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Highlights 

● We use MEG to show that speech intelligibility differentially impacts the temporal 

evolution of neural speech tracking. 

● TRF responses around 200 ms show the strongest relationship with behaviour. 

● Relating TRF effects to parameterized coherence spectra using FOOOF suggests that 

M50TRF and M200TRF reflect shifts in which speech features are tracked over time. 

 

Abstract 

Listening to speech with poor signal quality is challenging. Neural speech tracking of 

degraded speech has been used to advance the understanding of how brain processes and 

speech intelligibility are interrelated, however the temporal dynamics of neural speech 

tracking are not clear. In the present MEG study, we thereby exploited temporal response 

functions (TRFs) and generated signal-degraded speech to depict the temporal evolution of 

speech intelligibility modulation on neural speech tracking. In addition, we inter-related facets 

of neural speech tracking (e.g., speech envelope reconstruction, speech-brain coherence, 

and components of broadband coherence spectra) to endorse our findings in TRFs. Our TRF 

analysis yielded marked temporally differential effects of vocoding: reduction of intelligibility 

went along with large increases of early peak responses  (~50-110 ms, M50TRF), but strongly 

reduced responses around 175-230 ms (M200TRF). For the late responses 315-380 ms 

(M350TRF), the maximum response occurred for degraded speech that was still 

comprehensible then declined with reduced intelligibility. Furthermore, we related the TRF 

components to our other neural “tracking“ measures and found that M50TRF and M200TRF play 

a differential role in the shifting center frequency of the broadband coherence spectra. 

Overall, our study highlights the importance of time-resolved computation and 

parametrization of coherence spectra on neural speech tracking and provides a better 

understanding of degraded speech processing.  

 

Keywords: vocoded speech, temporal response function, coherence, FOOOF, MEG 
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1.     Introduction 

Listeners process speech under a variety of adverse conditions in daily life (Mattys et al., 

2012), which could be external (e.g., “cocktail party“) or internal (e.g., hearing damage). 

However, how the neural dynamics of speech processing in such challenging conditions 

evolve remains unclear. A popular approach to systematically manipulate speech 

intelligibility–and possibly mimicking the experience of cochlear implant (CI) users–in normal 

hearing individuals is by using noise-vocoded speech (Friesen et al., 2001; Rosen et al., 

2013). This approach filters the speech signal into a given number of channels or bands 

(typically between 1 and 16 channels), resulting in reduced spectral information while 

temporal information is preserved. This manipulation allows to parametrically modulate 

speech intelligibility (Shannon et al., 1995) and to relate features of the signal to neural 

activity.  

The high temporal resolution of electroencephalography (EEG) and 

magnetoencephalography (MEG) can be exploited to quantify how temporal fluctuations of 

speech and neural signals align together, a process often described as “neural speech 

tracking“. Most studies (e.g., Ding & Simon, 2012; Fiedler et al., 2019; Zion Golumbic et al., 

2013), including those investigating the effects of vocoding, have focused on the speech 

envelope. Since the envelope of e.g. a target speaker can be easily obtained, neural tracking 

using M/EEG is an attractive option to study brain activity also during complex listening 

situations such as background noise or multi-speaker scenarios. Speech-brain coherence is 

likely the most established measure of neural tracking (Hauswald et al., 2020; Peelle et al., 

2013; Schmidt et al., 2021). However, system identification approaches, such as temporal 

response functions (TRFs; Crosse et al., 2016; Ding et al., 2014; Kraus et al., 2021) and 

stimulus reconstruction (Nogueira et al., 2019; Verschueren et al., 2019), have been gaining 

a lot of popularity. TRFs especially yield interesting temporal information on the relationship 

between stimulus and neural activity, which goes beyond the “static“ coherence measure. 

Interestingly, these measures are rarely reported together. 

Speech envelope reconstruction yielded higher accuracies for healthy listeners as compared 

to CI users and was also increased for attended speech (Nogueira et al., 2019). Additionally, 

speech envelope reconstruction works better in CI individuals with good speech rehabilitation 

(Nogueira et al., 2019; Verschueren et al., 2019). Overall, these findings suggest stronger 

neural tracking relates to higher speech intelligibility. However, when studying individuals with 
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hearing loss, Decruy et al. (2020) observed higher envelope reconstruction accuracy in 

participants with mild to severe sensorineural hearing loss than age-matched normal hearing 

adults. Studying TRFs during vocoded speech has shown stronger responses at early 

latencies (~50 ms) for less intelligible speech (Ding et al., 2014; Kraus et al., 2021) and at later 

latencies for attended speech (Kraus et al., 2021). The notion that the mapping of speech 

intelligibility onto neural tracking is not straight-forward is also supported by studies using 

speech-brain coherence. For example, Peelle et al. (2013) and Schmidt et al. (2021) showed 

that the coherence decreased linearly as the speech intelligibility declined, whereas 

Hauswald et al. (2020) showed an inverted-U-shaped pattern. In the latter study, the highest 

coherence was observed in the still comprehensible, degraded speech rather than the clear 

speech. Computing cross-correlation between speech envelopes and neural activities, 

Millman et al. (2015) and Baltzell et al. (2017) did not observe an effect of speech intelligibility, 

whereas an effect of prior knowledge was found in Baltzell et al. (2017). Overall, current 

findings using different “flavors“ of neural tracking do not point to a consistent effect of 

vocoded speech. 

Here, we utilized MEG and had our participants listen to speech at different vocoding levels. 

We applied the TRF method to explore how 6 levels of vocoded speech (Figure 1) modulate 

the neural speech tracking with fine-grained temporal resolution. As expected, participants’ 

behavioral performance declined as speech intelligibility deteriorated. Interestingly, our TRF 

results showed that degraded speech modulates the neural speech tracking at three intervals 

in differential ways: Responses at 50-110 ms (M50TRF) and 175-230 ms (M200TRF) generally 

captured whether speech was vocoded or not. Late responses around 315-380 ms (M350TRF) 

were strongest at medium vocoding levels as compared to clear and less intelligible speech. 

To complement our findings in TRF, we also computed speech envelope reconstruction, 

speech-brain coherence, and periodic components (peak center frequency, peak bandwidth, 

peak height) and aperiodic components (exponent, offset) of broadband coherence spectra 

(Schmidt et al., 2021). Relating the TRF components to those neural measures, we found that 

M50TRF and M200TRF were correlated with the center frequency of the broadband coherence 

spectra in a different direction. These results suggest that changes in TRF sensitive to speech 

intelligibility decreases reflect not only sensory gain or general attentional modulations but 

also shifts in which speech features are tracked.  
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2.     Materials and Methods 

All data used in this study were also reported as Study 2 in Hauswald et al. (2020). The  

duration of the MEG experiment was ~75 mins (preparation included) and the behavioral 

experiment was ~7 mins. The behavioral experiment was also conducted in the MEG 

chamber without recording of MEG signals. 

