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Abstract 
Background: Evolutionary pressures on bacterial pathogens can result in phenotypic 

change including increased virulence, drug resistance, and transmissibility. Understanding the 
evolution of these phenotypes in nature and the multiple genetic changes needed has historically 
been difficult due to sparse and contemporaneous sampling. A complete picture of the 
evolutionary routes frequently travelled by pathogens would allow us to better understand 
bacterial biology and potentially forecast pathogen population shifts. Methods: In this work, we 
develop a phylogeny-based method to assess evolutionary dependency between mutations. We 
apply our method to a dataset of 31,428 Mycobacterium tuberculosis complex (MTBC) genomes, 
a globally prevalent bacterial pathogen with increasing levels of antibiotic resistance. Results: We 
find evolutionary dependency within simultaneously- and sequentially-acquired variation, and 
identify that genes with dependent sites are enriched in antibiotic resistance and antigenic 
function. We discover 20 mutations that potentiate the development of antibiotic resistance and 
1,003 dependencies that evolve as a consequence antibiotic resistance. Varying by antibiotic, 
between 9% and 80% of resistant strains harbor a dependent mutation acquired after a 
resistance-conferring variant. We demonstrate that mutational dependence can not only improve 
prediction of phenotype (e.g. antibiotic resistance), but can also detect sequential environmental 
pressures on the pathogen (e.g. the pressures imposed by sequential antibiotic exposure during 
the course of standard multi-antibiotic treatment). Taken together, our results demonstrate the 
feasibility and utility of detecting dependent events in the evolution of natural populations.  
 
Data and code available at: https://github.com/farhat-lab/DependentMutations 
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Introduction 
Genomic evolution of pathogenic bacteria is rapid, pervasive, and poses a serious threat 

to global health. The evolutionary pressure imposed by human infection creates pathogens that 
are more transmissible, more virulent, or more difficult to treat due to antibiotic resistance. While 
often attributed to single mutational events, antibiotic resistance is more complex, and high-level 
resistance can manifest through multiple mutations in a sequential and dependent manner. 
Dependency, here defined as when an initial mutation changes the likelihood of a specific 
subsequent mutation, may arise due to the fitness cost of initial resistance acquisition, or the 
action of antibiotics on multiple cellular processes (1, 2). A complete understanding of the multiple, 
dependent mutations associated with any pathogen phenotype, including resistance, would allow 
us to better understand pathogen biology and potentially forecast evolution.  

Traditionally the study of mutational dependence in microbial populations has relied on in 
vitro evolution experiments where populations are longitudinally sampled to determine mutational 
trajectories (3–6). This heavily restricts the context and breadth of evolutionary landscapes we 
can study. Further, resistance acquisition in vitro may not necessarily reflect resistance acquisition 
in vivo within a host environment. New approaches are needed to understand evolution of natural 
populations that will necessarily be sampled contemporaneously and be the most relevant to real-
world scenarios and human health. 

Mycobacterium tuberculosis complex (MTBC), the causative agent of tuberculosis, which 
displays increasing antibiotic resistance globally, is an important case study for identifying 
mutational dependency (7, 8). While prior reports have characterized individual cases of 
dependent evolutionary trajectories in MTBC antibiotic resistance (4, 9, 10), a genome-wide 
method to detect dependent mutations generalizable to any phenotype is needed. In other 
bacterial species, recent work has used Potts models and regression with interaction terms to 
detect dependent evolution in natural populations (11–13). However, the strong linkage effects 
and low diversity of many pathogens, including M. tuberculosis, require an alternative approach 
(Supplement). A well-suited solution to clonally evolving populations is to focus on mutations that 
evolve in a parallel manner across the phylogeny. This approach has been successful in detecting 
individual genetic effects on phenotype because it readily controls for population structure, biased 
sampling, and linkage across the clonal genome (14, 15). Such an approach has not to date been 
adapted to study dependencies between pairs of mutations. 

