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Abstract

Mitochondria are highly dynamic organelles, containing vital populations of mitochondrial DNA
(mtDNA) distributed throughout the cell. Mitochondria form diverse physical structures in differ-
ent cells, from cell-wide reticulated networks to fragmented individual organelles. These physical
structures are known to influence the genetic makeup of mtDNA populations between cell divisions,
but their influence on the inheritance of mtDNA at divisions remains less understood. Here, we use
statistical and computational models of mtDNA content inside and outside the reticulated network
to quantify how mitochondrial network structure can control the variances of inherited mtDNA
copy number and mutant load. We assess the use of moment-based approximations to describe
heteroplasmy variance and identify several cases where such an approach has shortcomings. We
show that biased inclusion of one mtDNA type in the network can substantially increase hetero-
plasmy variance (acting as a genetic bottleneck), and controlled distribution of network mass and
mtDNA through the cell can conversely reduce heteroplasmy variance below a binomial inheritance
picture. Network structure also allows the generation of heteroplasmy variance while controlling
copy number inheritance to sub-binomial levels, reconciling several observations from the experi-
mental literature. Overall, different network structures and mtDNA arrangements within them can
control the variances of key variables to suit a palette of different inheritance priorities.

Introduction

Mitochondria are vital bioenergetic organelles responsible for the majority of cellular energy production
in eukaryotes [1, 2]. Due to their evolutionary history, mitochondria have retained small genomes [3-5]
that encode genes central to their energy production [6, 7]. MtDNA in several taxa, including many
animals, is subject to a high mutation rate relative to the nucleus, and mutations in mtDNA cause
cellular dysfunction, and are involved in a range of human diseases [8, 9]. As mtDNA is predominantly
uniparentally transmitted [10], the question arises of how eukaryotes avoid the gradual accumulation
of mtDNA mutations, known as Muller’s ratchet [11].

The proportion of mutant mtDNA in a cell is usually referred to as heteroplasmy, and diseases
are often manifest when heteroplasmy exceeds a certain level [12]. Eukaryotes may deploy a combina-
tion of strategies to generate cell-to-cell variability in inherited heteroplasmy [13-16], thus potentially
generating offspring with heteroplasmies below the threshold [9, 17, 18]. For instance, in mammalian
development, a developing female produces a set of oocytes for the next generation. Through an
effective ‘genetic bottleneck’, oocytes with different heteroplasmies are generated [15]. This range
of heteroplasmies means that some cells may inherit a lower heteroplasmy than the mother’s aver-
age. Across species, in concert with selection [19-24], this generation of variation allows shifts in
heteroplasmy between generations [25, 26].

The mtDNA bottleneck has been suggested to incorporate a number of different mechanisms [27].
These include mtDNA depletion [28-30], and subpopulation replication [29, 31] in mammals, with
a potential role for gene conversion in several other taxa [16], all coupled with random effects from
partitioning of mtDNA at cell divisions. This partitioning is a focus of this report. Generally, when
a cell divides, its mtDNA population will be partitioned between its daughter cells. Any deviation
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from precise deterministic partitioning (exactly half the mtDNA molecules of every genetic type go
into each daughter) will likely lead to the daughter cells inheriting different heteroplasmy levels.

Models for this segregation have typically regarded the cellular mtDNA population as well-mixed,
but the mitochondria containing the population have varied morphologies and dynamics in different
cell types. Mitochondria can form cell-wide networks in some cell types, undergoing fission and fusion
[32-36]. These dynamic structures, together with mtDNA turnover, are linked to quality control and
genetic dynamics of mtDNA populations [24, 37, 38]. In both somatic tissues [39-42], or the germline
[16, 23], the balance between fusion, fission and selective degradation of individual dysfunctional
mitochondria has emerged as an important influence on mtDNA populations [39, 41, 43-45].

The important effects of heterogeneous spatial distributions on noise in other cell biological contexts
are being increasingly recognised [46]. The central importance of mitochondria in cell metabolism and
bioenergetics mean that variability in their physical and genetic inheritance can influence many other,
also noisy, downstream processes [47, 48]. Quantitative progress modelling the spatial influence of
these mitochondrial dynamics on mtDNA quality control is advancing [39-42, 45]. In particular,
the role of network structure in generating cell-to-cell mtDNA variability via modulating mtDNA
turnover has been addressed with recent stochastic modelling [16, 49]. These studies report that
cell-to-cell mtDNA variability increases with the proportion of fragmented mitochondria in the cell,
the rate of turnover, and the length of the cell cycle. Moreover, turnover itself may increase due to
a highly fragmented network, with a highly fused network effectively masking mitochondria marked
for degradation. However, the influence of mitochondrial network structure on the inheritance of
mtDNA during cell divisions remains less studied. Although the mitochondrial network may fragment
prior to fragmentation, allowing individual mitochondria to diffuse, or actively mix [50], the network
structure prior to division may exert substantial influence on the distribution of mtDNAs in the
parent cell [32], ultimately reflecting in daughter cell statistics. Partitioning at cell divisions even
in the absence of spatial substructure can constitute an important source of cell-to-cell variability
[51, 52]. In yeast, mtDNA inheritance occurs with finer-than-random (binomial) control over the
number of mitochondrial nucleoids [53], suggesting that physical mechanisms must exist to exert this
control. As mtDNA resides in nucleoids that are physically distributed — potentially heterogeneously
— throughout the mitochondria of the cell [54], we set out to explore how different physical structures
of mitochondria may shape mtDNA inheritance.

Results

Network inclusion with genetic bias increases cell-to-cell variability

To build intuition about the influence of network structure on mtDNA inheritance, we first considered
a simple computational model for the spatial distribution of mitochondria and mtDNA within a cell
(see Methods). This model consists of a random network structure, with a tunably heterogeneous
distribution, simulated within a circular cell (the dimensionality of the model does not affect the
statistical considerations of partitioning) (see Fig. 1). The model network structure is not intended
to perfectly match the details of real mitochondrial networks, but rather as a general framework to
understand spatial substructure in the cell. The mother cell has Ng mtDNAs, a proportion A of which
are mutants (h is heteroplasmy).

To reflect the fact that different mtDNA types may have different propensities to be included in the
reticulated network [43], we use p and ¢ to describe the proportions of wildtype and mutant mtDNAs
respectively that are contained in the network; the remainder are in fragments in the cytoplasm (Fig.
1). Hence, p > ¢ means that wildtype mtDNAs are more likely to be contained in the network and
mutant mtDNAs are less likely to be included; p = ¢ means that both types are equally likely to
be in a networked state. Network placement can follow various rules (described below) and mtDNA
positions may be subsequently perturbed, but we begin with random placement in the network and no
subsequent motion prior to division. We then divide the model cell and explore the statistics of mtDNA
copy number and heteroplasmy in the daughter cells. We first consider symmetric partitioning, so that
the initial cell is physically halved to produce two daughters; we relax this assumption and consider
asymmetric partitioning later.
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Figure 1: Snapshots of computationally generated networks and mtDNA arrangements
with tunable physical and genetic parameters. Networks were generated by a elongation and
branching process initialized from a number of seed points (s) uniformly distributed on the perimeter
of the cell. Small seed numbers s (A-C) usually resulted in heterogeneous network structures, with
marked differences in network density across the cell; for increasing seed numbers (D-F), networks were
more uniformly distributed throughout the cell. Wild type (WT; red) and mutant type (MT; blue)
mtDNA molecules were distributed into networks according to the proportions p (WT) and ¢ (MT).
In different model variants, diffusion with scale parameter A was applied to mtDNAs prior to division
to model network fragmentation and subsequent motion (G-H; original network shown for reference),
and mtDNAs were placed with a repulsive interaction inducing greater-than-random spacing (I).

