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ABSTRACT 22 

Fungi have evolved over millions of years and their species diversity is predicted to be the 23 

second largest on the earth. Fungi have cross-kingdom interactions with many organisms which 24 

have mutually shaped their evolutionary trajectories. Zygomycete fungi hold a pivotal position 25 

in the fungal tree of life and provide important perspectives on the early evolution of fungi 26 

from aquatic to terrestrial environments. Phylogenomic analyses have found that zygomycete 27 

fungi diversified into two separate clades, the Mucoromycota which are frequently associated 28 

with plants and Zoopagomycota that are commonly animal-associated fungi. Genetic elements 29 

that contributed to the fitness and divergence of these lineages may have been shaped by the 30 

varied interactions these fungi have had with plants, animals, bacteria and other microbes. To 31 

investigate this, we performed comparative genomic analyses of the two clades in the context 32 

of Kingdom Fungi, benefiting from our generation of a new collection of zygomycete genomes. 33 

We identified lineage-specific genomic content which may contribute to the disparate biology 34 

observed in these zygomycetes. Our findings include the discovery of undescribed diversity in 35 

CotH, a Mucormycosis pathogenicity factor, which was found in a broad set of zygomycetes. 36 

Reconciliation analysis identified multiple duplication events and an expansion of CotH copies 37 

throughout Mucoromycotina, Mortierellomycotina, Neocallimastigomycota, and Basidiobolus 38 

lineages. A kingdom-level phylogenomic analysis also identified new evolutionary relationships 39 

within the sub-phyla of Mucoromycota and Zoopagomycota.  40 

 41 
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INTRODUCTION 45 

Fungi play diverse ecological roles and interact with various organisms in both terrestrial 46 

and aquatic environments (James, Kauff, et al. 2006; Stajich et al. 2009; Spatafora et al. 2017; 47 

Fisher et al. 2020). Since their divergence from a common ancestor with animals over 1 billion 48 

years ago, fungi have evolved complex relationships with other organisms, including animals, 49 

bacteria, plants, protists, and other fungi (Currie et al. 2003; Frey-Klett et al. 2011; Parfrey et al. 50 

2011; Gruninger et al. 2014; Uehling et al. 2017; Wang et al. 2018; Chambouvet et al. 2019; 51 

Malar et al. 2021). As a distinct eukaryotic kingdom, Fungi are characterized by chitinous cell 52 

walls and osmotrophic feeding style, although neither of these characters is diagnostic for the 53 

kingdom (Richards et al. 2017; James et al. 2020). The versatile enzymes secreted by fungi 54 

facilitate their success in utilization of diverse polysaccharides and are key members of 55 

ecosystems supporting nutrient cycling processes (Hori et al. 2013; Chang et al. 2015; Solomon 56 

et al. 2016; Richards and Talbot 2018; Chang et al. 2022). Zygomycete fungi are a historically 57 

enigmatic group as their diversity and phylogenetic placement on the fungal tree of life 58 

remained somewhat cryptic based on morphological characters alone. The lineages emergence 59 

coincide with major transition of fungi from aquatic environment to terrestrial ecologies, which 60 

was characterized by the evolutionary loss of the flagellum (James, Letcher, et al. 2006; James, 61 

Kauff, et al. 2006; Chang et al. 2021). The zygomycete fungi are recognized by their gametangial 62 

conjugation, production of zygospore, and coenocytic aseptate or septate hyphae (White et al. 63 

2006; Hibbett et al. 2007; Spatafora et al. 2017; Naranjo-Ortiz and Gabaldón 2020). 64 

Nevertheless, zygospore structures have not been observed for most members of zygomycete 65 

fungi due to their cryptic sexual stage or lack of appropriate culture approaches. Zygomycete 66 
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fungi were found to be paraphyletic based on genome-scale evidence, as a result, two new 67 

phyla (Mucoromycota and Zoopagomycota) were established to accommodate the current 68 

members (Spatafora et al. 2016). However, incomplete sampling of zygomycete lineages has 69 

made resolution of the origin of terrestrial fungi difficult to resolve with standard phylogenetic 70 

approaches (Chang et al. 2021; Li et al. 2021).  71 

Mycological and fungal cell biology research has been historically biased in favor of 72 

members of the Dikarya. Several established research model organisms have advanced fields of 73 

cell biology including the brewer’s yeast Saccharomyces cerevisiae, the fission yeast 74 

Schizosaccharomyces pombe, the red bread mold Neurospora crassa, and the filamentous mold 75 

Aspergillus nidulans. These model organisms contributed to an expansion in the understanding 76 

of eukaryotes. Fungi were among the some of the first sequenced eukaryotic genomes (Goffeau 77 

et al. 1996; Wood et al. 2002; Galagan et al. 2003; Galagan et al. 2005). However, genomic 78 

research on zygomycete fungi had to wait for the first Mucoromycotina genome to be 79 

sequenced in 2009 (Ma et al. 2009). The majority of our existing knowledge of zygomycetes has 80 

come from studies of arbuscular mycorrhizae (Glomeromycotina) or saprophytes classified in 81 

Mucoromycota, such as the black bread mold Rhizopus stolonifer. Studies on the other 82 

zygomycetes phylum, Zoopagomycota, are still rare, and the biodiversity of Zoopagomycota 83 

fungi is likely greatly underestimated and the research progress is largely hindered by the lack 84 

of axenic cultures. Culture independent studies have identified multiple zygomycetes as 85 

amplicon-based operational taxonomic units (OTUs) in unexplored ecological sites (Metcalf et 86 

al. 2016; Picard 2017; Pombubpa et al. 2020; Reynolds et al. 2021) and many “unknown” fungal 87 
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OTUs will likely to be identified with the help of increasing fungal genomes, especially more 88 

representatives in the sparsely sequenced zygomycete lineages.  89 

To fill this gap, our recent emphasis on sequencing zygomycete genomes through the 90 

ZyGoLife project (Spatafora et al. 2016; https://zygolife.org) have produced over a hundred 91 

genomes. The output has become the largest collection of genomic information for this fungal 92 

clade. Various techniques were also developed and employed to obtain genome sequences of 93 

the uncultured zygomycete species. The breakthroughs include the single-cell genomics as well 94 

as fungus-host co-culture techniques (Ahrendt et al. 2018) and sequencing of metagenomes of 95 

sporocarps (Chang et al. 2019). Progress on genomics and related multi-omics have greatly 96 

expanded our knowledge on zygomycetes. This includes the identification of a mosquito-like 97 

polyubiquitin gene in a zygomycete fungus inhabiting the gut of mosquitoes (Zancudomyces 98 

culisetae, Zoopagomycota) (Wang et al. 2016), the discovery of a photosynthetic mycelium 99 

using algal symbionts (Linnemannia elongata, Mortierellomycotina) (Du et al. 2019; Vandepol 100 

et al. 2020), the isolation of cicada behavior modifying alkaloids from Massospora 101 

(Entomophthoromycotina) (Boyce et al. 2019), and the expansion of secondary metabolite 102 

genes of amphibian gut fungi (Basidiobolus, Entomophthoromycotina) via Horizontal Gene 103 

Transfer from bacteria co-existing in the gastrointestinal tract (Tabima et al. 2020). However, a 104 

conundrum remains as to the evolutionary history of the zygomycete fungi. What evolutionary 105 

processes were associated with the divergence of the ancestors of Mucoromycota and 106 

Zoopagomycota into species which primarily associate with plants and plant material or animal 107 

and fungal hosts, respectively. We hypothesize that comparisons of gene content will enable 108 

identification of genetic elements that have contributed to their success in these ecologies and 109 
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their reproductive strategies and may be reflected in lineage-specific genes, those with 110 

expanded copy number or enrichment in specific pathways or processes that underpin 111 

adaptations to these hosts and environments. In addition, the construction of a well-resolved 112 

phylogenetic tree incorporating the expanded collection of zygomycete genomes is an 113 

important framework to consider the complex natural history and relationships among these 114 

diverse fungi. Our work has contributed to the generation of 131 recent zygomycete genomes 115 

(Table 1), which were used to investigate the evolution and cryptic genetics behind the biology 116 

of these early-diverging fungi. 117 

The focus on these phyla is motivated by not only understanding their ecological roles 118 

and history, but also in the context of the increase in Mucormycosis, a deadly human-infectious 119 

disease, that has risen in prevalence and public attention due to high infection rates and co-120 

morbidity during the COVID-19 pandemic (Garg et al. 2021; Revannavar et al. 2021). 121 

Mucormycosis is caused by members of Mucoromycotina, in particular many genera of the 122 

Mucorales fungi (Soare et al. 2020). We cataloged the prevalence of Mucormycosis 123 

pathogenicity factors across Mucorales genomes and profiled their evolutionary conservation 124 

among members of the Fungal Kingdom. We identified the genes for the Mucormycosis invasin 125 

factor in three Mortierellomycotina species as well (Dissophora ornate, Lobosporangium 126 

transversle, and Mortierella species) which all share a highly similar protein motif associated 127 

with the disease in Mucorales fungi indicating these fungi may have additional potential for 128 

mammalian infection and the more ancient nature of this factor within these fungi. Our study 129 

highlights the importance of research on zygomycetes to characterize the unique and shared 130 

molecular components of their biology that can be examined as more genome sequences 131 
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become available. Our improved resolution phylogeny will enhance the study of the 132 

evolutionary relationships for both organismal and molecular genetics of these important fungi. 133 

 134 

MATERIALS AND METHODS 135 

Fungal taxa and genome sampling 136 

In total, 181 fungal genome sequences were analyzed in this study. Nine genomes were 137 

generated in this study and 172 were obtained from GenBank or the Joint Genome Institute 138 

MycoCosm portal (Grigoriev et al. 2014; https://mycocosm.jgi.doe.gov), with 136 produced by 139 

the ongoing 1000 Fungal Genome Project (1KFG: http://1000.fungalgenomes.org/) and 140 

Zygomycetes Genealogy of Life Project (ZyGoLife: http://zygolife.org/). The dataset includes 131 141 

zygomycetes genomes (Table 1), with 97 sampled from Mucoromycota clade and 34 from 142 

Zoopagomycota. In addition, we included 43 Dikarya genomes and seven representatives 143 

(Supplementary Table 1) from other early-diverging fungal lineages to enable kingdom-wide 144 

comparative analyses. The following nine genomes were produced for this study: Amylomyces 145 

rouxii NRRL 5866, Benjaminiella poitrasii RSA 903, Fennellomyces sp. ATCC 46495, Lichtheimia 146 

hyalospora FSU 10163, Mucor mucedo NRRL 3635, Parasitella parasitica NRRL 2501, 147 

