bioRxiv preprint doi: https://doi.org/10.1101/2022.06.24.497504; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

The discovery of genome-wide mutational dependence in naturally evolving populations

Anna G. Green', Roger Vargas Jr'?, Maximillian G. Marin’, Luca Freschi', Jiaqgi Xie®*, Maha R.
Farhat"*

Affiliations

' Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA

2 Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA

3 Department of Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA

“ Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA,
USA


https://doi.org/10.1101/2022.06.24.497504
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.24.497504; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Abstract

Background: Evolutionary pressures on bacterial pathogens can result in phenotypic
change including increased virulence, drug resistance, and transmissibility. Understanding the
evolution of these phenotypes in nature and the multiple genetic changes needed has historically
been difficult due to sparse and contemporaneous sampling. A complete picture of the
evolutionary routes frequently travelled by pathogens would allow us to better understand
bacterial biology and potentially forecast pathogen population shifts. Methods: In this work, we
develop a phylogeny-based method to assess evolutionary dependency between mutations. We
apply our method to a dataset of 31,428 Mycobacterium tuberculosis complex (MTBC) genomes,
a globally prevalent bacterial pathogen with increasing levels of antibiotic resistance. Results: We
find evolutionary dependency within simultaneously- and sequentially-acquired variation, and
identify that genes with dependent sites are enriched in antibiotic resistance and antigenic
function. We discover 20 mutations that potentiate the development of antibiotic resistance and
1,003 dependencies that evolve as a consequence antibiotic resistance. Varying by antibiotic,
between 9% and 80% of resistant strains harbor a dependent mutation acquired after a
resistance-conferring variant. We demonstrate that mutational dependence can not only improve
prediction of phenotype (e.g. antibiotic resistance), but can also detect sequential environmental
pressures on the pathogen (e.g. the pressures imposed by sequential antibiotic exposure during
the course of standard multi-antibiotic treatment). Taken together, our results demonstrate the
feasibility and utility of detecting dependent events in the evolution of natural populations.

Data and code available at: https://github.com/farhat-lab/DependentMutations
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Introduction

Genomic evolution of pathogenic bacteria is rapid, pervasive, and poses a serious threat
to global health. The evolutionary pressure imposed by human infection creates pathogens that
are more transmissible, more virulent, or more difficult to treat due to antibiotic resistance. While
often attributed to single mutational events, antibiotic resistance is more complex, and high-level
resistance can manifest through multiple mutations in a sequential and dependent manner.
Dependency, here defined as when an initial mutation changes the likelihood of a specific
subsequent mutation, may arise due to the fitness cost of initial resistance acquisition, or the
action of antibiotics on multiple cellular processes (1, 2). A complete understanding of the multiple,
dependent mutations associated with any pathogen phenotype, including resistance, would allow
us to better understand pathogen biology and potentially forecast evolution.

Traditionally the study of mutational dependence in microbial populations has relied on in
vitro evolution experiments where populations are longitudinally sampled to determine mutational
trajectories (3—6). This heavily restricts the context and breadth of evolutionary landscapes we
can study. Further, resistance acquisition in vitro may not necessarily reflect resistance acquisition
in vivo within a host environment. New approaches are needed to understand evolution of natural
populations that will necessarily be sampled contemporaneously and be the most relevant to real-
world scenarios and human health.

Mycobacterium tuberculosis complex (MTBC), the causative agent of tuberculosis, which
displays increasing antibiotic resistance globally, is an important case study for identifying
mutational dependency (7, 8). While prior reports have characterized individual cases of
dependent evolutionary trajectories in MTBC antibiotic resistance (4, 9, 10), a genome-wide
method to detect dependent mutations generalizable to any phenotype is needed. In other
bacterial species, recent work has used Potts models and regression with interaction terms to
detect dependent evolution in natural populations (77-13). However, the strong linkage effects
and low diversity of many pathogens, including M. tuberculosis, require an alternative approach
(Supplement). A well-suited solution to clonally evolving populations is to focus on mutations that
evolve in a parallel manner across the phylogeny. This approach has been successful in detecting
individual genetic effects on phenotype because it readily controls for population structure, biased
sampling, and linkage across the clonal genome (74, 15). Such an approach has not to date been
adapted to study dependencies between pairs of mutations.

