

1 Characterisation of the immune repertoire of a humanised transgenic mouse
2 through immunophenotyping and high-throughput sequencing

3

4 Richardson E^{1,2*}, Binter Š^{1*}, Kosmac M¹, Ghraichy M^{3,4}, von Niederhausern V^{3,4}, Kovaltsuk A², Galson J⁵,
5 Trück J^{3,4}, Kelly DF⁶, Deane CM², Kellam P^{1,7}, **Watson SJ¹**

6

7 ¹ Kymab, a Sanofi Company, Babraham Research Campus, Cambridge, UK

8 ² Department of Statistics, University of Oxford, Oxford, UK

9 ³ Division of Immunology, University Children's Hospital, University of Zurich, Zurich, Switzerland

10 ⁴ Children's Research Center, University of Zurich, Zurich, Switzerland

11 ⁵ Alchemab Therapeutics Ltd, Kings Cross, London, UK

12 ⁶ Department of Paediatrics, University of Oxford, Oxford, UK

13 ⁷ Department of Infectious Diseases, Faculty of Medicine, Imperial College London, UK

14

15 * Contributed equally to the study

16 Corresponding author: Simon Watson (simon.watson@sanofi.com)

17

18

19 **Abstract**

20 Immunoglobulin loci-transgenic animals are widely used in antibody discovery and increasingly in
21 vaccine response modelling. In this study, we phenotypically characterised B-cell populations from the
22 Intelliselect® Transgenic mouse (Kymouse) demonstrating full B-cell development competence.
23 Comparison of the naïve B-cell receptor (BCR) repertoires of Kymice BCRs naïve human and murine
24 BCR repertoires revealed key differences in germline gene usage and junctional diversification. These
25 differences result in Kymice having CDRH3 length and diversity intermediate between mice and
26 humans. To compare the structural space explored by CDRH3s in each species repertoire, we used
27 computational structure prediction to show that Kymouse naïve BCR repertoires are more human-like
28 than mouse-like in their predicted distribution of CDRH3 shape. Our combined sequence and
29 structural analysis indicates that the naïve Kymouse BCR repertoire is diverse with key similarities to
30 human repertoires, while immunophenotyping confirms that selected naïve B-cells are able to go
31 through complete development.

32 **Word count: 147**

33 Introduction

34 Twenty-five years of progress in genetic engineering since the first Ig transgenic mouse (M.
35 Brüggemann et al. 1989) culminated in 2014 in the insertion of the full set of variable human Ig genes
36 in mice (Lee et al. 2014). Humanised immunoglobulin (Ig) loci-transgenic animal models have proven
37 extremely useful in therapeutic antibody discovery and, more recently, in vaccine response modelling;
38 twenty of the 127 therapeutic antibodies licensed in the US or EU as of April 2022 were derived from
39 transgenic mouse platforms (data from Thera-SAbDab (Raybould et al. 2020)). Transgenic platforms
40 have also found a new application in vaccine response modelling (Sok et al. 2016; Pantophlet et al.
41 2017; Walls et al. 2020). As humanised animal models become the source of a growing number of
42 therapeutics and play an increasingly important role in the evaluation of novel vaccine candidates, it
43 is crucial to understand the degree to which their B-cell repertoires can be considered representative
44 of humans.

45 Contemporary Ig transgenic animal models vary according to the number of genes and localisation of
46 the inserted human Ig loci (Green 2014; Brüggemann et al. 2015). In Kymab's IntelliSelect® Transgenic
47 mouse (Kymouse), a complete set of human variable (V), diversity (D) and junction (J) genes of the IGH
48 locus as well as the V and J genes of the $IG\lambda$ and $IG\kappa$ loci were inserted at the sites of the endogenous
49 mouse loci. The mouse constant regions were retained, preserving downstream interactions with
50 endogenous intracellular signalling components and cell membrane Fc receptors, resulting in
51 functional, fully active chimeric antibodies. Kymice exhibit normal B-cell production and maturation
52 and the resulting B-cell receptors (BCRs) are diverse, with human-like CDRH3 lengths and evidence of
53 somatic hypermutation (Lee et al. 2014). However, the baseline phenotypic diversity in B-cells and B-
54 cell receptors (BCRs) in the Kymouse has not been fully described.

55 B cells are an integral part of the humoral immune response due to their ability to produce antibodies
56 against diverse antigens, providing protection against infection. They originate from hematopoietic
57 stem cells in the bone marrow, where they undergo several phases of antigen-independent

58 development leading to the generation of immature B cells. B cells are routinely classified based on
59 their maturation status, antibody isotype, and effector function. Ig gene rearrangement during these
60 early stages of B cell development results in the expression of a mature B cell receptor that is capable
61 of binding to antigen. This is followed by positive and negative selection processes, which are designed
62 to eliminate non-functional and self-reactive immature B cells. Surviving B cells complete antigen-
63 independent maturation in the spleen, producing immunocompetent naïve mature B cells that
64 subsequently develop into either follicular or marginal zone B cells. In response to vaccination or
65 invading microbes, antigen-specific B cells within secondary lymphoid organs differentiate into
66 antibody-producing cells, early memory cells, or rapidly proliferate and form structures known as
67 germinal centres (Allen, Okada, and Cyster 2007). Germinal centres (GCs) are inducible lymphoid
68 microenvironments that support the generation of affinity-matured, isotype-switched memory B cells
69 and antibody secreting plasma cells. Long-lived plasma cells (PCs) secrete high-affinity antibodies, and
70 memory cells can readily elicit an efficient antibody immune response upon re-exposure to the
71 immune stimuli (Corcoran and Tarlinton 2016; Weisel and Shlomchik 2017). Iterative cycles of B cell
72 hypermutation and selection within the GC leads to an accumulation of affinity-enhancing mutations
73 and ultimately to the progressive increase of serum antibody affinity, a process known as antibody
74 affinity maturation (Jacob et al. 1991). Antibody-secreting plasma cells play critical roles in protective
75 immunity on the one hand and antibody mediated autoimmune disease on the other. During immune
76 responses a small fraction of newly generated plasma cells enter either the bone marrow (BM) or the
77 lamina propria of the small intestine where they populate specialised survival niches and become long-
78 lived plasma cells (Lemke et al. 2016) thus maintaining antibody titres for extended periods.

79 The variable domain of a BCR is composed of a heavy chain and a light chain. Each of the chains in the
80 antibody has three hypervariable regions known as the complementarity-determining regions (CDRs),
81 which make most contacts with the antigen. The heavy chain locus consists of variable (V), diversity
82 (D) and joining (J) gene segments, which recombine to form the heavy chain: the first two CDRs of the
83 heavy chain, CDRH1 and CDRH2, are encoded by the V gene alone, while the third and most variable

84 CDR, CDRH3, spans the V, D and J gene junctions. The insertion of random and palindromic nucleotides
85 at the V-D and D-J junctions further contribute to the diversity of the CDRH3, ensuring binding diversity
86 to different antigens and epitopes (Xu and Davis 2000). Each of the light chain loci, kappa and lambda,
87 consist of V and J gene segments but no D gene segments, and both the germline as well as the
88 recombined chain are less diverse than their heavy chain counterparts (Collins and Watson 2018).

89 Due to the greater diversity of the heavy chain, most next-generation sequencing of BCR repertoires
90 (BCR-seq) has focused on the heavy chain; lower throughput methods exist for identifying the light
91 chain pairing (Curtis and Lee 2020). The resulting BCR sequences can be aligned to reference germline
92 gene databases to infer most likely germline gene origins and insertions or deletions at the V(D) or
93 (D)J junctions (Ye et al. 2013). Alignment of BCRs to common germline genes also allows inference
94 about clonal structure, as sequences sharing common germline gene assignments as well as homology
95 in the CDRH3 loop may be inferred to have arisen from a common progenitor B-cell (Greiff et al. 2015;
96 Yaari and Kleinstein 2015). The amino acid sequences of these heavy chains can also be functionally
97 examined through annotation with structural tools (Kovaltsuk et al. 2017; Marks and Deane 2020).
98 Changes in the pattern of CDRH3 shapes in BCR repertoires have been observed along the B-cell
99 differentiation axis in both humans and mice (Kovaltsuk et al. 2020) but the extent to which the CDRH3
100 protein shape differs between humans and mice has not been explored.

101 Here we have characterised the frequency of germinal centre B cells, memory B cells and long-lived
102 plasma cells from spleens, lymph nodes, and bone marrows of antigen-inexperienced Kymice (Lee et
103 al. 2014). The frequencies of these B cell subsets as well as the breadth and nature of their BCR
104 repertoires constitutes the first step in our understanding of how the immune system of this model
105 organism responds to different antigens, vaccines, and pathogens that are both of scientific as well as
106 therapeutic interest. Examining the nature of the naïve BCR repertoire in Kymice through both single-
107 cell and bulk sequencing and structural analysis shows the Kymouse naïve BCR repertoires are more
108 human-like in their distribution of CDRH3 shapes.

109

110 **Materials & Methods**

111 **Kymouse data**

112 Spleens, lymph nodes and bone marrows were collected from $n=20$ antigen inexperienced
113 Intelliselect® Transgenic mice (Kymice). These Kymice contain chimeric immunoglobulin loci, with
114 humanised variable domains (V_H , V_K , and V_L) and a humanised lambda constant domain (C_L), but
115 murine heavy (C_H) and kappa (C_K) constant domains (Lee et al. 2014). The Kymice were selected to
116 reduce any possible confounding effects by ensuring that: (i) there was an equal representation of
117 sexes, (ii) mice were a range of ages on culling (6-12 weeks old), and (iii) mice were selected from
118 different litters and culled over a period of 6 months.

119

120 **Lymphoid Cell Isolation and Cryopreservation**

121 Bone marrow isolated from the femurs and tibias of each Kymouse were processed to single-cell
122 suspensions by flushing the tissues with ice-cold FBS buffer and passing through 40 μ m cell strainers.
123 Spleens and inguinal lymph nodes were processed to single cell suspensions by homogenising through
124 40 μ m cell strainers with ice-cold FBS buffer and pooled prior to staining and cell sorting. All single-
125 cell suspensions were pelleted at 400 g for 10 minutes at 4°C prior to cryopreservation in 10%
126 DMSO/FBS and storage in liquid nitrogen.

127

128 **Next Generation Sequencing (NGS) Analysis of Paired V_H and V_L Sequences from Single-Cell**

129 **Sorted B Cells Derived from Kymice**

130 For each Kymouse, the spleen and inguinal lymph nodes were processed to single-cell suspensions as
131 described above before fluorescently-activated cell sorting (FACS) to recover CD19⁺ B220⁺ B cells into
132 individual wells of a 96 well plate. RT-PCR was performed to amplify the V_H and V_L domains, and
133 standard Illumina libraries were generated before sequencing on an Illumina MiSeq sequencer. The
134 Change-O pipeline (Gupta et al. 2015) was used to process the sequence data; naïve BCR sequences
135 were characterized as immature B-cells with sequences containing zero nucleotide mutations. In total,
136 $n=3,885$ paired V_H and V_L sequences were processed from the $n=20$ Kymice.

137

138 **NGS Sequence Analysis of V_H Sequences from Bulk Sorted B Cells Derived from Kymice**

139 Bone marrows from the femur and tibia of each Kymouse were processed into single-cell suspension
140 as described above. From these $n=20$ bone marrow samples, seven were FAC sorted to recover CD19⁺
141 B220⁺ B cells into a single tube. The cells were lysed and RT-PCR was performed to amplify the V_H
142 domain, followed by standard Illumina library generation, before sequencing on an Illumina MiSeq.
143 The Change-O pipeline (Gupta et al. 2015) was used to process the sequences generated by the MiSeq
144 sequencers. IgM sequences with zero mutations were selected for further analysis resulting in a total
145 of 412,493 V_H sequences across the $n = 7$ Kymice (average 58,928 range 31,905 to 100,240).

146

147 **NGS Sequence Analysis of V_H Sequences Derived from Human Samples**

148 Buffy coat samples were obtained from ten healthy individuals as described previously (Ghraichy et
149 al, 2021). In the previous study, B-cells were FAC-sorted into naïve, marginal zone, plasma and
150 switched memory cell populations. In the present study, we analysed IgM sequences from the naïve
151 subset of B-cells with no mutations. There was a total of $n=338,677$ sequences (mean: 33,867 per
152 human, range: 20,653 – 48,293).

