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Abstract

Brain disorders are leading causes of disability worldwide. Gene expression studies provide
promising opportunities to better understand their etiology. When studying bulk tissue, cellular
diversity may cause many genes that are differentially expressed in cases and controls to
remain undetected. Furthermore, identifying the specific cell-types from which association
signals originate is key to formulating refined hypotheses of disease etiology, designing proper
follow-up experiments and, eventually, developing novel clinical interventions. Cell-type effects
can be deconvoluted statistically from bulk expression data using cell-type proportions
estimated with the help of a reference panel. To create a fine-grained reference panel for the
human prefrontal cortex, we analyzed data from the seven largest single nucleus RNA-seq
(snRNA-seq) studies. Seventeen cell-types were robustly detected across all seven studies. To
estimate the cell-type proportions, we proposed an empirical Bayes estimator that is suitable for
the new panel that involves multiple low abundant cell-types. Furthermore, to avoid the use of a
very large reference panel and prevent challenges with public access of nuclei level data, our
estimator uses a panel comprising mean expression levels rather than the nuclei level s,RNA-
seq data. Evaluations show that our empirical Bayes estimator produces highly accurate and
unbiased cell-type proportion estimates. Transcriptome-wide association studies performed with
permuted bulk RNA-seq data showed that it is possible to perform TWASs for even the rarest
cell-types without an increased risk of false positives. Furthermore, we determined that for
optimal statistical power the best approach is to analyze all cell-types in the panel as opposed to

grouping or omitting (rare) cell-types.
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Introduction

Brain disorders such as mood disorders, dementias, stress related disorders,
neurodevelopmental disorders, seizure disorders, and addictions are leading causes of disability
worldwide'. Gene expression studies provide promising opportunities to better understand their
etiology. The human brain comprises multiple types of excitatory and inhibitory neurons as well
as glia cells such as astrocytes, oligodendrocytes, and microglia®®. As cells differ in their
functions, gene expression will typically also vary across these cell-types. When studying bulk
tissue, this cellular diversity may cause many genes that are differentially expressed in cases
and controls to remain undetected®. That is, association signals will be “diluted” if they affect
only one cell-type, may cancel out if they are of opposite signs across cell-types, and may be
undetectable if they involve low-abundant cells. For example, even a very large expression
difference of one standard deviation (SD) in a cell-type with a 1% frequency would be
impossible to detect in bulk tissue as the expression difference would reduce to one-hundredth
of a SD (i.e., 1%x1 SD = 0.01 SD).

Identifying the specific cell-types from which association signals originate is also critical
for scientific progress and important from a translational perspective. First, it allows formulating
refined hypotheses about disease etiology. For example, the involvement of microglia may point
to disrupted immune response and neuroinflammation of the brain®, a loss of neuronal function
may point to neurodegeneration’, and the involvement of the myelin-producing oligodendrocytes
may suggest disrupted neuronal communication®. Second, knowledge about the cell-type is
important to design proper in vitro or in vivo functional follow-up studies. Thus, as gene
expression may only be altered in specific cells, such studies require the right choice of cultured
cells or experimental tools (e.g., the use herpes simplex virus type 1 as a vector for locus-

9,10

specific editing is of primary relevance for association findings in neurons™"). Third, cell-type
knowledge is key for developing novel and effective treatments. For example, drugs often work

by interacting with receptors on the surface of cells. Receptor molecules have a specific three-
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dimensional structure, which allows only substances that fit precisely to attach to it. From a drug
development perspective, designing drugs that interact specifically with receptors from particular
cell-types is also highly desired since non-specific drugs can cause more side effects.

Single cell/nucleus RNA sequencing is a relatively new approach to study cellular
diversity. In comparison to whole cells, nuclei are more resistant to mechanical assaults and are
less vulnerable to the tissue dissociation process. This makes single nucleus RNA sequencing
(snRNA-seq) the more suitable option for frozen post-mortem brain tissue'*. With this approach
intact nuclei are first isolated and partitioned so that the content of each nucleus can be labeled
with a unique identifier. A labeled sequencing library is subsequently generated and sequenced
for each individual nucleus. Cell-type specific effects can also be deconvoluted statistically from
bulk RNA-seq data®*2. Deconvolution was introduced 20 years ago* and has been
experimentally validated using, for instance, predesigned mixtures'®. Deconvolution is most

