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Abstract 

Brain disorders are leading causes of disability worldwide. Gene expression studies provide 

promising opportunities to better understand their etiology. When studying bulk tissue, cellular 

diversity may cause many genes that are differentially expressed in cases and controls to 

remain undetected. Furthermore, identifying the specific cell-types from which association 

signals originate is key to formulating refined hypotheses of disease etiology, designing proper 

follow-up experiments and, eventually, developing novel clinical interventions. Cell-type effects 

can be deconvoluted statistically from bulk expression data using cell-type proportions 

estimated with the help of a reference panel. To create a fine-grained reference panel for the 

human prefrontal cortex, we analyzed data from the seven largest single nucleus RNA-seq 

(snRNA-seq) studies. Seventeen cell-types were robustly detected across all seven studies. To 

estimate the cell-type proportions, we proposed an empirical Bayes estimator that is suitable for 

the new panel that involves multiple low abundant cell-types. Furthermore, to avoid the use of a 

very large reference panel and prevent challenges with public access of nuclei level data, our 

estimator uses a panel comprising mean expression levels rather than the nuclei level snRNA-

seq data. Evaluations show that our empirical Bayes estimator produces highly accurate and 

unbiased cell-type proportion estimates. Transcriptome-wide association studies performed with 

permuted bulk RNA-seq data showed that it is possible to perform TWASs for even the rarest 

cell-types without an increased risk of false positives. Furthermore, we determined that for 

optimal statistical power the best approach is to analyze all cell-types in the panel as opposed to 

grouping or omitting (rare) cell-types. 
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Introduction 

Brain disorders such as mood disorders, dementias, stress related disorders, 

neurodevelopmental disorders, seizure disorders, and addictions are leading causes of disability 

worldwide1. Gene expression studies provide promising opportunities to better understand their 

etiology. The human brain comprises multiple types of excitatory and inhibitory neurons as well 

as glia cells such as astrocytes, oligodendrocytes, and microglia2-4. As cells differ in their 

functions, gene expression will typically also vary across these cell-types. When studying bulk 

tissue, this cellular diversity may cause many genes that are differentially expressed in cases 

and controls to remain undetected5. That is, association signals will be “diluted” if they affect 

only one cell-type, may cancel out if they are of opposite signs across cell-types, and may be 

undetectable if they involve low-abundant cells. For example, even a very large expression 

difference of one standard deviation (SD) in a cell-type with a 1% frequency would be 

impossible to detect in bulk tissue as the expression difference would reduce to one-hundredth 

of a SD (i.e., 1%×1 SD = 0.01 SD). 

Identifying the specific cell-types from which association signals originate is also critical 

for scientific progress and important from a translational perspective. First, it allows formulating 

refined hypotheses about disease etiology. For example, the involvement of microglia may point 

to disrupted immune response and neuroinflammation of the brain6, a loss of neuronal function 

may point to neurodegeneration7, and the involvement of the myelin-producing oligodendrocytes 

may suggest disrupted neuronal communication8. Second, knowledge about the cell-type is 

important to design proper in vitro or in vivo functional follow-up studies. Thus, as gene 

expression may only be altered in specific cells, such studies require the right choice of cultured 

cells or experimental tools (e.g., the use herpes simplex virus type 1 as a vector for locus-

specific editing is of primary relevance for association findings in neurons9,10). Third, cell-type 

knowledge is key for developing novel and effective treatments. For example, drugs often work 

by interacting with receptors on the surface of cells. Receptor molecules have a specific three-
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dimensional structure, which allows only substances that fit precisely to attach to it. From a drug 

development perspective, designing drugs that interact specifically with receptors from particular 

cell-types is also highly desired since non-specific drugs can cause more side effects.  