To explore the influence of mtDNA network placement in the parent cell on the mtDNA statistics
of the daughter, we varied network inclusion probabilities p and ¢ (Fig. 1A-C) and network hetero-
geneities (Fig. 1C-E) and observed copy number and heteroplasmy variance in daughter cells after
division (Fig. 2). We found a clear pattern that V(h) takes minimum values when p = ¢, that is when
network inclusion probabilities are equal for mutant and wildtype mtDNA. When the two differ, V'(h)
increases, with highest values occurring when the majority mtDNA type is exclusively contained in
the network and the minority type exclusively in the cytoplasm.

This result may seem counterintuitive at first glance: when the network is highly heterogeneous,
it might be expected that including all mtDNAs there would maximise variance. This is true for
copy number variance (Fig. 2), but not for heteroplasmy variance, because including both types
equally induces correlation in their inheritance and lowers variance. The maximum V'(h) is achieved
by embedding the majority type in the high-variance network and having the minority type in the
uncorrelated cytoplasm.

Statistical models of mtDINA inheritance capture the variance induced by cell di-
visions

To further explore this behaviour, we constructed a statistical model for this inheritance process (see
Methods). Briefly, we consider four state variables describing the mtDNA population of a daughter cell
after a mother divides: W, W, M,,, M., for the wildtype (W) and mutant (M) mtDNAs contained
in a reticulated mitochondrial network (;,) or in fragmented mitochondrial elements in the cytoplasm
(¢). An additional variable U describes the proportion of network mass inherited by the daughter cell.
Given a particular value u for this proportion, the mtDNA profile inherited by the daughter follows
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~ Bin (wy,, u)
~ Bin (w,, 1/2)
~ Bin (my,, u)
~ Bin (me, 1/2)

(1)

where w,, = p(1—h) Ny, w. = (1—p)(1—h)Ny, mp = ghNog, m. = (1—q)hNy. We model the proportion
u of network mass inherited by a daughter with a beta-distributed variable U, with variance V(U)
allowed to vary to describe different partitioning regimes of network mass. To compare to simulations,
we fit the beta distribution parameters to match the simulated inherited network variance. As W,
and M, are then drawn from the compound distribution that is binomial with a beta-distributed
probability, they follow beta-binomial distributions. We are interested in the inherited copy number
N =W, + W, + M, + M. and heteroplasmy h = (M,, + M.)/N.

We can numerically extract moments for the system through summing over state variables and
calculating expectations, for example,

S — o M, + M,
B = S PV S PO [ @)UY POV mmwv( n t M )
WCZ:O MCZ:O / an—o anzo Wn + We+ My + M.

(2)
Figs. 2 and 3 demonstrates good correspondence between simulations and statistics using Eq. 2 for
copy number and heteroplasmy variance (V(X) = E(X?) — E(X)?). However, as these large sums
do not admit much intuitive analysis, we sought other approaches to learn the forms of pertinent
statistics of the inherited mtDNA population.

The mean and variance of inherited number NN are readily derived using the laws of iterated expec-
tation and total variance to account for the compound distribution of networked mtDNA (Appendix):

V) = 22 4 kNo(kNo ~ DV (V) (3)
where k = p(1 — h) + gh denotes the proportion of total mtDNA placed in the network. Hence
V(N) experiences an extra, V (U)-dependent term in addition to the expected Ny/4 result for a purely
binomial distribution. This term is quadratic in the proportion x of mtDNA in the network. This
expression well captures the results from simulation and Eq. 2 (Fig. 2).

For heteroplasmy variance, as the ratio of random variables, we cannot extract an exact solution
and must instead use a Taylor-expanded approximation (see Methods) to obtain

V/(h) ~ Vi (h) = &+wm@@wm-W—W+m—wmﬁ (4)

Eq. 4 allows some informative analysis. First, we qualitatively see that an additional, V(U)-
dependent term is introduced compared to the binomial case (which gives 1/Np), illustrating the
influence of network heterogeneity on heteroplasmy variance. For large Ny, this network term is
dominated by the first term in brackets in Eq. 4, which is quadratic in (p — ¢), the difference in
inclusion probabilities for the different types of mtDNA. For p # ¢, the network is genetically biased
towards one of the types, to which there is associated an increase in V'(h). For p = ¢, the network is
unbiased, with associated prediction V{(h) = N%) — %EU) — that is, a small negative change from the
binomial case. However, this negative shift is in fact an artefact of the imperfect Taylor approximation
we use (see below and Appendix), and the p = ¢ case in fact resembles the binomial case with a slight
increase (captured by a higher-order approximation, see Appendix) at higher p (Fig. 2).

The more useful prediction under this approximate model concerns the maximum normalised
heteroplasmy variance achievable — when the majority mtDNA type is completely contained in the
network and the minority type completely excluded from it — is given for example by settingp =1,¢ =
0 for A < 0.5:
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Vi(h) = 5 +4V(O) (b(1 = B) = 1/ No), (5)

with a V(U)-dependent term scaled by h(1 — h) (in most cases the h/Ny term will be negligible),

illustrating that genetic bias in network inclusion can substantially increase heteroplasmy variance in
proportion to inherited network variability.

This picture does not completely capture the simulation and exact results, where we see a small
increase in (normalized) heteroplasmy variance for non-biased increases in inclusion probabilities,
instead of a decrease. This reflects the approximate nature of the Taylor expansion process used
to derive Eq. 4; in the Appendix we show that a second-order expansion provides a compensatory
diagonal term (Fig. 8), but in general we will need further terms in the expansion to perfectly match
the true behaviour. In the Appendix we further show that all higher-order moments and covariances of
the mtDNA copy numbers are well captured by theory; it is their combination into an estimate for the
moments of a ratio (heteroplasmy) that is challenged here. We will observe below that more instances
of this system also challenge this Taylor expansion approach, which has been employed previously
[27, 55, 56] — generally, accounting for physical structure induces correlations between mtDNA types
that are hard to capture with the Taylor expression (see Discussion).

Asymmetric cell divisions induce more mtDINA variability

The above model has assumed that the cell divides symmetrically, with half the cell volume inherited
by each daughter. To generalise to asymmetric cell divisions, we next asked how the proportion of
inherited cell volume p. (p. = 1/2 in the symmetric case) influences the mtDNA statistics in daughters.
Clearly, the expected copy number will differ if the inherited proportion differs. The expressions above
generalise to

V(N) = N()pc(l - pc) + HNO(KNO - 1)V(U) (6)
i - Sl Vzﬁ? (h(L— )P — ) — (ph + a(1 — b))/ No) (@)

with the result that asymmetric cell divisions can generate large increases in cell-to-cell variability
for the smaller daughters (Fig. 3). Small number effects are at play here, with a smaller sampling
of the initial cell inevitably leading to greater relative variance. A decrease in p. from the symmetric
case p. = 1/2 to p. = 0.1 results in a near order-of-magnitude increase in the maximum normalised
heteroplasmy variance. Asymmetric divisions also further challenge the Taylor expansion approach,
with a systematic underestimation of heteroplasmy variance apparent using this approximation (copy
number variance remains well captured).

MtDNA self-avoidance tightens mtDINA copy number control and can reduce het-
eroplasmy variance

We next asked whether the variances of copy number V(N) and heteroplasmy V' (h) could be reduced
below their ‘null’ binomial value through cellular control. To this end, we modelled self-avoidance
of mtDNA molecules within the network (Fig. 1I), reasoning that such controlled arrangement may
allow a more even spread of mtDNAs within the network, and correspondingly lower variability. To
accomplish this self-avoidance within our model, we enforce a ‘halo’ of exclusion around each mtDNA
placed within the network, so that another networked mtDNA cannot be placed within a distance [
of an existing one.