effective when performed with a reference panel™

, typically generated from expression profiles
of the cell-types present in the target tissue from a small number of reference samples. The
reference panel is used to estimate cell-type proportions in the bulk samples, which is in turn
are used to deconvolute cell-type specific effect from the bulk data. A reference panel can be
created through expression profiling of sorted cells. However, while good nuclear protein
markers exist for sorting nuclei into broad groups of neurons and glia, there is a lack of known,
high fidelity, antigens and antibodies for further sorting subclasses of these brain cells. A better
alternative is therefore to create the reference panel from s,RNA-seq data™ that allows a fine
grained analysis of brain cell-types.

Even with the advent of s;,RNA-seq, deconvolution is likely to remain pertinent for
association studies with brain tissue. First, the vast majority of existing gene expression data
sets involves bulk samples. Deconvolution allows the (re-)use of this “legacy” data to study cell-

type specific effects. Second, once the cell-type proportions are estimated, any bulk brain data

can be deconvoluted including transcript level expression data, different types of RNA data
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(e.g., microRNA), or epigenetic data'®. In contrast, commonly used s,RNA-seq protocols are
limited to the study of mMRNAs with poly-A tail (i.e., protein coding genes and certain long non-
coding RNASs). Furthermore, s,RNA-seq studies are typically performed on a gene level. If only
specific transcripts of the gene are differentially expressed, this will weaken association signals
and result in a loss of potentially critical biological information. Third, bulk expression data
involves cytoplasm RNA from whole cells that may contain transcripts not present in the
nucleus'”'®. Thus, deconvolution may give a more complete picture of differentially expressed
genes. Fourth, deconvolution is potentially useful to validate findings from s,RNA-seq studies.
Validation with a different technology can eliminate possible false discoveries due to s,RNA-seq
specific technical artefacts and therefore allows for more rigorous conclusions.

In this study we create a novel reference panel by combining data from the seven largest
published s,RNA-seq studies in human post-mortem brain samples'®#. All brain samples were
from the prefrontal cortex, a brain region of key importance for higher level brain processes
such as cognition, emotion, and memory. To estimate the cell-type proportions, needed to
deconvolute cell-type specific effects from bulk data, we propose an estimator that is suitable for
a fine grained analysis of brain cell-types including multiple low abundant cells. Furthermore, to
avoid the use of a very large data set and prevent challenges with public access of nuclei level
data, our estimator uses a panel comprising mean expression levels rather than nuclei level
snRNA-seq data. Finally, we study how to best use this fine-grained panel to optimize power and

avoid false discoveries in empirical transcriptome-wide association studies with bulk data.

METHOD
This section summarizes the methods. Details are given in the supplemental material (e.g., S1.1
refers to section 1.1 in the supplemental material).

s,RNA-seq data sets, quality control and data processing
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We downloaded FASTQ files from seven published s,RNA-seq in post-mortem brain samples*®
2 All brain regions involved the prefrontal cortex, predominantly from Brodmann areas BAS,
BA8, BA9, BA10, and BA24. To avoid confounding the expression values in the panel by
disease processes or disease specific cell states, only the unaffected “controls” from these
datasets were used in our study.

All included studies had partitioned nuclei using the Chromium Controller (10X
Genomics) and sequenced their libraries using sequencing platforms from lllumina. We used
the cellranger®* software for aligning the reads to GRCh38 and creating a matrix of unique
molecular identified (UMI) counts (i.e., the number of unique molecules for each gene detected
in each nucleus). s,RNA-seq data primarily yields reads derived from mature spliced RNA
(mRNA), which maps to exonic regions but may also capture unspliced pre-mRNA transcripts
that can generate intronic reads®?’. As nuclei contain a relatively large fraction of pre-mRNA
molecules and such molecules are particularly abundant in brain tissue®®, to obtain a
comprehensive picture of gene expression we counted intronic reads as well®.

Next, we performed quality control (QC) on samples and nuclei using exactly the same
criteria across all studies. Specifically, we eliminated samples with very high levels of debris
(Figure S3). In addition, we removed nuclei with very low (indicating low-quality nuclei or empty
droplets) or high (indicating “multiplets” that capture expression levels of multiple nuclei) gene
and UMI counts (Figures S2 and S3). Finally, nuclei with a high percentage of reads mapping to
mitochondrial genes (possible indicating artifacts stemming from sample preparation) were
eliminated.

