

1 **Generation of functional hepatocytes by forward programming with**  
2 **nuclear receptors**

3

4 Rute A. Tomaz<sup>1,2</sup>, Ekaterini D. Zacharis<sup>1,2</sup>, Fabian Bachinger<sup>1,2</sup>, Annabelle Wurmser<sup>1,2</sup>,  
5 Daniel Yamamoto<sup>1,2</sup>, Sandra Petrus-Reurer<sup>2</sup>, Carola M. Morell<sup>1,2</sup>, Dominika Dziedzicka<sup>1,2</sup>,  
6 Brandon T. Wesley,<sup>2</sup> Imbisaat Geti<sup>1,2</sup>, Charis-Patricia Segeritz<sup>1,2</sup>, Miguel Cardoso de  
7 Brito<sup>1,2</sup>, Mariya Chhatriwala<sup>2</sup>, Daniel Ortmann<sup>1,2</sup>, Kourosh Saeb-Parsy<sup>2</sup>, Ludovic Vallier<sup>1,2,3\*</sup>

8

9 1. Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge,  
10 Cambridge, UK

11 2. Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical  
12 Research Centre, Cambridge, Cambridgeshire, UK

13 3. Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA,  
14 UK.

15

16 \*Corresponding author

17 **Abstract**

18 Production of large quantities of hepatocytes remains a major challenge for a number of  
19 clinical applications in the biomedical field. Directed differentiation of human pluripotent  
20 stem cells (hPSC) into hepatocyte-like cells (HLCs) provides an advantageous solution and a  
21 number of protocols have been developed for this purpose. However, these methods usually  
22 follow different steps of liver development *in vitro* which is time consuming and requires  
23 complex culture conditions. In addition, HLCs lack the full repertoire of functionalities  
24 characterising primary hepatocytes. Here, we explore the interest of forward programming to  
25 generate hepatocytes from hPSCs and to bypass these limitations. This approach relies on the  
26 overexpression of 3 hepatocyte nuclear factors (*HNF1A*, *HNF6* and *FOXA3*) in combination  
27 with different nuclear receptors expressed in the adult liver using the OPTi-OX platform.  
28 Forward programming allows for the rapid production of hepatocytes (FoP-Heps) with  
29 functional characteristics using a simplified process. We also uncovered that the  
30 overexpression of nuclear receptors such as RORc can enhance specific functionalities of  
31 FoP-Heps thereby validating its role in lipid/glucose metabolism. Together, our results show  
32 that forward programming could offer a versatile alternative to direct differentiation for  
33 generating hepatocytes *in vitro*.

## 34      **Introduction**

35      Hepatocytes are the main cell type of the liver, comprising 80% of its volume and performing  
36      a vast array of vital functions including lipid metabolism, storage of macronutrients, secretion  
37      of plasma proteins and xenobiotic detoxification (Gordillo et al., 2015; Si-Tayeb et al., 2010;  
38      Trefts et al., 2017). Diseases affecting these functions are life threatening and end stage forms  
39      require liver transplantation. However, only a limited number of patients can benefit from  
40      this therapy due to scarcity of donors and the side effects of immunosuppression. Cell-based  
41      therapy using primary hepatocytes has already been found to be an attractive therapeutic  
42      alternative to whole organ transplants (Dhawan et al., 2020). However, primary human  
43      hepatocytes (PHHs) are in short supply as they can only be obtained from suboptimal livers  
44      unsuitable for transplantation. Furthermore, they display a short life, absence of proliferation  
45      and rapid loss of functionality *in vitro* (Mitry et al., 2002). Similarly, the development of new  
46      platforms for drug development and toxicology screens is greatly affected by the lack of  
47      robust sources of hepatocytes. For all these reasons, alternative sources of hepatocytes are  
48      urgently needed. Producing hepatocytes from human pluripotent stem cells (hPSCs) using  
49      directed differentiation protocols has been shown to be an advantageous alternative to PHHs  
50      (Palakkatt et al., 2017; Szkolnicka & Hay, 2016). These protocols commonly follow key  
51      stages of liver development *in vitro* and allow the production of hepatocyte-like cells (HLCs)  
52      which exhibit key hepatic functions including Albumin secretion, lipid metabolism, glycogen  
53      storage, and urea cycle activity. However, HLCs systematically present an immature/foetal-  
54      like phenotype lacking the full repertoire of functions of mature hepatocytes (Baxter et al.,  
55      2015; Grandy et al., 2019; Yiangou et al., 2018). The development of fully functional  
56      hepatocytes *in vitro* is challenging due to the lack of detailed knowledge concerning the  
57      molecular mechanisms driving functional maturation *in vivo*. Indeed, maturation is a process  
58      that also occurs progressively *in vivo*. Mimicking this timeline and the associated

59 combination of metabolic changes, exposure to oxygen, nutrition and microbiome constitutes  
60 a major challenge for direct differentiation protocols (Chen et al., 2011). As an alternative,  
61 overexpression of transcription factors has been explored as a way to improve functionality  
62 of *in vitro* generated hepatocytes (Boon et al., 2020; Nakamori et al., 2016; Zhao et al.,  
63 2013). Moreover, transdifferentiation of somatic cells into liver cells has been achieved by  
64 overexpression of liver-enriched transcription factors (LETFs) in mouse and human  
65 fibroblasts (Rombaut et al., 2021). Importantly, these LETFs comprise the HNF1, HNF3  
66 (FOXA), HNF4 and HNF6 (ONECUT) families all of which play key roles in coordinating  
67 liver development (Gordillo et al., 2015; Lau et al., 2018; Schrem et al., 2002). However,  
68 direct cell conversion from somatic cell types has a low efficiency/yield due to the strong  
69 epigenetic restrictions present in fully differentiated cells. Furthermore, somatic cells have  
70 restricted capacity of proliferation which limits large-scale production of hepatocytes without  
71 the use of oncogenic manipulation (Du et al., 2014; Huang et al., 2014). Forward  
72 programming by direct overexpression of transcription factors in hPSCs could bypass these  
73 limitations. Indeed, the epigenetic state of hPSCs is more permissive to direct cellular  
74 conversion, while their capacity of proliferation is far more superior to somatic cells.  
75 Accordingly, this approach has been successfully used to generate neurons, skeletal  
76 myocytes, and oligodendrocytes by taking advantage of the OPTi-OX system (Pawlowski et  
77 al., 2017). Here, we decided to exploit the same platform to produce hepatocytes by forward  
78 programming. We first tested different combinations of LETFs and identified a cocktail of 3  
79 factors sufficient to drive the conversion into immature hepatocytes (FoP-Heps). We then  
80 performed transcriptomic and epigenetic comparisons between HLCs and PHHs to identify  
81 additional transcription factors which could further increase the functional maturation of  
82 hepatocytes. This comparison revealed that a number of nuclear receptors are expressed in  
83 adult hepatocytes and thus are likely to be inducers of functionality and maturation *in vivo*. A

84 selection of these factors was combined with LETFs and we identified that the 4TFs HNF1A-  
85 HNF6-FOXA3-RORc were the most efficient cocktail to generate FoP-Heps displaying  
86 features of mature hepatocytes including CYP3A4 activity, protein secretion and hepatotoxic  
87 response. Thus, forward programming offers an alternative to direct differentiation,  
88 bypassing the need for complex culture conditions and lengthy timelines. Moreover, FoP-  
89 Heps display a level of functionally relevant for regenerative medicine, as well as disease  
90 modelling or drug screening.

91

## 92 **Results**

### 93 **Liver-enriched transcription factors allow forward programming into cells with** 94 **hepatocyte identity**

95 The first step to develop a forward programming method consists in identifying a cocktail of  
96 transcription factors which can recreate the transcriptional network characterising the target  
97 cell type. However, this step is challenging for hepatocytes as liver development is not  
98 initiated by a single and specific master regulator, and the factors driving functional  
99 maturation of hepatocytes remain to be fully uncovered. To bypass these limitations, we  
100 decided to focus on the LETFs which are known to control the induction of the hepatic  
101 program during foetal development and have been tested in somatic cell conversion  
102 (Rombaut et al., 2021). The coding sequence of 4 LETFs (*HNF4A*, *HNF1A*, *HNF6* and  
103 *FOXA3*) was cloned into the OPTi-OX system (Figure 1A) and the resulting inducible  
104 cassette was targeted into the AAVS1 gene safe harbour (Bertero et al., 2016; Pawlowski et  
105 al., 2017). After selection, individual sublines were picked, expanded and genotyped before  
106 further characterisation. Addition of doxycycline (dox) for 24h was sufficient to induce  
107 homogenous and robust expression of each LETF in the selected hESCs (Figure 1B, C)  
108 confirming the efficacy of the OPTi-OX system in inducing transgene expression.

109 Importantly, this induction was not associated with differentiation into liver cells (data not  
110 shown) suggesting that LETFs alone are not sufficient to impose an hepatocytic identity.  
111 Thus, we decided to screen culture conditions which could sustain both the survival and  
112 differentiation of hepatocytes (data not shown) and found that after the initial 24h in E6  
113 medium, the cells acquired a hepatocyte-like morphology when cultured in Hepatozyme  
114 complete medium for 14 days (Figure 1D). Interestingly, the resulting cells expressed  
115 hepatocyte markers such as Albumin (*ALB*), Alpha-1 Antitrypsin (A1AT or *SERPINA1*) and  
116 Alpha-Fetoprotein (*AFP*) (Figure 1E) and displayed CYP3A4 activity levels comparable to  
117 HLCs generated by direct differentiation (Figure 1F). Next, we asked whether all the 4  
118 LETFs were necessary to achieve this hepatocyte-like phenotype. For that, we removed each  
119 factor to generate hESCs sublines expressing combinations of 3 factors (Figure 1-figure  
120 supplement 1A). Robust and homogeneous expression at the protein level was again  
121 confirmed after 24h of dox induction (Figure 1-figure supplement 1B). Induction of each  
122 combination of 3 LETFs in culture conditions identified above showed that *HNF1A*, *HNF6* or  
123 *FOXA3* were necessary to generate cells expressing hepatocytes markers such *ALB*, albeit  
124 with heterogeneity at the protein level (Figure 1G, Figure 1-figure supplement 2A,B).  
125 *HNF4A* overexpression seemed to be dispensable as cells generated by overexpression of the  
126 3 remaining LETFs (*HNF1A*, *HNF6*, *FOXA3*) acquired a cobblestone-like morphology, and  
127 expressed high levels of *ALB*, *SERPINA1* and *AFP* (Figure 1G, H, I, Figure 1-figure  
128 supplement 2). Strikingly, hepatocytes generated using these 3TFs (3TF FoP-Heps) achieved  
129 the highest levels of CYP3A4 activity suggesting overexpression of *HNF4A* itself is  
130 unnecessary to acquire the hepatocyte characteristics screened, as its expression might be  
131 induced by one of the 3 LETFs (Figure 1J). Altogether, these results showed that  
132 overexpression of *HNF1A*, *HNF6* and *FOXA3*, is sufficient to forward program hPSCs  
133 towards hepatocyte-like cells.

134

135 **HLCs generated by direct differentiation lack the expression of specific nuclear  
136 receptors**

137 Following these encouraging results, we aimed to increase the functionality of 3TF FoP-Heps  
138 by adding TFs which could play a role in promoting hepatic maturation and functionality.  
139 However, identifying these factors proved to be challenging as there is little information  
140 about the mechanisms driving functional maturation of hepatocytes, especially following  
141 birth when adult hepatic functions are established. To bypass this limitation, we decided to  
142 compare the transcriptome profile of adult PHHs to the transcriptome of HLCs generated  
143 from hPSCs by direct differentiation. Indeed, HLCs represent a foetal state which has been  
144 broadly characterised (Baxter et al., 2015), while 3TFs FoP-Heps are likely to be less relevant  
145 for natural development. For this comparison, we used a state-of-the-art protocol (Hannan et  
146 al., 2013; Touboul et al., 2010) which has been used for modelling liver disease (Rashid et  
147 al., 2010; Segeritz et al., 2018) and as proof of concept for cell-based therapy applications  
148 (Yusa et al., 2011). This protocol starts by the production of endoderm cells expressing  
149 *SOX17*, followed by the specification of foregut expressing *HHEX*, after which cells transit  
150 through a hepatoblast-like state marked by *TBX3* (Figure 2-figure supplement 1A).  
151 Interestingly, LETFs were expressed during this differentiation protocol at levels comparable  
152 to PHHs (Figure 2-figure supplement 1B,C) confirming that these first steps follow a natural  
153 path of development. The resulting progenitors undergo a final stage of differentiation into  
154 HLCs expressing functional markers such as *ALB* and *SERPINA1* (Figure 2A, Figure 1-figure  
155 supplement 1A,D). Despite displaying key hepatic functions (Baxter et al., 2015; Grandy et  
156 al., 2019; Yiangou et al., 2018) HLCs represent a “foetal” state as shown by the expression of  
157 *AFP* (Figure 2-figure supplement 1A,D) or by the limited activity/expression of *CYP3A4*,  
158 *CYP2A6* or *CYP2C9* (Figure 1B, Figure 2-figure supplement 1E). RNA-sequencing (RNA-

159 seq) performed on HLCs generated from either human induced pluripotent stem cells  
160 (hiPSCs) or human embryonic stem cells (hESCs), and from PHHs freshly harvested (fPHHs)  
161 or cultured *in vitro* as monolayer (pPHHs) reinforced these observations. Principal  
162 component analysis (PCA) of the most variable 500 genes showed a clear distinction between  
163 the 3 cell types, with HLCs clustering in between undifferentiated hiPSCs and PHHs  
164 confirming their intermediate state of differentiation (PC1: 52%, Figure 2C). In order to  
165 further explore the differences between HLCs and PHHs, we combined Differential Gene  
166 Expression (DGE) and Gene Ontology (GO) analyses to identify genes and biological  
167 functions specific to each cell type (Figure 2D). Genes uniquely expressed in PHHs (cluster  
168 1) were associated with adult liver functions such as response to xenobiotic and xenobiotic  
169 metabolism, inflammatory response and complement activation (Figure 2E). Genes expressed  
170 in both HLCs and PHHs (Heps; cluster 3) were involved in liver development, fatty acid  
171 metabolism or broad cellular functions (Figure 2F). Of note, genes specifically up-regulated  
172 in HLCs were associated with extracellular matrix organization and varied developmental  
173 functions which could originate from their *in vitro* environment (Figure 2-figure supplement  
174 1F). We then decided to focus specifically on transcription factors (TFs) using a previously  
175 curated list (Lambert et al., 2018) (Figure 2G,H) and identified 36 TFs highly expressed in  
176 PHHs vs HLCs ( $p < 0.05$ , log2 fold change  $> 2$ ). Interestingly, reactome pathway analysis  
177 grouped these TFs into two main pathways: the NFI family and a cohort of 8 nuclear  
178 receptors (Figure 2H). Nuclear receptors are known to be involved in key liver functions  
179 including the metabolism of lipids and glucose, bile acid clearance, xenobiotic sensing and  
180 regeneration (Rudraiah et al., 2016). Thus, we hypothesise that nuclear receptors could be the  
181 most promising candidates to improve hepatocyte functionality in our culture system. Taken  
182 together these observations show that the immature state of HLCs is associated with the

183 absence of several nuclear receptors thereby suggesting that these factors could be necessary  
184 to drive functional maturation of hepatocytes.

185

186 **Epigenetic characterisation of HLCs suggests a role for nuclear receptors RORc, AR  
187 and ER $\alpha$**

188 To further refine the list of nuclear receptors identified by our transcriptomic analyses, we  
189 decided to compare the epigenetic landscape of HLCs vs PHHs. Indeed, we hypothesised that  
190 nuclear receptors binding regulatory regions in PHHs could have a key function in maturation  
191 and thus we aimed to identify the most important factors by screening underlying motifs in  
192 such regions. ChIP-sequencing (ChIP-seq) was performed on histone marks including  
193 H3K27ac (active regulatory regions), H3K4me1 (active or primed regulatory regions), and  
194 H3K27me3 (silenced genes) (Creyghton et al., 2010; Wang et al., 2015). These marks were  
195 profiled in HLCs derived from both hiPSCs and hESCs, and PHHs while undifferentiated  
196 hiPSCs were used as control. As expected, PCA analyses showed a marked divergence  
197 between the epigenetic profile of HLCs and hiPSCs independently of the mark analysed  
198 (Figure 3A). Interestingly, HLCs and PHHs clustered in close proximity suggesting that these  
199 cell types share an important part of their epigenetic profile despite their transcriptomic  
200 differences. The profiles of H3K27ac and H3K27me3 showed the highest variance between  
201 HLCs/PHHs and hiPSCs, confirming the importance of these marks for establishing cellular  
202 identity (Figure 3A). We then performed differential peak calling to identify regulatory  
203 regions uniquely enriched and active in PHHs versus HLCs (“PHH-specific”), and vice versa  
204 (“HLC-specific”) (Figure 3-figure supplement 1A). We also profiled H3K4me1 and  
205 H3K27me3 in either PHH or HLC-specific regions. This analysis revealed that H3K4me1  
206 was absent at “PHH-specific” regions in HLCs and seems to be broadly replaced by spread of  
207 H3K27me3 deposition instead (Figure 3B). Interestingly, discrete portions of regulatory

208 regions lacked H3K27ac in genes downregulated in HLCs (see for example *CYP3A4* and  
209 *UGT1A*, Figure 3C, Figure 3-figure supplement 1B). Ontology of genes associated with each  
210 set of regions highlighted several adult liver metabolic processes in the “PHH-specific” set  
211 such as steroid, lipid and xenobiotic metabolism, and range of neural functions for “HLC-  
212 unique” regions (Figure 3-figure supplement 1C), in agreement with the transcriptomic  
213 analyses. Overall, these results suggested that a subset of genes involved in adult liver  
214 functions lack H3K4me1 priming as well as full H3K27ac deposition in HLCs. These  
215 regions lacking H3K27ac in HLCs, appeared to display repressive marks such as H3K27me3.  
216 In addition, HLCs displayed active histone marks in regions including genes which are not  
217 associated with liver differentiation confirming that cells generated from hPSCs also present  
218 an epigenetic signature specific to their *in vitro* state (Figure 3-figure supplement 1C). Taken  
219 together these observations suggested that HLCs and PHHs broadly share the same  
220 epigenetic identity when compared to hiPSCs. However, the activation of a limited and  
221 specific set of regulatory regions is missing in HLCs, which potentially explains the absence  
222 of expression of adult liver genes and lack of functional maturation. To identify the nuclear  
223 receptors potentially involved in regulating these regions, we performed motif enrichment  
224 analysis in the “PHH-specific” regions marked by H3K27ac. Interestingly, this analysis  
225 identified a significant enrichment for the androgen (AR) and Estrogen (ER $\alpha$ ) response  
226 elements, as well as ROR $\alpha$  motifs (Figure 3D), which were among the top differentially  
227 expressed nuclear receptors in our transcriptomic analyses. We then decided to further  
228 investigate the importance of these nuclear receptors throughout development using mouse  
229 RNA-seq datasets obtained at different stages of liver organogenesis (E12.5, E16.5, P0, 8  
230 week and 10 week adults (Figure 3-figure supplement 1D). Interestingly, the expression of  
231 these 3 nuclear receptors was found to be upregulated specifically in the adult liver (Figure  
232 3-figure supplement 1E,F). Altogether, these observations suggested that the nuclear

233 receptors AR, ER $\alpha$  and RORc could play a role in establishing or maintaining a  
234 transcriptional network characterising mature hepatocytes.