Here, we study pairs of dependent, parallelly evolving (homoplastic) mutations arising during 
the evolution of a natural population. We determine which mutations are more likely to occur in 
certain genetic backgrounds, controlling for increased uncertainty when mutations are rare. We 
applied our method to a dataset of 31,435 MTBC genomes spanning six major global lineages, 
finding that antibiotic resistance and antigen evolution are enriched among dependent mutation 
pairs. We observe 20 mutations that appear to potentiate the evolution of resistance to multiple 
different antibiotics. We quantify the number of strains in our dataset with evidence of dependent 
evolution occurring as a consequence of initial resistance evolution to 12 antibiotics – with lower 
bounds ranging from 80% for streptomycin to 9% for fluoroquinolones. We chart common 
manifestations of these consequential mutations after antibiotic resistance evolution, finding 
compensatory variation mediated through both physical interactions and metabolic pathways, 
multistep evolution of high-level resistance phenotypes (Figure 1). Overall, our results 
demonstrate the promise of detecting dependent mutational events in naturally evolving pathogen 
populations and explore mechanistic explanations for dependencies. 
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Figure 1: Patterns leading to detected evolutionary dependency. A simplistic framework 
classifying observed types of evolutionary dependencies in antibiotic resistance development. 
Dependencies can potentiate resistance development (A).  Potentiating mutations may amplify 
resistance, i.e. directly influence the inhibitory concentration of the drug, or they may instead have 
a general effect on growth, virulence, or metabolism that increase the probability of acquisition of 
directly causal drug resistance mutations. After initial resistance evolution, consequential 
mutations (i.e, arising as a consequence of resistance) are observed and manifest through 
multiple mechanisms. Consequential mutations may restore fitness lost with the acquisition of 
resistance variants. The latter can be mediated through direct physical interactions (B) or 
pathway-mediated changes in related genes (C). Lastly, consequential mutations can causally 
amplify resistance, either through individual effects or epistatic effects such that the combination 
of the two variant effects is different than the sum of the individual effects (D).  
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Results 
 
Evolutionary events in M. tuberculosis. 

 We estimated the evolutionary history of 31,435 diverse MTBC strains using maximum 
likelihood phylogeny and ancestral sequence reconstruction, with 2,815, 8,090, 3,398, 16,931, 
98, and 96 strains belonging to Lineages 1-6, respectively as recently described (16). Restricting 
our analysis here to single nucleotide polymorphisms, we observe 4,776 sites in the genome to 
have evolved away from the pan-susceptible ancestral state (17) at least five times independently 
(Supplementary Data 1). Of these 4,776 sites, 19% are intergenic, and the remaining mutations 
are found in a total of 1,479 different genes. The mutations are well-distributed phylogenetically, 
arising in a median of three major lineages. Most mutations are relatively recent, with each 
mutation inherited on a median of 2.4 descendant branches. 

We then categorize the homoplastic mutations in terms of their putative function: labelling 
mutations as antibiotic resistance associated based on a catalog of known and potential variants 
(18) and antigenic based on their presence in proteins with known epitopes (19, 20) (Methods). 
Antibiotic-associated mutations are overrepresented in our dataset of homoplastic mutations, with 
5% and 17% of mutations annotated as known or possibly resistance-conferring, respectively 
(Chi-squared p-value < 10-307 for both) (Supplementary Data 2). Homoplastic mutations in 
epitopes and epitope-containing proteins comprise 3% and 17% of the dataset, respectively, 
again representing a significant enrichment (Chi-square p-value < 10-68 and < 10-39). We find no 
significant enrichment for homoplastic mutations in essential genes (Chi-squared p-value > 0.1). 
The overrepresentation of antibiotic resistance and antigen associated homoplastic mutations 
suggests positive selection for these beneficial traits. 
 
Detecting dependencies between mutations  
 We develop a method to detect dependency between pairs of homoplastic mutations. We 
first partition the dataset into two non-mutually exclusive groups: (1) mutation pairs that occur 
simultaneously on the same branch at least once (N=139,048), and (2) mutation pairs that occur 
sequentially on subsequent branches at least once (N=1,274,446).  

To test for dependencies between sequentially occurring mutations a and b, we determine 
if the estimated probability of mutation a is higher for a genetic background containing mutation b 
compared with the root ancestral background (Figure 2, Methods). We detect significant 
evolutionary dependency for 2.0% (N=25,947) of all sequentially occurring homoplastic mutation 
pairs (Benjamini-Hochberg FDR < 0.01) (Supplementary Data 3).  