Radiomyces spectabilis NRRL 2753, Spinellus fusiger NRRL 22323, Piptocephalis tieghemiana 148 

RSA 1565. 149 

 150 

Genome sequencing and assembly 151 

The genome sequencing of Spinellus fusiger NRRL 22323, Radiomyces spectabilis NRRL 152 

2753, Mucor mucedo NRRL 3636, Benjaminiella poitrasii RSA 903 and Fennellomyces sp. ATCC 153 
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46495, was performed from 5 ug of genomic DNA was sheared to >10kb using Covaris g-Tubes. 154 

The sheared DNA was treated with exonuclease to remove single-stranded ends and DNA 155 

damage repair mix followed by end repair and ligation of blunt adapters using SMRTbell 156 

Template Prep Kit 1.0 (Pacific Biosciences). The library was purified with AMPure PB beads. 157 

PacBio Sequencing primer was then annealed to the SMRTbell template library and Version P6 158 

sequencing polymerase was bound to them for S. fusiger, R. spectabilis and Fennellomyces sp. 159 

ATCC 46495. The prepared SMRTbell template libraries were then sequenced on a Pacific 160 

Biosciences RSII sequencer using Version C4 chemistry and 1x240 sequencing movie run times. 161 

For B. poitrasii and M. mucedo, sequencing polymerase was bound to them using the Sequel 162 

Binding kit 2.1 and then the prepared SMRTbell template libraries were sequenced on a Pacific 163 

Biosystems' Sequel sequencer using v3 sequencing primer, 1M v2 SMRT cells, and Version 2.1 164 

sequencing chemistry with 1x360 sequencing movie run times. Filtered subread data was then 165 

used to assemble all lineages using Falcon (version 0.4.2 for S. fusiger and R. spectabilis, version 166 

1.8.8 for M. mucedo and B. poitrasii, and version 0.7.3 for Fennellomyces sp. ATCC 46495). S. 167 

fusiger and R. spectabilis were then further improved using finisherSC version 2.0 (Lam et al. 168 

2015). All assemblies were then polished using either Quiver version 169 

smrtanalysis_2.3.0.140936.p5 (S. fusiger, R. spectabilis and Fennellomyces sp. ATCC 46495) or 170 

Arrow version SMRTLink v5.1.0.26412 (M. mucedo and B. poitrasii). 171 

Parasitella parasitica NRRL 2501, Piptocephalis tieghemiana and Lichtheimia hyalospora were 172 

sequenced using the Illumina platform. For P. parasitica and P. tieghemania, 100 ng of DNA was 173 

sheared to 300 bp using the Covaris LE220 and size selected using SPRI beads (Beckman 174 

Coulter). The fragments were treated with end-repair, A-tailing, and ligation of Illumina 175 
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compatible adapters (IDT, Inc) using the KAPA-Illumina library creation kit (KAPA biosystems). 176 

Additionally, a 4kb mate pair library was constructed for P. parasitica. For this, 5-10 ug of DNA 177 

was sheared using the Covaris g-TUBE(TM) and gel size selected for 4 kb. The sheared DNA was 178 

treated with end repair and ligated with biotinylated adapters containing loxP. The adapter 179 

ligated DNA fragments were circularized via recombination by a Cre excision reaction (NEB). 180 

The circularized DNA templates were then randomly sheared using the Covaris LE220 (Covaris). 181 

The sheared fragments were treated with end repair and A-tailing using the KAPA-Illumina 182 

library creation kit (KAPA biosystems) followed by immobilization of mate pair fragments on 183 

strepavidin beads (Invitrogen). Illumina compatible adapters (IDT, Inc) were ligated to the mate 184 

pair fragments and 8 cycles of PCR was used to enrich for the final library (KAPA Biosystems). 185 

The prepared libraries were quantified using KAPA Biosystems' next-generation sequencing 186 

library qPCR kit and run on a Roche LightCycler 480 real-time PCR instrument. The quantified 187 

libraries were then prepared for sequencing on the Illumina HiSeq sequencing platform utilizing 188 

a TruSeq paired-end cluster kit, v4. Sequencing of the flowcell was performed on the Illumina 189 

HiSeq2500 sequencer using HiSeq TruSeq SBS sequencing kits, v4, following a 2x150 indexed 190 

run recipe. Each fastq file was QC filtered for artifact/process contamination and subsequently 191 

assembled together with AllPathsLG version R49403 (Gnerre et al. 2011). 192 

Since P. tieghemania is an obligate mycoparasite, it was maintained as co-culture with 193 

Umbelopsis sp. nov. AD052. The P. tieghemania contigs required further processing to separate 194 

these two assemblies. First, metagenomic scaffold sequences were binned into two groups 195 

using metabat (v2.12.1). The filtered reads were mapped to the sequences of the two bins and 196 

split into two separate datasets corresponding to each bin using bbsplit.sh in 197 
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bbtools(ambiguous=all). The two datasets were then re-assembled separately. Scaffolds with 198 

length less than 2kb were excluded. Then, four closely related genomes were used for 199 

reference genome to classify and filter re-assembled scaffolds based on BLASTN similarity 200 

(evalue < 1e-30). One included Piptocephalis related genome, Piptocephalis cylindrospora, and 201 

the others were Umbelopsis related genomes, Umbelopsis sp. AD052, Umbelopsis isabellina 202 

AD026 and Umbelopsis sp. PMI 123. If the scaffolds were covered more by Piptocephalis main 203 

genome than Umbelopsis main genomes, it would be classified to Piptocephalis tieghemiana, 204 

and vice versa. The scaffolds without any similarity to the four genomes were discarded. 205 

For L. hyalospora, 500 ng of DNA was sheared to 270 bp using the Covaris E210 (Covaris, 206 

Woburn, MA) and size selected using SPRI beads (Beckman Coulter, Brea, CA). The fragments 207 

were treated with end-repair, A- tailing, and ligation of Illumina adapters using the TruSeq 208 

Sample Prep Kit (Illumina, San Diego, CA), followed by quantification of libraries using KAPA 209 

Biosystem’s next generation sequencing library qPCR kit and run on a Roche LightCycler 480 210 

real-time PCR instrument. The quantified libraries were multiplexed and the pools were then 211 

prepared for sequencing on the Illumina HiSeq sequencing platform utilizing a TruSeq paired-212 

end cluster kit, v3, and Illumina’s cBot instrument to generate a clustered flowcell for 213 

sequencing. Sequencing of the flowcell was performed on the Illumina HiSeq2000 sequencer 214 

using a TruSeq SBS sequencing kit 200 cycles, v3, following a 2x150 indexed run recipe. 215 

Genomic reads were QC filtered for artifact/process contamination and subsequently 216 

assembled with Velvet. The resulting assembly was used to create a simulated 3 Kbp insert long 217 

mate-pair library, which was then assembled together with the original Illumina library with 218 

AllPathsLG release version R42328. 219 
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 220 

Transcriptome sequencing and assembly 221 

For all lineages except L. hyalospora, Stranded cDNA libraries were generated using the 222 

Illumina Truseq Stranded RNA LT kit. mRNA was purified from 1 ug of total RNA using magnetic 223 

beads containing poly-T oligos. mRNA was fragmented and reversed transcribed using random 224 

hexamers and SSII (Invitrogen) followed by second strand synthesis. The fragmented cDNA was 225 

treated with end-pair, A-tailing, adapter ligation, and 8 cycles of PCR. For L. hyalospora, Plate-226 

based RNA sample prep was performed on the PerkinElmer Sciclone NGS robotic liquid handling 227 

system using Illumina's TruSeq Stranded mRNA HT sample prep kit utilizing poly-A selection of 228 

mRNA following the protocol outlined by Illumina in their user guide: 229 

https://support.illumina.com/sequencing/sequencing_kits/truseq-stranded-mrna.html, and 230 

with the following conditions: total RNA starting material was 1 ug per sample and 8 cycles of 231 

PCR was used for library amplification. The prepared libraries were then quantified using KAPA 232 

Biosystems' next-generation sequencing library qPCR kit and run on a Roche LightCycler 480 233 

real-time PCR instrument. The quantified libraries were then prepared for sequencing on the 234 

Illumina HiSeq sequencing platform utilizing a TruSeq paired-end cluster kit, v4. Sequencing of 235 

the flowcell was performed on the Illumina HiSeq2500 sequencer using HiSeq TruSeq SBS 236 

sequencing kits, v4, following a 2x150 indexed run recipe (2x100 for L. hyalospora). 237 

Filtered fastq files were used as input for de novo assembly of RNA contigs. For all lineages 238 

except L. hyalospora and P. parasitica, reads were assembled into consensus sequences using 239 

Trinity version 2.1.1. Trinity was run with the --normalize_reads (In-silico normalization routine) 240 

and --jaccard_clip (Minimizing fusion transcripts derived from gene dense genomes) options. 241 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497490doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497490
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

For L. hyalospora and P. parasitica, Rnnotator version 2.5.6 or later was used. P. parasitica was 242 

further improved using eight runs of velveth (v. 1.2.07) performed in parallel, once for each 243 

hash length for the De Bruijn graph. Minimum contig length was set at 100. The read depth 244 

minimum was set to 3 reads. Redundant contigs were removed using Vmatch (v. 2.2.4) and 245 

contigs with significant overlap were further assembled using Minimus2 with a minimum 246 

overlap of 40. Contig postprocessing included splitting misassembled contigs, contig extension 247 

and polishing using the strand information of the reads. Single base errors were corrected by 248 

aligning the reads back to each contig with BWA to generate a consensus nucleotide sequence. 249 

All nine new genomes in this study were annotated using the JGI Annotation pipeline (Grigoriev 250 

et al. 2014).  251 

 252 

Phylogenomic analyses 253 

A set of 758 phylogenetic markers, “fungi_odb10”, from the Benchmarking Universal 254 

Single-Copy Orthologs (BUSCO) v4.0.5 was employed for the kingdom-wide phylogenomic 255 

analyses (Seppey et al. 2019). We used the PHYling pipeline (DOI: 10.5281/zenodo.1257002) to 256 

extract best hit copies using hmmsearch v3.3.2 (cutoff=1E-10) from the genes predicted in each 257 

species against the marker set. A total of 617 (out of 758) well-conserved markers were 258 

identified as the best hit from the 181 fungal genomes. A backbone tree including 80 genomes, 259 

subsampled based on BUSCO scores and phylogenetic placement (except for the outgroup 260 

Drosophila melanogaster), recovered 604 orthologs. All orthologs were aligned separately using 261 

hmmalign v3.3.2 to the marker profile-HMM and then concatenated into a super-alignment 262 

with partitions defined by each marker. The best phylogenomic tree was searched and 263 
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identified using the super-alignment file and partition scheme as the input with the best-fit 264 

model option for maximum likelihood analyses implemented in IQ-TREE v.1.5.5 (Nguyen et al. 265 

