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Abstract 

The Mexico City Prospective Study (MCPS) is a prospective cohort of over 150,000 adults 

recruited two decades ago from the urban districts of Coyoacán and Iztapalapa in Mexico City. 

We generated genotype and exome sequencing data for all individuals, and whole genome 

sequencing for 10,000 selected individuals. We uncovered high levels of relatedness and 

substantial heterogeneity in ancestry composition across individuals. Most sequenced individuals 

had admixed Native American, European and African ancestry, with extensive admixture from 

indigenous groups in Central, Southern and South Eastern Mexico. Native Mexican segments of 

the genome had lower levels of coding variation, but an excess of homozygous loss of function 

variants compared with segments of African and European origin. We estimated population 

specific allele frequencies at 142 million genomic variants, with an effective sample size of 91,856 

for Native Mexico at exome variants, all available via a public browser. Using whole genome 

sequencing, we developed an imputation reference panel which outperforms existing panels at 

common variants in individuals with high proportions of Central, South and South Eastern Native 

Mexican ancestry. Our work illustrates the value of genetic studies in populations with diverse 

ancestry and provides foundational imputation and allele frequency resources for future genetic 

studies in Mexico and in the United States where the Hispanic/Latino population is predominantly 

of Mexican descent.   
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Introduction 

Latin American populations harbor extensive genetic diversity reflecting a complex history of 

migration throughout the Americas, post-Colonial admixture between continents, and more recent 

population growth1–3. The distinct patterns of genomic variation that exist in these populations 

have led to key insights into the genetic architecture of rare and common diseases. Founder 

populations are prevalent throughout Latin America and analyses of deleterious variants that 

segregate at higher frequency in these groups have identified clinically-relevant novel variants 4–

9. Moreover, Latin American populations include a significant fraction of Native American 

indigenous subpopulations that have mostly remained genetically uncharacterized. Admixture 

between European, Native American and African ancestry groups can result in allele frequency 

distributions that diverge substantially from ancestral populations. Variants that are rare in one 

ancestry group but common in another may therefore segregate at a higher frequency in an 

admixed population, leading to opportunities for novel discoveries in these populations that may 

be missed when studying single ancestry groups10,11. For example, in one study of Mexican 

mestizo adults a haplotype in the SLC16A11 locus that is common in Native Americans but rare 

in Europeans was strongly associated with type 2 diabetes12. In addition to increasing opportunities 

for variant discovery, genetic analysis of admixed populations can also result in improvements in 

fine-mapping due to differences in patterns of linkage disequilibrium10,13–15. 

 

Unfortunately, despite the numerous opportunities afforded from studying Latin American 

populations, Hispanic/Latino individuals from such populations comprise less than 1% of all 

individuals in genetic population research (despite comprising nearly 10% of the global 

population). By contrast, European populations comprise over 80% of participants in genomic 
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databases but make up less than 20% of people worldwide. Recent initiatives targeting specific 

populations13,16 or involving large biobanks (such as the Million Veterans Program17,18 and 

TOPMed (URLs)) have increased the number of Hispanic/Latino individuals included in genetic 

research, but a sizable gap remains. Additional large genetic studies of Latin American populations 

are therefore needed to help bridge this gap and enable the implementation of precision medicine 

in these populations.    

 

Between 1998 and 2004, 159,755 participants aged at least 35 years from two contiguous urban 

districts of Mexico City (Coyoacán and Iztapalapa) were recruited into the Mexico City 

Prospective Study (MCPS)19. In this study we describe genome-wide array genotyping and whole 

exome sequencing (WES) on the entire cohort, as well as high-coverage whole genome sequencing 

(WGS) on a subset of 9,950 participants. We provide a comprehensive genetic profile of the MCPS 

cohort that reveals complex patterns of relatedness, identity-by-descent (IBD) sharing and runs of 

homozygosity. By incorporating genotypes from 716 indigenous individuals from 60 of the 68 

recognized ethnic groups in Mexico, we apply a range of scalable techniques to finely characterize 

population structure, continental admixture, and local ancestry in the MCPS cohort.  

 

We also provide a survey of variants according to annotation and frequency, with a particular 

emphasis on genes that exhibit homozygous loss of function variation. Moreover, we estimate 

ancestry specific allele frequencies from America, Africa and Europe at 142 million variants, a 10-

fold increase over existing resources, made available through a public browser (URLs). Lastly, we 

use the phased WGS dataset as a reference panel to impute genotypes into the full cohort and 

examine the quality of this imputed dataset compared with the exome sequencing dataset and a 
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TOPMed imputed version of the cohort. The phased WGS dataset will soon be available as a 

reference panel through the Michigan Imputation Server (URLs). 

 

Overview and comparison of genetic datasets 

Of the 159,755 MCPS participants, a blood sample was successfully taken, processed and stored 

for 155,453 (97.3%). Of these, DNA was successfully extracted for 146,068 (94.0%) and sent for 

genotyping and exome sequencing. After initial QC procedures (see Methods) genotyping array 

data was available for 138,511 participants and exome data was available for 141,046. 

(Supplementary Table 1 provides key baseline characteristics of the 141,046 participants with 

exome data.) The exomes were sequenced with 98.7% of the samples having 90% of the targeted 

bases covered at 20X or higher. After applying machine-learning methods to filter out low-

quality variants, we identified a total of 9.3 million variants including 4.0 million variants across 

the coding regions of 19,110 genes. 98.7% of the coding variants were rare (minor allele 

frequency (MAF) < 1%) (Table 1, Supplementary Table 2, Methods) and 1.4 million were 

unique to MCPS when compared with variants discovered by the UK Biobank (UKB) Exome 

sequencing study20, TOPMed 16 and gnomAD 21 (Supplementary Table 3). Among the coding 

variants identified were 1,233,054 (median of 14,900 alleles per individual) synonymous, 

2,526,776 (13,585 alleles per individual) missense and 233,650 (354 alleles per individual) 

putative loss-of-function (pLOF) variants (Table 1). The proportion of singletons (30.9%) was 

much lower than observed in other datasets (e.g., 46.8% in UK Biobank Exomes20) due to the 

way in which households of participants in close neighborhoods were recruited. As expected, the 

proportion of singletons increased to 36.5% when we restricted to individuals related less than 1st 

degree, and further to 39.2% when we restricted to individuals related less than 3rd-degree. In 
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addition, we observed more homozygous pLOF variants in MCPS compared with a sample size 

matched version of the UK Biobank exome dataset (Supplementary Table 4). 

 

A subset of 9,950 MCPS individuals were also whole genome sequenced, with mean depth of 

38.5X. After filtering we identified 131.9 million variants in total, of which 1.5 million were 

coding variants (Supplementary Table 5-6, Methods).  96.2% of the variants were rare variants 

with MAF < 1%.  There were 31.5 million unique WGS variants when compared to variants 

discovered by the TOPMed 16 and gnomAD 21 WGS datasets (Supplementary Table 7).  

 

We compared the WGS and WES in the overlapping set of 9,950 individuals to examine the 

amount of coding variation called. Both datasets utilized the same calling and annotation 

framework but used dataset specific machine learning models and hard filters to QC variants.  

We found that the WGS dataset led to a 2.3% absolute increase in the amount of coding variation 

when using the canonical gene transcript to annotate variants (Table 2), with 93.2%, 4.5% and 

2.3% of the union set of sites being called in both datasets, WGS-only and WES-only 

respectively (Supplementary Table 8). When variants were annotated by the most deleterious 

consequence across all transcripts of a gene, then WGS had 4.6% more coding variants 

(Supplementary Table 9), with 91.1%, 6.6% and 2.3% of the union set of sites being called in 

both datasets, WGS-only and WES-only respectively (Supplementary Table 10). When 

restricted to exome sequencing capture regions only, the differences between WGS and WES 

were much smaller (Supplementary Tables 11-14). Supplementary Tables 15-18 compare 

WGS and WES for variants with alternative allele frequency <1%. The variant sets unique to 

WGS and WES have similar overlap to TOPMed and gnomAD site lists (Supplementary 
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Tables 19-22). Concordance of genotype calls between WGS and WES datasets in 9,950 

overlapping samples was very high with a mean biallelic SNP discordance of 0.0064% 

(Supplementary Table 23). 

 

A total of 138,511 MCPS individuals were genotyped on the Illumina GSA v2 beadchip and 

passed quality control (Methods, Supplementary Table 24). Array genotypes were highly 

concordant with WGS and WES genotypes in overlapping samples (mean biallelic SNP 

discordance of 0.03% for both datasets) (Supplementary Table 23). 

 

Relatedness    

The genetic data allowed us to investigate familial relatedness within the cohort which was 

expected to be high due to the household recruitment strategy. Accounting for relatedness is 

essential for validity of  GWAS22 and epidemiological studies23 and can be leveraged in 

heritability estimation to reduce bias of shared environmental effects24.  We characterized 

familial relatedness using the quality control filtered genotyping array dataset (Methods). We 

used shared identical-by-descent (IBD) segments to infer relatedness to avoid estimation biases 

in samples from admixed populations that can occur when using methods based on population 

allele frequency estimates 25. We applied KING software26 to unphased data, and the hap-IBD27 

and IBDkin28 methods to a phased array dataset (Methods). Both unphased and phased 

approaches produced comparable results (Supplementary Figure 1). 

 

Figure 1a and Supplementary Figure 2 illustrate the extensive relatedness identified in MCPS. 