To test for dependencies between simultaneously occurring mutations a and b, we 
determine if the estimated probability of mutations a and b occurring simultaneously is higher than 
the estimated frequency of their co-occurrence if the two mutations were independent events 
(Figure 2, Methods). We detect significant evolutionary dependency for 46% (N=63,271) of all 
simultaneously occurring homoplastic mutation pairs (Benjamini-Hochberg FDR < 0.01) 
(Supplementary Data 3). We note the high fraction of significant pairs because simultaneous 
occurrence of any two mutations on a branch is unlikely. 
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Figure 2: Computational workflow for finding dependencies between mutations. Workflow 
for finding significant dependencies between pairs of mutations. (A) We found 1,364,150 million 
pairs of single nucleotide polymorphisms (SNPs) across 4,776 sites that co-occur either 
sequential or simultaneously at least once. We began with a dataset of 31,428 isolate genomes 
and performed phylogeny and ancestral sequence reconstruction. We called each SNP as 
ancestral or derived relative to the pan-susceptible M. tuberculosis ancestral sequence (H37Rv), 
then enumerated all SNPs that arise at least 5 times independently, dividing them into pairs that 
appear at least once sequentially or simultaneously. (B) For sequentially occurring pairs, we 
determine whether the probability of mutation a is affected by the presence of mutation b by 
inferring the distribution of the probability of mutation a in the context of b using a Beta distribution, 
and then comparing it to the expected probability of mutation a not in the context of b. (C) For 
simultaneously occurring mutations, we determine whether the probability of observing mutations 
a and b simultaneously is higher than expected based on the product of the individual probabilities 
of mutation a and b – ie, assuming the two events are independent.  
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Sequentially occurring dependencies are enriched in antibiotic resistance function 
 We next annotate whether the pairs of sequentially occurring mutations are enriched in 
antibiotic resistance-associated or antigenic proteins. We greedily assign each pair of mutations 
into the following categories in the respective order: both mutations are antibiotic-associated, the 
first or second mutation acquired is antibiotic-associated, both mutations are antigenic, one 
mutation is antigenic, or other (none of the categories apply) (Methods).   
 The pairs of sequentially occurring dependent mutations are enriched in antibiotic 
resistance (actual: 13.4% vs. expected: 10.2%) and antigenic categories (actual: 43.7%. vs. 
expected: 29.1%) compared to our expectation from the frequencies of individual SNPs (Chi-
squared p-value < 10-307, Supplementary Data 2). This indicates that not only are individual 
antibiotic resistance and antigen-associated mutations individually under positive selection but 
that there are relationships between pairs of mutations that render some of them more likely to 
co-occur in one another’s presence. Among the top 100 hits in terms of p-value, 69% include a 
known resistance variant, and all of these are pairs where the known resistance-conferring 
mutation occurs second (Figure 3A).  
 
Simultaneously occurring dependencies are enriched in antigenic function 
 We find that simultaneously occurring dependent pairs of homoplastic mutations are 
enriched in functional categories compared to our expectation from the frequencies of individual 
SNPs (Chi-squared p-value < 10-307, Supplementary Data 2). We then identify that 
simultaneously occurring dependent pairs are more likely to be in close genomic proximity than 
sequentially occurring dependent pairs (Figure 3B and 3D). Of the top 100 pairs of simultaneous 
dependencies, 92% are within 100 base pairs on the genome. The skewed distribution of genomic 
proximity suggests that these mutations are acquired simultaneously through a different 
mechanism than single nucleotide substitution, for example, gene conversion or recombination 
(21, 22). Hence, we examine simultaneously occurring proximal mutations (<=100bp) separately 
from simultaneously occurring distant mutations (>100bp). Over 50% of the top 100 significant 
proximal pairs both occur in an antigenic protein (Figure 3C). Among the top 100 significant 
distant pairs, both antigenic and antibiotic resistance-conferring pairs of mutations are 
overrepresented (Chi-squared p-value < 10-89).  
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Figure 3: Sequential and simultaneous mutation pairs are enriched in functional 
categories. We determine the identity of the top 100 pairs of significant hits for (A) sequential 
mutation pairs and (C) simultaneous mutation pairs. We categorize mutation pairs as those 
where a known resistance mutation occurs, known resistance mutation occurs second, both 
mutations are known resistance mutations, one mutation is in a known antigen protein, both 
mutations are in a known antigen protein, or other category (not any of the above). For 
simultaneous mutations, we compute the categories for the top 100 hits found within 100 base 
pairs on the genome, and for the top 100 hits found outside 100 base pairs. The genomic 
distance in megabases of all pairs of significant dependent mutations for (B) sequential 
mutations and (D) simultaneous mutations are shown. 
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Potentiating mutations that predispose the evolution of antibiotic resistance 
 We examine whether particular SNPs predispose the evolution of antibiotic resistance, 
here called potentiator mutations, as these are of high interest for surveillance and genomic 
prediction. Among all 25,947 pairs of mutations with significant sequentially acquired dependency, 
the resistance-conferring mutation is second in 2,162. Over half of these, 1,192 of 2,162, are 
explained by just 20 initial mutations which we here define as potentiators because they lead to 
over 30 different resistance-associated mutations each (Table 1), indicating that they do not 
predispose the strains to the evolution of resistance to a particular antibiotic, but rather predispose 
to resistance phenotypes in general.  

We discover several previously implicated SNPs amongst our antibiotic potentiators. This 
includes position C1341044T (EsxL  H13H) and position G2626011A (EsxO I54I), both of which 
were previously found to increase the risk of resistance evolution (23), and four other SNPs in the 
esxO gene body or upstream region. We also identify mutations in proteins known to increase 
intracellular survival of M. tuberculosis, position G1340208A (PPE18 R287Q) and position 
C2122395T (LldD2 V253M), and a mutation previously associated with increased transmission in 
the Beijing lineage, position T4060588C (EsxW T2A), to potentiate resistance (24, 25) (26).  
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Table 1: Resistance-potentiating mutations are associated with host-pathogen 
interactions. Genomic position, identifier, and name for each of 20 mutations found to occur 
before at least 30 different resistance-conferring mutations. We include a possible phenotypic 
explanation for the role of each of these potentiating mutations.  
 

