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Highlights

e We use MEG to show that speech intelligibility differentially impacts the temporal
evolution of neural speech tracking.

e TRF responses around 200 ms show the strongest relationship with behaviour.

e Relating TRF effects to parameterized coherence spectra using FOOOF suggests that

M50+rr and M200+¢ reflect shifts in which speech features are tracked over time.

Abstract

Listening to speech with poor signal quality is challenging. Neural speech tracking of
degraded speech has been used to advance the understanding of how brain processes and
speech intelligibility are interrelated, however the temporal dynamics of neural speech
tracking are not clear. In the present MEG study, we thereby exploited temporal response
functions (TRFs) and generated signal-degraded speech to depict the temporal evolution of
speech intelligibility modulation on neural speech tracking. In addition, we inter-related facets
of neural speech tracking (e.g., speech envelope reconstruction, speech-brain coherence,
and components of broadband coherence spectra) to endorse our findings in TRFs. Our TRF
analysis yielded marked temporally differential effects of vocoding: reduction of intelligibility
went along with large increases of early peak responses (~50-110 ms, M50+g¢), but strongly
reduced responses around 175-230 ms (M200+grg). For the late responses 315-380 ms
(M3507ge), the maximum response occurred for degraded speech that was siill
comprehensible then declined with reduced intelligibility. Furthermore, we related the TRF
components to our other neural “tracking® measures and found that M50z and M200+x play
a differential role in the shifting center frequency of the broadband coherence spectra.
Overall, our study highlights the importance of time-resolved computation and
parametrization of coherence spectra on neural speech tracking and provides a better

understanding of degraded speech processing.
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1. Introduction

Listeners process speech under a variety of adverse conditions in daily life (Mattys et al.,
2012), which could be external (e.g., “cocktail party”) or internal (e.g., hearing damage).
However, how the neural dynamics of speech processing in such challenging conditions
evolve remains unclear. A popular approach to systematically manipulate speech
intelligibility—and possibly mimicking the experience of cochlear implant (Cl) users—in normal
hearing individuals is by using noise-vocoded speech (Friesen et al., 2001; Rosen et al.,
2013). This approach filters the speech signal into a given number of channels or bands
(typically between 1 and 16 channels), resulting in reduced spectral information while
temporal information is preserved. This manipulation allows to parametrically modulate
speech intelligibility (Shannon et al., 1995) and to relate features of the signal to neural

activity.

The high temporal resolution of electroencephalography (EEG) and
magnetoencephalography (MEG) can be exploited to quantify how temporal fluctuations of
speech and neural signals align together, a process often described as “neural speech
tracking“. Most studies (e.g., Ding & Simon, 2012; Fiedler et al., 2019; Zion Golumbic et al.,
2013), including those investigating the effects of vocoding, have focused on the speech
envelope. Since the envelope of e.g. a target speaker can be easily obtained, neural tracking
using M/EEG is an attractive option to study brain activity also during complex listening
situations such as background noise or multi-speaker scenarios. Speech-brain coherence is
likely the most established measure of neural tracking (Hauswald et al., 2020; Peelle et al.,
2013; Schmidt et al., 2021). However, system identification approaches, such as temporal
response functions (TRFs; Crosse et al., 2016; Ding et al., 2014; Kraus et al., 2021) and
stimulus reconstruction (Nogueira et al., 2019; Verschueren et al., 2019), have been gaining
a lot of popularity. TRFs especially yield interesting temporal information on the relationship
between stimulus and neural activity, which goes beyond the “static* coherence measure.

Interestingly, these measures are rarely reported together.

Speech envelope reconstruction yielded higher accuracies for healthy listeners as compared
to Cl users and was also increased for attended speech (Nogueira et al., 2019). Additionally,
speech envelope reconstruction works better in Cl individuals with good speech rehabilitation
(Nogueira et al., 2019; Verschueren et al., 2019). Overall, these findings suggest stronger

neural tracking relates to higher speech intelligibility. However, when studying individuals with
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hearing loss, Decruy et al. (2020) observed higher envelope reconstruction accuracy in
participants with mild to severe sensorineural hearing loss than age-matched normal hearing
adults. Studying TRFs during vocoded speech has shown stronger responses at early
latencies (~50 ms) for less intelligible speech (Ding et al., 2014; Kraus et al., 2021) and at later
latencies for attended speech (Kraus et al., 2021). The notion that the mapping of speech
intelligibility onto neural tracking is not straight-forward is also supported by studies using
speech-brain coherence. For example, Peelle et al. (2013) and Schmidt et al. (2021) showed
that the coherence decreased linearly as the speech intelligibility declined, whereas
Hauswald et al. (2020) showed an inverted-U-shaped pattern. In the latter study, the highest
coherence was observed in the still comprehensible, degraded speech rather than the clear
speech. Computing cross-correlation between speech envelopes and neural activities,
Millman et al. (2015) and Baltzell et al. (2017) did not observe an effect of speech intelligibility,
whereas an effect of prior knowledge was found in Baltzell et al. (2017). Overall, current
findings using different “flavors® of neural tracking do not point to a consistent effect of

vocoded speech.

Here, we utilized MEG and had our participants listen to speech at different vocoding levels.
We applied the TRF method to explore how 6 levels of vocoded speech (Figure 1) modulate
the neural speech tracking with fine-grained temporal resolution. As expected, participants’
behavioral performance declined as speech intelligibility deteriorated. Interestingly, our TRF
results showed that degraded speech modulates the neural speech tracking at three intervals
in differential ways: Responses at 50-110 ms (M50+ge) and 175-230 ms (M200+gr¢) generally
captured whether speech was vocoded or not. Late responses around 315-380 ms (M350+ge)
were strongest at medium vocoding levels as compared to clear and less intelligible speech.
To complement our findings in TRF, we also computed speech envelope reconstruction,
speech-brain coherence, and periodic components (peak center frequency, peak bandwidth,
peak height) and aperiodic components (exponent, offset) of broadband coherence spectra
(Schmidt et al., 2021). Relating the TRF components to those neural measures, we found that
M50+sr and M200+sr were correlated with the center frequency of the broadband coherence
spectra in a different direction. These results suggest that changes in TRF sensitive to speech
intelligibility decreases reflect not only sensory gain or general attentional modulations but

also shifts in which speech features are tracked.
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2. Materials and Methods