2015; Kalyaanamoorthy et al. 2017). Branch supports were evaluated using 1000 ultrafast 266 

bootstrap replicates (Hoang et al. 2017). 267 

 268 

Identification of lineage-specific genes and Pfam domains in zygomycete fungi 269 

All orthologous groups of the 80 genomes included in the backbone tree were identified 270 

using a comparative genomic pipeline that utilized all-vs-all BLASTp search v2.6.0 (cutoff=1E-5) 271 

(DOI: 10.5281/zenodo.1447224) (Altschul et al. 1990). Orthagogue v1.0.3 was used to infer 272 

putative orthologs and Markov-Clustering Algorithm v14-137 (MCL, inflation value of 1.5) was 273 

utilized to generate disjoint clusters (Van Dongen 2000; Ekseth et al. 2014). Shared genome 274 

components were counted using a permissive strategy that a gene family shared by at least 10 275 

of the 80 included taxa was retained. Zygomycetes-specific genes are the ones that only exist in 276 

zygomycete fungi (Mucoromycota and Zoopagomycota) and are absent in all other lineages. 277 

The absence-presence pattern of gene families across the Kingdom Fungi was plotted using the 278 

“aheatmap” function in R package “NMF” (Gaujoux and Seoighe 2010). Protein domains coded 279 

by the 80 taxa were examined in a similar way. Each Protein Family (Pfam) entry in the Pfam 280 

database v31.0 was searched against the predicted proteomes of all included 80 taxa (using the 281 

threshold of 1E-3 with >50% overlap percentage). The Pfam domains dominated in either 282 

Mucoromycota or Zoopagomycota were inferred by the ratios of their copy numbers in 283 

Zoopagomycota and Mucoromycota. The disproportion was visualized by plotting the binary 284 

logarithm of the ratio for each Pfam entry so that dominated Pfam domains in each phylum will 285 
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be isolated on the edge. The figure was plotted using R package “ggplot2” (Wickham 2016). 286 

Subphylum-level distribution of each discussed Pfam domain was plotted using the 287 

“radarchart” function implemented in R package “fmsb”. All lineage-specific genome content 288 

was summarized in Table 2 (with detailed Pfam names listed in Supplementary Table 2). Gene 289 

Ontology (GO) terms of Zoopagomycota “unique” genes were inferred and annotated using 290 

InterProScan v5.54 and WEGO v2.0 respectively (Jones et al. 2014; Ye et al. 2018). 291 

 292 

Phylogenetic analysis of the spore coating protein (CotH) in fungi 293 

A total of 846 protein sequences that contain at least one CotH domain were identified 294 

in the 80 genomes included in the backbone tree. Absent in all Dikarya species, CotH genes 295 

were largely found in zygomycetes (all included six Mortierellomycotina members, 27 296 

Mucoromycotina taxa, and one Basidiobolus) and in Neocallimastigomycota (including 2 taxa). 297 

Previously classified CotH families 1-5 (CotH 1-5) from Rhizopus oryzae were included in our 298 

phylogenetic analyses to categorize the newly identified CotH copies. Highly similar CotH 299 

sequences (>90%) were removed using CD-HIT v4.6.4 and poor-quality ones were manually 300 

excluded from the multiple sequence alignment using MUSCLE v3.8.31 (Edgar 2004; Fu et al. 301 

2012). We employed IQ-TREE v1.5.5 to identify the most appropriate substitutional model and 302 

to reconstruct the phylogenetic tree of all fungal CotH copies with ultrafast bootstraps (1000 303 

replicates) (Nguyen et al. 2015; Hoang et al. 2017; Kalyaanamoorthy et al. 2017). The final input 304 

includes 754 sequences with 230 distinct patterns for CotH classification. Species-gene tree 305 

reconciliation analysis was conducted with Notung v3.0 BETA using the 80-taxa backbone tree 306 
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as the species tree (Stolzer et al. 2012). The --phylogenomics command line option was used to 307 

generate a summary report of gain and loss events of CotH families in Kingdom Fungi. 308 

 309 

RESULTS 310 

Phylogenetic relationships and genome statistics of zygomycete fungi.  311 

Collaborative efforts to sequence fungi have generated the 131 zygomycetes genomes 312 

presented in this study and the relationships among these species has remained an open 313 

research question. Most of the assembled zygomycete genomes were assessed to have BUSCO 314 

scores higher than 80% (Fig. 1a, Table 1). The phylogenetic analysis using all available 315 

zygomycetes genomes and 50 additional representatives from other fungal clades (Fig. 1a and 316 

Supplementary Figure 1) provided an updated tree representing the placement of these fungi in 317 

the kingdom. At the phylum level, the reconstructed phylogeny exhibits the same topology as 318 

presented in Spatafora et al. (2016). That is, Zoopagomycota forms a sister group to the clade 319 

comprising Mucoromycota and Dikarya, and the traditional zygomycete fungi (Mucoromycota 320 

and Zoopagomycota) remain paraphyletic. The increased sampling size and new set of protein-321 

coding gene phylogenetic markers provide additional confidence in these arrangements. This is 322 

in contrast to a kingdom-wide study that also uses protein-coding genes from BUSCO datasets 323 

suggests that zygomycetes could still be monophyletic with a different sampling strategy (Li et 324 

al. 2021). It should be noted that the marker sets used in this study (fungi_odb10 with 758 325 

markers) and Li et al. (fungi_odb9 with 290 markers) differ, as well as the strategies to extract 326 

the hits—protein searches against genome annotations in this study and BUSCO predicted gene 327 
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models in Li et al. Regardless of whether zygomycetes are paraphyletic or monophyletic, it is 328 

not controversial that Mucoromycota and Zoopagomycota are monophyletic phyla.  At the 329 

subphylum level, however, the tree topology recovered new phylogenetic relationships with 330 

consistency in both the comprehensive tree (Fig. 1a) and the backbone tree (Fig. 2a). For 331 

example, Glomeromycotina grouped with Mortierellomycotina instead of being the earliest 332 

branch within Mucoromycota (Spatafora et al. 2016). Basidiobolus members were not grouped 333 

within Entomophthoromycotina, instead, they were found as the earliest diverging lineage in 334 

Zoopagomycota (Figs. 1a, 2a, and Supplementary Figure 1). The present subphylum-level 335 

classification received full bootstrap supports in the comprehensive tree (Fig. 1a and 336 

Supplementary Figure 1). This tree topology is identical in the backbone tree with strong 337 

supports, only two nodes within Zoopagomycota clade receiving relatively low values (82/100, 338 

Fig. 2a). 339 

Our results suggest that the saprobe, Calcarisporiella thermophila, is sister to the rest of 340 

the Mucoromycotina. Plant symbionts like Bifiguratus, Endogone, and Jimgerdemannia form a 341 

monophyletic clade which was placed between C. thermophila and Mucoromycotina (Fig. 1a). 342 

Members of saprobes, pathogens, and mycoparasites were joined in more derived groups of 343 

Mucoromycotina.  344 

In the Kickxellomycotina clade, the mycoparasite, Dimargaris cristalligena, is sister to 345 

the other members. Ramicandelaber brevisporus follows and leads to two separate 346 

monophyletic clades composed of insect symbionts (Capniomyces, Furculomyces, Smittium, and 347 

Zancudomyces) and soil saprobes (Coemansia, Kickxella, Linderina, Martnesiomyces). Both 348 

clades (insect symbionts & soil saprobes) are on relatively long branches implying early 349 
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divergent evolution and underexplored biodiversity (Fig. 2a and Supplementary Figure 1). Insect 350 

pathogens were grouped together on a separate lineage, Entomophthoromycotina, forming a 351 

sister clade to Kickxellomycotina (Figs. 1a, 2a). The three included Conidiobolus species support 352 

a paraphyletic genus with the C. coronatus monophyletic with C. incongruus, while C. 353 

thromboides was more closely related to Zoophthora radicans and Entomophthora muscae. 354 

Zoopagomycotina is monophyletic and sister to the joined group of Entomophthoromycotina 355 

(excluding Basidiobolus) and Kickxellomycotina (Figs. 1a, 2a).  356 

The density of genes arranged in the genome of zygomycete fungi exhibited varying 357 

patterns among subphyla which was observed in plots of gene counts against genome sizes (Fig. 358 

1b). Most zygomycete fungi have genome sizes ranging from 20 Mb to 100 Mb and gene counts 359 

range from 5k to 20k. The Mucoromycotina fungi have relatively similar genome sizes, but gene 360 

counts vary from 6k to 21k. The soil saprobes in Kickxellomycotina and small animal associates 361 

in Zoopagomycotina have small genome sizes (10-20 Mb) and gene counts (4-8k). On the other 362 

hand, Glomeromycotina fungi tend to have large genome sizes (>100 Mb) with the most 363 

abundant gene numbers (20-30k) in all zygomycete fungi, which are among the largest fungal 364 

genome sizes sequenced to date. As an extreme case, the genome sizes of 365 

Entomophthoromycotina members exhibit the widest range and can be as large as 1.2 Gb 366 

according to the existing genome assemblies (Stajich et al, in revision), however, their gene 367 

counts (9-23k) are more modest.  368 

 369 

Orthologous gene families and Pfam domains in zygomycete fungi  370 
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The 80 species used for the backbone tree were examined for orthologous gene families 371 

across the Kingdom Fungi. We identified 8,208 orthologous families which had genes from at 372 

least 11 of the 80 genomes. These gene families were subjected to more focused analyses to 373 

examine the presence/absence pattern of genome contents across the Kingdom Fungi, with a 374 

special attention on the divergent evolution between Mucoromycota and Zoopagomycota (Fig. 375 

3). The Mucoromycota members harbor 171 phylum-specific gene families that are present in 376 

at least two of the three Mucoromycota subphyla and absent in all other fungal lineages, while 377 

Zoopagomycota only have nine such gene families (Table 2). At the subphylum level there were 378 

considerably more lineage-specific gene families, ranging from 1,186 (in Zoopagomycotina) to 379 

7,779 (in Mucoromycotina) (Table 2).  380 

We used protein domains cataloged in the Pfam database as an additional means to 381 

catalog unique and shared content. A total of 7,616 Pfam models had at least one similar 382 

sequence in the examined 80 genomes. Mucoromycota members possess two unique Pfam 383 

domains, with the CheR (PF01739) found in all three subphyla and the C9orf72-like (PF15019) in 384 

Mucoromycotina and Mortierellomycotina, while no phylum-specific Pfam domains were 385 

identified in the Zoopagomycota. At the subphylum level, a range of unique Pfam domains were 386 

observed, with 11 to 32 in the three subphyla of Mucoromycota and 0-5 in the ones in 387 