2.1  Participants 

Twenty-four individuals [11 females, mean age = 26.4 ± 5.7 (SD), age range = 18-45 years] 

were recruited in the MEG experiment. They were native German speakers, reported normal 

hearing and no history of psychological or neurological disease, and were eligible for MEG 

recordings (i.e., without ferromagnetic metals in or close to their bodies). Sixteen of these 

individuals [7 females, mean age = 27.3 ± 6.8 (SD), age range = 18-45 years] also participated 

in the behavioral experiment. All the participants provided informed consent, and were 

compensated monetarily or with course credit. The recruitment and experiment procedure 

was in accordance with the Declaration of Helsinki and approved by the Ethics Committees 

of the Department of Psychology, University of Salzburg. 

2.2 Stimuli 

In both the MEG and behavioral experiments, participants were instructed to listen to audio 

files from audiobooks and to maintain visual fixation on a cross centered on screen for the 

duration of each trial (Figure 1A). We used a within-subjects design. There were six conditions 

in both experiments: original, 7-, 5-, 3-, 2-, or 1-channel (ch) noise-vocoded (Figure 1B).  The 

speech vocoding was done using the vocoder toolbox (Gaudrain, 2016) for MATLAB. For the 

7-, 5-, 3-, 2-, 1-ch vocoding levels, the waveform of each audio stimulus was passed through 

two Butterworth filters with a range of 200-7000 Hz and then further bandpass-filtered into 

the corresponding frequency analysis bands. For each band, a sinusoidal carrier was 

generated, and the frequency of the sine wave was equal to the center frequency of the 

analysis filter. Amplitude envelope extraction was done with half-wave rectification and low-

pass filtered at 250 Hz. The amplitude-modulated noise bands from all the channels were 

then combined to produce the vocoded speech. The root mean square of the resulting signal 

was adjusted to that of the original signal.  

In the MEG experiment, 24 audio files were created from recordings of a female German 

native speaker reading Goethe’s “Das Märchen” (1795). Lengths of stimuli varied between 15 
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s and 180 s, with two stimuli of 15 s, 30 s, 60 s, 120 s, 150 s, and 12 of 180 s. Each stimulus 

ended with a two-syllable noun within the last four words in the last sentence. The assignment 

of stimuli to conditions in the MEG experiment was controlled in order to obtain a similar 

overall length of stimulus presentation (~400 s) in each condition. The order of the stimuli did 

not follow the order of the original story. The order of conditions was pseudorandomized 

according to a latin square design. Three stimuli were presented in one block after which a 

short break was offered, resulting in eight blocks. Each block was followed by a self-

determined break. At the end of each auditory stimulus, participants were required to choose 

the noun in the last sentence from two two-syllable nouns on the screen. Following the 

response, they could self-initiate the next trial via a button press. The syllable rate of the 24 

audio files varied between 4.1 and 4.5 Hz with a mean of 4.3 Hz, which was computed with 

a custom script from de Jong & Wempe (2009) using Praat (Boersma & Weenink, 2019). 

 In the behavioral experiment, 48 audio files were created from recordings of another female 

German native speaker reading a German version of Antoiné St. Exupery’s “The little prince” 

(1943) written by Grete and Josef Leitgeb (1956). Each stimulus contained one sentence 

(length between 2-15 s) and ended with a two-syllable noun within the last four words. Similar 

to the MEG experiment, participants were asked to choose the last noun they heard between 

two nouns on the screen. Again, the order of conditions was pseudorandom. 

Stimulus presentation was controlled using a MATLAB-based objective psychophysics 

toolbox (Hartmann & Weisz, 2020) built based on the Psychtoolbox (Brainard, 1997; Kleiner 

et al., 2007; Pelli, 1997). Auditory stimuli were presented binaurally using MEG-compatible 

pneumatic in-ear headphones (SOUNDPixx, VPixx technologies, Canada). The trigger-sound 

delay of 16 ms was measured via the Black Box Toolkit v2 and was corrected during 

preprocessing of MEG data. Participants’ responses were acquired via a response pad 

(TOUCHPixx response box, VPixx technologies, Canada). 
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Figure 1. (A) Example trial of the MEG and behavioral experiment. Participants started self-
paced and listened to the audiobook with eye fixation on the cross. At the end of the trial, two 
nouns were presented on the screen. Participants had to choose which noun was the one they 
heard from the last sentence. (B) An exemplary original audio segment with the corresponding 
envelopes and with the envelopes from the other vocoded conditions. The envelope from the 
original audio is essentially identical to the envelopes from the vocoded audio on power 
level.(C) The hit rate declined as the speech intelligibility decreased. Bars represent 95% 
confidence intervals. pfdr < .05*, pfdr < .01**, pfdr < .001***  

 

2.3 Data acquisition and analyses 

2.3.1 Extraction of the acoustic speech envelope 

For computation of the temporal response functions and stimulus reconstruction, we 

extracted the acoustic speech envelope from all auditory stimuli using the Chimera toolbox 

(Smith et al., 2002), with which five frequency bands in the range of 200 to 4000 Hz were 

constructed as equidistant on the cochlear map. Sound stimuli were band-pass filtered 

(forward and reverse) in 5 bands using a 4th-order Butterworth filter. For each band, 

envelopes were calculated as absolute values of the Hilbert transform and were averaged 

across bands to obtain the full-band envelope. Envelopes for all 6 conditions were processed 

with this procedure and used for the following TRF, stimulus reconstruction, and coherence 

analysis. 

To determine the envelope modulation rate, custom Matlab scripts from Ding et al. (2017) 

were used. The audio files were chunked into 10-s duration segments, resulting in 306 

segments per condition. After calculating a Fast Fourier Transformation (FFT), the global 

maximum value of each 306 power spectrum was taken and then averaged as the envelope 

modulation rate. The envelope modulation rate of the 24 audio files in the original, 7-ch, 5-

ch, 3-ch, 2-ch, and 1-ch vocoded condition was 5.61 Hz, 5.53 Hz, 5.27 Hz, 5.23 Hz, 4.93 Hz, 

and 4.83 Hz, respectively. A main effect of vocoding was observed [𝝌2(5) = 206.0, p = 1.83 x 

10-42, Kendall’s W = 0.134, Friedman test], in line with Schmidt et al. (2021). 
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2.3.2 MEG acquisition and preprocessing 

MEG signals were recorded at a sampling rate of 1000 Hz using a 306-channel Triux MEG 

system (Elekta-Neuromag Ltd., Helsinki, Finland) with 102 magnetometers and 204 planar 

gradiometers in a magnetically shielded room (AK3B, Vakuumschmelze, Hanau, Germany). 