Genomic 
position 

Gene ID Gene 
Name 

Possible phenotypic explanation 

75233 intergenic - upstream of possible transcriptional regulator 
Rv0067c, upstream of possible oxidoreductase Rv0068 

340132 Rv0280 PPE3 unknown 
454333 Rv0376c Rv0376c unknown 

1287112 intergenic - upstream of narG, downstream of mutT2 
1340208 Rv1196 PPE18 Intracellular survival(24) 
1341040 Rv1198 esxL activates host tnf-alpha signaling(27) 
1341044 Rv1198 esxL inferred to increase risk of resistance evolution(23) 

activates host tnf-alpha signaling(27) 
1722228 Rv1527c pks5 mediates surface remodeling(28) 
2122395 Rv1872c lldD2 promotes survival inside macrophages (25) 
2338994 Rv2082 Rv2082 unknown 
2626011 Rv2346c esxO inferred to increase risk of resistance evolution(23) 

promotes survival inside macrophages(29) 
2626018 Rv2346c esxO promotes survival inside macrophages(29) 
2626108 Rv2346c esxO promotes survival inside macrophages(29) 
2626189 intergenic - upstream of esxO 
2626191 intergenic - upstream of esxO 
2867575 Rv2544 lppB unknown 
3446699 Rv3081 Rv3081 unknown 
3894732 Rv3478 PPE60 host immune response(30) 
4060588 Rv3620c esxW Influencing increased transmission in Beijing 

lineage(26) 
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Consequential mutations that compensate for or amplify antibiotic resistance 
We next focus on dependent mutations occurring as a consequence of the initial evolution 

of resistance, here called consequential mutations, since these may indicate potential new 
mechanisms of resistance evolution or compensation for loss of fitness from initial resistance 
mutations. We detect 1,003 significant dependent mutations after initial resistance mutations, with 
hits for all 12 antibiotics (Supplementary Data 5). We quantified the prevalence of evolutionarily 
dependent mutations in resistant isolates in our dataset (Methods). We found that a substantial 
percentage of strains with initial resistance-causing mutations have sequentially acquired 
dependencies, ranging from 80% for streptomycin to 9% for fluoroquinolones, indicating a 
pervasive role in antibiotic resistance evolution. (Figure 4). 

As a positive control, the most frequent consequential mutation we detect is the known 
strong dependency between rifampicin resistance mutations in RNA polymerase b subunit (RpoB) 
and substitutions in the RNA polymerase b’ subunit (RpoC), which compensate for the loss of 
fitness incurred by RpoB mutations through a direct physical interaction (9). We also detect 
dependency between the catalase-peroxidase KatG S315T and position G2726142A, in the ahpC 
gene promoter. Increased levels of the AhpC protein are recognized to compensate for the loss 
of KatG peroxidase activity (31, 32), demonstrating a possible case of compensatory substitutions 
mediated by metabolic pathways. The detection of these known relationships reinforces the utility 
of phylogenetic methods in reconstructing evolutionary dependency. 

Our method also detects new relationships. For the aminoglycoside antibiotic kanamycin, 
we observe consequential mutations likely resulting in amplification of antibiotic resistance 
between the 16S rRNA gene rrs, the target of kanamycin; sites in the promoter region of the N-
acetyltransferase Eis, known to degrade kanamycin (33, 34); sites upstream of the transcriptional 
regulator whiB7, known to influence eis transcription (35); and sites in the transcriptional regulator 
whiB6 (Figure 4). Our findings and previous association studies suggest a role for WhiB6 in 
kanamycin resistance (36, 37). The observed evolutionary dependency suggests that multiple 
mutations are required to amplify resistance to a high level – mutations in rrs disrupt kanamycin 
binding, while mutations in whiB6, whiB7, and eis likely increase levels of the Eis protein, leading 
to increased kanamycin degradation. 

Although a gene ontology (GO) analysis did not identify significant enrichment of any one 
category for non-synonymous mutations following antibiotic resistance (Methods) 
(Supplementary Data 6) (38–40), one of the top categories is “regulation of DNA-templated 
transcription”, of major interest since the first-line antibiotic rifampicin targets the RNA 
polymerase. We find that the RNA polymerase termination factor nusG is repeatedly mutated 
after initial evolution of rifampicin resistance. NusG is notable because it binds directly to the RNA 
polymerase subunit RpoB (41), the target of the drug rifampicin (42). The mutated position in 
NusG, R124H/L, is found at the NusG-RpoB interface (Methods), suggesting that it is involved in 
stabilizing the action of the mutated polymerase, similar to the compensatory relationship between 
RpoC and RpoB (9) (Figure 4).  