All data used in this study were also reported as Study 2 in Hauswald et al. (2020). The
duration of the MEG experiment was ~75 mins (preparation included) and the behavioral
experiment was ~7 mins. The behavioral experiment was also conducted in the MEG

chamber without recording of MEG signals.
2.1 Participants

Twenty-four individuals [11 females, mean age = 26.4 + 5.7 (SD), age range = 18-45 years]
were recruited in the MEG experiment. They were native German speakers, reported normal
hearing and no history of psychological or neurological disease, and were eligible for MEG
recordings (i.e., without ferromagnetic metals in or close to their bodies). Sixteen of these
individuals [7 females, mean age = 27.3 + 6.8 (SD), age range = 18-45 years] also participated
in the behavioral experiment. All the participants provided informed consent, and were
compensated monetarily or with course credit. The recruitment and experiment procedure
was in accordance with the Declaration of Helsinki and approved by the Ethics Committees

of the Department of Psychology, University of Salzburg.
2.2 Stimuli

In both the MEG and behavioral experiments, participants were instructed to listen to audio
files from audiobooks and to maintain visual fixation on a cross centered on screen for the
duration of each trial (Figure 1A). We used a within-subjects design. There were six conditions
in both experiments: original, 7-, 5-, 3-, 2-, or 1-channel (ch) noise-vocoded (Figure 1B). The
speech vocoding was done using the vocoder toolbox (Gaudrain, 2016) for MATLAB. For the
7-,5-, 3-,2-, 1-ch vocoding levels, the waveform of each audio stimulus was passed through
two Butterworth filters with a range of 200-7000 Hz and then further bandpass-filtered into
the corresponding frequency analysis bands. For each band, a sinusoidal carrier was
generated, and the frequency of the sine wave was equal to the center frequency of the
analysis filter. Amplitude envelope extraction was done with half-wave rectification and low-
pass filtered at 250 Hz. The amplitude-modulated noise bands from all the channels were
then combined to produce the vocoded speech. The root mean square of the resulting signal

was adjusted to that of the original signal.

In the MEG experiment, 24 audio files were created from recordings of a female German

native speaker reading Goethe’s “Das Marchen” (1795). Lengths of stimuli varied between 15
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s and 180 s, with two stimuli of 15s,30s,60s,120 s, 150 s, and 12 of 180 s. Each stimulus
ended with a two-syllable noun within the last four words in the last sentence. The assignment
of stimuli to conditions in the MEG experiment was controlled in order to obtain a similar
overall length of stimulus presentation (~400 s) in each condition. The order of the stimuli did
not follow the order of the original story. The order of conditions was pseudorandomized
according to a latin square design. Three stimuli were presented in one block after which a
short break was offered, resulting in eight blocks. Each block was followed by a self-
determined break. At the end of each auditory stimulus, participants were required to choose
the noun in the last sentence from two two-syllable nouns on the screen. Following the
response, they could self-initiate the next trial via a button press. The syllable rate of the 24
audio files varied between 4.1 and 4.5 Hz with a mean of 4.3 Hz, which was computed with

a custom script from de Jong & Wempe (2009) using Praat (Boersma & Weenink, 2019).

In the behavioral experiment, 48 audio files were created from recordings of another female
German native speaker reading a German version of Antoiné St. Exupery’s “The little prince”
(1943) written by Grete and Josef Leitgeb (1956). Each stimulus contained one sentence
(length between 2-15 s) and ended with a two-syllable noun within the last four words. Similar
to the MEG experiment, participants were asked to choose the last noun they heard between

two nouns on the screen. Again, the order of conditions was pseudorandom.

Stimulus presentation was controlled using a MATLAB-based objective psychophysics
toolbox (Hartmann & Weisz, 2020) built based on the Psychtoolbox (Brainard, 1997; Kleiner
et al., 2007; Pelli, 1997). Auditory stimuli were presented binaurally using MEG-compatible
pneumatic in-ear headphones (SOUNDPixx, VPixx technologies, Canada). The trigger-sound
delay of 16 ms was measured via the Black Box Toolkit v2 and was corrected during
preprocessing of MEG data. Participants’ responses were acquired via a response pad

(TOUCHPIxx response box, VPixx technologies, Canada).
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Figure 1. (A) Example trial of the MEG and behavioral experiment. Participants started self-
paced and listened to the audiobook with eye fixation on the cross. At the end of the trial, two
nouns were presented on the screen. Participants had to choose which noun was the one they
heard from the last sentence. (B) An exemplary original audio segment with the corresponding
envelopes and with the envelopes from the other vocoded conditions. The envelope from the
original audio is essentially identical to the envelopes from the vocoded audio on power
level.(C) The hit rate declined as the speech intelligibility decreased. Bars represent 95%
confidence intervals. prr < .05*, prar < .01**, prgr < .001***

2.3 Data acquisition and analyses
2.3.1 Extraction of the acoustic speech envelope

For computation of the temporal response functions and stimulus reconstruction, we
extracted the acoustic speech envelope from all auditory stimuli using the Chimera toolbox
(Smith et al., 2002), with which five frequency bands in the range of 200 to 4000 Hz were
constructed as equidistant on the cochlear map. Sound stimuli were band-pass filtered
(forward and reverse) in 5 bands using a 4th-order Butterworth filter. For each band,
envelopes were calculated as absolute values of the Hilbert transform and were averaged
across bands to obtain the full-band envelope. Envelopes for all 6 conditions were processed
with this procedure and used for the following TRF, stimulus reconstruction, and coherence

analysis.

