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Abstract

CD4+ T cells orchestrate the adaptive immune response against pathogens and cancer by
recognizing epitopes presented on MHC-II molecules. The high polymorphism of MHC-II
genes represents an important hurdle towards accurate prediction and identification of
CD4+ T-cell epitopes in different individuals and different species. Here we collected and
curated a dataset of 627,013 unique MHC-II ligands identified by mass spectrometry. This
enabled us to precisely determine the binding motifs of 88 MHC-II alleles across human,
mouse, cattle and chicken. Analysis of these binding specificities combined with X-ray
crystallography refined our understanding of the molecular determinants of MHC-II
motifs and revealed a widespread reverse binding mode in MHC-II ligands. We then
developed a machine learning framework to accurately predict binding specificities and
ligands of any MHC-II allele. This tool improves and expands predictions of CD4+ T-cell
epitopes, and enabled us to discover and characterize several viral and bacterial epitopes

following the aforementioned reverse binding mode.
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Introduction

CD4+* T cells are key components of the adaptive immune system. They are implicated in
priming and modulating the natural immune response against pathogens and cancer.
CD4+ T cells also play an essential role in cancer immunotherapy (Alspach et al., 2019;
Borst et al.,, 2018), as demonstrated by CD4+ T-cell responses following neoantigen-
based cancer vaccines (Hu et al., 2021; Ott et al.,, 2017; Sahin et al., 2017) and CD4+* T cell
mediated regression of metastatic cancer following adoptive transfer of tumor-
infiltrating lymphocytes (Tran et al.,, 2014; Zacharakis et al.,, 2018). CD4* T cell activation
starts with the recognition of epitopes presented by the highly polymorphic class II
Major Histocompatibility Complex (MHC-II) on the surface of antigen presenting cells.
Despite their central role in infectious diseases, autoimmunity and cancer, epitopes
presented on MHC-II and targeted by CD4+* T cells are still poorly described and difficult
to predict. This represents an important bottleneck for fundamental immunology,

cancer immunotherapy and personalized cancer vaccines.

Peptides presented on MHC-II are processed by the class Il antigen presentation
pathway. Most of these peptides come from extracellular proteins ingested and
degraded by the cell in the endocytic pathway (Neefjes et al., 2011). After cleavage,
peptides typically 12-25 amino acids (AAs) long are loaded on MHC-II and the peptide-
MHC-II complexes are displayed on the cell surface. The loading of peptides on MHC-II is
facilitated by the action of chaperones, including HLA-DM and HLA-DO in human
(Neefjes et al,, 2011). The binding site of MHC-II molecules has been extensively
characterized by X-ray crystallography and MHC-II ligands adopt a conserved binding

mode in these structures. This canonical binding mode consists of a linear 9-mer binding
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core, which makes most of the interactions with the MHC-II binding site, and peptide
flanking residues that extend on the N- and C-terminal parts of the binding core (Figure
1A) (Holland et al., 2013). Specific pockets are known to accommodate residues at
anchor positions (mainly P1, P4, P6 and P9) in the binding core of the MHC-II ligands
(Figure 1A) (Holland et al., 2013). Exceptions to this conserved binding mode have been
reported in chicken where one MHC-II allele accommodates peptides with a 10-mer
binding core (Halabi et al., 2021). In human, three peptides have been reported to bind
in both the canonical and the reverse orientation (i.e. from N- to C-terminus and from C-
to N-terminus) (Glinther et al,, 2010; Schlundt et al., 2012). It is however unclear how
relevant and frequent this reverse binding mode is for naturally presented MHC-II

ligands and CD4+ T-cell epitopes.

In human, the MHC-II is also called class II human leukocyte antigen (HLA-II) and
consists of three gene loci directly involved in presenting antigens to CD4+ T cells: HLA-
DR (including HLA-DRA1 and HLA-DRB1/3/4/5 genes), HLA-DP (including HLA-DPA1
and HLA-DPB1 genes) and HLA-DQ (including HLA-DQA1 and HLA-DQB1 genes). Except
for HLA-DRA1, these genes are highly polymorphic and more than 9,100 alleles have
been identified (IMGT/HLA database (Robinson et al., 2020) as of 23.06.2022). Within
each gene loci, MHC-II form protein heterodimers composed of an alpha chain (e.g., HLA-
DPA1*02:01) and a beta chain (e.g.,, HLA-DPB1*01:01). Due to the combinatorial
between the alpha and beta chains, this leads to an even much higher number of
possible heterodimers of MHC-II alleles (hereafter referred to as “MHC-II alleles” for
simplicity) expressed on the cell surface in different individuals. The polymorphic

residues mostly lie in the peptide binding site (Unanue et al., 2016), resulting in highly
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allele-specific peptide binding motifs (Abelin et al., 2019; Racle et al., 2019; Reynisson et

al, 2020).

The polymorphism of MHC-II genes, the vast diversity of MHC-II binding motifs and the
complexity of the class Il antigen presentation pathway represent important hurdles for
reliable predictions of naturally presented MHC-II ligands and CD4+ T-cell epitopes. In
recent studies, we and others have shown how high-throughput mass spectrometry-
based MHC-II peptidomics can be used to improve these predictions (Abelin et al., 2019;
Chen etal,, 2019; Racle et al,, 2019; Reynisson et al., 2020). This was achieved through
the identification of MHC-II motifs using either monoallelic samples (Abelin et al., 2019)
or motif deconvolution in polyallelic samples (Racle et al., 2019; Reynisson et al., 2020).
Beyond MHC-II binding motifs, MHC-II peptidomics also revealed specificity in the first
and last AAs in peptide flanking residues of naturally presented MHC-II ligands, a
specific peptide length distribution (peaked at 15 AAs) and a preference for a peptide
binding core offset slightly shifted towards the C-terminus of the MHC-II ligands (Barra
etal, 2018; Ciudad et al., 2017; Falk et al.,, 1994; Racle et al., 2019). The level of
expression of both the epitope source proteins and the HLA-II molecules in antigen-
presenting cells was also shown to correlate with antigen presentation (Abelin et al.,

2019; Chen et al., 2019).

Today, several MHC-II ligand prediction tools are available. These include allele-specific
(e.g., MixMHCZ2pred-1.2, limited to 38 alleles (Racle et al., 2019) and NeonMHC2, limited
to 35 HLA-DR alleles (Abelin et al,, 2019)), pan-HLA-DR (e.g., MARIA (Chen et al., 2019))
and pan-allele predictors (e.g.,, NetMHCIIpan-4.0 (Reynisson et al., 2020) and

MHCnuggets (Shao et al., 2020)). The latter aim at capturing correlation patterns
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between MHC-II binding sites and binding specificities. However, the data used to train
these predictors are still sparse, limited to few alleles and consists mostly of peptides
presented by HLA-DR alleles. As a result, epitope predictions for poorly characterized
alleles, especially HLA-DP and HLA-DQ alleles or alleles from other species, have limited

accuracy.

Here, we collected and curated a very large dataset of MHC-II ligands and determined
the binding specificities of more than eighty MHC-II alleles. Integrating these data with a
machine learning framework enabled us to improve our molecular understanding and
prediction capability of MHC-II ligands (Figure 1B). These results refine and expand our
understanding of the universe of CD4+ T-cell epitopes that could be therapeutically

targeted in infectious disease, autoimmunity and cancer immunotherapy.

Results

Curation of MHC-II peptidomics data reveals binding specificities for 88

MHC-II alleles

To improve our understanding of the specificity of MHC-II alleles and class Il antigen
presentation, we first performed a thorough literature curation to search for available
mass spectrometry-based MHC-II peptidomics datasets and collected data coming from
30 published studies for a total of 322 samples and 615,361 unique peptides (Table S1,
Data S1A). Most of these samples were obtained from human cells using anti-HLA-DR or
anti-pan-HLA-II antibodies. Other samples were obtained using anti-HLA-DP or anti-
HLA-DQ antibodies (Balen et al., 2020; Bergseng et al., 2015; Ritz et al., 2018), or cells

transfected with tagged HLA-II allowing for the isolation of peptides bound to a single
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allele (Abelin et al., 2019). A few samples were obtained from mouse (Draheim et al.,
2017; Sofron et al,, 2016; Wan et al., 2020), cattle (Fisch et al., 2021) and chicken (Halabi
etal., 2021). To further enrich for HLA-DP and HLA-DQ ligands, we used mass
spectrometry-based MHC-II peptidomics to sequentially isolate peptides with anti-HLA-
DR, anti-HLA-DP, anti-HLA-DQ and anti-pan-HLA-II antibodies (See Material and
Methods). Applying this strategy to six different cell lines or meningioma tissues
enabled us to obtain 44,334 unique peptides, including 11,779 HLA-DP and 16,146 HLA-
DQ ligands (Table S1, Data S1B). This was especially useful with respect to the limited

number of publicly available HLA-DQ ligands (31,045 unique peptides).

Combining all these data led to a total of 627,013 unique peptides (1,540,995 peptides
when counting duplicates across samples) coming from 346 samples corresponding to
201 different cell lines or tissues, making it the largest currently available collection of
mass spectrometry-based MHC-II peptidomics data (Data S1, Table S1). We then
performed motif deconvolution with MoDec (Racle et al., 2019) on each of these samples
(see Material and Methods). We could confidently describe the binding specificities of 88
MHC-II alleles, including 43 HLA-DR, 18 HLA-DP, 14 HLA-DQ, 4 mouse H-2, 7 cattle
BoLA-DR and 2 chicken Gaga-BLB alleles (Figure 1C). Figure S1A shows that motifs
identified in multiple samples sharing a common allele are highly reproducible. Our data
also show that the distributions of peptide lengths and binding core offsets are

conserved across both human and non-human MHC-II alleles (Figure S1B-C).
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MHC-II binding specificities reflect biochemical properties of the MHC-II

binding pockets

Our large dataset of MHC-II binding motifs provides a unique opportunity to better
understand the characteristics of MHC-II binding specificities. Consistent with previous
studies, we observed that the HLA-DR, HLA-DP, mouse and cattle alleles usually have
four clear anchors at positions P1, P4, P6 and P9. HLA-DQ have slightly weaker binding
specificities with main anchors at P3, P4 and P6 and sub-anchors at P1 and P9, in
general (Figure 1C). The binding specificities for all human, mouse and cattle alleles can
be described by 9-mer motifs, confirming the binding core size of 9 AAs usually
considered for MHC-II and observed in existing crystal structures. For the chicken allele
Gaga-BLB2*002:01 that had been described earlier with a longer binding core (Halabi et
al,, 2021), we additionally searched with MoDec for a 10-mer motif. We observed that
the binding specificity of this allele could be well described by two motifs, with almost
half of ligands possessing a binding core of 9 AAs and the other ones having a binding

core of 10 AAs (Figure S2A).