Copy number variance V' (N) is decreased substantially by self-avoidance (Fig. 4). In the case of
a homogenous network and high proportions of mtDNA network inclusion, this decrease can readily
extend below the binomial null model, allowing more faithful than binomial inheritance, as reported
in yeast [53]. This sub-binomial inheritance requires both an even network distribution and mtDNA
self-avoidance, and hence two levels of active cellular control. Under these circumstances, mtDNA
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Figure 2: Genetic bias and physical heterogeneity in mitochondrial networks induce cell-
to-cell mtDINA variability in symmetric cell divisions. Normalised heteroplasmy variance
V'(h) (left column) and copy number variance V(N) (right column) for mtDNA randomly distributed
in networks. A: simulations for h = 0.1; B: simulations for h = 0.5; C: sum over state variables for
h = 0.5; D: first-order Taylor expansion for h = 0.5. The three columns to a facet give decreasing
network heterogeneity, expressed via different seed numbers, 4, 16 and 64 (more seed points give a more
homogeneous network). In each panel, variances are given for different values of wild and mutant type
network inclusion parameters p (horizontal axis) and ¢ (vertical axis). White baseline reflects the null
case from the analytic sum without any network inclusion.
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Figure 3: Asymmetric cell divisions can induce large cell-to-cell variability in mtDNA
quality. Normalised heteroplasmy variance V/(h) (left column) and copy number variance V(N)
(right column) for mtDNA randomly distributed in networks. The daughter of interest inherits 10%
of the parent cytoplasm. A: simulations for A = 0.1; B: simulations for A = 0.5; C: sum over state
variables; D: first-order Taylor expansion). The three columns to a facet give decreasing network
heterogeneity, expressed via different seed numbers, 4,16 and 64 (more seed points give a more ho-
mogeneous network). In each panel, variances are given for different values of wild and mutant type
network inclusion parameters p (horizontal axis) and ¢ (vertical axis). White baseline reflects the null
case from the analytic sum without any network inclusion.
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Figure 4: Repulsion between mtDNAs in the network can increase and decrease cell-
to-cell variability from cell divisions. Simulated normalised heteroplasmy variance V'(h) (left
column) and copy number variance V(N) (right column) for mtDNAs with mutual repulsion within
the network, under symmetric cell divisions. Rows show different values of initial mutant proportion,
with A = 0.1 in the top row and h = 0.5 in the bottom row. The three columns to a facet give
decreasing network heterogeneity, expressed via different seed numbers, 4,16 and 64 (more seed points
give a more homogeneous network). In each panel, variances are given for different values of wild and
mutant type network inclusion parameters p (horizontal axis) and ¢ (vertical axis). White baseline
reflects the null case from the analytic sum without any network inclusion.

molecules are evenly spread throughout the cell volume, and their inheritance approaches a determin-
istic proportion of the inherited volume fraction p..

The effect of mtDNA self-avoidance on heteroplasmy variance is more complicated. For highly
heterogeneous network distributions, heteroplasmy variance follows the same qualitative pattern as for
the non-repulsive case, with higher variances achieved when network inclusion discriminates wildtype
and mutant types. However, for homogeneous network distributions, the opposite case becomes true.
Here, network inclusion discrimination lowers the heteroplasmy variance induced by cell divisions.
The heteroplasmy variance induced by cell divisions can even be controlled to sub-binomial levels in
the case of self-avoidance, strong discrimination, and a homogeneous network distribution.

Notably, it is possible for the cell to control copy number variance below the binomial limit while
also generating heteroplasmy variance, without biased network inclusion (for example, in the n =
64, h = 0.5 cases in Fig. 4), reflecting a potentially beneficial case for implementing a genetic bottleneck
without challenging overall mtDNA levels.

Analytic progress is more challenging for this case, but an imperfect statistical model (Fig. 7; see
Methods) can begin to capture some of the qualitative behaviour. The model correctly predicts the
direction of change of copy number variance for various network structures, and the capacity to control
variance below the binomial value, but the magnitudes of predicted variances are more extreme than
those observed in simulation. This discrepancy arises because, to retain tractability, the algebraic
model imposes an even spread of mtDNAs more strictly than is applied in the simulation (where this
imposition is limited for numerical reasons). The range of variance values in the simulation is thus
more limited than those that emerge from model predictions, although the trends of behaviour with
governing variables are largely consistent.

Diffusion of mtDNA relaxes statistics towards their null value

The mitochondrial network fragments before cell division. This fragmentation gives a time window
during which mtDNAs that were previously constrained by the network structure can diffuse away
from their initial position. In the limit of infinite diffusion, network structure will be forgotten and
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Figure 5: Network fragmentation and diffusion reverse the variance induced by mitochon-
drial networks. Normalised heteroplasmy variance V'(h) after repeatedly perturbing each mtDNA
molecule with mean displacement A from their original positions, resulting in a total mean displace-
ment of around 10\. The left column shows V’(h) for random mtDNA placement in the network;
the right column shows V’(h) for repulsive mtDNA placement in the network. The three rows show
decreasing levels of network heterogeneity, expressed via different seeds numbers (more seed points
give a more homogeneous network). As the diffusion strength increases, effects on cell statistics due
to the network is washed away regardless of the underlying mtDNA distribution model.

the mtDNA population will be randomly and uniformly distributed throughout the cell, leading to
binomial inheritance patterns. We next investigated how limited amounts of diffusion away from the
initial structure influence the patterns of mtDNA inheritance.

Fig. 5 shows V/(h) for random placement of mtDNA in the network (left column) and repulsive
placement of mtDNA in the network (right column) for 4, 16, and 64 seed points (more seed points
give a more homogeneous network), respectively, in rows from the top to the bottom. Diffusion is
applied through 100 normally-distributed random steps of width A, so that mtDNA molecules undergo
random walks with expected total displacement around 10\ (though not exactly this value, due to
boundary conditions). This model (Fig. 1G-H) mirrors findings that mitochondria may undergo a
series of directed bursts of motion from active randomization prior to cell division [50]. Our results
indicate that directed bursts of motion of the mitochondria indeed work to remove the effects of the
network on daughter cell statistics, resulting in binomial segregation. Notably, there are cases in which
extremely heterogeneous mitochondrial networks can leave an imprint on mtDNA inheritance despite
high diffusion strength (top row).

Discussion

We have demonstrated that a cell’s mitochondrial network structure can control cell-division variability
in both mtDNA copy number and heteroplasmy inheritance, in both directions (Fig. 6). When
different mtDNA genotypes have different propensities for network inclusion, random arrangement in
a heterogeneous network generates (much) more variability than could be achieved through random
cytoplasmic arrangement alone. On the other hand, ordered arrangement in a homogeneous network
can control heteroplasmy variance below the binomial level expected from random partitioning. In
concert, homogeneous network structure dramatically reduces copy number variance to sub-binomial
levels (as observed experimentally in Ref. [53]), and heterogeneous network structure correspondingly
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increases it. Notably, it is possible to tightly control copy number while generating heteroplasmy
variance — a strategy that may be useful in implementing a beneficial genetic bottleneck to segregate
mtDNA damage.