After QC, for each study separately the count data was log-normalized to obtain more
normal distributions and reduce effects of possible outliers. Furthermore, genes were given
equal weight by scaling the log-normalized count data to have a mean of zero and a standard
deviation of one to avoid that highly expressed genes dominate the cluster analyses.

Clustering
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To identify cell-types and cell-states, we performed a cluster analysis in Seurat®® (S.1.1). We
used analyses that "anchor" the different datasets in a shared cluster space to facilitate
integration®'. The cluster analysis was limited to the 2,000 genes that exhibited the highest
nucleus-to-nucleus variation (i.e., highly expressed in some nuclei and lowly expressed in
others)®. There are potentially a large number of donor-level variables (e.g., sex, age) and
covariates (e.g., cDNA yield, post-mortem interval, tissue pH levels, percentage of reads
aligned) that may obscure the separation of clusters. To remove this donor-level variation, we
regressed out “dummy” variables that indicated the individual samples. Furthermore, we
regressed out nuclei related QC indices (e.g., number of genes per nucleus, UMI counts per
nucleus cell, and percentage of reads mapping to mitochondrial genes).

Deconvolution

Deconvolution involves three steps. First, a reference panel**>*

is created (S1.2). To select
genes for the panel, we used MAST® that performs significance tests to identify the genes that
best discriminate between the cell-types. The expression values from the s,RNA-seq data were
scaled to have a mean of zero and variance of one for each study, and then an average
expression value was computed across all studies.

Second, the reference panel in combination with the bulk RNA-seq data is used to
estimate cell-type proportions in each bulk sample. To avoid working with a very large data set
and prevent challenges with public access of nuclei level data, our estimator uses a panel
comprising mean expression levels rather than nuclei level s,RNA-seq data. Specifically, we

I*® but estimated by empirical Bayes®’ that is more suitable for a

use the standard linear mode
fine grained analysis of brain cell-types that may involve multiple low abundant cells. The mean
and twice the standard deviation of estimates produced by fitting the same model subject to a

non-negativity constraint for the regression coefficients (i.e., the cell-type proportions) was used

as the prior distribution.
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Third, the estimated cell-type proportions are used to perform cell-type specific
association studies with bulk data, This was done by fitting, for each transcript, the
deconvolution model described elsewhere®® (S1.3). These analyses were performed using the
Bioconductor package RaMWAS®,

Demonstration bulk RNA-seq dataset

Bulk RNA-seq data was generated using tissue from BA10 of from 291 control individuals and
304 individuals that were diagnosed with a psychiatric disorder (S1.4). The RNA-seq data was
generated using the TruSeq Stranded Total RNA library kit. The sequenced reads were aligned
with HISAT2 (v.2.1.0) and transcriptome assembly was performed with StringTie®. All analyses
(i.e., cell-type proportion estimation and deconvolution analyses) regressed out the covariates:
sex and age, indicator variables to account for possible brain banks effects, and assay-related
covariates such as total number of reads and the percentage of reads aligned. Furthermore, to
account for remaining unmeasured sources of variation, six principal components (as indicted
by the scree plot) that were used as covariates after regressing out the measured covariates
from the bulk RNA-seq data.

RESULTS

Sample description and QC

In total, the seven datasets included s,RNA-seq data from 94 unaffected “control” subjects. The
sample comprised 37% females. The mean age was 61.6 years (SD=28.6 years) with the
5M/95™ percentiles of 12.7/90.0 years indicating a very broad range. The post-mortem interval
was 19.6 hours (SD=15; 5"/95™ percentile of 2.5/49.4 hours).

Table S1 lists assay related statistics. In summary, we obtained an average 65,118
reads per nucleus of which 93.6% mapped to the genome and where 78.8% of reads had
nucleus-associated barcodes. Using the same criteria for all seven studies, we quality controlled
samples and nuclei (S2.2, Figures S1-S3). Two studies had many more nuclei per donor

(34,342 and 22,831 nuclei) than the other five studies (mean 5,154 nuclei). To avoid that the
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clustering was mainly driven by these two studies, we down-sampled their nuclei to 8,562 and
8,567 to obtain an average of 5,547 nuclei (range 1,426-10,039 nuclei) across all seven studies.
After QC and down-sampling, 353,146 nuclei from 92 donors remained.