To investigate the molecular determinants of MHC-II binding specificities, we performed
unsupervised clustering of the binding motifs for all human alleles for each HLA locus
(i.e, HLA-DR, -DP and -DQ) and for each anchor position (Material and Methods). We
could observe different classes of specificities (Figure 24, left logos). We then retrieved
the sequences of the most variable residues in the MHC-II binding pockets interacting
with the anchor residue in the ligand for all alleles found in each cluster (Figure 2A,
Table S2A-C, see Material and Methods). As expected, alleles found in distinct specificity
clusters (i.e., distinct rows within each column of Figure 2A) also had differences in their

binding pockets. To structurally interpret these different clusters, we used available
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crystal structures of representative alleles in each cluster (Figure 2A). For a few cases,
no crystal structure was available, and we used structural modeling instead (see
Material and Methods). This revealed a remarkable correspondence between the MHC-II
binding motifs and the binding pockets of MHC-II alleles. For example, for HLA-DR
alleles, large and bulky AAs (mainly F/Y) are observed at P1 when glycine (G) is found at
86p in the P1 binding pocket, while less bulky hydrophobic AAs (I/L/V) are observed at
P1in HLA-DR alleles when valine (V) is found at 86 in the binding pocket (Figure 24,
Table S2A). This mutual exclusivity reflects the steric clash that would happen between
F/Y in the ligand and V in the binding pocket. For HLA-DP alleles, a small AA at 84 (G)
correlates with bulky AA at P1 (F/L/Y/I), and a negatively charged AA at 84 (D)
correlates with positively charged AA at P1 (K/R), with a clear salt bridge between the
two opposite charges (Figure 2A, Table S2B). Furthermore, a long polar AA at 31a (Q)
correlates with K at P1, while a long non-polar AA at 31a (M) correlates with R at P1
(Figure 2A, Table S2B). This can be explained by the fact that K at P1 can simultaneously
engage into polar or charged interactions with D84 and Q31a, whereas the two
nitrogens of R at P1 would preferentially face the two oxygens of the carboxyl group of
D84 (Figure S2B). This conformation is more favorable if M is found at 31a instead of
Q. Similar analyses between the MHC-II binding motifs at other anchor positions and the
residues in the corresponding binding pockets are detailed in Table S2D. Remarkably,
most of the observations in Figure 2A can be rationally explained in terms of steric
hindrance or polar and charged interactions. These results demonstrate a clear

correspondence between our MHC-II motifs and the sequences of MHC-II binding sites.

For most alleles, a single binding specificity was observed. Yet, for several HLA-DRB1*08

we observed two binding motifs (Figure 2B). The two motifs suggest that a positively
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charged AA (K/R) is favorable either at P4 or P6, but not at both positions at the same
time. To understand the molecular mechanism of this bi-specificity, we calculated the
FoldX energy score of several variants of peptides with a charged residue either at P4 or
P6, two charged residues at these positions or no charged residue (see Material and
Methods). Consistent with the observed bi-specificity, our calculations indicate that
peptides with two charged residues have higher energy scores (i.e., weaker predicted
binding affinity) than those with only one charged residue (Figure 2C). This can be
explained by the fact that the central part of the binding site of HLA-DRB1*08 alleles
contains only one negatively charged residue (D28[3) that can interact with positively
charged sidechains either at P4 or P6, but not at both P4 and P6 (Figure 2C). This mutual
exclusivity of charged residues at P4 and P6 appears to be further restricted to HLA-

DRB1*08 alleles and may require G at 13§ (Figure S2C-D).

MHC-II binding specificities reveal a widespread reverse binding mode in

MHC-II ligands

Another type of bi-specificity was observed for several HLA-DP alleles (Figure 1C). For
these alleles, superimposing the motifs revealed a clear symmetry between the first and
the second binding motifs (Figure 3A). It is unlikely that residues with opposite
biochemical properties (e.g., K versus E at P1) could fit at the same position (e.g., P1
binding pocket). Therefore, we hypothesized that the second motif corresponds to a
reverse binding mode where the peptides are bound from the C-terminus to the N-
terminus. This hypothesis is further supported by the fact that the distribution of

binding core offsets for peptides following the second motifs is skewed towards the N-
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terminus, unlike all other MHC-II ligands for which it is skewed towards the C-terminus

(Figure S3A).

To validate our hypothesis, we first tested the binding of different peptides to HLA-
DPA1*02:01-DPB1*01:01 (see Material and Methods). Starting with two peptides
predicted to bind in the canonical orientation, we could validate their binding (Figure
3B). Mutation to alanine of the predicted P1 and P9 anchor residues abrogated the
binding, confirming that these residues act as anchors, while replacing K at P1 with R
did not affect the binding (Figure S3B). We then reversed the sequences, in order to
obtain peptides following the second binding motif. Figure 3B shows that the binding
was preserved. In general, the binding was stronger for peptides following the first motif
(i.e., predicted canonical binders) than for those with the reversed sequence (i.e.,
predicted reversed binders). These results are fully consistent with the two motifs
observed in MHC-II peptidomics data and their respective weights (Figure 3A). As a
sidenote, one should not conclude that any ligand can be flipped and still bind, as

demonstrated in Figure S3B with two peptides for which the binding was weaker.

We then attempted to crystallize peptides predicted to bind in either the canonical or
the reverse orientation (Material and Methods). We first obtained the X-ray crystal
structure (resolution 1.62 A) of a peptide which matches the first motif
(KNLEKYKGKFVREID, core underlined). This peptide binds in the canonical orientation
to HLA-DPA1*02:01-DPB1*01:01, with K5 filling the P1 binding pocket and E13 filling
the P9 binding pocket (Figure 3C-left, Figure S3C). We then crystallized a peptide
compatible with the second motif (IEFVFKNKAKEL, resolution 2.9 A). We observed that

the binding happens in the reverse orientation with the first residue of the core (E2)
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filling the P9 binding pocket, and the last residue of the core (K10) filling the P1 binding
pocket (Figure 3C, Figure S3C). The interactions mediated by each anchor residue were
preserved, except for F in the P6 binding pocket that adopted a slightly different
conformation in the reverse binder (Figure 3C). Overlaying the two structures further
demonstrates a remarkable alignment not only of the sidechains (Figure S3D) but also of
the backbone N-H and C=0 groups (Figure S3E), as well as a conservation of most
backbone H-bonds with the MHC-II binding site between canonical and reverse MHC-II
ligands (Figure S3F). These results demonstrate that several HLA-DP alleles can
accommodate peptides in both orientations and that these two binding modes are

accurately captured with the bi-specificity observed in MHC-II ligands.

During class II antigen presentation, MHC-II ligands are processed by different proteases
and footprints of this process are visible in the N- and C-terminal contexts of MHC-II
ligands (Ciudad et al., 2017; Paul et al., 2018). However, the timing and the impact of the
structural positioning of peptides in the MHC-II binding site are still unclear (Bird et al.,
2009; Sercarz and Maverakis, 2003). MHC-II ligands binding in the reverse orientation
provide an opportunity to shed light on this process. Figure S3G shows that the motifs of
the N- and C-terminal contexts of the reverse binding peptides are very similar to those
from the canonical binding peptides. Consistent with predictions from previous studies
(Abelin et al., 2019), this observation supports a model where most of the cleavage and
trimming takes place first, independent of the positioning of the peptides in the MHC-II

binding site.
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MHC-II binding specificities can be accurately predicted for alleles without

known ligands

Due to the high polymorphism of MHC-II genes, the binding specificity cannot be
determined experimentally for all alleles. Our large and curated collection of MHC-II
motifs provides an opportunity to capture correlation patterns between binding motifs
and binding sites, and to train an accurate predictor of MHC-II ligands for any allele
(referred to as pan-allele predictor). To this end, we designed a machine learning
framework composed of two distinct successive blocks (Figure 4A). In the first block, the
aim is to predict the MHC-II binding motifs (mathematically defined as Position
Probability Matrices (PPMs), see Material and Methods) directly from the MHC-II
sequences. In the second block, the aim is to predict actual MHC-II ligands based on their

sequence and the PPM of the corresponding MHC-II allele.

The first block consists of a set of fully connected neural networks for each binding core
position separately (Figure S4A-left, see Material and Methods). The binding sites
corresponding to each position and used as inputs of the neural networks were
determined based on existing crystal structures (see Material and Methods). This block
also incorporates the different multiple specificities and was trained on our set of PPMs
representing each motif (see Material and Methods). The second block of the predictor
consists of a fully connected neural network (Figure S4A-right). It takes as input the
score of the peptide against the PPMs of the corresponding MHC-II allele together with
other features linked to antigen presentation (i.e., peptide length, binding core offset and
peptide processing/cleavage features, see Material and Methods). This block is trained
on our dataset of MHC-II ligands (positives) and randomly selected peptides from the

human proteome (negatives) (see Material and Methods).
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As a first validation, we benchmarked how accurate our predictor, referred to as
MixMHC2pred-2.0, was in predicting the MHC-II binding motifs for alleles without
known ligands. To this end, we performed a leave-one-allele-out cross-validation, where
all the data from one allele is removed from the training (see Material and Methods). To
compare with the current state-of-the-art pan-allele predictor NetMHCIIpan-4.0, we
focused on MHC-II alleles absent from its training set. For both predictors, predicted
motifs were built by considering 100,000 random human peptides and selecting the top
1% best predicted peptides (see Material and Methods). The resulting motifs were
compared with those derived from MHC-II peptidomics studies using the Kullback-
Leibler divergence (KLD) (see Material and Methods). Our results show that
MixMHC2Zpred better inferred the binding specificities of new alleles for both human
and non-human MHC-II alleles (Figures 4B-C, S4B). Of note, the multiple specificities
could be well predicted by MixMHC2pred, while they were not detectable in

NetMHClIIpan predictions (Figures 4B, S4B, see Material and Methods).