Here, we study pairs of dependent, parallelly evolving (homoplastic) mutations arising during
the evolution of a natural population. We determine which mutations are more likely to occur in
certain genetic backgrounds, controlling for increased uncertainty when mutations are rare. We
applied our method to a dataset of 31,435 MTBC genomes spanning six major global lineages,
finding that antibiotic resistance and antigen evolution are enriched among dependent mutation
pairs. We observe 20 mutations that appear to potentiate the evolution of resistance to multiple
different antibiotics. We quantify the number of strains in our dataset with evidence of dependent
evolution occurring as a consequence of initial resistance evolution to 12 antibiotics — with lower
bounds ranging from 80% for streptomycin to 9% for fluoroquinolones. We chart common
manifestations of these consequential mutations after antibiotic resistance evolution, finding
compensatory variation mediated through both physical interactions and metabolic pathways,
multistep evolution of high-level resistance phenotypes (Figure 1). Overall, our results
demonstrate the promise of detecting dependent mutational events in naturally evolving pathogen
populations and explore mechanistic explanations for dependencies.
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Figure 1: Patterns leading to detected evolutionary dependency. A simplistic framework
classifying observed types of evolutionary dependencies in antibiotic resistance development.
Dependencies can potentiate resistance development (A). Potentiating mutations may amplify
resistance, i.e. directly influence the inhibitory concentration of the drug, or they may instead have
a general effect on growth, virulence, or metabolism that increase the probability of acquisition of
directly causal drug resistance mutations. After initial resistance evolution, consequential
mutations (i.e, arising as a consequence of resistance) are observed and manifest through
multiple mechanisms. Consequential mutations may restore fithess lost with the acquisition of
resistance variants. The latter can be mediated through direct physical interactions (B) or
pathway-mediated changes in related genes (C). Lastly, consequential mutations can causally
amplify resistance, either through individual effects or epistatic effects such that the combination
of the two variant effects is different than the sum of the individual effects (D).
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Results

Evolutionary events in M. tuberculosis.

We estimated the evolutionary history of 31,435 diverse MTBC strains using maximum
likelihood phylogeny and ancestral sequence reconstruction, with 2,815, 8,090, 3,398, 16,931,
98, and 96 strains belonging to Lineages 1-6, respectively as recently described (16). Restricting
our analysis here to single nucleotide polymorphisms, we observe 4,776 sites in the genome to
have evolved away from the pan-susceptible ancestral state (17) at least five times independently
(Supplementary Data 1). Of these 4,776 sites, 19% are intergenic, and the remaining mutations
are found in a total of 1,479 different genes. The mutations are well-distributed phylogenetically,
arising in a median of three major lineages. Most mutations are relatively recent, with each
mutation inherited on a median of 2.4 descendant branches.

We then categorize the homoplastic mutations in terms of their putative function: labelling
mutations as antibiotic resistance associated based on a catalog of known and potential variants
(78) and antigenic based on their presence in proteins with known epitopes (79, 20) (Methods).
Antibiotic-associated mutations are overrepresented in our dataset of homoplastic mutations, with
5% and 17% of mutations annotated as known or possibly resistance-conferring, respectively
(Chi-squared p-value < 103 for both) (Supplementary Data 2). Homoplastic mutations in
epitopes and epitope-containing proteins comprise 3% and 17% of the dataset, respectively,
again representing a significant enrichment (Chi-square p-value < 10 and < 10°°). We find no
significant enrichment for homoplastic mutations in essential genes (Chi-squared p-value > 0.1).
The overrepresentation of antibiotic resistance and antigen associated homoplastic mutations
suggests positive selection for these beneficial traits.

Detecting dependencies between mutations

We develop a method to detect dependency between pairs of homoplastic mutations. We
first partition the dataset into two non-mutually exclusive groups: (1) mutation pairs that occur
simultaneously on the same branch at least once (N=139,048), and (2) mutation pairs that occur
sequentially on subsequent branches at least once (N=1,274,446).

To test for dependencies between sequentially occurring mutations a and b, we determine
if the estimated probability of mutation a is higher for a genetic background containing mutation b
compared with the root ancestral background (Figure 2, Methods). We detect significant
evolutionary dependency for 2.0% (N=25,947) of all sequentially occurring homoplastic mutation
pairs (Benjamini-Hochberg FDR < 0.01) (Supplementary Data 3).

