

1 **Postsynaptic GluA3 subunits are required for the appropriate assembly of AMPA
2 receptor GluA2 and GluA4 subunits on mammalian cochlear afferent synapses and for
3 presynaptic ribbon modiolar-pillar morphological distinctions**

4

5 Mark A. Rutherford¹, Atri Bhattacharyya¹, Maolei Xiao¹, Hou Ming Cai², Indra Pal², María E.
6 Rubio^{2,3*}

7 1. Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO
8 63110

9 2. Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
10 15261

11 3. Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA
12 15261

13

14 Running title: GluA3 is essential for the molecular anatomy of cochlear ribbon synapses

15

16 Keywords: glutamate receptors, ultrastructure; qRT-PCR; immunolabeling; inner hair cells; 3D
17 reconstructions; confocal imaging

18

19 Number of text pages: 45

20 Number of Figures: 9

21 Number of words for Abstract: 229

22 Number of words for Introduction: 693 words

23 Number of words for Discussion: 1,524

24

25 *Corresponding Author:

26 María Eulalia Rubio: Mer@pitt.edu

27 Department of Neurobiology; University of Pittsburgh Medical School

28 BST3 Building, 3501 Fifth Avenue #10016, Pittsburgh, PA 15261

29

30 Acknowledgments

31 This work was supported by NIDCD DC013048 (MER) and NIDCD DC14712 (MAR). We thank

32 Nicholas Lozier for his helpful comments on the manuscript.

33

34 Authors' contributions: M.E.R and M.A.R.: designed research, performed research, analyzed

35 data and wrote and edited the manuscript. M.X. and H.M.C.: performed research and edited the

36 manuscript. A.B. and I.P.: analyzed data and edited the manuscript.

37

38 The authors declare no competing financial interests.

39

40 **Abstract**

41 The encoding of acoustic signals in the cochlea depends on α -amino-3-hydroxy-5-methyl-4-
42 isoxazole propionic acid receptors (AMPARs), but relatively little is known about their reliance
43 on specific pore-forming subunits. With 5-week-old male $GluA3^{KO}$ mice, we determined cochlear
44 function, synapse ultrastructure, and AMPAR subunit molecular anatomy at ribbon synapses
45 between inner hair cells (IHCs) and spiral ganglion neurons (SGNs). $GluA3^{KO}$ and wild-type
46 ($GluA3^{WT}$) mice reared in ambient sound pressure level (SPL) of 55-75 dB had similar ABR
47 thresholds, wave-1 amplitudes, and latencies. Ultrastructurally, the IHC modiolar-pillar
48 differences in presynaptic ribbon size and shape, and synaptic vesicle size seen in $GluA3^{WT}$
49 were diminished or reversed in $GluA3^{KO}$. The quantity of paired synapses (presynaptic ribbons
50 juxtaposed with postsynaptic GluA2 and GluA4) was similar, however, GluA2-lacking synapses
51 (ribbons paired with GluA4 but not GluA2) were observed only in $GluA3^{KO}$. SGNs of $GluA3^{KO}$
52 mice had AMPAR arrays of smaller overall volume, containing less GluA2 and greater GluA4
53 immunofluorescence intensity relative to $GluA3^{WT}$ (3-fold difference in mean GluA4:GluA2 ratio).
54 The expected modiolar-pillar gradient in ribbon volume was observed in IHCs of $GluA3^{WT}$ but
55 not $GluA3^{KO}$. Unexpected modiolar-pillar gradients in GluA2 and GluA4 volume were present in
56 $GluA3^{KO}$. GluA3 is essential to the morphology and molecular composition of IHC-ribbon
57 synapses. We propose the hearing loss seen in older male $GluA3^{KO}$ mice results from
58 progressive synaptopathy evident in 5-week-old mice as increased abundance of GluA2-
59 lacking, GluA4 monomeric, Ca^{2+} -permeable AMPARs.

60

61

62

63 **Introduction**

64 In the cochlear ganglion and the ascending central auditory system, hearing relies on fast
65 excitatory synaptic transmission via unique α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic
66 acid receptors (AMPARs) (Raman et al., 1994; Ruel et al., 1999; Gardner et al., 1999; Glowatzki
67 and Fuchs, 2002). AMPARs are tetrameric ionotropic receptor-channels comprised of GluA1-4
68 pore-forming subunits plus auxiliary subunits conferring distinct electrophysiological kinetics,
69 unique biological structures, and different pharmacological sensitivities (Jackson et al., 2011;
70 Bowie, 2018; Azumaya et al., 2017; Twomey et al., 2018). In the adult brain, most AMPAR
71 tetramers contain an RNA-edited form of the GluA2 subunit rendering the channel relatively
72 impermeable to Ca^{2+} , resulting in Ca^{2+} -impermeable AMPARs (Cl-AMPARs; Sommer et al.,
73 1991; Higuchi et al., 1993). AMPARs lacking edited GluA2 are called Ca^{2+} -permeable AMPARs
74 (CP-AMPARs) because they have greater permeability to Ca^{2+} and larger overall ionic
75 conductance, carried mainly by Na^+ (Hollmann et al., 1991; Geiger et al., 1995). The expression
76 of GluA2-lacking CP-AMPARs is downregulated in the developing brain (Pickard et al., 2000;
77 Kumar et al., 2002; Henley and Wilkinson, 2016). However, CP-AMPARs persist or even
78 increase with developmental maturation in some neurons of the auditory brainstem where CP-
79 AMPARs enriched in GluA3 and GluA4 subunits are thought to be essential for fast
80 transmission of acoustic signals (Trussell, 1997; Gardner et al., 2001; Lawrence and Trussell,
81 2000; Sugden et al., 2002; Wang and Manis, 2005; Youssoufian et al., 2005; Luján et al., 2019).

82

83 Cochlear afferent projections process fast auditory signals through innervation of the
84 anteroventral cochlear nucleus, at the endbulb of Held synapses onto bushy cells, where the
85 AMPARs are comprised mainly of GluA3 and GluA4 subunits with high Ca^{2+} permeability and
86 rapid desensitization kinetics (Wang et al., 1998; Rubio et al., 2017). The number and
87 distribution of fast kinetic GluA3 and GluA4 subunits in the cochlear nucleus depends on the
88 target cells (Rubio et al., 2017). Mice lacking the GluA3 subunit have impaired auditory

89 processing due to effects on synaptic transmission associated with altered ultrastructure of
90 synapses between endbulbs and bushy cells (García-Hernández et al., 2017; Antunes et al.,
91 2020). Mice lacking the GluA4 subunit have altered acoustic startle response and impaired
92 transmission at the next synaptic relay in the midbrain at the calyx of Held, a high-fidelity central
93 synapse (Yang et al., 2011; García-Hernández and Rubio, 2022). The rapid processing of
94 auditory signals in the brainstem is supported by high-fidelity initial encoding of sound at
95 synapses between cochlear inner hair cells (IHCs) and spiral ganglion neurons (SGNs)
96 (Rutherford and Moser, 2016; Rutherford et al., 2021), however, relatively little is known about
97 how specific pore-forming subunits affect the molecular composition of cochlear AMPARs.

98
99 In the cochlea, each primary auditory nerve fiber (i.e., SGN) is unbranched and driven to fire
100 spikes by the release of glutamate from an individual IHC ribbon synapse acting on a single,
101 large post-synaptic density (PSD) of approximately 850 nm in length, on average, in cat and
102 mouse (Liberman, 1980; Payne et al., 2021). Cochlear AMPARs are comprised of GluA2-4 but
103 not GluA1 (Niedzielski and Wenthold, 1995; Matsubara et al., 1996; Parks, 2000; Shrestha et
104 al., 2018). Here, we examined the influence of GluA3 subunits on afferent synapse
105 ultrastructure and on AMPAR-subunit molecular anatomy in the PSD of the auditory nerve fiber
106 in the cochlea, with attention to GluA2 and GluA4 *flip* and *flop* isoforms and to position of
107 innervation on the IHC modiolar-pillar axis. At the central auditory nerve projection in the
108 cochlear nucleus, at the endbulb of Held synapse, GluA3 is required for both postsynaptic and
109 presynaptic maturation of synapse structure and function (García-Hernández et al., 2017;
110 Antunes et al., 2020). Therefore, we also examined presynaptic ribbon morphology in relation to
111 position on the IHC modiolar-pillar axis, which is expected to show smaller and more spherical
112 ribbons on the side of the IHC facing the pillar cells and the outer hair cells (pillar side) relative
113 to the ribbons on the modiolar side facing the ganglion (Merchán-Perez and Liberman, 1996;
114 Payne et al., 2021). Our findings in young adult male *GluA3^{KO}* mice include dysregulation of

115 GluA2 and GluA4 subunit relative abundance and alterations in pre- and post-synaptic
116 ultrastructure associated with an increased vulnerability to glutamatergic synaptopathy at
117 ambient, background levels of sound.

118

119

120 **Materials and Methods**

121

122 Animals

123 A total of 26 C57BL/6 wild type ($GluA3^{WT}$, n= 13) and GluA3-knockout ($GluA3^{KO}$, n= 13) mice
124 were used in this study. Generation of the $GluA3^{KO}$ mice has been previously described
125 (García-Hernández et al., 2017; Rubio et al., 2017). Male WT and KO mice were compared at
126 five weeks of age (postnatal day 35 [P35]) following normal rearing in an animal facility with 55-
127 75 dB SPL ambient noise and a 12-hour light/12-hour dark daily photoperiod. Mice were fed *ad*
128 *libitum*. All experimental procedures were in accordance with the National Institute of Health
129 guidelines and approved by the University of Pittsburgh Institutional Animal Care and Use
130 Committee.

131

132 Auditory Brainstem Recordings (ABR)

133 To test the auditory output of the $GluA3^{WT}$ and $GluA3^{KO}$ mice, we performed ABR as previously
134 described (Clarkson et al., 2016; García-Hernández et al., 2017, 2022; Weisz et al., 2021).
135 Recordings were conducted under isoflurane anesthesia in a soundproof chamber and using a
136 Tucker-Davis Technologies (Alachua, FL) recording system. Click or tone stimuli were
137 presented through a calibrated multi-field magnetic speaker connected to a 2-mm diameter
138 plastic tube inserted into the ear canal. ABR were recorded by placing subdermal needle
139 electrodes at the scalp's vertex, at the right pinna's ventral border, and the ventral edge of the
140 left pinna. ABR were recorded in response to broadband noise clicks (0.1 ms) or tone pips of 4,

141 8, 12, 16, 24, and 32 kHz (5 ms). Stimuli were presented with alternating polarity at a rate of 21
142 Hz, with an inter-stimulus interval of 47.6 ms. The intensity levels used were from 80 dB to 10
143 dB, in decreasing steps of 5 dB. The waveforms of 512 presentations were averaged, amplified
144 20x, and digitalized through a low impedance preamplifier. The digitalized signals were
145 transferred via optical port to an RZ6 processor, where the signals were band-pass filtered (0.3
146 – 3 kHz) and converted to analog form. The analog signals were digitized at a sample rate of
147 ~200 kHz and stored for offline analyses. Hearing threshold levels were determined from the
148 averaged waveforms by identifying the lowest intensity level at which clear, reproducible peaks
149 were visible. Wave 1 amplitudes were compared between GluA3^{WT} and GluA3^{KO} mice. For
150 measurements of amplitudes, the peaks and troughs from the click-evoked ABR waveforms
151 were selected manually in BioSigRZ software and exported as CSV files. The peak amplitude
152 was calculated as the height from the maximum positive peak to the next negative trough.