153

154 **NGS Sequence Analysis of V_H Sequences Derived from C57BL/6 WT Mice**

155 6,763,480 IgM V_H nucleotide sequences from naïve B cells of healthy unvaccinated C57BL/6 wild-type
156 mice were downloaded from the Observed Antibody Space (OAS) (Kovaltsuk et al. 2018; Olsen, Boyles,
157 and Deane 2022). Those sequences with any nucleotide mutations were removed, and the remaining
158 sequences were down-sampled via stratified sampling aiming to preserve the original clonal structure
159 in the complete dataset. 150,000 sequences with redundancy were randomly selected from each of
160 the five C57BL/6 mice. Collapsing to unique (nucleotide) sequences resulted in a total of 268,285
161 sequences (mean: 53,657 sequences per mouse; range: 20,026-87,041).

162

163 **Clonal and diversity analysis of NGS sequence data**

164 Clonotypes are defined as sequences with common IGHV andIGHJ genes and 90% or more amino acid
165 identity across length-matched CDRH3s. Antibody sequences were assigned to clonotypes using the
166 DefineClones module of Change-O (Gupta et al. 2015) under the amino acid model.

167 Shannon diversity (H) was calculated using the *stats.entropy* function within Python's SciPy library.
168 The formula is as follows:

$$169 \quad H = - \sum_{i=1}^s p_i \ln p_i$$

170 Where p_i is the proportion of sequences in the clonotype *i* of *s* clonotypes.

171

172 **Structural annotation**

173 Sequences that IgBLAST identified as coding for a productive immunoglobulin were translated into
174 amino acids and aligned to the IMGT antibody numbering scheme (Lefranc et al. 2003) using ANARCI

175 (Dunbar and Deane 2016). IMGT CDR sequences were extracted and structurally annotated using the
176 SAAB+ version 1.01 pipeline (Kovaltsuk et al. 2020). SAAB+ uses SCALOP (Wong et al. 2019) to assign
177 each sequence's CDRH1 and CDRH2 loops to a structural canonical class and uses FREAD (Choi and
178 Deane 2010) to identify if the CDRH3 loop has a similar structure to any crystallographically-solved set
179 of 4,544 CDRH3 structures (referred to as templates, downloaded from SAbDab (Dunbar et al. 2014;
180 Schneider, Raybould, and Deane 2022) on 16th February 2022).

181 To reduce dimensionality, templates are clustered with a 0.6 Å RMSD cut-off, producing a set of 1,944
182 templates. In this set of templates, 41% of the antibody structures are of murine-origin and 37% are
183 of human-origin (**Supplementary Figure 5**). The SAAB+ pipeline outputs for each sequence the
184 canonical class of the CDRH1 and CDRH2 loops, and the Protein Data Bank (PDB) ID of the structure
185 that contains the best matched CDRH3 structure for homology modelling from the 1,944 templates.

186 As a complementary approach, we also modelled representatives of all non-singleton clonotypes in
187 each of the repertoires using a recent deep learning method, ABlooper (Abanades et al. 2022).
188 ABlooper is competitive with AlphaFold2 on the canonical CDRs and shows better performance on the
189 CDRH3 which was the target of our analysis. It is also more than 1000x faster than AlphaFold2 and was
190 therefore suitable for our large-scale analysis.

191 For full structural modelling with ABlooper, a light chain must be supplied. As we did not know the
192 cognate light chain for any of the heavy chains from bulk sequencing, all heavy chains were paired
193 with a single light chain which was selected from the paired dataset. This light chain was the most
194 commonly observed light chain in the Kymouse dataset. We selected a common light chain to
195 standardise its effect on the prediction of the heavy chain CDRs, in the absence of knowledge of the
196 true light chain.

197

198 **Humanness scoring of V_H sequences**

199 The human, Kymouse and C57BL/6 mouse V_H sequences were assigned a “humanness score” using
200 the random forest regressors from Hu-mAb (Marks et al. 2021). Sequences were first IMGT numbered
201 using ANARCI as above. While the C57BL/6 mouse and Kymouse sequences were mostly full length
202 (IMGT positions 1-128), the human sequences were in most cases missing FWR1 (IMGT positions 1-26
203 in the IMGT CDR definition). As the human sequences were non-mutated, we considered it reasonable
204 to simply fill in FWR1 according to the sequence found in the assigned germline. For the human and
205 Kymouse sequences, the RF model trained on the IGHV gene assigned by IgBLAST were used for
206 scoring, while for the murine sequences, all seven (IGHV1-7) RF models were used to score the
207 sequence and the highest score was selected. We used the IGHV-specific classification thresholds
208 reported in the Hu-mAb paper to annotate if a sequence was considered human or not (Marks et al.
209 2021).

210

211 **Immunophenotyping of Intelliselect® Transgenic mice**

212 Spleens, lymph nodes, and bone marrow from a further *n*=12 antigen-inexperienced Kymice were
213 processed to single-cell suspensions and cryopreserved as described above. Fluorescently Activated
214 Cell Sorting (FACS) of the bone marrow samples was performed using fluorescently conjugated
215 antibodies against B220, IgM, IgD, IgG1, IgG2ab, IgG3, CD8, CD4, Ly-6G, CD11c and CD138 (BD
216 Biosciences), CD19, F4/80, Sca-1 (BioLegend) and TACI (eBioscience). For the pooled spleen and lymph
217 node samples the FACS panel consisted of B220, IgM, IgD, IgG1, IgG2ab, IgG3, CD8, CD4, Ly-6G&6C,
218 CD11c and CD95 (BD Biosciences), CD19, F4/80, CD73, CD80, PD-L2 and GL7 (BioLegend). DRAQ7
219 (BioStatus) was used in all samples to distinguish live and dead cells. For flow cytometry, cells were
220 thawed from frozen, resuspended in warm 10% FBS in RPMI buffer, filtered through 40 µm cell
221 strainers and centrifuged at 400 × g for 10 minutes at 4 °C. Cells were resuspended in buffer and
222 TrueStain FcX (BioLegend) was added for 10 minutes on ice. Single cell suspensions of bone marrow
223 cells and pooled spleen and lymph node cells were stained with their respective staining cocktails for

224 30 minutes. All cells were spin washed and resuspended in buffer, filtered through a 30 μ m cell
225 strainer, followed by cell sorting on a 5-laser BD FACS Aria Fusion flow cytometer (Beckton Dickinson).

226

227 **Analysis of Flow Cytometry Data from Intelliselect[®] Transgenic mice**

228 The frequencies of the following cell types within total viable (DRAQ7) cells were determined using
229 classical FACS gating: bone marrow plasma cells (CD138⁺TACI⁺/Sca-1⁺), spleen/lymph node memory B
230 cells (B220⁺CD19⁺IgD⁻CD73⁺/CD80⁺/PDL2⁺) and spleen/lymph node germinal centre cells
231 (B220⁺CD19⁺CD95⁺GL7⁺; data not shown). Cell populations were also analysed in an unbiased manner
232 using unsupervised clustering algorithms. In brief, the raw .fcs files were imported into R (RStudio
233 version 1.2.5033 with R version 4.0.0) using CytoExploreR (version 1.0.8) and the data were
234 transformed to normalise marker intensities (logicle transform). For visualization, additional quantile
235 scaling from 0-1 was performed, fixing values less than the 1st percentile to 0.01 and values above the
236 99th percentile to 0.99 to minimise the contribution of outliers to the scaling. Cell clustering was
237 performed using the Leiden clustering algorithm (R package Monocle 2.16) and clusters were
238 visualized in two-dimensional space using UMAP (R package uwot 0.1.10). Poorly resolved clusters
239 were re-clustered, the subclusters manually merged to the first level clusters and annotated by cell
240 type.

241

242 **Data availability**

243 The sequence data is currently available in the Observed Antibody Space. Immunophenotyping data
244 will be available upon publication.

245

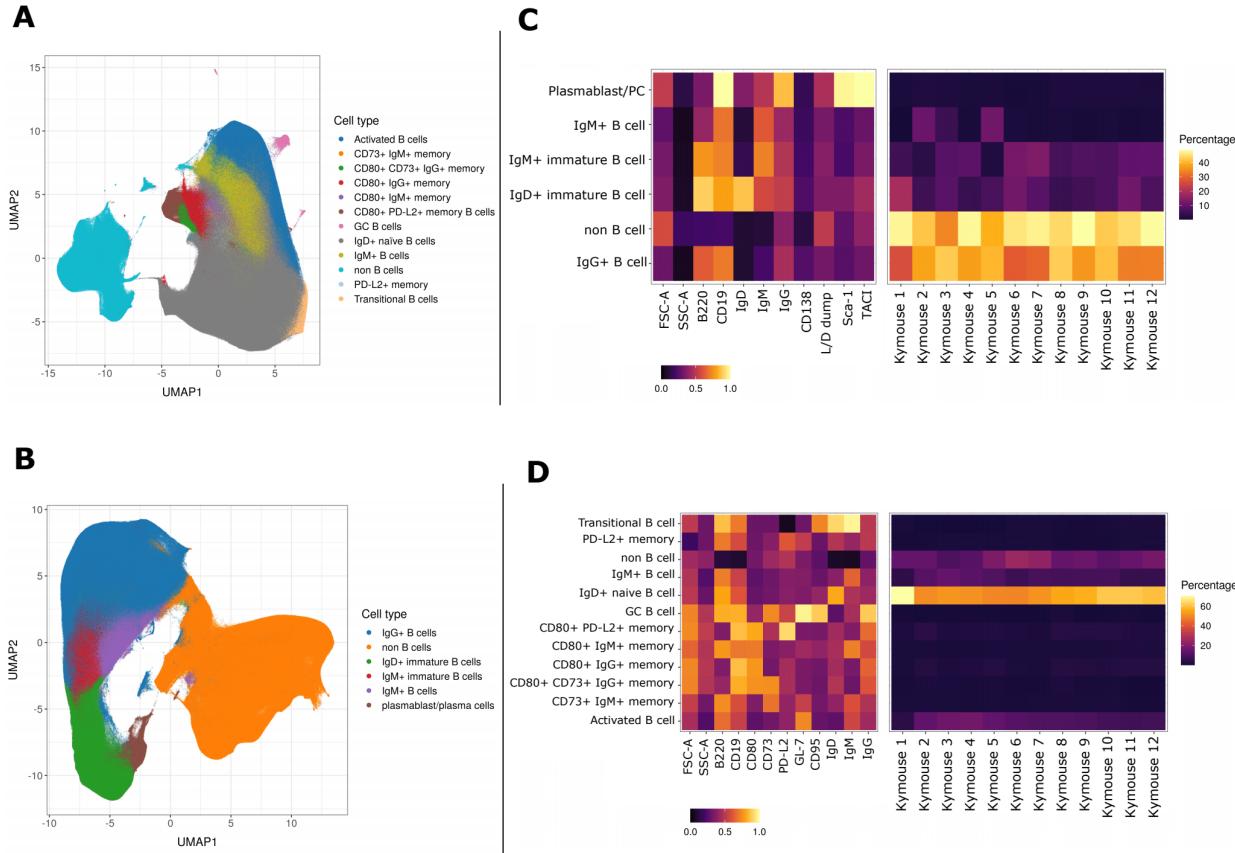
246 **Code availability**

247 The Python code used to analyse the data and generate the figures is available at
248 <https://github.com/oxpig/HumMus>.

249

250 **Results**

251 **Antigen naïve Kymice exhibit similar B cell sub-population frequencies**


252 We characterised the B cell sub-populations within spleen and lymph node samples of 12 antigen-
253 inexperienced Kymice using an 11-colour flow cytometry panel that incorporated a range of B cell
254 lineage markers to identify both murine memory and germinal centre B cell populations. A canonical
255 gating scheme organises B cells by their maturation status – from transitional B cells through naïve,
256 non-switched and ultimately class-switched memory B cells. To look at the heterogeneity of the B cell
257 subpopulations in more detail we incorporated unbiased Leiden clustering on the multi-parameter
258 FACS data. Sorted cells separated into two large clusters, B-cells and non-B-cells (**Figure 1A**). As
259 expected, within the B cell population immature isotypes (IgD and IgM) were enriched in naïve cells,
260 whereas markers CD95 and GL7 were enriched in germinal centre cells (**Figure 1C**). The murine
261 memory B cell population has been described to comprise five subpopulations defined by the
262 progressive transition from naive-like to more memory-like cells and the surface markers CD80, CD73
263 and PD-L2 have previously been reported to enable their distinction (Tomayko et al. 2010). Using a
264 low dimensional UMAP representation we observed distinct staining patterns of these markers in the
265 memory B cell compartment and were able to distinguish between 12 major B cell populations,
266 including transitional, naïve and activated as well as six distinct memory subsets. These were defined
267 as (1) PD-L2^{hi}, (2) CD73^{hi} CD80^{hi} PD-L2^{low}, (3) CD80^{low}, (4) PD-L2^{hi} CD80^{hi} CD73^{low}, (5) CD80^{hi} and (6)
268 CD73^{hi} (**Figure 1A**). Germinal centre B cells formed a small and well separated cluster whose small
269 frequency was not surprising given that these were antigen naïve animals. Based on the 3 memory
270 markers (CD80, CD73 and PD-L2) the relative frequency of the total memory B cells was 6.60% ± 2.51%,

271 and the frequency of CD95 and GL7 positive germinal centre cells was $0.18\% \pm 0.26\%$. The median
272 expression profile of each subset is shown as a heatmap (**Figure 1C**). The antigen naïve B cell
273 populations in un-immunised and non-infected Kymice are therefore normal and consistent between
274 different Kymice (**Figure 1C right panel**).