Zoopagomycota (Table 2 and Supplementary Table 2). Interestingly, the CotH domain 388 

(PF08757), a potential invasin factor of Mucormycosis, was found in Mortierellomycotina, 389 

Basidiobolus, and Neocallimastigomycota genomes (Fig. 2b), but had previously only been 390 

described in the Mucoromycotina (Chibucos et al. 2016). In addition, the oxidation resistance 391 

protein domain (TLD, PF07534) has greatly expanded in copy number in the Glomeromycotina 392 
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with up to 400 copies (Fig. 2c). Kickxellomycotina and Zoopagomycotina members lacked Biotin 393 

and Thiamin synthesis associated domain (BATS, PF06968) and mycobacterial membrane 394 

protein large transporter domain (MMPL, PF03176) (Fig. 2d and 2e). Interestingly, Basidiobolus 395 

meristosporus is the only Zoopagomycota member that maintains at least one copy of every 396 

examined domain (Fig. 2b-e), including CotH and MMPL that are absent in all other 397 

Zoopagomycota members.  398 

To identify all Pfam domains that are consistent with divergent evolution between 399 

Mucoromycota and Zoopagomycota, we calculated the relative abundance of each Pfam 400 

domain in their genomes. In total, 285 Pfam domains were present at least four-fold 401 

differences (i.e., absolute value of the binary logarithm >2) between the two phyla with 243 of 402 

them featured in Mucoromycota while 42 in Zoopagomycota (Fig. 4 and Supplementary Table 403 

3). Without consideration of non-zygomycetes lineages, we found 70 Pfam domains in 404 

Mucoromycota that are completely missing in Zoopagomycota, whereas no such Pfam domains 405 

can be identified in Zoopagomycota. Zoopagomycota is a historically understudied fungal clade 406 

with few representative genomes until our recent studies. As a result, the lack of 407 

Zoopagomycota specific Pfam domains may be an artifact of insufficient sampling before 408 

domain curation in Pfam. To overcome this possibility, we examined the orthologous gene 409 

family dataset to calculate the relative abundance of gene families to test for differences 410 

between the two phyla. This revealed 22 gene families in Zoopagomycota that were absent in 411 

all Mucoromycota members (Supplementary Figure 3). Gene Ontology analysis shows that 412 

more than 50% of these genes are involved in binding, catalytic activity, cellular process, and 413 

metabolic process (Supplementary Figure 4). Finer scales of examination suggest they are 414 
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closely related to nitrogen compound, organic substance, and primary metabolic process 415 

(Supplementary Figure 5). This provides a compact set of genes and processes that are distinct 416 

to the Zoopagomycota which could contribute to their unique lifestyles, reproductive biology, 417 

and ecological specializations. 418 

We found that many phylum-level distinct Pfam domains were favored unevenly in each 419 

subphylum group (Fig. 5). For example, both Pil1 (PF13805) and SUR7 (PF06687) domains are 420 

eisosome components and are involved in the process of endocytosis. They are missing entirely 421 

from the Zoopagomycota but are encoded in the genomes of all (Pil1) or a majority (SUR7, 422 

except for Mortierella multidivaricata and Gigaspora rosea) of Mucoromycota members (Figs. 423 

4, 5a, & 5b). Interestingly, the Pil1 domain was enriched in copy number in the 424 

Mortierellomycotina (Fig. 5a), and SUR7 domain has the largest copy number in 425 

Mucoromycotina (Fig. 5b). The SMG1 domain (PF15785), a phosphatidylinositol kinase-related 426 

protein kinase, is a key regulator of growth. The Mucoromycota members maintain a single-427 

copy SMG1 domain (except for Cunninghamella bertholletiae with 3 copies, and none in Mucor 428 

circinelloides, Phycomyces blakesleeanus, and Syncephalastrum monosporum), which is absent 429 

in Zoopagomycota species (Fig. 5c). There are 67 additional Pfam domains including DENN 430 

(PF02141), uDENN (PF03456), dDENN (PF03455), Pox_ser-thr_kin (PF05445) (Supplementary 431 

Table 3) with a similar presence/absence pattern and may be important components to better 432 

understand and characterize the Mucoromycota fungi.  433 

In contrast, while there are no Zoopagomycota-specific Pfam domains, there are some 434 

domains that exhibit copy number variance at the subphylum level. For example, the 435 

Tyrosinase domain (PF00264) is an important enzyme that controls the production of melanin 436 
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and parasite encapsulation, especially in insects. It is also suggested that Tyrosinase is involved 437 

in the host-microbe defensive mechanism. The Tyrosinase domains are found on average with 438 

48 copies in the Entomophthoromycotina members but absent in nearly all Mucoromycotina 439 

(except for Calcarisporiella thermophila with 7 copies) and Mortierellomycotina (except for 440 

Mortierella verticillata with 1 copy) (Fig. 5d). Similarly, Trypsin domain (PF00089), serine 441 

protease found in the digestive system of many vertebrates, was also enriched in copy number 442 

in the Entomophthoromycotina with 80 copies on average (Fig. 5e). The domain LPMO_10 443 

(PF03067) is found in lytic polysaccharide monooxygenases which can cleave glycosidic bonds in 444 

chitin and cellulose and is significantly enriched in Zoopagomycota (Fig. 5f). All three examples 445 

(Trypsin, Tyrosinase, and LPMO_10) are related to animal-fungus interactions in the 446 

degradation of protein, chitin, and cellulose. 447 

  448 

Discovery of CotH in early-diverging fungi 449 

The CotH domain as characterized in Mucorales fungi has positive correlations with the 450 

clinical pathogenesis of Mucormycosis (Chibucos et al. 2016). In our kingdom-wide study, we 451 

found additional copies of the CotH domain in a broader collection of fungi. Other than in 452 

Mucorales fungi, CotH was also found in Basidiobolus, Mortierellomycotina, and 453 

Neocallimastigomycota. The presence of this domain could indicate the potential of these fungi 454 

to support pathogenic interaction with animal hosts (Fig. 2b). A total of 846 CotH copies were 455 

identified in 34 zygomycetes genomes and two Neocallimastigomycota representatives 456 

(contributing 348 of the copies). Five CotH families (CotH 1-5) that were previously classified in 457 

Rhizopus oryzae were included in our phylogenetic analysis and helped us categorize the newly 458 
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identified CotH copies (Fig. 6a). Zygomycetes CotH copies formed four distinct clades. ZyGo-A 459 

clade includes CotH families 1-3 that maintain true invasin motifs and can only be coded by 460 

Mucoromycotina and Mortierellomycotina members. ZyGo-B clade includes CotH families 4-5 461 

and copies from Mucoromycotina. ZyGo-C clade is loosely joined with ZyGo-B (bootstrap 462 

support 34/100) and includes copies from Mortierellomycotina, and Basidiobolus. ZyGo-D is the 463 

largest clade among the four but only includes copies from Mucoromycotina. Both ZyGo-C and 464 

ZyGo-D clades represent new families of CotH. Interestingly, the distantly related anaerobic gut 465 

fungi (AGF, Neocallimastigomycota) can code CotH as well and form several distinct clades. In 466 

total, 531 duplications and 795 losses were identified along the evolution of CotH families in 467 

Kingdom Fungi. Nine nodes were associated with more than 10 duplication events (Fig. 6b). The 468 

absence of CotH in the most recent common ancestor of fungi was also inferred by Notung 469 

reconciliation analysis. 470 

 471 

DISCUSSION 472 

Genome evolution of zygomycete fungi 473 

Zygomycetes are important members of early-diverging fungi and studying their 474 

evolutionary history can help us better understand the terrestrialization of eukaryotes. 475 

Zygomycetes are ubiquitous and can live as arbuscular mycorrhizae, ectomycorrhizae, 476 

saprobes, or symbionts of various organisms, including animals, bacteria, plants, and fungi. 477 

During the evolutionary adaptation and diversification of zygomycetes, many associated 478 

organisms (hosts, symbionts, etc.) may have mutually shaped the structure and content of their 479 

genomes. Mucoromycotina members have served as exemplars to investigate various 480 
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evolutionary events at the genome-scale. For example, whole-genome duplications have been 481 

identified repeatedly in Mucoromycotina (Ma et al. 2009; Corrochano et al. 2016), which 482 

contributed to the large expansion of gene counts (5-20k) among some Mucoromycotina 483 

members (Fig. 1b). Phylogenomic analyses suggest that an early split of Mucoromycotina 484 

involved the evolution of thermophily (i.e., Calcarisporiella thermophila) (Figs. 1a, 2a), which is 485 

followed by various lineages containing members of ectomycorrhizae, mycoparasites, plant and 486 

animal pathogens. In addition, transposable elements (TEs) have been suggested to be rich in 487 

some Mucoromycotina taxa, including Rhizopus oryzae (Ma et al. 2009) and Endogone sp. 488 

(Chang et al. 2019). The high proportion of TEs were also evident in other lineages of 489 

zygomycete fungi, like Gigaspora members (Morin et al. 2019) and Basidiobolus meristosporus 490 

(Muszewska et al. 2017). It has been suggested that TEs may have played a role in shaping 491 

transcriptional profiles, helped fungi adapt to different ecological niches, and contributed to 492 

the current fungal biodiversity (Castanera et al. 2016; Muszewska et al. 2017). It is still unclear 493 

what roles TE might have played in the evolution of Entomophthoromycotina members that 494 

exhibit the widest span of genome sizes (25-1200 Mb) in Kingdom Fungi and what resulted in 495 

the gigantic size of Entomophthora muscae and Massospora cicadina. More samples from this 496 

and related lineages may help us reconstruct the evolutionary history for the observed genome 497 

size modification in zygomycete fungi. 498 

 499 

Phylogenomics of zygomycetes and Basidiobolus 500 

Zygomycete fungi hold important phylogenetic placement on the fungal tree of life. The 501 

former taxonomic unit, Zygomycota, has been recognized paraphyletic and thus been 502 
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abandoned and replaced by Mucoromycota and Zoopagomycota to accommodate the six major 503 

lineages—Glomeromycotina, Mortierellomycotina, Mucoromycotina, Entomophthoromycotina, 504 

Kickxellomycotina, and Zoopagomycotina (James, Kauff, et al. 2006; White et al. 2006; Hibbett 505 

et al. 2007; Spatafora et al. 2016). Since the loss of flagella, the first evolutionary split of 506 

terrestrial fungi leads to Zoopagomycota and the clade of Mucoromycota and Dikarya (Chang et 507 

al. 2021). Mucoromycota is the sister clade of the subkingdom Dikarya clades (Ascomycota and 508 