To test for dependencies between simultaneously occurring mutations a and b, we
determine if the estimated probability of mutations a and b occurring simultaneously is higher than
the estimated frequency of their co-occurrence if the two mutations were independent events
(Figure 2, Methods). We detect significant evolutionary dependency for 46% (N=63,271) of all
simultaneously occurring homoplastic mutation pairs (Benjamini-Hochberg FDR < 0.01)
(Supplementary Data 3). We note the high fraction of significant pairs because simultaneous
occurrence of any two mutations on a branch is unlikely.
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Figure 2: Computational workflow for finding dependencies between mutations. Workflow
for finding significant dependencies between pairs of mutations. (A) We found 1,364,150 million
pairs of single nucleotide polymorphisms (SNPs) across 4,776 sites that co-occur either
sequential or simultaneously at least once. We began with a dataset of 31,428 isolate genomes
and performed phylogeny and ancestral sequence reconstruction. We called each SNP as
ancestral or derived relative to the pan-susceptible M. tuberculosis ancestral sequence (H37Rv),
then enumerated all SNPs that arise at least 5 times independently, dividing them into pairs that
appear at least once sequentially or simultaneously. (B) For sequentially occurring pairs, we
determine whether the probability of mutation a is affected by the presence of mutation b by
inferring the distribution of the probability of mutation a in the context of b using a Beta distribution,
and then comparing it to the expected probability of mutation a not in the context of b. (C) For
simultaneously occurring mutations, we determine whether the probability of observing mutations
a and b simultaneously is higher than expected based on the product of the individual probabilities
of mutation a and b — jie, assuming the two events are independent.
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Sequentially occurring dependencies are enriched in antibiotic resistance function

We next annotate whether the pairs of sequentially occurring mutations are enriched in
antibiotic resistance-associated or antigenic proteins. We greedily assign each pair of mutations
into the following categories in the respective order: both mutations are antibiotic-associated, the
first or second mutation acquired is antibiotic-associated, both mutations are antigenic, one
mutation is antigenic, or other (none of the categories apply) (Methods).

The pairs of sequentially occurring dependent mutations are enriched in antibiotic
resistance (actual: 13.4% vs. expected: 10.2%) and antigenic categories (actual: 43.7%. vs.
expected: 29.1%) compared to our expectation from the frequencies of individual SNPs (Chi-
squared p-value < 10°% Supplementary Data 2). This indicates that not only are individual
antibiotic resistance and antigen-associated mutations individually under positive selection but
that there are relationships between pairs of mutations that render some of them more likely to
co-occur in one another’s presence. Among the top 100 hits in terms of p-value, 69% include a
known resistance variant, and all of these are pairs where the known resistance-conferring
mutation occurs second (Figure 3A).

Simultaneously occurring dependencies are enriched in antigenic function

We find that simultaneously occurring dependent pairs of homoplastic mutations are
enriched in functional categories compared to our expectation from the frequencies of individual
SNPs (Chi-squared p-value < 103°%, Supplementary Data 2). We then identify that
simultaneously occurring dependent pairs are more likely to be in close genomic proximity than
sequentially occurring dependent pairs (Figure 3B and 3D). Of the top 100 pairs of simultaneous
dependencies, 92% are within 100 base pairs on the genome. The skewed distribution of genomic
proximity suggests that these mutations are acquired simultaneously through a different
mechanism than single nucleotide substitution, for example, gene conversion or recombination
(21, 22). Hence, we examine simultaneously occurring proximal mutations (<=100bp) separately
from simultaneously occurring distant mutations (>100bp). Over 50% of the top 100 significant
proximal pairs both occur in an antigenic protein (Figure 3C). Among the top 100 significant
distant pairs, both antigenic and antibiotic resistance-conferring pairs of mutations are
overrepresented (Chi-squared p-value < 10%°).
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Figure 3: Sequential and simultaneous mutation pairs are enriched in functional
categories. We determine the identity of the top 100 pairs of significant hits for (A) sequential
mutation pairs and (C) simultaneous mutation pairs. We categorize mutation pairs as those
where a known resistance mutation occurs, known resistance mutation occurs second, both
mutations are known resistance mutations, one mutation is in a known antigen protein, both
mutations are in a known antigen protein, or other category (not any of the above). For
simultaneous mutations, we compute the categories for the top 100 hits found within 100 base
pairs on the genome, and for the top 100 hits found outside 100 base pairs. The genomic
distance in megabases of all pairs of significant dependent mutations for (B) sequential
mutations and (D) simultaneous mutations are shown.
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Potentiating mutations that predispose the evolution of antibiotic resistance

We examine whether particular SNPs predispose the evolution of antibiotic resistance,
here called potentiator mutations, as these are of high interest for surveillance and genomic
prediction. Among all 25,947 pairs of mutations with significant sequentially acquired dependency,
the resistance-conferring mutation is second in 2,162. Over half of these, 1,192 of 2,162, are
explained by just 20 initial mutations which we here define as potentiators because they lead to
over 30 different resistance-associated mutations each (Table 1), indicating that they do not
predispose the strains to the evolution of resistance to a particular antibiotic, but rather predispose
to resistance phenotypes in general.