275

276 **B cells in the bone marrow are class switched with variable levels of surface BCR expression**

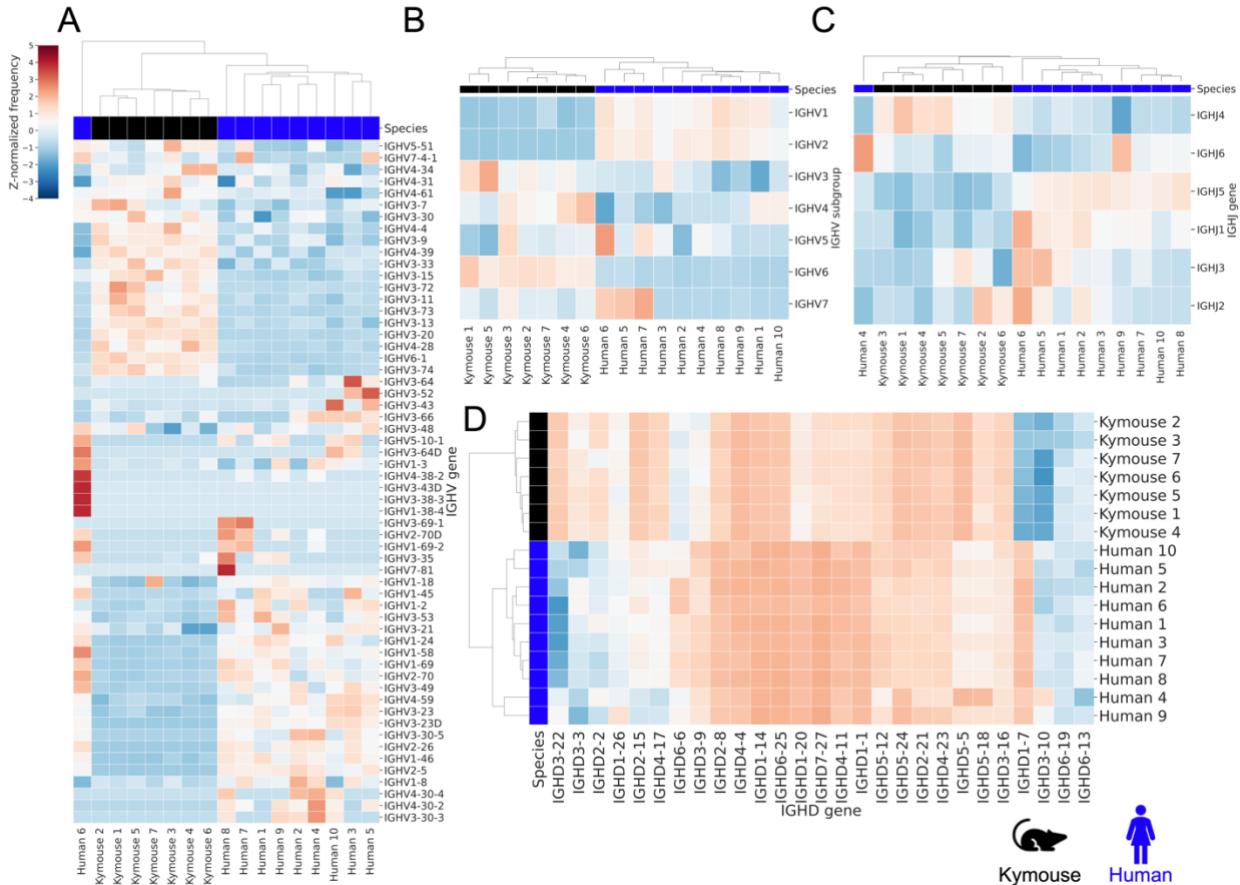
277 To understand the B cell profile beyond spleen and lymph nodes we also profiled the bone marrow
278 cells of mice. We characterized bone marrow samples using a 9-colour flow cytometry panel that
279 incorporated a range of B cell lineage markers. The staining panel was designed to identify plasma
280 cells as well as class switched B cell subsets in antigen inexperienced mice. As expected, we saw that
281 the cells separated again into two large clusters, B-cells and non-B-cells (**Figure 1B**). The expression
282 profiles of the subsets were again plotted as heatmaps showing the median expression profiles of
283 each subset (**Figure 1D**). Within the B cell cluster, we identified several discrete subsets marked by the
284 expression of different BCR isotypes. B cells were clustered into 5 distinct subpopulations, including
285 immature IgD+ and IgM+ cells, mature IgM+ and IgG+ B cells and plasma cells. The markers TACI and
286 Sca-1 were enriched in plasma cells as expected, whereas CD138, a common plasma cells marker did
287 not show a high level of separation between the different cell types. Unsurprisingly, we saw the
288 biggest separation between B cells and non B cells, and a continuum of B cell subtypes from IgD,
289 through IgM, to IgG-expressing B cells as well as a discrete cluster identified as plasma cells. The
290 frequencies of the plasma cells were low ($0.90\% \pm 0.28\%$) in comparison to other B cell subtypes,
291 perhaps not surprising given that these were antigen naïve animals.

292

293 **Figure 1: UMAP projections of sorted cell populations identified using unsupervised clustering from**
294 **spleen and lymph nodes (A) or from bone marrow samples (B). UMAP projections show a clear**
295 **separation between B-cells and non-B-cells for both sample types. The projections are coloured by the**
296 **12 resolved cell types in the spleen and lymph nodes (A) and the six resolved in the bone marrow**
297 **samples (B). Normalised and scaled marker expression and frequencies showing mouse-to-mouse**
298 **variation for each of the resolved cell types in the spleen and lymph nodes (C) or the bone marrow**
299 **samples (D). The expression profiles are homogeneous across mice.**

300

301 **The Kymouse naïve antibody sequence repertoire is more human-like than murine-like**


302 Using high-throughput sequencing we recovered 3,885 full-length paired V_H and V_L sequences and a
303 further 451,655 full-length unpaired V_H sequences from naïve B cells extracted from the spleens and
304 lymph nodes of 20 Kymice. In order to evaluate the humanness of the Kymouse naïve B cell sequence

305 repertoire, we compared these sequences to equivalent datasets of 338,677 V_H sequences from
306 human naive B cells, and 268,285 V_H sequences from C57BL/6 mice.

307 One of the most pronounced differences in heavy/light chain pairing between wild type mice and
308 humans that has been described is the usage ratio of the Ig κ and Ig λ chains in the BCRs of circulating
309 B cells. Humans have an Ig κ /Ig λ ratio of approximately 60:40 in serum and in mature B cells. Mice
310 have an Ig κ /Ig λ ratio of 95:5 in serum and 90:10 on B cells (McGuire and Vitetta 1981). We used the
311 3,885 full-length paired V_H and V_L sequences to calculate the Ig κ /Ig λ ratio in Kymice and found a ratio
312 of 51:49 (IQR: 55:45, 47:53), which is considerably closer to the human ratio than the mouse ratio.

313 We next used the unpaired V_H sequence data to determine the immunoglobulin heavy-chain gene
314 usage frequencies in Kymice and compare the usage frequency of the IGHV,IGHD, and IGHJ germline
315 genes to those in the human data. We used hierarchical clustering to compare the gene usage profiles
316 of individual Kymice and humans, building phylogenetic trees to show the relationships between the
317 individuals' gene usage profiles. Although Kymice and humans are the same in the numbers of IGHV
318 genes used the frequencies as determined by sequence abundance can differ. The hierarchical
319 clustering of the IGHV genes showed that the Kymice and humans form nearly separate monophyletic
320 clusters except for a single outlier human subject (Figure 2A). Most of the variation in IGHV gene usage
321 is explained by the IGHV gene subgroup usage: clustering by this separates humans and Kymice
322 without the outlier, with Kymice using a lower proportion of IGHV1 and IGHV2 genes compensated
323 for by increased IGHV3, IGHV4 and IGHV6 usage (**Figure 2B**).

324

325

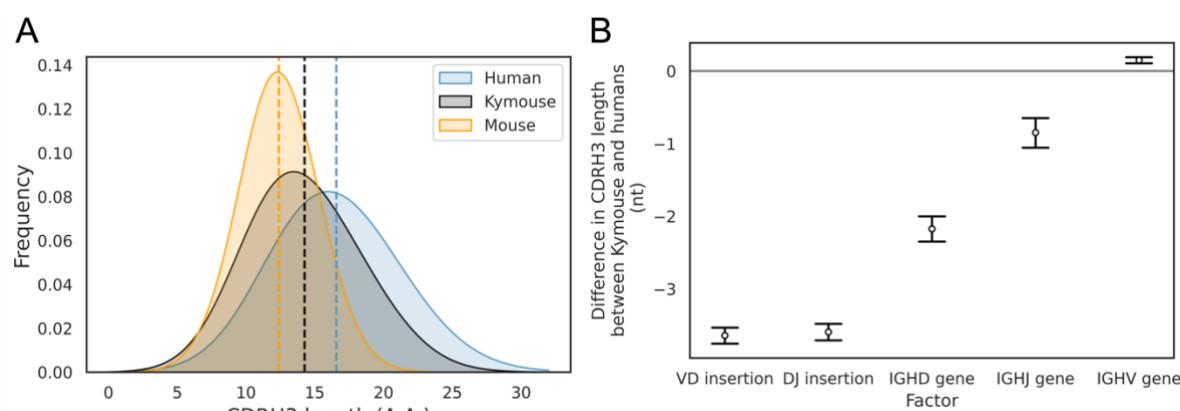
326 **Figure 2:** Gene usage clustermaps for A) IGHV genes, B) IGHV subgroups, C) IGHJ genes and D) IGHD
 327 genes. The IGHV clustermaps show a separation between human (blue) and Kymouse (black)
 328 repertoires, with lower usage of IGHV1 and IGHV2 in the Kymouse. Downstream, there are also
 329 differences in usage of IGHJ genes with a preference in the Kymouse repertoires for IGHJ4. The IGHD
 330 gene usage shows the clearest distinction.

331

332 The IGHJ gene usage profile is similar: Kymice and eight out of the ten humans form monophyletic
 333 clades with two outliers, including the outlier human subject from the IGHV gene usage clustering. On
 334 average, the Kymouse uses IGHJ4 more frequently than humans, and IGHJ5 and IGHJ1 less frequently
 335 (Supplementary Figure 1). Both the IGHV and IGHJ gene usage profiles of naïve Kymouse repertoires
 336 are more similar to one another than to any human repertoire. However, Kymice are closer to some

337 of the human repertoires than others. This therefore indicates Kymice fall within the range of human
338 IGHV andIGHJ usage frequencies.

339 The hierarchical clustering of the IGHD genes revealed that the Kymice formed a monophyletic sister
340 group distinct to that of the humans (**Figure 2e**). As can be seen from the heatmap, the IGHD germline
341 genes used by the Kymice (e.g. IGHD3-22, IGHD2-15) are infrequently used by humans and *vice versa*.


342 We compared the distribution of the CDRH3 lengths in each species' naïve repertoire (**Figure 3A**). We
343 calculated the length of the CDRH3 loop (under the IMGT antibody numbering scheme) from the
344 Kymouse, human and C57BL/6 mouse heavy-chain sequences. This revealed that Kymice have an
345 average CDRH3 length in between that of humans and mice, with a mean CDRH3 length of 14.25. In
346 comparison, the C57BL/6 mouse dataset have a mean length of 12.39 amino acids, and the human
347 dataset have a mean CDRH3 length of 16.56 amino acids. Kymouse CDRH3 loops are on average 2.36
348 aa shorter than humans (95% CI: 2.26, 2.48; p<0.001), while WT mice CDRH3 loops are on average
349 4.21 aa shorter than humans (95% CI: 4.12, 4.30; p<0.001).