MixMHC2pred improves predictions of MHC-II ligands and CD4* T-cell
epitopes

We then benchmarked the accuracy of MixMHC2pred to predict naturally presented
MHC-II ligands, using the leave-one-allele-out cross-validation setting (see Material and
Methods). The Area Under the Receiver Operating Characteristic curve (ROC AUC) was
computed as a measure of prediction accuracy. Results showed improved predictions
for MixMHC2pred compared to other pan-allele predictors, both in human (Figure 5A-B)

and non-human samples (Figure 5C). We next examined if MixMHC2pred would be
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amenable to predictions for species without known MHC-II ligands for any allele. To this
end, we retrained our predictor removing all data coming from one species and
predicted the MHC-II ligands from this species (referred to as leave-one-species-out
cross-validation, see Material and Methods). We compared the predictions of this model
with the predictions obtained in the leave-one-allele-out setting as well as to the full
model, where all available data from all species were used in the training (Figure 5D). As
expected, the full model was more accurate, followed by the leave-one-allele-out model
and then the leave-one-species-out model. Nevertheless, AUC values were still much
better than random when the predictor was not trained on any data from a given
species, demonstrating that MHC-II ligand predictions can be extrapolated to new

species, although with some loss in prediction accuracy (Figure 5D).

We then benchmarked the predictions for CD4+ T-cell epitopes (i.e., peptides presented
by MHC-II and recognized by CD4+* T cells), using data coming from the Immune Epitope
Database (IEDB) (Vita et al., 2019) and considering epitopes originating from viruses,
bacteria and cancer that have been tested for CD4* T cell immunogenicity. We computed
the accuracy of the different predictors for each allele separately, based on the peptides
that were annotated as immunogenic or not (see Material and Methods). Even though
many of these epitopes had been selected based on exiting MHC-II ligand predictors
(mainly NetMHCIIpan), we observed that the predictions of MixMHCZ2pred were more

accurate than those of other tools (Figure 5E-F).
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Multiple specificities reveal reverse binding CD4* T-cell epitopes.

To capitalize on the ability of our tool to model multiple binding specificities of MHC-II
alleles, we scanned common viral and bacterial proteomes and selected 39 peptides that
were predicted to follow only the reverse binding mode of HLA-DPA1*02:01-
DPB1*01:01 (Figure 6A, see Material and Methods). We stimulated CD4+* T cells isolated
from PBMC of two HLA-DPA1*02:01-DPB1*01:01* donors using pools of these peptides
and measured cytokine production. After deconvolving the responses, we could identify
seven peptides eliciting TNFo and IFNy production (Figure 6B, Table S3A). We then built
peptide-MHC-II multimers with four of those peptides. A clear multimer* population was
found for each epitope, demonstrating that the immunogenicity originated from the
actual peptides bound to HLA-DPA1*02:01-DPB1*01:01 (Figure 6C, Material and
Methods). To gain insights into the clonality of these reactive CD4+* T cells, we sequenced
their T-cell receptor (TCR) alpha and beta chains. Oligoclonal responses were observed
for each epitope (Table S3B), including a quasi-monoclonal recognition of the EBV
epitope GELALTMRSKKLPIN (with a single TCRa and a dominating TCRp). We next
wondered if these TCR could be found in other donors. The alpha and beta chain
sequences were used to query separately TCRo/TCRp repertoires through the iReceptor
web platform (Corrie et al., 2018) (see Material and Methods). Most of the alpha and
beta CDR3 sequences of our study have been already observed in other donors,
including 13 cases (out of 32) with exactly the same CDR3, V and ] genes (Table S3B).
Overall, these observations suggest that TCRs recognizing reverse binding epitopes are

not rare in the human population.

Next, we investigated whether these epitopes had elicited a memory response. To this

end, we tested if the CD4+* T cells from the two donors could recognize these epitopes
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directly ex vivo, without any prior stimulation, using the four multimers validated above.
For one donor we could observe a direct ex vivo response that was mediated by effector
and effector memory CD4+ T cells (Figure 6D). This shows that reverse binding MHC-II
ligands can elicit natural CD4+ T-cell recognition. Reverse binding epitopes identified in
this work had very poor scores (%Rank > 20) with other MHC-II ligand predictors
(Table S3A). This demonstrates how thorough analysis of large datasets of MHC-II
ligands together with machine learning algorithms can improve and expand the scope of

CD4+* T-cell epitope predictions.

Discussion

CD4+ T cells play a central role in immune recognition of infected or malignant cells, and
response to cancer immunotherapy. CD4+ T cells and MHC-II alleles have also been
linked with multiple autoimmune diseases, including rheumatoid arthritis, celiac
disease, type 1 diabetes, multiple sclerosis and narcolepsy (Latorre et al., 2018;
Matzaraki et al.,, 2017). However, identifying class Il (neo-)epitopes displayed on MHC-II
molecules and targeted by CD4+* T cells remains challenging. This is especially true for

epitopes displayed on HLA-DP and HLA-DQ alleles.

Here we capitalized on both public and in house MHC-II peptidomics data to derive
accurate MHC-II motifs for a large panel of MHC-II alleles, including HLA-DP and HLA-
DQ alleles whose binding specificity was less well defined in previous studies. The fact
that the different classes of binding specificities at each anchor position could be
rationalized in terms of molecular interactions with residues in the different binding

pockets provides an independent validation of the MHC-II motifs derived directly from
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MHC-II peptidomics data. We also note that the HLA-DP ligands corresponding to
reverse binders were not included in the analyses of Figure 2A, since our results
subsequently revealed that AAs at P1, resp. P4, actually fit in the P9, resp. P6, binding
pocket, and vice versa. Some of the correlation patterns between the MHC-II binding
motifs and MHC-II binding pockets (Figure 2A) can already be found in the definition of
MHC-II supertypes (Greenbaum et al., 2011). However, several other observations are
specific to this work. For instance, HLA-DPB1*01:01 and HLA-DPB1*04:02 were
assigned to the same supertype (Greenbaum et al., 2011), while both their specificity at
P1 (K/R, resp. F/L/Y/I) and their P1 binding pockets (D, resp. G at 84f3) are clearly
different. This mainly reflects the limited number (<30 alleles) and lower resolution of
MHC-II motifs used to define MHC-II supertypes. Of note, these limitations are also
affecting state-of-the-art MHC-II ligand predictors (see examples in Figures 4B, S4B and
S6). As such our results provide both a refined view of the main MHC-II binding
specificities, in line with the recent classification proposed for HLA-DP alleles
(Laghmouchi et al,, 2022; Meurer et al,, 2021), and a robust implementation of these

observations into an accurate MHC-II ligand prediction tool (MixMHC2pred-2.0).

We observed that multiple specificities were especially frequent in HLA-DP alleles and
we anticipate that a few multiple specificities may have been missed with our motif
deconvolution approach for MHC-II alleles with less ligands (e.g.,, HLA-DPA1*02:01-
DPB1*11:01, see also HLA-DRB1*08:03). These observations are consistent with the
previously reported multiple specificity of HLA-DPA1*02:02-DPB1*05:01 (Balen et al,,
2020). For HLA-DP alleles, our work demonstrates that the two different motifs
correspond to two different binding modes (i.e., canonical and reverse) of HLA-II

ligands. We do not exclude that reverse binders may also be found among the ligands of
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other alleles, similar to the CLIP peptides observed to bind in both orientations to HLA-
DRB1*01:01 (Glinther et al., 2010). However, we could never detect multiple motifs with
the same type of symmetry for HLA-DR or HLA-DQ alleles. Moreover, most alleles do not
have the same specificity at P1 and P9, or P4 and P6, suggesting that peptides fitting
HLA-DR or HLA-DQ motifs mainly bind in the canonical orientation and that reverse
binders, if present, comprise only a small fraction of the actual ligands. This potential
paucity of the reverse binding mode in HLA-DR (and HLA-DQ) ligands could explain why
the earlier observations of reverse binders based on some very specific peptides
(Giinther et al.,, 2010; Schlundt et al., 2012) have not been followed by other similar
observations. Furthermore, this reverse binding mode was not captured by existing
predictors and was not particularly anticipated from a structural point of view, since
several contacts between MHC-II and their ligands are mediated by the backbone atoms
of the ligands (Figure S3F), and would not necessarily be conserved in the reverse
orientation. This demonstrates the power of unbiased analyses of MHC-II ligands to

unravel novel properties of MHC-II alleles.

Within human, our work shows that MHC-II binding motifs and MHC-II ligands can be
accurately predicted even for alleles without known ligands (Figures 4B-C, 5A-B, and
S4B). This is an important improvement of MixMHC2pred-2.0 compared to the previous
version, MixMHC2pred-1.2, as well as NeonMHC2, which are allele-specific predictors
and can only be run for a small subset of alleles (24 HLA-DR, 10 HLA-DP, 4 HLA-DQ for
MixMHC2pred-1.2, and 35 HLA-DR for NeonMHCZ2). As a result, these allele-specific
predictors are not applicable to most patients and could not be included in our
benchmarks. When attempting to make predictions in species without any information

about MHC-II ligands (i.e., leave-one-species-out), we observed lower, though not
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random, accuracy. This is likely a limitation of all pan-allele MHC-II ligand predictors,
which should be used with care in distant species like fish or birds. For instance, most
tools would not be able to predict the 10-mer binding core of the chicken allele Gaga-

BLB2*002:01, if not explicitly trained on these data.

Altogether, our work provides a unique high-quality dataset of MHC-II ligands, precise
definition of MHC-II binding motifs, refined understanding of the molecular
determinants of these motifs including a widespread reverse binding mode of HLA-DP
ligands, and improved machine learning predictions of CD4+ T-cell epitopes. The fact
that the viral epitopes following the reverse binding mode and eliciting responses in
effector-memory CD4+ T-cells could not have been identified with other MHC-II ligand
predictors demonstrates the promise of machine learning algorithms like MixMHC2pred
to better characterize and expand the repertoire of CD4* T-cell epitopes. The improved
accuracy of CD4+ T-cell epitope predictions may contribute to accelerating personalized

immunotherapy approaches in autoimmune diseases or cancer.
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Material and Methods

Curation of publicly available MHC-1I peptidomics data

We searched in the literature and on ProteomeXchange

(http: //www.proteomexchange.org/) (Deutsch et al., 2020) for available high-
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throughput mass spectrometry-based MHC-II peptidomics datasets in which the MHC-II

typing was also known.