How do mitochondria in different taxa and tissues correspond to the different regimes in our
model? In animals, mitochondrial structure is highly varied, from largely fragmented organelles (low
p and ¢ in our model) to highly reticulated networks (high p and/or ¢), with mtDNA nucleoids moving
freely throughout the mitochondrial reticulum, leading to a random distribution of mtDNA within the
network [57, 58]. Animal mitochondria are expected to fragment prior to cell divisions, with a spectrum
of active randomization mechanisms [59, 50], captured by the diffusion behaviour in our model. Fungal
mitochondria, on the other hand, are often inherited without fragmenting the network, which remains
in its reticulated state through cell division [32]. Saccharomyces cerevisiae populations have been
shown to clear heteroplasmy within a few generations, with relatively heterogeneous networks and
semi-regular spacing of mtDNA [24]. This situation corresponds to the ‘repulsive’ version of our
model, inducing heteroplasmy variance (helping to clear heteroplasmy) while controlling copy number.
In plants, mitochondria normally exist in a fragmented state (low p and ¢) [60, 61]. An intriguing
exception to this is the formation of a reticulated network prior to division in the shoot apical meristem
— the tissue that gives rise to the aboveground germline [18]. This formation could be the signature of
network structure being employed to shape mtDNA prior to inheritance — although this employment
is also likely to involve facilitating recombination [16].

One technical observation from our work is that the Taylor expansion method for approximating
heteroplasmy variance, often employed in mtDNA models [27, 55], has several shortcomings in the
face of network structure and other physical phenomenology that induce correlations between mtDNA
types. Higher-order terms in the expansion do not immediately fix the discrepancies from simulation;
we conclude that the series is likely slow to converge in these cases. Our model does successfully capture
all the moments and covariances of the quantities of interest (see Appendix) — so, for example, all
pertinent statistics of the number of wildtype mtDNAs can reliably be extract. It is the combination
of these statistics into an approximation for a ratio (heteroplasmy) that is unreliable. We advocate the
use of analytic expressions (like our exhaustive sum over states) and explicit simulation to check the
validity of such results in future contexts (in a sense paralleling the careful consideration of moment-
based methods for stochastic chemical kinetics [62]).

Our observations on how network structure influences genetic population structure stand in parallel
with the many other phenomena associated with the physical and genetic behaviour of mitochondria.
Mitochondrial network structure and dynamics likely fulfil many purposes [34], including contributing
to mtDNA quality control [44, 43] via facilitating selection. Here, we assume that selection occurs (if at
all) between cell divisions, focussing rather on the behaviour at cell divisions. Previous modelling work
has demonstrated the capacity of mitochondrial network structure to shape mtDNA genetics through
ongoing processes through the cell cycle [49, 16]; other work has considered the behaviour of controlled
mtDNA populations across divisions without considering how that control may be physically manifest
[52, 56]. We hope that our models here help bridge the gap between these pictures of mitochondrial
spatial dynamics between, and well-mixed behaviour at, cell divisions across a range of eukaryotic life.

Methods

Network simulation

We constructed a random network via an elongation and branching process; network segments elon-
gated deterministically with rate e = 0.01 and branched according to Poissonian dynamics with a
given rate k = 0.02, and terminated if they hit the cell boundary. Network growth was initiated at a
number of evenly-spaced seed points around the cell circumference (the first of which was randomly
positioned in each simulation). Initial segments then grew perpendicular to the perimeter of a circu-
lar 2D cell, represented by the unit disc. Network growth proceeded until a predetermined network
mass had been created; if all segments terminated before this mass was reached, we re-seeded the
perimeter, and continued the growth process. By changing the number of seed points from which
segments grow, we tune the uniformity of the network structure: a high number of seed points yielded
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Figure 6: Illustration of the range of influences of network structure and contents on
mtDNA statistics from partitioning. MtDNA molecules distributed randomly through the cy-
toplasm are segregated binomially (centre); the influence of network structure (heterogeneous or ho-
mogeneous distributions) and mtDNA inclusion (genetically neutral or biased) changes cell-to-cell
variability in different ways: Depending upon genetic bias and network heterogeneity, networks can
both increase and cell-to-cell mtDNA variability in copy number and heteroplasmy.
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homogeneous network structures, whereas a low number of seed points often lead to heterogeneous
network structures (see Fig. 1).

Next, we distributed mtDNAs in the cell. We considered two mtDNA types, wildtype W and
mutant type M, each a predetermined proportion of the mtDNA population, as specified by h. Pro-
portions p of wild type mtDNA and ¢ of mutant type mtDNA molecules were then placed within
the network according to a particular placement rule (see below). The remaining mtDNA molecules
were randomly and uniformly distributed in the cell, modelling presence of fragmented organelles in
the cytoplasm. First, we considered random and uniform placement of mtDNA within the network,
in which every point of the network was equally like to host an mtDNA molecule. Later we intro-
duce a minimal inter-mtDNA distance within the network, hence enforcing spacing between mtDNA
molecules through a mutual repulsion.

Finally, we partition the cell and record the number of wildtype W and mutant M mtDNAs in
one daughter, the heteroplasmy h = m/(w + m), as well as the proportion of network mass u. The
process of cell division was modelled by recording only the network mass and mtDNA content of a
fixed circular segment spanning an angle ¢, randomly orientated with respect to the network seed
points. We are particularly interested in the heteroplasmy variance V' (h) and copy number variance
V(N), where N = W + M, across many realisations of this system.

Statistical models of mtDNA copy number and heteroplasmy

We consider h = Wﬂf 77 and N = W + M as our key variables. We assume that the parent cell’s

heteroplasmy level is h € [0, 1], with a total of Ny mtDNA molecules. Thus there are hNy mutant
molecules, and (1 — h) Ny wild type molecules of mtDNA.

We ignore correlations between daughter cells and focus on a single daughter from a cell division.
In the daughter, the copy number variance is

V(N) = V(W) + V(M) + 2Cov(W, M) (8)

Here V(W) and V(M) are the variances of wild-type and mutant mtDNA, respectively, and Cov (W, M)
is the covariance of W with M. The heteroplasmy variance, V' (h) does not follow a simple form as it
deals with a ratio of random variables. Instead, we use either explicit sums for the moments as in the
text:

We me 1 Wn mn
E(f(h) =3 PW.) S P(M,) / PWYU S PWLIU) S PW,|U)f (W jvéj ]\]\jC+M
W.=0 M.=0 0 W, =0 M, =0 n c n ) c

with mean F(h) and variance V(h) = E(h?) — E(h)?, or a first-order Taylor expansion, finding
that
Vi(h) = RV (M) + W3, V(W) + 2R, iy Cov(W, M) (10)

The prefactors by, and hy;, are derivatives of the heteroplasmy level considered as a function of W and
M, and are model dependent (described below). Dividing Vi(h) by h(1 — k), we get the normalized
heteroplasmy variance, V{(h), which conveniently removes some of the dependence on h. We also
considered higher order terms in this expansion (see Appendix B.2).

The null hypothesis: no mtDNA placement in network

As our null hypothesis, we considered a binomial segregation model for mtDNA [15]. In this model,
no network structure exists and no active mechanisms contribute to the distributions of mtDNA (of
either type) to the daughter cell. Supposing that the cell divides such that the daughter consists of a
proportion p. of the parent cell volume, we supposed

M ~ Bin(hNy, p.) and W ~ Bin((1 — h)No, p¢) (11)
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The copy number variance of the daughter is then, from the binomial distribution,
V(N) = pe(1 — pe)No (12)

To find the heteroplasmy level variance, we calculated the variances of W and M, and the correspond-
ing derivatives in Eqgs. (24, 25); the covariance of W and M is zero in this case. A detailed derivation
of Vi(h) is presented in Appendix B.1, the result of which were

1—p. 1

V'(h) =
() pe  No

(13)

This is our null case, with nothing actively influencing the placement of mtDNAs within the cell. If
this is the case, apportioning of mtDNA to daughter cells is binomial. The familiar expression of 1/Ny
is recapitulated for symmetric cell divisions, i.e., with p. = 1/2, in which case V'(h) = 1/Nj.