There are 31,597 parent-offspring, 29,482 full sibling, 47,080 second-degree relative, and 

120,180 third-degree relative pairs. A small proportion (0.05%) of parent-offspring pairs had 
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genotypes at a small number of loci that were inconsistent with this type of relationship, resulting 

in elevated estimates of sharing 0 alleles IBD.   We determined genotyping error to be the most 

likely cause of this phenomenon as opposed to uniparental disomy.  Close to 71% (97,953 

individuals) in MCPS have at least one relative in the study that is third-degree or closer and 

many of the MCPS participants have multiple close relatives (Figure 1b). The largest connected 

component in a graph of individuals with third-degree relationships or closer involves 22% of the 

cohort (30,682 individuals) (Supplementary Figure 3). These levels of relatedness are much 

higher than those observed in the UK Biobank1, but are comparable to the Geisinger Health 

Study29 (both MCPS and the Geisinger Health Study recruited participants from regions with 

families living in close proximity) (Supplementary Table 25). We used PRIMUS30 to 

reconstruct 22,766 first-degree family networks containing a total of 65,777 individuals with a 

median size of 2.9, up to a maximum size of 48 people, including 3,595 nuclear families 

(Supplementary Figure 4, Supplementary Table 26). A graph of 14,428 individuals with 

second-degree family networks of size greater than four highlights the complexity of the patterns 

of relatedness, as well as partial clustering of relationships within districts of Coyoacán and 

Iztapalapa (Supplementary Figure 5). The largest connected component in this graph contains 

9,180 individuals. We also investigated relationships within and across the two districts (see 

Supplementary Table 27).  With reconstruction of pedigree networks in MCPS, we were able to 

investigate the proportion of relatives who cross boundaries and have residences in different 

districts. Among the first-degree relatives, we find that only 3% of parent-child pairs and 7% of 

full sibling pairs lived in different districts.  The percentages of second- and third-degree relative 

pairs with residences in different districts was 13% and 17%, respectively, which is much lower 

than would be expected if there was random mixing of individuals from the contiguous districts.   
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Interestingly, although there was a marked 10% to 15% decrease in the percentages of second- or 

third-degree relative pairs who both had a residence in the Coyoacán district compared with first-

degree relationship types, the percentages of relative pairs who had a residence in the Iztapalapa 

district remained fairly consistent across relationship types (Supplementary Table 27).   These 

results provide some insight into patterns of migration (or lack thereof) within families between 

the Coyoacán and Iztapalapa districts.    

 

Population structure 

The genetic dataset allowed us to characterize the ancestry composition and heterogeneity of 

MCPS individuals relative to pre-Columbian population structure in Mexico. Accounting for 

genetic ancestry and admixture is crucial in GWAS31 and can be used to boost power32 and for 

explorations of polygenic risk scores portability33. We used a variety of complementary analysis 

approaches to investigate the fine-scale population structure in the MCPS dataset, with a specific 

emphasis on elucidating the Native American component of genetic ancestry. Firstly, we applied 

PCA to a reference dataset of 108 African (Yoruba) and 107 European (Iberian) samples from 

the 1000 Genomes (1000G) dataset34, and 591 unrelated samples from 60 Native Mexican 

groups corresponding to Central, Southern, South Eastern, Northern and North Western regions 

of Mexico from the Metabolic Analysis of an Indigenous Sample (MAIS)2 (see Methods, Figure 

2, Supplementary Figure 6). We included a representative set of unrelated MCPS samples 

(n=500) in the PCA model fitting procedure and projected the remaining 138,011 MCPS samples 

onto the inferred PC axes. Figure 2a shows that PC1 and PC2 separate Native Mexican, African 

and European samples, and that MCPS samples lie on the axis between Native Mexican and 

European samples. Figure 2b shows that PC3 differentiates Native Mexican geographic sub-
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groups and suggests that the majority of MCPS samples have ancestry from Central, Southern 

and South Eastern Mexico.  

 

To provide more focus on the genetic variation within the MCPS dataset we also applied PCA to 

a filtered array dataset of 58,051 unrelated MCPS samples, with all other MCPS samples and 

1000G, HGDP and MAIS samples projected onto the inferred PC axes (Figure 2c,d, 

Supplementary Figure 7). This analysis further highlighted that Mesoamerican ancestry from 

indigenous groups in Central, Southern and South Eastern Mexico predominates, whereas 

ancestry from indigenous groups in the Northern and more arid regions of the country is sparsely 

represented in MCPS.  

 

Examination of the SNP loadings from this PCA analysis highlighted that many PCs exhibited 

local effects attributable to long-range LD consistent with recent admixture. More stringent LD 

filtering reduces this phenomenon and suggests that analysis of large scale admixed datasets 

requires careful selection of PCs used in GWAS (Supplementary Figures 8-10). Parametric 

admixture estimation also corroborated significant ancestry proportions from Mesoamerican 

ancestry groups among MCPS participants (Supplementary Figure 11, Methods). 

 

While PCA aims to uncover population structure in a dataset using a set of mostly unlinked 

markers, haplotype-based approaches that can utilize linkage disequilibrium (LD) between SNPs 

have been shown to uncover much finer scale population structure 35,36. We applied two different 

methods to measure the similarity between pairs of individuals using phased array haplotypes 

from a set of unrelated MCPS individuals. The first approach used identical-by-descent (IBD) 
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segments27, and the second approach measured the extent of haplotype sharing using a scalable 

implementation of a haplotype-copying hidden Markov model37 (Methods). Both of these 

approaches produced low-dimensional representations with noticeably more ‘star-like’ structure 

than PCA (Supplementary Figures 12-13). In combination with ancestry proportions from the 

local ancestry inference (see next section), this highlighted the ability of these approaches to 

delineate the contributions of Mesoamerican and European ancestry more clearly.  

 

Local ancestry estimation 

We carried out a supervised population structure analysis by applying local ancestry inference 

(LAI) with RFMix38 using a reference panel of haplotypes from Africa, Europe and America 

(Methods). Supplementary Figure 14 shows local ancestry at segments genome-wide for 12 

representative MCPS individuals estimated from the LAI results and Figure 3 shows population 

distributions of LAI-based ancestry proportion estimates, including five indigenous sub-groups 

within Mexico. Overall, we estimate that 66.0% of autosomal ancestry was attributable to Native 

Mexican groups with the majority coming from Central Mexico (35.6%). Southern Mexico and 

South Eastern Mexico accounted for 15.9% and 11.8% respectively, with much smaller amounts 

of ancestry attributable to Northern Mexico (1.6%) and North Western Mexico (1.1%). In 

addition, 2.9% and 31.1% of ancestry was attributable to African and European groups 

respectively. We observed that MCPS individuals with the most Native Mexican ancestry seem 

to have a greater relative contribution from indigenous groups from Southern Mexico (i.e. from 

the states of Oaxaca and Veracruz) (Supplementary Figure 15). We also find lower amounts of 

Native Mexican ancestry and higher amounts of European ancestry in Coyoacán than in 
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Iztapalapa, consistent with socio-demographic characteristics of these districts (Supplementary 

Text).  

 

Using 3,595 parent couples inferred from the genetic relatedness analysis we observed 

significant correlation in ancestry between partner pairs (Supplementary Figure 16) as has been 

observed in other admixed studies39–41. We used a linear model to predict ancestry of each 

partner using the ancestry of their spouse, education level (4 categories) and district (Coyoacán 

and Iztapalapa) of both partners. We found that education and district explained between 0.5-5% 

of the variation in ancestry, whereas spousal ancestry explained between 15-26% of the variation 

in ancestry. This suggests that genomic ancestry is a much better predictor of partners’ ancestry 

than these sociodemographic factors. 

 

Supplementary Figure 17 shows the proportion of ancestry across each chromosome from a 3-

way LAI analysis (Methods). This highlighted an excess of African ancestry in and around the 

MHC on chromosome 6 (African 17.3%, P-value = 2.9e-14; Supplementary Figure 18) 

consistent with previous observations42. We also observed ancestry proportions on chromosome 

X that exhibited elevated levels of Native Mexican ancestry compared to autosomes (African 

3.2%, Native Mexican 73.8%, European 22.7%), consistent with an imbalance of male and 

female contributions to admixture. Using a simplified population mixture event model43,44 that 

best fits the observed chromosome X ancestry proportions we estimate that the proportion of 

Native Mexican ancestry explained by female contribution was 71.3%, while for Europeans the 

female contribution accounted for 7.5%. (Supplementary Table 28).  
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Homozygosity 

The relatedness analysis highlighted a subset of parent-offspring pairs with elevated levels of 

sharing two alleles IBD (Figure 1a), which can be caused by extensive homozygosity within a 

population. The exome variant survey highlighted an increased amount of homozygous pLoF 

variants compared to the UK Biobank exome dataset (Supplementary Table 4). Homozygosity, 

particularly at pLoF variants, can be especially useful in understanding gene function, drug 

discovery, and for call back studies45. Population bottlenecks and consanguinity can increase 

homozygosity, whereas admixture can decrease homozygosity within a population. We estimated 

levels of homozygosity in each MCPS individual by estimating runs of homozygosity (ROH) 

from the phased array dataset using hap-IBD27 (Methods). There were 60,722 MCPS 

participants (43.9%) who had at least one ROH segment of length 4 centimorgans (cM) or 

longer. The mean homozygosity across the whole dataset was 0.34%, and 0.78% among the 

60,722 individuals with at least one ROH segment greater than or equal to 4 cM 

(Supplementary Tables 29, Supplementary Figure 19). As a comparison, we ran the same 

analysis on the UK Biobank phased array genotypes and found the mean homozygosity was 

0.07%, and 0.59% in the 55,206 (11.3%) of the participants with at least one ROH segment. 

 

We observed that the total amount and number of ROH segments was positively correlated with 

the proportion of ancestry that is native to Mexico (Supplementary Figure 20). Combining 

ROH segments with local ancestry estimates (Methods) we found that 79.0% of ROH segments  

can be assigned to Native Mexican ancestry, clearly exceeding the 66.3% average amount of 

Native Mexican ancestry in the sample. Similarly, we observed a depleted proportion of ROH in 

European and African segments (19.10% and 1.9% respectively) compared to the average 
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amount of European and African ancestry in the sample (30.2% and 3.5% respectively). We 

observed that 68.4% of ROH segments are homozygous for a single ancestry across their whole 

length. These results are consistent with previous reports that Native American populations tend 

to have higher levels of homozygosity than European and African populations 45. 