Clustering and cell-type labeling

Clustering identified 20 groups of nuclei, 17 of which were observed in all seven studies. The
three clusters that were not consistently observed were removed from further analyses. Figure 1
visualizes the cell-type clusters. To plot the clusters, which differ on many dimensions, in a two-
dimensional space we used Uniform Manifold Approximation and Projection (UMAP).

Table S2 provides for each cluster a list of standard gene expression markers with high
expression levels as well as the most frequently assigned original cell-type label in the five
studies that provided labeled nuclei. Of the 17 clusters, 14 could readily be labeled using
standard markers. Although it should be noted that only two studies attempted labeling subtypes
of broad groups of nuclei (e.g., excitatory neurons), the nuclei of the 14 clusters were
consistently labeled by the five studies that provided the original cell-type labels. These 14
clusters included one of the two clusters of oligodendrocytes (OLI.1)*, oligodendrocyte
precursor cells (OPC)*, astrocytes(AST)** and microglia (MGL)*. Four clusters of interneurons
(IN) were identified that could further be labeled based on the expression of somatostatin
(IN.SST), parvalbumin (IN.PV), vasoactive intestinal peptide (IN.VIP), and synaptic vesicle
glycoprotein 2C (IN. SV2C)*. Finally, seven groups of excitatory neurons were identified. These
neurons were further subdivided into one cluster of upper-layer (EX.UL) neurons and four
clusters of deep-layer (EX.UL1-EX.UL4) neurons all expressing FOXP2 and subsets of other
standard layer-specific markers. Furthermore, we observed neurons expressing neurogranin
(EX.NRGN).

Three clusters could not unequivocally be labeled with standard marker and were also
inconsistently labeled across the five studies that provided labels for individual nuclei. First, we

observed a cluster expressing standard markers for both endothelial cells** and pericytes®’. In
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the original studies these nuclei were labeled as endothelial cells*, pericytes ¥, or as a
combined cluster of endothelial cells and pericytes. As these nuclei most likely included both
endothelial cells and pericytes that have very similar expression profiles relative to the other
clusters in Figure 1, were labeled this cluster END/PER.

Second, albeit at relative modest levels compared to OLI.1, the second cluster of
oligodendrocytes (OLI.2) expressed standard oligodendrocytes markers MBP, PLP1, and
MOBP. In addition, we observed the expression of NRGN, CAMK2A, and CAMK2B that share a
motif with MBP potentially allowing it to be packaged together for cytoplasmic transport to
dendrites®. Three studies labeled these nuclei as oligodendrocytes and the other two studies as
neurons. Neurons can use the same packaging mechanism for cytoplasmic transport of the
RNAs to dendrites and this potentially explains the confusion about the identity of this second
group of oligodendrocytes.

Third, a cluster of EX neurons expressed only few of the markers expressed by the other
EX clusters and was inconsistently labeled with respect to cortical layer in the two studies that
labeled EX subtypes. This EX cluster expressed NRG1 at very high levels (EX. NRG1). NRG1
is expressed in multiple cell-types and best known as a gene affecting a range of psychiatric
and neurological disorders such as Alzheimer, autism and schizophrenia®*®*’. To learn more
about the identity of this cluster, we selected the ten most highly expressed genes from the
reference panel. Six of the ten genes were previously reported to be associated with a range of
psychiatric and neurological disorders. In addition to NRG1***', this included ZNF804B*®,
CDH12%, CLSTN2%**!, RIT2%, and MCTP1°. This pattern is somewhat reminiscent of so-called
Von Economo neurons (VENS) that are known to be altered in diseases such as Alzheimer,
autism, and schizophrenia®*°. VENSs are found in humans and great apes (but not other
primates), cetaceans, and elephants, and may have evolved for the rapid transmission of crucial
social information in very large brains®’. In humans, VENSs are abundant in the anterior cingulate

and frontoinsular cortices but are also present in the prefrontal cortex®. A recent study involving
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879 nuclei from frontoinsula layer 5 identified several VEN markers, but these markers were not
highly expressed in our cluster.