Single cell/nucleus RNA sequencing is a relatively new approach to study cellular 

diversity. In comparison to whole cells, nuclei are more resistant to mechanical assaults and are 

less vulnerable to the tissue dissociation process. This makes single nucleus RNA sequencing 

(snRNA-seq) the more suitable option for frozen post-mortem brain tissue11. With this approach 

intact nuclei are first isolated and partitioned so that the content of each nucleus can be labeled 

with a unique identifier. A labeled sequencing library is subsequently generated and sequenced 

for each individual nucleus. Cell-type specific effects can also be deconvoluted statistically from 

bulk RNA-seq data5,12. Deconvolution was introduced 20 years ago12 and has been 

experimentally validated using, for instance, predesigned mixtures13. Deconvolution is most 

effective when performed with a reference panel14, typically generated from expression profiles 

of the cell-types present in the target tissue from a small number of reference samples. The 

reference panel is used to estimate cell-type proportions in the bulk samples, which is in turn 

are used to deconvolute cell-type specific effect from the bulk data. A reference panel can be 

created through expression profiling of sorted cells. However, while good nuclear protein 

markers exist for sorting nuclei into broad groups of neurons and glia, there is a lack of known, 

high fidelity, antigens and antibodies for further sorting subclasses of these brain cells. A better 

alternative is therefore to create the reference panel from snRNA-seq data15 that allows a fine 

grained analysis of brain cell-types. 

Even with the advent of snRNA-seq, deconvolution is likely to remain pertinent for 

association studies with brain tissue. First, the vast majority of existing gene expression data 

sets involves bulk samples. Deconvolution allows the (re-)use of this “legacy” data to study cell-

type specific effects. Second, once the cell-type proportions are estimated, any bulk brain data 

can be deconvoluted including transcript level expression data, different types of RNA data 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2022. ; https://doi.org/10.1101/2022.06.23.497397doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.23.497397
http://creativecommons.org/licenses/by-nd/4.0/


(e.g., microRNA), or epigenetic data16. In contrast, commonly used snRNA-seq protocols are 

limited to the study of mRNAs with poly-A tail (i.e., protein coding genes and certain long non-

coding RNAs). Furthermore, snRNA-seq studies are typically performed on a gene level. If only 

specific transcripts of the gene are differentially expressed, this will weaken association signals 

and result in a loss of potentially critical biological information. Third, bulk expression data 

involves cytoplasm RNA from whole cells that may contain transcripts not present in the 

nucleus17,18. Thus, deconvolution may give a more complete picture of differentially expressed 

genes. Fourth, deconvolution is potentially useful to validate findings from snRNA-seq studies. 

Validation with a different technology can eliminate possible false discoveries due to snRNA-seq 

specific technical artefacts and therefore allows for more rigorous conclusions. 

In this study we create a novel reference panel by combining data from the seven largest 

published snRNA-seq studies in human post-mortem brain samples19-23. All brain samples were 

from the prefrontal cortex, a brain region of key importance for higher level brain processes 

such as cognition, emotion, and memory. To estimate the cell-type proportions, needed to 

deconvolute cell-type specific effects from bulk data, we propose an estimator that is suitable for 

a fine grained analysis of brain cell-types including multiple low abundant cells. Furthermore, to 

avoid the use of a very large data set and prevent challenges with public access of nuclei level 

data, our estimator uses a panel comprising mean expression levels rather than nuclei level 

snRNA-seq data. Finally, we study how to best use this fine-grained panel to optimize power and 

avoid false discoveries in empirical transcriptome-wide association studies with bulk data. 

 

METHOD 

This section summarizes the methods. Details are given in the supplemental material (e.g., S1.1 

refers to section 1.1 in the supplemental material). 

snRNA-seq data sets, quality control and data processing 
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We downloaded FASTQ files from seven published snRNA-seq in post-mortem brain samples19-

23. All brain regions involved the prefrontal cortex, predominantly from Brodmann areas BA6, 

BA8, BA9, BA10, and BA24. To avoid confounding the expression values in the panel by 

disease processes or disease specific cell states, only the unaffected “controls” from these 

datasets were used in our study.  