A frequent mutation to follow antibiotic resistance in our dataset is HadA C61S, which 
occurs 40 independent times sequentially or simultaneously with isoniazid resistance evolution 
and is found in all four major lineages. This mutation is known to confer resistance to the now-
obsolete antibiotics thioacetazone and isoxyl (43, 44), and to candidate new antibiotics (44, 45). 
While the observed HadA mutations are potentially attributable to historical co-administration of 
thioacetazone and isoniazid (46), and hence sequential selective pressure, they may also be 
consequential mutations of isoniazid resistance -- HadA is upstream of the isoniazid drug target 
InhA in the mycolic acid biosynthesis pathway (47) and may play a role in amplifying isoniazid 
resistance levels or compensating for InhA mutations.   
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Figure 4: Dependent mutations within resistance-associated genes. We measured the 
identity and prevalence of significant dependent mutations occurring after initial resistance 
evolution. (A) Mutations that occur after mutations in known antibiotic resistance genes, visualized 
on the genome using Circos, with colors corresponding to the antibiotics in panel B. Antibiotics 
with shared genetic basis of resistance are shown in the same color. Only mutations that happen 
sequentially at least five times are shown. (B) Fraction of resistant strains that display one or more 
pairs of sequential dependent mutations.  (C) Example of pairs of dependent mutations within the 
kanamycin resistance pathway, shown on a per-gene basis. Kanamycin’s inhibition of the 
ribosome is blunted by ribosomal RNA mutations, while cellular kanamycin levels are reduced by 
increased levels of Eis, putatively caused by both mutations in the eis promoter region and 
mutations in the regulatory proteins WhiB7 and WhiB6. Dependencies between these mutations 
demonstrate multi-step resistance evolution.  
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Sequential environmental pressures lead to evolutionary dependency in antibiotic 
resistance 

In natural populations, several environmental pressures may act contemporaneously on 
a population. For pathogenic bacteria, this can take the form of simultaneous or sequential 
administration of antibiotics to achieve cure. We find strong dependencies between mutations 
that confer resistance to different antibiotics (Figure 5). Notably, this recapitulates the ordering of 
antibiotic administration in therapy: second-line drug resistance-conferring mutations were 
consistently acquired on a background of resistance to first-line agents. The observed 
dependencies also confirm postulated relative fitness costs of resistance mutations for the four 
first-line drugs (48, 49). These findings demonstrate that evolutionary dependency can be used 
to study not only molecular dependencies that amplify or stabilize a particular phenotype but also 
environmental forces when the genetic underpinnings of adaptation are known.  

 
Figure 5: Dependencies between antibiotics. The detected significant dependent mutations 
between resistance-conferring mutations follow a particular order that mirrors the usage of 
different antibiotics. For each antibiotic, we took the top dependent pair between known 
resistance-conferring genes and other genes, and between known resistance genes for different 
antibiotics. We display pairs and links where mutation a occurs sequentially or simultaneously 
with mutation b at least 10 times. The prefix “r_” before a gene name indicates that the mutations 
are found in the upstream region. The drug para-amino salicyclic acid (PAS) is not included in the 
WHO catalog, but thyX is a candidate resistance gene for this drug(50). 
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Measuring the effect of dependent mutations on resistance phenotypes 
The volume of data available on antibiotic minimum inhibitory concentrations (MIC) limited 

the statistical power of linear regression for validating direct effects of dependent mutations on 
antibiotic resistance (Supplement). We observe that 95% of the 20 potentiator mutations have a 
positive, epistatic influence on MIC for at least one drug using this approach, but only a median 
of 29% of known resistance-conferring mutations were determined to have a statistically 
significant effect (Supplement). We instead examined heritability of MIC and the proportion of 
variance explained by the dependent mutations using a series of antibiotic specific linear mixed 
models (with up to n=1,825 observations). MIC is a trait with high heritability – previously 
estimated at 64%-88% per drug based on all sites in the genome (37). Compared to heritability 
estimated from all homoplastic sites, heritability explained by mutations in known or suspected 
resistance conferring-genes has a median deficit of 29% per antibiotic (Table 2). Incorporating 
sites found to have mutation dependencies with antibiotic resistance genes resulted in a median 
increase of 15% in heritability, accounting for much of the deficit in heritability using 75% fewer 
sites, despite these dependencies having been derived without phenotypic data. This 
demonstrates that our proposed mutational dependency analysis is evolutionarily meaningful and 
characterizes the genetic architecture of antibiotic resistance phenotypes, even if the current 
analyses lack the power to detect individual sites and pairs as significantly influencing phenotype 
in a regression analysis.  
 