We downloaded the sequences of different reference proteomes from EMBL-EBI

(https://ftp.ebi.ac.uk/pub/databases/reference proteomes/): human
(UP000005640_9606), mouse (UP000000589_10090), cattle (UP000009136_9913) and
chicken (UP000000539_9031), obtaining both the canonical and additional sequences in
fasta format (from release 2020_04). The peptides obtained from MHC-II peptidomics
datasets were then mapped to these proteomes, in order to identify their protein of
origin and determine their N-/C-terminal contexts (3 residues upstream of the peptide +
3 N-terminal residues of the peptide (N-terminal context); 3 C-terminal residues of the

peptide + 3 residues downstream of the peptide (C-terminal context)).

Cells and patient material

Epstein-Barr-virus-transformed human B-cell lines JY (ATCC, 77442), CM467, RA957, (a
gift from P. Romero (Ludwig Institute for Cancer Research Lausanne), were maintained
in RPMI-1640+GlutaMAX medium (Life Technologies) supplemented with 10% heat-
inactivated FBS (Dominique Dutscher) and 1% penicillin-streptomycin solution
(BioConcept). Cells were grown to the required cell numbers, collected by centrifugation
at 1,200 rpm for 5min, washed twice with ice cold PBS and stored as dry cell pellets at
-20 °C until use. PBMCs from donor 1G6I, PBMCs from melanoma patient LAU52 and
snap-frozen meningioma tissues from patients (3865-DM, 3947-GA, 4021) were
obtained from the bio-bank of the Centre Hospitalier Universitaire Vaudois (CHUV,

Lausanne, Switzerland). Informed consent of the participants was obtained following
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requirements of the Institutional Review Board (Ethics Commission, CHUV). Protocol F-
25/99 has been approved by the local ethics committee and the biobank of the Lab of
Brain Tumor Biology and Genetics. Protocol 2017-00305 for antigen and T cell
discovery in tumors has been approved by the local ethics committee. Protocol F-42 /92

has been approved by the local ethics committee.

HLA typing

Genomic DNA was extracted using DNeasy kit from Qiagen and 500ng of genomic DNA
was used for the typing. High-resolution 4-digit HLA typing was performed with the
TruSight HLA v2 Sequencing Panel kit from [llumina according to the manufacturer
instruction. Briefly, class I and class Il genes were amplified by PCR. lllumina adapters
were added by tagmentation. After normalization and purification, the samples were
sequenced on a MiniSeq instrument (Illumina). Sequencing data were analyzed with the

Assign TruSight HLA v.2.1 software ([llumina).

Generation of antibody-crosslinked beads

Anti-pan-HLA-II and anti-HLA-DR monoclonal antibodies were purified from the
supernatant of HB145 (ATCC, HB-145) and HB298 cells (ATCC, HB-298), respectively,
grown in CELLLine CL-1000 flasks (Sigma-Aldrich) using protein A-sepharose 4B beads
(pro-A beads; Invitrogen) while anti-HLA-DP (Leinco Technologies) and anti-HLA-DQ
(from either Biorad or MyBioSource) were purchased from the respective providers.
Antibodies were cross-linked separately to pro-A beads at a concentration of 1 to 2 mg
of antibodies per milliliter of beads following incubation with pro-A beads for 1h at

room temperature. Chemical crosslinking was performed by addition of dimethyl
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pimelimidate dihydrochloride (Sigma-Aldrich) in 0.2M sodium borate buffer, pH 9
(Sigma-Aldrich) at a final concentration of 20mM for 30min. The reaction was quenched
by incubation with 0.2M ethanolamine, pH 8 (Sigma-Aldrich) for 2h. Crosslinked

antibodies were kept at 4 °C in PBS until use.

Purification of HLA-Il, HLA-DR, HLA-DP, HLA-DQ bound peptides

Cells were lysed in PBS containing 0.25% sodium deoxycholate (Sigma-Aldrich), 0.2mM
iodoacetamide (Sigma-Aldrich), 1ImM EDTA, 1:200 protease inhibitors cocktail
(SigmaAldrich), 1ImM phenylmethylsulfonylfluoride (Roche) and 1% octyl-beta-
dglucopyranoside (Sigma-Aldrich) at 4 °C for 1h. The lysis buffer was added to cells ata
concentration of 1x108 cells per milliliter. Cell lysates were cleared by centrifugation
with a table-top centrifuge (Eppendorf Centrifuge) at 4 °C at 14,200 rpm for 50min.
Meningioma tissues were placed in tubes containing the same lysis buffer and
homogenized on ice in three to five short intervals of 5 s each using an Ultra Turrax
homogenizer (IKA) at maximum speed. For 1 g of tissue, 10-12ml of lysis buffer was
required. Cell lysis was performed at 4 °C for 1h. Tissue lysates were cleared by
centrifugation at 20,000 rpm in a high-speed centrifuge (Beckman Coulter, JSS15314) at

4 °C for 50min.

Tissue cleared lysates were loaded first on affinity purification columns (BioRad, 731-
1550) containing pro-A beads (pre-clear column, to remove non-specific antibodies).
Tissues and cells lysates were loaded sequentially on columns containing cross-linked
beads in the following order: CM467 samples on anti-DQ, DP, DR, pan-HLA-II antibodies,

3865 and ]JY on anti-DR, DQ, DP, pan-HLA-II antibodies, and samples RA957, 3947-GA,
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4021 on anti-DR,DP,DQ, pan-HLA-II antibodies. The affinity columns were then washed
with 2 column volumes of 150 mM sodium chloride (NaCl; Carlo-Erba) in 20 mM Tris-
HCI pH 8, 2 column volumes of 400 mM NaCl in 20 mM Tris-HCI pH 8, and again 2
column volumes of 150 mM sodium chloride in 20 mM Tris-HCI pH 8. Finally, the beads
were washed in 1 column volume of 20 mM Tris-HCI pH 8. HLA complexes and the
bound peptides were eluted by adding twice 1% trifluoroacetic acid (TFA) or 4 times
Acetic acid 0.1N at a volume equivalent to or slightly higher than the volume of beads
present in the column. HLA peptides were purified and concentrated with by loading
into Sep-Pak tC18 96-well plates (Waters) preconditioned with 1 mL of 80% acetonitrile
(ACN) in 0.1% TFA and then with 2 mL of 0.1% TFA. The C18 wells were then washed
with 2 mL of 0.1% TFA. The HLA peptides were eluted with 500 pL of 32% ACN in 0.1%
TFA into Eppendorf tubes. Recovered peptides were dried using vacuum centrifugation

(Thermo Fisher Scientific) and stored at —-20°C.

LC-MS/MS analyses of HLA-II peptides

HLA-II, HLA-DR, HLA-DP and HLA-DQ peptide samples were resuspended in 10 pl of 2%
ACN in 0.1% formic acid (FA) and aliquots of 3 pl were used for each MS analysis. The
LC-MS/MS system consisted of an Easy-nLC 1200 (Thermo Fisher Scientific) coupled to
a Q Exactive HF-X mass spectrometer (Thermo Fisher Scientific). Peptides were
separated on a 450-mm analytical column (8-pm tip, 75-um inner diameter, PicoTip
emitter, New Objective) packed with ReproSil-Pur C18 (1.9-um particles, 120 A pore
size, Dr Maisch GmbH). The separation was performed at a flow rate of 250 nl/min by a
gradient of 0.1% formic acid in 80% acetonitrile (solvent B) and 0.1% formic acid in

water (solvent A).HLA-II peptides were eluted by the following gradient: 0 to 80 min (2
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- 32% B); 80 to 84 min (32 - 45% B); 84 to 85 min (45 - 100% B); and 85 to 95 min
(100% B). Data were acquired using a data-dependent acquisition (DDA) method. Full-
scan MS spectra were acquired in the Orbitrap at a resolution of 60,000 (at 200 m/z)
with an auto gain control (AGC) target value of 3x10°¢ ions. For Tandem mass
spectrometry (MS/MS), ten most abundant precursor ions were sequentially isolated,
activated by higher-energy collisional dissociation (NCE = 27) and accumulated to an
AGC target value of 2x105 with a maximum injection time of 120 ms. In the case of
assigned precursor ion charge states of one, and from six and above, no fragmentation
was performed. MS/MS resolution was set to 15,000 (at 200 m/z). Selected ions were
dynamically excluded for additional fragmentation for 20 s. The peptide match option
was disabled. The raw files and MaxQuant output tables will be deposited to the
ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2022) partner

repository.

Peptide identification

We employed the MaxQuant platform v.1.5.5.1 (Cox and Mann, 2008) to search the peak
lists against a fasta file containing the human proteome (Homo_sapiens_
UP000005640_9606, the reviewed part of UniProt, including 21,026 entries downloaded
in March 2017) and a list of 247 frequently observed contaminants. Peptides with a
length between 8 and 25 amino acids were allowed. The second peptide identification
option in Andromeda was enabled. The enzyme specificity was set as unspecific. A false-
discovery rate of 1% was required for peptides and no protein false-discovery rate was

set. The initial allowed mass deviation of the precursor ion was set to 6ppm and the
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maximum fragment mass deviation was set to 20ppm. Methionine oxidation and N-

terminal acetylation were set as variable modifications.

Deconvolution and annotation of MHC-II motifs

To search for motifs describing the binding specificities of the alleles present in our
compiled MHC-II peptidomics dataset (Table S1), we used our motif deconvolution tool
MoDec (Racle et al,, 2019). MoDec uses a probabilistic framework to search for common
motifs of size L (L=9 in general for MHC-II ligands) present anywhere along the
sequence of the MHC-II ligands identified by mass spectrometry in a given sample. The
different motifs identified per sample typically correspond to binding specificities of the
different MHC-II alleles. Both the mapping of each peptide to a specific motif and the
identification of the binding core are derived from the maximum responsibility value
returned by MoDec. Potential contaminant peptides are also identified during the
deconvolution. MoDec-1.1 was run using the recommended options “--pepLmin 12 --
speclnits --makeReport -r 50”, searching for motifs of length 9 AAs, and searching
between 1 and up to 12 different motifs per sample (depending on the sample). For the
chicken samples, where a bulging binding mode of 10 AAs binding core had been

previously observed (Halabi et al., 2021), we additionally searched for 10-mers motifs.