Basidiomycota) (Figs. 1a & 2a), and analysis of zygomycete fungi is therefore essential for us to 509 

accurately reconstruct the evolutionary events that led to major lineages of terrestrial fungi. 510 

The arbuscular mycorrhizal fungi of Glomeromycotina with their distinct ecology formed a 511 

monophyletic clade with the soil saprobes and root endophytes of Mortierellomycotina (Figs. 512 

1a & 2a). Mucoromycota members are mostly associated with plants or more commonly as 513 

decomposers of plant carbohydrates. Zoopagomycota members are mostly animal associated 514 

(either as commensals or pathogens) or mycoparasites. The Entomophthoromycotina clade 515 

presents several interesting patterns. For example, our phylogenomic results confirm the non-516 

monophyly of Conidiobolus and encourage further work to reclassify this genus. One recent 517 

taxonomic effort based on a four-gene phylogeny proposed three new genera (Capillidium, 518 

Microconidiobolus, and Neoconidiobolus) to help delimitate Conidiobolus where C. thromboides 519 

was suggested in the Neoconidiobolus clade (Nie et al. 2020). In addition, our results suggest 520 

Basidiobolus, a traditional member of Entomophthoromycotina, as the earliest diverging 521 

lineage within Zoopagomycota (Figs. 1a, 2a & Supplementary Figure 1). 522 

Basidiobolus has been characterized as a “rogue” taxon and is often found with 523 

conflicting phylogenetic placements. Using nuclear rRNA genes (18S+28S+5.8S genes), 524 
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Basidiobolus, Olpidium brassicae (a plant pathogen), and Schizangiella serpentis (a snake 525 

pathogen) were grouped together and placed at the earliest diverging branch within 526 

Zoopagomycota (White et al. 2006). In a separate study using four genes (nuclear 18S and 28S 527 

rDNA, mitochondrial 16S, and RPB2), Basidiobolus was suggested as the earliest diverging 528 

member of Entomophthoromycotina (Gryganskyi et al. 2012). The recent genome-scale study 529 

based on 192 conserved orthologous proteins favored the Basidiobolus placement in 530 

Entomophthoromycotina as well (89/100 bootstrap support) (Spatafora et al. 2016). 531 

Interestingly, a recent genome-scale phylogenetic study examining the entire Kingdom Fungi 532 

found that Basidiobolus formed a sister clade to Mucoromycota instead of joining 533 

Zoopagomycota (Li et al. 2021). In the present study, we included the largest collection of 534 

zygomycete genomes to date and employed the newly released 758 “fungi_odb10” markers. 535 

The results suggested that Basidiobolus formed their own group within Zoopagomycota as the 536 

earliest diverging lineage (with 100/100 bootstrap, Supplementary Figure 1). The complexity of 537 

Basidiobolus is also evidenced by their enriched secondary metabolite genes, regionally 538 

duplicated genomes, and broad range of potential hosts including insects, amphibians, reptiles, 539 

and human beings (Henk and Fisher 2012; Tabima et al. 2020). This may explain the sources of 540 

phylogenetic conundrums that we have encountered in the last decades using different 541 

molecular markers. The natural history of Basidiobolus may not be easily resolved until an 542 

appropriate approach can be carried out to parse their complex genome composed of 543 

redundant genes from various sources, such as large-scale gene duplications or horizontal gene 544 

transfers. In addition, the kingdom-wide comparison helped discover many unique genome 545 
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components in Basidiobolus, including the ones featured in Mucoromycota clades (e.g., CotH 546 

and MMPL), which will be discussed in the following sections. 547 

 548 

Divergent evolution of zygomycete fungi 549 

We were able to identify different sets of gene content and Pfam domains favored by 550 

each of the zygomycete phyla, which well correspond to their disparate lifestyles (Figs. 3 & 4). 551 

As suggested by the presence of both Pil1 and SUR7 domains, eisosome-mediated endocytosis 552 

and related active transportation are important facilitators to saprotrophic Mucoromycota 553 

fungi (Walther et al. 2006). Among the 70 Mucoromycota-featured domains (Fig. 4 and 554 

Supplementary Table 3), DENN, uDENN, and dDENN also serve as regulators during eukaryotic 555 

membrane trafficking events (Zhang et al. 2012). This implies that Mucoromycota fungi are able 556 

to transport particles via membrane trafficking domains, while Zoopagomycota fungi, as 557 

animal-associated microbes, may use different mechanisms. Noteworthy, the Pox_ser-thr_kin, 558 

a poxvirus serine/threonine protein kinase, specifically identified in Mucoromycota genomes 559 

(Fig. 4 and Supplementary Table 3) indicates that large DNA viruses are embedded in 560 

Mucoromycota genomes (Jacob et al. 2011). Mycoviruses have been extensively studied in 561 

Dikarya fungi, especially for plant pathogens (Ghabrial et al. 2015; Marzano et al. 2016). The 562 

existence of mycoviruses among early-diverging fungi have not been examined until recently, 563 

which led to the discovery of a fungal–bacterial-viral system in the plant pathogenic Rhizopus 564 

microsporus (Espino-Vázquez et al. 2020) and RNA mycoviruses in roughly one fifth laboratory 565 

cultures of early diverging fungal lineages (Myers et al. 2020). Our preliminary analyses suggest 566 

that Mucoromycota members contain genomic hallmarks that interact with both bacteria 567 
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(MMPL domain, Fig. 2e) and viruses (Pox_ser-thr_kin domain, Supplementary Table 3). The 568 

“mycobacterial membrane protein large transporter” domain is well represented in all three 569 

subphyla of Mucoromycota as well as Basidiobolus (Fig. 2e) with the fact that fungal-bacterial 570 

interactions have been well documented in these lineages (Uehling et al. 2017; Desirò et al. 571 

2018; Chang et al. 2019; Bonfante and Venice 2020; Tabima et al. 2020).  Although the TLD 572 

domain universally presents in almost all fungal lineages (except Wallemia ichthyophaga), the 573 

exceptionally large number of TLD domains identified in Glomeromycotina members are 574 

unusual (Fig. 2c). It implies that TLD and related oxidation resistance proteins serve important 575 

functions to protect these arbuscular mycorrhizal fungi from reactive oxygen species (Blaise et 576 

al. 2012). 577 

Zoopagomycota, on the other hand, do not have exclusive Pfam domains, even though 578 

many domains are highly enriched suggesting important functions. Tyrosinase is a good 579 

example. Tyrosinase domains have well-recognized functions to synthesize melanin via the 580 

amino acid L-tyrosine in melanosomes. Melanin is important to protect organisms from diverse 581 

biotic and abiotic factors, including helping microbes counteract the attacks from host immune 582 

systems, specifically by neutralizing reactive oxygen species or other harmful molecules 583 

(Cordero and Casadevall 2020). As such, it is not surprising to find that Zoopagomycota fungi, 584 

especially the insect-associated ones, maintain a large number of melanin synthetic enzymes 585 

presumably helping them evade host immune responses. Trypsin is another Pfam domain 586 

featured in Zoopagomycota (Fig. 4). Trypsin domains catalyze the hydrolysis of peptide bonds 587 

and break proteins into smaller pieces, which is extremely active in digestive systems. We 588 

discovered up to 59 copies (in Smittium culicis) of Trypsin domain in the insect gut-dwelling 589 
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fungi (Harpellales, Kickxellomycotina). Interestingly, insect pathogenic species in 590 

Entomophthoromycotina were found heavily relying on hydrolases with 204 copies of Trypsin 591 

domains in Zoophthora radicans alone (43-138 copies in other Entomophthoromycotina 592 

members), while other zygomycete lineages maintain 0-18 copies variously (Fig. 5e). Trypsin 593 

and Trypsin-like proteases have been studied in insects and entomopathogenic fungi for 594 

decades (Paterson et al. 1993; Dubovenko et al. 2010; Lazarević and Janković-Tomanić 2015). 595 

Results suggest that the Trypsin and Trypsin-like proteins are important for nutritional uptake 596 

and pathogenic processes of insect-associated fungi, which was also suggested with the 597 

potential to help develop new agents to control pest insects (Borges-Veloso et al. 2015; 598 

Lazarević and Janković-Tomanić 2015). The abundance of Trypsin domains identified in 599 

Zoopagomycota suggests that the expansion of Trypsin across fungal tree of life have occurred 600 

more than once (e.g., Ascomycota and Zoopagomycota) (Dubovenko et al. 2010). In addition, 601 

the emergence and detailed evolutionary patterns of Trypsin and Trypsin-like proteins in 602 

Ascomycota, Zoopagomycota, and insects deserve further examination. Many polysaccharides 603 

and protein degrading enzymes were also found expanded in Zoopagomycota, such as 604 

LPMO_10, Glyco_hydro_72 (PF03198), and Peptidase_M36 (PF02128) (Fig. 4), suggesting their 605 

important functions during the interactions of Zoopagomycota fungi with small animals or 606 

other fungi. The fungalysin metallopeptidase (Peptidase_M36) and the associated 607 

fungalysin/thermolysin propeptide motif (FTP, PF07504) were both found expanded in the 608 

obligate mycoparasite Syncephalis (Lazarus et al. 2017). Both domains may help mycoparasites 609 

inhibit peptidases produced by the hosts, but their exact function has not been clearly known 610 

(Markaryan et al. 1996; Finn et al. 2016). Interestingly, the BATS domain involved in the biotin 611 
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and thiamin synthesis is found absent in Kickxellomycotina and Zoopagomycotina members 612 

(Fig. 2d). Both subphyla are short for available cultures, which is especially the case for the 613 

animal associated species. The inability to synthesize biotin and thiamin may be one of the 614 

culprits for the unsuccessful culture establishment in the lab. Supplementary biotin and thiamin 615 

could be suggested for future efforts on development of new cultures in these fungal lineages.   616 

 617 

Human infectious diseases caused by zygomycete fungi 618 

Mucormycosis is a deadly human-infectious disease usually caused by Rhizopus, Mucor, 619 

and Lichtheimia. The current COVID-19 pandemic has triggered multiple cases of Mucormycosis 620 

in susceptible patients (Garg et al. 2021; Revannavar et al. 2021). The CotH was originally 621 

identified in bacteria as a spore-coat protein. It was later found in Mucorales fungi and 622 

identified as a potential invasin factor of the human-infectious Mucormycosis. The CotH was 623 

suggested to be directly involved in interactions between Mucorales pathogens and human 624 

endothelial cells (Chibucos et al. 2016). Our comparative genomic analyses provided a broader 625 

survey of CotH leading to discoveries of novel CotH families in Mucoromycotina strains and 626 

unexpected fungal lineages (Basidiobolus, Mortierellomycotina, and Neocallimastigomycota). 627 