Table 2: Incorporating dependent mutations explains heritability of antibiotic resistance. 
We compute the heritability of antibiotic MIC using (1) all homoplastic sites in our dataset, (2) 
homoplastic mutations in known and suspected resistance conferring sites, and (3) homoplastic 
mutations in known and suspected resistance conferring sites, as well as mutations found to be 
dependent with known resistance conferring mutations (single sites and interaction terms). Note 
that “N sites” refers to the number of sites included in the analysis that were actually found to 
have a polymorphism in the isolates with MIC available. 
  

Homoplastic sites Resistance genes Resistance genes and 
dependent pairs 

Drug Heritability N sites Heritability N sites Heritability N sites 
Amikacin 0.70 2013 0.50 102 0.54 778 
Capreomycin 0.54 1665 0.28 93 0.41 620 
Ethambutol 0.59 2389 0.27 76 0.45 885 
Ethionamide 0.55 1920 0.12 61 0.47 386 
Isoniazid 0.71 2393 0.22 69 0.68 620 
Kanamycin 0.70 1921 0.51 68 0.62 744 
Moxifloxacin 0.69 1761 0.32 28 0.60 50 
Pyrazinamide 0.62 1727 0.65 157 0.62 371 
Rifampicin 0.66 2437 0.31 152 0.59 402 
Streptomycin 0.59 2397 0.33 211 0.41 599 
Mean 0.64 1967 0.32 84.5 0.56 609.5 
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Discussion 
We propose a new method to uncover evolutionary dependencies between mutations in 

naturally evolving populations and apply it to 31,435 isolates of Mycobacterium tuberculosis 
complex. We find both sequentially and simultaneously occurring pairs of dependent mutations, 
which are enriched in antibiotic resistance and antigenic function. We detect 20 potentiating 
mutations that predispose the evolution of resistance mutations to several antibiotics, and also 
have a measurable statistical interaction on antibiotic MICs in regression models. We also explore 
consequential mutations that are acquired in a dependent manner subsequent to resistance 
acquisition, providing possible examples of novel pathway-mediated selection. We lastly 
demonstrate the power of this approach in capturing environmental dependencies when the 
genetic mechanisms are well understood.  

We observe that simultaneously occurring mutations are enriched in pairs of mutations 
within 100 base pairs on the genome occurring in antigenic genes, suggesting that this is due to 
non-SNP mutational processes such as recombination, which could simultaneously introduce 
multiple variants in close proximity. Gene conversion has been previously postulated to drive esx 
gene evolution, which are genes enriched in antigenic function (21). Innovatively, our results 
suggest that other genes and especially antigenic genes may evolve through gene conversion, 
but this requires further validation potentially with long-read sequencing data. After excluding the 
proximal dependencies, simultaneous distant dependencies are also enriched in antigenic 
function and in antibiotic resistance. The observation of simultaneous acquisition of antibiotic 
resistance pairs of variants may relate to the phylogenies’ inability to temporally resolve the two 
events due to sparse sampling or due to rapid acquisition of the phenotypes in time.  

We examine dependent mutations that arise before antibiotic resistance, here called 
potentiating mutations, or after antibiotic resistance, here called consequential mutations. 
Consequential mutations appear to fall into at least two categories, those that compensate for 
loss of fitness due to resistance acquisition, and those that amplify the phenotype of antibiotic 
resistance itself. For example, nusG mutations appear to compensate for destabilizing rpoB 
mutants based on our structure analysis, and hadA knockdowns were found to significantly 
sensitize strains to high levels of isoniazid in a recent CRISPRi study (though the magnitude of 
depletion was below study threshold) (51). In contrast, the mechanism by which our 20 observed 
potentiating mutations predispose the evolution of antibiotic resistance is still in question. One 
possibility is that proteins on the cell surface, including antigenic proteins, play a direct role in 
antibiotic resistance, for example through altering cell permeability. This possibility is supported 
by the observation that 95% of observed potentiating mutations have a detectable epistatic 
influence on MIC. Another possibility is that strains with potentiating mutations may be more likely 
to transmit between hosts or progress from latent to active tuberculosis disease, leading to higher 
exposure to antibiotic treatment. Strains with potentiating mutations may also reach higher 
effective population sizes within host, leading to higher probability of resistance evolution. Finally, 
strains with potentiating mutations may have higher overall fitness, preemptively compensating 
for loss of fitness due to resistance evolution.  

We investigated whether the detected dependencies were associated with higher  
antibiotic resistance levels as measured by strain minimum inhibitory concentrations (MICs).  
Dependent mutations when added to known resistance-conferring variants capture the majority 
of heritability, and several mutations including 95% of the 20 potentiating mutations have 
measurable associations on resistance. As more MIC data becomes available, we expect that the 
power of these analyses to capture the individual effects of dependent mutations will improve. 