350

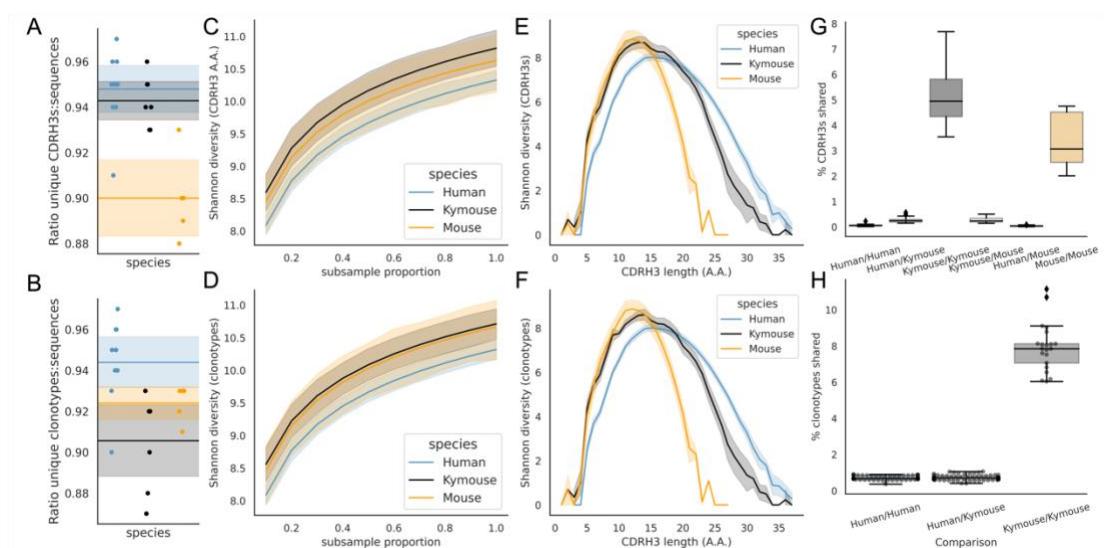
351 The length of a CDRH3 loop is determined by four main factors: (i) the choice of IGHV gene; (ii) the
352 choice of IGHD gene; (iii) the choice ofIGHJ gene; (iv) the number of nucleotides inserted or deleted
353 in the V-D and D-J junctional regions during B cell development. In order to investigate further why
354 the Kymouse tends to have shorter CDRH3 loops on average than humans, we considered each of
355 these factors in turn. We first looked at whether the differential IGHV gene usage by Kymouse had a
356 significant impact on the length of the CDRH3 loop. For each heavy-chain sequence in the human and
357 Kymouse datasets we determined the number of nucleotides that the IGHV germline gene contributes
358 to the CDRH3 loop. The results showed a statistically significant but small difference of 0.14 nt (95%
359 CI: 0.12, 0.16; p<0.001) between humans and Kymouse. Therefore, it does not appear that the
360 differential choice of IGHV between humans and Kymouse greatly affects the CDRH3 length. We next
361 investigated the effect of the differential usage of IGHD genes between humans and Kymice on the

362 length of the CDRH3 loop. This showed that the human IGHD germline genes used by the Kymouse
363 are, on average, 2.34 nt shorter than humans (95% CI: 2.26, 2.41; $p<0.001$). We then compared the
364 relative usage of the IGHJ genes of humans and Kymice (**Supplementary Figure 1**). Kymice tended to
365 use IGHJ4 (47.3% in Kymice versus 44.2% in humans) and IGHJ6 (32.8% in Kymice versus 28.6% in
366 humans) while using the other genes (IGHJ1, IGHJ2, IGHJ3, IGHJ5) slightly less frequently, in particular
367 IGHJ5 (11.1% in Kymice versus 15.1% in humans). Estimation statistics revealed that the differential
368 IGHJ gene usage between Kymouse and human resulted in a decrease in the CDRH3 length for
369 Kymouse of 0.85 nt (95% CI: 0.77, 0.94; $p<0.001$).

370 Finally, we looked at the number of nucleotide insertions in the V-D and D-J junctions in the antibody
371 heavy chains. The results showed that Kymice V-D junctions are on average 3.73 nucleotides shorter
372 than humans (95% CI: 3.68, 3.78 $p<0.001$), with a mean insertion size of 3.35 nucleotides compared
373 to 7.30 nucleotides for humans (**Supplementary Figure 2A**). Equally, the Kymice D-J junctions are on
374 average 3.68 nucleotides shorter than humans (95% CI: 3.63, 3.73; $p<0.001$), with a mean insertion
375 size of 2.91 nucleotides compared to 6.77 nucleotides for humans (**Supplementary Figure 2B**). Overall,
376 the number of junctional nucleotides inserted in the Kymouse heavy chain is 7.33 fewer than in
377 humans (95% CI: 7.25, 7.40; $p<0.001$), with an average of 7.55 in Kymice compared to 14.88 in humans.
378 These results show that the main factors that give rise to the shorter CDRH3 lengths in Kymouse
379 compared to humans are the reduced number of nucleotide insertions in the V-D and D-J junctional
380 regions, and the differential usage of IGHD germline genes between the species (**Figure 3B**).

381

382 **Figure 3:** The CDRH3 length distribution among the mouse, Kymouse and human sequences. The
383 Kymouse CDRH3 length distribution is intermediate between the mouse and human distributions (A).
384 Plus or minus indicates the standard error of the mean. We used estimation statistics to reveal that
385 the major factor leading to this reduction in CDRH3 length despite access to the same germline
386 repertoire in Kymouse is the relative lack of VD and DJ insertions (B)(Supplementary Figure 3).


387 A correlate of shorter CDRH3 length is a reduction in the theoretical CDRH3 diversity obtainable, with
388 each amino acid less in the CDRH3 leading to a further 20-fold reduction in the number of possible
389 CDRH3s. We do not expect the difference in diversity to approach this magnitude because of the
390 CDRH3 sequence patterns created by combinations of germline genes, however a reduction in the
391 non-templated insertion of nucleotides could lead to less diverse repertoires in the Kymouse.

392 To examine the diversity of the repertoires, we considered how many unique CDRH3s or clonotypes
393 can be found in a given repertoire, normalized by the total number of sequences observed. **Figure**
394 **4A** shows that the ratio of the number of unique CDRH3s to the number of sequences is comparable
395 in Kymice and humans, and that both are considerably higher than in C57BL/6 mice. When clustering
396 similar CDRH3s in combination with common IGHV andIGHJ genes (clonotypes), there are
397 comparable unique clonotypes per sequence in mice, humans and the Kymouse (**Figure 4B**). We
398 calculated the Shannon diversity of the CDRH3 and clone distributions, a measure which takes into
399 account both richness and abundance and found comparable diversity across all repertoire types
400 (**Figures 4C and 4D**). The diversity observed depends on CDRH3 length considered, with the mouse
401 and Kymouse repertoires having greater diversity at shorter lengths (peak diversity at lengths 12 and
402 13 respectively) and the human repertoires having greater diversity at lengths greater than 18 amino
403 acids (peak diversity at length 15) for both CDRH3s (**Figure 4E**) and clonotypes (**Figure 4F**). Given
404 that junctional insertions are required to reach lengths of 23 or greater in the human and Kymouse
405 data, this supports the hypothesis that the reduced junctional diversification in naïve Kymouse
406 repertoires limits CDRH3 diversity at the longest lengths, however the greater diversity at shorter

407 lengths may compensate. It is also clear that the Kymouse occupies a region in CDRH3 diversity and
408 length between wild type mice and humans.

409 Finally, we considered the CDRH3 and clonotype overlap (**Figures 4G and 4H**). The overlap among
410 CDRH3s is highest between individual mice and individual Kymice. On average 5.1% of CDRH3s were
411 shared between any two Kymice and 3.4% of CDRH3s shared between any two mice compared to
412 0.12% of CDRH3s shared between any two human subjects. Despite the greater CDRH3 diversity
413 reported for individual Kymice, over 25 times more CDRH3s are shared between pairs of Kymice on
414 average than between humans. Clonotype sharing was also higher between individual Kymice
415 (average 7.92% vs 0.84% in humans).

416

417

418 **Figure 4: Examination of diversity of human, Kymouse and murine repertoires. The top rows pertain**
419 **to exact CDRH3 (amino acids) and the bottom rows to clonotypes (same IGHV,IGHJ and greater than**
420 **90% amino acid identity across length-matched CDRH3s). At the level of CDRH3s, the Kymouse**
421 **repertoires have more unique CDRH3s per sequence sampled (A) are more diversity in their usages**
422 **(C), despite their limited VD and DJ insertion rates. Diversity is reduced relative to human sequences**
423 **at longer CDRH3 lengths which in unmutated repertoires require VD/DJ insertions to reach (E).**

424 **Kymouse repertoires show an opposite pattern in unique sampling rate and diversity when looking at**

425 *clonotypes (B and D respectively) but still show reduced diversity versus humans at longer lengths.*

426 *Overlap among CDRH3s (G) and clonotypes (H) between individuals is considerably higher in Kymice*

427 *than humans, and more comparable to mice (G).*

428

429 **The Kymouse repertoires are structurally more human-like than mouse-like**

430 Ultimately, genetic diversity is reflected in the structure of the resulting BCR and secreted antibody

431 protein. Therefore, we compared the structural similarities of the BCRs via structural annotation of

432 the CDRs. We first compared the CDRH1 and CDRH2s, which adopt a limited set of conformations

433 known as canonical classes. For both CDRH1 and CDRH2 the Kymouse repertoires group separately

434 from human repertoires, but group with human repertoires before the mouse repertoires, in their

435 usage of canonical forms (**Supplementary Figure 3**). All canonical forms are strongly predicted by IGHV

436 germline gene subgroup (**Supplementary Table 1**) especially as these sequences are non-mutated.

437 Despite the effects of the differential IGHV usage observed in humans and Kymice, this does not make

438 the Kymouse canonical class usage more similar to mice as the murine repertoires use different

439 canonical classes than either the human or humanised repertoires. Interestingly, six of the nine murine

440 IGHV germlines encode a single canonical form, H1-8-A, suggesting more limited structural diversity

441 in murine CDRH1s.

442 We then performed structural comparisons of the shapes of the human, Kymouse and mouse CDRH3s.

443 CDRH3s do not adopt canonical conformations, so we used two different approaches: firstly, structural

444 annotation which consists of comparison to a CDRH3 structural database and annotation with a

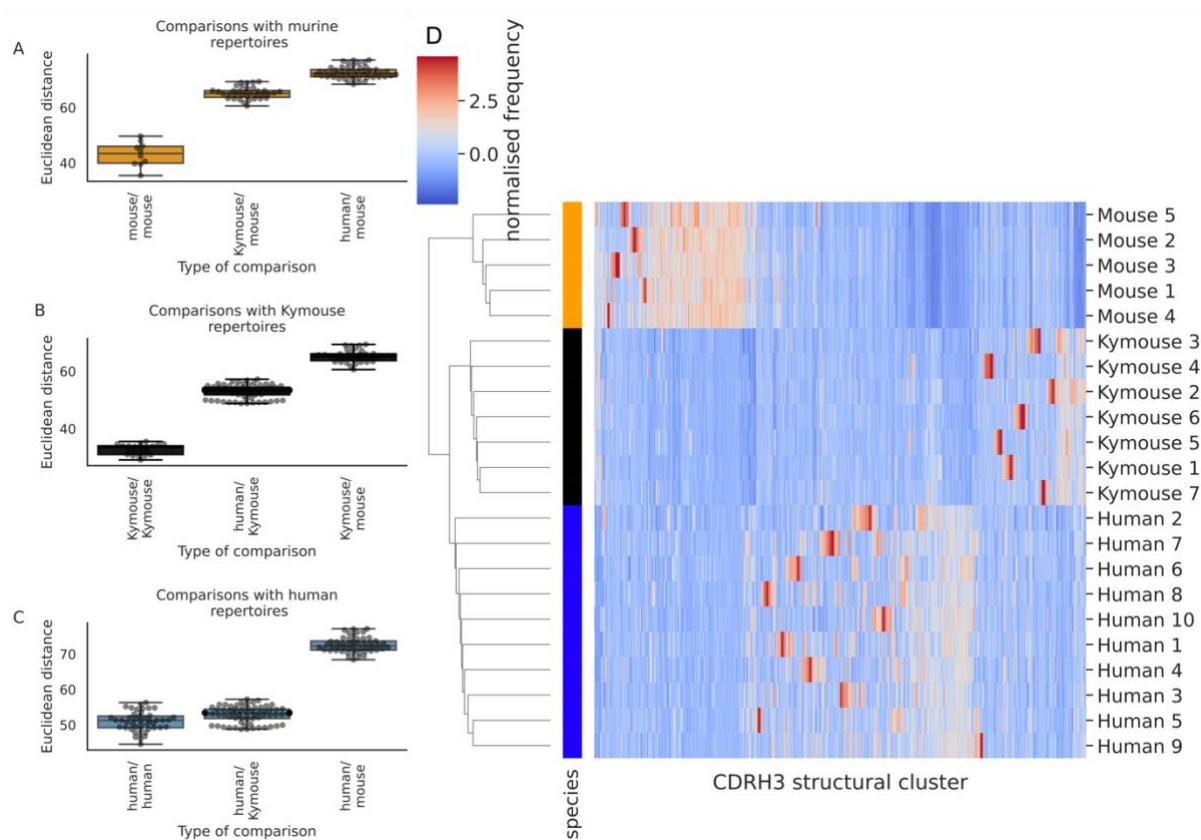
445 structural cluster ID, and secondly full CDRH3 modelling.