153

154 Immunohistochemistry and immunofluorescence

155 A total of 14 mice (GluA3^{WT} n= 7; GluA3^{KO} n=7) were anesthetized with a mixture of ketamine
156 (60 mg/kg) and xylazine (6.5 mg/kg) and were transcardially perfused with 4%
157 paraformaldehyde (PFA) in 0.1M phosphate buffer (PB) pH= 7.2. After 10 minutes of
158 transcardial perfusion, cochleae and brains were removed from the skull and postfixed for 45
159 minutes on ice. Just after dissection, the cochleae followed perilymphatic perfusion with the
160 same fixative through the oval window; the stapes were removed, and a hole was opened at the
161 apex of the cochlea bone shell. After postfixation, the cochleae and brains were washed in 0.1M
162 phosphate buffer saline (PBS).

163

164 Four cochleae (2 of each genotype) were decalcified in 10% EDTA in PBS for 24 hr, were
165 cryoprotected in 10%, 20%, and 30% sucrose in 0.1M PBS, frozen on dry ice with tissue
166 freezing medium (Electron Microscopy Sciences, Hatfield, PA), and stored at -20°C for up to

167 one month. Brains were cryoprotected in the same sucrose dilutions gradient and frozen on dry
168 ice. Cochleae were cut at a 20 um thickness section with a cryostat and were mounted on glass
169 slides. Brains were cut with a slicing vibratome at 50-60 um thickness and collected on culture
170 wheel plates containing 0.1M PBS. Cochlea and brain sections followed standard
171 immunofluorescence and immunohistochemistry protocols described in Douyard et al. (2007)
172 and Wang et al. (2011). Primary rabbit polyclonal antibodies against GluA2 (Millipore, AB1768;
173 RRID:AB_2247874) and GluA1 (a gift from Robert J. Wenthold; Douyard et al., 2007) were used
174 at a 1:500 dilution in 0.1M PBS. Cochlea sections followed incubation with an Alexa-594 goat-
175 anti-rabbit secondary antibody (1:1000; Life Tech.). Brain slices followed an incubation in a
176 biotinylated secondary antibody goat anti-rabbit (1:1000; Jackson Laboratories) in 0.1M PBS.
177 After, brain sections were incubated in avidin-biotin-peroxidase complex (ABC Elite; Vector
178 Laboratories; 60 min; RT), washed in 0.1M PBS, and developed with 3, 3-diaminobenzidine plus
179 nickel (DAB; Vector Laboratories Kit; 2-5 min reaction). Sections were analyzed with an
180 Olympus BX51 upright microscope, and digital images were captured with the CellSens
181 software (Olympus S.L.).

182

183 The other ten cochleae (5 of each genotype) were shipped overnight to Washington University
184 in Saint Louis in 0.1M PBS containing 5% glycerol for wholemount immunolabeling and confocal
185 analysis of presynaptic ribbons (CtBP2/Ribeye) and postsynaptic AMPAR subunits GluA2,
186 GluA3, and GluA4 as previously described (Jing et al., 2013; Ohn et al., 2016; Sebe et al., 2017;
187 Kim et al., 2019; Hu et al., 2020). Primary antibodies: CtBP2 mouse IgG1 (BD Biosciences
188 612044; RRID:AB_399431), GluA2 mouse IgG2a (Millipore MAB397; RRID:AB_2113875),
189 GluA3 goat (Santa Cruz Biotechnology SC7612), and GluA4 rabbit (Millipore AB1508;
190 RRID:AB_90711) were used with species-appropriate secondary antibodies conjugated to Alexa
191 Fluor (Life Tech.) fluorophores excited by 488, 555, or 647 nm light in triple-labeled samples
192 mounted in Mowiol. Samples were batch processed using the same reagent solutions in two
193 cohorts, including WT and KO mice.

194

195

196 Confocal Microscopy and Image Analysis

197 For synapse counts and measurements of intensity, volume, sphericity, and position confocal
198 stacks were acquired with a Z-step of 0.37 μ m and pixel size of 50 nm in X and Y on a Zeiss
199 LSM 700 with a 63X 1.4 NA oil objective lens. To avoid saturation of pixel intensity and to
200 enable comparisons across images and genotypes, we first surveyed the samples to determine
201 the necessary laser power and gain settings to collect all of the images. Then, using identical
202 acquisition settings for each sample, we collected 3–4 images from each cochlea at each of the
203 3 cochlear regions (basal, middle and apical, respectively) centered near tonotopic
204 characteristic frequencies of 10, 20, and 40 kHz (Müller et al., 2005). The numbers of hair cells
205 and paired and unpaired pre- and post-synaptic puncta were counted and manually verified
206 after automated identification using Imaris software (Bitplane) to calculate the mean per IHC per
207 image. The experimenter was blinded to the mouse genotype. For each group of images from

208 which synapses were counted or synaptic properties were measured, grand means (\pm SD) were
209 calculated across image means (Fig. 6B; 7E,G; 8A-D). Paired synapses were identified as
210 juxtaposed puncta of presynaptic ribbons (CtBP2) and postsynaptic AMPARs (GluA2 and/or
211 GluA4), which appear to partly overlap at confocal resolution (Rutherford, 2015). Unpaired (i.e.,
212 lone) ribbons were defined as CtBP2 puncta in the IHC but lacking appositional GluA2 or GluA4
213 puncta. For unpaired ribbons, we did not distinguish membrane-anchored from unanchored.
214 Ribbonless synapses consisted of GluA2 and/or GluA4 puncta located around IHC basolateral
215 membranes but lacking CtBP2. Pixels comprising puncta of synaptic fluorescence were
216 segmented in 3D as 'surface' objects in Imaris using identical settings for each image stack,
217 including the 'local contrast background subtraction' algorithm for automatically calculating the
218 threshold pixel intensity for each fluorescence channel in each image. This adaptive and
219 automatically-calculated thresholding algorithm compensated for differences in overall
220 luminance between image stacks that would affect the volume of segmented puncta if a fixed
221 threshold was applied across images, and avoided the potential subjective bias of setting a
222 user-defined arbitrary threshold value separately for each image. Intensity per synaptic punctum
223 was calculated as the summation of pixel intensities within the surface object. To associate the
224 intensities of different GluA puncta belonging to the same synapse (Fig. 7C; Fig. 9E-H), we
225 generated surface objects from a virtual 4th channel equal to the sum of the three channels
226 (GluA2, 3, and 4; or CtBP2, GluA2, and GluA4) and then summated the pixel intensities within
227 each of the three fluorescence channels comprising each synapse defined as a punctum on the
228 4th channel. The mean density of synaptic fluorescence per image (Fig. 8C) was calculated as
229 mean punctum Intensity (a.u.) divided by mean punctum Volume (μm^3) using surface objects
230 calculated from corresponding individual fluorescence channels. To associate the volumes of
231 different GluA puncta belonging to the same synapse (Fig. 7B), we used the virtual 4th channel
232 to generate masks. The mask for each synapse had a unique color value. Objects belonging to
233 the same synapse were identified based on common overlap with the unique color value

234 assigned to each mask. Sphericity is the ratio of the surface area of a sphere to the surface
235 area of an object of equal volume, so sphericity of 1 means the object is a perfect sphere. To
236 differentiate synapse position, images were used in which the row of IHCs was oriented with the
237 modiolar-pillar dimension in the microscope's Z-axis and the organ of Corti was not sloping in
238 the image volume, and modiolar-side and pillar-side groups were split at the midpoint of the
239 range of synapses along the modiolar-pillar dimension.

240

241 Reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (qPCR)

242 Under isofluorane anesthesia, mice ($GluA3^{WT}$ n= 4; $GluA3^{KO}$ n= 4) were euthanized via cervical
243 dislocation and decapitation. Immediately after the following decapitation, the cranium was
244 opened, and the inner ears were removed. Inner ears were flash-frozen in liquid nitrogen and
245 stored in -80°C for up to one month until RT-PCR. In preparation for RT-PCR, both inner ears
246 from each individual were homogenized by hand with mortar or pestle and RNA was extracted
247 with Trizol (Ambion by life technology). The RNA pellet was resuspended and the supernatant
248 containing RNA from each individual's inner ears was prepared for RT-PCR using the
249 SuperScript Strand Synthesis System kit (Invitrogen, cat. no. 11904018). The resulting cDNA
250 was stored at -20°C for one week or less before real-time qPCR. qPCR was performed at the
251 Genomics Research Core at the University of Pittsburgh using EvaGreen qPCR kit (MidSci,
252 Valley Park, MO, cat. no. BEQPCR_R) and primers for *Gria2* and *Gria4 flip* and *flop*, which were
253 the same primers used successfully in a previous RT-qPCR experiment by Hagino et al. (2004).
254 In a 25 μ l PCR reaction mixture, 2 μ l cDNA samples were amplified in a Chromo 4 detector (MJ
255 Research, Waltham, MA). GAPDH and 18S rRNA were used as housekeeping genes. Each
256 sample (consisting of RNA product of both cochleae from each mouse) was run in triplicate, and
257 average cycle thresholds (CTs) were used for quantification. Relative abundances of each
258 splice isoform for $GluA3^{KO}$ males compared to $GluA3^{WT}$ were reported as fold-change,
259 calculated using the following equation: $2\Delta\Delta CT$ ($2^{-\Delta\Delta CT}$), where $\Delta\Delta CT = (CT_{GluA3^{WT}} - CT_{GAPDH}$