Following our previously established procedure (Racle et al.,, 2019), all samples were
manually reviewed and MHC-II motifs were annotated to their respective MHC-II allele
by identifying shared motifs across samples sharing the same MHC-II allele. In this way,
we could identify the motifs of 88 different alleles. Some samples were of too low quality

to be included in the analyses (e.g., too few peptides present, or incorrect MHC-II typing
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where clear motifs are present but are describing other alleles than the alleles supposed
to be present in the given sample), and these samples were not included in Table S1 nor
Data S1. Further, peptides clearly assigned to motifs corresponding to alleles not
supposed to be in the sample were considered as contaminants and were removed from
further analyses. Peptides that could not confidently be assigned to a specific allele were
not considered for the analyses of binding specificities. These include cases with too few
peptides to build a clear motif, peptides assigned to the flat motif of MoDec, or when two
alleles of similar binding specificity are present in a sample but a unique motif
describing these alleles was obtained. These peptides were nevertheless kept for the
prediction benchmarks of MHC-II ligands to prevent any potential biases in our
validation datasets. Multiple specificities appear when two (or more) clearly different
motifs from a sample are identified as coming from the same allele (either because the
sample is monoallelic or because the same multiple specificity motifs are appearing in
multiple samples sharing only the given allele). Motifs identified for each allele in each
sample are shown in Figure S1A. Motifs shown in Figure 1C were obtained by grouping
together the peptides assigned to each allele from all samples and aligning them based
on the binding core identified by MoDec. ggseqlogo (Wagih, 2017) was used to plot
these motifs in all the figures (with the height of the motifs corresponding to Shannon
entropy measured in bits). The list of all peptides assigned to each allele in each sample

can be found in Data S1.

Motifs clustering

For each allele for which we could obtain a motif, we started by computing a position

probability matrix, PPM[; , (a: the allele, I: the binding core position, i: the amino acid
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identity), using all the identified binding cores of all the peptides assigned to this allele
(Data S1). We further included a pseudocount based on the BLOSUM62 substitution
matrix with a parameter =200 (Nielsen et al., 2004). The Kullback-Leibler divergence
(KLD) was then computed between all pairs of alleles from a same gene locus (HLA-DR,

HLA-DP or HLA-DQ), for each binding core position I:

20
PPM?,
KLD® = —Z PPMY, - log <PPM2‘>
i=1 Li

(1)
These KLD were then clustered through hierarchical clustering (using hclust function
from R with the average clustering method). Thresholds to define the different clusters
based on the hierarchical clustering were manually defined. Resulting clusters are given
in Table S2A-C. The binding specificities plotted in Figure 2A (first motifs to the left in

each column) correspond to the average PPM}; between the alleles of each cluster.

Clusters containing a single allele were not considered in the analysis.

MHC-Il sequences retrieval and alignment

Human MHC-II sequences were retrieved from IPD-IMGT/HLA database (Robinson et
al,, 2020).
Mouse MHC-II sequences (called H2-1Ax and H2-1Ex, where x gives the name of the

allele) were manually retrieved from NCBI’s Protein database

(https://www.ncbi.nlm.nih.gov/protein/), searching for MHC class II sequences of Mus
musculus.
Cattle MHC-II sequences (BoLA-DR) were retrieved from IPD-MHC database (Maccari et

al, 2017).
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Chicken MHC-II sequences (Gaga-BL) are not yet part of IPD-MHC database. We found
the accession numbers corresponding to the different alleles in the Online Resource 2 of
(Afrache et al., 2020), searched for these accession on NCBI’s Nucleotide database

(https://www.ncbi.nlm.nih.gov/nuccore) and obtained the translated CDS sequences of

the BLB1 and BLB2 genes.

The sequences were aligned together using the function msaClustalOmega from the msa

package in R (Bodenhofer et al,, 2015; Sievers et al,, 2011).

Analysis of available MHC-II structures, determining MHC-II-peptide

contact positions

Crystal structures in PDB format where obtained from the RCSB PDB
(https://www.rcsb.org/) (Berman et al., 2000; Rose et al., 2017). Structures containing
human MHC-II alleles were retrieved based on the following Sequence Motif:
“WRLEEFGRFASFEAQGALANIAVDKANLEIMTKRSNYTPITN” for HLA-DR,
“FYVDLDKKETVWHLEEFG” for HLA-DP and “CLVDNIFPPVVNIT” for HLA-DQ. A custom
script was used to determine to which MHC-II alpha and beta chains each PDB file
corresponded (based on the chain A and chain B sequences in the PDB files and the

MHC-II sequences obtained above).

We then manually reviewed these structures to determine the peptide binding cores.
Residues in the MHC-II alpha and beta chains that were in close contact to each peptide
binding core position (distance < 5 A) were determined and kept in our list of contact

positions if the same residue passed the distance threshold for at least two different
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MHC-II alleles and if the AA at this residue was not conserved among the MHC-II alleles
for which we had obtained a binding motif. These residues in MHC-II alleles are those
most likely to influence the binding specificity at a given binding core position in MHC-II

ligands.

Sequence logos of the most important allele contact positions in each cluster (see above)
were drawn with ggseqlogo (Wagih, 2017) (Figure 2A; Table S2A-C includes all contact
positions). The numbering of the contact position residues follows the numbering found
in X-ray structures for the alpha and beta chains. For the alleles from the first cluster of
HLA-DQ at P1, we manually renumbered the amino acids F/L found at the residue 51a
to exchange them with the gap found at 52a as they structurally better align to the

residues at position 52a from the other HLA-DQ alleles.

We used PyMOL (https://pymol.org) to show representative images of the MHC-II and

peptide contacts (Figures 1A-B, 2A), obtained from the following PDB IDs: 1BX2, 1DLH,
1KLU, 1S9V, 1UVQ, 2NNA, 3C5], 3LQZ, 3PL6, 3WEX, 41S6, 4MAY, 4MD]J, 40ZF, 4P57,

4P5M, 6BIR, 6CPL, 6DIG, 6PX6 and 7N19.

Structural modeling

HLA-DR alpha chain, HLA-DR beta chain and peptide sequences were used as starting
points for the modeling. Homology models of the HLA-II-peptide complexes were
generated using Modeller software v10.1 (Webb and Sali, 2016). Template structures
were retrieved from Protein Data Bank (Rose et al., 2017). Top matching templates were

identified from the template library using an internal database with annotated alleles.
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The closest template was determined using the BLOSUM62 scoring function (Henikoff
and Henikoff, 1992). A total of 2,000 models were produced for each HLA-II-peptide
complex. These models were subsequently ranked based on the sum of the Discrete
Optimized Potential Energy (DOPE) calculated using Modeller over the peptide residues,
as well as the HLA residues within 6 A from the peptide. For each HLA-II-peptide
complex, molecular interactions were analyzed in the top 5 ranked models over the
2,000. The final HLA-II-peptide structural model corresponds to the one with best score

and highest number of favorable interactions.

The effect of amino acid mutations on HLA-II-peptide structural stability was estimated
using FoldX software after modeling the mutation using its buildmodel function
(Schymkowitz et al., 2005). Changes in FoldX energy score (DG mutant - DG wild-type)
were calculated for each mutant using an ensemble of 10 conformations. A

change > 1kcal/mol means a destabilizing effect while a change < -1 kcal/mol means a
stabilizing effect. In Figures 2C and S2C, differences in FoldX energy scores are relative

to the “LK” case.

Production of HLA-DPA1*02:01-DPB1*01:01

The extracellular region of the HLA- DPA1*02:01 and HLA-DPB101:01 chains were
separately cloned into pMT\BiP\V5-His A (ThermoFisher scientific). The alpha chain
construct harbors the acidic leucine zipper and terminates by a 6His-tag. The beta chain
construct contains the basic leucine zipper and terminates with AviTag sequence. To
generate cell lines expressing HLA-DPA1*02:01-DPB1*01:01, the two plasmids with a

third plasmid conferring puromycin resistance, were cotransfected into Drosophila S2
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cells using Cellfectin (ThermoFisher Scientific) according to the manufacturer protocol.
Protein expression was induced by addition of 1 mM CuS04. MHC class II molecules
were purified from supernatants with Chelating Sepharose FF (Merck). Peptide loading
was performed in citrate saline buffer (100 mM citrate, pH 6.0, 0.2% [-octyl-
glucopyranoside (Calbiochem), 1xcomplete protease inhibitors (Roche)) with 100 uM
peptide at 37°C for 24 hours, buffer-exchanged on a HiPrep 26/10 desalting column
(Merck) into AviTag buffer and subsequently biotinylated with the BirA enzyme
according to the manufacturer instructions (Avidity, Denver, Colorado, USA).
Biotinylated MHC class II-peptide complexes were purified on a HisTrap HP column

(Merck) and kept at -80°C until multimerization with streptavidin conjugates.

For protein crystallization “empty” HLA-DPA1*02:01-DPB1*01:01 was purified on a
Superdex 75 10/300 GL column (Merck) into 20mM Tris pH 8.0, 150mM NaCl and

concentrated at 10mg/ml.

Binding competition assays

Four peptides following well one of the two observed binding specificities of HLA-
DPA1*02:01-DPB1*01:01 and present in multiple MHC-II peptidomics samples
containing this MHC-II allele were selected. These sequences were additionally
“inverted” to have the same sequences but in the other orientation, in order to have four
peptide sequences fitting well the observed canonical binding specificity and four
sequences fitting well the reversed binding specificity. In addition, we also added the
same sequences but where the AA present in the predicted P1 binding pocket was

replaced by arginine (or lysine if the WT sequence had arginine), and we also added
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expected negative binders where the predicted peptide binding anchors P1 and P9 were

replaced by alanine.

All these peptides were chemically synthesized using standard fmoc chemistry, purified
by RP-HPLC (>80 % purity) and analyzed by UPLC-MS. Peptides were kept lyophilized at
-80°C. To test the binding of these peptides to HLA-DPA1*02:01-DPB1*01:01,
competition assays were performed by mixing in v-bottom 96-well plate (Greiner Bio-
One) in 50 ml of citrate saline buffer (described above) 1 pg of the biotinylated empty
allele with a FLAG-tagged peptide (IKTEKKTVQFSDDVQ) at fixed concentration of 2 uM
and candidate peptides were added to each well to a final concentration of 0, 0.13, 0.41,
1.2,3.7,11.1, 33.3, and 100 uM. For the control, untagged peptide (IKTEKKTVQFSDDVQ)
was used at the respective concentrations to the mix of allele and FLAG-tagged peptide.
After incubation at 37 °C overnight. The binding of the tagged peptides to HLA-II
molecule was measured by ELISA. The mix was transferred to a plate coated with avidin
and the FLAG-peptide was detected with an anti-FLAG-alkaline phosphatase conjugate
(Merck), developed with pNPP SigmaFAST (Merck) substrate and absorbance was read

with a 405-nm filter.