CotH was maintained by almost every member of Mucoromycotina except the early-diverging 628 

taxa—Calcarisporiella thermophila and Bifiguratus adelaidae. Unexpectedly, all members of 629 

Mortierellomycotina were also able to code CotH domains with the same or highly similar 630 

pathogenic motif “MGQTNDGAYRDPTDNN”, which was proposed as a key factor for 631 

Mucormycosis. This implies that the included Mortierellomycotina taxa (Dissophora ornate, 632 

Lobosporangium transversle, and Mortierella species) may be facultative pathogens or have the 633 
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potential to cause Mucormycosis or related human-infectious diseases if treated without 634 

caution. The results are informative to guide clinical practice as Mucormycosis may arise from 635 

many previously less documented situations, including the injuries during the natural disasters, 636 

unconscious contact, and triggered by other diseases like Novel Coronavirus Pneumonia 637 

(caused by COVID-19) (Neblett Fanfair et al. 2012; Revannavar et al. 2021). Basidiobolus is the 638 

only Zoopagomycota member that encodes CotH, albeit the copy number is low. On the other 639 

hand, Neocallimastigomycota members produce surprisingly high numbers of CotH domains 640 

with the largest duplication event (Fig. 6b). It is not clear why anaerobic gut fungi maintain so 641 

many CotH copies since they serve as primary plant polysaccharide degraders and do not pose 642 

any identifiable harm to their mammal hosts. Phylogenetic analyses suggest that CotH domains 643 

in fungi can be classified into at least seven major groups (ZyGo-A, B, C, D, and three AGF 644 

groups; Fig. 6a). The ZyGo-A is the only clade containing all known Mucormycosis invasin 645 

factors (i.e., CotH 2 and CotH 3) where Mortierellomycotina members are tightly clustered 646 

(Chibucos et al. 2016). The members in ZyGo-A, Mucoromycotina and Mortierellomycotina, 647 

should both have the potential to cause Mucormycosis. 648 

There are additional emerging pathogens in Zoopagomycota. For example, members of 649 

the entomophthoralean fungi can cause infection in both insects and mammals, not only in 650 

immunocomprised patients, but also reported from immunocompetent individuals due to 651 

insect bites or other undetermined environmental contacts, especially in tropical and 652 

subtropical regions (Vilela and Mendoza 2018). Basidiobolus and Conidiobolus are two 653 

additional agents of human skin, subcutaneous, and gastrointestinal infections (Khan et al. 654 

2001; Shaikh et al. 2016). Basidiobolus can be isolated from various types of environments, 655 
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including soils or leaf litters, dung of frogs or lizards, and various insects (e.g., mosquitoes, 656 

mites, springtails) (Lyon et al. 2001; Garros et al. 2008; Manning and Callaghan 2008; Werner et 657 

al. 2012). Recently, people also found that Basidiobolus can infect human eyes (Tananuvat et al. 658 

2018; Vilela and Mendoza 2018). The two CotH copies identified in Basidiobolus genomes may 659 

be involved in the pathogenic processes. Conidiobolus, however, do not maintain CotH copies, 660 

suggesting that Conidiobolus may take different strategies to infect mammalian hosts. Our 661 

comparative genomic analyses provided a broader view regarding the molecular mechanism of 662 

human-infectious zygomycete fungi. As the quick accumulation of genomic resources for this 663 

fungal lineage, a detailed natural history and complete pathogenic pathways should be 664 

revealed in the near future. 665 

Our combination of phylogenomic and comparative genomic study of zygomycete fungi 666 

provided a fresh view of the phylogenetic relationships within the group. Multiple lineage-667 

specific genome contents were revealed to help understand their cryptic ecology and 668 

relationships with other organisms in the environment. The unexpected findings of CotH in 669 

Mortierellomycotina, Basidiobolus, and Neocallimastigomycota proved the effectiveness of 670 

comparative genomics to predict biology of understudied organisms and the importance of 671 

fungal studies in the era of global climate change. The presented results may be applied to 672 

prevent further damage caused by the human-infectious Mucormycosis. 673 

 674 
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FIGURE LEGEND: 946 

Figure 1: Phylogenetic relationships and genome statistics of zygomycete fungi. (a) The 947 

maximum-likelihood tree was inferred from a phylogenomic dataset of 617 protein sequences 948 

identified in the included 181 genomes. Branches and tip labels of Mucoromycota and 949 

Zoopagomycota were colored in green and red separately. The bootstrap supports are 950 

indicated on each node relatively. Tracks from the inside to outside are mapped based on the 951 

BUSCO scores, protein-coding gene numbers, and genome size of included zygomycete fungi 952 

(detailed bootstrap values and branch lengths are shown in Supplementary Figure 1). (b) The 953 

density of protein-coding genes in each genome was plotted using genome sizes on the x-axis 954 

against the gene counts on the y-axis. Each dot was colored based on their phylogenetic 955 

placement shown in the legend. 956 

 957 

Figure 2: Phylogenetic backbone and highlighted genome content in zygomycete fungi. 958 

Zygomycetes genomes that are well assembled (BUSCO score above 80%) and represent unique 959 

phylogenetic positions were selected to reconstruct the backbone phylogenomic tree. (a) The 960 

backbone phylogenomic tree of zygomycetes includes 80 taxa (rooted with Drosophila 961 

melanogaster). All bootstrap values (out of 100) were labeled on the branches. (b-e) Protein 962 

family domains found with striking patterns in zygomycete fungi are plotted with the copy 963 

numbers individually. 964 

 965 

Figure 3: Absence and presence of orthologous gene families across the Kingdom Fungi. 966 

Orthologous gene families were examined in the genomes included in the backbone tree. The 967 
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8,208 gene families were found present in at least 10 of the 80 taxa and thus included to 968 

examine the absence/presence pattern of genome content among different fungal lineages (a 969 

complete map showing the unfiltered 62,689 gene families was included in Supplementary 970 

Figure 2).  971 

 972 

Figure 4: Protein family (Pfam) domains with differentiated enrichment in Mucoromycota or 973 

Zoopagomycota. Each dot represents a Pfam domain found in zygomycete fungi. The x-axis is 974 

the binary logarithm of the Pfam copy ratios between Zoopagomycota and Mucoromycota, and 975 

the y-axis is used to rank the Pfam domains in alphabetical order. The Pfam domains enriched 976 

in Mucoromycota are shown on the left side in cyan color, and the Zoopagomycota enriched 977 

ones are on the right side in red color. The bubbles (Pfam domains) with bigger sizes are shared 978 

by more zygomycetes members. The Pfam domains aligned on the left edge are domains only 979 

found in Mucoromycota and absent in Zoopagomycota. The domains discussed in the text were 980 

labeled with the Pfam name. A detailed chart including the names and ratios of all Pfam 981 

domains are also provided (Supplementary Table 3). 982 

 983 

Figure 5: Subphylum-level distribution of six Pfam domains that may contribute to the 984 

divergent evolution of zygomycete fungi. The scales on each axis of the radar plots indicate the 985 

average copy number of the domain in each subphylum. (a-c) Pfam domains shared in all 986 

Mucoromycota subphyla and absent in the entire Zoopagomycota. (d-f) Distinct Pfam domains 987 

in Zoopagomycota subphyla and largely missing in Mucoromycota. 988 

 989 
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Figure 6: Phylogenetic analysis and evolution of CotH in Kingdom Fungi. (a) The 754 fungal 990 

CotH copies were identified from Mortierellomycotina (brown), Mucoromycotina (black), 991 

Basidiobolus (blue), and Neocallimastigomycota (red). The CotH phylogenetic tree was midpoint 992 

rooted and reconstructed using the maximum likelihood method with bootstrap supports (out 993 

of 100) labeled on each branch. The analysis included previously classified CotH families 1-5 994 

(pink) to help categorize newly identified fungal CotH. (b) Reconstruction of CotH evolution in 995 

Kingdom Fungi with Notung. CotH copies identified in each genome were plotted at tree tips 996 

with proportional sizes. Nodes with more than 10 duplication events were highlighted with red 997 

bubbles and labelled with duplication (“D”) and loss (“L”) events. Node abbreviation: Muco, 998 

Mucoromycotina; Mort, Mortierellomycotina; Zoop, Zoopagomycotina. 999 
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Paramicrosporidium_saccamoebae_KSL3_v6

Gongronella_butleri_CBS_227_36

Conidiobolus_incongruus_B7586

Syncephalastrum_monosporum_B8922

Mortierella_verticillata_NRRL_6337

Malassezia_globosa

Lobosporangium_transversale_NRRL_3116

Microbotryum_violaceum_p1A1_Lamole

Drosophila_melanogaster.vr6.04

Coprinopsis_cinerea_okayama7_130

Amylomyces_rouxii_NRRL_5866

Bifiguratus_adelaidae_AZ0501
Calcarisporiella_thermophila_CBS279

Neolecta_irregularis_DAH-1.v1

Umbelopsis_ramanniana_AG_#

Rhizophagus_irregularis_A1

D140 / L0

D12 / L0

D16 / L0

D21 / L1

D35 / L7

D11 / L4

D13 / L2

D14 / L43

D25 / L10

(a)

(b)

Dikarya

Mucoromycota

Zoopagomycota

Neocallimastigomycota

Mort

Muco

Zoop

Fungi
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Table 1. List of 131 zygomycete fungi included in the current phylogenetic and comparative genomics study 

Phylum Subphylum Species 
BUSCO 

Score (%)  

Genome 

Size (Mb) 

Gene 

Count 
Source Accession/WebPortal Reference 

Mucoromycota Mucoromycotina Absidia_padenii_NRRL_2977 95.5 34 13495 JGI 

https://mycocosm.jgi.doe.go

v/Chlpad1/ Chang et al. (in review) 

Mucoromycota Mucoromycotina Absidia_repens_NRRL_1336 95.9 46 14919 JGI MCGE00000000.1 Mondo SJ et al., 2017 

Mucoromycota Mucoromycotina Amylomyces_rouxii_NRRL_5866 95.5 45 14619 JGI 

https://mycocosm.jgi.doe.go

v/Amyrou1/  Unpublished & use with permission 

Mucoromycota Mucoromycotina Apophysomyces_elegans_B7760 95.9 38 9584 UMD JNDQ00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Apophysomyces_trapeziformis_B9324 96.5 35 9542 UMD JNDP00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Backusella_circina_FSU_941 93.8 49 17039 JGI 

https://mycocosm.jgi.doe.go

v/Bacci1/ Amses et al. (in review) 

Mucoromycota Mucoromycotina Benjaminiella_poitrasii_RSA_903 97.9 32.5 11659 JGI JAMKHW000000000.1 This study 