235

236 **Overexpression of RORc increases the functionality of hepatocytes generated by**  
237 **forward programming**

238 We next tested the capacity of RORc (*ROR $\gamma$* ), AR, and ER $\alpha$  (*ESR1*), to further improve the  
239 functionality of FoP-Heps generated using 3 LETFS. For that, we generated hESC lines  
240 inducible for the expression of HNF1A, HNF6 and FOXA3 (3TFs) in combination with each  
241 of the nuclear receptors identified above (Figure 4—figure supplement 1A). The homogeneous  
242 induction of the 4TFs was validated using immunostaining. Interestingly, these analyses  
243 showed that the overexpressed nuclear receptors were located in the nucleus, and in the case  
244 of AR in both cytoplasm and nucleus (Figure 4—figure supplement 1B,C,D). We then induced  
245 forward programming using the culture conditions identified above and observed the  
246 production of polyploid cells with a cobblestone morphology (Figure 4A). The hepatocytic  
247 identity of these cells was confirmed by the expression of Albumin, *SERPINA1/A1AT* and  
248 AFP in all lines (Figure 4B,C,D,E, Figure 4—figure supplement 1E). RORc overexpression  
249 resulted in a higher number of cells expressing Albumin, which were still heterogeneous  
250 across the cell population, potentially representing different subpopulations of hepatocyte-  
251 like cells (Figure 4B). Moreover, these cells also secreted higher levels of Albumin, although  
252 the mRNA expression of this marker was not significantly upregulated (Figure 4C, D). In  
253 addition, these cells tend to secret lower levels of AFP, although the lower mRNA levels  
254 identified were not statistically significant when compared to 3TFs alone (Figure 4D, E,  
255 Figure 4—figure supplement 1E). Notably, CYP3A4 activity levels were significantly higher  
256 in cells generated in the presence of RORc, as compared with cells reprogrammed with only  
257 3TFs (Figure 4F). We next tested whether stimulation with exogenous ligands specific for

258 each nuclear receptor could further induce functional maturation as measured by CYP3A4  
259 activity (desmosterol for RORc,  $\beta$ -estradiol for ER $\alpha$  and testosterone for AR). Interestingly,  
260 only  $\beta$ -estradiol treatment resulted in a 3-fold increase in CYP3A4 activity, whereas  
261 testosterone treatment significantly decreased CYP3A4 activity and desmosterol had no  
262 effect (Figure 4G). This increase was not observed with 3TFs Fop-Heps thereby suggesting  
263 the effect of these ligands was linked to the overexpression of their receptor.  
264 RORc generated FoP-Heps appeared to have the highest level of functionality and thus, we  
265 decided to validate the potential of this combination of factors in an alternative pluripotent  
266 stem cell line. We generated Opti-OX hiPSC with the 3TFs or the 3TFs+RORc FoP system,  
267 validated the upregulation of these factors after 24h of dox treatment (Figure 4—figure  
268 supplement 2A) and then induced differentiation following the protocol established above.  
269 FoP-Heps derived from hiPSC also displayed cobblestone morphology (Figure 4—figure  
270 supplement 2B) and expressed Albumin, AFP and *SERPINA1/A1AT* (Figure 4—figure  
271 supplement 2C,D,E,F,G). Concordantly, a higher number of Albumin positive cells were  
272 detected at day 20, as well as higher levels of secreted Albumin and transcript, when RORc  
273 was overexpressed (Figure 4—figure supplement 2C,F,G). In particular, *ALB* transcript further  
274 increased by day 30, suggesting that this cell background might require additional time to  
275 achieve maturation. In addition, the presence of RORc significantly increased basal CYP3A4  
276 activity thereby confirming the positive effect of this factor on functional maturity of FoP-  
277 Heps (Figure 4—figure supplement 2H). Overall, these results showed that overexpression of  
278 specific nuclear receptors was compatible with the generation of FoP-hepatocytes. In  
279 particular, overexpression of RORc could improve the functionality of hepatocytes generated  
280 by overexpression of 3 LETFs confirming the role of this nuclear receptor in hepatocyte  
281 maturation.

282

283 **4TF FoP-Heps display functional characteristics *in vitro***

284 Next, we sought to further characterise the functionality of the 4TF (HNF1A, HNF6, FOXA3  
285 and RORc) FoP-Heps derived from either hESC (eFoP-Heps) or hiPSCs (iFoP-Heps) in  
286 comparison with HLCs generated by the direct differentiation and PHHs. CYP3A4 activity  
287 was significantly higher in 4TF FoP-Heps forward programmed after 20 days than those  
288 achieved by HLCs after 30 days of directed differentiation (Figure 5A). In addition, we  
289 analysed the expression of markers associated with hepatic metabolic functions such as phase  
290 I (cytochrome P450 enzymes) and phase II (UGTs) biotransformation, gluconeogenesis  
291 (*G6PC* and *PCK1*) and lipid (*PPAR $\alpha$* , *PPAR $\gamma$* , *FASN* and *APOA1*) and bile acid (*NR1H4*)  
292 metabolism. FoP-Heps expressed a range of these functional markers confirming the  
293 acquisition of hepatic functionality (Figure 5B,C, Figure 5-figure supplement 1A). Overall,  
294 the levels of expression achieved by forward programming were equivalent to those achieved  
295 by direct differentiation with the exception of gluconeogenesis genes which were increased in  
296 FoP-Heps (Figure 5C). Interestingly, expression of gluconeogenesis and lipid metabolism  
297 genes was comparable between FoP-Heps and PHHs. However, induction of cytochrome  
298 P450 genes remains challenging, indicating that the acquisition of this specific hepatic  
299 function could need further refinement of our protocol (Figure 5B.). Of note, in FoP-Heps,  
300 the 4TFs remained expressed at physiological levels at the end of our protocol (Figure 5B,  
301 Figure 5-figure supplement 1B). Next, we sought to further characterise the transcriptome of  
302 day 20 4TF FoP-Heps by RNA-seq by comparing the transcriptome of eFoP-Heps with  
303 undifferentiated hiPSCs, HLCs (derived from direct differentiation of hESC and hiPSCs),  
304 adult PHHs as well as foetal liver cells. As suggested by the marker expression pattern  
305 identified by qPCR, the transcriptome of eFoP-Heps closely clustered with HLCs derived  
306 from both hESCs and hiPSCs (Figure 5D). Interestingly, both eFoP-Heps and HLCs clustered  
307 separately from foetal liver cells, indicating that despite these cells not acquiring a fully

308 mature phenotype, these also don't fully resemble a foetal liver stage. We further interrogated  
309 the ontology of genes differentially expressed between eFoP and the different groups of  
310 samples (Figure 5–figure supplement 2). As expected, genes that gain expression in eFoP-  
311 Heps compared to undifferentiated hiPSCs are strongly associated with several liver  
312 functions such as hormone metabolism, lipid localization and transport, blood coagulation  
313 (Figure 5E), further confirming that cells generated by forward programming acquire a  
314 hepatocyte identity. Indeed, eFoP-Heps, as well as hiPSC-derived HLCs, expressed a range  
315 of adult liver genes that were found to be highly expressed in adult PHHs as identified in  
316 Figure 2D (Figure 2-source data 2), including genes that were not expressed in the foetal  
317 stage (Figure 5F). In addition to expressing mature hepatocyte markers, both eFoP-Heps and  
318 iFoP-Heps were also able to uptake LDL from the culture medium confirming their capacity  
319 to transport lipids (Figure 6A). In order to further explore their capacity to metabolise lipids,  
320 FoP-Heps were grown in 3D for an additional 5 (D20) or 10 (D30) days as we recently  
321 observed that such culture conditions facilitate lipid accumulation in HLCs (Carola M.  
322 Morell, personal communication, (Tilson et al., 2021). We first confirmed that FoP-Heps  
323 grown in 3D retained the expression of hepatocyte markers (Figure 6B). Interestingly,  
324 *SERPINA1* or *UGT1A6* expression increased in these conditions suggesting an increase in  
325 functional maturation promoted in 3D (Figure 6B). We then tested the capacity of both eFoP  
326 and iFoP-Heps to respond to fatty acids by treating these cells with both oleic acid (OA) and  
327 palmitic acid (PA) which are known to induce steatosis and lipotoxicity respectively (Ricchi  
328 et al., 2009). In line with their known effect on hepatocytes, OA treatment induced a strong  
329 accumulation of lipids as shown by BODIPY staining (Figure 6C) while PA treatment  
330 induced a reduction in cell viability consistent with lipotoxicity (Figure 6D). Thus, FoP-Heps  
331 appear to react to fatty acids similarly to their primary counterpart. Finally, we explored the  
332 interest of FoP-Heps for modelling the hepatotoxic effect of paracetamol/acetaminophen. For

333 that, FoP-Heps were grown in the presence of an acetaminophen (APAP) dose known to  
334 induce liver failure. This treatment resulted in a 50% reduction in cell viability (Figure 6E)  
335 suggesting that FoP-Heps could be used for cytotoxic studies. In summary, these results  
336 showed that 4TF FoP-Heps derived from either hESC or hiPSCs display characteristics of  
337 functional hepatocytes such as expression of genes involved in drug, lipid, glucose and bile  
338 acid metabolism, capacity to uptake LDL and fatty acids from the culture medium, as well as  
339 response to hepatotoxic factors, demonstrating their potential interest for modelling liver  
340 disease *in vitro* and toxicology screening.

341

## 342 **Discussion**

343 In this study, we have established a method to forward program hPSCs into hepatocytes by  
344 taking advantage of the OPTi-OX platform (Pawlowski et al., 2017). The success of this  
345 approach depends on the selection of TFs, combining factors controlling early liver  
346 development and regulators of adult hepatic functions. Nonetheless, most forward  
347 programming methods rely on a master regulator to convert hPSCs into a specific cell type.  
348 As an example, neurons and muscle cells can be generated by the simple overexpression of  
349 NGN2 and MYOD respectively (Pawlowski et al., 2017). Our results show that production of  
350 hepatocytes requires a more complex process involving 3 transcription factors but also a  
351 culture media supporting primary hepatocytes. Furthermore, our best LETFs combination did  
352 not include HNF4A, which is known to be a key regulator of hepatocyte function in the adult  
353 liver. On the contrary, removing HNF4A significantly improved the identity of the  
354 hepatocytes generated. Similar observations were recently reported for the direct  
355 reprogramming of human umbilical vein endothelial cells into bipotent hepatocyte progenitor  
356 cells where HNF4A was found to be detrimental (Inada et al., 2020). HNF4A is essential not  
357 only in adult liver but also during development, especially in the establishment of the liver

358 bud (Gordillo et al., 2015). Thus, HNF4A might also have a role in preserving foetal liver  
359 cells such as hepatoblasts and its overexpression during forward programming could block  
360 the acquisition of an adult hepatocytic identity. This example illustrates the challenges to  
361 identify factors which are uniquely expressed in the adult liver.

362 Importantly, FoP-Heps generated by LETF overexpression acquired an hepatocytic identity  
363 with reduced adult functions, suggesting that this cocktail of transcription factors might only  
364 convert hiPSCs into foetal-like cells. Thus, we decided to add factors which could direct  
365 functional maturation of the liver. This latest category of factors was identified by performing  
366 a transcriptomic and epigenetic comparison of PHHs and HLC generated by direct  
367 differentiation. The focus on HLCs was based on their well characterised foetal state and also  
368 the broad experience with the cells. These analyses identified a subset of nuclear receptors  
369 that were exclusively expressed in PHHs and in the adult liver thereby confirming the  
370 relevance of our approach. Of particular interest, RORc, ER $\alpha$  and AR were identified as key  
371 candidates for controlling functional maturation in hepatocytes. Importantly, nuclear  
372 receptors are well known to control diverse liver functions including lipid and glucose  
373 homeostasis, bile acid clearance, xenobiotic sensing and regeneration (Rudraiah et al., 2016).  
374 Both steroid hormonal receptors ER $\alpha$  and AR have been shown to have roles in the  
375 regulation of energy homeostasis in the liver (Shen & Shi, 2015). Moreover, ER $\alpha$  is involved  
376 in cholesterol clearance (Zhu et al., 2018) and has also been associated with liver  
377 regeneration (Kao et al., 2018) and bilirubin metabolism through CYP2A6 (Kao et al., 2017).  
378 RORc is a nuclear receptor expressed in peripheral tissues including liver, muscle and  
379 adipose tissue and has been proposed to function as an intermediary between the circadian  
380 clock and glucose/lipid metabolism (Cook et al., 2015). Moreover, *RORy*-deficient mice  
381 exhibit insulin sensitivity and reduced expression of gluconeogenesis, lipid metabolic  
382 markers, and a subset of phase I enzymes involved in bile acid synthesis and phase II

383 enzymes (Kang et al., 2007; Takeda, Kang, Freudenberg, et al., 2014; Takeda, Kang, Lih, et  
384 al., 2014). Based on these previous reports, we propose that the overexpression of RORc and  
385 other nuclear receptors could improve specific functions in FoP-Heps by activating a subset  
386 of target genes in the hepatic context induced by the LETFs overexpression. Importantly,  
387 hepatocyte functionality is spatially different across the liver lobule, being influenced by the  
388 gradient of oxygen, nutrients and signalling (Trefts et al., 2017). This hepatic zonation drives  
389 different metabolic processes in regards to glucose, lipids, iron, or even xenobiotics, which  
390 are under the control of different transcriptomic programs (Halpern et al., 2017). Thus, we  
391 expect that different combinations of nuclear factors in the background induced by LETFs  
392 overexpression could enable the production of hepatocytes with a distinct repertoire of  
393 functions.

394 FoP-Heps generated with the overexpression of the 4TFs (HNF1A, HNF6, FOXA3 and  
395 RORc) displayed functional features of adult hepatocytes including Albumin and A1AT  
396 secretion, basal CYP3A4 activity, expression of PhaseI/PhaseII enzymes, gluconeogenesis  
397 and lipid metabolism markers, capacity to uptake LDL and fatty acids as well as response to  
398 toxic compounds. Nonetheless, *CYP3A4* expression remains limited and this gene remains  
399 difficult to induce *in vitro*. Thus, additional TFs could be necessary to generate FoP-Heps  
400 exhibiting the full spectrum of functional activities displayed by PHHs. Similarly, culture  
401 conditions could be further improved to support key hepatic functions. Indeed, the basal  
402 medium used in our protocol does not prevent dedifferentiation of PHHs and thus might not  
403 be compatible with the production of fully functional cells by forward programming.  
404 Nonetheless, the forward programming method established here presents several advantages  
405 over conventional directed differentiation protocols. This is a robust two-steps method which  
406 bypasses the need for multi-step differentiations which are often associated with batch-to-  
407 batch variability. Furthermore, forward programming is faster, generating functional cells in

408 20 days, as opposed to 30-35 days for direct differentiation. Finally, the yield of cells seems  
409 favourable and compatible with large-scale production. Indeed, we observed that forward  
410 programming was associated with an 6-8 fold increase in cell number during differentiation  
411 while the yield of direct differentiation is lower (data not shown). Moreover, the phenotype  
412 achieved is stable even in the absence of doxycycline which allows this method to be  
413 applicable in cell therapy and drug discovery (data not shown).

414 Taken together, our results describe the first method for generating hepatocytes using forward  
415 programming. This approach represents the first step towards the high-throughput and large-  
416 scale production of specialized hepatocytes displaying a spectrum of functions relevant for  
417 different applications in disease modelling and drug screening.

418

## 419 **Methods**

### 420 **hPSC culture**

421 The human ESC H9 (WiCell) and iPSC A1ATD<sup>R/R</sup> (Yusa et al., 2011) lines were used in this  
422 project. Human iPSC line was derived as previously described, under approval by the  
423 regional research ethics committee (REC 08/H0311/201). Both hPSCs were cultured on  
424 vitronectin XFTM (10µg/mL, StemCell Technologies)-coated plates and in Essential 8 (E8)  
425 chemically defined medium consisting of DMEM/F12 (Gibco), L-ascorbic acid 2-phosphate  
426 (1%), insulin-transferrin-selenium solution (2%, Life Technologies), sodium bicarbonate  
427 (0.7%), and Penicillin/Streptomycin (1%), freshly supplemented with TGFβ (10ng/ml, R&D)  
428 and FGF2 (12ng/ml, Qkine) (Chen et al., 2011). For routine dissociation, cells were  
429 incubated with 0.5µM EDTA (ThermoFisher Scientific) for 3 minutes at 37°C seeded in  
430 small clumps. Cells were maintained at 37°C in 20% O<sub>2</sub>, 5% CO<sub>2</sub> and medium was  
431 replenished every 24h.

432 Authentication of hPSCs was achieved by confirming the expression of pluripotency genes.  
433 Cells were routinely confirmed to be mycoplasma free using broth and PCR-based assays.  
434 The cell lines are not on the list of commonly misidentified cell lines (International Cell Line  
435 Authentication Committee).

436

#### 437 **Gene Targeting**

438 Inducible hESC and hiPSC lines were generated using the OPTi-OX system as previously  
439 described (Bertero et al., 2016; Pawlowski et al., 2017). Briefly, two gene safe harbours were  
440 targeted (GSH). The hROSA26 locus was targeted with a constitutively expressed  
441 transactivator (rtTA) and the AAVS1 locus with the transgenes of interest under a TET  
442 responsive element (TRE). Different combinations of transcription factors and/or nuclear  
443 receptors as stated throughout the manuscript were cloned. Template cDNA sequences were  
444 obtained either from Dharmacon: *HNF6* (MHS6278-213244170), *HNF1A* (MHS6278-  
445 202857902), *RORy* (MHS6278-202800991) and *ESR1* (MHS6278- 211691051); or amplified  
446 from human primary liver cDNA: *HNF4A*, *FOXA3* and *AR*. Sequences were amplified using  
447 the KAPA HiFi HotStart ReadyMix (Roche). The primers used to amplify and clone the  
448 sequences into the backbone vector contained upstream and downstream overhangs in order  
449 to generate a GSG (Gly-Ser-Gly) linker and a different 2A peptide as listed in table 1. The  
450 different vectors were constructed by Gibson Assembly (New England Biolabs) using a 1:3  
451 pmol ratio of vector to insert. For targeting, hPSCs were dissociated into single cells with  
452 STEMpro accutase (Thermo Fisher) for 5 minutes, and 1 million cells were transfected with  
453 2 $\mu$ g of donor vector and 2 $\mu$ g of each AAVS1 ZFN expression plasmids using the P3 Primary  
454 Cell 4D-Nucleofector X Kit (Lonza). Cells were seeded in E8 medium supplemented with  
455 10 $\mu$ M ROCK Inhibitor Y-27632 (Selleckchem). After 5-7 days, colonies were selected with

456 1 $\mu$ g/ml puromycin (Sigma Aldrich) for at least 2 days, after which they were individually  
457 picked and genotyped as previously described (Bertero et al., 2016; Pawlowski et al., 2017).

458

459 **Hepatocyte Direct Differentiation**

460 hPSCs were dissociated into single cells following incubation with StemPro Accutase  
461 (Thermo Fisher) for 5 minutes at 37°C and seeded at a density of 50.000cells/cm<sup>2</sup> in E8  
462 medium supplemented with 10 $\mu$ M ROCK Inhibitor Y-27632 (Selleckchem). Hepatocytes  
463 were differentiated 48h after seeding, as previously reported (Hannan et al., 2013) with minor  
464 modifications. Following endoderm differentiation, anterior foregut specification was  
465 achieved with RPMI-B27 differentiation media supplemented with 50ng/ml Activin A  
466 (R&D) for 5 days. Cells at the foregut stage were further differentiated into hepatocytes with  
467 Hepatozyme complete medium: HepatoZYME-SFM (Thermo Fisher) supplemented with  
468 2mM L-glutamine (Thermo Fisher), 1% penicillin-streptomycin (Thermo Fisher), 2% non-  
469 essential amino acids (Thermo Fisher), 2% chemically defined lipids (Thermo Fisher),  
470 14 $\mu$ g/ml of insulin (Roche), 30 $\mu$ g/ml of transferrin (Roche), 50 ng/ml hepatocyte growth  
471 factor (R&D), and 20 ng/ml oncostatin M (R&D), for up to 27 days.

472

473 **Forward Programming into Hepatocytes**

474 hPSCs were dissociated into single cells following incubation with StemPro Accutase  
475 (Thermo Fisher) for 5 minutes at 37°C and seeded at a density of 40-50.000cells/cm<sup>2</sup> in E8  
476 medium supplemented with 10 $\mu$ M ROCK Inhibitor Y-27632 (Selleckchem). E8 medium was  
477 replenished the following day. Following 48h, initial induction of the transgenes was  
478 achieved by incubation in E6 medium (E8 without growth factors) supplemented with  
479 1mg/ml doxycycline (dox) for 24h. Cells were then maintained in Hepatozyme complete  
480 medium supplemented with 1mg/ml dox for the remaining duration of the protocol. Medium

481 was replenished every day for the next 4 days, and every other day here after. For specific  
482 experiments, cell lines were treated with 100nM of desmosterol, testosterone or  $\beta$ -estradiol  
483 (E2) from day 2 of forward programming. All ligands were purchased from Sigma-Aldrich  
484 and reconstituted in ethanol. For 3D cultures, forward programmed cells were embedded in  
485 Matrigel Growth Factor Reduced Basement Membrane Matrix, Phenol Red-free (Corning) at  
486 day 15 or day 20 and cultured for 5 days or 10 days, respectively. Cells were dissociated with  
487 Hank's based cell dissociation buffer (Gibco) for 20 minutes at 37°C, resuspended in  
488 Matrigel and seeded in 40-50  $\mu$ L domes in Hepatozyme complete medium supplemented with  
489 1mg/ml dox.