To determine the envelope modulation rate, custom Matlab scripts from Ding et al. (2017)
were used. The audio files were chunked into 10-s duration segments, resulting in 306
segments per condition. After calculating a Fast Fourier Transformation (FFT), the global
maximum value of each 306 power spectrum was taken and then averaged as the envelope
modaulation rate. The envelope modulation rate of the 24 audio files in the original, 7-ch, 5-
ch, 3-ch, 2-ch, and 1-ch vocoded condition was 5.61 Hz, 5.53 Hz, 5.27 Hz, 5.23 Hz, 4.93 Hz,
and 4.83 Hz, respectively. A main effect of vocoding was observed [x?(5) = 206.0, p = 1.83 x
10, Kendall’s W = 0.134, Friedman test], in line with Schmidt et al. (2021).
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2.3.2 MEG acquisition and preprocessing

MEG signals were recorded at a sampling rate of 1000 Hz using a 306-channel Triux MEG
system (Elekta-Neuromag Ltd., Helsinki, Finland) with 102 magnetometers and 204 planar
gradiometers in a magnetically shielded room (AK3B, Vakuumschmelze, Hanau, Germany).
The MEG signal was online high-pass and low-pass filtered at 0.1 Hz and 330 Hz respectively.
Prior to the recording, individual head shapes were digitized for each participant including
fiducials (nasion, bilateral pre-auricular points) and at least 300 points on the scalp using a
Polhemus Fastrak system (Polhemus, Vermont, USA). A signal space separation algorithm
implemented in the Maxfilter software (version 2.215) provided by the MEG manufacturer was
used to remove external noise from the MEG signal (mainly 16.6 Hz from Austrian local train
power and 50 Hz plus harmonics from power line) and realign data across different blocks to
an individual common head position (based on the measured head position at the beginning

of each block).

Data analysis was done using the Fieldtrip toolbox (Oostenveld et al., 2011) and in-house-
built scripts. Firstly, a low-pass filter at 40 Hz using a finite impulse response (FIR) filter with
Kaiser window was applied to continuous MEG data. Then, the data were resampled to 200
Hz to save computational power and were epoched into 2-second segments to increase the
signal-to-noise ratio. Around 1% of those 2-second segments were excluded as the
corresponding auditory stimuli contained silent periods of more than 1 second. With the
Fieldtrip automatic artifact rejection algorithm, we rejected trials with z-value higher than 100
before conducting independent component analysis (ICA). Using ICA, we identified and
removed components corresponding to blinks, eye movements, cardiac activities, and
residual noise from local train power. On average 7.6 + 2.7 (SD) components were removed.
The automatic artifact rejection algorithm was applied again to reject trials with z-value higher

than 50.

For the further TRF (Section 2.3.3) and envelope reconstruction analyses (Section 2.3.5),
another band-pass filter between 0.5 and 8 Hz was applied to the data (FIR filter with Kaiser
window). For the coherence analysis, we re-segmented the preprocessed data into 4-sec

segments to increase frequency resolution.
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2.3.3 Temporal response functions

The TRF analysis was done using the mTRF toolbox Version 2.0 (Crosse et al., 2016). TRFs
were estimated by mapping speech features (e.g., envelopes, spectrograms) to neural
responses of M/EEG. The mapping from stimulus to neural response is also known as
“forward” modeling. The TRFs provide sensor-specific predictions and can indicate how a
change of a stimulus feature (speech envelope) affects time-resolved neural activity at a
certain location. In the context of a sensory system where the output is recorded by N
recorded channels, we can assume that the instantaneous neural response r(t,n), which
samples at times t = 1... T and at channel n, can be modeled over a convolution of the
stimulus property, s(t), with a channel-specific TRF, TRF (t,n). The TRF, TRF (t,n), describes
this transformation for a specified range of time lags, The response, r(t,n), can be modeled
as: r(t,n) = Y; TRF(t,n)s(t—1) + &(t,n). The &(t,n) is the residual response at each
channel. Here, the TRF was estimated using ridge regression as follows, written in matrix
format: TRF = (STS+ AI) ~'STr.Where S is the lagged time series of the stimulus, I is the
identity matrix, and 4 is the regularization parameter (Crosse et al., 2016). The TRF was
estimated over time lags ranging from -150 to 450 ms. In a 5-fold cross-validation procedure,
trained TRFs are used to predict the left-out MEG response based on the corresponding
speech envelope. The predicted response is then compared with the recorded neural data to
assess MEG prediction accuracy. To optimize the model for predicting speech envelope, the
values of the regularization parameter (1) between 1 and 10°was tuned using a leave-one-
out cross-validation procedure. The A value that produced the highest MEG prediction
accuracy, averaged across trials and channels, was selected as the regularization parameter
in each condition per participant. To increase signal to noise ratio, baseline normalization was
applied using the time interval from -40 to 0 ms as baseline interval and computing the
absolute change in TRF estimates with respect to the baseline interval. For further TRF
sensor-level statistical analysis, we only used the gradiometers and calculated the combined

planar gradient of the TRF estimates.

2.3.4 Source Projection of Temporal Response Functions

To transform the TRF sensor data into source space, we used a template structural magnetic
resonance image (MRI) from Montreal Neurological Institute (MNI) and warped it to the

individual head shape (Polhemus points) to match the individual fiducials and head shape
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landmarks. A 3-dimensional grid covering the entire brain volume of each participant with a
resolution of 1 cm was created based on the standard MNI template MRI. We then used a
mask to keep only the voxels corresponding to the gray matter (1,457 voxels). The aligned
brain volumes were further used to create realistic single-shell head models and lead field
matrices (Nolte, 2003). By using the lead fields and a common covariance matrix (from all 2-
second segments), common linearly constrained minimum variance (LCMV, Van Veen et al.,
1997) beamformer spatial filter weights were computed based on an average covariance
matrix estimated across all epochs. The regularization parameter was set to 20%. We then

applied the spatial filter to the sensor-level TRF data.

2.3.5 Speech envelope reconstruction

The speech envelope reconstruction was also done by using the mTRF toolbox (Crosse et
al., 2016). We used a backward decoding model which uses a linear filter or decoder that
optimally combines the MEG signals of different sensors in order to reconstruct the speech
envelope. The decoder, g(z,n), represents the linear mapping from the neural response,
r(t,n), back to the stimulus, s(t). Reconstructed stimulus (speech envelope), s (t) can be
model as: s (t) =Y, Y. r(t+1,n)g(r,n).Analogous to the TRF approach, the
decoder is computed as follows: g = (RTR + AI) ~'RTs, where R is the lagged time series

of the response matrix, .

The steps to obtain our measurement of neural speech tracking using this reconstruction
method are the following. Firstly, the speech envelopes and MEG signals were down-
sampled to 50 Hz to reduce the processing time. Secondly, we implemented a 5-fold cross-
validation procedure and trained a linear decoder that combines the signals of all MEG
channels and their time-shifted versions (integration window: -150-450 ms) on the MEG
responses to the auditory stimuli. The decoder was then applied to the MEG responses to
obtain reconstructed envelopes. The accuracy of reconstruction was measured by

correlating the reconstructed envelope with the original envelope.