260 or $CT_{18S\text{ rRNA}} - (CT_{\text{GluA3}^{KO}} - CT_{\text{GAPDH}} \text{ or } CT_{18S\text{ rRNA}})$, and CT represents the cycle threshold of each
261 cDNA sample. For a more in-depth explanation of this equation see Schmittgen and Livak
262 (2008). Electrophoresis of 10 μl of RT-PCR products was performed using 3% agarose
263 (SeaKem LE Agarose by Lonza) with molecular ladder gel containing 0.5 $\mu\text{g/ml}$ ethidium
264 bromide in $\times 0.5$ tris-acetate-ethylenediaminetetraacetic acid (TAE) buffer (pH: 8.0) and run at
265 100 V for 60 min. The size and thickness of the agarose gel, reagents, and other conditions
266 were kept constant. The band-size and DNA concentration of each PCR amplicon was
267 determined by comparison to the corresponding band in the molecular weight ladder (Gene
268 Ruler 100 BP DNA ladder Thermo Scientific). The amplicon images (RT-PCR bands) in the gel
269 were captured under ultraviolet (UV) light and documented using a Bio Rad Molecular Imager
270 Gel Doc RX+ Imaging system. All the parameters and experimental conditions used were kept
271 constant throughout the study. The image was saved (in JPEG format) on a computer for digital
272 image analysis using ImageJ software. The mean gray value (MGV) of each band was
273 determined with NIH-ImageJ software (<https://imagej.nih.gov/ij/>). Samples were normalized to
274 GAPDH. The *flip/flop* ratio was obtained by dividing the MGVs of the *flip* by the *flop*.
275

276 Transmission Electron Microscopy (TEM)

277 Four mice (2 per genotype) were anesthetized with a mixture of ketamine (60 mg/kg) and
278 xylazine (6.5 mg/kg) and were transcardially perfused with 0.1M PB, followed by 3% PFA
279 and 1.5% glutaraldehyde in 0.1 M PB. Cochleae were dissected from the temporal bones, and
280 fixative was slowly introduced through the oval window after removing the stapes and opening a
281 hole at the apex of the cochlea bone shell. Cochleae were post-fixed overnight in the same
282 fixative at 4°C and followed a protocol slightly modified from Clarkson et al. (2016). After
283 decalcification in 10% EDTA for 24 hours at 4°C on a rotor, cochleae were washed in 0.1M
284 cacodylate buffer and postfixed with 1% osmium and 1.5% potassium ferrocyanide in
285 cacodylate buffer for 1 hr at room temperature (RT). Cochleae were dehydrated in an ascending

286 ethanol gradient (ETOH; 35%, 50% 70%, 80% 90%) and were blocked-stained with 3% uranyl
287 acetate in 70% ETOH for 2 hr at 4°C before the 80% ETOH. The latest dehydration steps
288 performed with 100% ETOH and propylene oxide were followed by infiltration with epoxy resin
289 (EMBed-812; Electron Microscopy Science, PA USA). Cochleae were cut with a Leica EM UC7
290 ultramicrotome, and series of 15-20 serial ultrathin sections (75-80 nm in thickness) were
291 collected. Each serial ultrathin section was collected on numbered single slot gold-gilded grids
292 with formvar. Ultrathin sections were observed with a JEOL-1400 transmission electron
293 microscope (TEM; JEOL Ltd., Akishima Tokyo, Japan), and images of the midcochlea (~20 kHz)
294 containing inner hair cell (IHC)-ribbon synapses of the modiolar and pillar side were captured
295 with an Orius™ SC200 CCD camera (Gatan Inc., Warrendale, PA, USA).

296

297 Three-Dimensional (3-D) Reconstructions and NIH Image-J Analysis of TEM micrographs

298 TEM micrographs (at x40,000 magnification) of the serial IHC-ribbon synapses were aligned
299 and reconstructed using the Reconstruct software
300 (<https://synapseweb.clm.utexas.edu/software-0>; Fiala, 2005) as previously described (Gómez-
301 Nieto and Rubio, 2009; Clarkson et al., 2016, 2020). A total of 27 ($GluA3^{WT}$) and 30 ($GluA3^{KO}$)
302 IHC-ribbon synapses were reconstructed. In brief, two successive sections were aligned via
303 rotation and translation such that corresponding structures like mitochondria in the two sections
304 were superimposed. Linear transformation compensated for distortions introduced by the
305 sectioning. Following alignment of the TEM sections, structures of interest were segmented
306 visually into contours of separate objects. The subsequent linear interpolation between
307 membrane contours in adjacent images resulted in polygonal outlines of cell membranes,
308 synaptic vesicles, and synaptic ribbons. The 3-D rendering was generated as VRML files from
309 the stacks of all contoured sections. We calculated volumes and surface areas of the structures
310 of interest by filling these stacks with tetrahedra. A total of 44 ($GluA3^{WT}$) and 52 ($GluA3^{KO}$) single

311 TEM micrographs (at x40,000 magnification) were used for analysis of the synaptic ribbon major
312 axis and circularity as well as synaptic vesicles (SV) size using NIH Image-J software.

313

314 **Statistical Analysis**

315 Statistical analysis was performed with GraphPad Prism software (Version 9.3.1) or with IGOR
316 Pro software (Wavemetrics, Version 7.08). Mann Whitney or simple t-tests were used to
317 compare two independent groups. One-way ANOVA or Kruskal-Wallis tests and two-way
318 ANOVA were used for comparisons in which there were one and two independent variables,
319 respectively. Paired and multiple comparisons were made using Šidák's and Tukey's tests,
320 respectively. Statistical significance for all tests was set to $p < \alpha$; $\alpha = 0.05$. Data are represented
321 as mean \pm standard deviation (SD). The coefficient of variation (CV) was calculated as $CV = SD$
322 / mean.

323

324

325

326

327

328 **Results**

329

330 **Hearing sensitivity is unaltered in 5-week-old $GluA3^{KO}$ mice; transcription and mRNA
331 splicing of GluA2 and GluA4 isoforms are similar in cochleae of $GluA3^{WT}$ and $GluA3^{KO}$.**

332 We first determined whether the cohort of 5-week-old C57BL/6J $GluA3^{WT}$ and $GluA3^{KO}$ differed
333 in their auditory sensitivity. Our ABR analysis showed no differences between genotypes in
334 clicks or pure tone thresholds or wave-1 amplitude or latency (**Fig. 1A**). We note that male
335 $GluA3^{KO}$ and $GluA3^{WT}$ mice at two months of age have similar ABR thresholds but $GluA3^{KO}$ mice
336 have reduced ABR wave-1 amplitude (García-Hernández et al., 2017), suggesting cochlear

337 deafferentation sometime between ages P35 and P60. We then asked if GluA3 was required for
338 the appropriate expression of GluA1-4 subunits in the cochlear spiral ganglion (the auditory
339 nerve fiber somata) and in the cochlear nucleus (**Fig. 1B-C**). In WT mice, mature SGNs express
340 GluA2, GluA3, and GluA4 subunits of the AMPAR, but not GluA1 (Niedzielski and Wenthold,
341 1995; Matsubara et al., 1996; Parks, 2000; Shrestha et al., 2018). With immunolabelling, we
342 observed GluA2 in the SGNs of both genotypes (**Fig. 1B, upper left**). We found that SGNs
343 lacked GluA1 in *GluA3^{WT}* mice, as expected, and we did not observe compensatory GluA1
344 expression in SGNs of *GluA3^{KO}* (**Fig. 1B, lower left**). We also checked the immunolabeling of
345 GluA1 on brainstem sections containing the ventral cochlear nucleus and cerebellum (**Fig.1B,**
346 **right**). As expected, we found GluA1 immunoreactivity in the cerebellar Bergmann glia of
347 *GluA3^{WT}* and *GluA3^{KO}* mice (Matsui et al., 2005; Douyard et al., 2007). In contrast, as in the
348 SGNs, the ventral cochlear nucleus of 5-week-old mice lacked GluA1 immunoreactivity in
349 *GluA3^{WT}*, as previously shown (Wang et al., 1998), and we discovered no compensation in
350 *GluA3^{KO}*. At ribbon synapses in the cochlea, the PSDs on the postsynaptic terminals of SGNs
351 expressed GluA2, 3, and 4 in *GluA3^{WT}* as previously shown (Sebe et al., 2017), while those in
352 *GluA3^{KO}* lacked immunolabeling for GluA3 (**Fig. 2**). This confirmed the deletion of GluA3
353 subunits was effective in SGNs of *GluA3^{KO}* mice, as previously shown in the cochlear nucleus
354 (García-Hernández et al., 2017; Rubio et al., 2017), and was not associated with compensatory
355 upregulation of GluA1 subunits.

356

357 Unique isoforms are generated by alternative splicing of the pore-forming GluA subunits. In the
358 brain, *flip* and *flop* splice variants are expressed in distinct but partly overlapping patterns and
359 impart different desensitization kinetics (Sommer et al., 1990). The chicken and rat cochlear
360 nuclei express predominantly the fast-desensitizing *flop* isoforms (Schmid et al., 2001; Sugden
361 et al., 2002). With qRT-PCR, we determined whether the absence of GluA3 altered
362 posttranscriptional *flip* and *flop* splicing of mRNA for GluA2 (*Gria2*) or GluA4 (*Gria4*) in the

363 cochlea. Comparing the levels of *flip* or *flop* for *Gria2* or *Gria4* between *GluA3^{WT}* and *GluA3^{KO}*,
364 we found no significant differences (**Fig. 1C**). In addition, using the PCR gels, we calculated the
365 *flip/flop* ratios for *Gria2* and *Gria4* in *GluA3^{WT}* and *GluA3^{KO}* and found no differences between
366 genotype (*Gria2 flip/flop* ratio WT: 0.7, *GluA3^{KO}*: 0.6; *Gria4 flip/flop* ratio, WT: 0.7, *GluA3^{KO}*: 0.6).

367

368 Overall, this shows that lack of GluA3 did not affect hearing sensitivity at 5-weeks of age, in
369 contrast to 8 weeks when ABR peak amplitudes are reduced (García-Hernández et al., 2017).
370 Taken together with previous work, this suggests the 5-week-old *GluA3^{KO}* cochlea may be in a
371 pathological but pre-symptomatic, vulnerable state. The levels of *Gria2* or *Gria4 flip* or *flop*
372 mRNA isoforms in cochleae of male mice at 5-weeks of age were similar in *GluA3^{WT}* and
373 *GluA3^{KO}*, and in both genotypes, the expression of the *flop* splice variant for *Gria2* and *Gria4* is
374 predominant.