Random mtDNA placement in network

Following intuition and preliminary observation of our simulations, we model the proportion u of
network mass inherited by the smaller daughter as beta distributed variable U, with mean E(U)
and variance V(U). Expected network inheritance E(U) will simply be p., the proportion of cell
volume inherited; V(U) will depend on the spread of the network through the cell, and constitutes
a fit parameter in comparing this statistical model to simulation. Hence u is drawn from the beta
distribution, Beta(a, 5) with mean E(U) = a/(a + ) = p. and variance V(U) = %

We now write W,,, W, respectively for the number of wildtype mtDNAs placed in the network
and randomly spread in the cytoplasm, and M,,, M, likewise for mutant mtDNA. W, and M, are
assumed to follow the binomial partitioning dynamics above. Assuming that mtDNAs in the network
are randomly positioned therein, we draw a u ~ Beta(a, 3) to reflect the network proportion inherited
by the smaller daughter, and write

~ Bin (wy,, u)
)

~ Bin (my,, u

~ Bin (wcapc (14)

)

~ Bin (mm pc)

where w,, = p(1 — h)Ng, w. = (1 — p)(1 — h)Ng, my, = ¢hNy, m. = (1 — q)hNp.
The mean and variance of N are readily derived using the laws of iterated expectation and total

variance to account for the compound distribution of mtDNA in the network (Appendix). To esti-

mate heteroplasmy variance, we combine the (co)variances of the different types with their respective
prefactor (from Eqs. (26, 27) in Appendix B.1).

Repulsive mtDNA placement in network

Next, we considered the case where mtDNAs placed in the network are not randomly positioned, but
instead experience a repulsive interaction, and thus adopt a more even spacing. Capturing this picture
perfectly with a statistical model is challenging; instead, we use the following picture. The proportion
of inherited network mass u consists of a finite number of ‘spaces’, each of which can be occupied by
at most one mtDNA molecule. Choose a number of spaces to fill, then sample mtDNA molecules from
the available pool without replacement, assigning each drawn mtDNA to the next unoccupied network
space. In this case, the final population of mtDNAs in the network is described by the hypergeometric
distribution. We draw u ~ Beta(a, §) to reflect the network proportion inherited by the smaller
daughter, and write

Wy, ~ Hypergeometric(wy, + my, wy, [u/l])
We ~ Bin (we, pe)

My, ~ u/l] —

M. ~ Bin (m,, p.)
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We can once again use the laws of total variance and iterated expectation (see Appendix B.1) to
estimate heteroplasmy and copy number behaviour. As previously discussed, this model has several
shortcomings and is only expected to match qualitative behaviour (see Appendix B.1).

Code Availability

Code for this project is available at https://github.com/StochasticBiology/mtdna-network-partition
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Appendices

A  Models of mtDNA copy number variance

We consider four state variables describing the mtDNA population of a daughter cell after a mother
divides: W,,, W,, M,,, M., for the wildtype (W) and mutant (M) mtDNAs contained in a reticulated
mitochondrial network (,,) or in fragmented mitochondrial elements in the cytoplasm (.). An additional
variable U describes the proportion of network mass inherited by the daughter cell.

The mother cell has Ny mtDNAs, a proportion h of which are mutants (h is heteroplasmy).
Proportions p and g of the wildtype and mutant mtDNAs are contained in the network; the remainder
are in fragments in the cytoplasm. We consider a daughter inheriting a proportion p. of the cytoplasm.
The mtDNA copy number of the daughter, N = W,, + W, + M,, + M., is the sum of all components.
We write W = W, + W, and M = M, + M.. Under the null hypothesis of no network, since
M ~ Bin(hNy,p.) and W ~ Bin((1 — h) Ny, p.), we have N ~ Bin(Ny, p.) and

V(N)=V(W)+ V(M) +2Cov(W, M)
=V(W)+ V(M)
= (1 - h)Nopc(l - pc) + hNopc(l - pc)
= pc(l - pc)N 0
For the random mtDNA distribution model, using the full model (Eq. 1), and decomposing into the
networked and individual mitochondria, i.e., N = N, + N,, the law of total variance gives

V(N) = V(Ne) + V(Nn)
=V(N.)+ E(V(N,|U)) + V(E(N,|U))
= pe(l = pe)(1 = K)No + E(U((1 — U)kNo) + V (NoU)
= pe(1 —pe)No + E(U)(1 = E(U))kNo + £No(kNo — 1)V (U)

(16)

(17)

Overall, this expression captures copy number variance dynamics across a wide range of parameteri-
sations (see Fig. 9). For the repulsive mtDNA distribution model (15) the corresponding expressions
are

V(N) = V(W) + V(M) + 2Cov(W, M)

pgNo > g 5 (18)
=|(1=k)—=2h(1 —h)——— | Nop.(1 — —2h(1 = h)———— | NyV (U
(=) =200 =) 200 N (1= )+ (2 201 =)L) W)
where K = p(1 — h) + gh. The expression correctly predicts sub-binomial variance for heterogeneous
networks, but fails to capture the structure of genetic bias as well as other qualitative dynamics of the

system (see Fig. 10).

B Heteroplasmy level variance

The heteroplasmy level is the mutant proportion of the cell, i.e.,

M
h = 19
W+ M (19)
where W and M are the numbers of wild-type and mutant type mtDNA, respectively. By definition,
V(h) = E ((h - E(h))?) (20)

and h = h(M,W). As the ratio of random variables, h does not admit as straightforward an analysis
as N. Using a sum over all states of the system (Eq. 2) in the main text we can compute its value
(and V(N)) for a given system. While these expressions provide a good match with simulations for a
wide range of parameterisations (see Fig. 3), they do not allow intuitive understanding of the system.
Since we sought a more intuitive analysis, we employ first- and second-order Taylor expansions to
generate more tractable estimations focussing on key governing parameters.
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B.1 Taylor expansions for heteroplasmy level variance

Using a first-order Taylor expansion (as in, for example, Ref. [27]), we obtain
V(h) = B((hy (W — pw) + Wiy (M — par))?)
= B((Wy (W — uw)? + iy (M — par)® + 20y Wy (W — pw ) (M — pag))?)
= hiy V(W) + WiV (M) + 2k ki Cov(M, W)

where prefactors h'y, and hy, are the partial derivatives of h(M, W) evaluated at the means of the
distribution for M and W, uy = hINg and py = (1 — h)Ny. In general, we find

M 1 M W
Wy (W, M) = — and K\, (W, M) = - - 21
wWo M) = e and (W M) = G — G ane ~ W (21)
or
—HM nw
h/VV (MWv HM) = 'ug and h3\4 (MW? :U’M) = M2 (22)

This approximation is used to derive the variance of the heteroplasmy level in all the scenarios con-
sidered, so we give it an subscript of 1 to show it is a first-order Taylor expansion.