 All included studies had partitioned nuclei using the Chromium Controller (10X 

Genomics) and sequenced their libraries using sequencing platforms from Illumina. We used 

the cellranger24 software for aligning the reads to GRCh38 and creating a matrix of unique 

molecular identified (UMI) counts (i.e., the number of unique molecules for each gene detected 

in each nucleus). snRNA-seq data primarily yields reads derived from mature spliced RNA 

(mRNA), which maps to exonic regions but may also capture unspliced pre-mRNA transcripts 

that can generate intronic reads25-27. As nuclei contain a relatively large fraction of pre-mRNA 

molecules and such molecules are particularly abundant in brain tissue28, to obtain a 

comprehensive picture of gene expression we counted intronic reads as well29. 

Next, we performed quality control (QC) on samples and nuclei using exactly the same 

criteria across all studies. Specifically, we eliminated samples with very high levels of debris 

(Figure S3). In addition, we removed nuclei with very low (indicating low-quality nuclei or empty 

droplets) or high (indicating “multiplets” that capture expression levels of multiple nuclei) gene 

and UMI counts (Figures S2 and S3). Finally, nuclei with a high percentage of reads mapping to 

mitochondrial genes (possible indicating artifacts stemming from sample preparation) were 

eliminated. 

After QC, for each study separately the count data was log-normalized to obtain more 

normal distributions and reduce effects of possible outliers. Furthermore, genes were given 

equal weight by scaling the log-normalized count data to have a mean of zero and a standard 

deviation of one to avoid that highly expressed genes dominate the cluster analyses. 

Clustering 
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To identify cell-types and cell-states, we performed a cluster analysis in Seurat30 (S.1.1). We 

used analyses that "anchor" the different datasets in a shared cluster space to facilitate 

integration31. The cluster analysis was limited to the 2,000 genes that exhibited the highest 

nucleus-to-nucleus variation (i.e., highly expressed in some nuclei and lowly expressed in 

others)32. There are potentially a large number of donor-level variables (e.g., sex, age) and 

covariates (e.g., cDNA yield, post-mortem interval, tissue pH levels, percentage of reads 

aligned) that may obscure the separation of clusters. To remove this donor-level variation, we 

regressed out “dummy” variables that indicated the individual samples. Furthermore, we 

regressed out nuclei related QC indices (e.g., number of genes per nucleus, UMI counts per 

nucleus cell, and percentage of reads mapping to mitochondrial genes).  

Deconvolution 

Deconvolution involves three steps. First, a reference panel33,34 is created (S1.2). To select 

genes for the panel, we used MAST35 that performs significance tests to identify the genes that 

best discriminate between the cell-types. The expression values from the snRNA-seq data were 

scaled to have a mean of zero and variance of one for each study, and then an average 

expression value was computed across all studies. 

Second, the reference panel in combination with the bulk RNA-seq data is used to 

estimate cell-type proportions in each bulk sample. To avoid working with a very large data set 

and prevent challenges with public access of nuclei level data, our estimator uses a panel 

comprising mean expression levels rather than nuclei level snRNA-seq data. Specifically, we 

use the standard linear model36 but estimated by empirical Bayes37 that is more suitable for a 

fine grained analysis of brain cell-types that may involve multiple low abundant cells. The mean 

and twice the standard deviation of estimates produced by fitting the same model subject to a 

non-negativity constraint for the regression coefficients (i.e., the cell-type proportions) was used 

as the prior distribution.  
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Third, the estimated cell-type proportions are used to perform cell-type specific 

association studies with bulk data, This was done by fitting, for each transcript, the 

deconvolution model described elsewhere13 (S1.3). These analyses were performed using the 

Bioconductor package RaMWAS38.  