2.3.6 Speech-brain phase coherence

We directly projected preprocessed sensor space data to source space using LCMV

beamformer filters to obtain time series data of each brain voxel (Van Veen et al., 1997). The
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procedure of source projection is comparable to those for the TRF analysis in section 2.3.4.
For calculating coherence between each brain voxel and the speech envelope, we then
applied a frequency analysis to the 4-sec segments of all 6 conditions (original, 7-, 5-, 3-, 2-,
1-channel vocoded) using multi-taper frequency transformation (dpss taper: 1-25 Hz in 0.25

Hz steps, 4 Hz smoothing, no baseline correction).

In addition to canonical coherence analysis, we also looked into two sets of components of
the coherence spectrum: periodic components (peak center frequency, peak bandwidth,
peak height) and aperiodic components (aperiodic exponent, aperiodic offset) (Donoghue et
al., 2020; Schmidt et al., 2021). These components were calculated using the FOOOF module
with Python to compute aperiodic estimates and Gaussian model fits (Donoghue et al., 2020).
The coherence data from 1 to 15 Hz was extracted from voxels in which the significant
degradation effect was observed. The peak and aperiodic components of the coherence data
were computed per voxel of each participant. The parameters used for modeling were from
default setting (e.g., peak_width_limits: (0.5 12); max_n_peaks: inf; peak_threshold: 2.0). If R2
(between the input spectrum and the full model fit) of the residual model or error of the full
model fit differed from the rest by more than 3 standard deviations, the result from the voxel
was dropped. Peak and aperiodic components were then averaged across the rest of the

voxels for each participant.

2.3.7 Statistical analysis

For statistical comparisons, we first verified whether data distribution violated normality using
the Shapiro-Wilk test (all Ps > 0.5) and whether the data contained outliers with a 1.5
interquartile range criterion. We used parametric tests for data that obey normal distribution
and outliers free; otherwise, non-parametric tests were used. If not mentioned specifically,
multiple comparisons were corrected by using the false discovery rate method (FDR,

Benjamini & Hochberg, 1995).

For the behavioral hit rates, the Friedman test was used to test the speech degradation effect
across conditions. Paired Wilcoxon signed-rank tests were used to compare the hit rates
between conditions. One-sample Wilcoxon signed-rank tests were used to test the hit rates

against chance level (50%).

For the TRF sensor-level data, non-parametric cluster-based permutation tests (Maris &

Oostenveld, 2007) implemented in the FieldTrip toolbox (Oostenveld et al., 2011) were used.
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The dependent sample F-statistic (“depsamplesFunivariate”) was used for cluster formation
when analyzing the main effect of speech degradation with 0.05 alpha level. The cluster-level
statistic via the Monte Carlo approximation with 0.05 alpha level was calculated as the
maximum of the cluster-level summed F-values of each cluster with a minimum of 3
neighboring channels. The Monte-Carlo estimation was based on 10,000 random partitions,

and the time window of interest was defined from 0 to 400 ms.

For the TRF source-level data, we used time windows from the clusters showing significant
effects with the cluster-based permutation test in sensor-level analysis and ran the F-statistic
where we averaged over the time window for each condition and compared the average
across conditions. For contrast between conditions, we extracted TRF estimates from voxels

with significant effect and ran paired Wilcoxon signed-rank tests.

For the stimulus reconstruction data, the correlation coefficient which represents
reconstruction accuracy was Fisher z transformed for further statistical testing. Repeated-
measure one-way ANOVA was used to test the degradation effect. Paired t-tests were used

to compare the hit rates between conditions.

For the coherence data, the dependent sample F-statistic was used for cluster formation
when analyzing the main effect of speech degradation with a 0.05 alpha level. The cluster-
level statistic via the Monte Carlo approximation with 0.05 alpha level was calculated as the
maximum of the cluster-level summed F-values of each cluster with a minimum of 3
neighboring channels. The Monte-Carlo estimation was based on 10,000 random partitions
and the frequency window of interest was defined from 2 to 7 Hz. Paired Wilcoxon signed-rank

tests were used for comparison between conditions.

For the above statistical tests, the corresponding effect size was calculated. For repeated-
measure one-way ANOVA, partial eta square (n,?) was provided: n,? = 0.01 indicates a small
effect; ny,? = 0.06 indicates a medium effect; n,? = 0.14 indicates a large effect. For paired t-
tests, Cohen’s d (d) was provided: d = 0.2 indicates a small effect; d = 0.5 indicates a medium
effect; d = 0.8 indicates a large effect. For the Friedman test, the Kendall’'s W (W) was
provided: W = 0.1 indicates a small effect; W = 0.3 indicates a medium effect; W = 0.5
indicates a large effect. For paired Wilcoxon signed-rank test and one-sample Wilcoxon
signed-rank test, r was calculated as Z statistic divided by the square root of the sample
size.: r = 0.1 indicates a small effect; r = 0.3 indicates a medium effect; r = 0.5 indicates a

large effect.
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To better understand functional characteristics of the TRF components, we calculated
repeated measures correlations between TRF components and behavior hit rate, stimulus
reconstruction accuracy as well as coherence results. The rmcorr function in the rmcorr
package (Bakdash & Marusich, 2017) was used to calculate the correlation coefficient, 1,000-
repetition bootstrapped 95% confidence interval, and p-value. Only the statistical tests using
the Fieldtrip toolbox were conducted with MATLAB; the others were run with R software

(version 3.6.2, R Development Core Team, 2019).