The MEG signal was online high-pass and low-pass filtered at 0.1 Hz and 330 Hz respectively. 

Prior to the recording, individual head shapes were digitized for each participant including 

fiducials (nasion, bilateral pre-auricular points) and at least 300 points on the scalp using a 

Polhemus Fastrak system (Polhemus, Vermont, USA). A signal space separation algorithm 

implemented in the Maxfilter software (version 2.215) provided by the MEG manufacturer was 

used to remove external noise from the MEG signal (mainly 16.6 Hz from Austrian local train 

power and 50 Hz plus harmonics from power line) and realign data across different blocks to 

an individual common head position (based on the measured head position at the beginning 

of each block). 

Data analysis was done using the Fieldtrip toolbox (Oostenveld et al., 2011) and in-house-

built scripts. Firstly, a low-pass filter at 40 Hz using a finite impulse response (FIR) filter with 

Kaiser window was applied to continuous MEG data. Then, the data were resampled to 200 

Hz to save computational power and were epoched into 2-second segments to increase the 

signal-to-noise ratio. Around 1% of those 2-second segments were excluded as the 

corresponding auditory stimuli contained silent periods of more than 1 second. With the 

Fieldtrip automatic artifact rejection algorithm, we rejected trials with z-value higher than 100 

before conducting independent component analysis (ICA). Using ICA, we identified and 

removed components corresponding to blinks, eye movements, cardiac activities, and 

residual noise from local train power. On average 7.6 ± 2.7 (SD) components were removed. 

The automatic artifact rejection algorithm was applied again to reject trials with z-value higher 

than 50.  

For the further TRF (Section 2.3.3) and envelope reconstruction analyses (Section 2.3.5), 

another band-pass filter between 0.5 and 8 Hz was applied to the data (FIR filter with Kaiser 

window). For the coherence analysis, we re-segmented the preprocessed data into 4-sec 

segments to increase frequency resolution. 
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2.3.3 Temporal response functions 

The TRF analysis was done using the mTRF toolbox Version 2.0 (Crosse et al., 2016). TRFs 

were estimated by mapping speech features (e.g., envelopes, spectrograms) to neural 

responses of M/EEG. The mapping from stimulus to neural response is also known as 

“forward” modeling. The TRFs provide sensor-specific predictions and can indicate how a 

change of a stimulus feature (speech envelope) affects time-resolved neural activity at a 

certain location. In the context of a sensory system where the output is recorded by N 

recorded channels, we can assume that the instantaneous neural response 𝑟(𝑡, 𝑛), which 

samples at times t = 1… T and at channel n, can be modeled over a convolution of the 

stimulus property, 𝑠(𝑡), with a channel-specific TRF, 𝑇𝑅𝐹(𝜏, 𝑛). The TRF, 𝑇𝑅𝐹(𝜏, 𝑛), describes 

this transformation for a specified range of time lags,  The response, 𝑟(𝑡, 𝑛), can be modeled 

as: 𝑟(𝑡, 𝑛)  =  ∑𝜏 𝑇𝑅𝐹(𝜏, 𝑛)𝑠(𝑡 − 𝜏)  +  𝜀(𝑡, 𝑛). The 𝜀(𝑡, 𝑛) is the residual response at each 

channel. Here, the TRF was estimated using ridge regression as follows, written in matrix 

format: 𝑇𝑅𝐹 =  (𝑆𝑇𝑆 +  𝜆𝐼) −1𝑆𝑇𝑟. Where S is the lagged time series of the stimulus, 𝐼 is the 

identity matrix, and 𝜆 is the regularization parameter (Crosse et al., 2016). The TRF was 

estimated over time lags ranging from -150 to 450 ms. In a 5-fold cross-validation procedure, 

trained TRFs are used to predict the left-out MEG response based on the corresponding 

speech envelope. The predicted response is then compared with the recorded neural data to 

assess MEG prediction accuracy. To optimize the model for predicting speech envelope, the 

values of the regularization parameter (𝜆) between 1 and 106 was tuned using a leave-one-

out cross-validation procedure. The 𝜆 value that produced the highest MEG prediction 

accuracy, averaged across trials and channels, was selected as the regularization parameter 

in each condition per participant. To increase signal to noise ratio, baseline normalization was 

applied using the time interval from -40 to 0 ms as baseline interval and computing the 

absolute change in TRF estimates with respect to the baseline interval. For further TRF 

sensor-level statistical analysis, we only used the gradiometers and calculated the combined 

planar gradient of the TRF estimates. 

 

2.3.4 Source Projection of Temporal Response Functions 

To transform the TRF sensor data into source space, we used a template structural magnetic 

resonance image (MRI) from Montreal Neurological Institute (MNI) and warped it to the 

individual head shape (Polhemus points) to match the individual fiducials and head shape 
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landmarks. A 3-dimensional grid covering the entire brain volume of each participant with a 

resolution of 1 cm was created based on the standard MNI template MRI. We then used a 

mask to keep only the voxels corresponding to the gray matter (1,457 voxels). The aligned 

brain volumes were further used to create realistic single-shell head models and lead field 

matrices (Nolte, 2003). By using the lead fields and a common covariance matrix (from all 2-

second segments), common linearly constrained minimum variance (LCMV, Van Veen et al., 

1997) beamformer spatial filter weights were computed based on an average covariance 

matrix estimated across all epochs. The regularization parameter was set to 20%. We then 

applied the spatial filter to the sensor-level TRF data. 

 

2.3.5 Speech envelope reconstruction 

The speech envelope reconstruction was also done by using the mTRF toolbox (Crosse et 

al., 2016). We used a backward decoding model which uses a linear filter or decoder that 

optimally combines the MEG signals of different sensors  in order to reconstruct the speech 

envelope. The decoder, 𝑔(𝜏, 𝑛), represents the linear mapping from the neural response, 

𝑟(𝑡, 𝑛), back to the stimulus, 𝑠(𝑡). Reconstructed stimulus (speech envelope), 𝑠 ̂ (𝑡) can be 

model as: 𝑠 ̂ (𝑡)  =  ∑𝑛 ∑𝜏 𝑟(𝑡 + 𝜏, 𝑛)𝑔(𝜏, 𝑛). Analogous to the TRF approach, the 

decoder is computed as follows: 𝑔 =  (𝑅𝑇𝑅 +  𝜆𝐼) −1𝑅𝑇𝑠, where 𝑅 is the lagged time series 

of the response matrix, 𝑟.  