Demonstration bulk RNA-seq dataset 

Bulk RNA-seq data was generated using tissue from BA10 of from 291 control individuals and 

304 individuals that were diagnosed with a psychiatric disorder (S1.4). The RNA-seq data was 

generated using the TruSeq Stranded Total RNA library kit. The sequenced reads were aligned 

with HISAT2 (v.2.1.0) and transcriptome assembly was performed with StringTie39. All analyses 

(i.e., cell-type proportion estimation and deconvolution analyses) regressed out the covariates: 

sex and age, indicator variables to account for possible brain banks effects, and assay-related 

covariates such as total number of reads and the percentage of reads aligned. Furthermore, to 

account for remaining unmeasured sources of variation, six principal components (as indicted 

by the scree plot) that were used as covariates after regressing out the measured covariates 

from the bulk RNA-seq data. 

RESULTS 

Sample description and QC 

In total, the seven datasets included snRNA-seq data from 94 unaffected “control” subjects. The 

sample comprised 37% females. The mean age was 61.6 years (SD=28.6 years) with the 

5th/95th percentiles of 12.7/90.0 years indicating a very broad range. The post-mortem interval 

was 19.6 hours (SD=15; 5th/95th percentile of 2.5/49.4 hours).  

Table S1 lists assay related statistics. In summary, we obtained an average 65,118 

reads per nucleus of which 93.6% mapped to the genome and where 78.8% of reads had 

nucleus-associated barcodes. Using the same criteria for all seven studies, we quality controlled 

samples and nuclei (S2.2, Figures S1-S3). Two studies had many more nuclei per donor 

(34,342 and 22,831 nuclei) than the other five studies (mean 5,154 nuclei). To avoid that the 
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clustering was mainly driven by these two studies, we down-sampled their nuclei to 8,562 and 

8,567 to obtain an average of 5,547 nuclei (range 1,426-10,039 nuclei) across all seven studies. 

After QC and down-sampling, 353,146 nuclei from 92 donors remained. 

Clustering and cell-type labeling 

Clustering identified 20 groups of nuclei, 17 of which were observed in all seven studies. The 

three clusters that were not consistently observed were removed from further analyses. Figure 1 

visualizes the cell-type clusters. To plot the clusters, which differ on many dimensions, in a two-

dimensional space we used Uniform Manifold Approximation and Projection (UMAP). 

 Table S2 provides for each cluster a list of standard gene expression markers with high 

expression levels as well as the most frequently assigned original cell-type label in the five 

studies that provided labeled nuclei. Of the 17 clusters, 14 could readily be labeled using 

standard markers. Although it should be noted that only two studies attempted labeling subtypes 

of broad groups of nuclei (e.g., excitatory neurons), the nuclei of the 14 clusters were 

consistently labeled by the five studies that provided the original cell-type labels. These 14 

clusters included one of the two clusters of oligodendrocytes (OLI.1)40, oligodendrocyte 

precursor cells (OPC)40, astrocytes(AST)41 and microglia (MGL)42. Four clusters of interneurons 

(IN) were identified that could further be labeled based on the expression of somatostatin 

(IN.SST), parvalbumin (IN.PV), vasoactive intestinal peptide (IN.VIP), and synaptic vesicle 

glycoprotein 2C (IN. SV2C)43. Finally, seven groups of excitatory neurons were identified. These 

neurons were further subdivided into one cluster of upper-layer (EX.UL) neurons and four 

clusters of deep-layer (EX.UL1-EX.UL4) neurons all expressing FOXP2 and subsets of other 

standard layer-specific markers. Furthermore, we observed neurons expressing neurogranin 

(EX.NRGN).  

Three clusters could not unequivocally be labeled with standard marker and were also 

inconsistently labeled across the five studies that provided labels for individual nuclei. First, we 

observed a cluster expressing standard markers for both endothelial cells44 and pericytes37. In 
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the original studies these nuclei were labeled as endothelial cells44, pericytes 37, or as a 

combined cluster of endothelial cells and pericytes. As these nuclei most likely included both 

endothelial cells and pericytes that have very similar expression profiles relative to the other 

clusters in Figure 1, were labeled this cluster END/PER.  