Protein crystallization, data collection, structure determination and model

refinement.
HLA-DP (HLA-DPA1*02:01-DPB1*01:01) protein at around 10 mg/ml was mixed with
peptides at a final concentration of 10 mM, and co-crystallized by hanging drop vapor

diffusion method. Crystals of HLA-DP- canonical binder (sequence:

KNLEKYKGKFVREID) formed in a couple of weeks in 15% w/v PEG 4000, 0.2 M
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Magnesium chloride hexahydrate, 0.1M Sodium cacodylate pH 6.5 and crystals of HLA-
DP-reverse binder (sequence: IEFVFKNKAKEL) in 8% w/v PEG 20K, 8% v/v PEG 500
MME, 0.2M Potassium thiocyanate, 0.1M Sodium acetate pH 5.5. The crystals were
cryoprotected with 25% glycerol. Diffraction data were collected at the Paul Scherrer
Institute (SLS, Villigen) at PXIII beamline. Data were processed with the XDS Program
Package (Kabsch, 2010). Structures were solved by molecular replacement using
Phaser-MR and PDB entry 3WEX as template model. Manual model building and
structure refinement were carried out in Phenix Suite (Liebschner et al., 2019) using
coot software (Emsley and Cowtan, 2004) and phenix-refine, respectively. After
validation, the models were deposited in the PDB database. Data collection and
refinement statistics are summarized (Table S4). The structures were displayed with

PyMOL (https://pymol.org). The polar and charged interactions between the peptide

and residues in the MHC-II binding site (Figures S2B, S3F) were determined with

PyMOL, using default parameters.

Motifs of the N- and C-terminal contexts of the HLA-DP ligands

Only peptides that were annotated as coming from an allele with the observed reversed
binding mode were considered for this analysis (i.e., corresponding to the ligands shown
in Fig. 3A). ggseqlogo (Wagih, 2017) was then applied on the N-terminal and C-terminal
context sequences of these peptides, separately for the peptides following the canonical

or reverse orientation (Figure S3G).
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Development of the pan-allele MHC-II ligand predictor

Our pan-allele predictor, MixMHC2pred-2.0 is composed of 2 successive blocks of neural
networks with distinct tasks (Figures 44, S4A). We implemented these neural networks
in R, using the packages keras (version 2.7) and tfdatasets (version 2.7), relying on

TensorFlow (version 2.6).

The first block describes the binding specificity. It consists of independent neural
networks for each peptide binding core position, I (hereafter we refer to these
independent neural networks as NN7;). The input of NN7; is the sequence of the contact
AA residues in the P;binding pocket of the MHC-II allele g, and the output is the PPM at
this binding core position for this allele (i.e. PPMf}, including the BLOSUM62
pseudocount, described above). The contact AA residues used as input are the joint set
of close contact residues between HLA-DR/-DP/-DQ explained above (Table S2A-C),
after renumbering these based on the alignment of all the MHC-II sequences together,
including human and non-human MHC-II. Each input AA was encoded to a numerical
vector of size 21 equal to the sum of the one-hot encoding of the given AA plus the row
corresponding to this AA in the BLOSUM®62 probability matrix (Henikoff and Henikoff,
1992); the 21st element of this vector represents a gap/absent AA (this 21st element has
value 0 except when the given “residue” in the allele is a gap instead of a true AA, in
which case this last element has a value of 2). Each NN?;is composed of one fully
connected hidden layer with 100 hidden nodes, based on rectified linear unit (ReLU)
activation function and a gaussian noise of std 0.1. A dropout of 0.2 was added after
these hidden nodes during the model training, and a softmax activation function was
used for the output layer. The loss optimized corresponded to the Kullback Leibler

divergence, and it was optimized using Adam optimizer with a learning rate of 0.005, a
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decay 0.005/250 and other parameters at default values. A maximum of 250 epochs was

set and optimization stopped after no improvement of the loss during 30 epochs.

In order to account for the multiple specificities that are observed for some alleles, we
replicated these NN, three times: a first time including only all the canonical binders of
specificity 1, a second time where the canonical binders of specificity 2 are used instead
when the given allele had two canonical binders specificity (i.e. for the DRB1*08 alleles
at present, but could accommodate additional if observed), and a third time where the
reverse binders are used instead of the corresponding canonical binders when a reverse
binding specificity was observed for the given allele (the sequence of the reverse
binding peptides was inverted there, to have the correct peptides’ AA in the P1 binding
pocket of the allele for example). A last independent neural network of the 1stblock is
implemented to predict the fraction of peptides in these different binding specificities.
The input here is the full list of contact residues from the MHC-II alleles, encoded in the
same way as above and the output is the fraction of peptides observed in each of the 3
sub-specificities (canonical 1, canonical 2 or reverse) for the given allele. This neural
network has similar structure than above’s NN?; except that 50 hidden nodes are used,
with a learning rate of 0.0025, a maximum of 500 epochs and the loss corresponds to the
categorical cross entropy. To avoid cases where multiple specificities would be present
but with too few ligands to be observed, we restricted the training of this part to MHC-II
alleles with more than 3,000 observed ligands. When predicting allele specificities, an
MHC-II allele is assumed to possess multiple specificities only if this last neural network
predicts a fraction of canonical specificity 2 or reverse specificity of at least 1% for the
given allele. The training of all these neural networks of the 1st block is repeated 5 times

with same parameters and the final outputs are the average between these.
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After having trained the first block, we can give the sequence of any MHC-II allele as
input and this first block will return the predicted binding specificities of this allele

(PPMfgS) (with s for the specificity: canonical 1, canonical 2 and reverse), as well as the

relative fraction of peptides that are predicted to be bound to this allele in each of the
three specificities (ws). The second neural network block, NN2, combines these with
other features directly linked to a given peptide sequence (its sequence, length, binding
core offset, peptide’s N-/C-terminal contexts), in order to predict if the peptide is
presented by the given allele (Figure S4A - right). First, a PPM-based binding score is

determined based on the given MHC-II allele specificities and peptide sequence:

_ (z - ﬂ”’Mf’i@ )
o] c€ECS fxl o

(2)
Where w. is the relative weight of the binding core offset c (similar to Figure S1C) and
the best (maximum) value among all potential peptide binding core offsets is used for
the inner parenthesis; L is the binding core length (i.e. 9 AAs); x; indicates which amino
acid is found in the peptide at the position j; fi is a normalization factor, equal to the
frequency of amino acid i in the human proteome. The “I € ¢” in x;g. is the “special
sum” previously defined (Racle et al.,, 2019), which makes that the binding core offsets
are symmetric around 0 for each peptide (i.e., a binding core offset is equal to 0 when
the binding core of the peptide is perfectly at the middle of the peptide, a negative value
means the binding core is towards the peptide N-terminus and a positive value means
the binding core is towards the peptide C-terminus). The binding score B of the peptide

is then transformed to a percentile rank Brank based on the scores of 10,000 random
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human peptides of the same size. The 1st input of NNZ corresponds to a min-max scaling
between 0 and 1 of the log(Brank + 10-#) (where the min Brank is 0 and the max is 100, and
10-# avoids log(0)). The 2nd input of NN2 is a one-hot encoding of the best binding core
offset ¢ (determined from Eq. (2) above), with values considered between -6 and 6. The
peptide length is also one-hot encoded, for sizes between 12 and 21. The last set of
inputs corresponds to the 12 AAs of the N- and C-terminal contexts, which were encoded
following the same procedure as described above for the NN (in case of an unknown AA

(“X"), the value 1/20 is used for the corresponding elements of this input vector).

Following these encoded input features, the NN? consists of a fully connected neural
network with 1 hidden layer of 200 hidden nodes following a ReL.U activation function
with a gaussian noise of std 0.1. A dropout of 0.2 was added after these hidden nodes
during the model training, and a sigmoid activation function was used for the single
output node (with a value 1 if the given input peptide is presented by the given MHC-II
alleles and 0 if not). Adam optimizer was used, with a learning rate of 0.001, a decay of
0.001/150 and other parameters at default values. The binary cross entropy loss was
optimized. A validation split of 1/5 was used and early stopping after 50 epochs without

validation loss improvement was set (or a maximum of 150 epochs otherwise).

To train this NN?, we used as positives the peptides observed in the MHC-II peptidomics
samples (Data S1). We did not consider samples with missing MHC-II typing (e.g.
samples obtained through anti-pan-HLA-II peptidomics when the HLA-DP had not been
typed, but if the sample was obtained through anti-HLA-DR it was sufficient to have the
HLA-DR typing), nor samples from chicken or cattle origin or containing a high fraction

of predicted contaminant peptides, nor samples obtained through MAPTAC experiments
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(Abelin et al., 2019) (we observed some biases in their peptide length distributions
towards longer peptides than expected). Only peptides of sizes 12-21 AAs long were
kept, and peptides whose context could not be determined were also removed. We then
downsampled the training set to keep a maximum of 200,000 positive peptides. In
multiallelic samples, all potential MHC-II alleles were kept (i.e. we did not use the allele
annotation from MoDec): equation (2) was applied to each allele of this sample and the
best Brank score was used for the inputs of NN2. We finally removed peptides with best
Brank > 30 (better binders have lower values), which likely correspond to contaminant
peptides observed in MHC-II peptidomics. For negative peptides we used four times
more random human peptides than positives, with a uniform length distribution

between 12 and 21 AAs.

After its training, the scores of NN? are transformed to percentile ranks (%Rank) based
on the scores of 106 random human peptides and making that these follow the peptide
length distribution observed in MHC-II peptidomics. For our final model, MixMHC2pred-
2.0, the training of NN? is repeated 5 times and results correspond to the average of
these repetitions. When running MixMHC2pred-2.0 in multiallelic samples, the %Rank
against each allele is returned and the score of this sample is taken as the best

(lowest) %Rank.