3. Results

3.1 Behavioral performance declines with decreased speech intelligibility

Sixteen of 24 healthy participants participated in both MEG and behavioral sessions, listening
to audiobooks with 6-level of vocoded conditions (Figure 1; original, 7-, 5-, 3-, 2-, and 1-
channel vocoded). At the end of each audio presentation, participants were required to
choose which noun is the last noun they heard from the two nouns on the screen. We pooled
the behavioral responses from the MEG session and the behavioral session (Figure 1C),
which resulted in 12 behavioral responses in each condition. Participants’ task performance
decreased as the intelligibility of the audio stimuli dropped. The mean hit rate was 100.0% =+
0% (SD) for the original stimuli, 88.5% + 11.3% for the 7-ch vocoded, 83.3% + 14.9% for the
5-ch vocoded, 65.6% = 19.0% for the 3-ch vocoded, 58.9% =+ 14.1% for the 2-ch vocoded,
and 47.9% + 11.6% for the 1-ch vocoded. A speech degradation effect was found across
the six conditions [x*(5) = 62.0, p = 4.69 x 1072, Friedman test, Kendal's W = 0.775].
Comparison within the six conditions showed that the hit rate for original stimuli was higher
than all the other conditions (all pr < 0.01, pairwise Wilcoxon signed-rank test, all effect size
r > 0.80). The 7-ch vocoded condition had higher hit rates than 3-, 2-, and 1-ch conditions
(all prsr < 0.01, all r > 0.25). The 5-ch condition had higher hit rates than 3-, 2-, and 1-ch
conditions (all psr < 0.01, all r > 0.60). The 3-ch condition had higher hit rates than the 1-ch
condition (prr = 0.01, r = 0.67). The 2-ch condition had higher hit rates than the 1-ch
conditions (o = 0.034, r = 0.53). Except for the 1-ch vocoded condition (o= 0.38, r = 0.23,
one-sample Wilcoxon signed-rank test), all the other conditions showed above-chance hit

rates (all p < 0.03, all r > 0.56).
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3.2 Temporal response functions show differential effects of vocoding on neural speech

tracking

To investigate how a loss of spectral resolution influences speech tracking in a fine-grained
temporal manner, we computed the temporal response functions (TRFs) between the speech

envelope and the MEG signals in each condition from 24 participants.

The mean global field power in Figure 2A characterizes temporal evolution of TRF estimates
in each condition. To investigate the effects of degraded speech on TRF, we ran a cluster-
based permutation test with a time window of interest from 0 to 400 ms and observed a main
effect of speech degradation in six clusters. These six clusters revealed bilateral effects in three
time windows respectively (Figure 2A topographies): around 50-110 ms (termed as M50+,
Poiuster1 = 1.0 X 104, Peusterz = 0.033), around 175-230 ms (termed as M200+re, Peiusters = 0.003,
Peusters = 0.021), and around 315-380 ms (termed as M350+gr, Peiusters = 0.001, Peisters = 0.035).

We then projected the TRF sensor result to the source level (Figure 2B) and extracted TRF
estimates from voxels showing degradation effect (Figure 2C). The statistical effect of M50+g¢
on the source level was mainly around bilateral temporal gyrus, and the amplitude of the
original condition showed the smallest effect compared to 7-ch (o= 2.21 x 10, pairwise
Wilcoxon signed-rank test, effect size r = 0.77), 5-ch (o= 2.21 x 104, r = 0.79), 3-ch (0=
6.15x 10, r=0.71), 2-ch (prr= 6.15x 10, r = 0.71), and 1-ch (prr=2.21 x 10, r = 0.76).

The statistical effect of M200ws on the source level was around the bilateral parietal and
temporal region. The source estimates overall attenuated as the intelligibility decreased. The
original condition showed higher amplitude than 7-ch (o= 0.003, r = 0.62), 5-ch (pw-= 0.002,
r = 0.65), 3-ch (o= 1.78 x 10, r = 0.88), 2-ch (o= 4.47 x 10°°, r = 0.86), and 1-ch (psr =
1.96 x 10°, r = 0.82). The 7-ch condition had higher amplitude than 3-ch (pw-= 0.003, r =
0.62), 2-ch (prr= 0.026, , r = 0.47) and 1-ch (pwr= 0.006, r = 0.57). The 5-ch condition had
higher amplitude than 3-ch (o= 8.34 x 10, r = 0.69), 2-ch (o= 0.011, r = 0.54), and 1-ch
(orar=7.69 x 10, r = 0.71).

The strongest responses of source of M350wr were observed in the vocoded but still
comprehensible conditions (i.e., 7-ch, 5-ch, and 3-ch conditions); the weakest response
showed in the original condition. The 7-ch condition had a higher amplitude than 2-ch (o=
0.009, r = 0.58), 1-ch (o= 0.002, r = 0.79), and the original condition (o= 3.70 x 10%, r =
0.78). The 5-ch condition had a higher amplitude than the 1-ch (o= 0.009, r = 0.57) and
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original condition (o= 0.009, r = 0.60). The 3-ch and 2-ch conditions had a higher amplitude
than the original condition (pw-= 0.009 and 0.009, r = 0.61 and 0.57, respectively).

Overall, speech intelligibility did not modulate the temporal response function in the same
manner over time. Modulation was observed at three intervals, and only the effect around the
middle interval (M200+rr) was related to speech intelligibility in a relatively straight-forward
manner, namely that only the amplitude of M200+rr decreased with the reduced intelligibility.
These differential TRF patterns could be attributed to either general speech feature gain
modulation or tracking in specific speech features e.g. amplitudes of speech envelope or
syllables. In order to better understand these complex temporal patterns, we quantified other
neural tracking measures and related them to the main TRF effects, which is described in the

following sections.
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Figure 2. Temporal response functions (TRFs) of six-level degraded speech. (A) Global mean
field of the TRF on the sensor level of each condition. The orange-yellow horizontal lines
denote the time windows which show significant speech degradation effects. The topographies
show the region of the speech degradation effect at each latency respectively. Sensors
showing significant effects are denoted with asterisks. (B) Source localizations of the
degradation effects for each time window. (C) Individual TRF estimates of the six conditions
extracted at voxels showing significant degradation effect. Bars represent 95% confidence
intervals. prr < .05%, prar < .01**, prgr < .001***

3.3 Accuracy of the speech envelope reconstruction generally declines with decreased speech
intelligibility
The envelope reconstruction accuracy was evaluated by correlation coefficient as

reconstruction accuracy between the original envelope and the reconstructed envelope
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(Figure 3A). A speech degradation effect on reconstruction accuracy was observed [repeated
measure one-way ANOVA, F(5,115) =9.16, p = 2.34 x 107, n,? = 0.29]. The original condition
had higher accuracy than the 2-ch [t(23) = 3.30, pw = 0.007, Cohen’s d = 0.67] and 1-ch
conditions [t(23) = 4.87, prr= 4.88 x 10, d = 0.99]. The 7-ch condition had higher accuracy
than the 2-ch [t(23) = 3.48, p=0.005, d = 0.71] and 1-ch conditions [t(23) = 3.82, pr«r= 0.003,
d = 0.78]. The 5-ch condition had higher accuracy than the 3-ch [t(23) = 3.58, p-= 0.005, d
=0.73], 2-ch [t(23) = 4.47, prr=8.65 x 10, d = 0.92], and 1-ch conditions [t(23) = 5.39, prr=
2.68 x 10, d = 1.10]. In sum, the reconstruction accuracy overall declined as the speech
intelligibility decreased, while no differences were found among the original, 7-ch, and 5-ch

conditions.