490

#### 491 **Primary Liver Samples**

492 Fresh primary hepatocytes used for RNA-seq were obtained as previously reported (Segeritz  
493 et al., 2018). Primary plated hepatocytes from 4 donors (3 males and 1 female) were  
494 purchased from Biopredic International (Rennes, France), meting the manufacturer's quality  
495 control requirements. Cells were maintained in short-term monolayer cultures in William's E  
496 (Gibco) supplemented with 1% Glutamine (Gibco), 1% Penicillin-streptomycin (Gibco),  
497 700nM Insulin (Sigma-Aldrich) and 50 $\mu$ M Hydrocortisone (Sigma). Functional assays such  
498 as CYP3A4 activity measurement were performed in Hepatozyme complete medium within  
499 48h of receipt. Bulk foetal tissue was obtained from patients undergoing elective terminations  
500 up to the third trimester, under approval by the regional research ethics committee (REC-  
501 96/085). The tissue was lysed and RNA harvested as indicated below.

502

#### 503 **CYP3A4 Assay**

504 Measurement of CYP3A4 enzymatic activity was performed using the P450 Glo kit  
505 (Promega). Cells were incubate with 1:1000 luciferin-IPA in Hepatozyme complete for 1h at

506 37°C. Supernatant was mixed with detection reagent in a 1:1 ratio and incubated at RT for 20  
507 minutes in Greiner white 96 well microplates (Sigma Aldrich). Luminescence was measured  
508 in triplicate on a GloMax plate reader. Hepatozyme complete medium was used as  
509 background control. Relative light units were normalised for background, volume and  
510 average total number of cells obtained after differentiation.

511

### 512 **LDL uptake assay**

513 LDL uptake capacity was measured with the LDL Uptake Assay Kit (Abcam). Cells were  
514 incubated with 1:100 human LDL conjugated to DyLight™ 550 in Hepatozyme complete  
515 medium for 3 hours at 37°C. Cells were then washed and fixed with 4% PFA for 20 minutes  
516 at 4°C.

517

### 518 **Fatty Acid Treatments**

519 Forward programmed cells were embedded in 3D from day 20 and cultured for 7 days in  
520 Hepatozyme complete medium supplemented with either BSA (control), or oleic acid  
521 (0.25mM) or palmitic acid (0.25mM) conjugated with BSA. Intracellular lipid accumulation  
522 was detected by incubating cells with 1µl/ml Bodipy (Thermo scientific) for 30 minutes,  
523 followed by DAPI (Hoechst) diluted 1:10.000 in PBS for 30 minutes and imaged on a Zeiss  
524 LSM 700 confocal microscope

525

### 526 **APAP toxicity**

527 The hepatotoxicity of acetaminophen (APAP) was tested by incubating forward programmed  
528 cells cultured in 3D from day 15 in Hepatozyme complete medium supplemented with 25  
529 mM acetaminophen (R&D) for 48h hours (day 18 to day 20) after which cell viability was  
530 determined.

531

532 **Cell Viability**

533 Cell viability was determined by incubating cells with 1:10 Presto Blue reagent (Invitrogen)  
534 in Hepatozyme complete medium at 37°C for 4 hours. Fluorescence was measured using the  
535 EnVision plate reader with an excitation emission of 560nm/590nm.

536

537 **RT-qPCR**

538 RNA was extracted from either cells or tissues using GenElute Mammalian Total RNA  
539 Miniprep Kit (Sigma-Aldrich) according to the manufacturer's instructions. 500ng of RNA  
540 were reverse transcribed into cDNA using Random Primers and SuperScript II (Invitrogen)  
541 according to the manufacturer's instructions. qPCR was performed using the KAPA SYBR  
542 FAST qPCR Kit low-ROX (Sigma-Aldrich) with 200 nM of forward and reverse primers  
543 (Sigma-Aldrich; primers listed in table 2) on a QuantStudio 5 (Applied Biosystems). qPCRs  
544 were performed in technical duplicates and normalised to the average of two housekeeping  
545 genes (*RPLP0* and *PBGD*) using the 2–ΔCt method.

546

547 **Immunofluorescence staining**

548 Cells in monolayer were fixed in 4% PFA for 20 minutes at 4°C and blocked for 30 minutes  
549 in 10% donkey serum (BioRad) and 0,1% Triton X-100 (Sigma-Aldrich). Fixed cells were  
550 incubated with primary antibodies listed in table 3 in 1% donkey serum and 0,01% Triton X-  
551 100 overnight at 4°C. Following washing, cells were incubated with Alexa Fluor 488-, 568-  
552 or 647-conjugated secondary antibodies (Life Technologies) for 1h at room temperature  
553 diluted in 1% donkey serum and 0,01% Triton X-100. For nuclei visualisation, cells were  
554 incubated with adding DAPI/Hoechst 33258 (bis-Benzimide H, Sigma-Aldrich) diluted

555 1:10,000 in PBS for 10 minutes at room temperature. Cells were imaged either on a Zeiss  
556 Axiovert 200M or on a Zeiss LSM 700 confocal microscope.

557

558 **Secreted protein quantification**

559 Albumin, alpha-fetoprotein and alpha-1-antitrypsin were measured in the cell culture  
560 supernatant of monolayer cultures, which were replenished with fresh Hepatozyme complete  
561 medium 24h prior to collection. Concentrations were detected by ELISA (performed by core  
562 biomedical assay laboratory, Cambridge University Hospitals) and normalised to cell  
563 number.

564

565 **RNA-seq analyses**

566 RNA-seq datasets were generated for undifferentiated hiPSCs (n=3), hESC-derived HLCs  
567 (n=2), hiPSC-derived HLCs (n=6), freshly harvested PHHs (fPHHs, n=3), commercially  
568 purchased PHHs (pPHHs, n=2), bulk foetal liver samples (FL, n=3) and hESC-derived 4TF  
569 FoP-Heps (eFoP, n=3). RNA was extracted from either cells or tissues using GenElute  
570 Mammalian Total RNA Miniprep Kit (Sigma-Aldrich) according to the manufacturer's  
571 instruction. Poly-A library preparation and sequencing were performed by Cambridge  
572 Genomic Services (hESC\_HLCs; pPHHs), the Wellcome Trust Sanger Institute (hiPSCs,  
573 hiPSC\_HLCs, fPHHs), and the Cambridge Stem Cell Institute and CRUK (FL, eFoP).  
574 Quality of reads was assessed with FastQC. For consistency, fastq reads were split into  
575 single-end reads and trimmed to the same length (40bp) using cutadapt version 2.10. Single-  
576 end fastq files were mapped and quantified using salmon version 1.2.1 with the following  
577 parameters: -l A, -GCbias, -posbias, -valademappings (Patro et al., 2017). The index used  
578 was pre-built from the human GRCh38 cDNA reference sequence from Ensembl  
579 (refgenomes.databio.org). Differential gene expression was calculated using DESeq2 (Love

580 et al., 2014), with the following parameters  $\text{padj} > 0.05$ ,  $\text{basemean} > 100$  and  $\text{log2 fold change}$   
581  $> 2$  or  $< -2$  between groups as depicted in each figure. Gene ontology enrichment was  
582 calculated with the clusterProfiler package (Yu et al., 2012). Pathway analysis on  
583 significantly misregulated transcription factors was assessed using ReactomePA (Yu & He,  
584 2016). Mouse liver polyA plus RNA-seq was downloaded from ENCODE (Consortium,  
585 2012). Single-end fastq reads were trimmed in both replicates from each dataset to 70bp  
586 using cutadapt version 2.10. Fastq were mapped and quantified using salmon version 1.2.1  
587 with the following parameters: -l A, -Gbias, -seqbias, -valademappings using a pre-build  
588 mm10 cDNA reference genome. DeSeq2 was used to generate all plots for visualisation.

589

#### 590 **Chromatin immunoprecipitation (ChIP)**

591 ChIP was performed as previously reported (Brown et al., 2011). Briefly, chromatin was  
592 crosslinked with 1% formaldehyde (Sigma-Aldrich) for 10 minutes at room temperature and  
593 quenched with 0.125M glycine (Sigma-Aldrich). Cells and nuclei were subsequently lysed  
594 and chromatin was sonicated to fragment DNA to about 200-500 bp on a Bioruptor Pico  
595 sonication device (Diagenode). Sonicated chromatin was pre-cleared with same-host IgG and  
596 protein G Dynabeads (Thermo Fisher), 100 $\mu$ g of cleared chromatin (protein) was incubated  
597 with 2 $\mu$ g of the following antibodies overnight at 4°C: H3K27ac (Abcam, ab4729),  
598 H3K4me1 (Abcam, ab8895), H3K27me3 (Active Motif, 39155) and H3K4me3 (Merk, 05-  
599 745R), after which complexes captured with 30 $\mu$ l of protein G Dynabeads (Thermo Fisher).  
600 Complexes were washed, RNase A (Thermo Fisher) and Proteinase K (Sigma-Aldrich)  
601 treated and DNA was purified by phenol-chloroform extraction and precipitated with  
602 GlycoBlue (Thermo Fisher), sodium acetate (Thermo Fisher) and ethanol (Sigma-Aldrich). A  
603 sonicated chromatin sample (1%) was also collected as input for normalisation and 10ng of  
604 DNA were used for ChIP-sequencing library preparations.

605

606 **ChIP-seq analyses**

607 Library preparation and sequencing and alignment were performed by the Wellcome Trust  
608 Sanger Institute DNA Sequencing Facility (Hinxton, UK). Sequencing was performed on an  
609 Illumina HiSeq v4 to obtain paired-end reads with 75bp length. ChIP-seq reads were mapped  
610 to human genome assembly GRCh38 with bwa. Aligned data in BAM format was sorted and  
611 indexed with samtools. Coverage files were generated using deeptools bamCoverage, with a  
612 bin size of 10bp and normalised as RPKM for visualisation in IGV and heatmap  
613 representation with deeptools. In order to plot principal component analysis (PCA), average  
614 scores were calculated over 1000bp bins. For peak calling, BAM files were converted to  
615 SAM and peaks called using homer (Heinz et al., 2010). Both replicates were used for peak  
616 calling against input with disabled local filtering invoking the following flags for H3K27ac: -  
617 region -L 0. In order to identify regulatory regions specifically active in PHH or HLCs,  
618 differentially bound peaks were determined using PHH datasets as target against all HLCs  
619 datasets as background, and vice versa, with a fold enrichment over background of 4. A list  
620 of genes annotated for each peak dataset can be found in Supplementary Tables 2 and 3. For  
621 motif enrichment, peak calling was performed on nucleosome free regions by invoking the  
622 flags -L 1 -nfr, in order to determine the “dips” within H3K27ac-rich regions. These sets of  
623 regions were overlapped with the differentially bound peaks as above, in order to perform  
624 PHH or HLC-specific motif enrichment. Peak annotation and gene ontology enrichment were  
625 determined with the clusterProfiler R package (Yu et al., 2012). Undifferentiated hiPSCs  
626 ChIP-seq reads aligned to the same genome assembly were downloaded from ENCODE  
627 (Consortium, 2012) and treated as above.

628

629 **Data availability**

630 RNA-seq datasets used in this study are accessible on Array Express under the accession  
631 number E-MTAB-10634 and E-MTAB-11852. In addition, 3 of the hiPSC\_HLCs data sets  
632 have been previously deposited with the accession number E-MTAB-6781 (Segeritz et al.,  
633 2018). *Mus musculus* C57BL/6 liver embryo RNA-seq datasets were obtained from the  
634 ENCODE database (Nakamori et al., 2016) (<https://www.encodeproject.org/>) with the  
635 following accession numbers: ENCSR216KLZ (E12.5 liver), ENCSR826HIQ (E16.5 liver),  
636 ENCSR096STK (P0 liver), ENCSR000BYS (8 weeks mixed sex adult liver) and  
637 ENCSR216KLZ (10 weeks adult liver). ChIP-seq datasets generated in this study have been  
638 deposited on Array Express with the accession number E-MTAB-10637, and publicly  
639 available datasets for hiPSCs were used from the ENCODE database with the following  
640 accession numbers: ENCSR729ENO (H3K27ac), ENCSR249YGG (H3K4me1),  
641 ENCSR386RIJ (H3K27me3), ENCSR657DYL (H3K4me3) and ENCSR773IYZ (input).

642

#### 643 **Statistical analysis**

644 Statistical analyses were conducted using GraphPad 9.0.0 and specific tests are indicated in  
645 the figure legends. For each figure, sample size *n* indicates the number of independent  
646 experiments or biological replicates and individual values are represented for every graph.  
647 Testing between groups was performed with at least *n*  $\geq$  3 independent experiments and *p*  
648 value groups are indicated within the figure where significant.

649

#### 650 **Acknowledgements**

651 This work was supported by funding from the European Research Council Grant New-Chol,  
652 the UK Regenerative Medicine Platform and a core support grant from the Wellcome MRC -  
653 Cambridge Stem Cell Institute. We thank Anna Osnato and Pedro Madrigal for  
654 bioinformatics support, and Stephanie Brown for technical advice. We acknowledge the

655 Wellcome Trust Sanger Institute sequencing platform, the ENCODE Consortium and the  
656 ENCODE production laboratories in generating the particular datasets used in this  
657 manuscript.

658

659 **Competing Interests**

660 L.V. is a founder and shareholder of DefiniGEN, Aculive Therapeutics and Billitech. F.B. is  
661 a PhD student sponsored by bit.bio. The remaining authors declare no competing interests.

662

663

664

## References

665

666 Baxter, M., Withey, S., Harrison, S., Segeritz, C. P., Zhang, F., Atkinson-Dell, R., Rowe, C.,  
667 Gerrard, D. T., Sison-Young, R., Jenkins, R., Henry, J., Berry, A. A., Mohamet, L., Best, M.,  
668 Fenwick, S. W., Malik, H., Kitteringham, N. R., Goldring, C. E., Piper Hanley, K., Vallier,  
669 L., & Hanley, N. A. (2015, Mar). Phenotypic and functional analyses show stem cell-derived  
670 hepatocyte-like cells better mimic fetal rather than adult hepatocytes. *J Hepatol*, 62(3), 581-  
671 589. <https://doi.org/10.1016/j.jhep.2014.10.016>

672

673 Bertero, A., Pawlowski, M., Ortmann, D., Snijders, K., Yianguo, L., Cardoso de Brito, M.,  
674 Brown, S., Bernard, W. G., Cooper, J. D., Giacomelli, E., Gambardella, L., Hannan, N. R.,  
675 Iyer, D., Sampaziotis, F., Serrano, F., Zonneveld, M. C., Sinha, S., Kotter, M., & Vallier, L.  
676 (2016, Dec 1). Optimized inducible shRNA and CRISPR/Cas9 platforms for in vitro studies  
677 of human development using hPSCs. *Development*, 143(23), 4405-4418.  
678 <https://doi.org/10.1242/dev.138081>

679

680 Boon, R., Kumar, M., Tricot, T., Elia, I., Ordovas, L., Jacobs, F., One, J., De Smedt, J.,  
681 Eelen, G., Bird, M., Roelandt, P., Doglioni, G., Vriens, K., Rossi, M., Vazquez, M. A.,  
682 Vanwelden, T., Chesnais, F., El Taghdouini, A., Najimi, M., Sokal, E., Cassiman, D.,  
683 Snoeys, J., Monshouwer, M., Hu, W. S., Lange, C., Carmeliet, P., Fendt, S. M., & Verfaillie,  
684 C. M. (2020, Mar 13). Amino acid levels determine metabolism and CYP450 function of  
685 hepatocytes and hepatoma cell lines. *Nat Commun*, 11(1), 1393.  
686 <https://doi.org/10.1038/s41467-020-15058-6>

687

688 Brown, S., Teo, A., Pauklin, S., Hannan, N., Cho, C. H., Lim, B., Vardy, L., Dunn, N. R.,  
689 Trotter, M., Pedersen, R., & Vallier, L. (2011, Aug). Activin/Nodal signaling controls  
690 divergent transcriptional networks in human embryonic stem cells and in endoderm  
691 progenitors. *Stem Cells*, 29(8), 1176-1185. <https://doi.org/10.1002/stem.666>

692

693 Chen, G., Gulbranson, D. R., Hou, Z., Bolin, J. M., Ruotti, V., Probasco, M. D., Smuga-Otto,  
694 K., Howden, S. E., Diol, N. R., Propson, N. E., Wagner, R., Lee, G. O., Antosiewicz-  
695 Bourget, J., Teng, J. M., & Thomson, J. A. (2011, May). Chemically defined conditions for  
696 human iPSC derivation and culture. *Nat Methods*, 8(5), 424-429.  
697 <https://doi.org/10.1038/nmeth.1593>

698

699 Consortium, E. P. (2012, Sep 6). An integrated encyclopedia of DNA elements in the human  
700 genome. *Nature*, 489(7414), 57-74. <https://doi.org/10.1038/nature11247>

701

702 Cook, D. N., Kang, H. S., & Jetten, A. M. (2015). Retinoic Acid-Related Orphan Receptors  
703 (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and  
704 Metabolism. *Nucl Receptor Res*, 2. <https://doi.org/10.11131/2015/101185>

705

706 Creyghton, M. P., Cheng, A. W., Welstead, G. G., Kooistra, T., Carey, B. W., Steine, E. J.,  
707 Hanna, J., Lodato, M. A., Frampton, G. M., Sharp, P. A., Boyer, L. A., Young, R. A., &  
708 Jaenisch, R. (2010, Dec 14). Histone H3K27ac separates active from poised enhancers and  
709 predicts developmental state. *Proc Natl Acad Sci U S A*, 107(50), 21931-21936.  
710 <https://doi.org/10.1073/pnas.1016071107>

711

712 Dhawan, A., Chaijitraruch, N., Fitzpatrick, E., Bansal, S., Filippi, C., Lehec, S. C., Heaton,  
713 N. D., Kane, P., Verma, A., Hughes, R. D., & Mitry, R. R. (2020, May). Alginate  
714 microencapsulated human hepatocytes for the treatment of acute liver failure in children. *J  
715 Hepatol*, 72(5), 877-884. <https://doi.org/10.1016/j.jhep.2019.12.002>

716

717 Du, Y., Wang, J., Jia, J., Song, N., Xiang, C., Xu, J., Hou, Z., Su, X., Liu, B., Jiang, T., Zhao,  
718 D., Sun, Y., Shu, J., Guo, Q., Yin, M., Sun, D., Lu, S., Shi, Y., & Deng, H. (2014, Mar 6).  
719 Human hepatocytes with drug metabolic function induced from fibroblasts by lineage  
720 reprogramming. *Cell Stem Cell*, 14(3), 394-403. <https://doi.org/10.1016/j.stem.2014.01.008>

721

722 Gordillo, M., Evans, T., & Gouon-Evans, V. (2015, Jun 15). Orchestrating liver development.  
723 *Development*, 142(12), 2094-2108. <https://doi.org/10.1242/dev.114215>

724

725 Grandy, R., Tomaz, R. A., & Vallier, L. (2019, Jan 24). Modeling Disease with Human  
726 Inducible Pluripotent Stem Cells. *Annu Rev Pathol*, 14, 449-468.  
727 <https://doi.org/10.1146/annurev-pathol-020117-043634>

728

729 Halpern, K. B., Shenhav, R., Matcovitch-Natan, O., Toth, B., Lemze, D., Golan, M.,  
730 Massasa, E. E., Baydatch, S., Landen, S., Moor, A. E., Brandis, A., Giladi, A., Avihail, A. S.,  
731 David, E., Amit, I., & Itzkovitz, S. (2017, Feb 16). Single-cell spatial reconstruction reveals

732 global division of labour in the mammalian liver. *Nature*, 542(7641), 352-356.