We discover several previously implicated SNPs amongst our antibiotic potentiators. This
includes position C1341044T (EsxL H13H) and position G2626011A (EsxO 154l1), both of which
were previously found to increase the risk of resistance evolution (23), and four other SNPs in the
esxO gene body or upstream region. We also identify mutations in proteins known to increase
intracellular survival of M. tuberculosis, position G1340208A (PPE18 R287Q) and position
C2122395T (LIdD2 V253M), and a mutation previously associated with increased transmission in
the Beijing lineage, position T4060588C (EsxW T2A), to potentiate resistance (24, 25) (26).
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Resistance-potentiating mutations are associated with host-pathogen

interactions. Genomic position, identifier, and name for each of 20 mutations found to occur
before at least 30 different resistance-conferring mutations. We include a possible phenotypic
explanation for the role of each of these potentiating mutations.

Genomic
position
75233

340132
454333
1287112
1340208
1341040
1341044

1722228
2122395
2338994
2626011

2626018
2626108
2626189
2626191
2867575
3446699
3894732
4060588

Gene ID Gene
Name
intergenic -
Rv0280 PPE3
Rv0376¢ Rv0376¢
intergenic -
Rv1196 PPE18
Rv1198 esxL
Rv1198 esxL
Rv1527c pks5
Rv1872c [ldD2
Rv2082 Rv2082
Rv2346¢ esxO
Rv2346c¢ esxO
Rv2346¢ esxO
intergenic -
intergenic -
Rv2544 IppB
Rv3081 Rv3081
Rv3478 PPE60O
Rv3620c esxW

Possible phenotypic explanation

upstream of possible transcriptional regulator
Rv0067c, upstream of possible oxidoreductase Rv0068
unknown

unknown

upstream of narG, downstream of mutT2
Intracellular survival(24)

activates host tnf-alpha signaling(27)

inferred to increase risk of resistance evolution(23)
activates host tnf-alpha signaling(27)

mediates surface remodeling(28)

promotes survival inside macrophages (25)
unknown

inferred to increase risk of resistance evolution(23)
promotes survival inside macrophages(29)
promotes survival inside macrophages(29)
promotes survival inside macrophages(29)
upstream of esxO

upstream of esxO

unknown

unknown

host immune response(30)

Influencing increased transmission in Beijing
lineage(26)
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Consequential mutations that compensate for or amplify antibiotic resistance

We next focus on dependent mutations occurring as a consequence of the initial evolution
of resistance, here called consequential mutations, since these may indicate potential new
mechanisms of resistance evolution or compensation for loss of fitness from initial resistance
mutations. We detect 1,003 significant dependent mutations after initial resistance mutations, with
hits for all 12 antibiotics (Supplementary Data 5). We quantified the prevalence of evolutionarily
dependent mutations in resistant isolates in our dataset (Methods). We found that a substantial
percentage of strains with initial resistance-causing mutations have sequentially acquired
dependencies, ranging from 80% for streptomycin to 9% for fluoroquinolones, indicating a
pervasive role in antibiotic resistance evolution. (Figure 4).

As a positive control, the most frequent consequential mutation we detect is the known
strong dependency between rifampicin resistance mutations in RNA polymerase 3 subunit (RpoB)
and substitutions in the RNA polymerase B’ subunit (RpoC), which compensate for the loss of
fitness incurred by RpoB mutations through a direct physical interaction (9). We also detect
dependency between the catalase-peroxidase KatG S315T and position G2726142A, in the ahpC
gene promoter. Increased levels of the AhpC protein are recognized to compensate for the loss
of KatG peroxidase activity (31, 32), demonstrating a possible case of compensatory substitutions
mediated by metabolic pathways. The detection of these known relationships reinforces the utility
of phylogenetic methods in reconstructing evolutionary dependency.

Our method also detects new relationships. For the aminoglycoside antibiotic kanamycin,
we observe consequential mutations likely resulting in amplification of antibiotic resistance
between the 16S rRNA gene rrs, the target of kanamycin; sites in the promoter region of the N-
acetyltransferase Eis, known to degrade kanamycin (33, 34); sites upstream of the transcriptional
regulator whiB7, known to influence eis transcription (35); and sites in the transcriptional regulator
whiB6 (Figure 4). Our findings and previous association studies suggest a role for WhiB6 in
kanamycin resistance (36, 37). The observed evolutionary dependency suggests that multiple
mutations are required to amplify resistance to a high level — mutations in rrs disrupt kanamycin
binding, while mutations in whiB6, whiB7, and eis likely increase levels of the Eis protein, leading
to increased kanamycin degradation.