 

The mean number of rare homozygous pLOFs (rhLOF), and the proportion of rhLOFs in ROH 

was correlated with the proportion of the genome in ROH segments (Supplementary Figure 

21). Overall, for LOF variants with allele frequency <0.1% we identified 3,763 rhLOF genotypes 

at 2,646 variants in 2,169 different protein-coding genes in 3,519 individuals, and 52.2% of these 

were found within ROH segments (recall that, overall, <0.5% of these genomes lies in ROH 

segments). Given the rate of rhLOF variants in MCPS (Supplementary Table 4), we 

investigated the local ancestry assignment for each observed rhLOF within ROH and observed 

that segments of Native Mexican ancestry account for 62.6% of rhLOFs (Supplementary Table 

30).  

 

An MCPS imputation reference panel 

We created a phased haplotype reference panel (MCPS10k) for the purposes of genotype 

imputation that is being made available via the Michigan Imputation Server (see URLs). The 

phasing process utilized phase information from sequencing reads and pedigrees, and WGS 

variants were phased onto an array haplotype scaffold to facilitate ancestry specific allele 

frequency estimation (Methods). Using the WGS trios we estimate that haplotypes were phased 

with a switch error rate of 0.0024 (Methods, Supplementary Figure 22) and we observed that 

switch error rate depended upon ancestry proportion (Supplementary Figure 23). 
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We assessed the utility of the MCPS10k reference panel for genotype imputation by imputing 

chromosome 2 using the phased array dataset of 67,079 MCPS individuals not included in the 

reference panel and pruned for relationships up to the first degree. For comparison, we also 

imputed the MCPS dataset using the diverse TOPMed reference panel that includes 47,159 

European, 24,267 African, and 17,085 admixed American genomes (Methods). 

 

MCPS10k and TOPMed imputation produced, respectively, a set of 9,801,290 and 9,437,266 

autosomal variants with imputation info score >0.3. However, the information scores (a well 

calibrated measure of accuracy) for an overlapping set of 6,473,872 variants were generally 

higher using MCPS10k than TOPMed for MAF bins greater than 0.01% (Supplementary 

Figure 24).  

 

We compared the MCPS10k and TOPMed imputed genotypes to the exome sequencing data 

at 128,745 sites on chromosome 2. Figure 4 shows the results of the imputation accuracy 

stratified by allele frequency, reference panel and degree of Native Mexican ancestry (defined as 

two groupings with individuals split above and below the median proportion of Native Mexican 

ancestry). The results show that MCPS10k outperformed TOPMed for MAF > 0.1%, but below 

that threshold the TOPMed panel had better performance. Furthermore, we find that the 

MCPS10k panel provided the greatest imputation benefits for those samples with the highest 

proportions of Native Mexican ancestry. 

 

Finally, we assessed the imputation performance in 1000 Genomes individuals with Mexican 

ancestry from Los Angeles (MXL) and found that TOPMed provided improved imputation 
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performance compared to MCPS10k (Supplementary Figure 25-26). Our ADMIXTURE 

analysis of the MXL samples suggests that they have substantially higher European ancestry than 

MCPS samples (median 44% versus 28%). In addition, the MXL samples have less ancestry 

from Central, South and South East Mexico, and more from North and North West Mexico than 

MCPS (Supplementary Figure 27). Previous studies46 have suggested that Mexican-Americans 

from California tend to have increased Native American ancestry from Northwest Mexico as 

compared to individuals from Mexico City. The limited ancestry from North and North Western 

Mexico in MCPS and the large number of European reference samples in TOPMed likely 

explains why the MCPS10k panel does not provide the best imputation accuracy in the MXL 

samples. Similarly, the TOPMed panel provided the best performance in 1000 Genomes 

individuals with Peruvian ancestry from Lima (PEL), Colombian ancestry from Medellin (CLM) 

and Puerto Rican ancestry from Puerto Rico (PUR) compared to MCPS10k (Supplementary 

Figure 25-26).  These results emphasize the value of closely matching the ancestry of imputation 

reference panels to the samples being studied. While our panel provides improved imputation for 

individuals of Mesoamerican Mexican ancestry, additional panels may be required to provide 

similar benefits for other Latin American populations with admixture from different Native 

American ancestral populations.  

 

Ancestry specific allele frequency estimation 

We combined the LAI results with the phased WES and WGS datasets to estimate Native 

Mexican, African and European allele frequencies at 141,802,412 genetic variants, increasing by 

10-fold the number of LAI-resolved frequencies currently available in the gnomAD browser (see 

schematic in Supplementary Figure 28). These frequencies are available in a public browser 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.26.495014doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.26.495014
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

(see URLs). Median sample sizes for estimation of Native Mexican, African and European 

ancestry were 91,856, 4,312 and 42,009 respectively for WES variants, and 6,549, 341 and 3,058 

for WGS variants. For comparison, gnomAD v3.1 median sample sizes are 7,639, 20,719 and 

34,014 for Latino/Admixed American, African and Non-Finnish European ancestries. Figure 5 

compares WES allele frequency estimates using our deconvolution approach in MCPS to the 

more direct approach used in gnomAD v3.1. European allele frequencies showed excellent 

agreement (r2 = 0.994) and African allele frequencies only showed slightly less agreement (r2 = 

0.987), despite greater heterogeneity in African ancestry populations and the lower median 

African sample size in the MCPS cohort. Supplementary Figure 29 compares MCPS WGS and 

gnomAD allele frequencies.  

 

Table 3 shows the allele frequencies at 46 loci previously reported to show trait associations in 

contemporary Mexican or other Latin American populations. For example, we found that the top 

SNP associated with type 2 diabetes at the SLC16A11 locus12 - rs75493593 - has an overall 

frequency of 36% but population-specific allele frequencies of 0.1%, 0.7% and 53% in African, 

European and Native Mexican populations, respectively. This is in agreement with previous 

estimates reported by the SIGMA Type 2 Diabetes Consortium. Another notable example occurs 

at the IGF2 locus where the pLOF splice acceptor variant rs149483638 that confers protection 

against type 2 diabetes47 and has an overall frequency of 23% but population-specific allele 

frequencies of 0.06%, 0.05% and 35% in African, European and Native Mexican populations, 

respectively. Moreover, the rare MC4R missense variant rs79783591 associated with obesity48 is 

absent from the gnomAD browser but has an overall frequency of 1.1% in MCPS with an 
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inferred Native Mexican frequency of 1.6%, and African and European frequencies less than 

0.05%.  

 

We used the 3-way LAI segments to further decompose the annotated variants into three 

continental groups and found that across all variant classes the highest levels of variation were 

found in African segments and lower levels in Native Mexican and European segments, 

consistent with the demographic history of these populations (Supplementary Table 31). For 

example, we estimate that the mean number of pLOF variants in Native Mexican, European and 

African genomes to be 347, 361 and 427 respectively, although rare homozygous pLOF were 

more frequent among longer ROHs of Native American ancestry as shown above. 

 

Discussion 

 

The MCPS genetic data resources described in this study represent the largest in Mexico to date, 

the most extensive sequencing study in individuals of non-European ancestry, and a major 

contribution towards the goal of increasing the diversity of genetic collections. Through scalable 

genotype and haplotype-based approaches to characterize fine-scale population structure and 

admixture, we traced the Native American component of ancestry within MCPS individuals to 

predominantly Mesoamerican indigenous groups from Central, Southern and South Eastern 

Mexico. Many indigenous groups within Southern Mexico belong to the Oto-mangue linguistic 

family (e.g. Mixteco, Zapoteco, Ixcateco) whereas most indigenous groups from South Eastern 

Mexico belong to the Maya linguistic family (Maya, Chuj, Ixil, Awakateco). Genetic analyses of 

indigenous groups in Mexico have previously shown that indigenous groups in these regions 
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share extensive genetic similarly that closely aligns with linguistic family membership2. On the 

other hand, indigenous groups in the Central region of Mexico (e.g. Otomi, Nahuatl) show 

pronounced genetic similarity (i.e. low measures of pairwise Fst) despite spanning distinct 

linguistic families (e.g. Oto-mangue, Yuto-nahua, Totonaco-tepehua). Our analyses revealed that 

Mesoamerican ancestry from these three regions was prevalent within the MCPS cohort, with 

particularly elevated relative proportions of South Eastern ancestry among individuals with the 

most Native American admixture in-keeping with the more restrictive mating patterns seen in 

South Eastern Mexican peoples previously 49. In contrast, ancestry from Aridoamerican 

indigenous groups in the Northernmost regions of the country and from Mesoamerican groups in 

the Northwest state of Nayarit (Cora, Tepehuano, Mexicanero, and Huichol) was 

underrepresented in MCPS. Moreover, as seen in previous studies in Mexico 2,46, we found 

evidence of sex imbalance on the X chromosome. The higher proportion of Mesoamerican 

ancestry on chromosome X is consistent with sex-biased gene flow resulting from 

predominantly-male European colonization of the Americas50 and may have implications for 

health disparities between men and women in light of the longer runs of homozygosity, and more 

rare pLOF variants, that tracked with Mesoamerican ancestry. Such health disparities may also 

be compounded by the assortative mating observed in MCPS, which has been well-documented 

elsewhere51,52. Furthermore, IBD-based analyses revealed extensive and complex patterns of 

relatedness between participants within Coyoacán and Iztapalapa, largely reflecting the 

household-based recruitment strategy of the study. Together our analyses have uncovered an 

exceptionally complex and unique combination of admixture and relatedness within MCPS.   
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We developed a novel approach for estimating population-specific allele frequencies that 

leverages local ancestry information and interpolated ancestry at called variants in the MCPS 

WES and WGS datasets. This dramatically increased (by10-fold) both the number of variants 

with ancestry-specific allele frequencies and the Native Mexican effective sample size used for 

estimating allele frequencies from WES data. Without a suitable reference dataset of population 

specific allele frequencies, efforts to diagnose and interpret genomic variants in the context of 

rare disorders are greatly encumbered as it is difficult to distinguish previously unreported or 

undersampled population specific variants from potentially pathogenic variants. Our study 

expands the availability of such allelic information, which is made accessible to the genomics 

research community via the MCPS Variant Browser to facilitate future discoveries. 