446 Of the 1,944 possible structural clusters in the CDRH3 structural database, 1,594 were observed in at

447 least one repertoire. The majority (1,270) of these clusters were observed in all species. There was an

448 observable difference among repertoires in the species origin of the structural clusters observed, i.e.

449 each species was biased in the structural space it tended to use. The majority of structural clusters
450 used in human and Kymouse repertoires were of human origin (57.5 and 55.0% respectively), while
451 the majority of structural clusters used in mouse repertoires were of murine origin (64.0%)
452 (**Supplementary Figure 4**).


453 As described, the CDRH3 lengths in the human dataset were on average 2.36 aa longer than those in
454 the Kymouse, and 4.21 aa longer than those in the C57BL/6 mice (**Figure 3A**). As we considered only
455 CDRH3s between length 4 and 16 in this structural analysis, this difference was reduced to a difference
456 of 0.45 amino acids between human and Kymouse repertoires (CI 0.43, 0.47) and 0.63 between human
457 and mouse repertoires (CI 0.62, 0.65). The average CDRH3 lengths of the human templates in the
458 FREAD database were longer than those in the murine templates (12.6 aa compared to 11.2 aa
459 respectively) (**Supplementary Figure 5**). We checked that the observed differences in structural
460 template usage by humans, Kymice, and C57BL/6 mice were not just reflecting differences in the
461 availability of templates at the different CDRH3 lengths. Therefore, we stratified the FREAD database
462 by CDRH3 length and ran the datasets against each CDRH3 length separately. If the preferential usage
463 of human-specific templates by humans and humanized mice, and vice-versa for mice, is simply a
464 result of random sampling from the FREAD database, we expect the ratio of the proportion of human
465 templates in human repertoires to the proportion of human templates in the FREAD database to be
466 approximately 1 across all CDRH3 lengths, and below 1 across all CDRH3 lengths for mice. Instead, we
467 see a significant enrichment (at the 1% level) of species-specific templates at multiple CDRH3 lengths.

468 The human repertoires are more structurally variable than are the humanized murine or murine
469 repertoires (**Figures 5A, B and C**). The murine repertoires are the least variable (there is the smallest
470 range of distances between any two given subjects for mice, and on average the smallest average
471 distance between pairs of subjects). All the Kymouse repertoires were structurally closer (Euclidean
472 distance in Z-normalized CDRH3 structural cluster usage) to any given human repertoire than to any
473 C57BL/6 mouse repertoire (**Figures 5A, B and C**). With no correction for sample size or for CDRH3

474 length distribution, the humanized murine and human repertoires form a monophyletic cluster that is
475 sister group to the murine repertoires (**Figure 5D**).

476 Labelling cluster members as “murine” or “human-like”, the adjusted Rand index of this clustering is
477 1.0 (perfect correspondence). We calculated Rand indices for 100 subsamples with equal numbers of
478 each CDRH3 length to control for any length effect; in all subsamples, the human and humanized
479 repertoires could be clustered separately from the murine repertoires resulting in an adjusted Rand
480 index of 1.0. Further, in all 10 subsamples, at least one human repertoire was more structurally similar
481 to a given humanized murine repertoire than to at least one other human repertoire (between 5 and
482 9 of 10 subjects per subsample).

483 In conclusion, even when adjusting for sample size and differing CDRH3 length distribution, the
484 repertoires of Kymouse are structurally more similar to human repertoires than they are to murine
485 repertoires according to the homology-based structural annotation technique.

486

487 **Figure 5:** Distance between CDRH3 structural cluster usage profiles is measured with Euclidean
488 distance in Z-normalized proportions. This is calculated pairwise between subjects and these distances
489 are clustered hierarchically. Figures A through C show these pairwise distances stratified by the type
490 of comparison. The leftmost box shows the range in distance between individuals of the same species.
491 For the mouse and Kymouse repertoires, this range is smaller than the range in distances for any other
492 species, meaning that they cluster monophyletically (D). Human repertoires have less self-similar
493 CDRH3 structural cluster usages with ranges overlapping with Kymouse repertoires. In the hierarchical
494 clustering solution with these pairwise distances that is shown in D, the human and Kymouse
495 repertoires form a monophyletic clade separately from the murine repertoires.

496

497 The species bias we observed in structural cluster usage, which is assigned via sequence similarity to
498 a structural template, meant that a template-free modelling procedure might lead to different results.
499 We modelled non-singleton clonotype representatives from humans, Kymice and mice using
500 ABlooper, then compared the resultant CDRH3s via C_α RMSD. Analogously to clustering of the CDRH3
501 template database, we performed greedy clustering with a 0.6 Å cut-off. This clustered the 43,378
502 models with 41,397 unique CDRH3s into 6,546 clusters. The modelled human CDRH3s were on average
503 longer than Kymouse CDRH3s by 0.99 amino acids (CI: 0.94, 1.05) and longer than mouse CDRH3s by
504 1.23 amino acids (CI: 1.17, 1.29). We observed a slightly different clustering by usage than via the
505 homology approach (**Supplementary Figure 6A**), with monophyly of Kymice, and Kymice and humans,
506 but not of mice. The distribution of intersubject differences was such that the human/Kymouse and
507 human/human comparison distributions are largely overlapping. Indeed, the differences between all
508 distributions were less extreme with overlap between most of the distributions (**Supplementary**
509 **Figure 6B**). The monophyly of Kymice and humans versus mice is observed when subsampling in order
510 to equalize the CDRH3 length distribution, i.e., it is not driven by differences in CDRH3 length. The
511 deep learning-based modelling approach supports the earlier finding that Kymice are more

512 structurally similar to humans than mice, and vice-versa; the extent of this similarity is greater than
513 observed with the homology modelling approach.

514 In conclusion, the sequence differences in the repertoires which were described in the germline and
515 diversity sections do impact upon the repertoire of CDR structures which are observed in the Kymouse.
516 The distribution of canonical forms in CDRH1 and CDRH2 is distinguishable, but usage is human-like.
517 In the CDRH3, both structural annotation and full structure prediction indicate that the naïve Kymouse
518 CDRH3 structural space is human-like, indicating that Kymice repertoires offer comparable structural
519 starting points for the production of antigen-specific antibodies.

520

521 **A state-of-the art humanization tool scores Kymouse sequences as fully human**

522 We next tested whether the Kymouse sequences are considered human by a state-of-the-art
523 humanization tool. We used the random forest classifiers within Hu-mAb to score heavy chain amino
524 acid sequence humanness. 100% of human and Kymouse heavy chain sequences were classified as
525 human, with the maximum humanness score assigned to 99.1% of human sequences and 98.3% of
526 Kymouse sequences. All sequences produced scores in the “Positive (High Score)” category which had
527 minimal anti-drug antibody events reported among therapeutic antibodies. No murine sequences
528 were classified as human.

529

530 **Discussion**

531 The phenotypic diversity of B cells in the spleens, lymph nodes and bone marrows of the Kymouse,
532 determined by immunophenotyping panels, showed the main immunologically relevant B cell
533 subpopulations could be identified at appropriate cell frequencies, consistent with the Kymouse being
534 fully competent for B cell development and capable of a complete humoral immune response. As

535 expected, the baseline levels of the immune relevant subsets, i.e. memory B cells and germinal centre
536 B cells in the spleen and lymph nodes as well as the plasma cells in bone marrow were low reflecting
537 the lack of immune exposure beyond commensal and environmental antigens during mouse
538 husbandry.

539 B-cells recognise antigens via the B-cell receptor (BCR) and an individual is able to generate a set of
540 high-affinity BCRs to any given antigen due to the exceptional genetic and structural diversity of B-cell
541 receptor binding sites created by recombination of germline genes, junctional diversification and
542 somatic hypermutation. While somatic hypermutation plays a key role in the development of mature
543 high affinity antibodies, the breadth of an immune response to an antigen is limited at first by the
544 diversity produced by recombination and non-template additions of the non-somatically
545 hypermutated, germline encoded heavy chain immunoglobulin genes and their pairing with similarly
546 rearranged immunoglobulin light chain genes that together comprise the BCRs in the naïve B-cells.

547 Paired V_H/V_L sequencing of the naïve Kymouse BCR repertoire revealed a near 50:50 Ig κ /Ig λ ratio
548 which more closely approximates the human Ig κ /Ig λ ratio of 60:40 than the murine Ig κ /Ig λ ratio of
549 95:5. Sequence analysis of immunoglobulin heavy chains showed that naïve Kymouse BCRs have a
550 CDRH3 length distribution that is intermediate between human and mouse repertoires (on average
551 ~14 aa versus ~16 aa for human repertoires and ~12 aa for mice). We compared the IGHV,IGHJ and
552 IGHD gene usage profiles of human and Kymouse repertoires and showed that the IGHV and IGHJ gene
553 usage profiles in Kymice are distinct from human profiles but human-like, while the IGHD gene usage
554 profiles are sufficiently different that Kymouse and human repertoires are distinct. This contrasts with
555 the previous NGS characterization of the OmniRat in which both IGHV and IGHD gene usage was
556 distinct from humans (Joyce, Burton, and Briney 2020). It is an ongoing concern that different germline
557 gene distributions may affect how representative transgenic models are of immune responses to
558 germline-targeting immunogens.

559 We then examined the extent to which the differing germline gene usage distributions contribute to
560 the shorter CDRH3s observed in Kymice. The Kymouse repertoires display a preference for shorter
561 IGHD genes: this was also observed in the NGS characterization of Omni-Rat BCR repertoires
562 suggesting that a preference for shorter IGHD genes may be common across transgenic rodent
563 platforms (Joyce, Burton, and Briney 2020). While the differences in germline gene usage distributions
564 do appear to contribute to the differing CDRH3 length distributions, a greater proportion of the effect
565 is ascribable to fewer nucleotide insertions at both the V(D) and (D)J junctions during junctional
566 diversification in the Kymouse with on average 7.33 nt fewer inserted in Kymouse over the two
567 junctions. This reduced junctional diversification in the Kymouse leads to lower diversity in longer
568 CDRH3s and greater clonotype overlap between individual Kymice than between individual humans.

569 Changes in CDRH3 structural cluster usage have been previously observed along the B cell
570 development axis (Kovaltsuk et al. 2020) and allow comparison of repertoires derived from different
571 species. Despite these genetic differences, modelled structural comparison of the human and
572 humanized repertoires to the murine repertoires, by annotating the V_H sequences with predicted
573 CDRH3 structural template clusters showed murine repertoires use mostly CDRH3 structural clusters
574 that have been identified from murine antibodies, while human and Kymouse repertoires use CDRH3
575 structural clusters identified from a more even distribution of species of which more than 50% were
576 identified from human antibodies. Further, grouping of the exact distribution of CDRH3 structural
577 clusters reveals that Kymouse structural cluster usage is closer to human usage than murine usage,
578 accounting for CDRH3 length differences. When modelling the CDRH3s (as opposed to performing an
579 approximation via structural annotation), part of the “structural distance” between the human, mouse
580 and Kymouse repertoires disappeared suggesting part of the signal observed in homology modelling
581 is due to different sequences with similar predicted shapes. This suggests that despite the observed
582 differences at the sequence level, the CDRH3 structural shapes adopted by the BCRs are within the
583 distribution of observed human shapes.

584 Finally, using the Hu-mAb humanness classifiers, all Kymouse and human sequences are classified as
585 human, meaning that naïve sequences isolated from the Kymouse are predicted to have similar
586 immunogenicity in humans to sequences isolated from humans themselves.