375

376

377 **Pre- and post-synaptic ultrastructural features of Inner Hair Cell ribbon synapses are**
378 **disrupted in the organ of Corti of *GluA3^{KO}* mice.**

379 Based on the similarity of auditory sensitivity in male *GluA3^{WT}* and *GluA3^{KO}* mice at 5-weeks of
380 age, we hypothesized that the ultrastructure of IHC-ribbon synapses would be unaltered in the
381 *GluA3^{KO}* mice. Qualitatively, the sensory epithelium's general structure and cellular components
382 were like WT and similar to published data of C57BL/6 mice (not shown; Ohlemiller and
383 Gagnon, 2004). Synapses from the midcochlea of both *GluA3^{WT}* and *GluA3^{KO}* mice had
384 electron-dense pre- and post-synaptic membrane specializations and membrane-associated
385 presynaptic ribbons (**Figs. 3 and 4**).

386

387 A total of 27 synapses of *GluA3^{WT}* mice were analyzed in 3D using serial sections (on average,
388 7 ultrathin sections per PSD). Of this total, 18 were on the modiolar side and 9 on the pillar side

389 of the IHCs (**Fig. 3A-B**). We found the PSD surface area to be larger ($p= 0.017$, Mann-Whitney
390 U test, U: 23) for synapses on modiolar side (mean: $0.50 \pm 0.1 \mu\text{m}^3$) when compared to the pillar
391 side (mean: $0.33 \pm 0.09 \mu\text{m}^3$) (**Fig. 3C, left**). Presynaptic ribbon volume was similar between
392 these two groups ($p= 0.525$, Mann-Whitney U test, U: 64; modiolar mean: $0.003 \pm 0.001 \mu\text{m}^3$;
393 pillar mean: $0.002 \pm 0.001 \mu\text{m}^3$; **Fig. 3C, right**). Six of 18 modiolar-side synapses had 2 ribbons
394 (33.3%), whereas all the synapses on the pillar side had only 1 ribbon. Next, a total of 44 single
395 TEM micrographs were analyzed to measure the major axis and circularity of the ribbon (n= 46
396 [2 PSDs had 2 ribbons]) and the size of the SVs (n= 249). Analysis of GluA3^{WT} showed that the
397 IHC-synapses on the modiolar side had longer major ribbon axes (mean: $272 \pm 81 \text{ nm}$, CV:
398 0.30) and less circularity (mean: 0.5 ± 0.1) compared to the pillar-side ribbons (mean major
399 axes: $180 \pm 55 \text{ nm}$, CV: 0.30; mean circularity: 0.9 ± 0.01). These data show that ribbons on the
400 modiolar side of GluA3^{WT} IHCs are elongated, while those on the pillar side are more round in
401 shape (**Fig. 3D, left and center**), as previously shown for C57BL/6 mice at 5-weeks of age
402 (Payne et al., 2021). Analysis of SV size showed that the SVs of modiolar-side synapses were
403 larger ($p= 0.0001$, Mann-Whitney U test, U: 4975) than those of the pillar-side synapses
404 (modiolar: $36 \pm 5 \text{ nm}$, CV: 0.13; pillar: $33 \pm 4 \text{ nm}$, CV: 0.14; **Fig. 3D, right**).
405

406 From GluA3^{KO} , a total of 30 synapses were analyzed in 3D with serial sections (on average, 7
407 ultrathin sections per PSD). Of this total, 20 were on the modiolar side and 10 on the pillar side
408 of the IHCs (**Fig. 4A-B**). Analysis showed that PSD surface area and ribbon volume were
409 similar for modiolar- and pillar-side synapses (PSD surface area $p= 0.72$, Mann-Whitney U test,
410 U: 73; ribbon volume $p= 0.52$ Mann-Whitney U test, U: 64) (mean PSD surface area, modiolar:
411 $0.52 \pm 0.17 \mu\text{m}^3$, pillar: $0.51 \pm 0.22 \mu\text{m}^3$; mean ribbon volume, modiolar: $0.003 \pm 0.001 \mu\text{m}^3$,
412 pillar: $0.003 \pm 0.001 \mu\text{m}^3$; **Fig. 4C**). Six of the 20 modiolar-side synapses had 2 ribbons (30%),
413 whereas all synapses on the pillar side had only 1 ribbon. A total of 52 single TEM micrographs
414 were analyzed to measure the major axis and circularity of the ribbon (n=52) and the size of the

415 SVs (n=279). Analysis of $GluA3^{KO}$ showed that IHC-synapses on the modiolar side had similar
416 major ribbon axes (194 ± 63 nm, CV: 0.33) and similar circularity (0.75 ± 0.14) compared to the
417 pillar-side ribbons (major axis: 202 ± 89 nm, CV: 0.44), circularity: 0.90 ± 0.07). Thus, unlike
418 $GluA3^{WT}$, modiolar- and pillar-side synapses had ribbons of similar size and roundedness in
419 $GluA3^{KO}$ (**Fig. 4D, left and center**). Also, opposite to the pattern in $GluA3^{WT}$, SVs of modiolar-
420 side synapses were smaller ($p = 0.022$, Mann-Whitney U test, U: 7030) than those of pillar-side
421 synapses in $GluA3^{KO}$ (modiolar: 36 ± 5 nm, CV: 0.15; pillar: 38 ± 4 nm, CV: 0.10; **Fig. 4D,**
422 **right**).

423

424

425 **Inner Hair Cell modiolar-pillar differences are eliminated or reversed in $GluA3^{KO}$.**

426 We then compared PSDs and ribbons among $GluA3^{WT}$ and $GluA3^{KO}$ mice on the modiolar and
427 pillar sides (**Fig. 5A**). Overall PSD surface area was significantly different between genotypes (p
428 = 0.027, Kruskal-Wallii's test). Considering modiolar-side and pillar-side synapses separately
429 with multiple (paired) comparisons revealed the PSD surface areas of modiolar-side synapses
430 to be similar among $GluA3^{KO}$ and $GluA3^{WT}$ ($p = 0.91$). In contrast, the mean PSD surface area of
431 the pillar-side synapses was larger in $GluA3^{KO}$ than $GluA3^{WT}$ ($p = 0.007$) (**Fig. 5A, left**). Synaptic
432 ribbon volume differed between $GluA3^{WT}$ and $GluA3^{KO}$ ($p < 0.0001$, one-way ANOVA).
433 Comparison analyses showed that the ribbon volumes of modiolar-side synapses were similar
434 between $GluA3^{WT}$ and $GluA3^{KO}$ ($p = 0.99$). In contrast, the pillar-side synapses were larger in
435 $GluA3^{KO}$ than $GluA3^{WT}$ ($p = 0.0006$) (**Fig. 5A, right**). Differences between the ribbon major axis
436 were found between WT and KO ($p < 0.0001$; one-way ANOVA). On the modiolar side, analysis
437 of the ribbon major axis length showed that those of the $GluA3^{KO}$ were significantly smaller than
438 $GluA3^{WT}$ ($p < 0.0001$), whereas pillar-side synapses were similar in major axis length (**Fig. 5B,**
439 **left**) ($p > 0.5$). Differences in ribbon circularity were also found between genotypes ($p < 0.0001$,
440 one-way ANOVA). Paired comparisons showed that modiolar-side ribbons were significantly

441 less circular in *GluA3*^{WT} ($p < 0.0001$), whereas pillar-side ribbons were of similar circularity ($p =$
442 0.31) (**Fig. 5B, center**). SV size differed between genotypes ($p < 0.0001$, one-way ANOVA).
443 Data showed that SVs of modiolar synapses were similar among genotypes ($p = 0.94$), while
444 those of pillar synapses were significantly larger in *GluA3*^{KO} ($p < 0.0001$) (**Fig. 5D, right**).

445
446 Altogether, our data of 5-week-old male mice show the AMPAR subunit GluA3 is essential to
447 establish and/or maintain the morphological gradients of presynaptic and postsynaptic
448 structures along the modiolar-pillar axis of the IHC. Next, we asked how these early
449 ultrastructural changes in *GluA3*^{KO} correlated with the number of ribbon synapses per IHC and
450 the relative expression of GluA subunits at those synapses.

451
452
453 **An increase in GluA2-lacking synapses precedes a reduction in cochlear output in**
454 ***GluA3*^{KO} mice.**

455 Although *GluA3*^{KO} mice have reduced ABR wave-1 amplitudes at 2-months of age (Garcia-
456 Hernandez et al., 2017), they were not yet different from *GluA3*^{WT} mice at 5-weeks of age (**Fig.**
457 **1**). Given the alterations in ribbon synapse ultrastructure at 5-weeks (**Figs. 3-5**), we asked if
458 synapse molecular anatomy was also affected in *GluA3*^{KO} mice. Using confocal images of
459 immunolabeled cochlear wholemounts, we analyzed the expression of CtBP2, GluA2, GluA3,
460 and GluA4 at the ribbon synapses between IHCs and SGNs. Visual inspection of the images
461 revealed absence of anti-GluA3 immunoreactivity in *GluA3*^{KO}, as well as an obvious reduction in
462 GluA2 labeling and increase in GluA4 labeling relative to *GluA3*^{WT} (**Fig. 2; 6A**). Despite this, the
463 numbers of paired synapses (CtBP2+GluA2+GluA4) per IHC were similar in the whole cochlea
464 (**Fig. 6B**; WT: 18.1 ± 2.8 ; KO: 17.3 ± 3.8 ; $p = 0.94$, Mann Whitney two-tailed U test) and within
465 apical, middle, and basal cochlear regions (see **Fig. 6** caption for more statistical details, Mann
466 Whitney two-tailed U test unless otherwise noted). The numbers of ribbonless synapses per IHC

467 (GluA2+GluA4 – WT: 1.2 ± 0.64 ; KO: 1.1 ± 0.59 ; $p = 0.67$) and GluA4-lacking synapses
468 (GluA2+CtBP2 – WT: 0.035 ± 0.044 ; KO: 0.062 ± 0.095 ; $p = 0.81$) were not significantly
469 different. In contrast, the numbers of lone ribbons per IHC (CtBP2-only – WT: 0.97 ± 0.92 ; KO:
470 1.6 ± 0.84 ; $p = 0.021$) and GluA2-lacking synapses (GluA4+CtBP2 – WT: 0.0 ± 0.0 ; KO: $0.07 \pm$
471 0.09 ; $p = 0.028$) were significantly increased in *GluA3^{KO}* relative to *GluA3^{WT}* (**Fig. 6B**).