Mucoromycota Mucoromycotina Bifiguratus_adelaidae_AZ0501 96.2 19 5719 GenBank MVBO00000000.1  Torres-Cruz, T. J. et al. 2017 

Mucoromycota Mucoromycotina Blakeslea_trispora_NRRL_2456 93.1 38 11687 JGI 

https://mycocosm.jgi.doe.go

v/Blatri1/  Chang et al. (in review) 

Mucoromycota Mucoromycotina Calcarisporiella_thermophila_CBS279.70 94.8 28 11703 JGI 

https://gb.fungalgenomics.c

a/portal/  Chang et al. (in review) 

Mucoromycota Mucoromycotina Choanephora_cucurbitarum_NRRL2744_50 93.8 35 11534 JGI 

https://mycocosm.jgi.doe.go

v/Chocucu1/ Chang et al. (in review) 

Mucoromycota Mucoromycotina Circinella_umbellata_NRRL_1351 95.8 51 14693 JGI 

https://mycocosm.jgi.doe.go

v/Cirumb1/ Chang et al. (in review) 

Mucoromycota Mucoromycotina Cokeromyces_recurvatus_NRRL_2243.0 93.8 28 10916 JGI 

https://mycocosm.jgi.doe.go

v/Cokrec1/ Chang et al. (in review) 

Mucoromycota Mucoromycotina Cunninghamella_bertholletiae_175 94.8 31 14220 UMD JNEG00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Cunninghamella_bertholletiae_B7461 94.5 31 9542 UMD JNEL00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Cunninghamella_echinulata_NRRL_1382 91.1 29 10443 JGI 

https://mycocosm.jgi.doe.go

v/Cunech1/ Chang et al. (in review) 

Mucoromycota Mucoromycotina Cunninghamella_elegans_B9769 94.2 31 8693 UMD JNDR00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Dichotomocladium_elegans_RSA_919 91.4 40 12396 JGI 

https://mycocosm.jgi.doe.go

v/Dicele1/ Chang et al. (in review) 

Mucoromycota Mucoromycotina Endogone_sp_FLAS_59071 77.3 95.6 9366 JGI RBNK00000000.1 Chang Y et al., 2019 

Mucoromycota Mucoromycotina Fennellomyces_sp_T-0311 95.9 46 14128 JGI JALLLT000000000.1 This study 

Mucoromycota Mucoromycotina 

Gilbertella_persicaria_var._persicaria_CBS_

190.32-T 95.2 26 10992 JGI 

https://mycocosm.jgi.doe.go

v/Gilper1/ Chang et al. (in review) 

Mucoromycota Mucoromycotina Gongronella_butleri 93.4 33 11004 JGI 

https://mycocosm.jgi.doe.go

v/Gonbut1/ Chang et al. (in review) 

Mucoromycota Mucoromycotina Halteromyces_radiatus_CBS_162.75 95.5 26 10175 JGI https://mycocosm.jgi.doe.go Chang et al. (in review) 
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v/Halrad1/ 

Mucoromycota Mucoromycotina Helicostylum_pulchrum_RSA_2064 97.3 33 12794 JGI 

https://mycocosm.jgi.doe.go

v/Helpul1/ Chang et al. (in review) 

Mucoromycota Mucoromycotina Hesseltinella_vesiculosa_NRRL_3301 94.4 27 11141 JGI 

http://genome.jgi.doe.gov/

Hesve2finisherSC  Mondo SJ et al., 2017 

Mucoromycota Mucoromycotina Jimgerdemannia_flammicorona_GMNB39 72.1 239.6 13535 JGI RBNJ00000000.1 Chang Y et al., 2019 

Mucoromycota Mucoromycotina Jimgerdemannia_lactiflua_OSC166217 59.7 179.7 12651 JGI RBNI00000000.1 Chang Y et al., 2019 

Mucoromycota Mucoromycotina Jimgerdemmania_flammicorona_AD002 66.9 231.3 13726 JGI RQIL00000000.1 Chang Y et al., 2019 

Mucoromycota Mucoromycotina Lichtheimia_corymbifera_008-049 94.1 36 19506 UMD JNEE01000000.1  Chibucos MC et al., 2015 

Mucoromycota Mucoromycotina Lichtheimia_corymbifera_B2541 94.8 36 9607 UMD JNEU00000000.1 Chibucos MC et al., 2015 

Mucoromycota Mucoromycotina Lichtheimia_hyalospora_FSU_10163 95.1 33 12062 JGI PTRB00000000.1 This study 

Mucoromycota Mucoromycotina Lichtheimia_ramosa_B5399 95.1 45 14426 UMD JNDO00000000.1 Chibucos MC et al., 2015 

Mucoromycota Mucoromycotina Lichtheimia_ramosa_B5792 94.9 42 13483 UMD JNEP00000000.1 Chibucos MC et al., 2015 

Mucoromycota Mucoromycotina Mucor_ambiguus_NBRC_6742 97.2 40.7 11343 GenBank BBKB00000000.1 Lebreton et al., 2020 

Mucoromycota Mucoromycotina Mucor_circinelloides_B8987 98.3 36 10295 UMD JNDM00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Mucor_circinelloides_CBS277.49 97.3 36 11719 JGI 

https://mycocosm.jgi.doe.go

v/Muccir1_3/ Navarro-Mendoza et al., 2019 

Mucoromycota Mucoromycotina Mucor_indicus_B7402 96.6 39 11544 UMD JNEK00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Mucor_mucedo_NRRL_3635 96.9 45 14052 JGI JALPTJ000000000.1 This study 

Mucoromycota Mucoromycotina Mucor_racemosus_B9645 97.6 64 14961 UMD JNEI00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Mucor_velutinosus_B5328 97.3 35 9855 UMD JNDK00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Mycotypha_africana_NRRL_2978 94.5 29 10917 JGI 

https://mycocosm.jgi.doe.go

v/Mycafr1/ Chang et al. (in review) 

Mucoromycota Mucoromycotina Parasitella_parasitica 96.6 33 12306 JGI JALLKT000000000.1 This study 

Mucoromycota Mucoromycotina Phascolomyces_articulosus 95.2 48 14495 JGI 

https://mycocosm.jgi.doe.go

v/Phaart1/ Chang et al. (in review) 

Mucoromycota Mucoromycotina Phycomyces_blakesleeanus_NRRL_1555 94.5 54 16528 JGI AMYC00000000.1 Corrochano LM et al., 2016 

Mucoromycota Mucoromycotina Phycomyces_nitens_S608 92.7 38 11985 JGI 

https://mycocosm.jgi.doe.go

v/PnitS608_1/ Chang et al. (in review) 

Mucoromycota Mucoromycotina Pilaira_anomala_RSA1997 96.5 35 12817 JGI 

https://mycocosm.jgi.doe.go

v/Pilano1/ Chang et al. (in review) 

Mucoromycota Mucoromycotina Pilobolus_umbonatus_NRRL_6349 96.5 35 10983 JGI 

https://mycocosm.jgi.doe.go

v/Pilumb1/ Chang et al. (in review) 

Mucoromycota Mucoromycotina Radiomyces_spectabilis_NRRL_2753 95.2 30 10905 JGI JALLLU000000000.1 This study 

Mucoromycota Mucoromycotina Rhizomucor_variabilis_B7584 96.2 33 11811 UMD JNES00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Rhizopus_delemar_99-880 96.2 46 20770 JGI AACW00000000.2 

Chibucos MC et al., 2016 & Ma LJ et 

al. 2009 (reannotated) 
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Mucoromycota Mucoromycotina Rhizopus_delemar_NRRL_21446 93.5 38 12034 UMD JNED00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Rhizopus_delemar_NRRL_21447 95.5 38 12216 UMD JNEC00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Rhizopus_delemar_NRRL_21477 94.5 40 12044 UMD JNEA00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Rhizopus_delemar_NRRL_21789 96.9 41 11140 UMD JNDY00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Rhizopus_microsporus_ATCC_11559 96.5 24 11355 JGI MCOJ00000000.1 Lastovetsky OA et al., 2016 

Mucoromycota Mucoromycotina Rhizopus_microsporus_B9738.N156 98.6 75 20957 GenBank JNEJ00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina 

Rhizopus_microsporus_var_chinensis_CCTC

CM201021 92.1 45 16419 JGI ANKS00000000.1 Wang D et al., 2013 

Mucoromycota Mucoromycotina 

Rhizopus_microsporus_var_rhizopodiformis

_B7455 95.2 48 18269 UMD JNER00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina 

Rhizopus_microsporus_var_microsporus_A

TCC52813 97.6 26 10905 JGI MCGZ00000000.1 Mondo SJ et al., 2017 

Mucoromycota Mucoromycotina Rhizopus_oryzae_97-1192 96.2 42 20706 UMD JNEF00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Rhizopus_oryzae_99-133 96.6 41 12373 UMD JNDX00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Rhizopus_oryzae_99-892 93.8 39 18552 UMD JNEB00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Rhizopus_oryzae_B7407 96.2 43 12151 UMD JNDL00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Rhizopus_oryzae_HUMC_02 95.1 40 12144 UMD JNDZ00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Rhizopus_oryzae_NRRL_13440 96.6 43 12077 UMD JNDU00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Rhizopus_oryzae_NRRL_18148 96.6 47 14051 UMD JNDV00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Rhizopus_oryzae_NRRL_21396 96.3 42 11967 UMD JNDW00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Rhizopus_stolonifer_B9770 95.2 38 10844 UMD JNDS00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Saksenaea_oblongisporus_B3353 95.5 40 9047 UMD JNEV00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Saksenaea_vasiformis_B4078 95.8 43 9387 UMD JNDT00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Spinellus_fusiger_NRRL_22323 91.8 38 10164 JGI JALLLS000000000.1 This study 

Mucoromycota Mucoromycotina Sporodiniella_umbellata_MES_1446 92.4 26 10781 JGI 

https://mycocosm.jgi.doe.go

v/Spoumb1/ Chang et al. (in review) 

Mucoromycota Mucoromycotina Syncephalastrum_monosporum_B8922 96.2 29 8910 UMD JNEN00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Syncephalastrum_racemosum_B6101 94.1 29 9019 UMD JNDN00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Syncephalastrum_racemosum_NRRL_2496 95.2 31 11124 JGI MCGN00000000.1 Mondo SJ et al., 2017 

Mucoromycota Mucoromycotina Thamnidium_elegans 97.2 34 13104 JGI 

https://mycocosm.jgi.doe.go

v/Thaele1/ Chang et al. (in review) 

Mucoromycota Mucoromycotina Umbelopsis_isabellina_B7317 95.2 22 7504 UMD JNEQ00000000.1 Chibucos MC et al., 2016 