3.4 Speech-brain coherence declines with decreased speech intelligibility

Speech-brain coherence is likely the most common measure to quantify neural tracking. A
degradation effect of speech was found around bilateral temporal, inferior parietal and inferior
frontal regions from the broadband 2-7 Hz coherence analysis (Figure 3B-2; cluster-corrected
dependent-sample F-test; peustersr = 9.99 X 107, peustere = 0.018). Within these areas, the
strongest effect was found in the original condition, and no differences were found between
7-ch and 5-ch as well as between 3-ch and 2-ch condition (Figure 3B-3). The original
condition showed stronger coherence than the 7-ch (o= 1.27 x 10, pairwise Wilcoxon
signed-rank test, effect size r = 0.74), 5-ch (o= 0.005, r = 0.58), 3-ch (pror= 2.23 x 10%, r =
0.86), 2-ch (o= 4.08 x 10°, r = 0.79) and 1-ch condition (o= 8.92 x 107, r = 0.88). The
7-ch condition showed stronger coherence than the 3-ch (o= 6.86 x 10, r = 0.76), 2-ch
(prar= 0.02, , r = 0.48) and 1-ch conditions (o= 8.92 x 107, r = 0.88). The 5-ch condition
showed stronger coherence than the 3-ch (o= 8.94 x 10°%, r = 0.83), 2-ch (o= 0.003, r =
0.61), and 1-ch conditions (o= 1.19 x 10, r = 0.87). The 3-ch condition showed stronger
coherence than the 1-ch (pwr = 0.039, r = 0.43). The 2-ch condition showed stronger
coherence than the 1-ch (prr= 4.31 x 10, r = 0.78). In sum, speech-brain coherence overall
declined as the speech intelligibility decreased, while no differences were found between the

7-ch and 5-ch as well as between the 3-ch and 2-ch condition.
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3.5 The peak center frequency, aperiodic exponent, and aperiodic offset are modulated by

speech intelligibility

To complement our finding in the TRFs, we further extracted periodic components (peak
center frequency, peak bandwidth, peak height) and aperiodic components (exponent, offset)

from the broadband coherence spectrum.

We extracted the coherence data from 1 to 15 Hz from the voxels in which the significant
degradation effect was observed from 2 to 7 Hz in the previous section. The peak and
aperiodic components were computed per voxel of each participant (Figure 3B-4). The peak
and aperiodic components were then averaged across voxels which showed a significant
degradation effect for each participant. Interestingly, we observed that the peak center
frequency accelerated (mean center frequency from 4.17 Hz to 4.69 Hz) for less intelligible
speech [x?(5) = 41.0, p = 9.49 x 10°®, Friedman test, Kendall’s W = 0.78] (Figure 3B-5). This
finding thereby fits with the idea proposed by Schmidt et al (2021) that the speech tracking
shifts from the more linguistic level (syllabic rate of the speech 4.3 Hz) to the more acoustic
level (envelope modulation rate ~5 Hz). The aperiodic components (exponent & offset)
decreased as the speech intelligibility decreased [exponent: x2(5) = 35.2, p = 1.39 x 105, W
= 0.29; offset : y*5) = 53.2, p = 3.07 x 107'°, W = 0.44] (Figure 3B-8, 3B-9). A borderline
degradation effect was observed in the peak height [x*(5) = 11.2, p = 0.048, W = 0.09] (Figure
3B-7), and no degradation effect was found in the peak bandwidth [x¥?(5) = 6.43, p = 0.26, W
= 0.05] (Figure 3B-6). In sum, our results show that with stronger vocoding, the peak center

frequency shifted toward the acoustic level and the aperiodic components decreased.
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Figure 3. Neural tracking of speech intelligibility measured via stimulus reconstruction and
coherence. (A) Accuracy (Pearson’s correlation coefficient) of stimulus reconstruction for each
condition. (B) Coherence and components of the coherence spectrum in six conditions. 1,
Frequency spectrum of the coherence for the six conditions averaged across all voxels. 2,
Source localization of degradation effect on coherence across six conditions in bilateral
temporal, inferior frontal, and parietal regions. 3, Individual coherence values of the six
conditions extracted from voxels showing significant effects. 4, Example of model fitting for
components of one coherence spectrum. 5-9, Estimated peak center frequency, peak
bandwidth, peak height, aperiodic exponent, and aperiodic offset of coherence spectrum in
six conditions. Bars represent 95% confidence intervals. (C) Correlations between the TRF
components and the behavioral hit rate, reconstruction accuracy, coherence as well as
components of coherence spectrum show that M200trs moderately correlated with hit rate,
reconstruction accuracy, coherence, center frequency, exponent and offset which suggest that
M200+rr can be another neural index of speech intelligibility. pwr < .05*, ptar < .01**, prar
<.001***
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3.6 The TREF finding highly correlates with behavioral and other neural measures of neural

speech tracking

To relate our findings in TRF components with the other measures, we computed the
repeated measures correlation coefficients between TRF components, behavior
measurement, and the other neural indices (stimulus reconstruction accuracy, coherence,
and components of coherence spectrum). The repeated measures correlation coefficients

between the TRF components and the other measures are shown in Figure 3C.

While the higher M50+g: was mildly correlated with the lower behavioral hit rates [rm(79) = -
0.24 (-0.41 to -0.05), p = 0.033], the enhancement in M50+gs was correlated with the center
frequency shifting to the acoustic level [rm(119) = 0.42 (0.25 to 0.56), p = 1.85 x 10°9]. Besides,
the higher M50+sr was also mildly correlated with the lower coherence [rim(119) = -0.36 (-0.52
to -0.19), p = 6.34 x 10°], and the lower aperiodic components [exponent: rim(119) = -0.24 (-
0.37 to -0.07), p = 0.008; offset: rm(119) = -0.30 (-0.44 to -0.12), p = 0.001].