The steps to obtain our measurement of neural speech tracking using this reconstruction 

method are the following. Firstly, the speech envelopes and MEG signals were down-

sampled to 50 Hz to reduce the processing time. Secondly, we implemented a 5-fold cross-

validation procedure and trained a linear decoder that combines the signals of all MEG 

channels and their time-shifted versions (integration window: -150-450 ms) on the MEG 

responses to the auditory stimuli. The decoder was then applied to the MEG responses to 

obtain reconstructed envelopes. The accuracy of reconstruction was measured by 

correlating the reconstructed envelope with the original envelope. 

 

2.3.6 Speech-brain phase coherence  

We directly projected preprocessed sensor space data to source space using LCMV 

beamformer filters to obtain time series data of each brain voxel (Van Veen et al., 1997). The 
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procedure of source projection is comparable to those for the TRF analysis in section 2.3.4. 

For calculating coherence between each brain voxel and the speech envelope, we then 

applied a frequency analysis to the 4-sec segments of all 6 conditions (original, 7-, 5-, 3-, 2-, 

1-channel vocoded) using multi-taper frequency transformation (dpss taper: 1-25 Hz in 0.25 

Hz steps, 4 Hz smoothing, no baseline correction). 

In addition to canonical coherence analysis, we also looked into two sets of components of 

the coherence spectrum: periodic components (peak center frequency, peak bandwidth, 

peak height) and aperiodic components (aperiodic exponent, aperiodic offset) (Donoghue et 

al., 2020; Schmidt et al., 2021). These components were calculated using the FOOOF module 

with Python to compute aperiodic estimates and Gaussian model fits (Donoghue et al., 2020). 

The coherence data from 1 to 15 Hz was extracted from voxels in which the significant 

degradation effect was observed. The peak and aperiodic components of the coherence data 

were computed per voxel of each participant. The parameters used for modeling were from 

default setting (e.g., peak_width_limits: (0.5 12); max_n_peaks: inf; peak_threshold: 2.0). If R2 

(between the input spectrum and the full model fit) of the residual model or error of the full 

model fit differed from the rest by more than 3 standard deviations, the result from the voxel 

was dropped. Peak and aperiodic components were then averaged across the rest of the 

voxels for each participant. 

 

2.3.7 Statistical analysis 

For statistical comparisons, we first verified whether data distribution violated normality using 

the Shapiro-Wilk test (all Ps > 0.5) and whether the data contained outliers with a 1.5 

interquartile range criterion. We used parametric tests for data that obey normal distribution 

and outliers free; otherwise, non-parametric tests were used. If not mentioned specifically, 

multiple comparisons were corrected by using the false discovery rate method (FDR, 

Benjamini & Hochberg, 1995). 

For the behavioral hit rates, the Friedman test was used to test the speech degradation effect 

across conditions. Paired Wilcoxon signed-rank tests were used to compare the hit rates 

between conditions. One-sample Wilcoxon signed-rank tests were used to test the hit rates 

against chance level (50%). 

For the TRF sensor-level data, non-parametric cluster-based permutation tests (Maris & 

Oostenveld, 2007) implemented in the FieldTrip toolbox (Oostenveld et al., 2011) were used. 
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The dependent sample F-statistic (“depsamplesFunivariate”) was used for cluster formation 

when analyzing the main effect of speech degradation with 0.05 alpha level. The cluster-level 

statistic via the Monte Carlo approximation with 0.05 alpha level was calculated as the 

maximum of the cluster-level summed F-values of each cluster with a minimum of 3 

neighboring channels. The Monte-Carlo estimation was based on 10,000 random partitions, ⁠ 

and the time window of interest was defined from 0 to 400 ms. 

For the TRF source-level data, we used time windows from the clusters showing significant 

effects with the cluster-based permutation test in sensor-level analysis and ran the F-statistic 

where we averaged over the time window for each condition and compared the average 

across conditions. For contrast between conditions, we extracted TRF estimates from voxels 

with significant effect and ran paired Wilcoxon signed-rank tests. 

For the stimulus reconstruction data, the correlation coefficient which represents 

reconstruction accuracy was Fisher z transformed for further statistical testing. Repeated-

measure one-way ANOVA was used to test the degradation effect. Paired t-tests were used 

to compare the hit rates between conditions. 

For the coherence data, the dependent sample F-statistic was used for cluster formation 

when analyzing the main effect of speech degradation with a 0.05 alpha level. The cluster-

level statistic via the Monte Carlo approximation with 0.05 alpha level was calculated as the 

maximum of the cluster-level summed F-values of each cluster with a minimum of 3 

neighboring channels. The Monte-Carlo estimation was based on 10,000 random partitions ⁠ 

and the frequency window of interest was defined from 2 to 7 Hz. Paired Wilcoxon signed-rank 

tests were used for comparison between conditions. 

For the above statistical tests, the corresponding effect size was calculated. For repeated-

measure one-way ANOVA, partial eta square (ηp
2) was provided: ηp

2 = 0.01 indicates a small 

effect; ηp
2 = 0.06 indicates a medium effect; ηp

2 = 0.14 indicates a large effect. For paired t-

tests, Cohen’s d (d) was provided: d = 0.2 indicates a small effect; d = 0.5 indicates a medium 

effect;  d = 0.8 indicates a large effect. For the Friedman test, the Kendall’s W (W) was 

provided: W = 0.1 indicates a small effect; W = 0.3 indicates a medium effect; W = 0.5 

indicates a large effect. For paired Wilcoxon signed-rank test and one-sample Wilcoxon 

signed-rank test, r was calculated as Z statistic divided by the square root of the sample 

size.:  r = 0.1 indicates a small effect; r = 0.3 indicates a medium effect;  r = 0.5 indicates a 

large effect. 
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To better understand functional characteristics of the TRF components, we calculated 

repeated measures correlations between TRF components and behavior hit rate, stimulus 

reconstruction accuracy as well as coherence results. The rmcorr function in the rmcorr 

package (Bakdash & Marusich, 2017) was used to calculate the correlation coefficient, 1,000-

repetition bootstrapped 95% confidence interval, and p-value. Only the statistical tests using 

the Fieldtrip toolbox were conducted with MATLAB; the others were run with R software 

(version 3.6.2, R Development Core Team, 2019). 