Mucoromycota Mucoromycotina Umbelopsis_ramanniana_AG_# 97.3 23 9931 JGI 

http://genome.jgi.doe.gov/

Umbra1  Amses et al. (in review) 

Mucoromycota Mucoromycotina Umbelopsis_sp._nov._AD052 94.4 23 9369 JGI 

https://mycocosm.jgi.doe.go

v/Umbsp_AD052_1/ Chang et al. (in review) 
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Mucoromycota Mucoromycotina Zychaea_mexicana_RSA_1403 94.1 51 14004 JGI 

https://mycocosm.jgi.doe.go

v/Zycmex1/ Chang et al. (in review) 

Mucoromycota Mortirellomycotina Dissophora_ornata_CBS_347.77 95.2 39 12584 JGI 

https://mycocosm.jgi.doe.go

v/Disorn1/ Chang et al. (in review) 

Mucoromycota Mortirellomycotina Lobosporangium_transversale_NRRL_3116 94.5 43 11822 JGI MCFF00000000.1 Mondo SJ et al., 2017 

Mucoromycota Mortirellomycotina Mortierella_alpina_B6842.N164 94.8 39 10977 UMD AZCI00000000.1 Etienne KA et al., 2014 

Mucoromycota Mortirellomycotina Linnemannia_elongata_AG-77 94.5 50 14969 JGI LYLZ00000000.1 Uehling J et al., 2017 

Mucoromycota Mortirellomycotina Podila_humilis_PMI_1414 86.5 36 12012 JGI 

https://mycocosm.jgi.doe.go

v/Morhum1/ Chang et al. (in review) 

Mucoromycota Mortirellomycotina Gamsiella_multidivaricata_RSA_2152 94.1 38 12248 JGI 

https://mycocosm.jgi.doe.go

v/Mormul1/ Chang et al. (in review) 

Mucoromycota Mortirellomycotina Benniella_erionia_GBAus27b 93.1 44 13953 JGI 

https://mycocosm.jgi.doe.go

v/MorGBAus27b_1/ Chang et al. (in review) 

Mucoromycota Mortirellomycotina Podila_verticillata_NRRL_6337 95.1 42 12569 

Broad 

Institute AEVJ00000000.1 Vandepol et al., 2020 

Mucoromycota Glomeromycotina Gigaspora_rosea 95.5 568 31291 JGI QKWP00000000.1 Morin E et al., 2019 

Mucoromycota Glomeromycotina Rhizophagus_cerebriforme_DAOM_227022 94.2 137 21549 JGI QKYT00000000.1 Morin E et al., 2019 

Mucoromycota Glomeromycotina Rhizophagus_diaphanus 94.1 126 23252 JGI QZLH00000000.1 Morin E et al., 2019 

Mucoromycota Glomeromycotina Rhizophagus_irregularis_A1 87.9 126 26659 JGI LLXH00000000.1 Chen ECH et al., 2018 

Mucoromycota Glomeromycotina Rhizophagus_irregularis_A4 87.2 138 25760 JGI LLXI00000000.1 Chen ECH et al., 2018 

Mucoromycota Glomeromycotina Rhizophagus_irregularis_A5 87.6 132 26585 JGI LLXJ00000000.1 Chen ECH et al., 2018 

Mucoromycota Glomeromycotina Rhizophagus_irregularis_B3 87.6 125 25164 JGI LLXK00000000.1 Chen ECH et al., 2018 

Mucoromycota Glomeromycotina Rhizophagus_irregularis_C2 87.9 123 26756 JGI LLXL00000000.1 Chen ECH et al., 2018 

Mucoromycota Glomeromycotina Rhizophagus_irregularis_DAOM_197198 87.9 137 26183 JGI AUPC00000000.1 Chen ECH et al., 2018 

Zoopagomycota Zoopagomycotina Acaulopage_tetraceros 86.9 11.2 6781 GenBank QZWU00000000.1 Davis et al. 2019 

Zoopagomycota Zoopagomycotina Cochlonema_odontosperma 72.8 16.8 8696 GenBank QZWT00000000.1 Davis et al. 2019 

Zoopagomycota Zoopagomycotina 

Piptocephalis_cylindrospora_RSA_2659_sin

gle-cell 46.9 11 4301 JGI QPFT00000000.1 Ahrendt SR et al. 2018 

Zoopagomycota Zoopagomycotina 

Piptocephalis_tieghemiana_RSA_1565_CoC

ulture 89.6 18.5 5811 UCR JAMKHV000000000.1 This study 

Zoopagomycota Zoopagomycotina Syncephalis_fuscata_S228 86.2 29 8846 JGI 

https://mycocosm.jgi.doe.go

v/Synfus1/ Amses et al. (in review) 

Zoopagomycota Zoopagomycotina Syncephalis_plumigaleata_NRRL_S24 84.4 33 8130 JGI 

https://mycocosm.jgi.doe.go

v/Synplu1/ Chang et al. (in review) 

Zoopagomycota Zoopagomycotina 

Thamnocephalis_sphaerospora_RSA_1356_

single-cell 72.4 18 6857 JGI QUVU00000000.1 Ahrendt SR et al. 2018 

Zoopagomycota Zoopagomycotina Zoopage_sp. 71.7 13.9 7844 GenBank QZWS00000000.1 Davis et al. 2019 

Zoopagomycota Zoopagomycotina Zoophagus_insidians 83.4 21 9794 GenBank QZWR00000000.1 Davis et al. 2019 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted June 27, 2022. 
; 

https://doi.org/10.1101/2022.06.24.497490
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2022.06.24.497490
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Zoopagomycota Kickxellomycotina Capniomyces_stellatus_MIS-10-108 78.2 25 6649 GenBank LUVW00000000.1 Wang et al., 2016a 

Zoopagomycota Kickxellomycotina Coemansia_mojavensis_RSA_71 93.4 14 6859 JGI 

https://mycocosm.jgi.doe.go

v/Coemoj1/ Chang et al. (in review) 

Zoopagomycota Kickxellomycotina Coemansia_reversa_NRRL_1564 93.8 22 7347 JGI JZJC00000000.1 Chang Y et al., 2015 

Zoopagomycota Kickxellomycotina Coemansia_spiralis_RSA_1278 93.5 19 7247 JGI 

https://mycocosm.jgi.doe.go

v/Coespi1/ Chang et al. (in review) 

Zoopagomycota Kickxellomycotina 

Dimargaris_cristalligena_RSA_468_single-

cell 88.3 31 7456 JGI QRFA00000000.1 Ahrendt SR et al., 2018 

Zoopagomycota Kickxellomycotina Furculomyces_boomerangus_AUS-77-4 87.6 28 7338 GenBank MBFT00000000.1 Wang et al., 2018 

Zoopagomycota Kickxellomycotina Kickxella_alabastrina_RSA_675 82.4 22 7475 JGI 

https://mycocosm.jgi.doe.go

v/Kicala1/ Chang et al. (in review) 

Zoopagomycota Kickxellomycotina Linderina_pennispora_ATCC_12442 76.6 26 9351 JGI MCFD00000000.1 Mondo SJ et al., 2017 

Zoopagomycota Kickxellomycotina Martensiomyces_pterosporus_CBS_209.56 95.1 20 8435 JGI 

http://genome.jgi.doe.gov/

Marpt1  Amses et al. (in review) 

Zoopagomycota Kickxellomycotina Ramicandelaber_brevisporus_CBS_109374 89 26 9281 JGI 

http://genome.jgi.doe.gov/R

ambr1  Amses et al. (in review) 

Zoopagomycota Kickxellomycotina Smittium_angustum_AUS-126-30 86.9 28 7385 GenBank MBFU00000000.1 Wang et al., 2018 

Zoopagomycota Kickxellomycotina Smittium_culicis_GSMNP 82.4 77 11209 JGI LSSN00000000.1 Wang et al., 2016b 

Zoopagomycota Kickxellomycotina Smittium_culicis_ID-206-W2 79.7 71 10024 JGI LSSM00000000.1 Wang et al., 2016b 

Zoopagomycota Kickxellomycotina Smittium_megazygosporum_SC-DP-2 78 44 7132 GenBank MBFS00000000.1 Wang et al., 2018 

Zoopagomycota Kickxellomycotina Smittium_mucronatum_ALG-7-W6 77.6 102 8712 JGI LSSL00000000.1 Wang et al., 2016b 

Zoopagomycota Kickxellomycotina Smittium_simulii_SWE-8-4 77.3 44 6519 GenBank MBFR00000000.1 Wang et al., 2018 

Zoopagomycota Kickxellomycotina Zancudomyces_culisetae_COL-18-3 78.6 29 7387 JGI LSSK00000000.1 Wang et al., 2016b 

Zoopagomycota Entomopthoromycotina Basidiobolus_heterosporus_B8920 74.1 47 8992 UMD JNET00000000.1 Chibucos MC et al., 2016 

Zoopagomycota Entomopthoromycotina Basidiobolus_meristosporus_B9252 91.3 101 13034 UMD JNEO00000000.1 Chibucos MC et al., 2016 

Zoopagomycota Entomopthoromycotina Basidiobolus_meristosporus_CBS_931.73 95.5 87 16111 JGI MCFE00000000.1 Mondo SJ et al., 2017 

Zoopagomycota Entomopthoromycotina Conidiobolus_coronatus_NRRL_28638 84.9 40 10635 JGI JXYT00000000.1 Chang Y et al., 2015 

Zoopagomycota Entomopthoromycotina Conidiobolus_incongruus_B7586 92.1 93 16001 UMD JNEM00000000.1 Chibucos MC et al., 2016 

Zoopagomycota Entomopthoromycotina Conidiobolus_thromboides_FSU_785 84.4 25 8867 JGI 

http://genome.jgi.doe.gov/C

onth1 Amses et al. (in review) 

Zoopagomycota Entomopthoromycotina Entomophthora_muscae_Berkeley 67.6 1.2Gb 22505 GenBank QTSX00000000 Elya et al., 2018 

Zoopagomycota Entomopthoromycotina Zoophthora_radicans_ATCC_208865 90 655.2 14479 JGI 

https://mycocosm.jgi.doe.go

v/Zoorad1/ Amses et al. (in review) 
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Table 2. Summary of phylum-level and subphylum-level lineage-specific genes and Pfam domains in zygomycete fungi  

  

Phylum-level (>10 taxa) Subphylum-level (>1 taxa) 

Mucoromycota Zoopagomycota Mucoromycotina Mortierellomycotina Glomeromycotina Kickxellomycotina Entomorphthoromycotina Zoopagomycotina 

lineage-specific genes 171 9 7779 2742 5572 1706 2209 1186 

Pfam domains 2 0 32 11 24 0 5 1 
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