Although a gene ontology (GO) analysis did not identify significant enrichment of any one
category for non-synonymous mutations following antibiotic resistance (Methods)
(Supplementary Data 6) (38-40), one of the top categories is “regulation of DNA-templated
transcription”, of major interest since the first-line antibiotic rifampicin targets the RNA
polymerase. We find that the RNA polymerase termination factor nusG is repeatedly mutated
after initial evolution of rifampicin resistance. NusG is notable because it binds directly to the RNA
polymerase subunit RpoB (47), the target of the drug rifampicin (42). The mutated position in
NusG, R124H/L, is found at the NusG-RpoB interface (Methods), suggesting that it is involved in
stabilizing the action of the mutated polymerase, similar to the compensatory relationship between
RpoC and RpoB (9) (Figure 4).

A frequent mutation to follow antibiotic resistance in our dataset is HadA C61S, which
occurs 40 independent times sequentially or simultaneously with isoniazid resistance evolution
and is found in all four major lineages. This mutation is known to confer resistance to the now-
obsolete antibiotics thioacetazone and isoxyl (43, 44), and to candidate new antibiotics (44, 45).
While the observed HadA mutations are potentially attributable to historical co-administration of
thioacetazone and isoniazid (46), and hence sequential selective pressure, they may also be
consequential mutations of isoniazid resistance -- HadA is upstream of the isoniazid drug target
InhA in the mycolic acid biosynthesis pathway (47) and may play a role in amplifying isoniazid
resistance levels or compensating for InhA mutations.


https://doi.org/10.1101/2022.06.24.497504
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.24.497504; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Figure 4: Dependent mutations within resistance-associated genes. We measured the
identity and prevalence of significant dependent mutations occurring after initial resistance
evolution. (A) Mutations that occur after mutations in known antibiotic resistance genes, visualized
on the genome using Circos, with colors corresponding to the antibiotics in panel B. Antibiotics
with shared genetic basis of resistance are shown in the same color. Only mutations that happen
sequentially at least five times are shown. (B) Fraction of resistant strains that display one or more
pairs of sequential dependent mutations. (C) Example of pairs of dependent mutations within the
kanamycin resistance pathway, shown on a per-gene basis. Kanamycin’s inhibition of the
ribosome is blunted by ribosomal RNA mutations, while cellular kanamycin levels are reduced by
increased levels of Eis, putatively caused by both mutations in the eis promoter region and
mutations in the regulatory proteins WhiB7 and WhiB6. Dependencies between these mutations
demonstrate multi-step resistance evolution.
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Sequential environmental pressures lead to evolutionary dependency in antibiotic
resistance

In natural populations, several environmental pressures may act contemporaneously on
a population. For pathogenic bacteria, this can take the form of simultaneous or sequential
administration of antibiotics to achieve cure. We find strong dependencies between mutations
that confer resistance to different antibiotics (Figure 5). Notably, this recapitulates the ordering of
antibiotic administration in therapy: second-line drug resistance-conferring mutations were
consistently acquired on a background of resistance to first-line agents. The observed
dependencies also confirm postulated relative fitness costs of resistance mutations for the four
first-line drugs (48, 49). These findings demonstrate that evolutionary dependency can be used
to study not only molecular dependencies that amplify or stabilize a particular phenotype but also
environmental forces when the genetic underpinnings of adaptation are known.

Figure 5: Dependencies between antibiotics. The detected significant dependent mutations
between resistance-conferring mutations follow a particular order that mirrors the usage of
different antibiotics. For each antibiotic, we took the top dependent pair between known
resistance-conferring genes and other genes, and between known resistance genes for different
antibiotics. We display pairs and links where mutation a occurs sequentially or simultaneously
with mutation b at least 10 times. The prefix “r_" before a gene name indicates that the mutations
are found in the upstream region. The drug para-amino salicyclic acid (PAS) is not included in the
WHO catalog, but thyX is a candidate resistance gene for this drug(50).
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Measuring the effect of dependent mutations on resistance phenotypes

The volume of data available on antibiotic minimum inhibitory concentrations (MIC) limited
the statistical power of linear regression for validating direct effects of dependent mutations on
antibiotic resistance (Supplement). We observe that 95% of the 20 potentiator mutations have a
positive, epistatic influence on MIC for at least one drug using this approach, but only a median
of 29% of known resistance-conferring mutations were determined to have a statistically
significant effect (Supplement). We instead examined heritability of MIC and the proportion of
variance explained by the dependent mutations using a series of antibiotic specific linear mixed
models (with up to n=1,825 observations). MIC is a trait with high heritability — previously
estimated at 64%-88% per drug based on all sites in the genome (37). Compared to heritability
estimated from all homoplastic sites, heritability explained by mutations in known or suspected
resistance conferring-genes has a median deficit of 29% per antibiotic (Table 2). Incorporating
sites found to have mutation dependencies with antibiotic resistance genes resulted in a median
increase of 15% in heritability, accounting for much of the deficit in heritability using 75% fewer
sites, despite these dependencies having been derived without phenotypic data. This
demonstrates that our proposed mutational dependency analysis is evolutionarily meaningful and
characterizes the genetic architecture of antibiotic resistance phenotypes, even if the current
analyses lack the power to detect individual sites and pairs as significantly influencing phenotype
in a regression analysis.