 

3. Results 

3.1 Behavioral performance declines with decreased speech intelligibility  

Sixteen of 24 healthy participants participated in both MEG and behavioral sessions, listening 

to audiobooks with 6-level of vocoded conditions (Figure 1; original, 7-, 5-, 3-, 2-, and 1-

channel vocoded). At the end of each audio presentation, participants were required to 

choose which noun is the last noun they heard from the two nouns on the screen. We pooled 

the behavioral responses from the MEG session and the behavioral session (Figure 1C), 

which resulted in 12 behavioral responses in each condition. Participants’ task performance 

decreased as the intelligibility of the audio stimuli dropped. The mean hit rate was 100.0% ± 

0% (SD) for the original stimuli, 88.5% ± 11.3% for the 7-ch vocoded, 83.3% ± 14.9% for the 

5-ch vocoded, 65.6% ± 19.0% for the 3-ch vocoded, 58.9% ± 14.1% for the 2-ch vocoded, 

and 47.9% ± 11.6% for the 1-ch vocoded. A speech degradation effect was found across 

the six conditions [𝝌2(5) = 62.0, p = 4.69 x 10-12, Friedman test, Kendall’s W = 0.775]. 

Comparison within the six conditions showed that the hit rate for original stimuli was higher 

than all the other conditions (all pfdr < 0.01, pairwise Wilcoxon signed-rank test, all effect size 

r > 0.80). The 7-ch vocoded condition had higher hit rates than 3-, 2-, and 1-ch conditions 

(all pfdr < 0.01, all r > 0.25). The 5-ch condition had higher hit rates than 3-, 2-, and 1-ch 

conditions (all pfdr < 0.01, all r > 0.60). The 3-ch condition had higher hit rates than the 1-ch 

condition (pfdr = 0.01, r = 0.67). The 2-ch condition had higher hit rates than the 1-ch 

conditions (pfdr = 0.034, r = 0.53). Except for the 1-ch vocoded condition (p = 0.38, r = 0.23, 

one-sample Wilcoxon signed-rank test), all the other conditions showed above-chance hit 

rates (all p < 0.03, all r > 0.56). 
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3.2 Temporal response functions show differential effects of vocoding on neural speech 

tracking  

To investigate how a loss of spectral resolution influences speech tracking in a fine-grained 

temporal manner, we computed the temporal response functions (TRFs) between the speech 

envelope and the MEG signals in each condition from 24 participants. 

The mean global field power in Figure 2A characterizes temporal evolution of TRF estimates 

in each condition. To investigate the effects of degraded speech on TRF, we ran a cluster-

based permutation test with a time window of interest from 0 to 400 ms and observed a main 

effect of speech degradation in six clusters. These six clusters revealed bilateral effects in three 

time windows respectively (Figure 2A topographies): around 50-110 ms (termed as M50TRF, 

pcluster1 = 1.0 x 10-4, pcluster2 = 0.033), around 175-230 ms (termed as M200TRF, pcluster3 = 0.003, 

pcluster4 = 0.021), and around 315-380 ms (termed as M350TRF, pcluster5 = 0.001, pcluster6 = 0.035). 

We then projected the TRF sensor result to the source level (Figure 2B) and extracted TRF 

estimates from voxels showing degradation effect (Figure 2C). The statistical effect of M50TRF 

on the source level was mainly around bilateral temporal gyrus, and the amplitude of the 

original condition showed the smallest effect compared to 7-ch (pfdr = 2.21 x 10-4, pairwise 

Wilcoxon signed-rank test, effect size r = 0.77), 5-ch (pfdr = 2.21 x 10-4, r = 0.79), 3-ch (pfdr = 

6.15 x 10-4, r = 0.71), 2-ch (pfdr = 6.15 x 10-4, r = 0.71), and 1-ch (pfdr = 2.21 x 10-4, r = 0.76). 

The statistical effect of M200TRF on the source level was around the bilateral parietal and 

temporal region. The source estimates overall attenuated as the intelligibility decreased. The 

original condition showed higher amplitude than 7-ch (pfdr = 0.003, r = 0.62), 5-ch (pfdr = 0.002, 

r = 0.65), 3-ch (pfdr = 1.78 x 10-6, r = 0.88), 2-ch (pfdr = 4.47 x 10-6, r = 0.86), and 1-ch (pfdr = 

1.96 x 10-5, r = 0.82). The 7-ch condition had higher amplitude than 3-ch (pfdr = 0.003, r = 

0.62), 2-ch (pfdr = 0.026, , r = 0.47) and 1-ch (pfdr = 0.006, r = 0.57). The 5-ch condition had 

higher amplitude than 3-ch (pfdr = 8.34 x 10-4, r = 0.69), 2-ch (pfdr = 0.011, r = 0.54), and 1-ch 

(pfdr = 7.69 x 10-4, r = 0.71). 

The strongest responses of source of M350TRF were observed in the vocoded but still 

comprehensible conditions (i.e., 7-ch, 5-ch, and 3-ch conditions); the weakest response 

showed in the original condition. The 7-ch condition had a higher amplitude than 2-ch (pfdr = 

0.009, r = 0.58), 1-ch (pfdr = 0.002, r = 0.79), and the original condition (pfdr =  3.70 x 10-4, r = 

0.78). The 5-ch condition had a higher amplitude than the 1-ch (pfdr = 0.009, r = 0.57) and 
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original condition (pfdr = 0.009, r = 0.60). The 3-ch and 2-ch conditions had a higher amplitude 

than the original condition (pfdr = 0.009 and 0.009, r = 0.61 and 0.57, respectively). 

Overall, speech intelligibility did not modulate the temporal response function in the same 

manner over time. Modulation was observed at three intervals, and only the effect around the 

middle interval (M200TRF) was related to speech intelligibility in a relatively straight-forward 

manner, namely that only the amplitude of M200TRF decreased with the reduced intelligibility. 

These differential TRF patterns could be attributed to either general speech feature gain 

modulation or tracking in specific speech features e.g. amplitudes of speech envelope or 

syllables. In order to better understand these complex temporal patterns, we quantified other 

neural tracking measures and related them to the main TRF effects, which is described in the 

following sections.  
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Figure 2. Temporal response functions (TRFs) of six-level degraded speech. (A) Global mean 
field of the TRF on the sensor level of each condition. The orange-yellow horizontal lines 
denote the time windows which show significant speech degradation effects. The topographies 
show the region of the speech degradation effect at each latency respectively. Sensors 
showing significant effects are denoted with asterisks. (B) Source localizations of the 
degradation effects for each time window. (C) Individual TRF estimates of the six conditions 
extracted at voxels showing significant degradation effect. Bars represent 95% confidence 
intervals. pfdr < .05*, pfdr < .01**, pfdr < .001***  

 