472

473

474 **Loss of GluA3 expression reduces synaptic GluA2 and increase synaptic GluA4
475 subunits.**

476 Grayscale and color images (**Fig. 2**; **Fig. 6A**) revealed obvious reduction in GluA2 and increase
477 in GluA4 subunit immunofluorescence per synapse, on average, as quantified in **Fig. 7A** ($n = 3$
478 images per genotype). The overall GluA fluorescence per synapse ($\text{GluA}_{\text{Sum}} =$
479 GluA2+GluA3+GluA4) tended to be smaller in *GluA3^{KO}* due to the absence of GluA3 subunit
480 fluorescence. Analysis of GluA2 and GluA4 puncta volumes and intensities in one exemplar
481 mid-cochlear image from *GluA3^{WT}* and *GluA3^{KO}* mice revealed that ribbon synapses of *GluA3^{KO}*
482 mice had more compact AMPAR arrays (**Fig. 7B**) with reduced GluA2 and increased GluA4
483 fluorescence intensity relative to *GluA3^{WT}* (**Fig. 7C**). The sublinear Volume vs. Intensity
484 relationship for each GluA subunit suggests synaptic AMPAR density increases with the size of
485 the GluA array in both genotypes (**Fig. 7D**). Data from three mid-cochlear image stacks from
486 each genotype are summarized in **Figure 7E-H** (same images as panel A). Relative to the
487 mean of the summed pixel intensities per synapse in *GluA3^{WT}* mice, the overall fluorescence of
488 GluA subunits ($\text{GluA}_{\text{Sum}} = \text{GluA2+GluA3+GluA4}$) was reduced in *GluA3^{KO}* mice due to the
489 absence of GluA3, despite the much larger increase in GluA4 fluorescence intensity relative to
490 the reduction in GluA2 (**Fig. 7E-F**). Relative to the mean GluA puncta volume per *GluA3^{WT}*
491 synapse, the mean volumes of GluA2, GluA4, and GluA_{Sum} were all reduced in *GluA3^{KO}* (**Fig.**
492 **7G**). When normalized to the mean puncta volume per image in either group, the distributions of

493 synapse volumes were broadened for GluA2 and GluA4 subunits in *GluA3*^{KO} relative to *GluA3*^{WT}
494 (**Fig. 7H**). For each image, we calculated the coefficient of variation (CV = SD / mean) in puncta
495 volume for comparison by genotype. The volume of GluA_{Sum} had a CV (mean \pm SD, n = 3
496 images per genotype) of 0.38 ± 0.03 in *GluA3*^{WT} versus 0.51 ± 0.02 in *GluA3*^{KO}. For GluA2
497 volumes, the CVs were 0.39 ± 0.03 in *GluA3*^{WT} versus 0.65 ± 0.065 in *GluA3*^{KO}. For GluA4
498 volumes, the CVs were 0.38 ± 0.04 in *GluA3*^{WT} versus 0.51 ± 0.02 in *GluA3*^{KO}. Summed pixel
499 intensity per synapse was more variable than volume and, again, more variable in *GluA3*^{KO} than
500 *GluA3*^{WT}. For GluA_{Sum} intensity, the CVs were 0.44 ± 0.04 in *GluA3*^{WT} versus 0.63 ± 0.02 in
501 *GluA3*^{KO}. For GluA2 intensity, the CVs were 0.46 ± 0.03 in *GluA3*^{WT} versus 0.76 ± 0.04 in
502 *GluA3*^{KO}. For GluA4 intensity, the CVs were 0.45 ± 0.05 in *GluA3*^{WT} versus 0.63 ± 0.02 in
503 *GluA3*^{KO}.

504
505 To test the statistical significance and to confirm the differences observed in **Figure 7** in a larger
506 data set from a replication cohort, we next assessed mean synaptic CtBP2, GluA2, and GluA4
507 volume and intensity per image in 14 image stacks from each genotype. In image stacks of
508 sufficient quality, we also measured synapse position on the IHC modiolar-pillar axis to sort
509 them into modiolar and pillar groups. Image means and group means are displayed in **Figure 8**.
510 The volumes of CtBP2, GluA2, and GluA4 puncta were significantly smaller in *GluA3*^{KO} relative
511 to *GluA3*^{WT} (**Fig. 8A**, all, in μm^3 ; CtBP2–*GluA3*^{WT}: 0.14 ± 0.02 ; CtBP2–*GluA3*^{KO}: 0.12 ± 0.01 , $p =$
512 0.008 Mann-Whitney U test two-tailed; GluA2–*GluA3*^{WT}: 0.47 ± 0.06 ; GluA2–*GluA3*^{KO}: $0.39 \pm$
513 0.07, $p = 0.0001$; GluA4–*GluA3*^{WT}: 0.45 ± 0.05 ; GluA4–*GluA3*^{KO}: 0.36 ± 0.02 , $p = 4.9\text{e}^{-6}$). In both
514 genotypes, CtBP2 puncta tended to be larger on the modiolar side than the pillar side, on
515 average, but the difference was not significant ($p = 0.08$ for *GluA3*^{WT} and *GluA3*^{KO}). In *GluA3*^{WT},
516 GluA2 and GluA4 modiolar-side and pillar-side puncta were not significantly different ($p = 0.42$

517 GluA2; $p = 0.23$ GluA4). In contrast, in $GluA3^{KO}$, GluA2 and GluA4 puncta were significantly
518 larger on the modiolar side than the pillar side ($p = 0.001$ GluA2; $p = 0.0001$ GluA4).

519
520 In contrast to mean CtBP2 volume, which was decreased in $GluA3^{KO}$ (Fig. 8A), median CtBP2
521 intensity (Fig. 8B) and density (Fig. 8C) were significantly increased in $GluA3^{KO}$. For CtBP2
522 intensity (a.u.) e^5 – $GluA3^{WT}$: 1.2 ± 0.3 ; $GluA3^{KO}$: 1.8 ± 0.3 , $p = 0.0001$). As shown in the
523 representative images assessed in Figure 7, GluA2 intensity and volume were both reduced
524 (Fig. 8A-B), resulting in no change in GluA2 density (Fig. 8C). For GluA2 intensity (a.u.) e^5 –
525 $GluA3^{WT}$: 1.8 ± 0.4 ; $GluA3^{KO}$: 1.4 ± 0.3 , $p = 0.01$. While GluA4 intensity increased, volume was
526 reduced (Fig. 8A-B), resulting in increased GluA4 density (Fig. 8C). For GluA4 intensity (a.u.) e^5 –
527 – $GluA3^{WT}$: 1.7 ± 0.6 ; $GluA3^{KO}$: 4.2 ± 1.2 , $p = 5e^{-6}$. Relative to $GluA3^{WT}$ synapses, the
528 GluA4:GluA2 intensity ratio was 3x greater on average for $GluA3^{KO}$ synapses (Fig. 8D). For
529 GluA4:GluA2 intensity ratio – $GluA3^{WT}$: 0.93 ± 0.18 ; $GluA3^{KO}$: 3.0 ± 0.5 , $p = 6e^{-7}$.

530
531
532 **Positive correlations between synaptic puncta volumes, intensities, and sphericities in**
533 **$GluA3^{WT}$ are reduced in $GluA3^{KO}$ as the range of modiolar-pillar positions is shortened.**
534 In $GluA3^{WT}$, we commonly observed apparent oscillations in synapse volume as a function of
535 position in the Z-axis of the confocal microscope when the modiolar-pillar dimension was
536 approximately parallel to the Z-axis (Fig. 9A, lower). These spatial oscillations were clearer
537 when measured as sphericity (Fig. 9A, upper), which was inversely related to volume (Fig. 9A,
538 right). We observed a similar phenomenon in $GluA3^{KO}$ (Fig. 9B), although the synapses
539 resided in a smaller range along the Z-axis. GluA2 and GluA4 intensities per synapse were
540 positively related in both genotypes (Fig. 9C, left). GluA2 and GluA4 intensities were positively
541 related with CtBP2 intensities, but the relationships were less apparent in $GluA3^{KO}$ (Fig. 9C,
542 center and right), consistent with the increase in CV measured for GluA2 and GluA4 intensities

543 per synapse in *GluA3*^{KO} relative to *GluA3*^{WT} (Fig. 7). Plotting the GluA4:GluA2 intensity ratio as
544 a function of Z-position revealed that increases of the GluA4:GluA2 intensity ratios in *GluA3*^{KO}
545 tended to be greater for synapses on the pillar side than the modiolar side of the IHC relative to
546 *GluA3*^{WT} (**Fig. 9D**).

547

548

549 **Discussion**

550

551 Hearing depends on the activation of AMPARs on the post-synaptic terminals of auditory nerve
552 fibers (Ruel et al., 1999; Glowatzki and Fuchs, 2002). Cochlear AMPARs are tetrameric
553 heteromers comprised of the pore-forming subunits GluA2, 3, and 4, where the absence of
554 GluA2 results in a CP-AMPAR channel with increased permeability to Ca^{2+} and Na^+ . AMPAR
555 tetramers assemble as dimers of dimers, with the GluA2/3 dimer being energetically favored
556 and prominent (Greger et al., 2019). Our study shows that postsynaptic GluA3 subunits are
557 required for the appropriate assembly of AMPAR GluA2 and GluA4 subunits on mammalian
558 cochlear afferent synapses. Remarkably, we find that GluA3 is also essential for presynaptic
559 ribbon modiolar-pillar morphological distinctions. We propose that postsynaptic GluA3 subunits
560 at IHC-ribbon synapses may perform an organizational function beyond their traditional role as
561 ionotropic glutamate receptors.

562

563

564

565 **GluA3 is required for appropriate AMPAR assembly at IHC-ribbon synapses.**

566 Noise-induced cochlear synaptopathy is caused by excitotoxic overactivation of AMPARs by
567 excessive glutamate release from the sensory inner hair cells (Puel et al., 1998; Kim et al.,
568 2019). Antagonizing the Ca^{2+} -permeable subset of AMPARs (CP-AMPARs) pharmacologically

569 can prevent noise-induced synaptopathy while allowing the hearing function to continue through
570 activation of Ca^{2+} -impermeable AMPARs (Hu et al., 2020). In the absence of GluA3, GluA2/4
571 would be the only heterodimer. Homodimers and homomeric tetramers may exist but non-GluA2
572 subunits preferentially heterodimerize with GluA2 subunits because homodimers are less stable
573 energetically (Rossmann et al., 2011; Zhao et al., 2017). We find that loss of GluA3 alters GluA2
574 and GluA4 subunit relative abundance, increasing the GluA4:GluA2 ratio (**Figs. 8D; 9D**), which
575 may increase the number of GluA2-lacking CP-AMPARs at cochlear ribbon synapses of the
576 *GluA3^{KO}* mice. The increase in CP-AMPARs in the *GluA3^{KO}* could make the IHC-ribbon
577 synapses more vulnerable to noise and excitotoxicity as the cochlea matures and ages. In
578 support of this, male *GluA3^{KO}* mice have reduced ABR wave-1 amplitude relative to *GluA3^{WT}*
579 mice by 2-months of age and elevated ABR thresholds by 3-months of age (Garcia-Hernandez
580 et al., 2017). Taken together with previous work, we hypothesize that the 5-week-old *GluA3^{KO}*
581 cochlea may be in a pathological but pre-symptomatic, vulnerable state.