Table 2: Incorporating dependent mutations explains heritability of antibiotic resistance.
We compute the heritability of antibiotic MIC using (1) all homoplastic sites in our dataset, (2)
homoplastic mutations in known and suspected resistance conferring sites, and (3) homoplastic
mutations in known and suspected resistance conferring sites, as well as mutations found to be
dependent with known resistance conferring mutations (single sites and interaction terms). Note
that “N sites” refers to the number of sites included in the analysis that were actually found to
have a polymorphism in the isolates with MIC available.

Homoplastic sites Resistance genes Resistance genes and
dependent pairs

Drug Heritability N sites Heritability N sites Heritability N sites
Amikacin 0.70 2013 0.50 102 0.54 778
Capreomycin 0.54 1665 0.28 93 0.41 620
Ethambutol 0.59 2389 0.27 76 0.45 885
Ethionamide 0.55 1920 0.12 61 0.47 386
Isoniazid 0.71 2393 0.22 69 0.68 620
Kanamycin 0.70 1921 0.51 68 0.62 744
Moxifloxacin 0.69 1761 0.32 28 0.60 50
Pyrazinamide 0.62 1727 0.65 157 0.62 371
Rifampicin 0.66 2437 0.31 152 0.59 402
Streptomycin 0.59 2397 0.33 211 0.41 599

Mean 0.64 1967 0.32 84.5 0.56 609.5


https://doi.org/10.1101/2022.06.24.497504
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.24.497504; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Discussion

We propose a new method to uncover evolutionary dependencies between mutations in
naturally evolving populations and apply it to 31,435 isolates of Mycobacterium tuberculosis
complex. We find both sequentially and simultaneously occurring pairs of dependent mutations,
which are enriched in antibiotic resistance and antigenic function. We detect 20 potentiating
mutations that predispose the evolution of resistance mutations to several antibiotics, and also
have a measurable statistical interaction on antibiotic MICs in regression models. We also explore
consequential mutations that are acquired in a dependent manner subsequent to resistance
acquisition, providing possible examples of novel pathway-mediated selection. We lastly
demonstrate the power of this approach in capturing environmental dependencies when the
genetic mechanisms are well understood.

We observe that simultaneously occurring mutations are enriched in pairs of mutations
within 100 base pairs on the genome occurring in antigenic genes, suggesting that this is due to
non-SNP mutational processes such as recombination, which could simultaneously introduce
multiple variants in close proximity. Gene conversion has been previously postulated to drive esx
gene evolution, which are genes enriched in antigenic function (27). Innovatively, our results
suggest that other genes and especially antigenic genes may evolve through gene conversion,
but this requires further validation potentially with long-read sequencing data. After excluding the
proximal dependencies, simultaneous distant dependencies are also enriched in antigenic
function and in antibiotic resistance. The observation of simultaneous acquisition of antibiotic
resistance pairs of variants may relate to the phylogenies’ inability to temporally resolve the two
events due to sparse sampling or due to rapid acquisition of the phenotypes in time.

We examine dependent mutations that arise before antibiotic resistance, here called
potentiating mutations, or after antibiotic resistance, here called consequential mutations.
Consequential mutations appear to fall into at least two categories, those that compensate for
loss of fitness due to resistance acquisition, and those that amplify the phenotype of antibiotic
resistance itself. For example, nusG mutations appear to compensate for destabilizing rpoB
mutants based on our structure analysis, and hadA knockdowns were found to significantly
sensitize strains to high levels of isoniazid in a recent CRISPRI study (though the magnitude of
depletion was below study threshold) (57). In contrast, the mechanism by which our 20 observed
potentiating mutations predispose the evolution of antibiotic resistance is still in question. One
possibility is that proteins on the cell surface, including antigenic proteins, play a direct role in
antibiotic resistance, for example through altering cell permeability. This possibility is supported
by the observation that 95% of observed potentiating mutations have a detectable epistatic
influence on MIC. Another possibility is that strains with potentiating mutations may be more likely
to transmit between hosts or progress from latent to active tuberculosis disease, leading to higher
exposure to antibiotic treatment. Strains with potentiating mutations may also reach higher
effective population sizes within host, leading to higher probability of resistance evolution. Finally,
strains with potentiating mutations may have higher overall fitness, preemptively compensating
for loss of fitness due to resistance evolution.