Vi(h) = REV (M) + W3V (W) + 2hiy, by Cov(M, W) (23)

The evaluation of the prefactors are model-specific: Under the null hypothesis, where both W and M
are binomially distributed with probability p. and their respective proportion of the population NV,
pnr = pehNo, pw = pe(1 — h)Ny and p = ppr + pw, these expressions evaluate to

’ pchNo h

W= T N T el 24
pe(l—h)Nog 1—h

(pcNo)2  pelNo
For the network model, whether it is with or without mutual repulsion of mtDNA molecules, we write
pw = pw, + pw, = E(U)w, + pewe and ppr = pag, + par, = E(U)my, + peme, 80 = pw + pyr =
EU)(wn + my) + pe(we + m.) and

, mpE(U) + mepe

W= B (wn + ) + pelwe + 1)) (26)

W wp E(U) + wepe (27)
M (E(U) (wn +ma) + pe(we + me))?
Note that under the assumption that the network is evenly distributed throughout the cell, i.e

E(U) = p., we recapitulate the expressions for the null hypothesis pre-factors.

g = (25)

Null model (no network structure)

Under the null hypothesis, independent binomial distributions describe both M and W. Combining
Eqgs. 24, 25) with the variances of each specie, we find

1
peNo

Vi(h) = < >2 (R2V(W) + (1 — h)2V(M) — 2h(1 — h)Cov(W, M)

N > (R*(1 — h)pe(1 — pe)No + h(1 — h)?*p.(1 — pe) No)
PciNo

(30
(f) 0w 2000
(h ) — Pe)

which, weighted by h(1 — h), gives Eq. 13, i.e., the normalized heteroplasmy variance defined as

Vi(h) _1_pci
h(l_h)_ pe No

V/(h) =

(28)
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Network model without repulsion

We next consider the influence of network structure on mtDNA distributions. All random variables
are binomially distributed with their respective proportion of the total mtDNA content of the parent
as the population, with p. or u as the probability for cytoplasmic and networked mtDNAs respectively.
Using the law of total variance for M and W, we find that

V(M) = E(V(M,|U)) + V(E(M,|U)) + V(M.)
= E(m,U(1—-U))+V(m,U) + V(M)

— ma(E(U) — (V(U) + BUY) + m2V(U) + (1 - hNpe(1 — pe) 29)
= BU)(1 = B(U)) + mepe(L - po) + mn(imn — DV(U)
and
V(W) = B(V(Wa[U)) + V(E(W|0)) + V(W)
=FEw,U(1-U))+ V(w,U)+ V(W) (30)

= wa(E(U) = (V(U) + E(U)?)) + wpV(U) + wepe(1 = pe)
= wnE(U)(l - E(U)) + wcpc(l _pc) + wn(wn - 1)V(U)

Using the law of total covariance, since cytoplasmic copy numbers are uncorrelated, we find that the
covariance of M with W is

Cov(M, W) = Cov(M,,, W,)
= E(Cov(M,,, W,|U)) + Cov(E(M,|U), E(W,|U))

= E(E(MpWy|U)) — E(E(My|U)) E(E(Wn|U)) (31)
= wymn(E(U?) — E(U)?)
= w,m,V(U)

Combining (co)variances with the prefactors of Egs. (27,26), Eq. (23) gives

( mpE(U) + mepe
(E(U)(wy + map) + pe(we + me
wnE(U) + WePe
i <(E(U)(wn + M) + pe(we +me
_ mnE(U) + MePe wnE(U) + Wepe
’ <(E(U)(wn +mp) + pe(we + mc))2> <(E(U)(wn +Mmn) + pe(we +me))

Vi(h) =

2
))2) (W, E(U)(1 — E(U)) + wepe(1 — pe) + wp(wy, — HV(U))

2
))2) (MuE(U)(1 — BU)) + mepe(1 = pe) + mu(mn — HV())

5 ) wpmy, V(U)
(32)

If we assume that E(U) = p,, for which w,, + w. = (1 — h)Ny and m,, + m. = hNy, we get a simpler
expression,

2
Vi) = () (= mNope(t = ) + s~ V)
2
(S5 Nopel1 = ) + oo, — V@) (33)

2(5i) (G ) v ©

Simplifying and gathering terms, we find that

i = (" -+ (D) a0+ (D5 ) a0 mh g - )

Dividing by h(1 — h) gives V] (h),

i = S0 M g vy - S ka1 - 1) )
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which we plot for different values of p, ¢, p., and network parameters, F(U) and V(U) taken from
simulation. The latter two are used to fit a beta distribution with parameters o and 3, with which
we model the process of network segregation when a cell divides.

Looking to gain insights from Eq. 35, we write p = ¢ — §. In this case, supposing that § is
small, wild-type and mutant mtDNA are treated almost equally by the network, with an almost equal
proportion of the two admitted into the network.

Vl,(h)zl—pc_i_h(lgh) VQ(U)

pelNo Pz pzNo

It will be seen that there is a quadratic dependence on ¢, the difference in inclusion probabilities for
the different types of mtDNA. For § # 0, the network is genetically biased towards one of the types, to
which there is associated an increase in V'(h). For § = 0, the network is genetically unbiased, giving

S2V(U) — (p+6(1—h)) (36)

1—p. V(U)

p
peNo PN

Vi(h) = (37)
When p. = 1/2, i.e., when cell division is symmetric, we arrive at Eq. 4 in the main text. Eq. 37
suggests that the network structure provides a negative contribution to V’(h), resulting in the low
diagonal values in the first order Taylor expansion of V’/(h), whereas, from the simulations, we expected
a small increase along the diagonal (shown in Fig. 2). The second order Taylor expansion corrects this
(Fig. 8), with contributions of third order and higher in p and q (Eq. 46), but it overcompensates; we
do not pursue higher order terms, mostly because they are hard to interpret, and present significant
difficulties in calculations. We then asked whether statistical simulations would produce a better fit,
and we find that there is good support for this model when mtDNA molecules are randomly distributed
throughout the network in our simulations.

Network model with repulsion

Next we considered networks in which mtDNA molecules within the network were mutually repulsed
by each other, setting a minimum distance between mtDNA molecules in the network. We again
decompose W and M into their cytoplasmic and network components, i.e.,

W =W, + W,
M = M, + M,

To assess the effect of mutual self-repulsion of mtDNA, we assumed a model of mtDNA transmission
from a parent to its smaller daughter in which we consider the network to be divided into |u/I]
different compartments. Into each of these compartments a single mtDNA molecule will be placed —
hence [ acts to enforce a minimum inter-mtDNA distance due to the repulsion of mtDNA molecules.
We then fill these places by sampling, without replacement, mtDNA molecules from the set contained
in the network. This corresponds to a hypergeometric model of |u/l| samples from a population of
Wy + My mtDNAS, w, of which are wild-type,

W,, ~ Hypergeometric(wy, + my,, wy, [u/l])
W, ~ Bin (we, pc)
M, ~ |u/l| — W,
M. ~ Bin (me, pc)

(38)

where u ~ beta(c, 5). The problem with this model is that, to keep the values of W,, and M,, consis-
tent, we must assume that there are exactly wy, +m,, spaces in the network; hence [ = (w,,+m,)~!. In
our physical simulations, [ is instead set to a distance (I = 0.01) that enforces some separation between
mtDNAs while making it possible to populate the network through random positions in reasonable
time. There are therefore more ‘spaces’ in the simulation than captured by the model, meaning that
an even physical spread is less enforced in the simulation than in the model, and the range of variance
values supported will be more limited in the simulation.
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Accepting this limitation, the variance of W), is derived using the law of total variance, giving

V(Wy) =E(V (Wy|U)) + V(E(W,|U))
B Wy Wy + My, — Wy Wy +my, — U/ W,
_E<LU/len+mn Wp, + My, Wy, +mp — 1 >+V(LU/”wn+mn>
Wp My, 1 w?