733 <https://doi.org/10.1038/nature21065>

734

735 Hannan, N. R., Segeritz, C. P., Touboul, T., & Vallier, L. (2013, Feb). Production of  
736 hepatocyte-like cells from human pluripotent stem cells. *Nat Protoc*, 8(2), 430-437.

737 <https://doi.org/10.1038/nprot.2012.153>

738

739 Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., Cheng, J. X., Murre, C.,  
740 Singh, H., & Glass, C. K. (2010, May 28). Simple combinations of lineage-determining  
741 transcription factors prime cis-regulatory elements required for macrophage and B cell  
742 identities. *Mol Cell*, 38(4), 576-589. <https://doi.org/10.1016/j.molcel.2010.05.004>

743

744 Huang, P., Zhang, L., Gao, Y., He, Z., Yao, D., Wu, Z., Cen, J., Chen, X., Liu, C., Hu, Y.,  
745 Lai, D., Hu, Z., Chen, L., Zhang, Y., Cheng, X., Ma, X., Pan, G., Wang, X., & Hui, L. (2014,  
746 Mar 6). Direct reprogramming of human fibroblasts to functional and expandable  
747 hepatocytes. *Cell Stem Cell*, 14(3), 370-384. <https://doi.org/10.1016/j.stem.2014.01.003>

748

749 Inada, H., Udon, M., Matsuda-Ito, K., Horisawa, K., Ohkawa, Y., Miura, S., Goya, T.,  
750 Yamamoto, J., Nagasaki, M., Ueno, K., Saitou, D., Suyama, M., Maehara, Y., Kumamaru,  
751 W., Ogawa, Y., Sekiya, S., & Suzuki, A. (2020, Oct 21). Direct reprogramming of human  
752 umbilical vein- and peripheral blood-derived endothelial cells into hepatic progenitor cells.  
753 *Nat Commun*, 11(1), 5292. <https://doi.org/10.1038/s41467-020-19041-z>

754

755 Kang, H. S., Angers, M., Beak, J. Y., Wu, X., Gimble, J. M., Wada, T., Xie, W., Collins, J.  
756 B., Grissom, S. F., & Jetten, A. M. (2007, Oct 22). Gene expression profiling reveals a  
757 regulatory role for ROR alpha and ROR gamma in phase I and phase II metabolism. *Physiol  
758 Genomics*, 31(2), 281-294. <https://doi.org/10.1152/physiolgenomics.00098.2007>

759

760 Kao, T. L., Chen, Y. L., Kuan, Y. P., Chang, W. C., Ho, Y. C., Yeh, S., Jeng, L. B., & Ma,  
761 W. L. (2017, Nov). Estrogen-Estrogen Receptor alpha Signaling Facilitates Bilirubin  
762 Metabolism in Regenerating Liver Through Regulating Cytochrome P450 2A6 Expression.  
763 *Cell Transplant*, 26(11), 1822-1829. <https://doi.org/10.1177/0963689717738258>

764

765 Kao, T. L., Kuan, Y. P., Cheng, W. C., Chang, W. C., Jeng, L. B., Yeh, S., & Ma, W. L.  
766 (2018). Estrogen receptors orchestrate cell growth and differentiation to facilitate liver  
767 regeneration. *Theranostics*, 8(10), 2672-2682. <https://doi.org/10.7150/thno.23624>

768

769 Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., Chen, X., Taipale,  
770 J., Hughes, T. R., & Weirauch, M. T. (2018, Oct 4). The Human Transcription Factors. *Cell*,  
771 175(2), 598-599. <https://doi.org/10.1016/j.cell.2018.09.045>

772

773 Lau, H. H., Ng, N. H. J., Loo, L. S. W., Jasmen, J. B., & Teo, A. K. K. (2018, May). The  
774 molecular functions of hepatocyte nuclear factors - In and beyond the liver. *J Hepatol*, 68(5),  
775 1033-1048. <https://doi.org/10.1016/j.jhep.2017.11.026>

776

777 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and  
778 dispersion for RNA-seq data with DESeq2. *Genome Biol*, 15(12), 550.  
779 <https://doi.org/10.1186/s13059-014-0550-8>

780

781 Mitry, R. R., Hughes, R. D., & Dhawan, A. (2002, Dec). Progress in human hepatocytes:  
782 isolation, culture & cryopreservation. *Semin Cell Dev Biol*, 13(6), 463-467.  
783 <https://doi.org/10.1016/s1084952102001350>

784

785 Nakamori, D., Takayama, K., Nagamoto, Y., Mitani, S., Sakurai, F., Tachibana, M., &  
786 Mizuguchi, H. (2016, Jan 15). Hepatic maturation of human iPS cell-derived hepatocyte-like  
787 cells by ATF5, c/EBPalpha, and PROX1 transduction. *Biochem Biophys Res Commun*,  
788 469(3), 424-429. <https://doi.org/10.1016/j.bbrc.2015.12.007>

789

790 Palakkal, A. A., Nanda, J., & Ross, J. A. (2017, Apr). Pluripotent stem cells to hepatocytes,  
791 the journey so far. *Biomed Rep*, 6(4), 367-373. <https://doi.org/10.3892/br.2017.867>

792

793 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017, Apr). Salmon  
794 provides fast and bias-aware quantification of transcript expression. *Nat Methods*, 14(4), 417-  
795 419. <https://doi.org/10.1038/nmeth.4197>

796

797 Pawlowski, M., Ortmann, D., Bertero, A., Tavares, J. M., Pedersen, R. A., Vallier, L., &  
798 Kotter, M. R. N. (2017, Apr 11). Inducible and Deterministic Forward Programming of

799 Human Pluripotent Stem Cells into Neurons, Skeletal Myocytes, and Oligodendrocytes. *Stem*  
800 *Cell Reports*, 8(4), 803-812. <https://doi.org/10.1016/j.stemcr.2017.02.016>

801

802 Rashid, S. T., Corbinaeu, S., Hannan, N., Marciniak, S. J., Miranda, E., Alexander, G.,  
803 Huang-Doran, I., Griffin, J., Ahrlund-Richter, L., Skepper, J., Semple, R., Weber, A., Lomas,  
804 D. A., & Vallier, L. (2010, Sep 1). Modeling inherited metabolic disorders of the liver using  
805 human induced pluripotent stem cells. *J Clin Invest*, 120(9), 3127-3136. <https://doi.org/43122>  
806 [pii]  
807 [10.1172/JCI43122](https://doi.org/10.1172/JCI43122)

808

809 Ricchi, M., Odoardi, M. R., Carulli, L., Anzivino, C., Ballestri, S., Pinetti, A., Fantoni, L. I.,  
810 Marra, F., Bertolotti, M., Banni, S., Lonardo, A., Carulli, N., & Loria, P. (2009, May).  
811 Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured  
812 hepatocytes. *J Gastroenterol Hepatol*, 24(5), 830-840. <https://doi.org/10.1111/j.1440-1746.2008.05733.x>

813

814

815 Rombaut, M., Boeckmans, J., Rodrigues, R. M., van Grunsven, L. A., Vanhaecke, T., & De  
816 Kock, J. (2021, May 11). Direct reprogramming of somatic cells into induced hepatocytes:  
817 cracking the Enigma code. *J Hepatol*. <https://doi.org/10.1016/j.jhep.2021.04.048>

818

819 Rudraiah, S., Zhang, X., & Wang, L. (2016). Nuclear Receptors as Therapeutic Targets in  
820 Liver Disease: Are We There Yet? *Annu Rev Pharmacol Toxicol*, 56, 605-626.  
821 <https://doi.org/10.1146/annurev-pharmtox-010715-103209>

822

823 Schrem, H., Klempnauer, J., & Borlak, J. (2002, Mar). Liver-enriched transcription factors in  
824 liver function and development. Part I: the hepatocyte nuclear factor network and liver-  
825 specific gene expression. *Pharmacol Rev*, 54(1), 129-158. <https://doi.org/10.1124/pr.54.1.129>

826

827 Segeritz, C. P., Rashid, S. T., de Brito, M. C., Serra, M. P., Ordonez, A., Morell, C. M.,  
828 Kaserman, J. E., Madrigal, P., Hannan, N. R. F., Gatto, L., Tan, L., Wilson, A. A., Lilley, K.,  
829 Marciniak, S. J., Gooptu, B., Lomas, D. A., & Vallier, L. (2018, Oct). hiPSC hepatocyte  
830 model demonstrates the role of unfolded protein response and inflammatory networks in  
831 alpha1-antitrypsin deficiency. *J Hepatol*, 69(4), 851-860.  
832 <https://doi.org/10.1016/j.jhep.2018.05.028>

833

834 Shen, M., & Shi, H. (2015). Sex Hormones and Their Receptors Regulate Liver Energy  
835 Homeostasis. *Int J Endocrinol*, 2015, 294278. <https://doi.org/10.1155/2015/294278>

836

837 Si-Tayeb, K., Lemaigre, F. P., & Duncan, S. A. (2010, Feb 16). Organogenesis and  
838 development of the liver. *Dev Cell*, 18(2), 175-189.  
839 <https://doi.org/10.1016/j.devcel.2010.01.011>

840

841 Szkolnicka, D., & Hay, D. C. (2016, Jun). Concise Review: Advances in Generating  
842 Hepatocytes from Pluripotent Stem Cells for Translational Medicine. *Stem Cells*, 34(6),  
843 1421-1426. <https://doi.org/10.1002/stem.2368>

844

845 Takeda, Y., Kang, H. S., Freudenberg, J., DeGraff, L. M., Jothi, R., & Jetten, A. M. (2014). Retinoic acid-related orphan receptor gamma (ROR $\gamma$ ) $\gamma$ : a novel participant in the diurnal  
846 regulation of hepatic gluconeogenesis and insulin sensitivity. *PLoS Genet*, 10(5), e1004331.  
847 <https://doi.org/10.1371/journal.pgen.1004331>

849

850 Takeda, Y., Kang, H. S., Lih, F. B., Jiang, H., Blaner, W. S., & Jetten, A. M. (2014). Retinoid  
851 acid-related orphan receptor gamma, ROR $\gamma$ , participates in diurnal transcriptional  
852 regulation of lipid metabolic genes. *Nucleic Acids Res*, 42(16), 10448-10459.  
853 <https://doi.org/10.1093/nar/gku766>

854

855 Tilson, S. G., Morell, C. M., Lenaerts, A. S., Park, S. B., Hu, Z., Jenkins, B., Koulman, A.,  
856 Liang, T. J., & Vallier, L. (2021, Dec). Modeling PNPLA3-Associated NAFLD Using  
857 Human-Induced Pluripotent Stem Cells. *Hepatology*, 74(6), 2998-3017.  
858 <https://doi.org/10.1002/hep.32063>

859

860 Touboul, T., Hannan, N. R., Corbineau, S., Martinez, A., Martinet, C., Branchereau, S.,  
861 Mainot, S., Strick-Marchand, H., Pedersen, R., Di Santo, J., Weber, A., & Vallier, L. (2010,  
862 May). Generation of functional hepatocytes from human embryonic stem cells under  
863 chemically defined conditions that recapitulate liver development. *Hepatology*, 51(5), 1754-  
864 1765. <https://doi.org/10.1002/hep.23506>

865

866 Trefts, E., Gannon, M., & Wasserman, D. H. (2017, Nov 6). The liver. *Curr Biol*, 27(21),  
867 R1147-R1151. <https://doi.org/10.1016/j.cub.2017.09.019>

868

869 Wang, A., Yue, F., Li, Y., Xie, R., Harper, T., Patel, N. A., Muth, K., Palmer, J., Qiu, Y.,  
870 Wang, J., Lam, D. K., Raum, J. C., Stoffers, D. A., Ren, B., & Sander, M. (2015, Apr 2).  
871 Epigenetic priming of enhancers predicts developmental competence of hESC-derived  
872 endodermal lineage intermediates. *Cell Stem Cell*, 16(4), 386-399.  
873 <https://doi.org/10.1016/j.stem.2015.02.013>

874

875 Yangou, L., Ross, A. D. B., Goh, K. J., & Vallier, L. (2018, Apr 5). Human Pluripotent Stem  
876 Cell-Derived Endoderm for Modeling Development and Clinical Applications. *Cell Stem  
877 Cell*, 22(4), 485-499. <https://doi.org/10.1016/j.stem.2018.03.016>

878

879 Yu, G., & He, Q. Y. (2016, Feb). ReactomePA: an R/Bioconductor package for reactome  
880 pathway analysis and visualization. *Mol Biosyst*, 12(2), 477-479.  
881 <https://doi.org/10.1039/c5mb00663e>

882

883 Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012, May). clusterProfiler: an R package for  
884 comparing biological themes among gene clusters. *OMICS*, 16(5), 284-287.  
885 <https://doi.org/10.1089/omi.2011.0118>

886

887 Yusa, K., Rashid, S. T., Strick-Marchand, H., Varela, I., Liu, P. Q., Paschon, D. E., Miranda,  
888 E., Ordóñez, A., Hannan, N. R., Rouhani, F. J., Darche, S., Alexander, G., Marciniak, S. J.,  
889 Fusaki, N., Hasegawa, M., Holmes, M. C., Di Santo, J. P., Lomas, D. A., Bradley, A., &  
890 Vallier, L. (2011, Oct 20). Targeted gene correction of alpha1-antitrypsin deficiency in  
891 induced pluripotent stem cells. *Nature*, 478(7369), 391-394. [https://doi.org/nature10424 \[pii\] 10.1038/nature10424](https://doi.org/nature10424 [pii] 10.1038/nature10424)

892

893

894 Zhao, D., Chen, S., Duo, S., Xiang, C., Jia, J., Guo, M., Lai, W., Lu, S., & Deng, H. (2013,  
895 Jan). Promotion of the efficient metabolic maturation of human pluripotent stem cell-derived  
896 hepatocytes by correcting specification defects. *Cell Res*, 23(1), 157-161.  
897 <https://doi.org/10.1038/cr.2012.144>

898

899 Zhu, L., Shi, J., Luu, T. N., Neuman, J. C., Trefts, E., Yu, S., Palmisano, B. T., Wasserman,  
900 D. H., Linton, M. F., & Stafford, J. M. (2018, Feb). Hepatocyte estrogen receptor alpha  
901 mediates estrogen action to promote reverse cholesterol transport during Western-type diet  
902 feeding. *Mol Metab*, 8, 106-116. <https://doi.org/10.1016/j.molmet.2017.12.012>

903

904

905

906 **Tables**

907 **Table 1.** Sequences of primers used for cloning.

| Gene         | Primer  | Sequence 5' - 3' (GSG linker sequence underlined)                                                                              |
|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------|
| <i>HNF1A</i> | Start_F | CAC TTT TGT CTT ATA CTT ACT AGT <u>GCC ACC ATG GTT TCT AAA CTG AGC</u><br>CAG CTG CAG                                          |
| <i>HNF1A</i> | P2A_R   | TTC CAC GTC TCC TGC TTG CTT TAA CAG AGA GAA GTT CGT GGC <u>TCC GGA</u><br><u>GCC CTG GGA GGA AGA GGC CAT CTG G</u>             |
| <i>HNF4A</i> | E2A_F   | TAT GCT CTC TTG AAA TTG GCT GGA GAT GTT GAG AGC AAC CCT GGA CCT<br>GTC AGC GTG AAC GCG CCC CT                                  |
| <i>HNF4A</i> | Stop_R  | AGA GGA TCC CCG GGT ACC GAG CTC GAA TTC CTA GAT AAC TTC CTG CTT<br>GGT GAT GGT CG                                              |
| <i>HNF4A</i> | P2A_F   | TCT CTG TTA AAG CAA GCA GGA GAC GTG GAA GAA AAC CCC GGT CCT GTC<br>AGC GTG AAC GCG CCC CT                                      |
| <i>HNF4A</i> | T2A_R   | CTC CTC CAC GTC ACC GCA TGT TAG AAG ACT TCC TCT GCC CTC <u>TCC GGA</u><br><u>GCC GAT AAC TTC CTG CTT GGT GAT GGT CG</u>        |
| <i>HNF4A</i> | Start_F | CAC TTT TGT CTT ATA CTT ACT AGT <u>GCC ACC ATG GTC AGC GTG AAC GCG</u><br>CCC                                                  |
| <i>HNF4A</i> | P2A_R   | TTC CAC GTC TCC TGC TTG CTT TAA CAG AGA GAA GTT CGT GGC <u>TCC GGA</u><br><u>GCC GAT AAC TTC CTG CTT GGT GAT GGT CG</u>        |
| <i>FOXA3</i> | T2A_F   | AGT CTT CTA ACA TGC GGT GAC GTG GAG GAT CCC GGC CCT CTG GGC<br>TCA GTG AAG ATG GAG GC                                          |
| <i>FOXA3</i> | E2A_R   | CTC AAC ATC TCC AGC CAA TTT CAA GAG AGC ATA ATT AGT ACA CTG <u>TCC</u><br><u>GGA GCC GGA TGC ATT AAG CAA AGA GCG GGA ATA G</u> |
| <i>FOXA3</i> | P2A_F   | TCT CTG TTA AAG CAA GCA GGA GAC GTG GAA GAA AAC CCC GGT CCT CTG<br>GGC TCA GTG AAG ATG GAG GC                                  |
| <i>FOXA3</i> | T2A_R   | CTC CTC CAC GTC ACC GCA TGT TAG AAG ACT TCC TCT GCC CTC <u>TCC GGA</u><br><u>GCC GGA TGC ATT AAG CAA AGA GCG GGA ATA G</u>     |
| <i>FOXA3</i> | T2A_F   | AGT CTT CTA ACA TGC GGT GAC GTG GAG GAT CCC GGC CCT CTG GGC<br>TCA GTG AAG ATG GAG GC                                          |
| <i>FOXA3</i> | Stop_R  | AGA GGA TCC CCG GGT ACC GAG CTC GAA TTC CTA GGA TGC ATT AAG CAA<br>AGA GCG GGA ATA G                                           |
| <i>HNF6</i>  | P2A_F   | TCT CTG TTA AAG CAA GCA GGA GAC GTG GAA GAA AAC CCC GGT CCT AAC<br>GCG CAG CTG ACC ATG GAA GC                                  |
| <i>HNF6</i>  | T2A_R   | CTC CTC CAC GTC ACC GCA TGT TAG AAG ACT TCC TCT GCC CTC <u>TCC GGA</u><br><u>GCC TGC TTT GGT ACA AGT GCT TGA TGA AGA AGA T</u> |
| <i>HNF6</i>  | T2A_F   | AGT CTT CTA ACA TGC GGT GAC GTG GAG GAT CCC GGC CCT AAC GCG<br>CAG CTG ACC ATG GAA GC                                          |
| <i>HNF6</i>  | Stop_R  | AGA GGA TCC CCG GGT ACC GAG CTC GAA TTC CTA TGC TTT GGT ACA AGT<br>GCT TGA TGA AGA AGA T                                       |
| <i>RORy</i>  | E2A_F   | TAT GCT CTC TTG AAA TTG GCT GGA GAT GTT GAG AGC AAC CCT GGA CCT<br>GAC AGG GCC CCA CAG AGA CAG                                 |
| <i>RORy</i>  | Stop_R  | AGA GGA TCC CCG GGT ACC GAG CTC GAA TTC CTA CTT GGA CAG CCC CAC<br>AGG TGA C                                                   |
| <i>ESR1</i>  | E2A_F   | TAT GCT CTC TTG AAA TTG GCT GGA GAT GTT GAG AGC AAC CCT GGA CCT<br>ACC ATG ACC CTC CAC ACC AAA GCA                             |
| <i>ESR1</i>  | Stop_R  | AGA GGA TCC CCG GGT ACC GAG CTC GAA TTC CTA GAC CGT GGC AGG GAA<br>ACC CTC                                                     |
| <i>AR</i>    | E2A_F   | TAT GCT CTC TTG AAA TTG GCT GGA GAT GTT GAG AGC AAC CCT GGA CCT<br>GAA GTG CAG TTA GGG CTG GGA AG                              |
| <i>AR</i>    | Stop_R  | AGA GGA TCC CCG GGT ACC GAG CTC GAA TTC CTA CTG GGT GTG GAA ATA<br>GAT GGG CTT G                                               |

908

909

910

911

912 **Table 2.** Sequences of primers used for qPCR.