582
583 Changes in transcription and mRNA splicing of AMPAR subunits may affect synaptic
584 transmission that can cause excitotoxicity. For example, a decrease in GluA2 and GluA3 *flop*
585 isoforms leads to elevated intracellular Ca^{2+} levels and an increase in the death of retina
586 ganglion cells after glucose deprivation (Park et al., 2016). While there is no evidence at
587 present, the lack of GluA3 could alter the transcription and mRNA splicing of GluA2 and GluA4
588 in the cochlea during development. In contrast, we find the absence of GluA3 does not alter
589 transcription and mRNA splicing of GluA2 and GluA4 isoforms in the cochleae of 5-week-old
590 *GluA3^{KO}* mice. In both the *GluA3^{WT}* and *GluA3^{KO}* mice, the *flop* splice variant of GluA2 and
591 GluA4 is predominant over the *flip* isoform, as reported in some other CNS glutamatergic
592 neurons (Monyer et al. 1991; Gardner et al., 2001; Pei et al., 2007). Our results argue against
593 the possibility that altered transcription and mRNA splicing of GluA2 and GluA4 lead to
594 excitotoxicity at IHC-ribbon synapses in *GluA3^{KO}* mice (**Fig. 1**). In addition, we find changes to

595 the presynaptic ribbon suggesting trans-synaptic developmental effects, reminiscent of previous
596 reports on synapse ultrastructure of endbulb synapses in the cochlear nucleus of *GluA3*^{KO} mice
597 (García-Hernández et al., 2017; Antunes et al., 2020). Although young male *GluA3*^{KO} mice have
598 ABR and synapse numbers similar to WT (**Figs. 1; 6**), we hypothesize these molecular-
599 anatomical alterations to AMPAR subunits result in synapses with increased vulnerability to
600 AMPAR-mediated excitotoxicity that may lead to synapse loss and hearing loss as the mice age
601 in ambient sound conditions.

602

603 **Potential trans-synaptic role of GluA3 at IHC-ribbon synapses.**

604 Pre- and post-synaptic ultrastructural features of IHC-ribbon synapses are disrupted in the
605 organ of Corti of *GluA3*^{KO} mice (**Figs. 3-5**). In particular, modiolar-pillar differences are
606 eliminated or reversed in *GluA3*^{KO}. Our ultrastructural analysis shows the absence of GluA3
607 resulted in the loss of the modiolar-pillar difference in PSD surface area seen in *GluA3*^{WT}, due to
608 larger PSDs on the pillar side of *GluA3*^{KO} relative to *GluA3*^{WT}. Through development, the ribbon-
609 shape changes from largely round to oval, droplet-like, or wedge-like shapes (Wong et al., 2014;
610 Michanski et al., 2019). However, loss of GluA3 resulted in ribbons with shorter long-axes that
611 were more circular due to differences predominantly in the modiolar-side of *GluA3*^{KO} relative to
612 *GluA3*^{WT}. This finding is consistent with a developmental defect in a process of ribbon
613 maturation, whereby modiolar-side ribbons become longer and less spherical between 2.5-
614 weeks and 5-weeks of age in C57BL/6 WT mice (Payne et al., 2021). While *GluA3*^{KO} ribbons
615 were shorter in long-axis and more rounded in TEM, they were also more prominent in volume
616 than those from *GluA3*^{WT}, suggesting lengthening of the short ribbon axis in *GluA3*^{KO}. The
617 increase in ribbon volume measured in *GluA3*^{KO} with TEM was not detected in confocal
618 microscopy, consistent with the ribbon long-axis having the predominant effect on the point
619 spread function when the ribbon short-axis is smaller than the point spread function. Finally,
620 loss of GluA3 eliminated the modiolar-pillar difference in SV size due to an increase in SV size

621 on the pillar side of $GluA3^{KO}$. Our ultrastructural data are remarkable and suggest that
622 postsynaptic GluA3 subunits at IHC-ribbon synapses may perform an organizational function
623 beyond their traditional role as ionotropic glutamate receptors. The mechanisms are still
624 unclear, but evidence shows that AMPARs convey a retrograde trans-synaptic signal essential
625 for presynaptic maturation (Tracy et al., 2011). AMPAR subunits may interact with the trans-
626 synaptic adhesion factors Neuroligins and Neurexins (Heine et al., 2008; Hickox et al., 2017).
627 GluA3 is required for the functional development of the presynaptic terminal and the structural
628 maturation of SV size of endbulb auditory nerve synapses in the cochlear nucleus (Antunes et
629 al., 2020). Altered SV size together with a change in the number of AMPARs and their clustering
630 at the synapse contribute to quantal size variation and altered synaptic transmission (Levy et al.,
631 2015). The number of AMPARs at IHC-ribbon synapses is undetermined but with a synaptic
632 surface area ranging $0.1 - 1.5 \mu\text{m}^2$ (Liberman, 1980; Payne et al., 2021), it is estimated several
633 hundred to a few thousand AMPARs at each PSD (Momiyama et al., 2003). In $GluA3^{KO}$ mice,
634 we find that despite the decrease in GluA2 and the larger increase of GluA4, the overall
635 intensity and volume for the AMPAR subunits immunolabeling at IHC-ribbon synapses
636 decreases when compared to WT synapses primarily due to loss of GluA3. An increase in
637 relative abundance of CP-AMPARs and a decreased overall abundance of AMPARs in $GluA3^{KO}$
638 are expected to have opposing effects on the size of the synaptic current evoked by glutamate.
639 The ABR wave-1 amplitude is unaltered in male $GluA3^{KO}$ at 5-weeks of age suggesting a similar
640 hearing sensitivity to WT mice. However, ABR peak amplitudes are reduced in the male KO at 8
641 weeks of age (García-Hernández et al., 2017). To strengthen and confirm the potential trans-
642 synaptic role of GluA3 at IHC-ribbon synapses and to compare synaptic strength, further
643 electrophysiological studies need to determine the existence of altered quantal size and quantal
644 content in the $GluA3^{KO}$.

645

646 In the cochlea, afferent synaptic contact formation on the IHC, characterized by a demarcated
647 pre- and postsynaptic density, often precedes ribbon attachment at the presynaptic active zone
648 (AZ) membrane. Ribbon attachment occurs around embryonic day 18 (E18) (Michanski et al.,
649 2019). The presence of postsynaptic AMPARs in those embryonic IHC-ribbon synapses has not
650 been reported. However, patches of GluA2/3 AMPAR subunit immunolabeling were observed
651 during the first postnatal week, juxtaposed to the presynaptic ribbon marker, RIBEYE (Wong et
652 al., 2014). Fusion of ribbon precursors extends after hearing onset and is a critical step in
653 presynaptic AZ formation and maturation (Michanski et al., 2019). This fusion is essential for the
654 functional maturation of afferent synaptic transmission within the cochlea. However, in mice
655 lacking RIBEYE at IHC, it has been shown that features like PSDs, presynaptic densities, and
656 the presence of Ca^{2+} channels and bassoon develop independently of ribbon presence (Jean et
657 al., 2018; Becker et al., 2018). Thus, it is possible that GluA3 plays a direct or indirect role in the
658 recruitment and maintenance of pre- and post-synaptic proteins for example, via its N- and C-
659 terminus domains. Postsynaptic PDZ domain AMPAR C-terminus interacting proteins such as
660 PSD95 are present at IHC-ribbon synapses early during postnatal development (Tong et al.,
661 2013; Wong et al., 2014). PSD95 interacts with the cell adhesion proteins, neuroligin (Irie et al.,
662 1997; Jeong et al., 2019) which are also detected in the cochlea (Hickox et al., 2017). In the
663 CNS, alignment of postsynaptic AMPARs, PSD95, and Neuroligin-1 together with the pre-
664 synaptic protein RIM (Jung et al., 2015; Krinner et al., 2017; Picher et al., 2017), form a
665 nanocolumn (Tang et al., 2016). The nanocolumns are thought to represent a highly sensitive
666 point in which disruption alters synaptic plasticity, and therefore disrupts synapse function. To
667 understand further the cellular and synaptic mechanisms of hearing and hearing loss, it will be
668 essential to identify which, if any, of the numerous cleft-spanning adhesion systems interact with
669 AMPARs at IHC-synapses, in particular with GluA3.

670

671

672

673 **References**

674

675 Antunes F., Rubio, ME, Kandler K. (2020) Altered synaptic transmission and plasticity in
676 cochlear nucleus endbulb-bushy cell synapses of mice lacking the GluA3 AMPA receptor
677 subunit. *J Neurosci* 40(12):2471-2484.

678

679 Azumaya CM, Davis EL, Vinson PN, Stauffer S, Sulikowski G, Weaver CD, Nakagawa T (2017)
680 Screening for AMPA receptor auxiliary subunit specific modulators. *PLoS One* 12(3):e0174742.

681

682 Becker L, Schnee ME, Niwa M, Sun W, Maxeiner S, Talaei S, Kachar B, Rutherford MR, Ricci
683 AJ (2018) The presynaptic ribbon maintains vesicle populations at the hair cell afferent synapse,
684 *eLife* e30241.

685

686 Bowie D (2018) Polyamine-mediated channel block of ionotropic glutamate receptors and its
687 regulation by auxiliary proteins. *J Bio Chem* 293(48):18789-18802.

688

689 Clarkson C, Antunes FM, Rubio ME (2016) Conductive hearing loss has long-lasting structural
690 and molecular effects on pre- and post-synaptic structures of the auditory nerve in the cochlear
691 nucleus. *J Neurosci*. 36(39):10214-10227.

692

693 Clarkson C, Smeal R., Gibbons M, White JA. Rubio M.E, Wilcox KS (2020) Ultrastructural and
694 functional changes at the tripartite synapse during epileptogenesis in a model of temporal lobe
695 epilepsy. *Exp Neurol* 326:113196.

696

697 Douyard J, Shen L, Huganir RL, Rubio ME (2007) Differential neuronal and glial expression of
698 GluR1 AMPA receptor subunit, and the scaffolding proteins SAP97 and 4.1N during rat
699 cerebellar development. *J Comp Neurol* 502:141-156.

700

701 Fiala JC (2005) Reconstruct: a free editor for serial section microscopy. *J Microscopy* 218:52-
702 61.

703

704 García-Hernández S., Abe M., Sakimura K., and Rubio M.E. (2017) Impaired auditory
705 processing and altered synaptic structure of the endbulb synapse in mice lacking GluA3 AMPA
706 glutamate receptors *Hear Res* 344:284-294.