 

The MCPS WES and WGS datasets substantially add to the global survey of characterized 

genomic variants by over 31 million variants. Additionally, we uncover elevated levels of 

homozygosity and homozygous pLOF variants attributable to Native Mexican ancestry, 

suggesting a role for future studies of admixed Mexicans as a previously untapped resource for 

the study of homozygous loss of function alleles in humans. Comparing WGS and WES datasets 

in the same set of 9,950 samples we found that the WGS dataset led to a 2.3% absolute increase 

in the amount of coding variation when using the canonical gene transcript to annotate variants. 

Further quantitative comparisons in larger datasets such as UK Biobank will be needed to 

examine the overall utility of WGS over WES and imputation for novel causal variant discovery.   

 

The MCPS10k imputation reference panel is being made available via the Michigan Imputation 

Server for use in other studies. From our investigations we found that imputation accuracy with 
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MCPS10k was superior to the TOPMed reference panel at genetic variants with MAF>0.1%, 

while TOPMed outperformed MCPS10k for the imputation of extremely rare variants in MCPS.   

We also found that MCPS10K provided the highest imputation accuracy for those individuals 

with high proportions of Mesoamerican ancestry. In theory, a combination of the MCPS10k and 

TOPMed reference panels should result in superior imputation performance than using either 

reference panel alone. There are, however, significant challenges in bringing together large WGS 

datasets across studies for imputation, motivating the need for novel approaches that can 

combine imputation results from different panels.  The results from our study highlight the need 

for large diverse WGS datasets from many different populations and the potential for a single 

world-wide-reference panel to increase representation and parity in imputation accuracy across 

ancestries.    

 

The publicly-available MCPS genetic resources, particularly the allele frequency and imputation 

databases, will contribute to future studies and serve as a major resource for understanding the 

genetic basis of diseases across Mexico as well as in the United States where there is a large 

population of individuals of Mexican descent.  In addition, our study can serve as a blueprint for 

obtaining novel insight into the complex genetic architecture of other diverse populations. The 

utility of the MCPS genetic resource has recently been demonstrated through its contribution to 

the discovery of loss of function variation in GPR75 that is protective against obesity, which was 

bolstered by the inclusion of the MCPS cohort in the exome-wide association meta-analysis 48. 

Moreover, the analysis of MCPS exomes was instrumental in estimating that MC4R heterozygous 

deficiency is more than seven times greater in Mexico than in the UK48. Future studies will link 

genetic variation to other disease traits via cross-cohort meta-analysis, increase resolution of fine-
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mapping, explore the construction and portability of polygenic risk scores in the Mexican 

population, leverage admixture, relatedness, and household information to potentially boost power 

of discovery in association studies and utilize Mendelian randomization to uncover causal 

relationships between modifiable exposures and disease.   
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Methods   

Blood sample collection, processing and storage, and DNA extraction.  

At recruitment, a 10-ml venous EDTA blood sample was obtained from each participant and 

transferred to a central laboratory using a transport box chilled (4 to 10°C) with ice packs. 

Samples were refrigerated overnight at 4°C, and then centrifuged (2100g at 4°C for 15 min) and 

separated the next morning. Plasma and buffy-coat samples were stored locally at −80°C, then 

transported on dry ice to Oxford (United Kingdom) for long-term storage over liquid nitrogen. 

DNA was extracted from buffy coat at the UK Biocentre using Perkin Elmer Chemagic 360 

systems and suspended in TE buffer. UV-VIS spectroscopy using Trinean DropSense96 was 

used to determine yield and quality and samples were normalised to provide 2μg DNA at 

20ng/μL concentration (2% of samples provided a minimum 1.5ug DNA at 10ng/uL 

concentration) with 260:280nm ratio of >1.8 and a 260:230nm ratio of 2.0-2.2. 

 

 

Exome sample preparation and sequencing and quality control. Genomic DNA samples were 

transferred to the Regeneron Genetics Center from the UK Biocentre and stored in an automated 

sample biobank at -80°C prior to sample preparation. DNA libraries were created by 

enzymatically shearing DNA to a mean fragment size of 200 base pairs, and a common Y-shaped 

adapter was ligated to all DNA libraries. Unique, asymmetric 10 base pair barcodes were added 

to the DNA fragment during library amplification to facilitate multiplexed exome capture and 

sequencing. Equal amounts of sample were pooled prior to overnight exome capture, with a 

slightly modified version of IDT’s xGenv1 probe library; all samples were captured on the same 

lot of oligos. The captured DNA was PCR amplified and quantified by qPCR. The multiplexed 

samples were pooled and then sequenced using 75 base pair paired-end reads with two 10 base 

pair index reads on the Illumina NovaSeq 6000 platform or S4 flow cells. A total of 146,068 

samples were made available for processing. We were unable to process 2,628 samples, most of 

which failed QC during processing due to low or no DNA being present. A total of 143,440 

samples were sequenced. The average 20X coverage is 96.5%, and 98.7% of the samples are 

above 90%. 
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Samples showing disagreement between genetically-determined and reported sex (n=1,027), 

high rates of heterozygosity/contamination (VBID > 5%) (n=249), low sequence coverage (less 

than 80% of targeted bases achieving 20X coverage) (n=29), or genetically-identified sample 

duplicates (n=1,062 total samples), and WES variants discordant with genotyping chip (n=8) 

were excluded. In addition, n=1,339 samples were flagged by MCPS for exclusion. In total, 

2,394 unique samples did not pass one or more of our QC metrics. The remaining 141,046 

samples were then used to compile a project-level VCF (PVCF) for downstream analysis, using 

the GLnexus joint genotyping tool. This final dataset contained 9,950,580 variants. 

 

Whole genome sample preparation and sequencing and quality control. Approximately 250ng of 

total DNA was enzymatically sheared to a mean fragment size of 350 base pairs. Following 

ligation of a Y-shaped adapter unique, asymmetric 10 base pair barcodes were added to the DNA 

fragments with three cycles of PCR. Libraries were quantified by qPCR, pooled, and then 

sequenced using 150 base pair paired-end reads with two 10 base pair index reads on the 

Illumina NovaSeq 6000 platform on S4 flow cells. A total of 10,008 samples were sequenced. 

This included 200 mother-father-child trios and three more extended pedigrees. The rest of the 

samples were chosen to be unrelated to third-degree or closer, and enriched for parents of nuclear 

families. The average mean coverage was 38.5X and 99% of samples have mean coverages > 

30X, and all samples are above 27X. 

 

Samples showing disagreement between genetically-determined and reported sex (n=16), high 

rates of heterozygosity/contamination (VBID > 5%) (n=10), or genetically-identified sample 

duplicates (n=19 total samples) were excluded. In addition, n=34 samples were flagged by 

MCPS for exclusion. In total, 58 unique samples did not pass one or more of our QC metrics. 

The remaining 9,950 samples were then used to compile a project-level VCF (PVCF) for 

downstream analysis, using the GLnexus joint genotyping tool. This final dataset contained 

158,464,363 variants. 

 

Variant calling. The MCPS WES and WGS data were reference-aligned with the OQFE protocol53 

which employs BWA MEM to map all reads to the GRCh38 reference in an alt-aware manner, 

marks read duplicates, and adds additional per-read tags. The OQFE protocol retains all reads and 

original quality scores such that the original FASTQ is completely recoverable from the resulting 
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CRAM file. Single-sample variants are called with DeepVariant v0.10.0 54 using default WGS 

parameters or custom exome parameters53, generating a gVCF for each input OQFE CRAM file. 

These gVCFs are aggregated and joint-genotyped with GLnexus v1.3.1. All constituent steps of 

this protocol are executed with open-source software. 

 

Identification of low-quality variants from sequencing using machine learning. Briefly, we 

defined a set of positive control and negative control variants based on: (i) concordance in 

genotype calls between array and exome sequencing data; (ii) transmitted singletons; (iii) an 

external set of likely “high quality” sites; and (iv) an external set of likely “low quality” sites. To 

define the external “high quality” set, we first generated the intersection of variants that pass QC 

in both TOPMED Freeze 8 and gnomAD v3.1 genomes. This set was additionally restricted to 

1000 genomes phase 1 high-confidence SNPs 34 and Mills and 1000 genomes gold-standard 

INDELs55, both available via GATK resource bundle (URLs). To define the external “low 

quality” set, we intersected gnomAD v3.1 fail variants with TOPMED Freeze 8 mendelian or 

duplicate discordant variants. Prior to model training, the control set of variants were binned by 

allele frequency, and then randomly sampled such that an equal number of variants were retained 

in the positive and negative labels across each frequency bin. The model was then trained on up 

to 33 available site quality metrics, including, for example, the median value for allele balance in 

heterozygote calls and whether a variant was split from a multi-allelic site. We split the data into 

training (80%) and test (20%) sets. We performed a grid search with 5-fold cross-validation on 

the training set to identify the hyperparameters that return the highest accuracy during cross-

validation, which are then applied to the test set to confirm accuracy. This approach identified as 

low-quality a total of 616,027 WES and 22,784,296 WGS variants (of which 161,707 

and 104,452 were coding variants respectively). We further applied a set of hard filters to 

exclude monomorphs, unresolved duplicates, variants with >10% missingness, ≥3 mendel errors 

(WGS only), or failed HWE with excess heterozgosity (HWE p-value < 1x10-30 and observed 

heterozygote count > 1.5x expected heterozygote count), resulting in a dataset of 9,325,897 WES 

and 131,851,586 WGS variants (of which 4,037,949 and 1,460,499 were coding variants 

respectively).  
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Variant annotation. Variants were annotated as previously described. Briefly, variants were 

annotated using Ensembl Variant Effect Predictor (VEP)56, with the most severe consequence for 

each variant chosen across all protein coding transcripts. In addition, we also derived canonical 

transcript annotations based on a combination of MANE, APPRIS and Ensembl canonical tags. 