| Gene                           | Forward                  | Reverse                  |
|--------------------------------|--------------------------|--------------------------|
| <i>AFP</i>                     | TGCGGCCTTCCAGAACT        | TAATGTCAGCCGCTCCCTCG     |
| <i>ALB</i>                     | CCTTGGCACATGAAGTGGTAACC  | CAGCAGTCAGCCATTCAACCATAG |
| <i>APOA1</i>                   | AGACAGCGCAGAGACTATG      | CCAGTTGTCAAGGAGCTTAGG    |
| <i>CYP2A6</i>                  | CAGCACTCCTGAATGAG        | AGGTGACTGGGAGGACTGAGGC   |
| <i>CYP2C8</i>                  | CATTACTGACTTCCGTGCTACAT  | CTCCTGCACAAATTGTTTCC     |
| <i>CYP2C9</i>                  | GCCGGCATGGAGCTTTTAT      | GCCAGGCCATCTGCTTTCTT     |
| <i>CYP3A4</i>                  | TGTGCCTGAGAACACCAGAG     | GTGGTGGAAATAGTCCCCTG     |
| <i>FASN</i>                    | GCAAGCTGAAGGACCTGTCT     | AATCTGGGTTGATGCCTCCG     |
| <i>FOXA3</i>                   | TGGGCTCAGTGAAGATGGAG     | GGGGATAGGGAGAGCTTAGAG    |
| <i>G6PC</i>                    | GTGTCCGTGATCGCAGACC      | GACGAGGTTGAGCCAGTCTC     |
| <i>HHEX</i>                    | GCCCTTTACATCGAGGACA      | AGGGCGAACATTGAGAGCTA     |
| <i>HNF1A</i>                   | TGGCCATGGACACGTACAG      | GCTGCTTGAGGGTACTCTG      |
| <i>HNF4A</i>                   | CATGGCCAAGATTGACAACCT    | TTCCCATATGTTCCCTGCATCAG  |
| <i>HNF6</i>                    | GTGTTGCCTCTATCCTTCCCCAT  | CGCTCCGCTTAGCAGCAT       |
| <i>NANOG</i>                   | CATGAGTGTGGATCCAGCTG     | CCTGAATAAGCAGATCCATGG    |
| <i>NRIH4</i>                   | ACTGAACTCACCCAGATCAA     | TGGTTGCCATTCCGTCAAA      |
| <i>PBGD</i>                    | GGAGCCATGTCGGTAACGG      | CCACCGCAATCACTCTCATCT    |
| <i>PCK1</i>                    | ACACAGTGCCATCCCCAAA      | GGTGCACCTTCATGCACC       |
| <i>POU5F1</i>                  | AGTGAGAGGCAACCTGGAGA     | ACACTCGGACCACATCCTTC     |
| <i>PPAR<math>\alpha</math></i> | CCCTCCTCGGTGACTTATCC     | CGGTCGCACTGTCATACAC      |
| <i>PPAR<math>\gamma</math></i> | GAGCCTGCATCTCACCTTAT     | AGAAACCCCTGCATCCTTCACA   |
| <i>ROR<math>\gamma</math></i>  | CTACGGCAGCCCCAGTTT       | GCTGGCATGTCCTCTGTA       |
| <i>RPLP0</i>                   | GGCGTCCCTGGAAAGTGAC      | GCCTTGCACATCATGGTGT      |
| <i>SERPINA1</i>                | CCACCGCCATCTTCTCCTGCCTGA | GAGCTTCAGGGGTGCCTCCTCTG  |
| <i>SOX17</i>                   | CGCACGGAATTGAACAGTA      | GGA TCAGGGACCTGTACAC     |
| <i>TBX3</i>                    | TGGAGCCGAAGAAGAGGTG      | TTCGCCTCCCGACTTGGTA      |
| <i>UGT1A1</i>                  | TGATCCCAGTGGATGGCAGC     | CAACGAGGCGTCAGGTGCTA     |
| <i>UGT1A6</i>                  | GGAGCCCTGTGATTGGAGAGT    | GACCCCGGTCACTGAGAAC      |

913

914

915

916

917

918

919

920

921

922 **Table 3.** List of primary antibodies.

| Protein             | Supplier            | Catalog number | Host   | Concentration |
|---------------------|---------------------|----------------|--------|---------------|
| Albumin             | Bethyl Laboratories | A80-229A       | goat   | 1:100         |
| Alpha-1 antitrypsin | Dako                | A0012          | rabbit | 1:100         |
| Alpha-Fetoprotein   | Dako                | A0008          | rabbit | 1:100         |
| HNF4A               | Abcam               | ab92378        | rabbit | 1:100         |
| HNF1A               | Santa cruz          | sc-135939      | mouse  | 1:50          |
| HNF6                | Santa cruz          | sc-13050       | rabbit | 1:100         |
| FOXA3               | Santa cruz          | sc-166703      | mouse  | 1:50          |
| RORc                | Abcam               | ab221359       | rabbit | 1:100         |
| ER $\alpha$         | Abcam               | ab32063        | rabbit | 1:100         |
| AR                  | Abcam               | ab108341       | rabbit | 1:100         |

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941 **Figure Legends**

942

943 **Figure 1.** Forward programming of hPSCs into hepatocytes with 4 and 3 liver-enriched  
944 transcription factors (LETFs). (A) Schematic representation of the two sequentially targeted  
945 loci. The human ROSA26 was targeted with a constitutively expressed reverse tetracycline  
946 transactivator (rtTA). The AAVS1 locus was targeted with the 4 LETFs *HNF1A*, *HNF6*,  
947 *FOXA3* and *HNF4A* downstream of a Tet-responsive element (TET). (B) mRNA induction  
948 levels of the 4 factors in targeted hESCs (Targ) relative to untargeted (Untarg) hESCs,  
949 stimulated with dox for 24h (n=3). Data is shown relative to the untargeted control. (C)  
950 Immunofluorescence staining of the 4 LETFs in targeted and untargeted hESCs after 24h of  
951 inducible overexpression (iOX) with dox confirming transgene induction. Nuclei were  
952 counterstained with DAPI (blue). Scale bar, 200 $\mu$ m. (D) Schematic representation of the iOX  
953 culture conditions for forward programming. Phase contrast images of hESCs targeted with  
954 the 4 LETFs after 10 and 15 days of forward programming. (E) mRNA levels of hepatocyte  
955 markers (*ALB*, *SERPINA1* and *AFP*) in hESCs targeted with the 4 LETFs after 10 and 15  
956 days of forward programming. Untargeted hESCs treated with the same protocol as in (D)  
957 were used as control (n=4). Statistical difference was calculated with unpaired t-test against  
958 untargeted. (F) CYP3A4 activity levels normalised per cell number (millions) in untargeted  
959 and targeted hESCs with the 4 LETFs after 15 days of forward programming (n=5) and  
960 HLCs generated by direct differentiation (n=6). Statistical difference between targeted and  
961 untargeted cells was calculated with unpaired t-test. (G,H,I) mRNA levels of hepatocyte  
962 markers (*ALB*, *SERPINA1* and *AFP*) in hESCs targeted with the 4 LETFs and with  
963 combinations of 3 LETFs (n=4). The factor removed from each construct is indicated.  
964 Expression levels were determined after 10, 15, 20 and 25 days of forward programming.  
965 Statistical differences were calculated with one-way ANOVA, corrected for multiple

966 comparisons compared to 4 LETFs. All mRNA levels were normalised to the average of 2  
967 housekeeping genes (*PBGD* and *RPLP0*). (J) CYP3A4 activity levels normalised per cell  
968 number (millions) in hESCs targeted with the 4 LETFs and combinations of 3 LETFs after  
969 10, 15, 20 and 25 days of forward programming (n=3-5). Statistical differences were  
970 calculated with one-way ANOVA, corrected for multiple comparisons compared to 4 LETFs.  
971 In all plots, bars represent mean with SD, and individual datapoints are shown for all  
972 biological replicates. Significant p-values are shown at each comparison and indicated as \*p<  
973 0.05, \*\*p< 0.01, \*\*\*p< 0.001, \*\*\*\*p< 0.0001.

974 The following supplements are available for Figure 1:

975 **Figure supplement 1.** Validation of inducible overexpression (iOX).

976 **Figure supplement 2.** Characterisation of the phenotype of hPSCs forward programmed into  
977 hepatocytes with 3 LETFs (*HNF1A*, *FOXA3* and *HNF6*).

978 **Source data 1.** Individual measurements and statistical tests related to Figure 1.

979

980 **Figure 1 – figure supplement 1.** Validation of inducible overexpression (iOX). (A)  
981 Schematic representation of the combinations of 3 LETFs cloned into the AAVS1 safe  
982 harbour. (B) Immunofluorescence staining of all 4 LETFs in hESCs targeted with the  
983 constructs shown in (A) after 24h of iOX with dox confirming transgene induction. Nuclei  
984 were counterstained with DAPI (blue). Scale bars, 200μm.

985

986 **Figure 1–figure supplement 2.** Characterisation of the phenotype of hPSCs forward  
987 programmed into hepatocytes with 3 LETFs. (A) Phase contrast images and (B)  
988 immunofluorescence staining of hepatocyte markers Albumin (yellow), A1AT (green) and  
989 AFP (cyan) in hESCs forward programmed with either 4 or 3 LETFs for 20 days. Untargeted

990 hESCs treated with the same protocol for 20 days were used as control. Nuclei were  
991 counterstained with DAPI (blue). Scale bar, 200 $\mu$ m.

992

993 **Figure 2.** HLCs and PHHs display transcriptomic differences associated with their state of  
994 maturation. (A) Immunofluorescence staining of Albumin (yellow) and HNF4A (red) in  
995 HLCs differentiated for 30 days. Nuclei were counterstained with DAPI (blue). Scale bar,  
996 100 $\mu$ m. (B) CYP3A4 activity levels normalised per cell number (millions) in HLCs  
997 differentiated for 30 days (n=6) and PHHs (n=4). Bars represent mean with SD, and  
998 individual datapoints represent the different biological replicates. Statistical difference was  
999 calculated with unpaired t-test. (C) PCA of undifferentiated hiPSCs, HLCs derived from  
1000 hESC (hESC\_HLCs) and hiPSC (hiPSC\_HLCs), freshly harvested PHHs (fPHHs) or plated  
1001 PHHs (pPHHs). (D) Heatmap showing the proportion of genes differentially expressed in  
1002 each cell type (cluster 1 - PHHs, cluster 2 - HLCs, cluster 4 - hiPSCs) as well as in Hep  
1003 (HLCs and PHHs) against undifferentiated hiPSCs (cluster 3). (E, F) Dotplot showing the top  
1004 15 hits on gene ontology enrichment analysis on genes associated to cluster 1 and cluster 3 as  
1005 shown in (D). The size of each dot represents number of genes associated to each term and  
1006 the colours represents the adjusted p-value. (G) Heatmap showing the differential gene  
1007 expression of transcription factors between PHHs (fresh or plated) and HLCs (hESC and  
1008 hiPSC derived). (H) Reactome pathway enrichment analysis on transcription factors  
1009 identified in (G). Differential gene expression was calculated with log2(fold change) higher  
1010 than 2 and adjusted p-value <0.05. Hierarchical clustering on samples was generated by  
1011 Euclidean distance.

1012 The following supplements are available for Figure 2:

1013 **Figure supplement 1.** Characterisation of transcriptional differences between HLCs and  
1014 PHHs.

1015 **Source data 1.** Individual measurements and statistical tests related to Figure 2 and  
1016 corresponding supplements.

1017 **Source data 2.** List of genes differentially expressed in the 4 clusters in Figure 2D.

1018

1019 **Figure 2-figure supplement 1.** Characterisation of transcriptional differences between HLCs  
1020 and PHHs. (A) mRNA levels measured by qPCR throughout 30 days of hiPSC differentiation  
1021 into HLCs. Representative markers of each stage of differentiation are shown: pluripotency  
1022 (*NANOG*, *POU5F1*), endoderm (*SOX17*), foregut (*HHEX*), hepatoblast (*TBX3*), foetal (*AFP*)  
1023 and mature (*ALB*) hepatocytes. (B) mRNA levels of the 4 LETFs tested in forward  
1024 programming quantified throughout 30 days of hiPSC direct differentiation into HLCs. (C)  
1025 Comparison of the mRNA levels of the 4 LETFs in differentiated HLCs in (B) with PHHs.  
1026 (D) mRNA levels of hepatocyte markers *ALB*, *SERPINA1* and *AFP* in undifferentiated  
1027 hiPSCs, 30-day differentiated HLCs and PHHs. (E) mRNA levels of hepatocyte markers  
1028 *CYP3A4*, *CYP2A6* and *CYP2C9* in undifferentiated hiPSCs, HLCs and PHHs. All mRNA  
1029 levels were normalised to the average of 2 housekeeping genes (*PBGD* and *RPLP0*). Bars  
1030 represent mean with SD, and individual datapoints are shown for n=4 biological replicates.  
1031 Statistical difference was calculated with one-way ANOVA, corrected for multiple  
1032 comparisons compared to PHHs. P-values are indicated as \*p< 0.05, \*\*p< 0.01, \*\*\*p< 0.001,  
1033 \*\*\*\*p< 0.0001. (F,G) Dotplot showing the top 15 hits on gene ontology enrichment analysis  
1034 on genes associated to cluster 2 and cluster 4 as shown in Figure 2D. The size of each dot  
1035 represents number of genes associated to each term and the colours represents the adjusted p-  
1036 value.

1037

1038 **Figure 3.** Epigenetic status of regulatory regions differs between states of maturation in  
1039 HLCs and PHHs. (A) PCA of the global enrichment profile of H3K27ac, H3K4me1 and

1040 H3K27me3 across 2 replicates of undifferentiated hiPSCs, hESC and hiPSC-derived HLCs,  
1041 and PHHs. Average scores were computed for genomic regions of 1000bp for the entire  
1042 genome. (B) Average density plots and heatmaps showing enrichment levels for H3K27ac,  
1043 H3K4me1 and H3K27me3 within a 10Kb window centred at H3K27ac PHH-unique (blue) or  
1044 HLC-unique (green) regions. Scales are adjusted to maximum peak intensity for each dataset.  
1045 (C) Enrichment profiles of H3K27ac, H3K4me1 and H3K27me3 across the *UGT1A* locus.  
1046 Profiles are shown for one replicate of undifferentiated hiPSCs, hESC and hiPSC-derived  
1047 HLCs, and PHHs. Red bars represent PHH-unique H3K27ac peaks. (D) Nuclear receptor  
1048 motifs identified as overrepresented binding sites at H3K27ac PHH-unique regions.

1049 The following supplements are available for Figure 3:

1050 **Figure supplement 1.** Comparison of the epigenetic profile of HLCs and PHHs.

1051 **Source data 1.** Peak annotation results for PHH-unique H3K27ac regions

1052 **Source data 2.** Peak annotation results for HLC-unique H3K27ac regions

1053 **Source data 3.** Motif enrichment results for PHH-unique H3K27ac regions

1054

1055 **Figure 3-figure supplement 1.** Comparison of the epigenetic profile of HLCs and PHHs.

1056 (A) Distance to TSS of H3K27ac peaks identified in the PHH and HLC datasets. (B)

1057 Enrichment profiles of H3K27ac, H3K4me1 and H3K27me3 across the *CYP3A4* locus.

1058 Profiles are shown for one replicate of undifferentiated hiPSCs, hESC and hiPSC-derived

1059 HLCs, and PHHs. Red bars represent PHH-unique H3K27ac peaks. (C) Bar plot showing the

1060 top 15 hits on gene ontology enrichment analysis on genes annotated to PHH or HLC-unique

1061 H3K27ac positive regions. The colour gradient represents the adjusted p-value. (D) PCA of

1062 the expression profiles in mouse livers harvested at E12.5, E16.5, P0 and adult stages (8

1063 weeks and 10 weeks). Two biological replicates of each timepoint are shown. (E) Heatmap

1064 showing the relative expression of genes annotated as nuclear receptors across different

1065 stages of liver development, ordered left to right. Hierarchical clustering on gene expression  
1066 levels was generated by Euclidean distance. Top clusters represent genes with highest  
1067 expression changes between foetal and adult stages. (F) Normalised counts for 3 nuclear  
1068 receptors (*Rory*, *Esr1* and *Ar*) across different stages of liver development, showing  
1069 expression increasing in the adult stage.

1070

1071 **Figure 4.** Forward programming of hESCs into hepatocytes with nuclear receptors. (A)  
1072 Phase contrast images and (B) immunofluorescence staining for Albumin (yellow) and (C)  
1073 A1AT (green) in hESCs forward programmed for 20 days with 3TFs alone or in combination  
1074 with the nuclear receptors RORc, ER  $\alpha$  and AR. Nuclei were counterstained with DAPI  
1075 (blue). Scale bars, 200 $\mu$ m. (D) mRNA levels of hepatocyte markers (*ALB*, *SERPINA1* and  
1076 *AFP*) in FoP-Heps generated with 3TFs alone or in combination with nuclear receptors for 20  
1077 and 30 days (n=4). Expression data was normalised to the average of 2 housekeeping genes  
1078 (*PBGD* and *RPLP0*). (E) Protein secretion levels of Albumin, A1AT and AFP in hESC  
1079 derived FoP-Heps generated with 3TFs alone or in combination with nuclear receptors for 20  
1080 days (n=4). Data was normalised per total cell number (millions). (F) CYP3A4 activity levels  
1081 normalised per cell number (millions) in FoP-Heps targeted with 3TFs with or without  
1082 nuclear receptors, after 20 and 30 days of forward programming (n=3-6). Statistical  
1083 differences were calculated with one-way ANOVA, corrected for multiple comparisons  
1084 compared to 3TFs (day 20). (G) CYP3A4 fold induction levels in FoP-Heps treated with  
1085 100nM of the ligands as indicated from day 2. Data is normalised to untreated control at day  
1086 20 of forward programming (n=3). Statistical differences were calculated with paired t-test.  
1087 In all plots, bars represent mean with SD, and individual datapoints are shown for all  
1088 biological replicates. Significant p-values are shown at each comparison and indicated as \*p<  
1089 0.05, \*\*p< 0.01, \*\*\*p< 0.001, \*\*\*\*p< 0.0001.

1090 The following supplements are available for Figure 4:

1091 **Figure supplement 1.** Validation of iOX of combinations of 3TFs and nuclear receptors.

1092 **Figure supplement 2.** Forward programming of hiPSCs into hepatocytes with 4TFs.

1093 **Source data 1.** Individual measurements and statistical tests related to Figure 4 and  
1094 supplements.

1095

1096

1097 **Figure 4-figure supplement 1.** Validation of iOX of combinations of 3TFs and nuclear  
1098 receptors . (A) Schematic representation of the combinations of factors cloned into the  
1099 AAVS1 locus. (B) Immunofluorescence staining of the 3 TFs and nuclear receptors in hESCs  
1100 targeted with the constructs shown in (A) after 24h of iOX with dox confirming transgene  
1101 induction. (C) Immunofluorescence staining of nuclear receptors in hESCs targeted with  
1102 3TFs alone, as negative control. Scale bars, 200μm. (D) Zoomed images of  
1103 immunofluorescence staining of nuclear receptors showing nuclear localisation. Scale bars,  
1104 50μm. Nuclei were counterstained with DAPI (blue). (E) Immunofluorescence staining for  
1105 AFP (cyan) in hESCs forward programmed for 20 days with 3TFs alone or in combination  
1106 with the nuclear receptors RORc, ER α and AR. Nuclei were counterstained with DAPI  
1107 (blue). Scale bars, 200μm.