587 In conclusion, although naïve BCR repertoires of the Kymouse have key distinctions from human
588 repertoires at the sequence level they are comparable to the human repertoires in terms of CDRH3
589 structural usage. A number of studies have shown how the Kymouse is able to elicit equivalent
590 antibodies to those found in humans exposed to the same antigen (Sok et al. 2016; Scally et al. 2017;
591 McLeod et al. 2019; Oyen et al. 2020). This suggests that the engagement of BCRs on naïve B cells is
592 authentic, and that the structural templates available for antigen binding are indeed human-like as we
593 show here.

594 **Funding**

595 This work was funded by the Bill & Melinda Gates Foundation, OPP1159947. The funder did not play
596 any role in the study design, data collection and analysis, decision to publish, or preparation of the
597 manuscript. E.R. is funded by the Medical Research Council [grant number: MR/R015708/1].

598

599

600

601

602

603

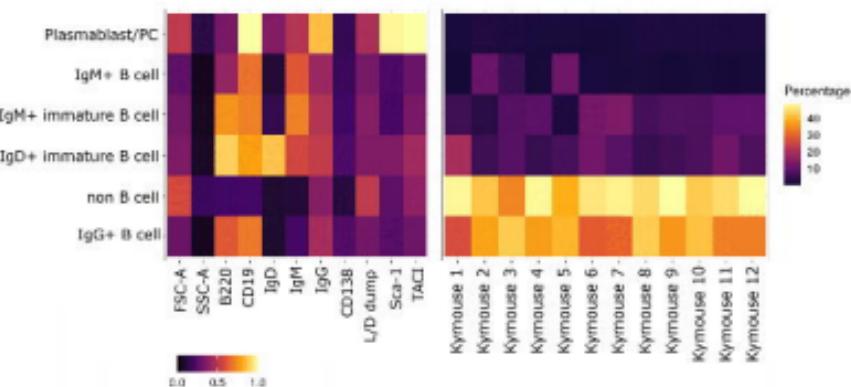
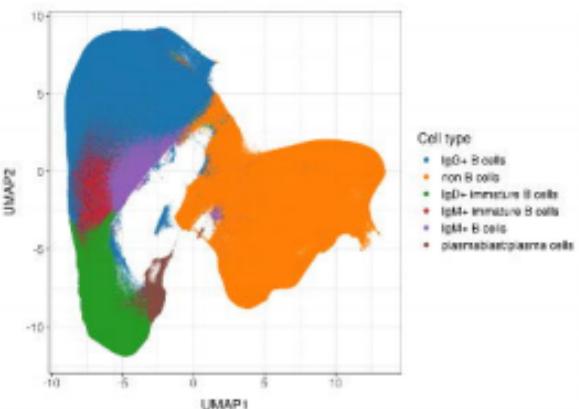
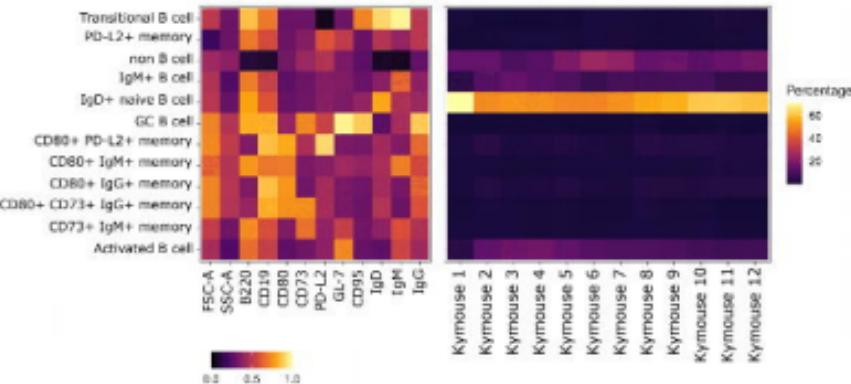
604