Benchmarking of MHC-II binding specificity predictions

To compare the MHC-II binding specificities predicted by MixMHCZpred and
NetMHClIIpan, we used 100,000 random human peptides of size 12-21 AAs and scored

these using the different predictors against each allele of interest. For each allele, the
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best scoring 1% peptides were considered as the ligands to this allele, and their binding
cores (returned by the predictor) were used to determine the frequency of each amino
acid at each binding core position. We then compared these frequencies with the
frequencies observed in MHC-II peptidomics data of the given allele by computing the
KLD for each peptide binding core position between these frequencies (Eq. (1)). These
KLD were averaged between all binding core positions. Lower KLD values mean that the
predicted frequencies are closer to the frequencies observed in MHC-II peptidomics
data. In Figure 4B, the comparison is performed against MHC-II peptidomics data
coming only from monoallelic samples, while in Figures 4C and S4B it includes all MHC-
Il peptidomics data based on above’s annotation of the motifs after the deconvolution
with MoDec. MARIA and MHCnuggets were not included in these analyses as their
output only consists of the predicted peptide presentation score, but they do not predict
the binding core, which prevents inferring the motifs. Likewise, MixMHC2pred-1.2 and
NeonMHC2 were not included in these analysis as they are allele-specific predictors and
therefore cannot do any prediction for an allele that would be left-out from their

training set in a leave-one-allele-out context.

To determine how accurate these specificities are for new MHC-II alleles, only alleles
that were absent from NetMHClIIpan training were considered here. In this respect, we
trained MixMHC2pred in a stringent leave-one-allele-out cross-validation setting: when
doing the predictions for allele 4, no peptide annotated as coming from allele 4 is used
during the training of the first predictor block NN?, and all peptides coming from all
samples containing this allele A are removed from the second predictor block NN? (i.e.,
even if the peptide is annotated as coming from another allele in this sample, as long as

the allele A is part of the list of alleles from this sample).
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Multiple specificities were considered, and the fraction of peptides observed in each
sub-specificity (when present) in MHC-II peptidomics data is indicated above the
corresponding motifs (Figures 4B, S4B). One of the outputs of MixMHC2pred tells the
predicted sub-specificity for each peptide and we directly used this. NetMHClIpan does
not return any information about from which sub-specificity a peptide would be coming.
In order to allow having multiple specificities for NetMHCIIpan as well, we applied
MoDec on the binding cores of the top 1% best predicted peptides from NetMHClIpan,
(running MoDec with the options “--nruns 50 --makeReport --speclnits --no_flat_mot”).
For alleles possessing multiple or reverse specificities, we show in Figure 4B and S4B
the two motifs determined in this way for NetMHClIIpan, while for the alleles possessing
a single specificity the motifs are directly obtained from NetMHCIIpan without applying
MoDec. In Figure S4B, we show two rows of results for NetMHClIpan, corresponding to
using directly its results (i.e., with a single motif) or applying MoDec on its binding cores

as described here.

Benchmarking of MHC-II ligand predictions

The benchmark in Figure 5A-C was performed using the data from the various MHC-II
peptidomics samples (Table S1, Data S1). All peptides from a given sample were used
together with the set of alleles describing this sample. Peptides of sizes 12-21 were
considered. We did not include samples with missing MHC-II typing, the AUT01_xx
samples from (Marcu et al., 2021) due to high predicted contamination, nor samples
from MAPTAC experiments (Abelin et al., 2019) due to observed biases described above.

The positives were the peptides observed in each sample and we added four times more

42 Accurate predictions of MHC-II specificities


https://doi.org/10.1101/2022.06.26.497561
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.26.497561; this version posted June 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

random peptides as negatives, taken from the same proteins as the proteins observed in
the positive peptides and following a uniform length distribution between 12 and 21
AAs. In multiallelic samples, the scores of all these peptides for all alleles were computed
and the best score among the sample’s alleles was kept (lowest %Rank for
MixMHC2pred, lowest %Rank_EL for NetMHClIpan, lowest ic50 for MHCnuggets and
highest score for MARIA). Using the predicted scores of each peptide, the area under the
curve of the Receiver Operating Characteristic curve (ROC AUC) was computed for each

predictor and for each sample separately.

To avoid using the same peptides in testing and training of the predictors, we
considered only samples that were absent from NetMHCIIpan and MARIA’s training sets
(MHCnuggets is not trained on any of these samples as it only considers binding affinity
data). In this way, the tested samples were therefore absent from the training of
NetMHCIIpan, MARIA and MHCnuggets, but the MHC-II alleles from these test samples
were often still part of the training of these predictors (i.e., the same alleles were
present in some other samples used in the training of these predictors, and therefore the
specificity of these alleles could already be well described by these predictors). For our
predictor we used the same stringent leave-one-allele-out cross-validation setting than
described above, where the %Rank of each allele was obtained separately based on this
leave-one-allele-out setting and then the best %Rank among those was used, ensuring
that no peptide coming from any sample containing the test allele was present in its

training set.

For MARIA, the gene expression of each protein from which a peptide is originating is

needed as further input. The gene expression pre-defined in MARIA were used, based on
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our annotation of from which type of tissue each sample/cell line is originating (BRCA,

COAD, K562, ...).

To compare the prediction accuracy for new species (Figure 5D), the test sets were
composed of all MHC-II peptidomics samples from the given species (mouse, cattle or
chicken) and random negative peptides, as described above. In addition to the leave-
one-allele-out model and to the full model (trained on all peptides from all samples
described above), we also trained leave-one-species-out models, where all data from the
given test species were removed from the training and the model was trained on the

remaining data only.

Benchmarking of CD4* T-cell epitope predictions

All data for human CD4+ T cells from the IEDB database were downloaded (as of
06.08.2021). We then filtered this data to keep the peptides of sizes 12-21 AAs which
were observed in multimer/tetramer, ICS and ELISPOT assays, and whose 4-digits MHC-
I1 typing had been determined, considering the “Allele evidence codes”: "MHC binding
assay”, "Single allele present”, "T cell assay - Mismatched MHC molecules/ Biological
process measured/ MHC subset identification/ T cell subset identification" and
"Statistically inferred by motif or alleles present". This dataset included directly
peptides annotated either as positives or negatives, and no artificial negatives were
added for this analysis. The ROC AUC was computed for predictions made per allele

separately, keeping only alleles with at least 2 positive and 2 negative peptides. As in the

experiments from this dataset the short peptides were usually directly tested, the
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antigen presenting cells did not need to cleave these peptides before presentation.
Therefore, the part relating to context encoding is not meaningful and we used here the
option of not encoding this peptide context in NetMHClIpan. MixMHC2pred includes a
similar option, which consists in internally replacing the AAs from the context by “X”s

and where the %Ranks are recomputed accordingly.

Searching for candidate CD4* T-cell epitopes following the reverse binding

mode

We downloaded viral proteomes from UniProt (The UniProt Consortium, 2021)

(https://www.uniprot.org/), from EBV (Ebstein-Barr virus), HCMV (human

cytomegalovirus), HSV-1 (herpes simplex virus type 1), HSV-2 (herpes simplex virus
type 2), Influenza A virus (only from the HA and NA proteins), SARS2 (SARS-CoV-2) and
VZV (Varicella-zoster virus), considering only the reviewed proteins, potentially coming
from multiple strains of the given viruses. We also downloaded from UniProt the tetX

gene of tetanus toxin protein (TT), which is produced by the bacteria clostridium tetani.

These proteomes were then cut in all overlapping 15-mer peptides, and we computed
the binding scores of all these peptides with HLA-DPA1*02:01-DPB1*01:01, keeping
separate the scores from the canonical and reverse specificity (i.e., scores from Eq. (2)
but keeping the scores from the index s separate instead of summing over them,
corresponding to the canonical and reverse specificity). We then selected a set of 4-5
peptides per proteome that had a good score towards the reverse specificity and only a
weak score towards the canonical specificity and we synthesized these peptides for

experimental testing.
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Peptides and peptide-MHC-Il multimers

Peptides and peptide-MHC-II multimers were produced by the Peptide & Tetramer Core
Facility of the University Hospital of Lausanne (CHUV). Peptides were chemically
synthesized using standard fmoc chemistry, purified by RP-HPLC (>90 % purity) and
analyzed by UPLC-MS. Peptides were kept lyophilized at -80°C. Biotinylated peptide-
MHC-II monomers, loaded with peptides of interest were multimerized using
streptavidin-PE (Cat# SA10044, Thermofisher Scientific) or streptavidin-APC (Cat#

405207, Biolegend) conjugates, then stored at 4°C and used within a week.

Identification of antigen-specific CD4* T-cell responses

CD4+* T cells were isolated (ref 130-045-101, Miltenyi) from cryopreserved PBMC and
co-incubated (106 mL-1) with autologous irradiated CD4-depleted PBMCs (10® mL-1) and
pools of 3 to 4 peptides (2 uM) in RPMI supplemented with 8 % human serum and IL-2
(100 IU mL-1). After 11 days, cells were put in RPMI supplemented with 8 % human
serum without any IL2. At day 12, cells were washed with RPMI, diluted at 2.10¢ mL-1,
and 200,000 cells plated in 96w round bottom plates. Then 100 uL of peptide pools were
added (2 puM final in R8) and cells were incubated 1 h at 37°C. Protein Transport
Inhibitor (1/1000, eBioscience 00-4980-93) was added and cells incubated for
additional 4 h at 37°C. Cells were then washed with PBS and stained for 15 min at RT
with fixable Near-IR Dead Cell Staining Kit (Thermofisher L10119, 1/1000 in PBS). After
three washes, cells were stained with CD4 antibody (BD 562970) for 20 min at 4°C. After

additional three washes, cells were incubated with Fix/perm kit (Biolegend 426803) for
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20 min at 4°C in the dark, and stained with anti TNFa (BD 340512) and anti [FNy (BD

554702) for 30 min at 4°C.

After final washing, cells were resuspended in FACS buffer (PBS 0.5 % FBS 2 mM EDTA)
and analyzed on a Cytoflex S1 flow cytometer. Data were analyzed using the Flow]o
v10.7.1 software. Positive and negative controls were obtained by incubating cells with
PMA/ionomycin (Thermofisher, Cat# 00-4975-93) or without peptide, respectively. For
peptide pools leading to an immune response, experiment was repeated with single

peptides.

Sorting of naives and effector/memory CD4* T cells

Naive and effector/memory CD4* T cells were isolated by Fluorescence-activated Cell
Sorting (FACS) upon staining with anti-CD4 antibody (BD 562970), anti-CCR7 antibody
(353227 BioLegend) and anti-CD45RA antibody (304108 BioLegend) for 30 min at 4°C.
After three washes with FACS buffer (PBS 0.5 % FBS 2 mM EDTA) cells were incubated
10 min with DAPI (Sigma, Cat#10236276001) at 250 nM and washed again three times.
Naive (CCR7* and CD45RA+) CD4 T cells and effector/memory (CD45RA-) CD4 T cells

were collected separately.