MANE annotation is given the highest priority, followed by APPRIS. When neither MANE nor 

APPRIS annotation tags are available for a gene, the canonical transcript definition of Ensembl 

is used. Gene regions were defined using Ensembl Release 100. Variants annotated as stop 

gained, start lost, splice donor, splice acceptor, stop lost or frameshift, for which the allele of 

interest is not the ancestral allele, are considered predicted LOF variants. Five annotation 

resources were utilized to assign deleteriousness to missense variants: SIFT57; PolyPhen2 HDIV 

and PolyPhen2 HVAR58; LRT 59; and MutationTaster 60. Missense variants were considered 

“likely deleterious” if predicted deleterious by all five algorithms, “possibly deleterious” if 

predicted deleterious by at least one algorithm, and “likely benign” if not predicted deleterious 

by any algorithm. 

 

Genotyping. Samples were genotyped on the Illumina Global Screening Array (GSA) 

v2 beadchip according to the manufacturer’s recommendations. A total of 146,068 samples were 

made available for processing, of which 145,266 (99.5%) were successfully processed. The 

average genotype call rate per sample was 98.4% and 98.4% of samples had a call rate above 

90%. Samples showing disagreement between genetically-determined and reported sex 

(n=1,827), low quality samples (call rates below 90%) (n=2,276), genotyping chip variants 

discordant with exome data (n=44), genetically-identified sample duplicates (n=1,063 total 

samples) were excluded. In addition, n=1,122 samples were flagged by MCPS for exclusion and 

n=223 samples were failed for “other” reasons. In total, 4,435 unique samples did not pass one or 

more of our QC metrics. The remaining 140,831 samples were then used to compile a project-

level VCF (PVCF) for downstream analysis. This dataset contained 650,380 poly-morphic 

variants. 

 

Genotyping QC. The input array data from the RGC Sequencing Lab consisted  of 140,831 

samples and 650,380 variants and were passed through multiple quality control steps: checks for 

consistency of genotypes in sex chromosomes (steps 1-4); sample- and variant-level missingness 
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filters (steps 5-6); the Hardy-Weinberg equilibrium exact test applied to a set of 81,747 3rd-

degree unrelated samples, identified from the initial relatedness analysis by PLINK and  

PRIMUS (step 7); setting genotypes with Mendel errors in nuclear families to missing (step 8); 

and the second round of steps 5-7 (step 9). PLINK commands associated with each step are 

displayed in column 2 (Supplementary Table 9). The final post-QC array data consisted 

of 138,511 and 559,923 variants.  

 

Array phasing. We used SHAPEIT v4.1.3 61 to phase the array dataset of 138,511 samples 

and 539,315 autosomal variants that passed the array QC procedure. To improve the phasing 

quality, we leveraged the inferred family information by building a partial haplotype 

scaffold on unphased genotypes at 1,266 trios from 3,475 inferred nuclear families identified 

(randomly selecting one offspring per family when there were more than 1). We then ran 

SHAPEIT one chromosome at a time, passing the scaffold information with the  

--scaffold option.  

 

Exome and whole genome phasing. We separately phased the SVM filtered exome and whole 

genome sequencing datasets onto the array scaffold. For the WGS phasing we used WhatsHap62 

to extract phase information in the sequence reads and from the subset of available trios and 

pedigrees, and this information was fed into SHAPEIT v4.2.2 via the --use-PS 0.0001 option. 

Phasing was carried out in chunks of 10,000 and 100,000 variants (WES and WGS respectively) 

and using 500 SNPs from the array data as a buffer at the beginning and end of each chunk. The 

use of the phased scaffold of array variants means that chunks of phased sequencing data can be 

concatenated together to produce whole chromosome files that preserve the chromosome-wide 

phasing of array variants. A consequence of this process is that when a variant appears in both 

the array and sequencing datasets, it is the data from the array dataset that is used.  

 

To assess the performance of the WGS phasing process, we repeated the phasing of chromosome 

2 by removing the children of the 200 mother-father-child trios. We then compared the phase of 

the trio parents to that in the phased dataset that included the children. We observed a mean 

switch error rate of 0.0024. Without using the WhatsHap to leverage phase information in 

sequencing reads increases the mean switch error rate to 0.0040 (Supplementary Figure 22).  
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Relatedness, pedigree reconstruction and network visualization. The relatedness inference 

criteria and relationship assignments were based on kinship coefficients and probability of zero 

IBD sharing from the KING software26. We reconstructed all first-degree family networks using 

PRIMUSv1.9.0 30 applied to the IBD-based KING estimates of relatedness along with the 

genetically derived sex and reported age of each individual. 99.3% of the first-degree family 

networks were reconstructed unambiguously. To visualize the relationship structure in MCPS we 

used the Graphviz software (see URLs) to construct networks such as Supplementary Figure 5. 

We used the sfdp layout engine which uses a “spring” model that relies on a force-directed 

approach to minimize edge length.  

 

Measuring IBD segments and homozygosity. To identify IBD segments and measure runs of 

homozygosity, we ran hap-ibd (v1.0) 27 using the phased array dataset of 138,511 samples and 

538,614 sites from autosomal loci. Hap-ibd was run with the parameter min-seed=4, which looks 

for IBD segments that are at least 4 cM long. We filtered out IBD segments in regions of the 

genome with fourfold more or fourfold less than the median coverage along each chromosome 

following the procedure in IBDkin28, and filtered out segments overlapping regions with fourfold 

less than the median SNP marker density (Supplementary Figure 30). For the homozygosity 

analysis, we intersected the sample with the exome data to evaluate loss of function variants, 

resulting in a sample of 138,200. We further overlaid the ROH segments with local ancestry 

estimates, and assigned ancestry where the ancestries were concordant between haplotypes and 

posterior probability was >0.9, assigning ancestry to 99.8% of the ROH.  

 

Principal Components Analysis. We used the workflow described in Privé et al. 202063 and 

implemented in the R package bigsnpr. In brief, pairwise kinship coefficients are estimated 

with Plink (v2.0) and samples were pruned for first and second-degree relatedness (kinship 

coefficient < 0.0884) to obtain a set of unrelated individuals. Linkage disequilibrium (LD) 

clumping was performed with a default LD r2 threshold of 0.2 and regions with long-range LD 

were iteratively detected and removed using a procedure based on evaluating 

robust Mahalanobis distances of PC loadings. Sample outliers are detected using a procedure 

based on K nearest neighbours. Principal component (PC) scores and loadings for the first 20 
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PCs are efficiently estimated using truncated singular value decomposition (SVD) of the scaled 

genotype matrix. After removal of variant and sample outliers, a final iteration of truncated SVD 

was performed to obtain the PCA model. The PC scores and loadings from this model were then 

used to project withheld samples, including related individuals, into the PC space defined by the 

model using the Online Augmentation, Decomposition and Procustes (OADP) 

algorithm. For each PC analysis in this study, variants with minor allele frequency (MAF) < 

0.01 were removed.  

 

ADMIXTURE analysis.  ADMIXTURE64 version 1.3.0 (URLs) was used to estimate ancestry 

proportions in a set of 3,964  reference samples representing African, European, East Asian, and 

American ancestries from a dataset of merged genotypes. 765 samples of African ancestry were 

obtained from 1KG (n=661) and HGDP (n=104), 658 samples of European ancestry were 

obtained from 1KG (n=503) and HGDP (n=155), and 727 samples of East Asian ancestry were 

obtained from 1KG (n=504) and HGDP (n=223). American samples were limited 716 

indigenous Mexican samples from the MAIS study, 64 admixed Mexican American samples 

from Los Angeles from 1KG (MXL), 21 Maya and 13 Pima samples from HGDP, and 1,000 

unrelated Mexican samples from MCPS. Included SNPs were limited to variants present on the 

Illumina GSAv2 genotyping array for which TOPMED-imputed variants in the MAIS study had 

info r2 ≥ 0.9 (m=199,247 SNPs). To select the optimum number of ancestry groups (K) to 

include in the admixture model, five-fold cross validation was performed for each K in the set 4 

to 25 with the –cv flag. In order to obtain ancestry proportion estimates in the remaining set of 

137,511 MCPS samples, the population allele frequencies (P) estimated from the analysis of 

reference samples were fixed as parameters so that the remaining samples could be projected into 

the admixture model. Projection was performed for the K=4 model and for the K=18 model that 

yielded the lowest cross validation error, and point estimation was attained with the block 

relaxation algorithm. 

 

External datasets used in genetic analyses. The Metabolic Analysis of an Indigenous Sample 

(MAIS) genotyping datasets were obtained from Professor Lorena Orozco 

from Insituto Nacional de Medicina Genómica (INMEGEN). For 644 samples, genotyping was 

performed using the Affymetrix Human 6.0 array (n=599,727 variants). An additional 72 
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samples (11 ancestry groups) were genotyped with the Illumina Omni 2.5 array (n=2,397,901 

variants). The set of 716 indigenous samples represent 60 of the 68 recognised ethnic groups in 

Mexico2. Per chromosome variant call files (VCF) for each genotyping array were uploaded to 

the TOPMed Imputation Server (URLs) and imputed from a multi-ethnic reference panel of 

97,256 whole genomes. Phasing and imputation were performed using the 

programs eagle and MiniMac, respectively. The observed coefficient of determination (r2) for the 

reference allele frequency between the reference panel and the genotyping array was 0.696 and 

0.606 for the Affymetrix and Illumina arrays, respectively.   