Our method is not without limitations. It relies on repeated observations of evolutionary 
events to infer significant non-independence of mutations. Therefore, its power is dependent on 
the number of times a mutation has arisen, and thus is biased against the effects of very recent 
selection, e.g. responses to newer antibiotics, such as linezolid, clofazimine, and even 
fluoroquinolones. The smaller numbers of dependent mutations observed for these drugs should 
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not be taken as an assertion that there are fewer dependent mutations as a result of the evolution 
of resistance to these drugs, but rather that we do not yet have enough observations of 
evolutionary trajectories to reliably infer significance. This issue is also present in the case of 
pyrazinamide, where a large number of variants in the pncA gene are known to cause resistance, 
and thus the statistical signal is diluted over a large number of variants. A future extension to 
address this limitation is the expansion to study dependence between mutational burden 
measured per gene or regions. Lastly, the links inferred by our method are based only on the 
presence of pairs of mutations, and thus captures associations due to biological epistasis or other 
forces like sequential or simultaneous environmental pressures.   
 We believe the method introduced here will be readily generalizable to other microbial 
species. While M. tuberculosis generally does not participate in horizontal gene transfer and thus 
our method focused on SNPs, our framework could extend to analyzing not just the probability of 
individual mutations but the probability of gene acquisition or other mutation events. Our method 
has broad conceptual applicability to understanding clonal evolution ranging from viruses to 
cancer cells. We show that in M. tuberculosis, dependent mutational events are enriched in 
mutations associated with antibiotic resistance and antigenic function. We discover 20 mutational 
events that appear to potentiate antibiotic resistance, and dependent events arising as a 
consequence of resistance are due to both compensatory variation and amplification of resistance 
phenotypes. Together these results represent a wealth of new knowledge about the evolution of 
an important microbial pathogen. 
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Methods 
 
Dataset of M. tuberculosis strains 

We use a previously curated dataset of 31,428 strains, representing six major M. 
tuberculosis lineages (16). Whole genome sequence data is processed using a previously 
validated pipeline (52, 53) Briefly, reads are aligned to the H37Rv reference genome using BWA-
MEM after trimming and filtering with PRINSEQ and contaminant removal with Kraken (54–56). 
Variant calling is performed with Pilon and duplicate reads were removed using Picard (57, 58). 
All isolates had at least 95% coverage of the reference genome at 10x coverage. We excluded 
regions of H37Rv with mappability <0.90 (59).  
 
Reconstructing mutational history 

We use a dataset that reconstructed the evolutionary history of the 31,428 strains by 
building maximum likelihood phylogenies and performing maximum likelihood ancestral 
reconstruction (60) to infer mutational events over time in the population of strains (16). We 
consider only single nucleotide substitutions (SNS) in the coding and non-coding portions of the 
genome. We annotate each single nucleotide polymorphism as either to or from the ancestral 
state based on an inferred ancestor of extant the M. tuberculosis complex (17).   

To study mutational dependencies, we consider non-ancestral pairs of mutations that 
occurred either sequentially or simultaneously. Simultaneous mutations are pairs inferred to have 
occurred on the same branch of the tree (note that these mutations may not have actually 
occurred simultaneously in a single mutation event, but their ordering cannot be resolved). 
Sequential mutations are pairs are inferred to have occurred on different, sequential branches. 
 
A model to detect evolutionary dependency between sequentially occurring mutation 
pairs 

We model the probability of a given non-ancestral mutation, a, in the presence or absence 
of a second mutation, b, as follows: In the phylogenetic tree with N branches, we define the 
Bernoulli random variable X to indicate whether a mutation occurs on a particular branch. For 
example, Xa,n = 1 if a evolves on the nth branch and Xa,n= 0 if mutation a does not occur on the 
nth branch. We define the Bernoulli random variable Y to indicate whether a mutation has already 
evolved prior to a particular branch. For example, Yb,n = 1 if b evolved prior to the nth branch, and 
Yb, n= 0 if b did not evolve prior to the nth branch. 

We model the probability of a, P(Xa,n), as a Beta distribution, the conjugate prior of the 
Bernoulli distribution. The shape parameters a and b of the Beta distribution are given by the 
count of observed branches where Xa,n=1 and Xa,n=0, respectively,  
 

 

 
 

Branches where mutation a has already occurred (ie, Ya,n = 1) are subtracted because 
there is no possibility of further mutation in our model. Branch length is not considered in this 
calculation.  
 Because we seek to test whether P(Xa|Yb=1) is different from P(Xa|Yb=0), we partition the 
branches into two sets: those with mutation b, {L | Yb,l=1 or Xb,n=1}, and those without mutation b 
{M | Yb,m=0 and Xb,n=0}. To test whether the two distributions are sufficiently different, we test the 
hypothesis that the expected value of Beta(aM, bM) is drawn from Beta(aL, bL) by computing the 

α =

N∑

n=1

Xa,n

β = N − α−

N∑

n=1

Ya,n
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p-value. We include a pseudocount of 1 for all values of alpha and beta. This approach to 
modeling P(Xa) using the observed mutation data captures the higher uncertainty about 
P(Xa|Yb=1) when the number of branches in {L} is small, because the variance of the beta 
distribution is higher for smaller values of a and b.   
 