1108

1109 **Figure 4–supplement 2.** Forward programming of hiPSCs into hepatocytes with 4TFs. (A)  
1110 Immunofluorescence staining of the 3TFs in hiPSCs targeted with 3TFs alone or with RORc  
1111 after 24h of iOX with dox confirming transgene induction. Scale bars, 200μm. (B) Phase  
1112 contrast images and (C) immunofluorescence staining for Albumin (yellow), (D) A1AT  
1113 (green) and (E) AFP (cyan) in hiPSCs forward programmed for 20 days with 3TFs alone or  
1114 with RORc. Nuclei were counterstained with DAPI (blue). Scale bars, 200μm. (F) mRNA

1115 levels of hepatocyte markers (*ALB*, *SERPINA1* and *AFP*) in hiPSC derived FoP-Heps  
1116 generated with 3TFs alone or with RORc for 20 and 30 days (n=4). Statistical differences  
1117 were calculated with unpaired t-test. All expression data was normalised to the average of 2  
1118 housekeeping genes (*PBGD* and *RPLP0*). (G) Protein secretion levels of Albumin, A1AT and  
1119 AFP in hiPSC derived FoP-Heps generated with 3TFs alone or with RORc for 20 days (n=4).  
1120 Data was normalised per total cell number (millions). (H) CYP3A4 activity levels normalised  
1121 per cell number (millions) in hiPSC FoP-Heps targeted with 3TFs with or without RORc  
1122 after 20 days of forward programming (n=6). Statistical differences were calculated with one-  
1123 way ANOVA, corrected for multiple comparisons compared to 3TFs (day 20). In all plots,  
1124 bars represent mean with SD, and individual datapoints are shown for all biological  
1125 replicates. Significant p-values are shown at each comparison and indicated as \*p< 0.05, \*\*p<  
1126 0.01, \*\*\*p< 0.001, \*\*\*\*p< 0.0001.

1127

1128 **Figure 5.** 4TF FoP-Heps are transcriptionally equivalent to HLCs. (A) CYP3A4 activity  
1129 levels in eFoP-Heps at day 20 (n=6) and day 30 (n=6), iFoP-Heps at day 22 (n=6) and day 30  
1130 (n=3), against direct differentiation HLCs (n=6) and PHHs (n=4). Statistical differences were  
1131 tested with one-way ANOVA, corrected for multiple comparisons, between eFoP-Heps group  
1132 and HLCs. (Statistical test of HLC vs PHHs can be found in Figure 2B) (B) mRNA levels of  
1133 phase I (*CYP3A4*, *CYP2A6* and *CYP2C8*) and phase II (*UGT1A6*) biotransformation enzymes  
1134 in 4TF FoP-Heps, HLCs and PHHs (n=4). (C) mRNA level of *ALB*, gluconeogenesis (*G6PC*  
1135 and *PCK1*), and lipid (*PPAR $\gamma$* ) metabolism in FoP-Heps, HLCs and PHHs (n=4). Statistical  
1136 differences were calculated with one-way ANOVA, corrected for multiple comparisons, and  
1137 all samples compared to HLCs. P-values are indicated as \*p< 0.05, \*\*p< 0.01, \*\*\*p< 0.001,  
1138 \*\*\*\*p< 0.0001. (D) PCA of undifferentiated hiPSCs, HLCs derived from hESC  
1139 (hESC\_HLCs) and hiPSC (hiPSC\_HLCs), freshly harvested PHHs (fPHHs) or plated PHHs

1140 (pPHHs), foetal livers (FL) and 4TF hESC-derived FoP-Heps (eFoP\_Heps). (E) Dotplot  
1141 showing the top 15 hits on gene ontology enrichment analysis on genes associated to genes  
1142 differentially expressed between eFoP-Heps and undifferentiated hiPSCs. The size of each  
1143 dot represents number of genes associated to each term and the colours represents the  
1144 adjusted p-values. (F) Heatmap showing expression of genes associated with adult hepatocyte  
1145 functions found to be expressed in hiPSC-derived HLCs (hiPSC\_HLCs) and 4TF hESC-  
1146 derived FoP-Heps (eFoP\_Heps), as compared to undifferentiated hiPSCs. Two clusters where  
1147 separated as genes expressed (bottom) and not expressed (top) in foetal liver samples.  
1148 (Foetal\_Liver).

1149 The following supplements are available for Figure 5:

1150 **Figure supplement 1.** Characterisation of 4TF FoP-Heps.

1151 **Figure supplement 2.** Characterisation of the transcriptome of 4TF FoP-Heps.

1152 **Source data 1.** Individual measurements and statistical tests related to Figure 5 and  
1153 corresponding supplements.

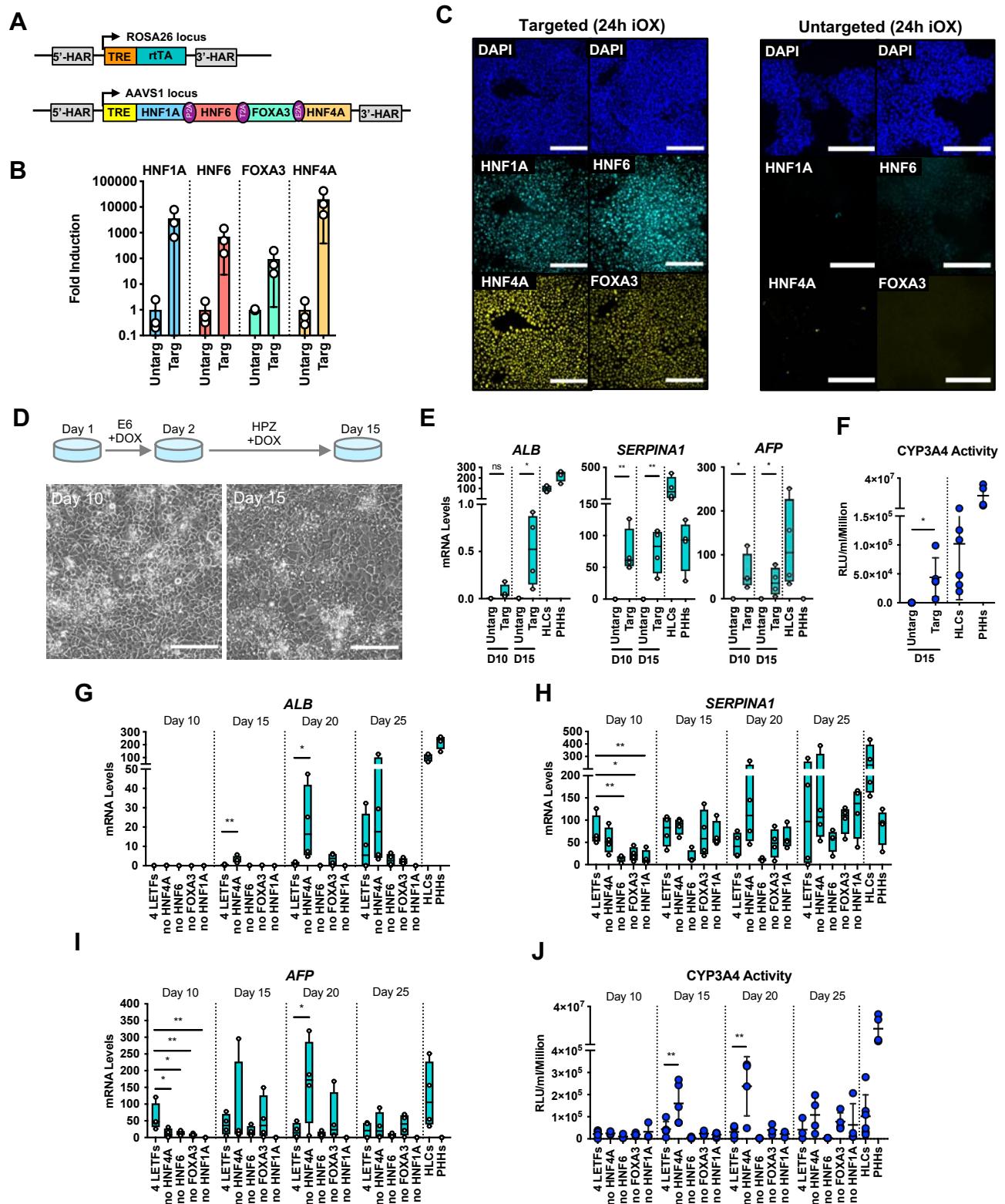
1154

1155 **Figure 5-figure supplement 1.** Characterisation of 4TF FoP-Heps. (A) mRNA levels of  
1156 phase II (*UGT1A1*) biotransformation enzymes, lipid (*APOA1*, *FASN*, *PPAR $\alpha$* ) and bile acid  
1157 metabolism (*NR1H4*), and (B) 4TFs (*HNF1A*, *FOXA3*, *HNF6* *ROR $\gamma$* ) in hESC (eFoP) and  
1158 hiPSC (iFoP) derived FoP-Heps targeted with the 4TFs and forward programmed for 20 days  
1159 (n=4), HLCs and PHHs (n=4). Statistical differences were calculated with one-way ANOVA,  
1160 corrected for multiple comparisons, compared to HLCs. P-values are indicated as \*p < 0.05,  
1161 \*\*p < 0.01, \*\*\*p < 0.001, \*\*\*\*p < 0.0001.

1162

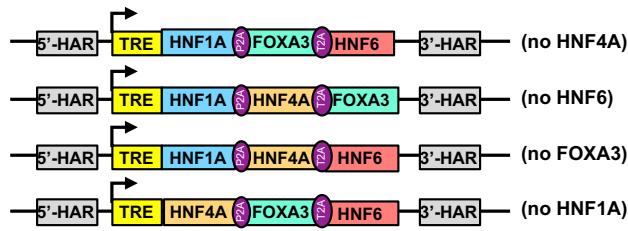
1163 **Figure 5-supplement 2.** Characterisation of the transcriptome of 4TF eFoP-Heps. Dotplot  
1164 showing the top 15 hits on gene ontology enrichment analysis on genes differentially

1165 expressed between eFoP and foetal liver (A, B), adult PHHs (C, D), hESC-derived HLCs (E,  
1166 F), and hiPSC-derived HLCs (G, H). Differential gene expression was calculated with  
1167 log<sub>2</sub>(fold change) higher than 2 and adjusted p-value <0.05.

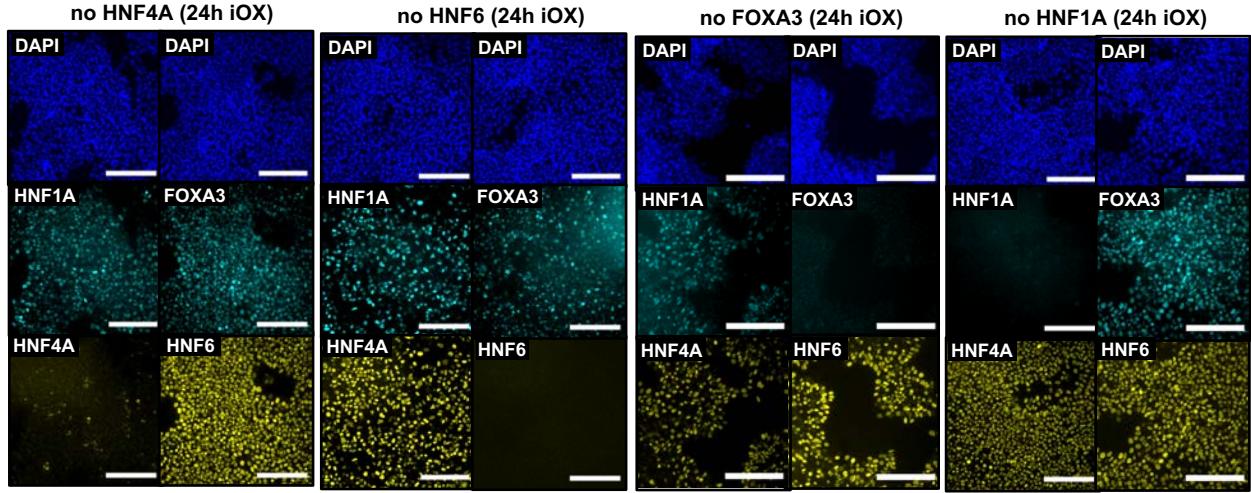

1168

1169 **Figure 6.** RORc promotes functionality of 4TF FoP-Heps. (A) Immunofluorescence staining  
1170 for LDL in FoP-Heps at day 20 of forward programming. Scale bars, 200 $\mu$ m. Nuclei were  
1171 counterstained with DAPI (blue). (B) Comparison of mRNA levels of *SERPINA1*, *ALB*, *AFP*,  
1172 *UGT1A6*, *G6PC* and *APOA1* in FoP-Heps cultured in 2D and 3D for up to 20 or 30 days of  
1173 forward programming (n=4). Statistical difference between 2D and 3D were calculated with  
1174 unpaired t-test. All expression data was normalised to the average of 2 housekeeping genes  
1175 (*PBGD* and *RPLP0*). In all plots, bars represent mean with SD, and individual datapoints are  
1176 shown for all biological replicates. P-values are indicated as \*p < 0.05, \*\*p < 0.01, \*\*\*p <  
1177 0.001, \*\*\*\*p < 0.0001. (C) BODIPY staining of FoP-Heps cultured in 3D from day 20 of  
1178 forward programming and treated with fatty acids (oleic acid [OA], palmitic acid [PA] or  
1179 BSA [Ctr]) as indicated for 7 days. Scale bars, 200 $\mu$ m. Nuclei were counterstained with  
1180 DAPI (blue). (D) Cell viability in FoP-Heps treated with the fatty acids as indicated,  
1181 normalised against FoP-Heps treated with BSA as control (n=4). (E) Cell viability in FoP-  
1182 Heps treated with 25mM of acetaminophen (APAP) for 48h in 3D cultures, normalised  
1183 against untreated FoP-Heps (n=4). Significant differences were determined with paired t-test.  
1184 In all plots, bars represent mean with SD, and individual datapoints are shown for all  
1185 biological replicates. P-values are indicated as \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001, \*\*\*\*p <  
1186 0.0001.