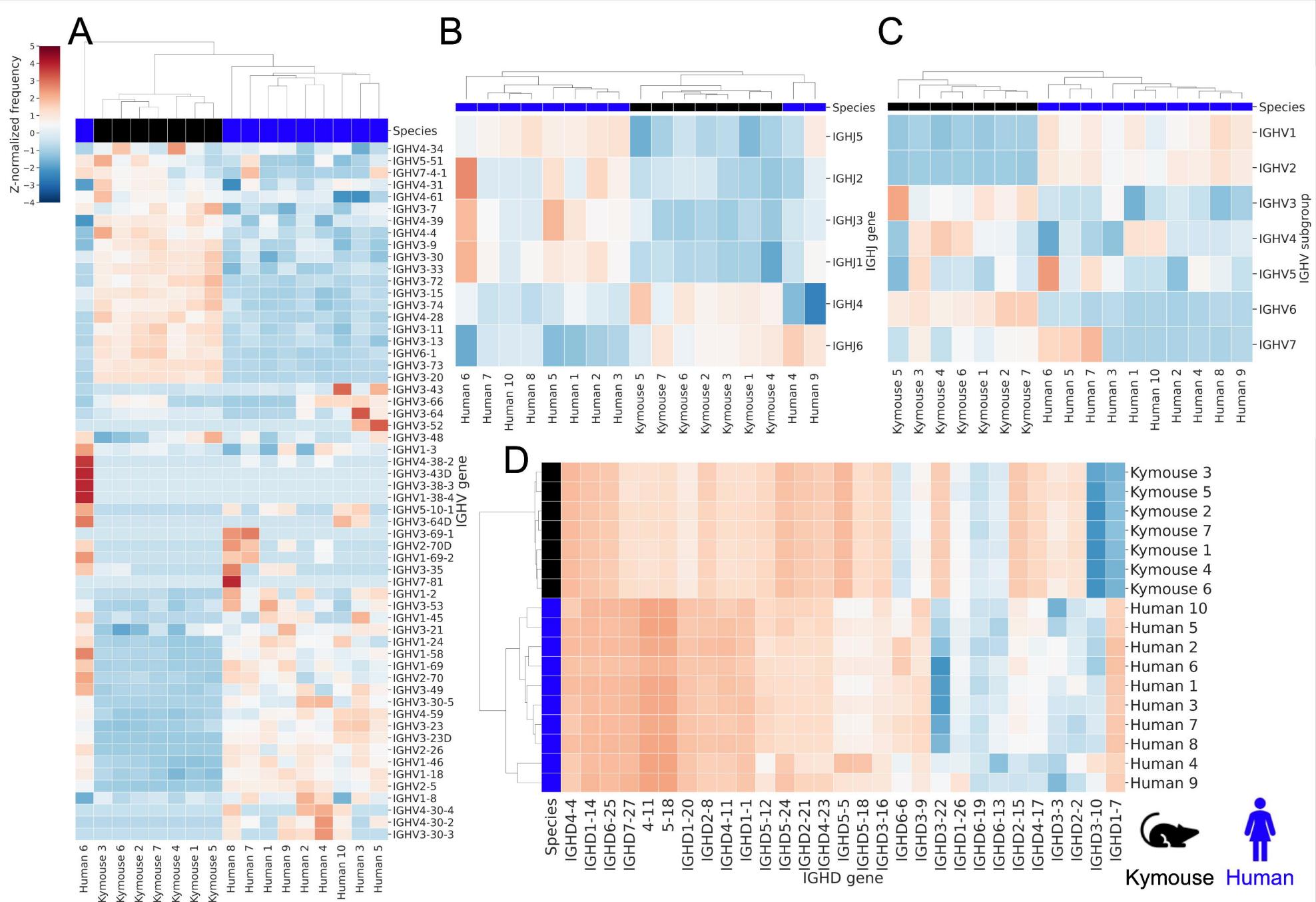
605 References

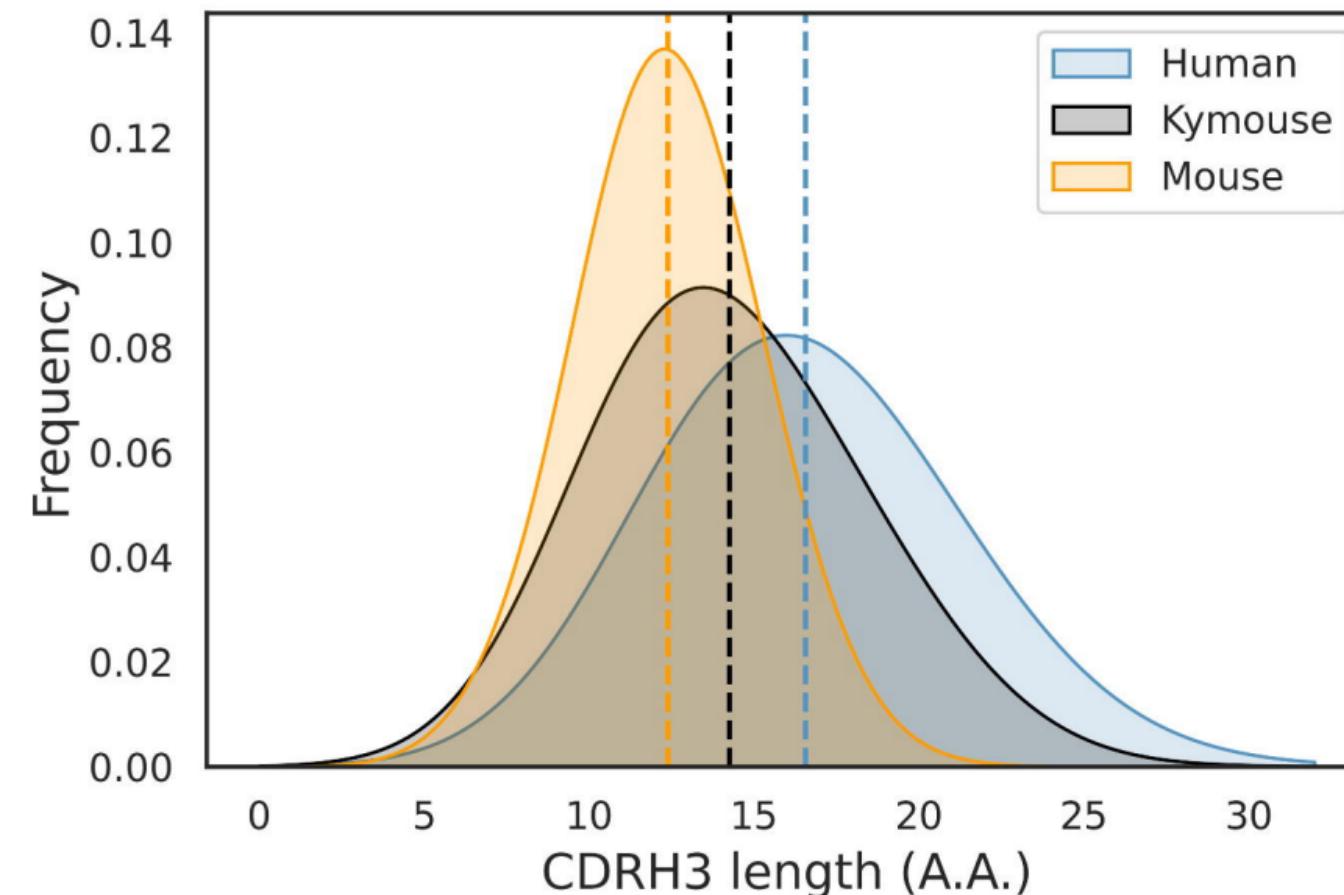
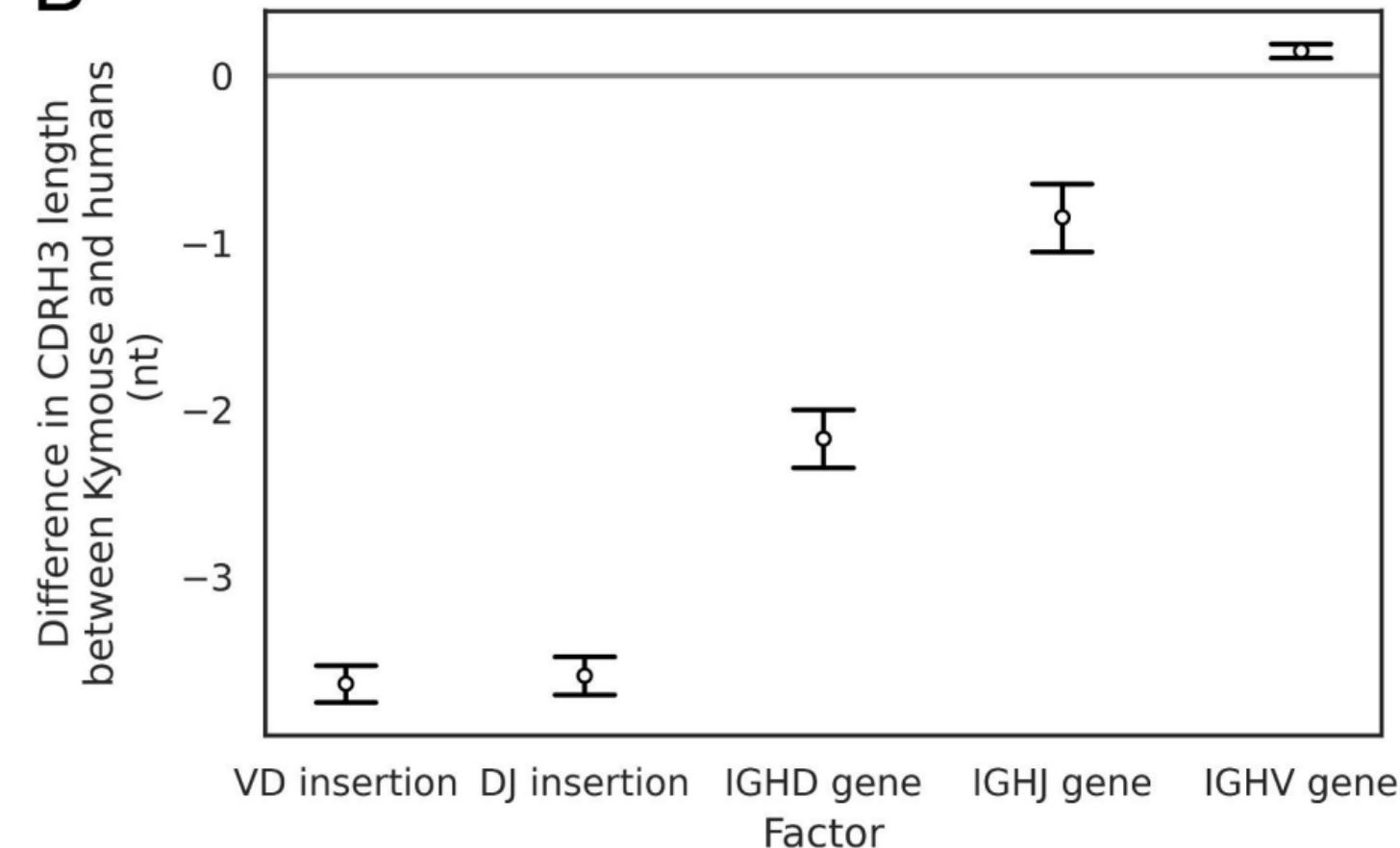
- 606 Abanades, Brennan, Guy Georges, Alexander Bujotzek, and Charlotte M Deane. 2022. 'ABlooper:
607 Fast Accurate Antibody CDR Loop Structure Prediction with Accuracy Estimation'.
608 *Bioinformatics* 38 (7): 1877–80. <https://doi.org/10.1093/bioinformatics/btac016>.
- 609 Allen, Christopher D. C., Takaharu Okada, and Jason G. Cyster. 2007. 'Germinal-Center Organization
610 and Cellular Dynamics'. *Immunity* 27 (2): 190–202.
611 <https://doi.org/10.1016/j.jimmuni.2007.07.009>.
- 612 Brüggemann, M., H. M. Caskey, C. Teale, H. Waldmann, G. T. Williams, M. A. Surani, and M. S.
613 Neuberger. 1989. 'A Repertoire of Monoclonal Antibodies with Human Heavy Chains from
614 Transgenic Mice'. *Proceedings of the National Academy of Sciences of the United States of
615 America* 86 (17): 6709–13. <https://doi.org/10.1073/pnas.86.17.6709>.
- 616 Brüggemann, Marianne, Michael J. Osborn, Biao Ma, Jasvinder Hayre, Suzanne Avis, Brian
617 Lundstrom, and Roland Buelow. 2015. 'Human Antibody Production in Transgenic Animals'.
618 *Archivum Immunologiae et Therapiae Experimentalis* 63 (2): 101–8.
619 <https://doi.org/10.1007/s00005-014-0322-x>.
- 620 Choi, Yoonjoo, and Charlotte M. Deane. 2010. 'FREAD Revisited: Accurate Loop Structure Prediction
621 Using a Database Search Algorithm'. *Proteins: Structure, Function, and Bioinformatics* 78 (6):
622 1431–40. <https://doi.org/10.1002/prot.22658>.
- 623 Collins, Andrew M., and Corey T. Watson. 2018. 'Immunoglobulin Light Chain Gene Rearrangements,
624 Receptor Editing and the Development of a Self-Tolerant Antibody Repertoire'. *Frontiers in
625 Immunology* 9: 2249. <https://doi.org/10.3389/fimmu.2018.02249>.
- 626 Corcoran, Lynn M, and David M Tarlinton. 2016. 'Regulation of Germinal Center Responses, Memory
627 B Cells and Plasma Cell Formation—an Update'. *Current Opinion in Immunology*, Lymphocyte
628 development and activation * Tumour immunology, 39 (April): 59–67.
629 <https://doi.org/10.1016/j.coi.2015.12.008>.
- 630 Curtis, Nicholas C., and Jiwon Lee. 2020. 'Beyond Bulk Single-Chain Sequencing: Getting at the Whole
631 Receptor'. *Current Opinion in Systems Biology* 24 (December): 93–99.
632 <https://doi.org/10.1016/j.coisb.2020.10.008>.
- 633 Dunbar, James, and Charlotte M. Deane. 2016. 'ANARCI: Antigen Receptor Numbering and Receptor
634 Classification'. *Bioinformatics* 32 (2): 298–300.
635 <https://doi.org/10.1093/bioinformatics/btv552>.

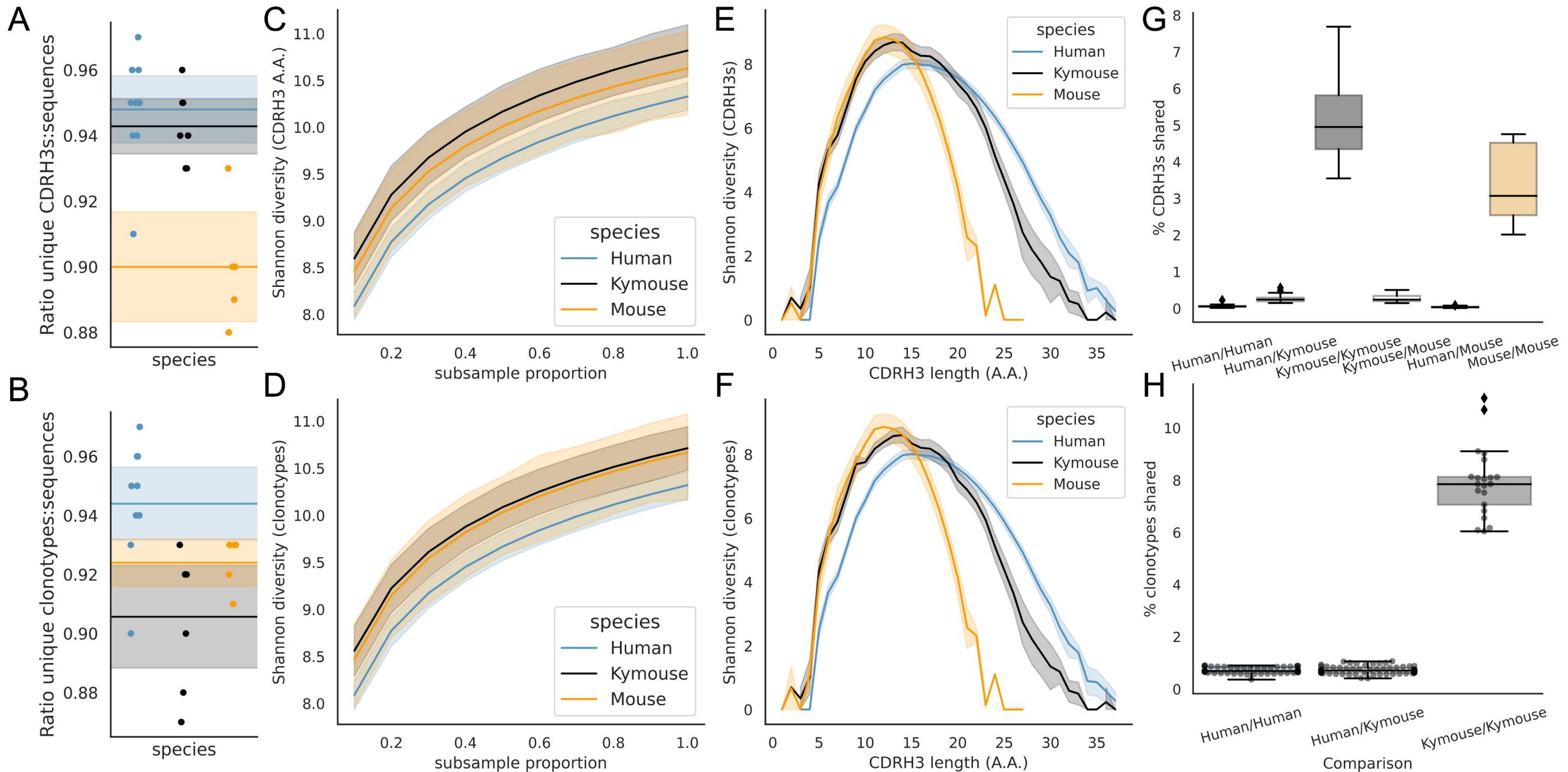
- 636 Dunbar, James, Konrad Krawczyk, Jinwoo Leem, Terry Baker, Angelika Fuchs, Guy Georges, Jiye Shi,
637 and Charlotte M. Deane. 2014. 'SAbDab: The Structural Antibody Database'. *Nucleic Acids*
638 *Research* 42 (D1): D1140–46. <https://doi.org/10.1093/nar/gkt1043>.
- 639 Green, Larry L. 2014. 'Transgenic Mouse Strains as Platforms for the Successful Discovery and
640 Development of Human Therapeutic Monoclonal Antibodies'. *Current Drug Discovery*
641 *Technologies* 11 (1): 74–84. <https://doi.org/10.2174/15701638113109990038>.
- 642 Greiff, Victor, Enkelejda Miho, Ulrike Menzel, and Sai T. Reddy. 2015. 'Bioinformatic and Statistical
643 Analysis of Adaptive Immune Repertoires'. *Trends in Immunology* 36 (11): 738–49.
644 <https://doi.org/10.1016/j.it.2015.09.006>.
- 645 Gupta, Namita T., Jason A. Vander Heiden, Mohamed Uduman, Daniel Gadala-Maria, Gur Yaari, and
646 Steven H. Kleinstein. 2015. 'Change-O: A Toolkit for Analyzing Large-Scale B Cell
647 Immunoglobulin Repertoire Sequencing Data'. *Bioinformatics* 31 (20): 3356–58.
648 <https://doi.org/10.1093/bioinformatics/btv359>.
- 649 Jacob, Joshy, Garnett Kelsoe, Klaus Rajewsky, and Ursula Weiss. 1991. 'Intraclonal Generation of
650 Antibody Mutants in Germinal Centres'. *Nature* 354 (6352): 389–92.
651 <https://doi.org/10.1038/354389a0>.
- 652 Joyce, Collin, Dennis R. Burton, and Bryan Briney. 2020. 'Comparisons of the Antibody Repertoires of
653 a Humanized Rodent and Humans by High Throughput Sequencing'. *Scientific Reports* 10 (1):
654 1–9. <https://doi.org/10.1038/s41598-020-57764-7>.
- 655 Kovaltsuk, Aleksandr, Konrad Krawczyk, Jacob D. Galson, Dominic F. Kelly, Charlotte M. Deane, and
656 Johannes Trück. 2017. 'How B-Cell Receptor Repertoire Sequencing Can Be Enriched with
657 Structural Antibody Data'. *Frontiers in Immunology* 8.
658 <https://doi.org/10.3389/fimmu.2017.01753>.
- 659 Kovaltsuk, Aleksandr, Jinwoo Leem, Sebastian Kelm, James Snowden, Charlotte M. Deane, and
660 Konrad Krawczyk. 2018. 'Observed Antibody Space: A Resource for Data Mining Next-
661 Generation Sequencing of Antibody Repertoires'. *The Journal of Immunology* 201 (8): 2502–
662 9. <https://doi.org/10.4049/jimmunol.1800708>.
- 663 Kovaltsuk, Aleksandr, Matthew I. J. Raybould, Wing Ki Wong, Claire Marks, Sebastian Kelm, James
664 Snowden, Johannes Trück, and Charlotte M. Deane. 2020. 'Structural Diversity of B-Cell
665 Receptor Repertoires along the B-Cell Differentiation Axis in Humans and Mice'. *PLOS*
666 *Computational Biology* 16 (2): e1007636. <https://doi.org/10.1371/journal.pcbi.1007636>.
- 667 Lee, E-Chiang, Qi Liang, Hanif Ali, Luke Bayliss, Alastair Beasley, Tara Bloomfield-Gerdes, Laura
668 Bonoli, et al. 2014. 'Complete Humanization of the Mouse Immunoglobulin Loci Enables