Detecting evolutionary dependency between simultaneously occurring mutations 
 To determine whether two mutations a and b occur simultaneously more often than 
expected, we again model the probability of their simultaneous occurrence using a beta 
distribution where: 

 
 

 
 
Alpha is the number of branches where both mutations occur, and beta is the number of branches 
where neither mutation occurs and neither mutation has already occurred.  
 
The null expectation for the frequency with which mutations occur on the same branch is based 
on the individual frequency of the mutations:  
 

 
 
We then determine the probability of drawing the null expectation from the estimated distribution 
of co-occurrence probability, which constitutes the p-value. 
 
Assigning mutations to functional categories 

We define a set of antibiotic resistance-associated sites based on World Health 
Organization data for 12 antituberculosis antibiotics (18) (Supplementary Data 4). We also 
include the entire intergenic regions upstream and downstream of each resistance-associated 
gene, using gene location data from Mycobrowser (61), because non-coding regions can have 
substantial effects on resistance phenotypes(37).  

We define a set of antigenic genes based on data from IEDB (20). Following previous 
work on M. tuberculosis antigens (19), a list of all antigens was downloaded on January 7th, 2022 
with the following query criteria: linear peptide, Organism= “mycobacterium tuberculosis complex” 
(ID 77643), positive assays only, T-cell binding, any MHC restriction class, human host, any 
disease type, any reference type. Any gene present in this list is considered antigenic.  

To define gene essentiality, we take the union of all essential genes listed in Table S3 of 
Minato et al, 2019, which summarizes the results of three studies on gene essentiality (62).  

We use two previous studies to define positions that contain lineage-associated variants 
(53, 63).  
 
Defining resistance-potentiating mutations 
 We define any sequential mutation pair where the second mutation is a known resistance-
conferring mutation and the first mutation is not as resistance-potentiating. After observing that 
certain initial mutations occur before many different resistance-conferring mutations, we focus our 

α =
N

∑
n=1

Xa,nXb,n

β = N −
N

∑
n=1

Xa,n −
N

∑
n=1

Xb,n + α −
N

∑
n=1

Ya,n −
N

∑
n=1

Yb,n +
N

∑
n=1

Ya,nYb,n

E(a, b) =
∑N

n=1 Xa,n

N − ∑N
n=1 Ya,n

∑N
n=1 Xb,n

N − ∑N
n=1 Yb,n
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analysis on these “most potentiating” initial mutations by selecting only those where the initial 
mutation is followed by over 30 different resistance-conferring mutations. 

 
GO terms 
 We performed Gene Ontology Enrichment analysis against the Mycobacterium 
tuberculosis genome using the Gene Ontology website (geneontology.org, release date 2021-05-
01) (38–40).  
 
Computing heritability 

Heritability calculations were run using GEMMA v0.98.1 (64). For antibiotics tested in 
media other than 7h10, MIC values were normalized by dividing by the ratio of the critical 
concentration in 7h10 to the critical concentration in the tested media. MIC values were converted 
from a range to a number by taking the midpoint of the range, or the endpoint if only one point 
was provided (eg, “>10” becomes “10”, “2-4” becomes “3”), and then were log-transformed. Alleles 
were encoded as 0 for ancestral state, 1 for non-ancestral, or missing for positions where the 
allele could not be confidently called.  For each set of sites, the sites of interest were used to 
define a GRM, and the proportion of variance (PVE) explained by the GRM was calculated. This 
is equivalent to the heritability.  
 Three sets of sites were tested: (1) All homoplastic sites (sites with at least 5 independent 
mutations), (2) Homoplastic mutations in a known or suspected resistance-conferring site, and (3) 
Homoplastic mutations in a known or suspected resistance-conferring site, or found to be a 
dependent mutation with a mutation in a known resistance-conferring site (including both single 
and pair terms).  
 
Determining physical distance between nusG and rpoB mutations 
  We downloaded the solved structure of the RNA polymerase – NusG complex (PDB ID: 
6z9p) (41) from the RCSB PDB (65). We used MUSCLE from the EBI webserver with default 
parameters (66)to align the sequence of M. tuberculosis NusG and RpoB to the sequence of the 
crystal structure. Then, we used PyMOL v2.4.0 to measure the physical distance between the 
residue corresponding to M. tuberculosis position 734624 (NusG R124), to any residue in the 
RpoB protein (67).  
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