  

Physical positions of imputed variants were mapped from genome build GRCh37 to GRCh38 

using the program LiftOver and only variant positions included on the Affymetrix Global 

Screening Array version 2 (GSAv2) were retained. After further filtering out variants with 

imputation info r2 < 0.9, the following quality control steps were performed prior to merging of 

the MAIS Affymetrix and Illumina datasets: 1) removal of ambiguous variants (i.e. A/T and C/G 

polymorphisms); 2)  removal of duplicate variants; 3) identifying and correcting allele flips; 4) 

removal of variants with position mismatches. Merging was performed with the --

bmerge command in Plink (v1.9).   

 

We used publicly available genotypes from the Human Genome Diversity Panel65 HDPG; 

n=929) and 1000 Genomes Project 66 (KG; n=2,504). To obtain a combined global reference 

dataset for downstream analyses of population structure, admixture, and local ancestry, the 

HGDP and KG datasets were merged. The resulting merged public reference dataset was 

subsequently merged with the MAIS dataset and MCPS genotyping array dataset. Each merge 

was performed with the –bmerge function in Plink (v1.9) after removing ambiguous variants, 

removing duplicate variants, identifying and correcting allele flips, and removing variants with 

position mismatches. The combined global reference dataset comprised 199,247 variants and 

142,660 samples.  

 

Local Ancestry Inference. Reference samples used in the LAI were selected from a TeraStructure 

ancestry analysis of the HGDP, 1000G and MAIS samples. A continental ancestry score 

threshold ≥ 0.90 was applied to exclude samples with extensive admixture from the reference set. 
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The seven group analysis used 666 African samples, 659 European samples, 98 Mexico-North, 

42 Mexico-Northwest, 185 Mexico-Central, 128 Mexico-South and 163 Mexico-Southeastern 

samples at 204,626 autosomal and chromosome X SNPs. The 3 group analysis used 666 African 

samples, 659 European samples and 163 Native Mexican samples at 505,834 autosomal and 

chromosome X SNPs. The reference samples were phased with SHAPEIT v4.1.2 using default 

settings. RFMix was applied to 138,511 MCPS samples in the phased array dataset. Selected 

RFMix v2 parameters (-e 5 --reanalyze-reference -n 5 -G 15) tuned the LAI inference algorithm 

to perform 5 rounds of Expectation-Maximization (EM) with an option to treat reference 

haplotypes if they were query haplotypes and update the set of reference haplotypes in each EM 

round; the average number of generations since expected admixture was set to 15; and the 

number of terminal nodes for the random forest classifier was set to 5. 

  

Fine-scale population structure based on IBD sharing IBD segments from hap-ibd were summed 

across pairs of individuals to create a network of IBD sharing represented by weight matrix 𝑊 ∈

ℝ≥0
𝑛×𝑛 for 𝑛 samples. Each entry 𝑤𝑖𝑗 ∈ 𝑊 gives the total length in cM of the genome that 

individuals i and j share identical by descent. We sought to create a low-dimensional 

visualization of the IBD network. We took an approach similar to Han et al. 2017 35 , who use 

the eigenvectors of the normalized graph Laplacian as coordinates for a low-dimensional 

embedding of the IBD network. Let 𝐷 be the degree matrix of the graph with 𝑑𝑖𝑖 = ∑ 𝑤𝑖𝑗𝑗  and 0 

elsewhere. The normalized (random walk) graph Laplacian is defined to be 𝐿 = 𝐼 − 𝐷−1𝑊, 

where I is the identity matrix. 

  

The matrix 𝐿 is positive semi-definite, with eigenvalues 0 = 𝜆0 ≤ 𝜆1 ≤ ⋯ ≤ 𝜆𝑛−1. The 

multiplicity of eigenvalue 0 is determined by the number of connected components in the IBD 

network. If L is fully connected, the eigenvector associated with eigenvalue 0 is constant, while 

the remaining eigenvectors can be used to compute a low-dimensional representation of the IBD 

network. If 𝑝 is the desired dimension, and 𝑢1, … , 𝑢𝑝 the bottom 1 … 𝑝 eigenvectors of 𝐿 

(indexed from 0), the matrix 𝑈 ∈ ℝ𝑛 ×𝑝 with columns 𝑢1, … , 𝑢𝑝 define a low-dimensional 

representation of each individual in the IBD network 67.67. In practice, we solve the generalized 

eigenvalue problem to obtain 𝑢1, … , 𝑢𝑝. 

𝑊𝑢 = 𝜇𝐷𝑢 
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If u is an eigenvector of 𝐿  with eigenvalue 𝜆, then 𝑢 solves the generalized eigenvalue problem 

with eigenvalue 1 − 𝜆. 

  

To apply to the IBD network of the MCPS cohort, we first removed edges with weight >72 cM 

following Han et al. 2017. We did this to avoid the influence on extended families on the 

visualization. We next extracted the largest connected component from the IBD network, and 

computed the bottom 𝑢1, … , 𝑢20 eigenvectors of the normalized graph Laplacian. 

  

Fine-scale population structure based on haplotype sharing. To examine fine-scale population 

structure using haplotype sharing we calculated a haplotype copying matrix L using IMPUTE5 

6868 with entries Lij that are the length of sequence individual i copies from individual j. 

IMPUTE5 employs a scalable imputation method that can handle very large haplotype reference 

panels. At its core is an efficient HMM that can estimate the local haplotype sharing profile of a 

‘target’ haplotype with respect to a ‘reference’ set of haplotypes. To avoid the costly 

computations of using all the reference haplotypes, an approach based on the PBWT data 

structure is used to identify a subset of reference haplotypes that leads to negligible loss of 

accuracy. We leveraged this methodology to calculate the copying matrix L, using array 

haplotypes from a set of 58,329 unrelated individuals as both target and reference datasets, and 

used the --ohapcopy –ban-repeated-sample-names flags to ban each target haplotype being able 

to copy itself. SVD on a scaled centred matrix was performed using the bigstatsr package 63 to 

generate 20 PCs. This is equivalent to an eigen-decomposition of the variance-covariance matrix 

of recipients’ shared segment lengths. 

  

Imputation experiments. We imputed the filtered array dataset using both the MCPS10k reference panel 

and the TOPMed imputation server. For TOPMed imputation we used Plink2 to convert this dataset 

from Plink1.9 format genotypes to unphased VCF genotypes. For compatibility 

with TOPMed imputation server restrictions, we split the samples in this dataset into six 

randomly assigned subsets of about 23,471 samples, and also into chromosome 

specific bgzipped VCF files. Using the NIH Biocatalyst API (see URLs) we submitted these six 

jobs to the TOPMed imputation server. Upon completion of all jobs, we used bcftools merge to 

join the resulting dosage VCFs spanning all samples. For the MCPS10k imputation we used 
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IMPUTE 5 v1.1.5. Each chromosome was split into chunks using the imp5Chunker program 

with minimum window size 5Mb, and minimum buffer size 500Kb. Information scores were 

calculated using qctool (URLs). 

 

The 1000 Genomes WGS dataset was downloaded (URLs) and filtered to remove sites that are 

multi-allelic sites, duplicated, have missingness >2%, Hardy-Weinberg p-value < 1e-8 in any sub-

population, and MAF<0.1% in any sub-population. We used only those 490 American (AMR) 

samples in the MXL, CLM, PUR and PEL sub-populations. We constructed 2 subsets of 

genotypes on chromosome 2 from the Illumina HumanOmniExpressExome (8v1-2) and Illumina 

GSA (v2) arrays, and these  used as input to the TOPMed and MCPS10k imputation pipelines. 

 

We measured imputation accuracy by comparing the imputed dosage genotypes to the true 

(masked) genotypes at variants not on the arrays. Markers were binned according to the MAF of 

the marker in 490 AMR samples.  In each bin, we report the squared correlation (r2) between the 

concatenated vector of all the true (masked) genotypes at markers and the vector of all imputed 

dosages at the same markers.  

 

Ancestry specific allele frequency estimation. The LAI results consist of segments of inferred 

ancestry across each haplotype of the phased array dataset. Since the WES and WGS alleles were 

phased onto the phased array scaffold we inferred the ancestry of each exome allele using 

interpolation from the ancestry of the flanking array sites.  For each WES and WGS variant on 

each phased haplotype we determined the RFMix ancestry probability estimates at the two 

flanking array sites and used those to interpolate their ancestry probabilities. Ancestry specific 

frequencies are then calculated from the weighted allele counts and summed ancestry 

probabilities. Singleton sites can be hard to phase using existing methods. Family information 

and phase information in sequencing reads was used in the WGS phasing, and this will have 

helped to phase a proportion of the singleton sites. In the WES dataset we found that 46% of 

exome singletons occurred in stretches of heterozygous ancestry. For these variants we gave 

equal weight to the two ancestries when estimating allele frequencies. 
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To validate the MCPS allele frequencies we downloaded the gnomAD v3.1 reference dataset 

(see URLs) and retained only high-quality variants annotated as passed QC 

(FILTER=”PASS”), SNVs, outside low-complexity regions and with the number of called 

samples greater than 50% of the total sample size (N = 76,156). We additionally overlapped 

gnomAD variants with TOPMed Freeze 8 high-quality variants (FILTER=”PASS”) (see URLs) . 

We further merged gnomAD variants and MCPS exome variants by the 

C:P:R:A (chromosome:position: reference allele:alternative allele) names and excluded MCPS 

singletons, which were heterozygous in ancestry. That resulted in 2,249,986 overlapping variants 

available for comparison with the MCPS WES data. Median sample sizes in gnomAD non-

Finish Europeans, African/Admixed African and Admixed American population groups were N 

= 34,014, 20,719 and 7,639 respectively.  