Of the three TRF components, M200+r can best predict behavioral performance [rm(79) =
0.52 (95% CI: 0.40 to 0.65), p = 5.25 x 107]. Furthermore, the attenuation in M200+s was
correlated with the center frequency shifting from the linguistic to the acoustic level [rim(119)
=-0.38 (-0.50 to -0.24), p = 1.74 x 10], which was opposite to M50+re. In addition, M200+e
was also positively correlated with the reconstruction accuracy [rim(119) = 0.40 (0.29 to 0.52),
p =4.42 x 10°], the coherence [r:m(119) = 0.49 (0.3510 0.61), p = 1.21 x 10°¥], and the aperiodic
components [exponent: rm(119) = 0.42 (0.26 to 0.54, p = 2.09 x 107%; offset: rm(119) = 0.47
(0.33t0 0.59), p =4.88 x 10°7].

Compared to M50+ge and M200+ge, the nonlinear pattern of M350+ showed mild correlation
to only three neural measures, which was correlated positively with the center frequency
[rm(119) = 0.20 (0.03 to 0.36), p = 0.030] and negatively with the aperiodic components
[exponent: rim(119) = -0.21 (-0.34 to -0.07), p = 0.019; offset: rim(119) = -0.21 (-0.35 to -0.06),
p =0.022].

We also related the behavior results to the other neural measures: The better behavior hit
rates were highly correlated with the higher envelope reconstruction accuracy [rm(79) = 0.52,
95% CI: 0.35 to 0.67, p = 8.70 x 1077], the higher coherence [rm(79) = 0.68 (0.54 to 0.76), p =
4.52 x 107?], the higher aperiodic components [exponent: rm(79) = 0.60 (0.46 to 0.71), p =
2.99 x 107 offset: rm(79) = 0.66 (0.56 to 0.77), p = 1.64 x 107""] but with the lower center
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frequency [rm(79) = -0.50 (-0.65 to -0.34), p = 2.16 x 10°°]. The correlation with the peak height
was weak but statistically significant [rm(79) = 0.22 (0.03 to 0.42), p = 0.046].

Together, among the three TRF components, only M200 was highly correlated with the
behavioral results, and both of them were correlated with reconstruction accuracy, speech-
brain coherence, peak center frequency, and aperiodic components. Interestingly, both M50
and M200 were correlated with the shifting center frequency but in the opposite direction.

These findings depicted how vocoded speech affects neural speech tracking over time.

4. Discussion

Neural speech tracking is modulated by the spectral details of speech. However, the reported
pattern of the intelligibility modulation has been mostly computed in a “static” manner [e.g.

stimulus reconstruction (Verschueren et al., 2019) and speech-brain coherence (Hauswald et

al., 2020)]. Here, we aimed to explore how the human brain represents different levels of
degraded speech in a time-resolved manner. For this reason, we used original (i.e. clear and
unaltered) speech and 5 levels of vocoded speech as stimuli and computed time-resolved
temporal response functions (TRFs). Secondly, we related TRF findings with behavioral and
other neural measures (stimulus reconstruction, speech-brain coherence, and components
of broadband coherence spectra) of neural speech tracking. Overall, the behavioral
performance declined with decreased speech intelligibility as expected. Our results showed
that various levels of degraded speech differentially modulate the TRF around three time-
windows: 50-110 ms (M50we), 175-230 ms (M200ts), and 315-380 ms (M350+se).
Interestingly, both M50 and M200 are correlated with the shifting center frequency of the
coherence spectrum, however, in the opposite direction. These findings suggest that the

distinctive effects on TRF are linked to altered tracking of speech features.

4.1 Neural tracking and speech intelligibility

In our neural measures, the modulation of the M200+rr, the speech brain coherence and the
aperiodic components of the broadband coherence spectra support the notion that the neural

speech tracking declines as the speech intelligibility decreases.

The M200+xe is the TRF component that reflects the behavioral response best, i.e. captures
the speech intelligibility (for the discussion of M50trr and M3501rr, See section 4.2). Its


https://doi.org/10.1101/2022.06.26.497639
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.26.497639; this version posted June 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

amplitude decreases as the speech intelligibility declines (Figure 2C-central). This relationship
is also shown by the similarity of the correlational patterns of the M200+rr and the behavioral
performance with the other measures (see Figure 3C middle and right column). This finding
of pointing to the relevance of speech intelligibility (measured behaviorally) of the M200+gr is
consistent with other studies, e.g. in an EEG study with multi-talker and vocoded speech
design, greater TRF deflection around 200 ms was also observed in an attended-nonvocoded
condition compared to an attended-vocoded condition (Kraus et al., 2021). Using conventional
ERP analysis, greater P200 amplitude has been also observed in clear speech compared to
degraded speech (Straul3 et al., 2013) and in words pronounced with native speech than
words pronounced with foreign-accented speech (Romero-Rivas et al., 2015). Besides, the
P200 amplitude has been positively correlated with the successful extraction of
phonetic/phonological information from vowels or words (De Diego Balaguer et al., 2007;
Reinke et al., 2003). All the above results indicate that the higher amplitude of this component
is, the higher speech intelligibility is. Furthermore, the M200+rr effect is located mainly around
inferior parietal cortex, superior temporal gyrus, and inferior frontal cortex, consistent with prior
fMRI work on the effect of speech intelligibility (Obleser & Kotz, 2010).

The association between the M200tre and the peak center frequency of the coherence
spectrum also supports the notion that M200tre can be an index of speech intelligibility
(Schmidt et al., 2021). The shifting center frequency reflects the neural speech tracking from
the (linguistic-level) syllabic rate of the speech (4.3 Hz) to the (acoustic-level) envelope
modulation rate (~5 Hz). This is not merely due to the physical characteristics of the acoustic
stimulus as the reduction of spectral details (from clear to 1-ch vocoded) in the audio stimuli
results in the decrease of peak frequency in the amplitude modulation of the stimuli (from 5.61
to 4.83 Hz). However, the center frequency of the speech brain coherence, on the other hand,
increased (from 4.17 to 4.69 Hz). This phenomenon also highlights that the brain is not

exclusively driven by the rhythm of external stimuli.