Second, albeit at relative modest levels compared to OLI.1, the second cluster of 

oligodendrocytes (OLI.2) expressed standard oligodendrocytes markers MBP, PLP1, and 

MOBP. In addition, we observed the expression of NRGN, CAMK2A, and CAMK2B that share a 

motif with MBP potentially allowing it to be packaged together for cytoplasmic transport to 

dendrites45. Three studies labeled these nuclei as oligodendrocytes and the other two studies as 

neurons. Neurons can use the same packaging mechanism for cytoplasmic transport of the 

RNAs to dendrites and this potentially explains the confusion about the identity of this second 

group of oligodendrocytes. 

Third, a cluster of EX neurons expressed only few of the markers expressed by the other 

EX clusters and was inconsistently labeled with respect to cortical layer in the two studies that 

labeled EX subtypes. This EX cluster expressed NRG1 at very high levels (EX. NRG1). NRG1 

is expressed in multiple cell-types and best known as a gene affecting a range of psychiatric 

and neurological disorders such as Alzheimer, autism and schizophrenia46,47. To learn more 

about the identity of this cluster, we selected the ten most highly expressed genes from the 

reference panel. Six of the ten genes were previously reported to be associated with a range of 

psychiatric and neurological disorders. In addition to NRG146,47, this included ZNF804B48, 

CDH1249, CLSTN250,51, RIT252, and MCTP153. This pattern is somewhat reminiscent of so-called 

Von Economo neurons (VENs) that are known to be altered in diseases such as Alzheimer, 

autism, and schizophrenia54-56. VENs are found in humans and great apes (but not other 

primates), cetaceans, and elephants, and may have evolved for the rapid transmission of crucial 

social information in very large brains57. In humans, VENs are abundant in the anterior cingulate 

and frontoinsular cortices but are also present in the prefrontal cortex58. A recent study involving 
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879 nuclei from frontoinsula layer 5 identified several VEN markers, but these markers were not 

highly expressed in our cluster. 

Cell-type proportion estimation 

Table S3 shows the MAST35 test results identifying 1,652 genes for the reference panel (Table 

S4). The cell-type estimation procedure was first evaluated using artificial bulk data. We 

generated artificial bulk data using the cell-type specific expression values from the panel in 

combination with cell-type proportions that were randomly drawn from a generalized beta 

distribution assuming the mean, standard deviation minimum, and maximum of the cell-type 

proportions observed in our demonstration bulk RNA-seq dataset. Table 1 shows that the mean 

of the estimated cell-type proportions was very close to the cell-type proportions used to 

simulate the data (correlation is r=0.999) and that the estimates were unbiased with a small root 

mean squared error. Furthermore, only very few of the cell-type proportions were estimated at 

zero, which indicates that cell-types proportions can be estimated precisely and do not degrade 

if they are rare. 

Figure 2 shows that the mean of the cell-type proportion estimates in our demonstration 

bulk RNA-seq dataset was highly correlated with the mean snRNA-seq counts (r=0.994). Only 

EX.NRGN showed a notable difference. Given that our simulation study yielded unbiased 

estimates, this most likely reflects true biological variation between the two sample sets. As we 

observed in the simulation study, the estimates had other favorable properties such as that even 

for rare cell-types few estimates were estimated to be zero (average 3.2%).  

The empirical Bayes estimates were slightly better than the estimates used to create its 

prior distribution. Both estimates were substantially better than the standard ordinary least 

squares approach36 that yielded a lower correlation with the mean snRNA-seq counts (r=0.886) 

and estimated 1.4 times more cell-type proportions to be zero. We further explored whether the 

estimates could be improved by using the nuclei level snRNA-seq data rather than a panel of 

mean expression values. For this we used the MuSiC34 package that is specifically designed to 
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work with a panel of snRNA-seq data. We had to down-sample the number of nuclei to avoid 

excessive run times. We could not replicate our previous observation that MuSiC produces 

superior estimates59. In fact, correlations with snRNA-seq counts were very poor (r=0.201) 

possibly indicating convergence problems or challenges combining data from multiple studies. 