 

URLs 

MCPS Allele Frequency browser https://rgc-mcps.regeneron.com/ 

SHAPEIT https://odelaneau.github.io/shapeit4/ 

QCTOOL https://www.well.ox.ac.uk/~gav/qctool_v2/ 

MakeScaffold https://github.com/odelaneau/makeScaffold 

Hap-IBD https://github.com/browning-lab/hap-ibd 

IMPUTE5 https://jmarchini.org/software/#impute-5 

MICHIGAN imputation server https://imputationserver.sph.umich.edu/ 

gnomAD https://gnomad.broadinstitute.org 

TOPMed Freeze 8 BRAVO variant browser, https://bravo.sph.umich.edu/freeze8/hg38/  

TOPMed imputation server https://imputation.biodatacatalyst.nhlbi.nih.gov 

Million Veteran Program https://www.research.va.gov/mvp/ 

PRIMUS https://primus.gs.washington.edu/primusweb/ 

GRAPHVIZ https://graphviz.org/ 

GATK resource bundle : https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-

Resource-bundle 

ADMIXTURE https://dalexander.github.io/admixture/ 
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1000 Genomes WGS 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working

/20201028_3202_phased/ 

 

Data availability 

The MCPS investigators welcome requests from researchers who wish to access data from the 

Mexico City Prospective Study. If you are interested in obtaining data from the study for 

research purposes, or in collaborating with MCPS investigators on a specific research proposal, 

please visit our study website [http://www.ctsu.ox.ac.uk/research/prospective-blood-based-study-

of-150-000-individuals-in-mexico] where you can download the study’s Data and Sample 

Access Policy in English or Spanish. The MCPS10k imputation reference panel described in this 

manuscript can be used freely for imputation through the University of Michigan Imputation 

server (see URLs). 
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Supplementary Note 

 

History and socio-demographics of Mexico City  

The difference in genetic ancestry identified between the inhabitants of Coyoacán and Iztapalapa 

has a historical correlation. The Mexico City districts of Coyoacán and Iztapalapa have existed 

since the pre-Hispanic times when they were relatively close (particularly Coyoacán) to the great 

city of Tenochtitlan. Although the indigenous populations settled in those places were the initial 

settlements, the population dynamics changed substantially over time, starting with the arrival of 

the Spaniards. Many Spaniards, including the conqueror Hernán Cortés, resided in Coyoacán 

while the capital of New Spain was being built (currently the historic center of the CDMX) over 

the ruins of Tenochtitlan. However, the modern populations of Coyoacán and Iztapalapa derive 

largely from the development of urban settlements and migrations that occurred from the 1950s 

to the 1970s. During this period of the twentieth century both districts, but particularly 

Iztapalapa, received large numbers of indigenous migrants from the Central (Nahuas, Otomies, 

Purepechas), South (Mixtecos, Zapotecos, Mazatecos), and Southeast (Chinantecos, Totonacas 

and Mayas) of the country. Today, Coyoacán houses a wide range of cultural and educational 

spaces and includes many middle and upper-class neighborhoods where those with more 

significant purchasing power, including many foreigners and Mexican mestizos with more 

European ancestry, have settled. Iztapalapa, further from the city center and with fewer cultural 

areas, is more affordable and remains popular among indigenous populations and those who 

migrate to Mexico City from rural parts of Mexico.   
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Table 1: Number of coding variants discovered in exome sequencing of 141,046 MCPS participants. Variants were annotated 

using VEP. Predicted function for each variant was defined as the most deleterious consequence spanning all protein-coding transcripts 

in Ensembl v100. MAC = Minor Allele Count, IQR = Inter Quartile Range, SD = Standard Deviation. 

 
Variant category  

(All transcripts) 

N variants 

(% with MAC=1) 

Median number of 

alternate alleles per 

participant (IQR) 

Mean number of 

alternate alleles per 

participant (SD) 

Median number of 

variants per 

participant (IQR) 

Mean number of 

variants per 

participant (SD) 

Coding regions 4,037,949 (30.87) 29,119 (291) 29,126 (235) 20,849 (628) 20,795 (454) 

      

Predicted function 

In-frame indels 44,469 (30.97) 281 (16) 281 (12) 207 (14) 207 (10) 

Synonymous 1,233,054 (28.04) 14,900 (169) 14,902 (134) 10,641 (320) 10,615 (234) 

Missense 2,526,776 (31.4) 13,585 (163) 13,588 (127) 9,722 (300) 9,699 (217) 

Likely benign 535,622 (27.94) 9,908 (121) 9,910 (93) 6,748 (191) 6,735 (138) 

Possibly deleterious 1,441,180 (31.17) 3,564 (74) 3,564 (56) 2,857 (113) 2,853 (82) 

Likely deleterious 549,974 (35.38) 114 (16) 114 (12) 111 (15) 112 (12) 

pLOF 233,650 (40.06) 354 (20) 354 (15) 273 (19) 273 (14) 

Start lost 9,768 (36.1) 27 (5) 27 (4) 21 (4) 21 (3) 

Stop gain 77,589 (39.05) 85 (9) 85 (7) 67 (8) 67 (6) 

Stop lost 3,539 (35.21) 13 (3) 13 (3) 10 (2) 10 (2) 

Splice donor 26,364 (40.06) 38 (6) 38 (5) 30 (5) 30 (4) 

Frameshift 96,098 (41.29) 146 (14) 147 (10) 113 (13) 114 (9) 

Splice acceptor 20,292 (40.81) 44 (6) 44 (5) 32 (5) 32 (4) 
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Table 2 : Comparison of WES and WGS datasets in coding genes.  Variants were annotated with VEP. Predicted function is defined 

by canonical transcript consequence in Ensembl v100. Counts are restricted to the same set of 9,950 individuals with both WGS and 

WGS available. All variants passed QC for the respective platform. AAF = Alternate Allele Frequency, IQR = Inter Quartile Range, SD 

= Standard Deviation. 

 

Variant category 

(Canonical 

transcripts) 
  

MCPS WGS - All Coding Regions (N=9950) MCPS WES Downsampled - All Coding Regions (N=9950) 

# Variants 
(All AAF)  

Median number of 

alternate alleles per 

participant (IQR) 

Mean number of 

alternate alleles per 

participant (SD) 

Median number of 

unique variants per 

participant (IQR) 

Mean number of 

unique variants 
per participant 

(SD) 

# Variants 
(All AAF)  

Median number of 

alternate alleles per 

participant (IQR) 

Mean number of 

alternate alleles 
per participant 

(SD) 

Median number of 

unique variants per 

participant (IQR) 

Mean number of 

unique variants per 

participant (SD) 

Coding regions 1370878 28252.5 (290.75) 28260 (233) 20247 (621.75) 20182 (456) 1340335 27589 (286) 27595 (230) 19791 (601) 19725 (441) 

In-frame indels 15694 276 (15) 276 (11) 201 (14) 201 (10) 14927 265 (15) 266 (12) 196 (13) 196 (10) 

Synonymous 468904 14930 (173) 14933 (136) 10672 (332) 10639 (244) 461349 14691 (170) 14695 (134) 10504 (325.75) 10472 (239) 

Missense 828706 12819 (160) 12822 (124) 9189 (290) 9164 (211) 809985 12433 (157.75) 12435 (121) 8924 (278) 8900 (203) 

Likely benign 198955 9460 (119) 9461 (92) 6450 (186.75) 6436 (136) 185621 9063 (116) 9064 (89) 6177 (175) 6164 (127) 

Possibly deleterious 469321 3246 (71) 3248 (54) 2623 (108) 2617 (79) 463209 3256 (73) 3257 (54) 2630 (107) 2624 (78) 

Likely deleterious 160430 113 (15) 114 (11) 111 (16) 111 (12) 161155 114 (16) 114 (12) 111 (15) 112 (12) 

pLOF 57574 229 (16) 229 (12) 178 (14) 178 (11) 54074 199 (15) 199 (11) 157 (14) 157 (10) 

Start lost 1854 8 (3) 9 (2) 7 (2) 7 (2) 1817 8 (3) 9 (2) 7 (2) 7 (2) 

Stop gain 19616 71 (8) 71 (6) 55 (7) 55 (5) 18898 62 (9) 62 (6) 48 (7) 48 (5) 

Stop lost 681 4 (3) 5 (2) 3 (1) 3 (1) 642 4 (2) 4 (2) 3 (1) 3 (1) 

Splice donor 6623 25 (5) 25 (4) 21 (5) 21 (3) 5867 15 (5) 15 (3) 13 (4) 13 (3) 

Frameshift 23985 100 (12) 100 (8) 77 (9) 78 (7) 22420 91 (11) 91 (8) 72 (9) 72 (7) 

Splice acceptor 4815 19 (4) 19 (3) 14 (3) 14 (3) 4430 18 (4) 18 (3) 14 (3) 14 (2) 
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Table 3 : Ancestry specific allele frequencies at GWAS loci previously reported in studies of Mexican and Latin/Central American populations. MCPS Native Mexican, European and African allele 

frequencies, estimated in MCPS WES/WGS data using our deconvolution approach, are reported together MCPS Raw allele frequencies calculated directly on raw MCPS data. Allele frequencies for three relevant 
population groups available in gnomAD 3.1 are added for comparison. 