{(wn + mp)IE(U) — E(U*)} + WV(U)

:l2(wn +mp)2 wy, +my, — 1
And using the | = (w, +m,)~! assumption,
V(W) =w2V(U) + o tm —1
For V(M,,) we find
1
V(My) = 5V (U) +V(Wy) = 2Cov(|U/1], W)

12
Using the law of total covariance,
Cov([U/1], Wy) = 7 (B(Cov(U, WalU)) + Cov( E(UIV), E(W, 1))
W, 1
Setting [ = (wy, + my) "L, we find
V(My) = (wn +mn)?V(U) + V(W) = 2(wn + mn)w,V (V) (40)

Combining with the variances of the cytoplasmic mtDNA content, we find that

(B(U) = E(U*)) + pe(l = pe)me (41)

WM
V(M) =m2V(U)+ ———"—
(M) = maV(U) +

WnMMin,

V(W) =wV(U) + (B(U) = BE(U?)) +pe(l = pe)we. (42)

Wy + My — 1
As before, W, has non-zero covariance with M,,, due to their mutual dependence on network structure,
but no cytoplasmic component covaries with any other component. The overall mutant-wildtype
covariance is therefore

Cov(M, W) = Cov(My, W,)
= E(M,W,|U) — E(M,|U)E(W,|U)
= wymn E(U?) — wym, E(U)?
= w,m,V(U)
In this case, V1(h), the first-order Taylor expansion of heteroplasmy variance is

B mnE(U) + mepe 2 w2 Wy My, B 9 oV
lh) = <(E(U)<wn +mn) + pe(we + mc))2> < VO Wy +my — 1 (EW) = EUD) +pell = pe) c>

wnE(U) + WePe 2 _ wpmy B ) - .

" <(E(U)<wn + mn) + pc(wc + mc))2> (m Wy, + my, — 1 (E(U) E(U )) +pc(1 pc) c)
_9 < mnE(U) + McPe ) < wnE(U) + WePe

(B(U)(wn + mp) + pe(we + me))? ) \(BU) (wn + mn) + pe(we + me))

WMy,

2y(U) +

n

2) WV (U)

(43
Assuming E(u) = p., we find that
2
i = (550 ) (V) + o (B @) - ) + it = poe
2
+(E50) @RV + S (B0) - B+l ) (40)

2(iw) () vy ©
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Figure 7: Approximate model predictions for repulsive interactions between mtDNAs
in the network. V’(h) (left column) and V(N) (right column) under an approximate model for
repulsive mtDNA placement in the network. Qualitatively trends in behaviour are captured, but the
magnitudes of the effects involved differ from simulated results (see text).

Gathering some terms and dividing by h(1 — k), we find

ADEE <h<1 W= af S ()P h2)>
P 1) + (- 1)1 - ) (45)
1-p. pg
o AN =1 ((1—h)*+ h?)

where k = p(1 — h) + gh. As before, we plot V{(h) for different values of p, ¢, p., and given network
parameters F(U) and V(U), used to fit a beta distribution with parameters a and 3, with which we
model the process of mtDNA distribution when a cell divides. Fig. 7 shows the result of plotting
V{(h) for networked distributions with mutually repulsive mtDNA molecules. Despite imperfections
(Fig. 10), it will be seen that the the model captures qualitative behaviour of the simulations.

B.2 Higher-order moments and second-order Taylor expansion

Given some observed shortcomings in the ability of the first-order Taylor expansion to capture het-
eroplasmy variance, we asked whether the next-order terms in the Taylor expansion could refine the
estimates. The second-order Taylor expansion of heteroplasmy level variance used for the nonuniform
distribution mtDNAs can be expressed as Vi (h) + Va(h):

Va(h) = by 'A’4MM3(M) + oy by pa (W)

(2h’ Yow + Py h’W)cov(M,Wz) (2hh By + Piy B ) Cov (M2 W)
h’ﬁMm( ) + h’v/ﬁwm(W) (46)

(hll2 4 *h// Mh” )(30‘/,(]\427 WQ)
+ Ry WCOV(M W3) 4 Wy g Cov (M3, W)
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where Vi(h) is given by Eq. 4, and the derivatives are given by

r_ mnE(U) + MePe
Y (BO) (wa + ma) + pe(we + me))?
wp E(U) + wepe

(E(U) (’UJn + mn) + pc(wc + mc))2
. Q(WHE(U) + wcpc)

((wn +mp) E(U) + (we + me)pe)?
"o 2(mnE(U) + mepe)
YW (wn A+ ma) B(U) + (we + me)pe)?

(mn — wp) E(U) + (me — we)pe
((wn +mp) E(U) + (we +me)pe)?

Wy =

Moy = —2W/N3 =

G = (M —W)/N® =

B.2.1 Higher-order moments from binomial and beta-binomial distributions

Expanding the Taylor expansion to second-order, we need a number of higher-order moments of the
distributions of W and M. We start by calculating the third and fourth central moments of W and
M. For the third order moments, we write

(W = pw,,) + (We = pw,)?)
= E(W — pw,,)® + 3(Wn — piw,)*(We — piw,,) + 3(W — pw,) ) We — piw,)* + (We — pw,)?)
Wh) 4 p3(We) + 3Cov(W2, W,) 4 3Cov(W,,, W?)
Wn) + /1’3(WC)7
(47)

where the final line follows because networked and cytoplasmic mtDNA counts are uncorrelated.
As W, is beta-binomial, we can take established expressions for the moments of the beta-binomial
distribution; for W, we use established expressions for the binomial distribution [63]:

wpa(B — a)B2w2 + 3wy (a + B) + (a+ B)?

W) = 48
#3(Wn) (a+BB31+a+B)2+a+p) (48)
p3(We) = we(pe — 3p; + 2p3) (49)
The fourth central moment of W,, is taken from the beta-binomial distribution:
afw,(A+ B+ C+ D)
Wy) = 50
Ha(Wa) (a+ B a+B+1)(a+B+2)(a+5+3) (50)
where
A=(a+p)’ (o —a(d+1) + (B -1)P)
B = 3w} (a®(B+2) + a(B — 2)B8 +257)
C = 6w? (a?’(ﬁ +2) + 20282 + ap? + Qﬁg)
and
D = wp(a+ B)* (38 +7) + a(38° — 108 — 1) + B(7T8 — 1)
The fourth central moment of W, is from the binomial distribution:
M4(Wc) = wcpc(l _pc)(l + (3wc - 6)]3(;(1 _pc>)' (51)
For M we find the same expression, but with different prefactors
mpa(B — a)B(2m2 + 3mp(a + B) + (a + B)?

(a+B)3(1+a+pB)2+a+pb)
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pi3(M) = me(pe — 3p2 + 2p2) (53)

For terms in M we follow the same approach of recruiting central moment results from the beta-
binomial and binomial distributions. The same expression structures arise, but with different prefac-
tors reflecting the mutant population:

mupa(B — a)B(2m2 + 3mp(a + B) + (a + B)?