3.3 Accuracy of the speech envelope reconstruction generally declines with decreased speech 

intelligibility  

The envelope reconstruction accuracy was evaluated by correlation coefficient as 

reconstruction accuracy between the original envelope and the reconstructed envelope 
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(Figure 3A). A speech degradation effect on reconstruction accuracy was observed [repeated 

measure one-way ANOVA, F(5,115) =9.16, p = 2.34 x 10-7, ηp
2 = 0.29]. The original condition 

had higher accuracy than the 2-ch [t(23) = 3.30, pfdr = 0.007, Cohen’s d = 0.67] and 1-ch 

conditions [t(23) = 4.87, pfdr = 4.88 x 10-4, d = 0.99]. The 7-ch condition had higher accuracy 

than the 2-ch [t(23) = 3.48, pfdr = 0.005, d = 0.71] and 1-ch conditions [t(23) = 3.82, pfdr = 0.003, 

d = 0.78]. The 5-ch condition had higher accuracy than the 3-ch [t(23) = 3.58, pfdr = 0.005, d 

= 0.73], 2-ch [t(23) = 4.47, pfdr = 8.65 x 10-4, d = 0.92], and 1-ch conditions [t(23) = 5.39, pfdr = 

2.68 x 10-4, d = 1.10]. In sum, the reconstruction accuracy overall declined as the speech 

intelligibility decreased, while no differences were found among the original, 7-ch, and 5-ch 

conditions. 

 

3.4 Speech-brain coherence declines with decreased speech intelligibility 

Speech-brain coherence is likely the most common measure to quantify neural tracking. A 

degradation effect of speech was found around bilateral temporal, inferior parietal and inferior 

frontal regions from the broadband 2-7 Hz coherence analysis (Figure 3B-2; cluster-corrected 

dependent-sample F-test; pcluster1 = 9.99  x 10-4, pcluster2 = 0.018). Within these areas, the 

strongest effect was found in the original condition, and no differences were found between 

7-ch and 5-ch as well as between 3-ch and 2-ch condition (Figure 3B-3). The original 

condition showed stronger coherence than the 7-ch (pfdr =  1.27 x 10-4,  pairwise Wilcoxon 

signed-rank test, effect size r = 0.74), 5-ch (pfdr =  0.005, r = 0.58), 3-ch (pfdr =  2.23 x 10-6, r = 

0.86),  2-ch (pfdr =  4.08 x 10-5, r = 0.79) and 1-ch condition  (pfdr =  8.92 x 10-7, r = 0.88). The 

7-ch condition showed stronger coherence than the 3-ch (pfdr =  6.86 x 10-5, r = 0.76), 2-ch 

(pfdr = 0.02, , r = 0.48) and 1-ch conditions (pfdr = 8.92 x 10-7, r = 0.88). The 5-ch condition 

showed stronger coherence than the 3-ch (pfdr =  8.94 x 10-6, r = 0.83), 2-ch (pfdr =  0.003, r = 

0.61), and 1-ch conditions (pfdr =  1.19 x 10-6, r = 0.87). The 3-ch condition showed stronger 

coherence than the 1-ch (pfdr =  0.039, r = 0.43). The 2-ch condition showed stronger 

coherence than the 1-ch (pfdr =  4.31 x 10-5, r = 0.78). In sum, speech-brain coherence overall 

declined as the speech intelligibility decreased, while no differences were found between the 

7-ch and 5-ch as well as between the 3-ch and 2-ch condition. 
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3.5 The peak center frequency, aperiodic exponent, and aperiodic offset are modulated by 

speech intelligibility  

To complement our finding in the TRFs, we further extracted periodic components (peak 

center frequency, peak bandwidth, peak height) and aperiodic components (exponent, offset) 

from the broadband coherence spectrum. 

We extracted the coherence data from 1 to 15 Hz from the voxels in which the significant 

degradation effect was observed from 2 to 7 Hz in the previous section. The peak and 

aperiodic components were computed per voxel of each participant (Figure 3B-4). The peak 

and aperiodic components were then averaged across voxels which showed a significant 

degradation effect for each participant. Interestingly, we observed that the peak center 

frequency accelerated (mean center frequency from 4.17 Hz to 4.69 Hz) for less intelligible 

speech [𝝌2(5) = 41.0, p = 9.49 x 10-8, Friedman test, Kendall’s W = 0.78] (Figure 3B-5). This 

finding thereby fits with the idea proposed by Schmidt et al (2021) that the speech tracking 

shifts from the more linguistic level (syllabic rate of the speech 4.3 Hz) to the more acoustic 

level (envelope modulation rate ~5 Hz). The aperiodic components (exponent & offset) 

decreased as the speech intelligibility decreased [exponent: 𝝌2(5) = 35.2, p = 1.39 x 10-6, W 

= 0.29; offset : 𝝌2(5) = 53.2, p = 3.07 x 10-10, W = 0.44] (Figure 3B-8, 3B-9). A borderline 

degradation effect was observed in the peak height [𝝌2(5) = 11.2, p = 0.048, W = 0.09] (Figure 

3B-7), and no degradation effect was found in the peak bandwidth [𝝌2(5) = 6.43, p = 0.26, W 

= 0.05] (Figure 3B-6). In sum, our results show that with stronger vocoding, the peak center 

frequency shifted toward the acoustic level and the aperiodic components decreased. 
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Figure 3. Neural tracking of speech intelligibility measured via stimulus reconstruction and 
coherence. (A) Accuracy (Pearson’s correlation coefficient) of stimulus reconstruction for each 
condition. (B) Coherence and components of the coherence spectrum in six conditions. 1, 
Frequency spectrum of the coherence for the six conditions averaged across all voxels. 2, 
Source localization of degradation effect on coherence across six conditions in bilateral 
temporal, inferior frontal, and parietal regions. 3, Individual coherence values of the six 
conditions extracted from voxels showing significant effects. 4, Example of model fitting for 
components of one coherence spectrum. 5-9, Estimated peak center frequency, peak 
bandwidth, peak height, aperiodic exponent, and aperiodic offset of coherence spectrum in 
six conditions. Bars represent 95% confidence intervals. (C) Correlations between the TRF 
components and the behavioral hit rate, reconstruction accuracy, coherence as well as 
components of coherence spectrum show that M200TRF moderately correlated with hit rate, 
reconstruction accuracy, coherence, center frequency, exponent and offset which suggest that 
M200TRF can be another neural index of speech intelligibility. pfdr < .05*, pfdr < .01**, pfdr 
< .001*** 
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3.6 The TRF finding highly correlates with behavioral and other neural measures of neural 

speech tracking 

To relate our findings in TRF components with the other measures, we computed the 

repeated measures correlation coefficients between TRF components, behavior 

measurement, and the other neural indices (stimulus reconstruction accuracy, coherence, 

and components of coherence spectrum). The repeated measures correlation coefficients 

between the TRF components and the other measures are shown in Figure 3C. 