 
      MCPS Allele Frequencies gnomAD v3.1 Allele Frequencies 
Gene GWAS trait rsID CPRA ID Effect MCPS 

Source 
Raw  Native 

Mexican  
European African  Admixed 

American 
Non-Finish 
European 

African/ 
Admixed 

African 

MTHFR Folate metabolism rs1801133 1:11796321:G:A missense WES 0.559 0.669 0.361 0.055 0.444 0.337 0.112 

TCHH Hair shape rs11803731 1:152110849:A:T missense WES 0.061 0.000 0.194 0.014 0.111 0.206 0.034 

PAPPA2 Bronchodilator drug response rs77977790 1:176726343:T:C intronic WES 0.1002 0.132 0.041 0.001 0.054 0.052 0.01 

DSTYK Eye color trait - C (saturation) rs3795556 1:205143783:T:C 3′-UTR WES 0.369 0.435 0.217 0.431 0.314 0.234 0.376 

EPHB2 T2D (BMI adjusted) rs10465543 1:22807725:G:A Intronic WES 0.261 0.305 0.172 0.177 0.232 0.198 0.173 

EDAR Beard thickness rs365060 2:108959280:C:G intronic WGS 0.686 0.978 0.115 0.659 0.386 0.073 0.532 

LSAMP Type 2 diabetes (BMI unadjusted) rs938911 3:116701355:A:G intronic WGS 0.050 0.003 0.116 0.303 0.108 0.149 0.316 

FGF12 Type 2 diabetes (BMI unadjusted) rs9831045 3:192757470:T:A intronic WGS 0.714 0.731 0.654 0.887 0.681 0.605 0.852 

ANO10 Hip circumference (adjusted for BMI) rs149681500 3:43396572:C:T intronic WGS 0.002 0.000 0.000 0.049 0.006 0.000 0.036 

PROK2 Waist circumference (adjusted for BMI) rs6809759 3:71937742:G:A intergenic WGS 0.418 0.324 0.624 0.308 0.537 0.647 0.387 

HSD17B13 Liver disease rs72613567 4:87310240:T:TA splice donor WES 0.076 0.001 0.242 0.055 0.168 0.269 0.069 

ESR1 Breast cancer rs140068132 6:151633699:A:G TF binding site WES 0.203 0.305 0.000085 0.000197 0.105 0.00012 0.001 

LPA Lp(a)/CAD rs3798220 6:160540105:T:C missense WES 0.341 0.507 0.001 0.001 0.172 0.017 0.009 

IRF4 Hair colour rs12203592 6:396321:C:T intronic WES 0.038 0.000 0.127 0.000 0.078 0.168 0.033 

TFAP2B Obesity in children rs2206277 6:50830813:C:T intronic WES 0.491 0.66 0.169 0.16 0.285 0.187 0.143 

CSMD1 T2D (BMI unadjusted) rs9773092 8:3358503:T:G intronic WGS 0.408 0.493 0.228 0.36 0.316 0.236 0.385 

NIPAL2 Type 2 diabetes (BMI unadjusted) rs896416 8:98186838:C:T intergenic WGS 0.631 0.720 0.473 0.418 0.532 0.432 0.480 

RP11-74C3.1 Type 2 diabetes (BMI adjusted and unadjusted) rs10809674 9:12015741:G:A intronic WGS 0.147 0.021 0.411 0.058 0.272 0.457 0.112 

CDK5RAP2 Waist-hip ratio (adjusted for BMI) rs13301996 9:120570806:T:G intronic WGS 0.161 0.118 0.248 0.129 0.212 0.212 0.126 

TLE4 Asthma rs2378383 9:79424447:A:G intergenic WGS 0.21 0.275 0.086 0.034 0.136 0.116 0.034 

EMX2 Skin pigmentation rs11198112 10:117804632:C:T intergenic WES 0.207 0.233 0.152 0.186 0.158 0.155 0.203 

GRID1 Balding rs2814331 10:86233584:C:T intronic WGS 0.926 0.966 0.848 0.848 0.867 0.883 0.908 

SIK3 TG rs139961185 11:116936627:G:A intronic WES 0.228 0.345 0.00017 0.000097 0.087 0.004 0.002 

NTM Waist-hip ratio (adjusted for BMI) (women) rs113818604 11:131960980:G:A intronic WGS 0.008 0.000 0.026 0.002 0.013 0.023 0.004 

SPON1 Bronchodilator drug response rs77149876 11:14063584:T:C intronic WES 0.002 0.000 0.007 0.000 0.004 0.005 0.001 

IGF2 T2D rs149483638 11:2140300:C:T splice acceptor WGS 0.234 0.35 0.00047 0.00059 0.142 0.000235 0.002 

SLC22A18AS Waist-hip ratio (adjusted for BMI) rs79478137 11:2891739:C:T intronic WGS 0.004 0.000 0.005 0.064 0.009 0.007 0.079 

FADS2 Waist circumference (adjusted for BMI) rs3168072 11:61864038:A:T 3′-UTR WGS 0.531 0.787 0.034 0.024 0.259 0.025 0.014 

CIT Type 2 diabetes (BMI adjusted and unadjusted) rs202983 12:119724541:G:A intronic WES 0.131 0.040 0.302 0.289 0.217 0.282 0.238 

HNF1A T2D rs483353044 12:120999288:G:A missense WES 0.005 0.007 0 0 0.00026 0 0 

PRKCH Obesity (childhood) rs12935153 14:61442459:T:C intronic WES 0.933 0.939 0.971 0.436 0.916 0.968 0.499 

SLC24A4 Bronchodilator drug response rs77441273 14:92493513:G:A missense WES 0.000 0.000 0.000 0.012 0.002 0.000 0.013 

HERC2/OCA2 Hair colour rs12913832 15:28120472:A:G intronic WES 0.117 0.008 0.357 0.008 0.243 0.764 0.127 

RORA TG rs148533712 15:60952685:T:C intronic WGS 0.548 0.735 0.17 0.378 0.343 0.161 0.353 

PRSS53 Hair shape rs11150606 16:31087690:T:C missense WES 0.36 0.537 0.005 0 0.144 0.018 0.011 

TOX3 Breast cancer rs4784227 16:52565276:C:T intronic WES 0.351 0.406 0.261 0.036 0.292 0.242 0.065 

MAF Obesity (childhood) rs12935153 16:79633118:G:A intergenic WGS 0.270 0.138 0.558 0.354 0.414 0.594 0.351 

SLC16A11 T2D rs75493593 17:7041768:G:T missense WES 0.359 0.534 0.007 0.001 0.15 0.007 0.005 

MC4R BMI rs79783591 18:60371544:A:T missense WES 0.011 0.016 0.000061 0.00042 0.00098 0 0.000024 

MC4R BMI rs72989246 18:60371544:A:T missense WGS 0.031 0.0011 0.099 0.0018 0.069 0.12 0.019 

MFSD12 Hair shape rs2240751 19:3548233:A:G missense WES 0.282 0.414 0.008 0.008 0.079 0.01 0.005 

WFDC5 Eye color trait - cos(H) (hue) rs17422688 20:45110478:G:A missense WES 0.051 0.000 0.169 0.022 0.110 0.173 0.042 

NCOA3 Bronchodilator drug response rs115501901 20:47653964:C:T 3′-UTR WES 0.000 0.000 0.000 0.006 0.001 0.000 0.010 

ETS2 Obesity (childhood) rs2836755 21:38920780:C:T Intronic WGS 0.255 0.081 0.617 0.324 0.454 0.620 0.363 

DEPDC5 T2D (BMI unadjusted) rs5998144 22:31852258:T:C Intronic WGS 0.197 0.263 0.043 0.225 0.12 0.059 0.116 

MPST Eye color trait - C (saturation) rs5756492 22:37028950:G:A Intronic WES 0.275 0.260 0.314 0.212 0.270 0.279 0.234 

PNPLA3 Liver disease rs738409 22:43928847:C:G missense WES 0.624 0.798 0.272 0.172 0.424 0.226 0.14 
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Figure 1 : Familial relatedness. (a) Percentage of the genome estimated to have 0, 1 or 2 alleles identical-by-descent (IBD) (b) 

Distribution of the number of relatives that participants have in the MCPS cohort. The height of each bar shows the count of participants 

with the stated number of relatives. The colors indicate the proportions of each relatedness class within each bar. 
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Figure 2 : PCA analysis of MCPS together with Native Mexican, European and African datasets. Panels A and B use 500 MCPS 

samples together with 108 African Yoruba (KG_AFR_YRI) and 107 European Iberian (KG_EUR_IBS) samples from the 1000 

Genomes Project dataset, and 591 unrelated samples from 60 Native Mexican groups corresponding to Central, Southern, South 

Eastern, Northern and North Western regions of Mexico from the Metabolic Analysis of an Indigenous Sample (MAIS). Panels C and D 

use an unrelated set of 58,051 samples together with the 1000 Genomes and MAIS samples. All other MCPS samples are projected onto 

the axes. 
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Figure 3: Global ancestry proportions estimated from local ancestry inference (LAI). Distributions of LAI-based global ancestry 

proportions from a 7-way analysis (panel B) and reduced to 3 continental groups (panel A). Stacked bar plots of 3-way (panel C) and 7-

way (panel D) local ancestry proportions for 138,511 MCPS individuals. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.26.495014doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.26.495014
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

 

 
Figure 4: Imputation accuracy using the MCPS10k and TOPMed imputation panels. Accuracy is measured using the R2 between the 
imputed variants and 125,639 variants measured using exome sequencing on chromosome 2 in 67,079 MCPS samples not in (or 
related to) the MCPS reference panel samples. Results are stratified by allele frequency (x-axis on log10 scale), reference panel (red = 
MCPS, blue = TOPMed) and into two groups (top and bottom 50% of Native Mexican ancestry shown by solid and dashed lines). The 
left-hand plot shows results at on all samples. The right-hand plot shows the results stratified by the amount of Native Mexican 
estimated in each sample. 
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Figure 5 : Allele frequency comparison between MCPS WES and gnomAD. Allele frequencies on linear (top) and log (bottom) scale. 
The comparisons from left to right are MCPS European vs gnomAD Non-Finnish European, MCPS African vs gnomAD African, MCPS 
Native American vs gnomAD Latino/Admixed American  and All MCPS vs gnomAD Latino/Admixed American.  
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