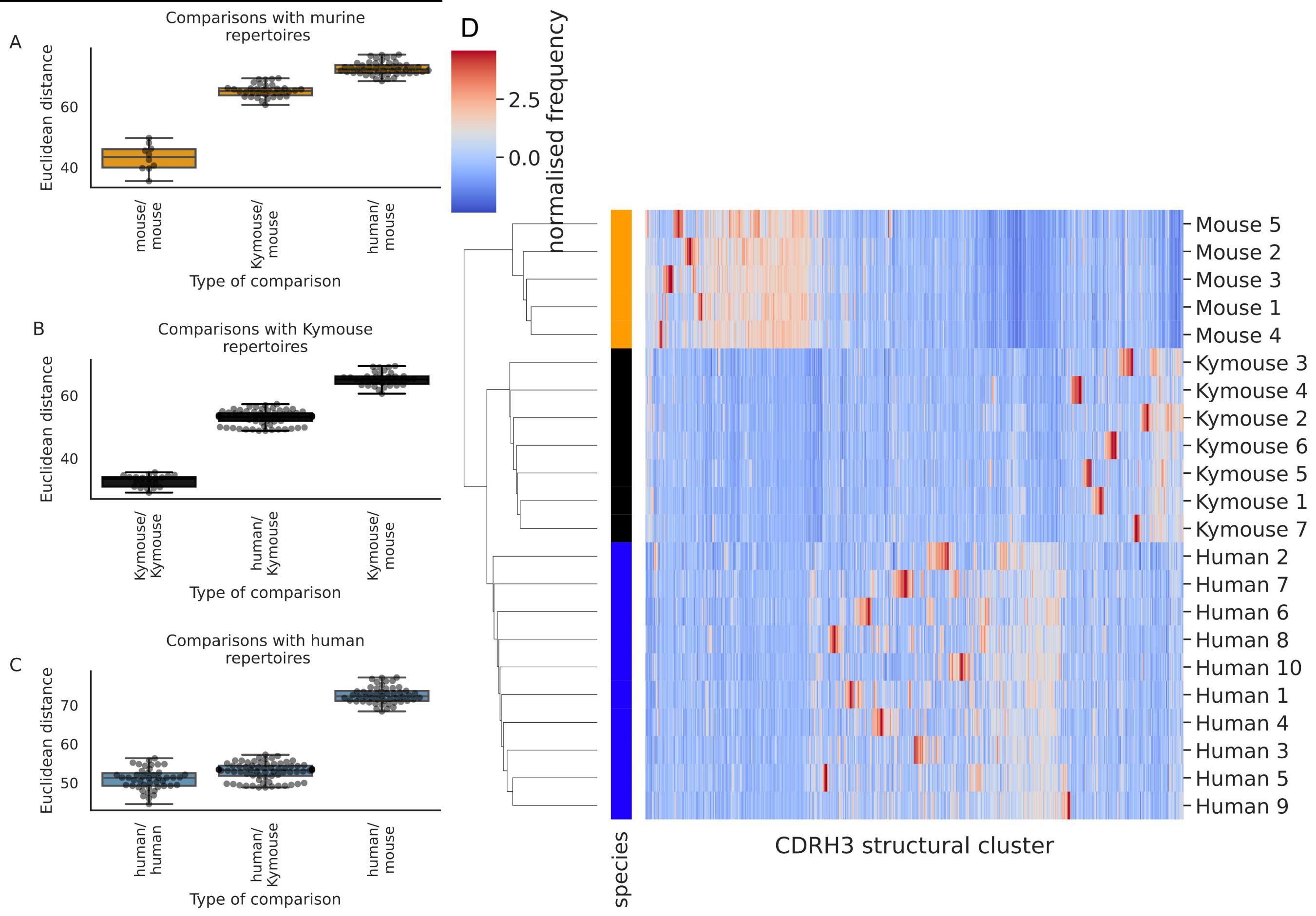
- 669 Efficient Therapeutic Antibody Discovery'. *Nature Biotechnology* 32 (4): 356–63.
670 <https://doi.org/10.1038/nbt.2825>.
- 671 Lefranc, Marie-Paule, Christelle Pommié, Manuel Ruiz, Véronique Giudicelli, Elodie Foulquier, Lisa
672 Truong, Valérie Thouvenin-Contet, and Gérard Lefranc. 2003. 'IMGT Unique Numbering for
673 Immunoglobulin and T Cell Receptor Variable Domains and Ig Superfamily V-like Domains'.
674 *Developmental & Comparative Immunology* 27 (1): 55–77. [https://doi.org/10.1016/S0145-305X\(02\)00039-3](https://doi.org/10.1016/S0145-305X(02)00039-3).
- 675 Lemke, A., M. Kraft, K. Roth, R. Riedel, D. Lammerding, and A. E. Hauser. 2016. 'Long-Lived Plasma
676 Cells Are Generated in Mucosal Immune Responses and Contribute to the Bone Marrow
677 Plasma Cell Pool in Mice'. *Mucosal Immunology* 9 (1): 83–97.
678 <https://doi.org/10.1038/mi.2015.38>.
- 679 Marks, Claire, and Charlotte M. Deane. 2020. 'How Repertoire Data Are Changing Antibody Science'.
680 *The Journal of Biological Chemistry* 295 (29): 9823–37.
681 <https://doi.org/10.1074/jbc.REV120.010181>.
- 682 Marks, Claire, Alissa M Hummer, Mark Chin, and Charlotte M Deane. 2021. 'Humanization of
683 Antibodies Using a Machine Learning Approach on Large-Scale Repertoire Data'.
684 *Bioinformatics*, no. btab434 (June). <https://doi.org/10.1093/bioinformatics/btab434>.
- 685 McGuire, K. L., and E. S. Vitetta. 1981. 'Kappa/Lambda Shifts Do Not Occur during Maturation of
686 Murine B Cells.' *The Journal of Immunology* 127 (4): 1670–73.
- 687 McLeod, Brandon, Kazutoyo Miura, Stephen W. Scally, Alexandre Bosch, Ngan Nguyen, Hanjun Shin,
688 Dongkyoon Kim, et al. 2019. 'Potent Antibody Lineage against Malaria Transmission Elicited
689 by Human Vaccination with Pfs25'. *Nature Communications* 10 (1): 4328.
690 <https://doi.org/10.1038/s41467-019-11980-6>.
- 691 Olsen, Tobias H., Fergus Boyles, and Charlotte M. Deane. 2022. 'Observed Antibody Space: A Diverse
692 Database of Cleaned, Annotated, and Translated Unpaired and Paired Antibody Sequences'.
693 *Protein Science* 31 (1): 141–46. <https://doi.org/10.1002/pro.4205>.
- 694 Oyen, David, Jonathan L. Torres, Phillip C. Aoto, Yevel Flores-Garcia, Špela Binter, Tossapol
695 Pholcharee, Sean Carroll, et al. 2020. 'Structure and Mechanism of Monoclonal Antibody
696 Binding to the Junctional Epitope of Plasmodium Falciparum Circumsporozoite Protein'.
697 *PLOS Pathogens* 16 (3): e1008373. <https://doi.org/10.1371/journal.ppat.1008373>.
- 698 Pantophlet, Ralph, Nino Trattnig, Sasha Murrell, Naomi Lu, Dennis Chau, Caitlin Rempel, Ian A.
699 Wilson, and Paul Kosma. 2017. 'Bacterially Derived Synthetic Mimetics of Mammalian
700 Oligomannose Prime Antibody Responses That Neutralize HIV Infectivity'. *Nature
701 Communications* 8 (1): 1601. <https://doi.org/10.1038/s41467-017-01640-y>.




- 703 Raybould, Matthew I. J., Claire Marks, Alan P. Lewis, Jiye Shi, Alexander Bujotzek, Bruck Taddese, and
704 Charlotte M. Deane. 2020. 'Thera-SAbDab: The Therapeutic Structural Antibody Database'.
705 *Nucleic Acids Research* 48 (D1): D383–88. <https://doi.org/10.1093/nar/gkz827>.
- 706 Scally, Stephen W., Brandon McLeod, Alexandre Bosch, Kazutoyo Miura, Qi Liang, Sean Carroll, Sini
707 Reponen, et al. 2017. 'Molecular Definition of Multiple Sites of Antibody Inhibition of
708 Malaria Transmission-Blocking Vaccine Antigen Pfs25'. *Nature Communications* 8 (1): 1568.
709 <https://doi.org/10.1038/s41467-017-01924-3>.
- 710 Schneider, Constantin, Matthew I J Raybould, and Charlotte M Deane. 2022. 'SAbDab in the Age of
711 Biotherapeutics: Updates Including SAbDab-Nano, the Nanobody Structure Tracker'. *Nucleic
712 Acids Research* 50 (D1): D1368–72. <https://doi.org/10.1093/nar/gkab1050>.
- 713 Sok, Devin, Bryan Briney, Joseph G. Jardine, Daniel W. Kulp, Sergey Menis, Matthias Pauthner,
714 Andrew Wood, et al. 2016. 'Priming HIV-1 Broadly Neutralizing Antibody Precursors in
715 Human Ig Loci Transgenic Mice'. *Science (New York, N.Y.)* 353 (6307): 1557–60.
716 <https://doi.org/10.1126/science.aah3945>.
- 717 Tomayko, Mary M., Natalie C. Steinel, Shannon M. Anderson, and Mark J. Shlomchik. 2010. 'Cutting
718 Edge: Hierarchy of Maturity of Murine Memory B Cell Subsets'. *The Journal of Immunology*
719 185 (12): 7146–50. <https://doi.org/10.4049/jimmunol.1002163>.
- 720 Walls, Alexandra C., Brooke Fiala, Alexandra Schäfer, Samuel Wrenn, Minh N. Pham, Michael
721 Murphy, Longping V. Tse, et al. 2020. 'Elicitation of Potent Neutralizing Antibody Responses
722 by Designed Protein Nanoparticle Vaccines for SARS-CoV-2'. *Cell* 183 (5): 1367-1382.e17.
723 <https://doi.org/10.1016/j.cell.2020.10.043>.
- 724 Weisel, Florian, and Mark Shlomchik. 2017. 'Memory B Cells of Mice and Humans'. *Annual Review of
725 Immunology* 35 (1): 255–84. <https://doi.org/10.1146/annurev-immunol-041015-055531>.
- 726 Wong, Wing Ki, Guy Georges, Francesca Ros, Sebastian Kelm, Alan P. Lewis, Bruck Taddese, Jinwoo
727 Leem, and Charlotte M. Deane. 2019. 'SCALOP: Sequence-Based Antibody Canonical Loop
728 Structure Annotation'. *Bioinformatics* 35 (10): 1774–76.
729 <https://doi.org/10.1093/bioinformatics/bty877>.
- 730 Xu, John L, and Mark M Davis. 2000. 'Diversity in the CDR3 Region of VH Is Sufficient for Most
731 Antibody Specificities'. *Immunity* 13 (1): 37–45. [https://doi.org/10.1016/S1074-7613\(00\)00006-6](https://doi.org/10.1016/S1074-7613(00)00006-6).
- 733 Yaari, Gur, and Steven H. Kleinstein. 2015. 'Practical Guidelines for B-Cell Receptor Repertoire
734 Sequencing Analysis'. *Genome Medicine* 7 (1): 121. <https://doi.org/10.1186/s13073-015-0243-2>.


736 Ye, Jian, Ning Ma, Thomas L. Madden, and James M. Ostell. 2013. 'IgBLAST: An Immunoglobulin
737 Variable Domain Sequence Analysis Tool'. *Nucleic Acids Research* 41 (W1): W34–40.
738 <https://doi.org/10.1093/nar/gkt382>.



739


740


741

A**C****B****D**

A**B**