While the higher M50TRF was mildly correlated with the lower behavioral hit rates [rrm(79) = -

0.24 (-0.41 to -0.05), p = 0.033], the enhancement in M50TRF was correlated with the center 

frequency shifting to the acoustic level [rrm(119) = 0.42 (0.25 to 0.56), p = 1.85 x 10-6]. Besides, 

the higher M50TRF was also mildly correlated with the lower coherence [rrm(119) = -0.36 (-0.52 

to -0.19), p = 6.34 x 10-5], and the lower aperiodic components [exponent: rrm(119) = -0.24 (-

0.37 to -0.07), p = 0.008; offset: rrm(119) = -0.30 (-0.44 to -0.12), p = 0.001]. 

Of the three TRF components, M200TRF can best predict behavioral performance  [rrm(79) = 

0.52 (95% CI: 0.40 to 0.65), p = 5.25 x 10-7]. Furthermore, the attenuation in M200TRF was 

correlated with the center frequency shifting from the linguistic to the acoustic level [rrm(119) 

= -0.38 (-0.50 to -0.24), p = 1.74 x 10-5], which was opposite to M50TRF. In addition, M200TRF 

was also positively correlated with the reconstruction accuracy [rrm(119) = 0.40 (0.29 to 0.52), 

p = 4.42 x 10-6], the coherence [rrm(119) = 0.49 (0.35 to 0.61), p = 1.21 x 10-8], and the aperiodic 

components [exponent: rrm(119) = 0.42 (0.26 to 0.54, p = 2.09 x 10-6; offset: rrm(119) = 0.47 

(0.33 to 0.59), p = 4.88 x 10-8]. 

Compared to M50TRF and M200TRF, the nonlinear pattern of M350TRF showed mild correlation 

to only three neural measures, which was correlated positively with the center frequency 

[rrm(119) = 0.20 (0.03 to 0.36), p = 0.030] and negatively with the aperiodic components 

[exponent: rrm(119) = -0.21 (-0.34 to -0.07), p = 0.019; offset: rrm(119) = -0.21 (-0.35 to -0.06), 

p = 0.022]. 

We also related the behavior results to the other neural measures: The better behavior hit 

rates were highly correlated with the higher envelope reconstruction accuracy [rrm(79) = 0.52, 

95% CI: 0.35 to 0.67, p = 8.70 x 10-7], the higher coherence [rrm(79) = 0.68 (0.54 to 0.76), p = 

4.52 x 10-12], the higher aperiodic components [exponent: rrm(79) = 0.60 (0.46 to 0.71), p = 

2.99 x 10-9; offset: rrm(79) = 0.66 (0.56 to 0.77), p = 1.64 x 10-11] but with the lower center 
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frequency [rrm(79) = -0.50 (-0.65 to -0.34), p = 2.16 x 10-6]. The correlation with the peak height 

was weak but statistically significant [rrm(79) = 0.22 (0.03 to 0.42), p = 0.046].  

Together, among the three TRF components, only M200 was highly correlated with the 

behavioral results, and both of them were correlated with reconstruction accuracy, speech-

brain coherence, peak center frequency, and aperiodic components. Interestingly, both M50 

and M200 were correlated with the shifting center frequency but in the opposite direction. 

These findings depicted how vocoded speech affects neural speech tracking over time. 

 

4. Discussion 

Neural speech tracking is modulated by the spectral details of speech. However, the reported 

pattern of the intelligibility modulation has been mostly computed in a “static” manner [e.g. 

stimulus reconstruction (Verschueren et al., 2019) and speech-brain coherence (Hauswald et 

al., 2020)]. Here, we aimed to explore how the human brain represents different levels of 

degraded speech in a time-resolved manner. For this reason, we used original (i.e. clear and 

unaltered) speech and 5 levels of vocoded speech as stimuli and computed time-resolved 

temporal response functions (TRFs). Secondly, we related TRF findings with behavioral and 

other neural measures (stimulus reconstruction, speech-brain coherence, and components 

of broadband coherence spectra) of neural speech tracking. Overall, the behavioral 

performance declined with decreased speech intelligibility as expected. Our results showed 

that various levels of degraded speech differentially modulate the TRF around three time-

windows: 50-110 ms (M50TRF), 175-230 ms (M200TRF), and 315-380 ms (M350TRF). 

Interestingly, both M50 and M200 are correlated with the shifting center frequency of the 

coherence spectrum, however, in the opposite direction.  These findings suggest that the 

distinctive effects on TRF are linked to altered tracking of speech features. 

  

4.1 Neural tracking and speech intelligibility 

In our neural measures, the modulation of the M200TRF, the speech brain coherence and the 

aperiodic components of the broadband coherence spectra support the notion that the neural 

speech tracking declines as the speech intelligibility decreases.  

The M200TRF is the TRF component that reflects the behavioral response best, i.e. captures 

the speech intelligibility (for the discussion of M50TRF and M350TRF, see section 4.2). Its 
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amplitude decreases as the speech intelligibility declines (Figure 2C-central). This relationship 

is also shown by the similarity of the correlational patterns of the M200TRF and the behavioral 

performance with the other measures (see Figure 3C middle and right column). This finding 

of pointing to the relevance of speech intelligibility (measured behaviorally) of the M200TRF is 

consistent with other studies, e.g. in an EEG study with multi-talker and vocoded speech 

design, greater TRF deflection around 200 ms was also observed in an attended-nonvocoded 

condition compared to an attended-vocoded condition (Kraus et al., 2021). Using conventional 

ERP analysis, greater P200 amplitude has been also observed in clear speech compared to 

degraded speech (Strauß et al., 2013) and in words pronounced with native speech than 

words pronounced with foreign-accented speech (Romero-Rivas et al., 2015). Besides, the 

P200 amplitude has been positively correlated with the successful extraction of 

phonetic/phonological information from vowels or words (De Diego Balaguer et al., 2007; 

Reinke et al., 2003). All the above results indicate that the higher amplitude of this component 

is, the higher speech intelligibility is. Furthermore, the M200TRF effect is located mainly around 

inferior parietal cortex, superior temporal gyrus, and inferior frontal cortex, consistent with prior 

fMRI work on the effect of speech intelligibility (Obleser & Kotz, 2010). 

The association between the M200TRF and the peak center frequency of the coherence 

spectrum also supports the notion that M200TRF can be an index of speech intelligibility 

(Schmidt et al., 2021). The shifting center frequency reflects the neural speech tracking from 

the (linguistic-level) syllabic rate of the speech (4.3 Hz) to the (acoustic-level) envelope 

modulation rate (~5 Hz). This is not merely due to the physical characteristics of the acoustic 

stimulus as the reduction of spectral details (from clear to 1-ch vocoded) in the audio stimuli 

results in the decrease of peak frequency in the amplitude modulation of the stimuli (from 5.61 

to 4.83 Hz). However, the center frequency of the speech brain coherence, on the other hand, 

increased (from 4.17 to 4.69 Hz). This phenomenon also highlights that the brain is not 

exclusively driven by the rhythm of external stimuli. 