We investigated whether the detected dependencies were associated with higher
antibiotic resistance levels as measured by strain minimum inhibitory concentrations (MICs).
Dependent mutations when added to known resistance-conferring variants capture the majority
of heritability, and several mutations including 95% of the 20 potentiating mutations have
measurable associations on resistance. As more MIC data becomes available, we expect that the
power of these analyses to capture the individual effects of dependent mutations will improve.

Our method is not without limitations. It relies on repeated observations of evolutionary
events to infer significant non-independence of mutations. Therefore, its power is dependent on
the number of times a mutation has arisen, and thus is biased against the effects of very recent
selection, e.g. responses to newer antibiotics, such as linezolid, clofazimine, and even
fluoroquinolones. The smaller numbers of dependent mutations observed for these drugs should
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not be taken as an assertion that there are fewer dependent mutations as a result of the evolution
of resistance to these drugs, but rather that we do not yet have enough observations of
evolutionary trajectories to reliably infer significance. This issue is also present in the case of
pyrazinamide, where a large number of variants in the pncA gene are known to cause resistance,
and thus the statistical signal is diluted over a large number of variants. A future extension to
address this limitation is the expansion to study dependence between mutational burden
measured per gene or regions. Lastly, the links inferred by our method are based only on the
presence of pairs of mutations, and thus captures associations due to biological epistasis or other
forces like sequential or simultaneous environmental pressures.

We believe the method introduced here will be readily generalizable to other microbial
species. While M. tuberculosis generally does not participate in horizontal gene transfer and thus
our method focused on SNPs, our framework could extend to analyzing not just the probability of
individual mutations but the probability of gene acquisition or other mutation events. Our method
has broad conceptual applicability to understanding clonal evolution ranging from viruses to
cancer cells. We show that in M. tuberculosis, dependent mutational events are enriched in
mutations associated with antibiotic resistance and antigenic function. We discover 20 mutational
events that appear to potentiate antibiotic resistance, and dependent events arising as a
consequence of resistance are due to both compensatory variation and amplification of resistance
phenotypes. Together these results represent a wealth of new knowledge about the evolution of
an important microbial pathogen.
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Methods

Dataset of M. tuberculosis strains

We use a previously curated dataset of 31,428 strains, representing six major M.
tuberculosis lineages (76). Whole genome sequence data is processed using a previously
validated pipeline (52, 53) Briefly, reads are aligned to the H37Rv reference genome using BWA-
MEM after trimming and filtering with PRINSEQ and contaminant removal with Kraken (54-56).
Variant calling is performed with Pilon and duplicate reads were removed using Picard (57, 58).
All isolates had at least 95% coverage of the reference genome at 10x coverage. We excluded
regions of H37Rv with mappability <0.90 (59).

Reconstructing mutational history

We use a dataset that reconstructed the evolutionary history of the 31,428 strains by
building maximum likelihood phylogenies and performing maximum likelihood ancestral
reconstruction (60) to infer mutational events over time in the population of strains (76). We
consider only single nucleotide substitutions (SNS) in the coding and non-coding portions of the
genome. We annotate each single nucleotide polymorphism as either to or from the ancestral
state based on an inferred ancestor of extant the M. tuberculosis complex (17).

To study mutational dependencies, we consider non-ancestral pairs of mutations that
occurred either sequentially or simultaneously. Simultaneous mutations are pairs inferred to have
occurred on the same branch of the tree (note that these mutations may not have actually
occurred simultaneously in a single mutation event, but their ordering cannot be resolved).
Sequential mutations are pairs are inferred to have occurred on different, sequential branches.

A model to detect evolutionary dependency between sequentially occurring mutation
pairs

We model the probability of a given non-ancestral mutation, a, in the presence or absence
of a second mutation, b, as follows: In the phylogenetic tree with N branches, we define the
Bernoulli random variable X to indicate whether a mutation occurs on a particular branch. For
example, X,, = 1 if a evolves on the nth branch and X, ,= 0 if mutation a does not occur on the
nth branch. We define the Bernoulli random variable Y to indicate whether a mutation has already
evolved prior to a particular branch. For example, Y, = 1 if b evolved prior to the nth branch, and
Ys, n= 0 if b did not evolve prior to the nth branch.

We model the probability of a, P(Xan), as a Beta distribution, the conjugate prior of the
Bernoulli distribution. The shape parameters o and B of the Beta distribution are given by the
count of observed branches where X, =1 and X,,,=0, respectively,

N
B=N-a-> Y.,
n=1

Branches where mutation a has already occurred (ie, Yan = 1) are subtracted because
there is no possibility of further mutation in our model. Branch length is not considered in this
calculation.