Cell-type proportion estimation

Table S3 shows the MAST® test results identifying 1,652 genes for the reference panel (Table
S4). The cell-type estimation procedure was first evaluated using artificial bulk data. We
generated artificial bulk data using the cell-type specific expression values from the panel in
combination with cell-type proportions that were randomly drawn from a generalized beta
distribution assuming the mean, standard deviation minimum, and maximum of the cell-type
proportions observed in our demonstration bulk RNA-seq dataset. Table 1 shows that the mean
of the estimated cell-type proportions was very close to the cell-type proportions used to
simulate the data (correlation is r=0.999) and that the estimates were unbiased with a small root
mean squared error. Furthermore, only very few of the cell-type proportions were estimated at
zero, which indicates that cell-types proportions can be estimated precisely and do not degrade
if they are rare.

Figure 2 shows that the mean of the cell-type proportion estimates in our demonstration
bulk RNA-seq dataset was highly correlated with the mean s,RNA-seq counts (r=0.994). Only
EX.NRGN showed a notable difference. Given that our simulation study yielded unbiased
estimates, this most likely reflects true biological variation between the two sample sets. As we
observed in the simulation study, the estimates had other favorable properties such as that even
for rare cell-types few estimates were estimated to be zero (average 3.2%).

The empirical Bayes estimates were slightly better than the estimates used to create its
prior distribution. Both estimates were substantially better than the standard ordinary least
squares approach® that yielded a lower correlation with the mean s,RNA-seq counts (r=0.886)
and estimated 1.4 times more cell-type proportions to be zero. We further explored whether the
estimates could be improved by using the nuclei level s,RNA-seq data rather than a panel of

mean expression values. For this we used the MuSiC** package that is specifically designed to
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work with a panel of s,RNA-seq data. We had to down-sample the number of nuclei to avoid
excessive run times. We could not replicate our previous observation that MuSiC produces
superior estimates™. In fact, correlations with s,RNA-seq counts were very poor (r=0.201)
possibly indicating convergence problems or challenges combining data from multiple studies.
Deconvolution
To study whether the distribution of the tests statistics under the null hypothesis followed the
assumed theoretical distribution, 1,000 transcriptome-wide association studies (TWASSs) where
performed after randomly permuting case-control labels. Results showed that the mean/median
lambda (ratio of the median of the observed distribution of the test statistic to the expected
median) was close to one (Figure 3). This implied the absence of test statistic inflation and that
under the null distribution accurate P values are obtained. This was true for even the rarest cell-
types suggesting that it is possible to perform TWASs on rare cell-types without an increased
risk of false positives. All lambdas obtained from TWASSs of observed data were within the 95%
confidence intervals of the lambdas observed in the permuted datasets. Although this strictly
speaking does not have to be the case, this also suggests the absence of test statistic inflation.

In the TWAS of the observed data, the number of significant results was positively
correlated with the cell-type proportions. This is most likely the result of lower power due to a
“restriction of range” as variation in low abundant cell-types is restricted at zero. We studied
whether power for these rare cell-types could be improved by grouping them with other cell-
types. For this purpose, we performed a principal components analysis (PCA) followed by
varimax rotation on the gene expression values of the panel. In addition, we studied whether
omitting rare cell-types altogether improved power for the other cell-types as fewer parameters
are estimated.

The PCA suggested that twelve cell-types could be combined in six groups of two cell-
types (Table S5). These PCA results corresponded very well with the UMAP plot (Figure 1)

showing proximity of these same sets of groups. With one exception (e.g., the combined group
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EX.UL/EX.NRG1 showed more significant findings than EX.UL and EX.NRGL1 together)
grouping resulted in fewer significant findings. The likely reason is a dilution of effects when two
cell-types are combined that have association signals in different genes (e.g., OLI.1 versus
OLIL2 and IN.SST versus IN.PV). Furthermore, we observed that combining/omitting cell-types
reduced the number of significant findings of cell-types that were not grouped themselves (e.g.,
AST, MGL). The likely reason is that grouping cell-types reduces the overall explained variance
of the regression model used to perform the cell-type specific TWASs (S1.3) thereby lowering
power to detect effects. Overall, these results suggest that best strategy is not to group/omit
cell-types.