Deconvolution 

To study whether the distribution of the tests statistics under the null hypothesis followed the 

assumed theoretical distribution, 1,000 transcriptome-wide association studies (TWASs) where 

performed after randomly permuting case-control labels. Results showed that the mean/median 

lambda (ratio of the median of the observed distribution of the test statistic to the expected 

median) was close to one (Figure 3). This implied the absence of test statistic inflation and that 

under the null distribution accurate P values are obtained. This was true for even the rarest cell-

types suggesting that it is possible to perform TWASs on rare cell-types without an increased 

risk of false positives. All lambdas obtained from TWASs of observed data were within the 95% 

confidence intervals of the lambdas observed in the permuted datasets. Although this strictly 

speaking does not have to be the case, this also suggests the absence of test statistic inflation. 

In the TWAS of the observed data, the number of significant results was positively 

correlated with the cell-type proportions. This is most likely the result of lower power due to a 

“restriction of range” as variation in low abundant cell-types is restricted at zero. We studied 

whether power for these rare cell-types could be improved by grouping them with other cell-

types. For this purpose, we performed a principal components analysis (PCA) followed by 

varimax rotation on the gene expression values of the panel. In addition, we studied whether 

omitting rare cell-types altogether improved power for the other cell-types as fewer parameters 

are estimated.   

The PCA suggested that twelve cell-types could be combined in six groups of two cell-

types (Table S5). These PCA results corresponded very well with the UMAP plot (Figure 1) 

showing proximity of these same sets of groups. With one exception (e.g., the combined group 
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EX.UL/EX.NRG1 showed more significant findings than EX.UL and EX.NRG1 together) 

grouping resulted in fewer significant findings. The likely reason is a dilution of effects when two 

cell-types are combined that have association signals in different genes (e.g., OLI.1 versus 

OLI.2 and IN.SST versus IN.PV). Furthermore, we observed that combining/omitting cell-types 

reduced the number of significant findings of cell-types that were not grouped themselves (e.g., 

AST, MGL). The likely reason is that grouping cell-types reduces the overall explained variance 

of the regression model used to perform the cell-type specific TWASs (S1.3) thereby lowering 

power to detect effects. Overall, these results suggest that best strategy is not to group/omit 

cell-types.  

DISCUSSION 

We created a novel reference panel that allows the detection of differentially expressed genes in 

human bulk brain data on a fine-grained cell-type specific level. To create the reference panel 

we analyzed data from the seven largest publicly available snRNA-seq studies. We selected the 

17 cell-types for the panel that were robustly detected across all studies. In addition to many 

known cell-types we detected a group of neurons (EX. NRG1) of potential specific importance to 

psychiatric and neurological disorders.  

To estimate the cell-type proportions, we proposed an empirical Bayes estimator that 

yielded highly accurate and unbiased cell-type proportion estimates even for the low abundant 

cell-types. Furthermore, to avoid the use of a very large dataset and prevent challenges with 

public access of nuclei level data, our estimator has the desirable property that it uses a panel 

comprising mean expression levels rather than the nuclei level snRNA-seq data. Whereas the 

panel was created using nuclear mRNA, our bulk mRNA data assayed cytoplasm RNA from 

whole cells that may contain transcripts not present in the nucleus17,18. However, the mean of 

the cell-type proportion estimates in our bulk RNA-seq dataset was almost identical to the mean 

cell-type proportions observed in the snRNA-seq data (r=0.994, Figure 2). This suggested that 
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any possible differences in expression levels of the genes in the panel in the nucleus versus 

cytoplasm did not distort the estimates. 