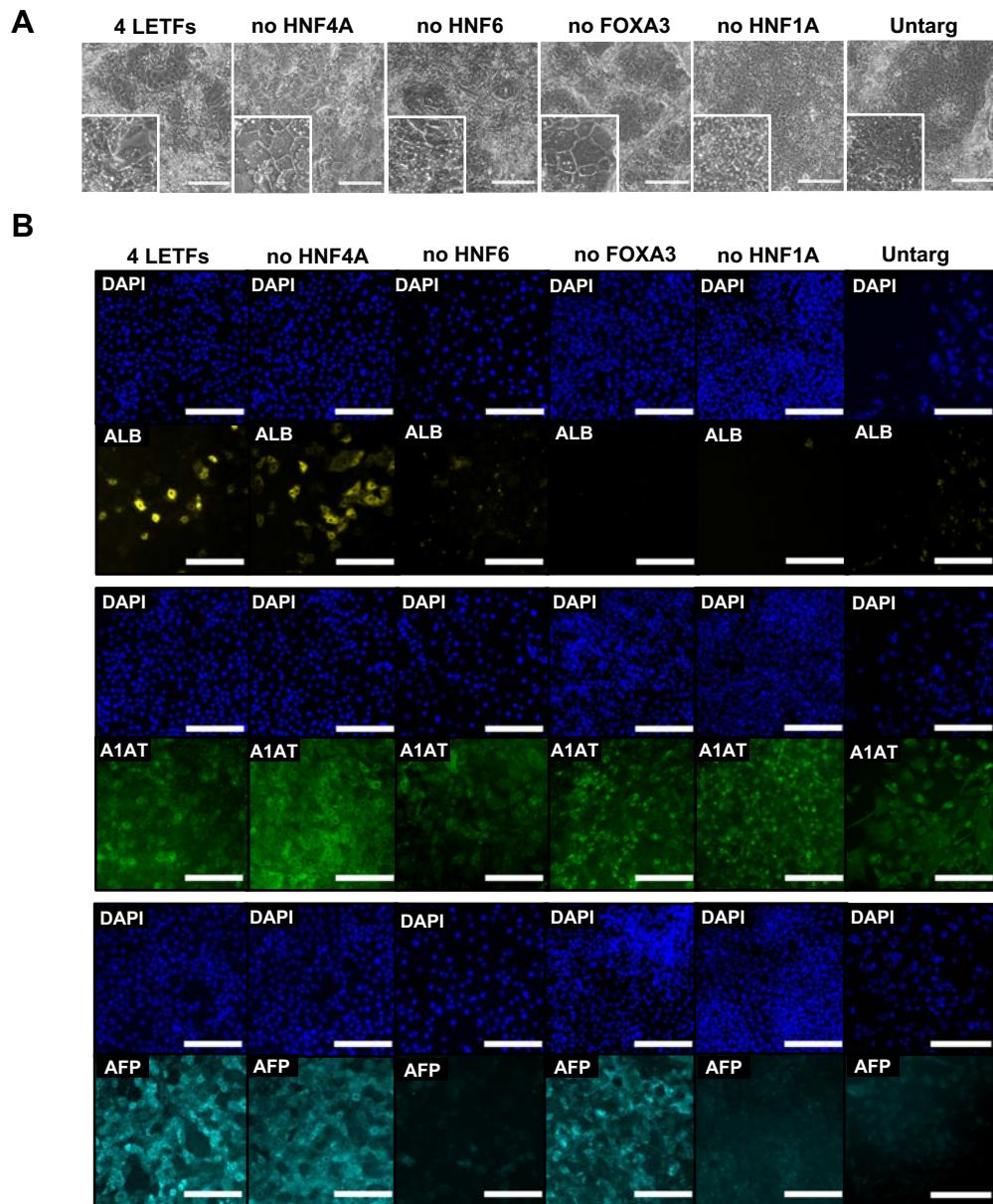
1187


1188

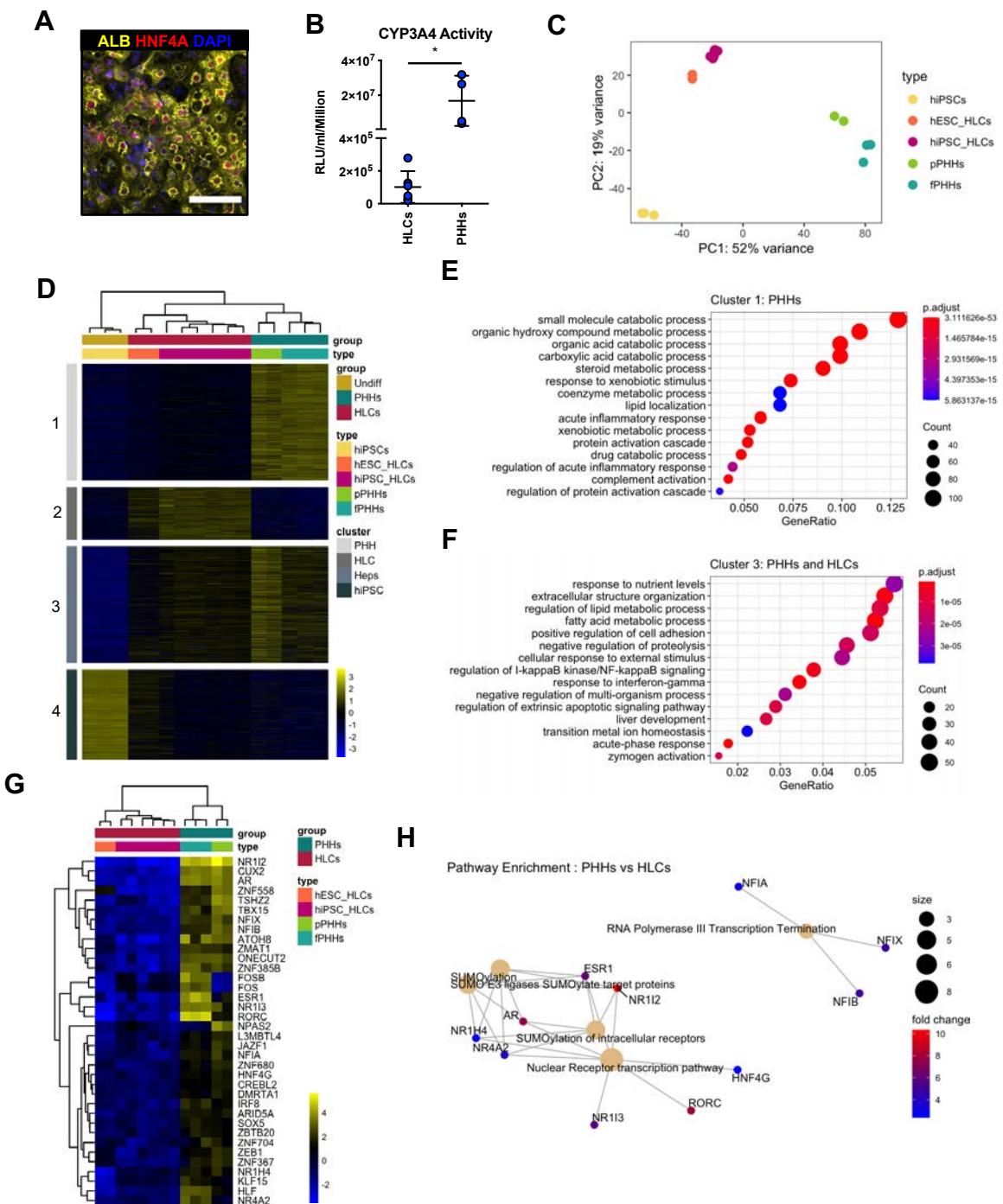
**Figure 1**



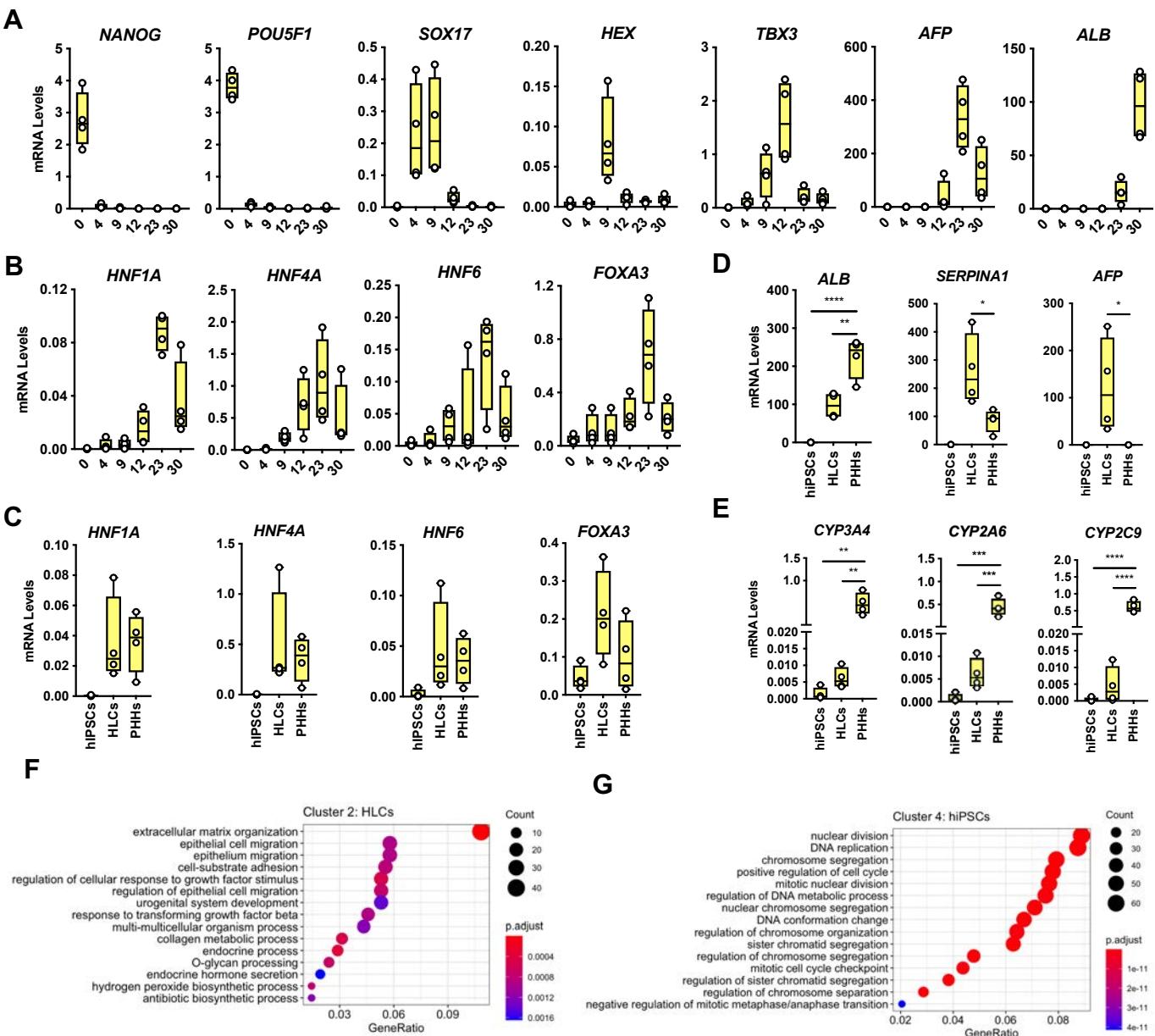

## Figure 1 – figure supplement 1


**A**



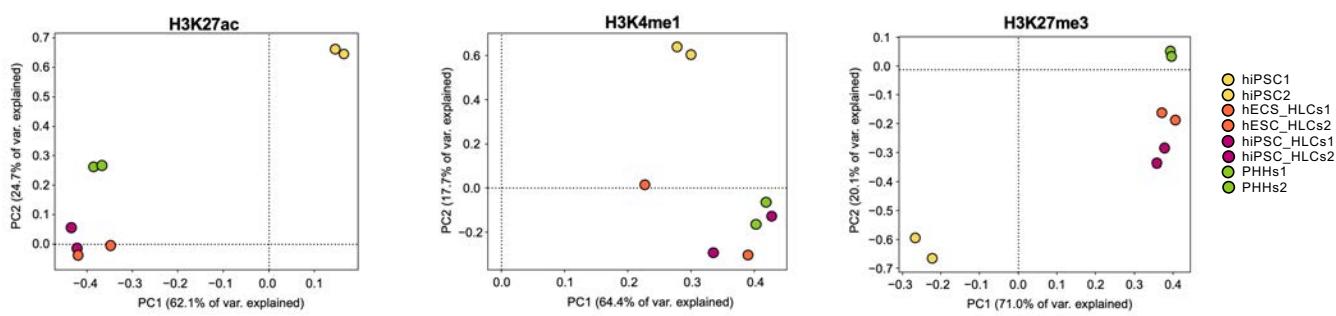

**B**



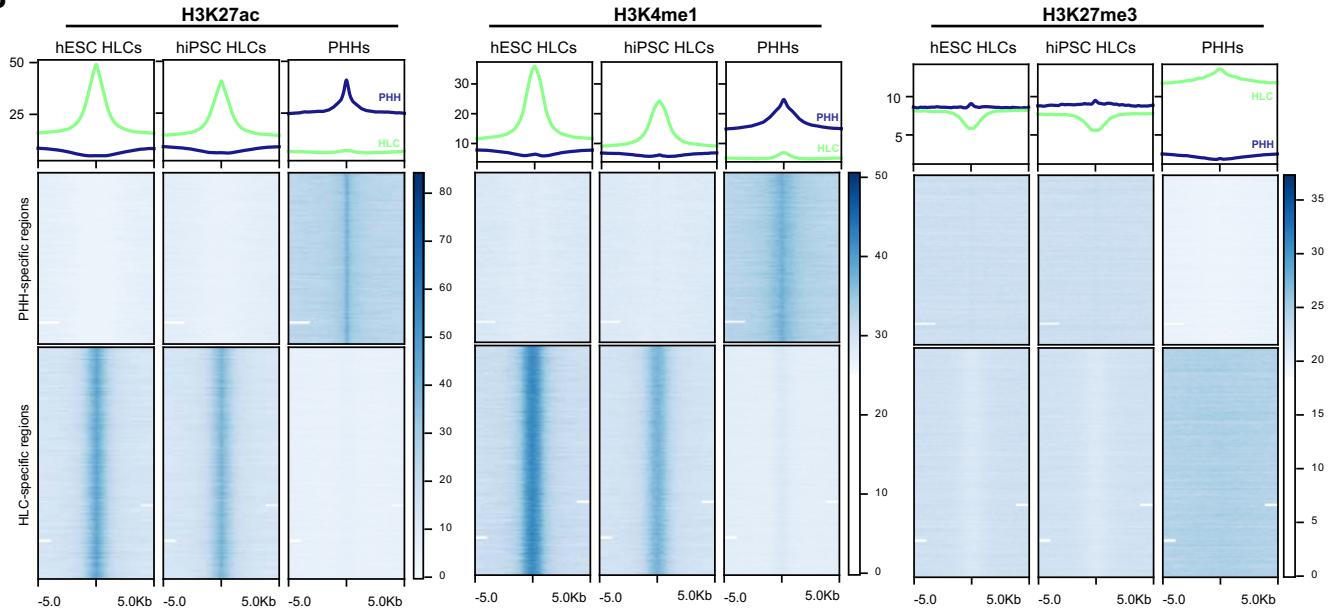

## Figure 1 – figure supplement 2



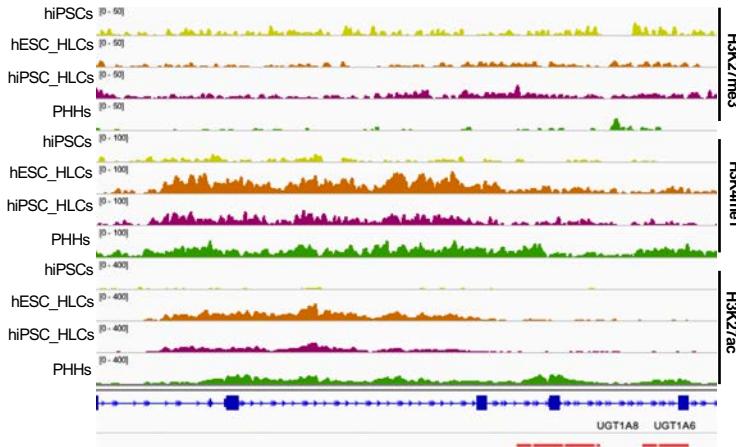
**Figure 2**




## Figure 2 – figure supplement 1




## Figure 3

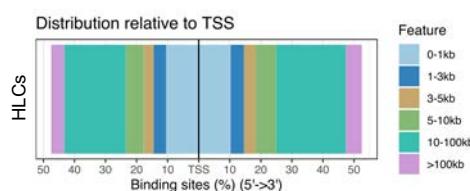
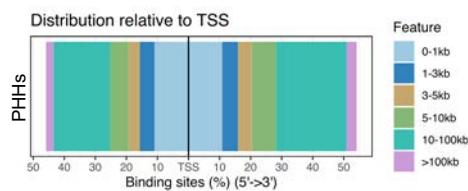

**A**



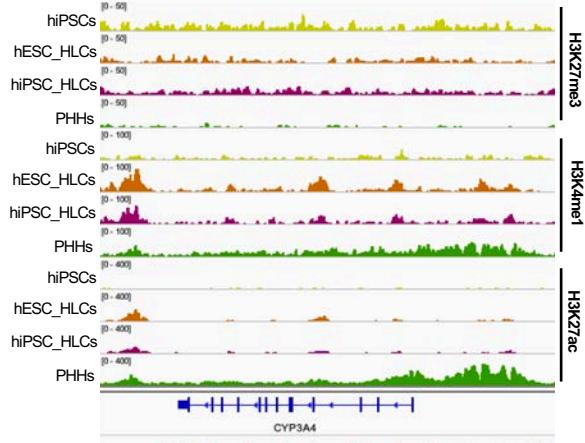
**B**



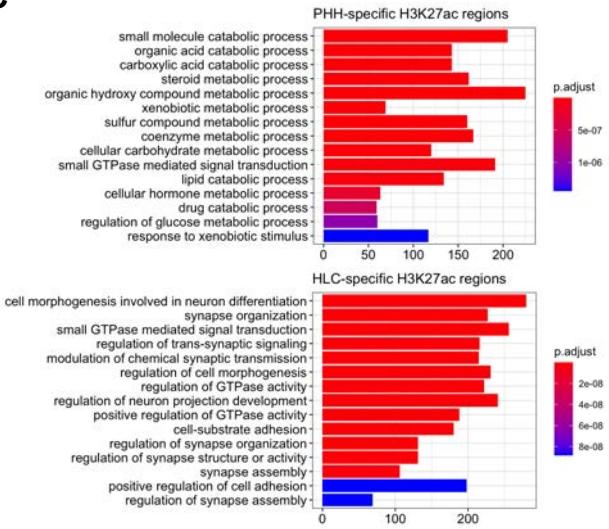
**C**

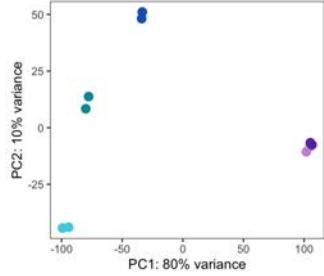

**D**


| Motif       | Name        | P    | # Peaks |
|-------------|-------------|------|---------|
| TCTTATCTCT  | AR-halosite | 1-15 | 61111   |
| CCATTGTTTC  | ARE         | 1-5  | 462     |
| GCCACACACCA | RORc        | 1-4  | 205     |
| CTTAATCCCT  | ERE         | 1-3  | 407     |