The speech-brain coherence was also highly correlated with the behavior performance, which 

reflects speech intelligibility, in line with Schmidt et al. (2021). However, the coherence result 

was different from Hauswald et al. (2020), from which we re-analyzed the data. In Hauswald 

et al. (2020), the coherence result showed an inverted U-shaped pattern: The highest 

coherence showed in the marginally intelligible (5-ch vocoded) condition. After re-analyzing 

the data, we found that the difference was attributed to distinct high-pass filter settings (online 

0.1 Hz here instead of 1 Hz). This could also explain the finding of lower inter-trial phase 

correlation in delta band in the original and 8-ch vocoded conditions compared to the 4-ch 

vocoded condition in Ding et al. (2014) as the high-pass filtered was also set at 1 Hz.  
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A speech degradation effect was found in the aperiodic components (exponent & offset), 

consistent with Schmidt et al. (2021). Here, we demonstrate that the aperiodic components 

were highly correlated with the behavioral performance, which suggests that the aperiodic 

components can be reliable biomarkers for speech processing. Overall, we again highlight the 

importance of both the periodic and aperiodic components of the coherence spectra as they 

can provide more detailed information of speech processing than the coherence alone. As the 

periodic and aperiodic components of the frequency power spectrum have been shown to be 

biological markers in aging (Dave et al., 2018; Voytek et al., 2015) and mental disorders 

(Molina et al., 2020; Ostlund et al., 2021; Robertson et al., 2019), it is possible that this can 

also be the case for components of the coherence spectrum. Future studies could test whether 

those components could offer more insight into more clinically-relevant participants, e.g. in 

individuals with hearing impairment. 

 

4.2 Neural speech tracking could be affected by other potential factors 

The modulation of spectral details in speech signals not only affects speech intelligibility but 

also influences e.g. attention load, memory load, and perceptual learning (Mattys et al., 2012). 

Our findings in M50TRF and M350TRF also argue that speech intelligibility can be modulated by 

other factors.  

M50TRF, the earliest effect occurred around 50 ms and clearly differentiated all vocoded 

conditions from the non-vocoded one (Figure 2C-left). The finding of this early component is 

in line with previous studies showing that the TRF as well as ERP amplitudes of this early 

peak were greater in vocoded conditions compared to intact conditions (Ding et al., 2014; 

Kraus et al., 2021; Strauß et al., 2013). Besides, a comparable effect was also found for louder 

conditions when compared to soft-spoken conditions (Verschueren et al., 2021). While this 

M50TRF peak thus seems to follow physical manipulations of the speech signal, Ding & Simon 

(2012) could not find attentional modulations earlier than ~100 ms. Taken together, we 

propose that this early effect might be modulated by sensory gain on acoustic properties of 

the auditory stimuli rather than task difficulty as there is marked distinction between clear 

(normal) and spectral-degraded (abnormal) speech. In addition, our source result showing 

the prominent effect around bilateral primary auditory cortices further support the notion that 

the speech processing is rather early at this stage (de Heer et al., 2017; Khalighinejad et al., 

2021). It is worth noting that a similar effect on this early component was also observed for 

age both in pure tones (Herrmann et al., 2022) and in speech (Brodbeck et al., 2018), with the 
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older participants showing an increased amplitude compared to the younger ones. The 

potential neural mechanism in these cases can be the altered balance between inhibitory and 

excitatory neural mechanisms in the cortex during aging. Furthermore, we also found that the 

higher M50TRF is associated with the increased center frequency of coherence as the speech 

intelligibility decreased. This finding highlights that M50TRF, which reflects the distinctions of 

acoustic information between original and vocoded speech, can also play a role in shifting 

center frequency for degraded speech. 

The effect of speech degradation on TRF around 350 ms (M350TRF) shows an inverted U-

shaped pattern across six conditions: the maximal amplitude found in 7-ch condition, 

followed by 5-ch, 3-ch, 2-ch, 1-ch, and original (Figure 2C-right). The M350TRF effect was 

source-localized mainly around the left inferior frontal cortex. This M350TRF shares temporal 

and source characteristics with the N400 which is seen as a potential marker of semantic 

integration (for review, see Kutas & Federmeier, 2011; Lau et al., 2008). It is possible that the 

strongest effect observed in the 7-ch vocoded condition resulted from that the speech was 

still understandable and predictable while the acoustic input was violated. The effect reduced 

in the clear speech as the acoustic input was as predicted. Furthermore, the effect declined 

in the more degraded speech as the speech became less comprehensible and less 

predictable. Accordingly, a similar nonlinear N400 effect was also found in a previous study 

manipulating 6 levels of signal to noise ratio (Jamison et al., 2016). Furthermore, lexical-

semantic processing is modulated when the spectral properties of the speech are disrupted 

as shown by Obleser & Kotz (2011) and Strauß et al. (2013). Taken together, previous 

research and our results seem to indicate that the M350TRF is an index of late-stage speech 

processing (e.g. semantic integration), whereas more research directly addressing this 

question is needed. 

Based on our time-resolved findings in TRF components, we propose that envelope 

reconstruction is not a robust measure for the modulation of speech intelligibility on neural 

speech tracking as the result of envelope reconstruction is rather static. This argument is 

supported by results from ours and previous studies (Decruy et al., 2020; Presacco et al., 

2019). In our results, no differences were observed among the conditions that can be 

understood very easily to mildly challenging (original, 7-ch, and 5-ch conditions). In Decruy 

et al. (2020) and Presacco et al. (2019), higher reconstruction accuracy did not fully reflect 

better speech understanding especially when comparing hearing impaired populations to 

healthy control groups.  
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4.3 Conclusions 

In this study, we demonstrate that at least three neural processing stages (M50TRF, M200TRF, 

and M350TRF) are affected when processing continuous degraded speech. Only M200TRF 

highly correlates with behavior and other neural measures (i.e., speech brain coherence) of 

speech intelligibility. We also indicate that both M50TRF and M200TRF can reflect shifts in the 

neural speech tracking from more linguist level to more acoustic level as speech intelligibility 

declined which is supported by the effect of center frequency of coherence. In general, using 

the temporal response function combined with parametrization of coherence spectra, we 

demonstrate the temporal dynamics of neural speech tracking and provide potential 

explanations for the inconsistent literature.    
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