DISCUSSION

We created a novel reference panel that allows the detection of differentially expressed genes in
human bulk brain data on a fine-grained cell-type specific level. To create the reference panel
we analyzed data from the seven largest publicly available s,RNA-seq studies. We selected the
17 cell-types for the panel that were robustly detected across all studies. In addition to many
known cell-types we detected a group of neurons (EX. NRG1) of potential specific importance to
psychiatric and neurological disorders.

To estimate the cell-type proportions, we proposed an empirical Bayes estimator that
yielded highly accurate and unbiased cell-type proportion estimates even for the low abundant
cell-types. Furthermore, to avoid the use of a very large dataset and prevent challenges with
public access of nuclei level data, our estimator has the desirable property that it uses a panel
comprising mean expression levels rather than the nuclei level s,RNA-seq data. Whereas the
panel was created using nuclear mRNA, our bulk mMRNA data assayed cytoplasm RNA from
whole cells that may contain transcripts not present in the nucleus'”*®. However, the mean of
the cell-type proportion estimates in our bulk RNA-seq dataset was almost identical to the mean

cell-type proportions observed in the s,RNA-seq data (r=0.994, Figure 2). This suggested that
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any possible differences in expression levels of the genes in the panel in the nucleus versus
cytoplasm did not distort the estimates.

Transcriptome-wide association studies performed with permuted bulk RNA-seq data
showed that it is possible to perform TWASs for even the rarest cell-types without an increased
risk of false positives. Furthermore, the best strategy to optimize power analyze all cell-types in
the panel and avoid grouping or omitting (rare) cell-types. For example, even cell-types with
frequencies as low as 1% yielded transcriptome-wide significant results in the absence of test
statistic inflation.

The proposed approach requires bulk expression data to estimate the cell-type
proportions. The estimated cell-type proportions can subsequently be used to deconvolute cell-
type effects from the bulk expression data but also any other bulk data generated for the same
brain samples (e.g., methylation data, open chromatin data). In this sense the method is generic
and not limited to expression data.

In summary, brain disorders are leading causes of disability world-wide. We proposed a
novel reference panel and tool set that allows the use of bulk brain data to study brain disorders
on a fine-grained cell-type specific level. When studying bulk brain data, the use of this
approach may prevent that many disease associations remain undetected. Furthermore,
identifying the specific cell-types from which association signals originate is key to formulating
refined hypotheses about the etiology of brain disorders, designing proper follow-up
experiments and, eventually, developing novel clinical interventions. The reference panel,
consisting of profiles from 17 unique brain cell-types, and the accompanying, easy to use,

analysis tools are publicly available.
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Table 1. Simulation study to evaluate the empirical Bayes estimation procedure of cell-type
proportions

Simulation Empirical Bayes estimation

Mean Mean Bias RMSE  # zeroes
EX.UL 0.192 0.193 -0.001 0.004 0
OLL1 0.139 0.138 0.002 0.010 10
AST 0.100 0.100 0.000 0.004 0
OPC 0.064 0.064 0.000 0.002 0
EX.DL1 0.059 0.059 0.000 0.003 0
IN.VIP 0.059 0.060 -0.001 0.003 0
EX.DL2 0.057 0.058 0.000 0.004 0
IN.VP 0.051 0.051 0.000 0.003 0
EX.NRGN 0.061 0.060 0.001 0.005 77
OLl.2 0.057 0.056 0.001 0.008 63
MGL 0.036 0.036 0.000 0.002 0
IN.SST 0.034 0.034 0.000 0.003 0
EX.NRG1 0.029 0.029 0.000 0.003 0
IN.SV2C 0.023 0.023 0.000 0.002 0
EX.DL3 0.017 0.017 0.000 0.003 0
END/PER 0.013 0.013 0.000 0.001 18
EX.DL4 0.008 0.008 0.000 0.002 14
Overall mean 0.059 0.059 0.000 0.004 10.7

Note: Results are based 1,000 simulated samples. RMSE is root of the mean
squared error
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FIGURE CAPTION
Figure 1. A Uniform Manifold Approximation and Projection (UMAP) plot depicting the nuclei of

the 17 clusters. The cluster labels are described in the main text.

Figure 2. Mean cell-type frequencies observed in the s,RNA-seq data and estimated in bulk

samples.

Figure 3. Histograms of observed and simulated lambdas.
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