The speech-brain coherence was also highly correlated with the behavior performance, which
reflects speech intelligibility, in line with Schmidt et al. (2021). However, the coherence result
was different from Hauswald et al. (2020), from which we re-analyzed the data. In Hauswald
et al. (2020), the coherence result showed an inverted U-shaped pattern: The highest
coherence showed in the marginally intelligible (5-ch vocoded) condition. After re-analyzing
the data, we found that the difference was attributed to distinct high-pass filter settings (online
0.1 Hz here instead of 1 Hz). This could also explain the finding of lower inter-trial phase
correlation in delta band in the original and 8-ch vocoded conditions compared to the 4-ch
vocoded condition in Ding et al. (2014) as the high-pass filtered was also set at 1 Hz.
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A speech degradation effect was found in the aperiodic components (exponent & offset),
consistent with Schmidt et al. (2021). Here, we demonstrate that the aperiodic components
were highly correlated with the behavioral performance, which suggests that the aperiodic
components can be reliable biomarkers for speech processing. Overall, we again highlight the
importance of both the periodic and aperiodic components of the coherence spectra as they
can provide more detailed information of speech processing than the coherence alone. As the
periodic and aperiodic components of the frequency power spectrum have been shown to be
biological markers in aging (Dave et al., 2018; Voytek et al., 2015) and mental disorders
(Molina et al., 2020; Ostlund et al., 2021; Robertson et al., 2019), it is possible that this can
also be the case for components of the coherence spectrum. Future studies could test whether
those components could offer more insight into more clinically-relevant participants, e.g. in

individuals with hearing impairment.

4.2 Neural speech tracking could be affected by other potential factors

The modulation of spectral details in speech signals not only affects speech intelligibility but
also influences e.g. attention load, memory load, and perceptual learning (Mattys et al., 2012).
Our findings in M50+ and M350+ also argue that speech intelligibility can be modulated by

other factors.

M50+se, the earliest effect occurred around 50 ms and clearly differentiated all vocoded
conditions from the non-vocoded one (Figure 2C-left). The finding of this early component is
in line with previous studies showing that the TRF as well as ERP amplitudes of this early
peak were greater in vocoded conditions compared to intact conditions (Ding et al., 2014;
Kraus et al., 2021; StrauB et al., 2013). Besides, a comparable effect was also found for louder
conditions when compared to soft-spoken conditions (Verschueren et al., 2021). While this
M50+ peak thus seems to follow physical manipulations of the speech signal, Ding & Simon
(2012) could not find attentional modulations earlier than ~100 ms. Taken together, we
propose that this early effect might be modulated by sensory gain on acoustic properties of
the auditory stimuli rather than task difficulty as there is marked distinction between clear
(normal) and spectral-degraded (abnormal) speech. In addition, our source result showing
the prominent effect around bilateral primary auditory cortices further support the notion that
the speech processing is rather early at this stage (de Heer et al., 2017; Khalighinejad et al.,
2021). It is worth noting that a similar effect on this early component was also observed for

age both in pure tones (Herrmann et al., 2022) and in speech (Brodbeck et al., 2018), with the
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older participants showing an increased amplitude compared to the younger ones. The
potential neural mechanism in these cases can be the altered balance between inhibitory and
excitatory neural mechanisms in the cortex during aging. Furthermore, we also found that the
higher M50+xr is associated with the increased center frequency of coherence as the speech
intelligibility decreased. This finding highlights that M50+rr, which reflects the distinctions of
acoustic information between original and vocoded speech, can also play a role in shifting

center frequency for degraded speech.

The effect of speech degradation on TRF around 350 ms (M350+rf) shows an inverted U-
shaped pattern across six conditions: the maximal amplitude found in 7-ch condition,
followed by 5-ch, 3-ch, 2-ch, 1-ch, and original (Figure 2C-right). The M350+s effect was
source-localized mainly around the left inferior frontal cortex. This M350+gr shares temporal
and source characteristics with the N400 which is seen as a potential marker of semantic
integration (for review, see Kutas & Federmeier, 2011; Lau et al., 2008). It is possible that the
strongest effect observed in the 7-ch vocoded condition resulted from that the speech was
still understandable and predictable while the acoustic input was violated. The effect reduced
in the clear speech as the acoustic input was as predicted. Furthermore, the effect declined
in the more degraded speech as the speech became less comprehensible and less
predictable. Accordingly, a similar nonlinear N40O effect was also found in a previous study
manipulating 6 levels of signal to noise ratio (Jamison et al., 2016). Furthermore, lexical-
semantic processing is modulated when the spectral properties of the speech are disrupted
as shown by Obleser & Kotz (2011) and StrauB3 et al. (2013). Taken together, previous
research and our results seem to indicate that the M350+xr is an index of late-stage speech
processing (e.g. semantic integration), whereas more research directly addressing this

question is needed.

Based on our time-resolved findings in TRF components, we propose that envelope
reconstruction is not a robust measure for the modulation of speech intelligibility on neural
speech tracking as the result of envelope reconstruction is rather static. This argument is
supported by results from ours and previous studies (Decruy et al., 2020; Presacco et al.,
2019). In our results, no differences were observed among the conditions that can be
understood very easily to mildly challenging (original, 7-ch, and 5-ch conditions). In Decruy
et al. (2020) and Presacco et al. (2019), higher reconstruction accuracy did not fully reflect
better speech understanding especially when comparing hearing impaired populations to

healthy control groups.


https://www.zotero.org/google-docs/?broken=ycL6XU
https://www.zotero.org/google-docs/?broken=ycL6XU
https://doi.org/10.1101/2022.06.26.497639
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.26.497639; this version posted June 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

4.3 Conclusions

In this study, we demonstrate that at least three neural processing stages (M50+rr, M2001zr,
and M350+sf) are affected when processing continuous degraded speech. Only M200+g¢
highly correlates with behavior and other neural measures (i.e., speech brain coherence) of
speech intelligibility. We also indicate that both M50+gr and M200+sr can reflect shifts in the
neural speech tracking from more linguist level to more acoustic level as speech intelligibility
declined which is supported by the effect of center frequency of coherence. In general, using
the temporal response function combined with parametrization of coherence spectra, we
demonstrate the temporal dynamics of neural speech tracking and provide potential

explanations for the inconsistent literature.
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