707

708 García-Hernández S, Rubio ME (2022) GluA4 is necessary to elicit acoustic and tactile startle
709 response. *Hear Res* 414:108410.

710

711 Gardner SM, Trussell L, Oertel D (1999) Time course and permeation of synaptic AMPA
712 receptors in cochlear nuclear neurons correlate with input. *J Neurosci* 19:8721-8729.

713

714 Gardner SM, Trussell L, Oertel D (2001) Correlation of AMPA receptor subunit composition with
715 synaptic input in the mammalian cochlear nuclei. *J Neurosci*, 21:7428-7437.

716

717

718 Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburgh PH, Jonas P, Monyer H (1995) Relative
719 abundance of subunit mRNAs determines gating and Ca²⁺ permeability of AMPA receptors in
720 principal neurons and interneurons in rat CNS. *Neuron* 1:193-204.

721

722 Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. *Nat Neurosci*
723 5(2):147-154.

724

725 Gómez-Nieto R, Rubio ME (2009) A bushy cell network in the rat ventral cochlear nucleus. *J*
726 *Comp Neurol* 516:241-263.

727

728 Greger IH, Mayer ML. Structural biology of glutamate receptor ion channels: towards an
729 understanding of mechanism (2019) *Cur Opin Struct Biol* 57:185-95.

730

731 Hagino Y, Kariura Y, Manago Y, Amano T, Wang B, Sekiguchi M, Nishikawa K, Aoki S, Wada
732 K, Noda M (2004) Heterogeneity and potentiation of AMPA type of glutamate receptors in rat
733 cultured microglia. *Glia* 47(1):68-77.

734

735 Henley JM, Wilkinson KA (2016) Synaptic AMPA receptors composition in development,
736 plasticity and disease. *Nat Rev Neurosci*. 2016 Jun;17(6):337-50.

737

738 Heine M, Thoumine O, Mondin M, Tessier B, Giannone G, Choquet D (2008) Activity
739 independent and subunit-specific recruitment of functional AMPA receptors at
740 neurexin/neuroligin contacts. *PNAS* 105(52):20947-20952.

741 Higuchi M, Single FN, Köhler M, Sommer B, Sprengel R, Seuberg PH (1993) RNA editing of
742 AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and
743 efficiency. *Cell* 75(7):1361-1370.

744 Hickox AE, Wong AC, Pak K, Strojny C, Ramirez M, Yates JR 3rd, Ryan AF, Savas JN (2017)
745 Global analysis of protein expression of inner ear hair cells *J Neurosci* 37(5):1320-1339.

746

747 Hollmann M, Hartley M, Heinemann S (1991) Ca²⁺ permeability of KA-AMPA-gated glutamate
748 receptor channels depends on subunit composition. *Science* 252(5007):851-853.

749

750 Hu N, Rutherford MA, Green SH (2020) Protection of cochlear synapses from noise-induced
751 excitotoxic trauma by blockade of Ca²⁺-permeable AMPA receptors. *PNAS* 117(7):3828-3838.

752

753 Irie M, Hata Y, Takeuchi M, Ichtchenko K, Toyoda A, Hirao K, Takai Y, Rosahl TW, Südhof TC
754 (1997) Binding of neuroligans to PSD-95. *Science* 277(5331):1511-1515.

755

756 Jackson AC, Milstein AD, Soto D, Farrant M, Cull-Candy SG, Nicoll RA (2011) Probing TARP
757 modulation of AMPA receptor conductance with polyamine toxins. *J Neurosci* 31(20):7511-
758 7520.

759

760 Jean P, Lopez de la Morena D, Michalski S, Tobón LMJ, Chakrabarti R, Picher MM, Neef J,
761 Jung SY, Gültas M, Maxeiner S, Neef A, Wichmann C, Strenzke N, Grabner C, Moser T (2018)
762 The synaptic ribbon is critical for sound encoding at high rates and with temporal
763 precision. *eLife* 7: e29275.

764

765 Jeong J, Pandey S, Li Y, Badger J II, Lu W, Roche KW (2019) PSD-95 binding dynamically
766 regulates NLG1 trafficking and function. *PNAS* 116(24):12035-12044.

767

768 Jing Z, Rutherford MA, Takago H, Frank T, Fejtova A, Khimich D, Moser T, Strenzke N (2013)
769 Disruption of the presynaptic cytomatrix protein Basson degrades ribbon anchorage,

770 multiquantal release, and sound encoding at the air cell afferent synapse. *J Neurosci*
771 33(10):4456-4467.

772

773 Jung S, Oshima-Takago T, Chakrabarti R, Wong AB, Jing Z, Yamanbaeva G, Picher MM,
774 Wojcik SM, Gottfert F, Predoehl F, Michel K (2015) Rab3-interacting molecules 2 α and 2 β
775 promote the abundance of voltage-gated CaV1.3 Ca $^{2+}$ channels at hair cell active zones.
776 *PNAS* **112**: E3141–E3149.

777

778 Kim KX, Payne S, Yang-Hood A, Li SZ, Davis B, Carlquist J, V-Ghaffari B, Gantz JA, Kallogjeri
779 D, Fitzpatrick JAJ, Ohlemiller KK, Hirose K, Rutherford MA (2019) Vesicular glutamatergic
780 transmission in noise-induced loss and repair of cochlear ribbon synapses. *J Neurosci*
781 39(23):4434-4447.

782

783 Krinner S, Butola T, Jung S, Wichmann C, Moser T (2017) RIM-binding protein 2 promotes a
784 large number of CaV1.3 Ca $^{2+}$ -channels and contributes to fast synaptic vesicle replenishment
785 at hair cell active zones. *Front Cell Neurosci* 11:334. 10.3389/fncel.2017.00334.

786

787 Kumar SS, Bacci A, Kharazia V, Huguenard JR (2002) A developmental switch of AMPA
788 receptor subunits in neocortical neurons. *J Neurosci* 22(8):3005-3015.

789

790 Lawrence JJ, Trussell LO (2000) Long-term specification of AMPA receptor properties after
791 synapse formation. *J Neurosci* 20(13):4864-4870.

792

793 Levy JM, Chen X, Reese TS, Nicoll RA (2015) Synaptic consolidation normalizes AMPAR
794 quantal size following MAGUK loss. *Neuron* 87:534-548.

795

796 Liberman MC (1980) Morphological differences among radial afferent fibers in the cat cochlea:
797 an electron-microscopic study of serial sections. *Hear Res* 3(1):45-63.

798

799 Luján B, Dagostin A, von Gersdorff H (2019) Presynaptic diversity revealed by Ca^{2+} -permeable
800 AMPA receptors at the calyx of Held synapse. *J Neurosci* 39(16):2981-2994.

801

802 Matsubara A, Laake JH, Davanger S, Usami S, Ottersen OP (1996) Organization of AMPA
803 receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell
804 synapses in the rat organ of Corti. *J Neurosci* 16:4457-4467.

805

806 Matsui K, Jahr CE, Rubio ME (2005) High concentration rapid transients of glutamate mediates
807 neuron-glia communication via ectopic release. *J Neurosci* 25:7538-7547.

808

809 Merchán-Perez A, Liberman MC (1996) Ultrastructural differences among afferent synapses on
810 cochlear hair cells: Correlations with spontaneous discharge rate. *JCN* 371:208-221.

811

812 Michanski S, Smaluch K, Steyer AM, Chakrabarti R, Setz C, Oestreicher D, Ficher C, Möbius
813 W, Moser T, Vogi C, Wichmann C (2019) Mapping developmental maturation of inner hair cell
814 ribbon synapses in the apical mouse cochlea. *PNAS* 116(13):6415-6424.

815 Momiyama A, Silver RA, Hausser M, Notomi T, Wu Y, Shigemoto R, Cull-Candy SG (2003) The
816 density of AMPA receptors activated by a transmitter quantum at the climbing fibre-Purkinje cell
817 synapse in immature rats. *J Physiol* 549(Pt 1):75-92.

818

819 Monyer H, Seeburg PH, Wisden W (1991) Glutamate-operated channels: developmentally early
820 and mature forms arise by alternative splicing. *Neuron* 6(5):799-810.

821

822 Müller M, von Hünerbein K, Hodis S, Smolders JWT (2005) A physiological place-frequency
823 map of the cochlea in the CBA/J mouse. *Hear Res* 202(1-2):63-73.

824

825 Niedzielski AS, Wenthold RJ (1995) Expression of AMPA, kainate, and NMDA receptor subunits
826 in cochlear and vestibular ganglia. *J Neurosci* 15:2338-2353.

827

828 Ohlemiller KK, Gagnon PM (2004) Apical-to-basal gradients in age-related cochlear
829 degeneration and their relationship to “primary” loss of cochlear neurons. *J Comp Neurol*
830 479(1):103-116.

831

832 Ohn T-L, Rutherford MA, Jing Z, Jung S, Duque-Afonso C, Hoch G, Picher MM, Scharinger A,
833 Strenzke N, Moser T (2016) Hair cells use active zones with different voltage dependence of
834 Ca²⁺ influx to decompose sounds into complementary neural codes. *PNAS* 113(32):E4716.

835

836 Park YH, Broyles HV, He S, McGrady NR, Li L, Yorio T (2016) Involvement of AMPA receptor
837 and its flip and flop isoforms in retinal ganglion cell death following oxygen/glucose deprivation.
838 *Physiol Pharmacol* 57(2):508-526.

839

840 Parks TN (2000) The AMPA receptors of auditory neurons. *Hear Res* 147(1-2):77-91.

841

842 Payne SA, Jones MS, Chung H, Skigen N, Fran A, Gattani S, Vaughn K, Schwed A, Nester M,
843 Bhattacharyya A, Iyer G, Davis B, Carlquist J, Patel H, Fitzpatrick JA, Rutherford MA (2021)
844 Maturation of heterogeneity in afferent synapse ultrastructure in the mouse cochlea. *Front*
845 *Synaptic Neurosci* 13:678575.

846

847 Pei W, Huang Z, Niu (2007) GluR3 flip and flop: differences in channel opening kinetics.
848 *Biochemistry* 46:97:2027-2036.

849

850 Pickard L, Noël J, Henley JM, Collingridge GL, Molnar E (2000) Developmental changes in
851 synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in
852 living hippocampal neurons. *J Neurosci* 20(21):7922-7931.

