule Set 3 models.

Supplementary Figure 3: Essential/non-essential tiling library screened with tracrRNA
variants. a) Replicate correlation (Pearson’s r) for the essential/non-essential library screened
with the three tracrRNA variants in triplicate. b) Correlation (Pearson’s r) between the average
log-fold changes for the essential/non-essential library across the three screens. c) ROC plots
for the essential/non-essential screen performed with each tracrRNA variant, using sgRNAs
targeting essential genes as positive controls and sgRNAs targeting non-essential genes as
negative controls. AUC is reported in the graph legend. x=y line is shown. d) Log-fold changes
for the different spacer categories in each of the three essential/non-essential screens.
Whiskers show 10th and 90th percentile. Number of spacers in each category are as follows:
Non-targeting control: 998, Intergenic control: 1000, Essential: 48730, Non-essential: 33621.

SUPPLEMENTAL DATA

Supplementary Table 1: Compilation of datasets used for training and testing Rule Set 3.

Supplementary Table 2: Description of features used in Rule Set 3.

Supplementary Data 1: Training and testing data for Rule Set 3 (Sequence). Associated with
Fig 1.

Supplementary Data 2: Essential/non-essential read counts, library annotation. Associated
with Fig 2.

Supplementary Data 3: On target model Spearman correlations, Rule Set 3 scores for tracrRNA
variants, LFCs for Rule Set 2 and Rule Set 3 guide picking, SSMD scores. Associated with Fig
2.

Supplementary Data 4: z-score log-fold changes and G/T spacer abundances. Associated with
Fig 3.
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Supplementary Figure 1: Development of 
Rule Set 3 (Sequence). a) Spearman 
correlations between observed and predicted 
activity for the collated datasets across existing 
models. b) Pearson correlations on held out 
folds between the predicted and observed 
activity differences between sgRNAs in the 
Behan and Aguirre datasets (CV = cross 
validation). c) Spearman correlations between 
observed and predicted activity for six held out 
datasets across previous models and Rule Set 
3 (Sequence). d) Comparison of Rule Set 2 and 
Rule Set 3 (Sequence) on held out test sgRNAs 
with Hsu tracrRNA (n=25,268).
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a b

c d

Supplementary Figure 2: Development of Rule Set 3 (Target). a) Spearman correlations between amino acid window widths around the cut 
site and cross-validation held out set sgRNA activity. For each fold all sgRNAs targeting a gene were assigned to either the training or testing 
set and not both. Due to the small number of genes in the Doench 2014 datasets, some folds do not have test sgRNAs from these datasets. b) 
Spearman correlations between conservation widths around the cut site and cross-validation held out set sgRNA activity. c) Pearson correla-
tions between amino acid biochemical properties and sgRNA activity. d) Spearman correlations between observed and predicted activity for four 
held out datasets across previous models and Rule Set 3 models. 
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Supplementary Figure 3: Essential/non-essential tiling library screened with tracrRNA variants. a) Replicate correlation (Pearson’s r) for 
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control: 998, Intergenic control: 1000, Essential: 48730, Non-essential: 33621. 
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