Peptide-MHC-Il multimer validation and sorting of CD4* T cells

CD4+ T cells were incubated with multimers (1/50 dilution) 45 min at 4°C in FACS buffer
(PBS supplemented with 0.5 % FBS and 2 mM EDTA), isolated by FACS and either

directly used for TCR sequencing or expanded with autologous irradiated CD4-depleted
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feeders in RPMI supplemented with 8 % human serum, phytohemagglutinin (Invivogen,

1 pg mL-1) and IL2 (150 IU mL1).

Bulk TCR sequencing

mRNA was extracted using the Dynabeads mRNA DIRECT purification kit according to
the manufacturer instructions (ThermoFisher) and was then amplified using the
MessageAmp Il aRNA Amplification Kit (Ambion) with the following modifications: in
vitro transcription was performed at 37°C for 16 h. First strand cDNA was synthesized
using the Superscript III (Thermofisher) and a collection of TRAV/TRBYV specific
primers. Unique Molecular identifiers (UMI) of length 9 were added to each read. TCRs
were then amplified by PCR (20 cycles with the Phusion from NEB) with a single primer
pair binding to the constant region and the adapter linked to the TRAV/TRBV primers
added during the reverse transcription. A second round of PCR (25 cycles with the
Phusion from NEB) was performed to add the [llumina adapters containing the different
indexes. The TCR products were purified with AMPure XP beads (Beckman Coulter),
quantified and loaded on the MiniSeq instrument (Illumina) for deep sequencing of the

TCRa/TCRp chain.

Analysis of TCR sequences

The fastq files were processed with MIGEC (Shugay et al., 2014), using default
parameters to demultiplex them and identify the TCRa and TCRp clonotypes. For each
sample, the frequency of each TCR chain was computed based on UMI corrected counts.

Only TCRs with more than one UMI count and representing more than 1% of the total
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UMI counts were considered. TCRs with the same amino acid sequences were merged in

Table S3B.

The CDR3 sequences of the alpha and beta chains were used to search TCRa and

TCRP repertoires through the iReceptor web platform (Corrie et al., 2018), which
contains, as of June 2022, 7,111 repertoires for a total of 5.1 billion sequences. Hits were
defined as those having the same CDR3 sequence (Table S3B). We further restrict our
analysis by considering only TCRs with the same CDR3 and the same V, ] genes (100%

sequence identity).

Data and code availability

Mass spectrometry-based MHC-II peptidomics data generated for this study will be
deposited in the ProteomeXchange Consortium via the PRIDE partner repository (Perez-

Riverol et al., 2022).

The models of the crystal structures resolved in this work will be deposited in the

worldwide Protein Data Bank (Berman et al.,, 2003).

TCR sequencing data will be deposited in NCBI's Gene Expression Omnibus (Edgar et al,,

2002).

MixMHC2pred is freely available for academic usage

(https://github.com/GfellerLab/MixMHC2pred) and it is also available through a

webserver (http://mixmhc2pred.gfellerlab.org).
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Figure 1. Curation of MHC-II peptidomics data reveals binding specificities for
88 MHC-II alleles.

(A) Representative crystal structure of an MHC-II dimer (HLA-DRA*01:01 -
DRB1*03:01) in complex with a peptide. The binding core of the peptide is shown in
yellow, the peptide flanking residues in salmon, the MHC-II alpha chain in pink and the
MHC-II beta chain in gray. Anchor positions P1, P4, P6, and P9 point towards the
different MHC-II binding pockets and are visible in the binding motif below.

(B) Schematic view of the MHC-II motif analysis and class II epitope prediction
pipeline. The main steps of our analyses consist of (i) collection of a large dataset of
naturally presented MHC-II ligands identified in multiple MHC-II peptidomics samples,
(ii) motif deconvolution and annotation, (iii) structural analysis of MHC-II binding
specificities and (iv) development of a machine learning predictor of MHC-II ligands
and CD4+ T-cell epitopes.

(C) Motifs describing the binding specificities of the 88 MHC-II alleles determined in
this study. Multiple specificities, when identified for a given allele (e.g., HLA-
DRB1*08:01), are shown side by side.
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Figure 2. MHC-II binding specificities reflect biochemical properties of the MHC-
II binding pockets.

(A) For each type of human MHC-II (HLA-DR, -DP and -DQ) and each anchor position,
MHC-II alleles were clustered based on the binding specificity at this position and the
different clusters are shown as different rows for each position. On each row, the first
motif (e.g., P1) represents the average peptide binding specificity of the MHC-II alleles
in a cluster. The second motif (e.g.,, 86B) represents the sequence of the MHC-II
residues making important contacts with the residue in the ligand at the specified
anchor position. The structural arrangement of the residues in the MHC-II binding site
(pink for alpha chain, grey for beta chain) and the residue in the ligand (yellow) is
shown on the right based on existing X-ray structures. When no PDB structure was
available, structural modeling was used instead and is indicated by a dashed orange
rectangle. Details of the clusters of alleles at each position can be found in Table S2.
(B) Multiple binding specificities for HLA-DRB1*08 alleles. Percentage above the
motifs indicate the fraction of peptides assigned to each sub-specificity.

(C) Molecular interpretation of the multiple specificities observed in HLA-DRB1*08:01.
The top boxplot shows the calculated change in the FoldX energy score for various
peptides with 0, 1 or 2 positively charged AAs at P4 and P6 (simulations based on three
different peptides for each case, see Table S2E). The bottom part shows a model of
HLA-DRB1*08:01 which contains one single negatively charged residue (D28(3) able
to interact with positively charged sidechains at either P4 or P6, but not both

simultaneously.
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Additional peptides are shown in Figure S3D. Stars indicate peptides that were seen
in MHC-II peptidomics data.

(C) Crystal structures resolved in this work of the canonical binder
KNLEKYKGKFVREID and the reverse binder IEFVFKNKAKEL bound to HLA-
DPA1*02:01-DPB1*01:01. The four panels on the right show the overlap of the two

structures at the four binding pockets.
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Figure 4. MHC-II binding specificities can be accurately predicted for alleles
without known ligands.

(A) Schematic description of the pan-allele predictor comprising two consecutive
blocks of neural networks. In the first block, the input corresponds to the sequence of
the binding site of the MHC-II allele, and the output corresponds to the PPMs
describing the allele binding specificity. The second block combines the score of the
peptide with the PPM of the MHC-II allele together with other features of MHC-II
ligands (length, position of the core, N- and C-terminal contexts) to predict MHC-II
presentation based on peptide sequences (see Fig. S4A for the full details of the model).
(B) Comparison between actual and predicted motifs for alleles observed in
monoallelic MHC-II peptidomics samples and absent from NetMHCIIpan training set
(leave-one-allele-out cross-validation for MixMHCZpred). Multiple specificities, when
present, are shown and the fraction of peptides observed and predicted per specificity
is indicated above each motif (for NetMHCIIpan the multiple specificities were
analyzed with MoDec, see Material and Methods). The average distance, measured
with Kullback-Leibler divergence (KLD) per peptide core position, between the motifs
observed in MHC-II peptidomics and the predicted ones is shown below each allele
(see Figure S4B for similar analyses for additional alleles obtained from multiallelic
samples).

(C) KLD between the specificities observed in MHC-II peptidomics and predicted by
MixMHC2pred (leave-one-allele-out) and NetMHCIIpan for all MHC-II alleles absent
from NetMHClIpan training. Box plots indicate the median, upper and lower quartiles;
results of a paired two-sided Wilcoxon signed rank-test are indicated (*P<0.05, **P <

0.01, **P < 0.001).
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Figure 5. MixMHC2pred improves predictions of MHC-II ligands and CD4+ T-cell
epitopes.

(A-C) Accuracy (ROC AUC) for predictions of peptides presented by MHC-II. Only
samples that are absent from the training set of all predictors are included.
MixMHC2pred results were obtained in a leave-one-allele-out context. Results for (A)
all human samples; (B) human HLA-DR only samples and (C) all non-human samples

(mouse, cattle and chicken samples). MARIA can only be applied on HLA-DR and
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MHCnuggets only on human and mouse alleles. They are therefore included only in the
corresponding analyses.

(D) Accuracy for predictions of peptides presented by MHC-II in mice, cattle, and
chickens, using our prediction framework trained on (i) all data except those from the
species where predictions are made (leave-one-species-out), (ii) all data except those
containing the allele for which predictions are made (leave-one-allele-out), or (iii) all
data (full model).

(E-F) Accuracy for predictions of CD4+ T-cell epitopes found in IEDB database, for (E)
all human data, (F) only HLA-DR alleles.

Numbers in parentheses below each predictor’s name correspond to the average ROC
AUC values. Box plots indicate the median, upper and lower quartiles; the results of a
paired two-sided Wilcoxon signed rank-test are indicated (*P<0.05, **P < 0.01, ***P <

0.001).
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Figure 6. Multiple specificities reveal reverse binding CD4* T-cell epitopes.

(A) Schematics of the search strategy for reverse binding epitopes. Different viral and
bacterial proteomes were scanned, searching for 15-mer peptides predicted to follow
the reverse binding motif of HLA-DPA1*02:01-DPB1*01:01. CD4* T cells from HLA-
DPA1*02:01-DPB1*01:01* donors were then stimulated with the selected peptides.
Responses were evaluated through cytokine release assays deconvolving the response
to the individual peptide.

(B) TNFa and IFNy response of the positive peptides observed after deconvolving the
response in two HLA-DPA1*02:01-DPB1*01:01+* donors. The viral or bacterial species
of origin of the peptide is indicated in parenthesis above each figure (EBV: Ebstein-
Barr virus; HCMV: human cytomegalovirus; HSV-1: herpes simplex virus type 1; TT:
tetanus toxin protein).

(C) Validation with peptide-MHC-II multimers of the reverse binding epitopes (see
Figure S5 for negative controls).

(D) FACS results directly on ex vivo CD4* T cells of donor 1G6l, showing that
recognition of the epitope NHELTLWNEARKLNP happens through effector and

effector memory CD4+* T cells, not naive CD4+ T cells.
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