Because we seek to test whether P(Xa4|Y,=1) is different from P(Xa|Y»=0), we partition the
branches into two sets: those with mutation b, {L | Yb,=1 or Xp,,=1}, and those without mutation b
{M | Ybm=0 and X, ,=0}. To test whether the two distributions are sufficiently different, we test the
hypothesis that the expected value of Beta(awm, pum) is drawn from Beta(aw, BL) by computing the
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p-value. We include a pseudocount of 1 for all values of alpha and beta. This approach to
modeling P(Xa) using the observed mutation data captures the higher uncertainty about
P(Xa|Yb=1) when the number of branches in {L} is small, because the variance of the beta
distribution is higher for smaller values of o and p.

Detecting evolutionary dependency between simultaneously occurring mutations
To determine whether two mutations a and b occur simultaneously more often than

expected, we again model the probability of their simultaneous occurrence using a beta
distribution where:

N
a = Z Xa,nXb,n

n=1
N N N N N
ﬂ =N- 2 Xa.n - 2 Xh,n +a— Z Ya,n - 2 Yb,n + Z Ya,an,n
n=1 n=1 n=1 n=1 n=1

Alpha is the number of branches where both mutations occur, and beta is the number of branches
where neither mutation occurs and neither mutation has already occurred.

The null expectation for the frequency with which mutations occur on the same branch is based
on the individual frequency of the mutations:

N N
zn:l Xa,n Zn:l Xb,n
N N
N — Zn:l Ya,n N - Zn:l Yb,n

We then determine the probability of drawing the null expectation from the estimated distribution
of co-occurrence probability, which constitutes the p-value.

E(a,b) =

Assigning mutations to functional categories

We define a set of antibiotic resistance-associated sites based on World Health
Organization data for 12 antituberculosis antibiotics (78) (Supplementary Data 4). We also
include the entire intergenic regions upstream and downstream of each resistance-associated
gene, using gene location data from Mycobrowser (67), because non-coding regions can have
substantial effects on resistance phenotypes(37).

We define a set of antigenic genes based on data from IEDB (20). Following previous
work on M. tuberculosis antigens (19), a list of all antigens was downloaded on January 7™, 2022
with the following query criteria: linear peptide, Organism= “mycobacterium tuberculosis complex”
(ID 77643), positive assays only, T-cell binding, any MHC restriction class, human host, any
disease type, any reference type. Any gene present in this list is considered antigenic.

To define gene essentiality, we take the union of all essential genes listed in Table S3 of
Minato et al, 2019, which summarizes the results of three studies on gene essentiality (62).

We use two previous studies to define positions that contain lineage-associated variants
(53, 63).

Defining resistance-potentiating mutations

We define any sequential mutation pair where the second mutation is a known resistance-
conferring mutation and the first mutation is not as resistance-potentiating. After observing that
certain initial mutations occur before many different resistance-conferring mutations, we focus our
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analysis on these “most potentiating” initial mutations by selecting only those where the initial
mutation is followed by over 30 different resistance-conferring mutations.

GO terms
We performed Gene Ontology Enrichment analysis against the Mycobacterium

tuberculosis genome using the Gene Ontology website (geneontology.org, release date 2021-05-
01) (38-40).

Computing heritability

Heritability calculations were run using GEMMA v0.98.1 (64). For antibiotics tested in
media other than 7h10, MIC values were normalized by dividing by the ratio of the critical
concentration in 7h10 to the critical concentration in the tested media. MIC values were converted
from a range to a number by taking the midpoint of the range, or the endpoint if only one point
was provided (eg, “>10” becomes “10”, “2-4” becomes “3”), and then were log-transformed. Alleles
were encoded as O for ancestral state, 1 for non-ancestral, or missing for positions where the
allele could not be confidently called. For each set of sites, the sites of interest were used to
define a GRM, and the proportion of variance (PVE) explained by the GRM was calculated. This
is equivalent to the heritability.

Three sets of sites were tested: (1) All homoplastic sites (sites with at least 5 independent
mutations), (2) Homoplastic mutations in a known or suspected resistance-conferring site, and (3)
Homoplastic mutations in a known or suspected resistance-conferring site, or found to be a
dependent mutation with a mutation in a known resistance-conferring site (including both single
and pair terms).

Determining physical distance between nusG and rpoB mutations

We downloaded the solved structure of the RNA polymerase — NusG complex (PDB ID:
6z9p) (41) from the RCSB PDB (65). We used MUSCLE from the EBI webserver with default
parameters (66)to align the sequence of M. tuberculosis NusG and RpoB to the sequence of the
crystal structure. Then, we used PyMOL v2.4.0 to measure the physical distance between the
residue corresponding to M. tuberculosis position 734624 (NusG R124), to any residue in the
RpoB protein (67).
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