Ha(Mn) = (a+BB31+a+B)2+a+p) (54)
/J’?)(MC) = mc(pc - 3173 + ng) (55)
and Bimn(A+ B+ C + D)
afBmy,
Ha(Mn) = (a+ B4 a+ B+ 1D(a+B+2)(a+3+3) (56)
where
A= (a+8)° (o> —adB+1)+ (B—1)8)
B =3m} (a*(B+2)+ a(f —2)B +25°)
C = 6m2 (a®(B+2) + 20%8% + af® + 25°)
and
D =my(a+B)* (BB +7)+a(38?—108 — 1)+ B(76 — 1)
The fourth central moment of M, is
/1’4(Mc) = mcpc(l - pc)(l + (3mc - 6)]?0(1 - pc)) (57)

B.2.2 Covariance calculations

To calculate the covariances, we use the law of total covariance, which for RVs X,Y and Z states that
Cov(X,Y) = E(Cov(X,Y|Z)) + Cov(E(X|Z),E(Y|Z))
Using the identity Cov(X,Y) = E(XY) — E(X)E(Y), we find we retain the terms
Cov(X,Y)=E(E(XY|Z)) - E(E(X|Z))E(E(Y|Z))

In this case, when u is fixed, the variables W and M are independent RVs, so the first term is the
E(E(X|Z)E(Y|Z)). Using these findings, the necessary covariances of higher order in the RVs M and
W are

Cov(W?, M) = Cov(W2, M,,) + 2E(W..)Cov(W,,W,, M,)
= E(E(W|U)E(M,|U)) — E(E(WZ|U)E(E(My|U)) + 2E(W.)Cov(W,,, My)
= E((wamnU? 4+ wpymy, (wy, — 1)U?) — B(w,U + wy (wy, — 1)U E(m,U) (58)
+ 2pcww,my, V(U)
= wpmy, (V(U) + (w, — 1)(B(U?) — E(U)E(U?)) + 2pewcw,my,V(U)
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Note that we have used that E(W2|U) = V(W,|U) + E(W,|U)? = w,U + wy(w, — 1)U%. To calculate
the covariance of W2 with M?, we also need E(M2|U) = mpU + my,(m, — 1)U?
Cov(W?, M?) = Cov(W2, M?) 4 2Cov (W2, M,,M,)
+ 2Cov(W, W, M?2) 4 4Cov(W,, W, M, M,)
= wymn B((U + (wy, — DU?)(U + (my, — 1)U?))

— w,mp, E(U + (w, — YU*)E(U + (my, — 1)U?)
= wymp(E(U?) + (wy, +my, — 2)E(U?) + (wy, — 1)(m, — 1)E(U?))
— wnny(B(U)? + (wy, 4+ my = 2)E(U)E(U?) + (w, — 1)(mn — 1) E(U?)?)
+ 2pewewpmn (V(U) + (my — D)(E(U?) — E(U)E(U?)))
+ 2pemewpmn (V(U) + (w, — D(E(U®) — E(U)E(U?)))

+ 4pzwcmcwnmnV(U)
= wymn(V(U) + (wn +my = 2)(E(U?) = E(U)E(U?)) + (wn — 1)(mn — 1)(BU") - BE(U?)?))
+ 2pewewnmy, (V(U) 4 (my, — 1)
+ 2peMmewn My, (V(U) + (wy, — 1)
+ 4p2wemew,my, V(U)
(59)
Cov(W?3, M) = Cov(W3, M,) + 3Cov(W2W,, M,,) + 3Cov(W, W2, M,)
= E(BE(W,|U)E(My|U)) — E(E(W,|U))E(E(M,|U))
+ 3E(W.)Cov(W?2, M,) + 3E(W2)Cov(W,,, M,,)
= E(us(Wa|U)E(M|U)) — E(ps(Wn|U))E(E(My|U))
+ 3E(W.)Cov(W?2, M,) + 3E(W2)Cov(W,,, M,)
= womp (B(U2) + 3(wn — 1) BE(U%) + (w2 — 3wy, + 2)E(UY))
— wpmn(B(U)? + 3(w, — 1)E(U)E(U?) + (w2 — 3w, + 2)E(U)E(U?))
+ 3pewewnmy, (V(U) + (w, — 1)(E(U?) — E(U)E(U?))
+ 3(wepe(1 — pe) + w2p2)wm, V(U)
= wamn (V(U) + 3(wn — 1) (E(U®) = B(U)E(U?)) + (w; = 3wy +2) (E(U*) - B(U)E(U?)))
+ 3pewewnmy, (V(U) + (w, — 1)(E(U?) — BE(U)E(U?))
+ 3(wepe(1 — pe) + w2pH)wnm, V(U)
(60)
Here we have used E(W?2) = V(W,) + E(W,.)? = wepe(1 — pe) + w?p? and, since the third non-
central moment yf5(W,|U) expressed in terms of the third central moment ps(W,|U) is uz(W,|U) +
SuE(W2U) + E(W,|U)3, where uz(W,|U) = w,(U — 3U? + 2U?), we find that
15 (Wi) = wi (w2 — 3wy, + 2)E(U®) + 3(w, — 1)E(U?) + E(U))
Lastly, Cov(W, M?) and by the symmetry of the problem
Cov(W, M?) = wymy, (V(U) + (my, — 1)(BE(U?) — E(U)E(U?)) + 2pemew,m,V (U) (61)
Cov(W, M?) = w,m,(V(U) + 3(m,, — 1) (B(U®) + E(U)E(U?)) + (m2 — 3my, + 2) (E(U*) — E(U)E(U?)))
+ 3pemewnmy, (V(U) + (my — 1)(E(U®) — ( VE(U?))

+ 3(mcpc(1 - pc) + mng)wnmnV(U)
(62)

In Figs. 9-10, we plot these expressions for the various moments and covariances in the system
compared to those arising from our simulation model. We generally observe good agreement between
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theory and simulation (most departures are on a very small scale compared to the overall scale of
the corresponding expression; arising due to small deviations from the beta-distribution model for
network mass). However, the overall second-order Taylor expression still deviates substantially from
observed heteroplasmy variance (Fig. 8). One aspect of the first-order model is improved — the increase
on the p = ¢ diagonal. But the off-diagonal behaviour is substantially compromised, suggesting an
overcompensation to the errors in the previous order. We conclude that higher-still terms in the
expansion will be required to more perfectly capture the behaviour, and that convergence to the true
behaviour may be rather slow.

B.2.3 Comparison of individual statistics

Here, we present the comparisons of simulation results with model results in both models to all
relevant orders. First, one should note that the second order result only applies to the models with
random mtDNA placement in the network, and then only for the heteroplasmy variance. This is
because h is a ratio of random variables, and which is differentiable an arbitrary number of times
with respect to both variables, W and M; the copy number variance, however, is linear in these
random variables, and so the approximation is the same for all orders starting at first. Fig. 8 shows
comparisons of simulation results (top row) with first and second order results (middle and bottom
rows), respectively. Here we see clearly that both first and second order approximations were needed
to capture the behavior displayed in our simulations, but that neither provides a reasonable match:
the first order approximation departs significantly along the diagonal, displaying a small decrease as
opposed to a small increase; the second order approximation massively overestimates, causing a far
too large an increase along the diagonal.
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Figure 8: Comparison of simulation results with analytic model results for first and second
order Taylor expansion. By row, simulation, first, and second order analytic results for V'(h) for
random placement of mtDNAs in the network. The first order theory in the second row produces results
similar to our simulation results on the off-diagonal, but fails to reproduce the increase observed along
the diagonal. The second order theory, while loosely retaining the same structure on the off-diagonal
as the first order theory, overestimates this increase along the diagonal. We expect that our model
would captures this behavior if we were to derive even higher order terms.
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Figure 9: Comparisons of individual simulation moments (vertical axes) and analytic
moments (horizontal axes) for random placement of mtDNA in the network (Eq. 1) for
varying proportions of cell volume inherited by the smallest daughter. Colors reflect the
proportion of parent cell volume apportioned to the daughter of interest.
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Figure 10: Comparisons of individual simulation moments (vertical axes) and analytic
moments (horizontal axes) for repulsive placement of mtDNA in the network (Eq. 15)
for varying parent cell cytoplasm proportions inherited by the smallest daughter. Colors
reflect the proportion of parent cell volume apportioned to the daughter of interest.
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