Transcriptome-wide association studies performed with permuted bulk RNA-seq data 

showed that it is possible to perform TWASs for even the rarest cell-types without an increased 

risk of false positives. Furthermore, the best strategy to optimize power analyze all cell-types in 

the panel and avoid grouping or omitting (rare) cell-types. For example, even cell-types with 

frequencies as low as 1% yielded transcriptome-wide significant results in the absence of test 

statistic inflation. 

The proposed approach requires bulk expression data to estimate the cell-type 

proportions. The estimated cell-type proportions can subsequently be used to deconvolute cell-

type effects from the bulk expression data but also any other bulk data generated for the same 

brain samples (e.g., methylation data, open chromatin data). In this sense the method is generic 

and not limited to expression data. 

In summary, brain disorders are leading causes of disability world-wide. We proposed a 

novel reference panel and tool set that allows the use of bulk brain data to study brain disorders 

on a fine-grained cell-type specific level. When studying bulk brain data, the use of this 

approach may prevent that many disease associations remain undetected. Furthermore, 

identifying the specific cell-types from which association signals originate is key to formulating 

refined hypotheses about the etiology of brain disorders, designing proper follow-up 

experiments and, eventually, developing novel clinical interventions. The reference panel, 

consisting of profiles from 17 unique brain cell-types, and the accompanying, easy to use, 

analysis tools are publicly available. 
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Table 1. Simulation study to evaluate the empirical Bayes estimation procedure of cell-type 
proportions 

 
                                  Simulation              Empirical Bayes estimation 

          Mean           Mean          Bias         RMSE      # zeroes 
EX.UL 0.192 0.193 -0.001 0.004 0 
OLI.1 0.139 0.138 0.002 0.010 10 
AST 0.100 0.100 0.000 0.004 0 
OPC 0.064 0.064 0.000 0.002 0 
EX.DL1 0.059 0.059 0.000 0.003 0 
IN.VIP 0.059 0.060 -0.001 0.003 0 
EX.DL2 0.057 0.058 0.000 0.004 0 
IN.VP 0.051 0.051 0.000 0.003 0 
EX.NRGN 0.061 0.060 0.001 0.005 77 
OLI.2 0.057 0.056 0.001 0.008 63 
MGL 0.036 0.036 0.000 0.002 0 
IN.SST 0.034 0.034 0.000 0.003 0 
EX.NRG1 0.029 0.029 0.000 0.003 0 
IN.SV2C 0.023 0.023 0.000 0.002 0 
EX.DL3 0.017 0.017 0.000 0.003 0 
END/PER 0.013 0.013 0.000 0.001 18 
EX.DL4 0.008 0.008 0.000 0.002 14 
      
Overall mean 0.059 0.059 0.000 0.004 10.7 
Note: Results are based 1,000 simulated samples. RMSE is root of the mean 
squared error 
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FIGURE CAPTION 

Figure 1. A Uniform Manifold Approximation and Projection (UMAP) plot depicting the nuclei of 

the 17 clusters. The cluster labels are described in the main text.  

 

Figure 2. Mean cell-type frequencies observed in the snRNA-seq data and estimated in bulk 

samples. 

 
Figure 3. Histograms of observed and simulated lambdas. 
  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2022. ; https://doi.org/10.1101/2022.06.23.497397doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.23.497397
http://creativecommons.org/licenses/by-nd/4.0/


 
 

 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2022. ; https://doi.org/10.1101/2022.06.23.497397doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.23.497397
http://creativecommons.org/licenses/by-nd/4.0/


 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2022. ; https://doi.org/10.1101/2022.06.23.497397doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.23.497397
http://creativecommons.org/licenses/by-nd/4.0/


 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2022. ; https://doi.org/10.1101/2022.06.23.497397doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.23.497397
http://creativecommons.org/licenses/by-nd/4.0/