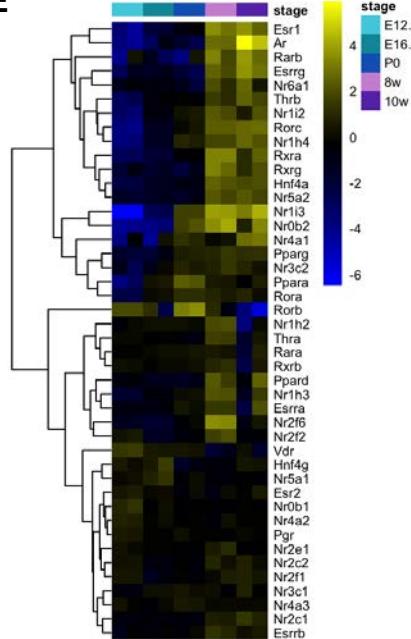
## Figure 3 – figure supplement 1


**A**

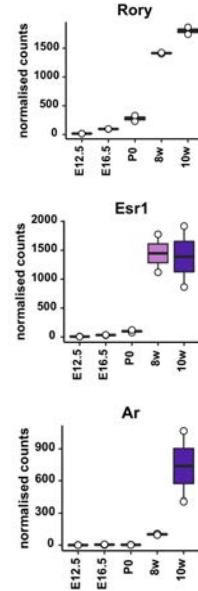



**B**

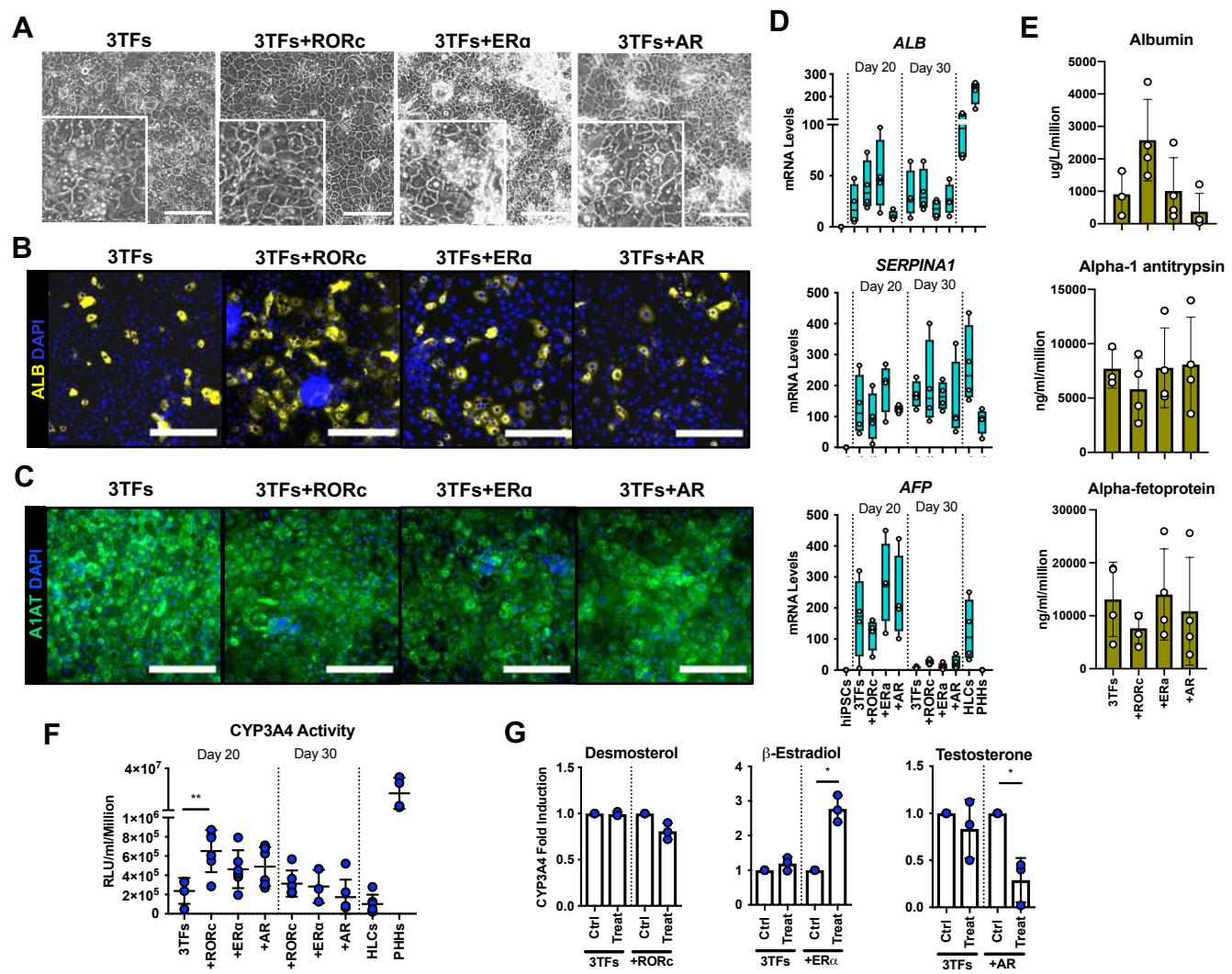



**C**



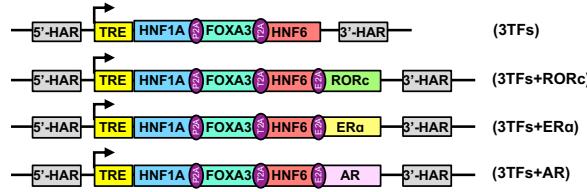

**D**



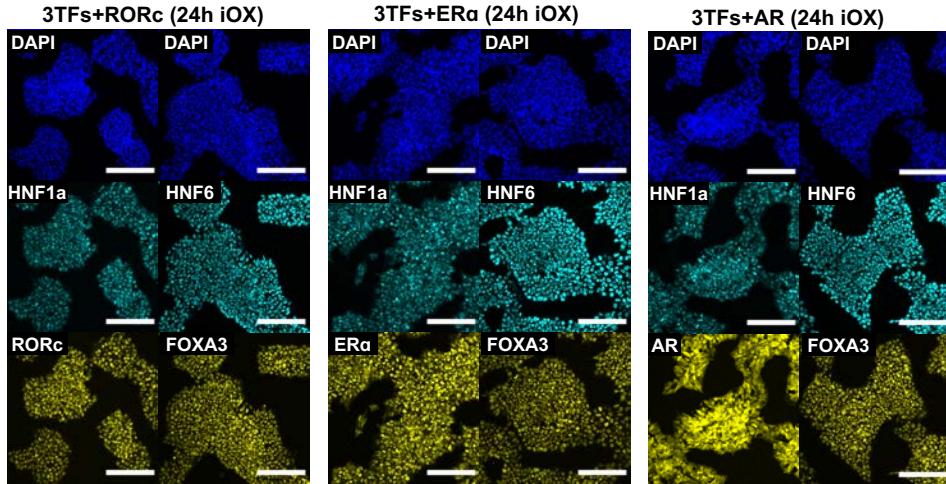

**E**



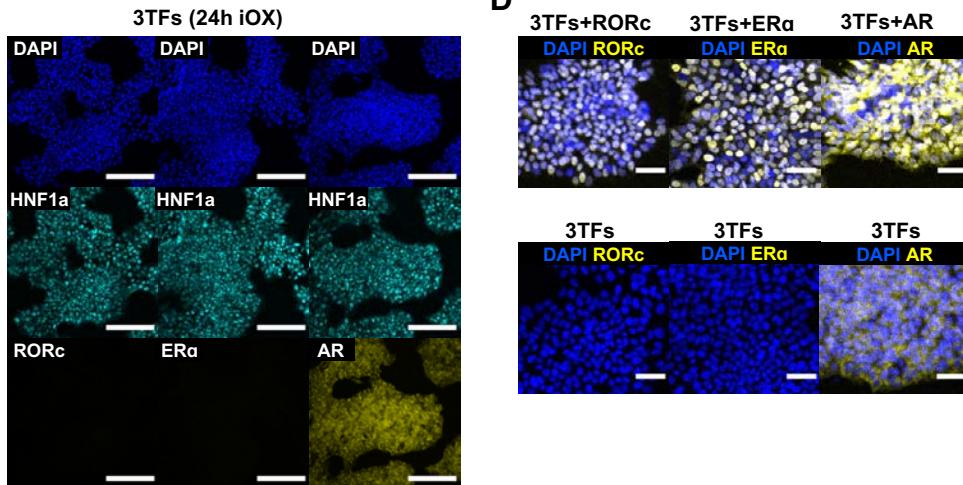
**F**



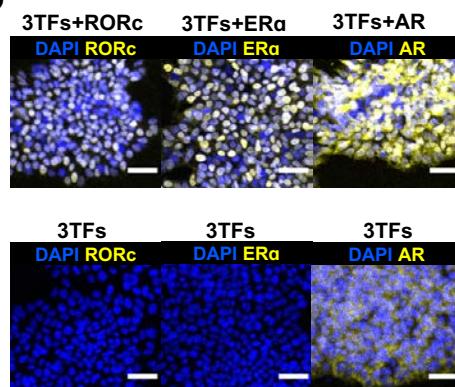

**Figure 4**



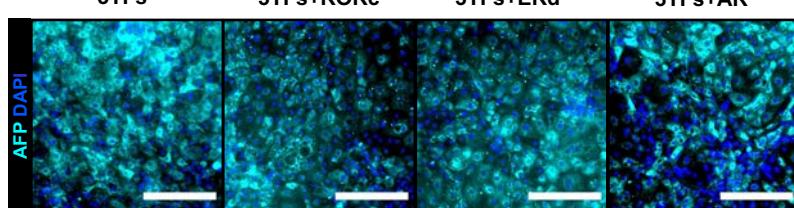

## Figure 4 – figure supplement 1


**A**

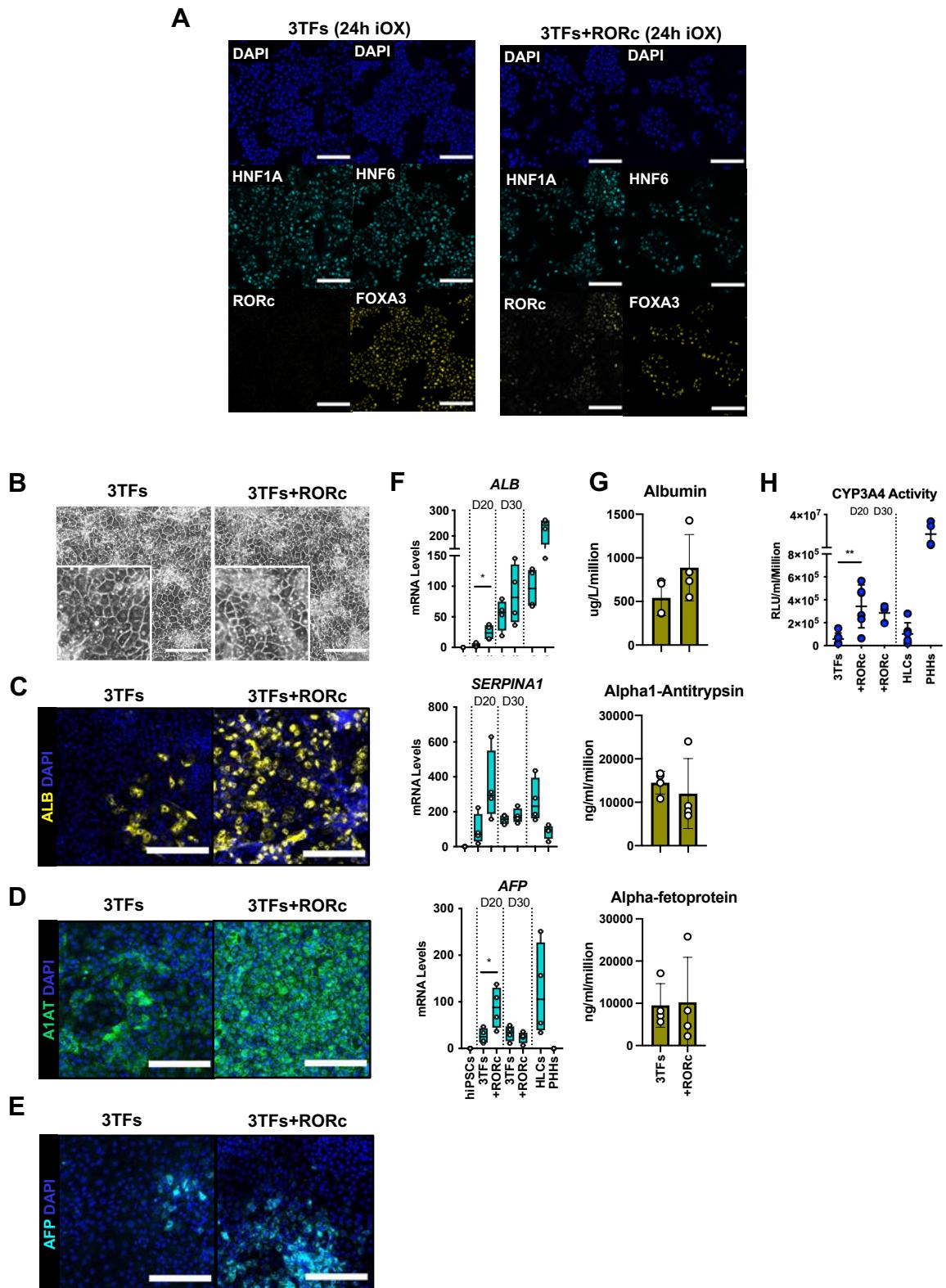



**B**

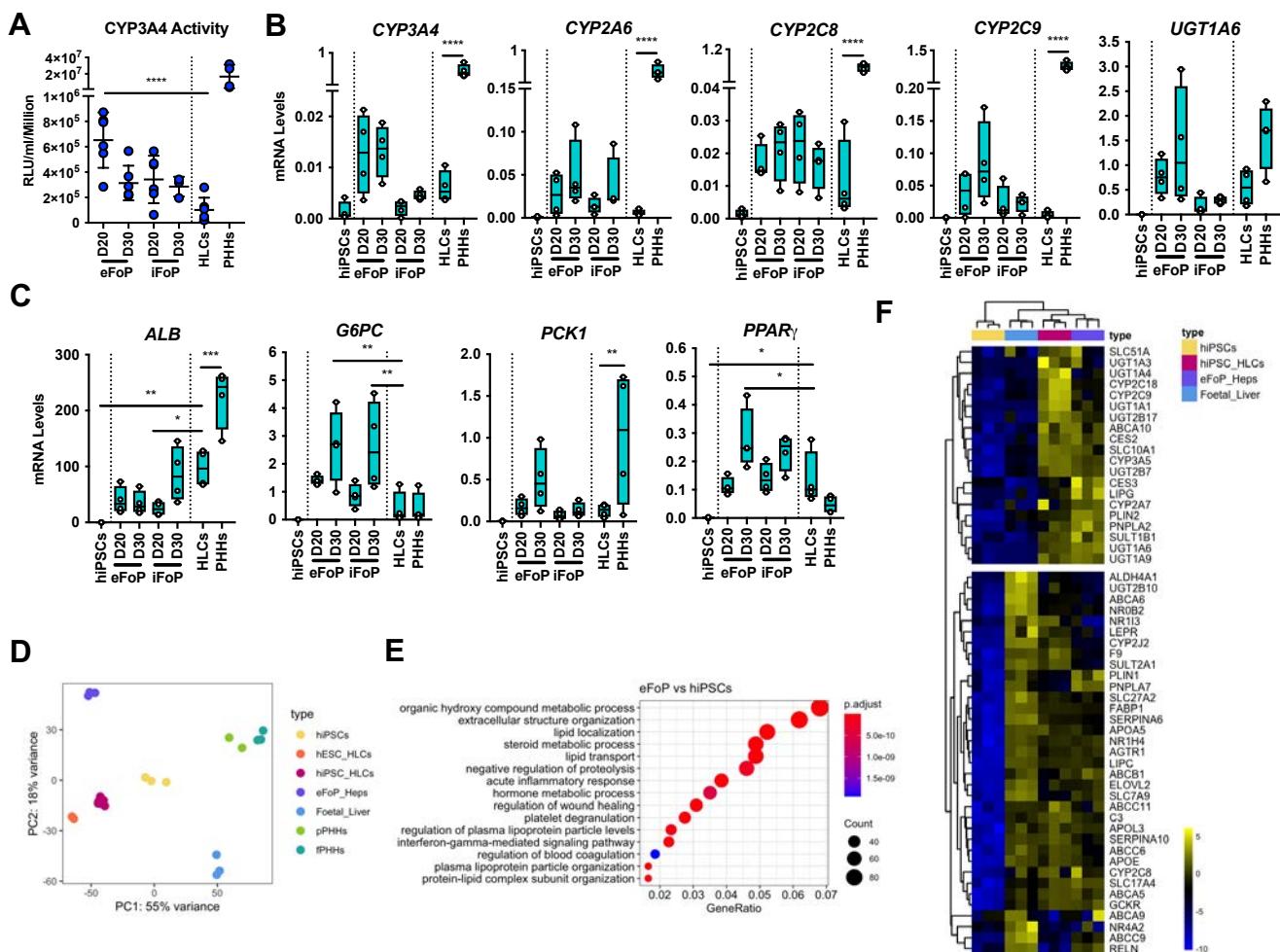



**C**



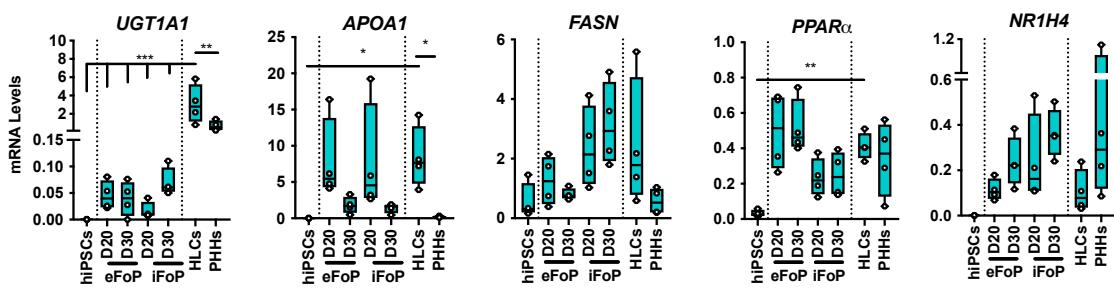

**D**



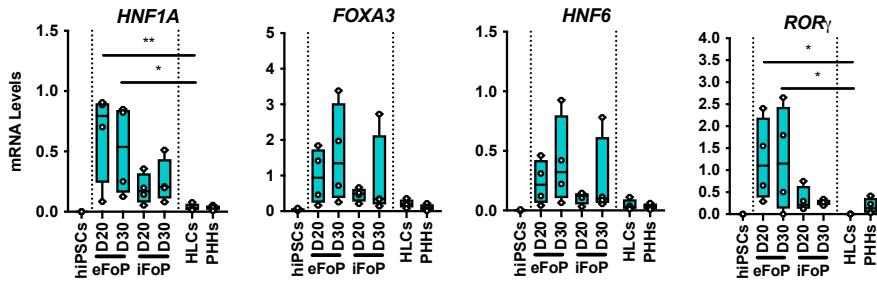

**E**



## Figure 4 – figure supplement 2

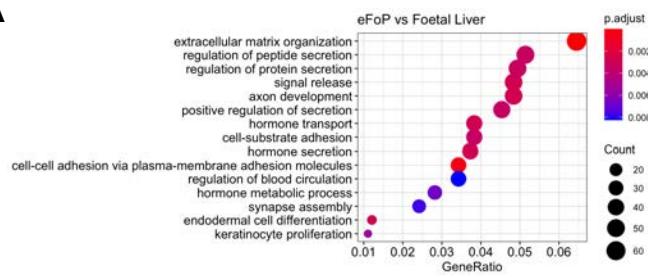



**Figure 5**

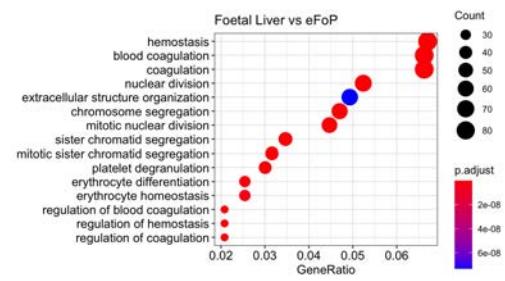



**Figure 5 – figure supplement 1**

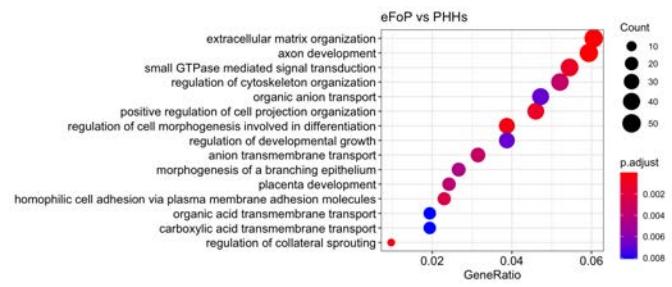
**A**



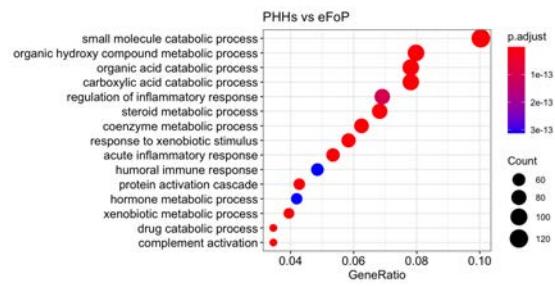

**B**



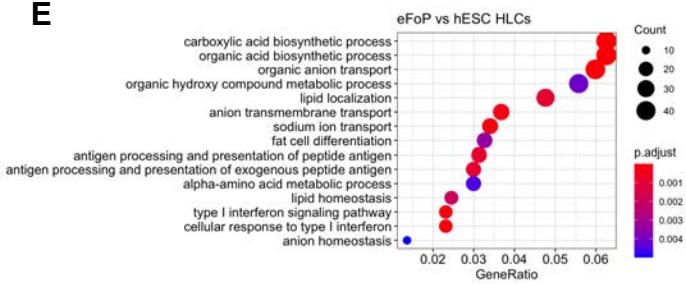

## Figure 5 – figure supplement 2


A

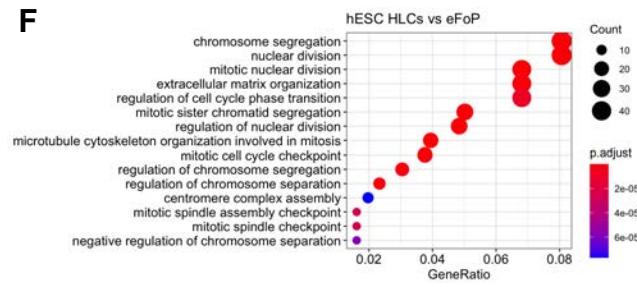



B

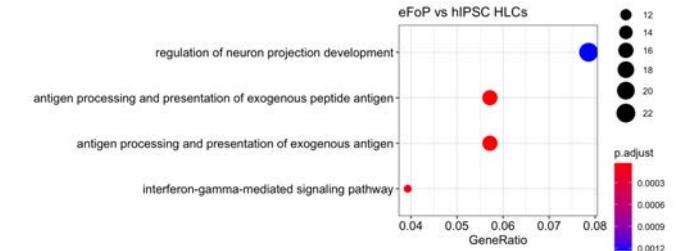



C

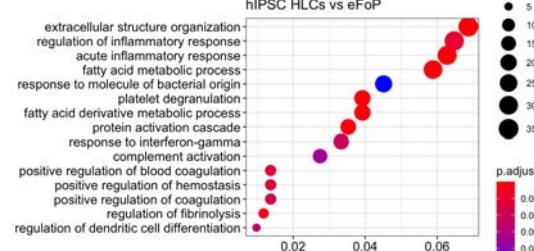



D

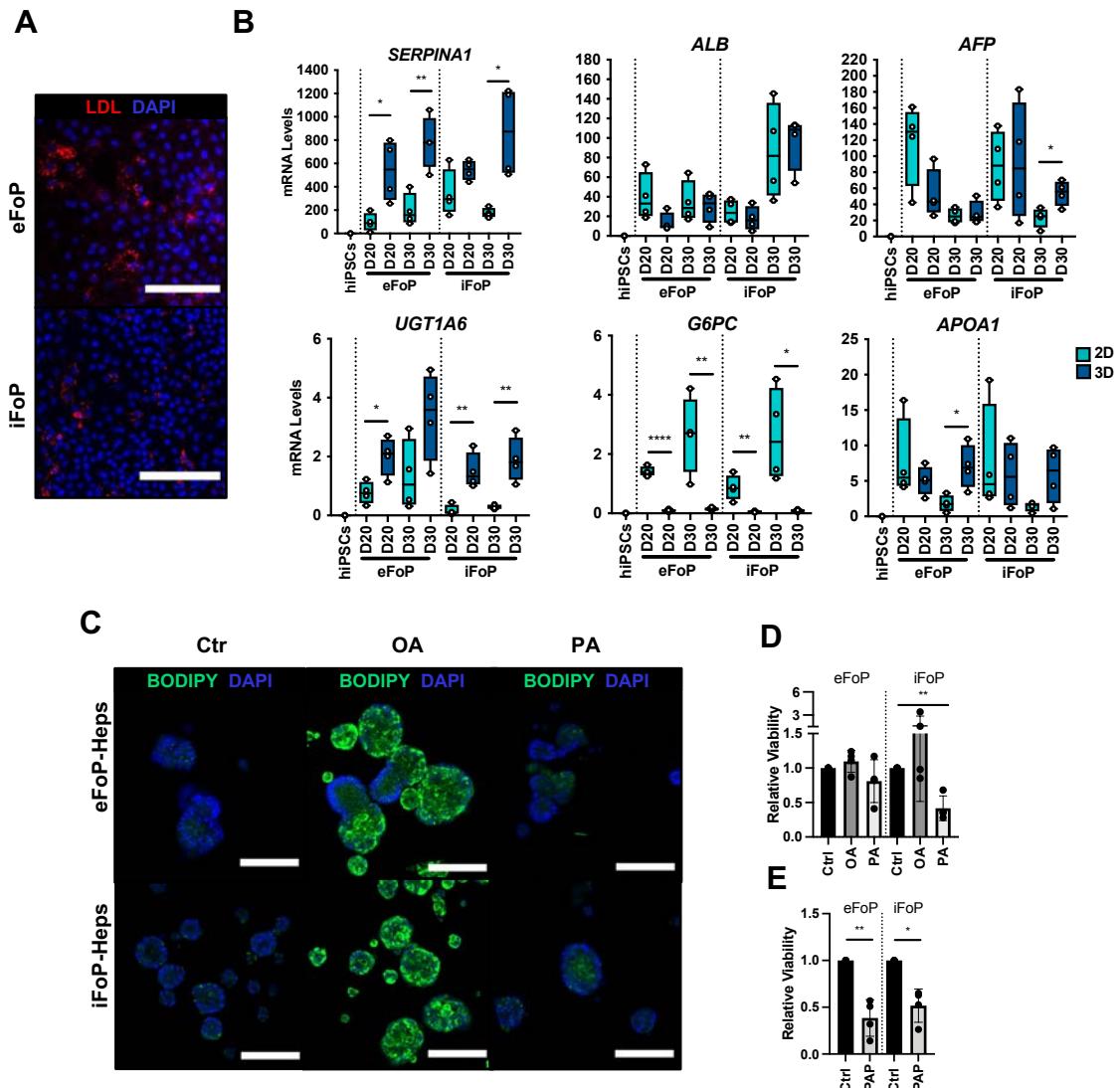



E




F




G



H



**Figure 6**