853

854 Picher MM, Opri, soreanu AM, Jung S, Michel K, Schoch S, Moser T (2017). Rab interacting
855 molecules 2 and 3 directly interact with the pore-forming CaV1.3 Ca²⁺ channel subunit and
856 promote its membrane expression. *Front Cell Neurosci* 11:160 10.3389/fncel.2017.00160.

857

858 Puel JL, Ruel J, Gervais d'Aldin C, Pujol R (1998) Excitotoxicity and repair of cochlear synapses
859 after noise-trauma induced hearing loss. *Neuroreport* 9(9):2009-2014.

860

861 Raman IM, Zhang S, Trussell LO (1994) Pathway-specific variants of AMPA receptors and their
862 contribution to neuronal signaling. *J Neurosci* 14:4998-5010.

863

864 Rossmann M, Sukumaran M, Penn AC, Veprintsev DB, Babu MM, Greger IH (2011) Subunit-
865 selective N-terminal domain associations organize the formation of AMPA receptor heteromers.
866 *EMBO* 30(5):959-971.

867

868 Rubio ME, Matsui K, Fukazawa Y, Kamasawa N, Harada H, Itakura M, Molnár E, Abe M,
869 Sakimura K, Shigemoto R (2017) The number and distribution of AMPA receptor channels
870 containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the
871 target cells. *Brain Struct Funct* 222(8):3375-3393.

872

873 Ruel J, Chen, Pujol R, Bobbin RP, Puel J (1999) AMPA-glutamate preferring glutamate
874 receptors in cochlear physiology of adult guinea-pig. *J Physiol* 518:667-680.

875

876 Rutherford MA (2015) Resolving the structure of the inner ear ribbon synapse with STED
877 microscopy. *Synapse* 69(5):242-255.

878

879 Rutherford MA, Moser T (2016) The ribbon synapse between type I spiral ganglion neurons and
880 inner hair cells. In *The primary auditory neurons of the mammalian cochlea* (pp. 117-156).
881 Springer, New York, NY.

882

883

884 Rutherford MA, von Gersdorff H, Goutman JD (2021) Encoding sound in the cochlea: from
885 receptor potential to afferent discharge. *J Physiol* 599(10):2527-2557.

886

887 Shrestha BR, Chia C, Wu L, Kujawa SG, Liberman MC, Goodrich LV (2018) Sensory neuron
888 diversity in the inner ear is shaped by activity. *Cell* 174:1229-1246.

889

890 Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C9T)
891 method. *Nat Protocol* 3(6):1101-1108.

892

893 Sebe JY, Cho S, Sheets L, Rutherford MA, von Gersdorff H, Raible DW (2017) Ca^{2+} -permeable
894 AMPARs mediate glutamatergic transmission and excitotoxic damage at the hair cell ribbon
895 synapse. *J Neurosci* 37:6162-6175.

896

897 Schmid S, Guthmann A, Ruppertsberg JP, Herbert H (2001) Expression of AMPA receptor
898 subunit flip/flop splice variants in the rat auditory brainstem and inferior colliculus. *J Comp*
899 *Neurol* 430:160-171.

900

901 Sommer B, Keinänen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Köhler M, Takagi T,
902 Sakmann B, Seeburg PH (1990) Flip and flop: A cell-specific functional switch in glutamate-
903 operated channels of the CNS. *Science* 249:1580-1585.

904

905 Sommer B, Köhler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a
906 determinant of ion flow in glutamate-gated channels. *Cell* 67(1):11-19.

907

908

909 Sugden SG, Zirpel L, Dietrich CJ, Parks TN (2002) Development of specialized AMPA receptors
910 of auditory neurons. *J Neurobiol* 52(3):189-202.

911

912

913 Tang A-H, Chen H, Li TP, Metzbower SR, McGillavry HD, Blandpied TA (2016) A trans-synaptic
914 nanocolumn aligns neurotransmitter release to receptors. *Nature* 536:210-214.

915

916

917 Tong M, Brugeaud A, Edge ASB (2013) Regenerated synapses between postnatal hair cells
918 and auditory neurons. *JARO* 14(3):321-329.

919

920 Tracy TE, Yan JJ, Chen L (2011) Acute knockout of AMPA receptors reveals a trans-synaptic
921 signal for presynaptic maturation. *EMBO* 20:1577-1592.

922

923 Trussell LO (1997) Cellular mechanisms for preservation of timing in central auditory pathways.
924 *Curr Opin Neurobiol* 7:487-492.

925

926 Twomey EC, Yelshanskaya MV, Vassilevski AA, Sobolevsky AI (2018) Mechanisms of channel
927 block in calcium-permeable AMPA receptors. *Neuron* 99(5):956-968.

928

929 Wang YX, Wenthold RJ, Petralia RS (1998) Endbulb synapses in the anteroventral cochlear
930 nucleus express a specific subset of AMPA-type glutamate receptor subunits. *J Neurosci*
931 18(3):1148-1160.

932

933 Wang Y, Manis P (2005) Synaptic transmission at the cochlear nucleus endbulb synapse during
934 age-related hearing loss in mice. *J Neurophysiol* 94(3):1814-1824.

935

936 Wang H, Yin G, Rogers K, Miralles C, De Blas AL, Rubio ME (2011) Monaural conductive
937 hearing loss alters the general expression of the GluA3 AMPA and glycine receptor α 1 subunits
938 in Bushy and Fusiform cells of the cochlear nucleus. *Neuroscience*. 199:438-451
939
940 Weisz CJ, Williams S-P, G.Ferreira D, Eckard CS, Divito CB, Fantetti KN, Dettwyler SA, Cai H-
941 M, Rubio ME, Kandler K, Seal RP (2021). Outer hair cell glutamate signaling through type II
942 afferents activates neurons in the cochlear nucleus in response to non-damaging sounds. *J*
943 *Neurosci* 41(13):2930–2943.
944
945 Wong AB, Rutherford MA, Gabrielaitis M, Pangrsic T, Göttfert F, Frank T, Michanski S, Hell S,
946 Wolf F, Wichmann C, Moser T (2014) Developmental refinement of hair cell synapses tightens
947 the coupling of Ca^{2+} influx exocytosis. *EMBO J* 33(3):247-267.
948
949 Youssoufian M, Oleskevich S, Walmsley B (2005) Development of a robust central auditory
950 synapse in congenital deafness. *J Neurophysiol* 94(5):3168-3180.
951
952 Zhao H, Lomash S, Chittori S, Glasser C, Mayer ML, Schuck P (2017) Preferential assembly of
953 heteromeric kainate and AMPA receptor amino terminal domains. *eLife* 6:e32056.
954
955
956 **Figure Legends**
957
958 **Figure 1. ABRs, GluA1 and GluA2 immunolabeling and qRT-PCR in *GluA3^{WT}* and *GluA3^{KO}*.**
959 **A.** Mean ABR thresholds ($\pm\text{SD}$) are similar between male *GluA3^{WT}* and *GluA3^{KO}* mice ($F_{(1, 63)} =$
960 1.599 , $p = 0.2107$; RM two way-ANOVA; *GluA3^{WT}* $n = 8$; *GluA3^{KO}* $n = 10$). In WT and *GluA3^{KO}*

961 there was a main effect of frequency ($F_{(6, 63)} = 23.92, p < 0.0001$). Mean wave 1 amplitudes were
962 similar between $GluA3^{WT}$ and $GluA3^{KO}$ mice ($F_{(1, 132)} = 2.419, p = 0.1223$; RM two way-ANOVA).
963 In both genotypes, there was an effect of sound intensity ($F_{(11, 132)} = 22.65, p < 0.0001$). Paired
964 multiple comparisons show that only at 70 dB SPL, wave 1 amplitude is smaller in the $GluA3^{KO}$
965 ($p = 0.045$). Mean wave latencies ($\pm SD$) are similar between $GluA3^{WT}$ and $GluA3^{KO}$ mice ($F_{(1, 132)} = 0.8907, p = 0.3470$; RM two way-ANOVA). There was an effect of sound level on wave 1
966 latencies ($F_{(1, 132)} = 24.31, p < 0.0001$), with significantly longer latencies at each decreasing
967 sound level.
968

969
970 **B.** Micrographs show immunolabeling for GluA2 and GluA1 on SGN, and for GluA1 on the
971 anteroventral cochlear nucleus (AVCN) and cerebellum (Crb) of $GluA3^{WT}$ and $GluA3^{KO}$ mice.
972 Immunolabeling for GluA2 is observed on SGN of WT and KO mice. In contrast,
973 immunolabeling for GluA1 is not observed on SGN and AVCN of both $GluA3^{WT}$ and $GluA3^{KO}$
974 mice, but is observed in the cerebellum labeling the cerebellar Bergmann glia of both
975 genotypes.
976

977 **C.** Images of *Gria2* and *Gria4* *flip* and *flop*, and GAPDH gels of $GluA3^{WT}$ and $GluA3^{KO}$ inner
978 ears. Histograms show fold change ($\pm SD$) of qRT-PCR product. Independent samples *t*-test.
979
980

981 **Figure 2. Immunohistofluorescence of AMPAR pore-forming subunits GluA2, 3, and 4 on**
982 **spiral ganglion neuron postsynaptic terminals in the organ of Corti.** Confocal microscope
983 immuno-fluorescence images of afferent ribbon synapses in organ of Corti whole-mount
984 samples from $GluA3^{WT}$ (left) and $GluA3^{KO}$ mice (right) in the mid-cochlea. Anti-GluA2 (green), -
985 GluA3 (blue), and -GluA4 (red) label the postsynaptic AMPAR subunits encoded by the *Gria2*,

986 *Gria3*, and *Gria4* genes, respectively. Each subpanel displays synaptic puncta of approximately
987 12 inner hair cells. Scale bars: 20 μm (A, C); 10 μm (B, D).

988 **A.** From top to bottom: *GluA3*^{WT} in grayscale for GluA2, 3, 4, and the sum of the three.

989

990 **B.** Merged color image of the region of interest indicated by the dashed rectangle in panel A.
991 Inset on right: enlargement of the dashed rectangular region of interest on left shows 5
992 postsynaptic AMPA-receptor arrays of ribbon synapses from one IHC.

993

994 **C.** From top to bottom: *GluA3*^{KO} in grayscale for GluA2, 3, 4, and the sum of the three.

995

996 **D.** Merged color image of the region of interest indicated in panel C. Inset: enlargement of a
997 rectangular region of interest shows several postsynaptic AMPA-receptor arrays of ribbon
998 synapses from one IHC.

999

1000

1001 **Figure 3. Ultrastructural features of *GluA3*^{WT} IHC-ribbon midcochlear synapses.**

1002 **A-B.** TEM micrographs of IHC-synapses on the modiolar (A) and pillar side (B). Aff.: afferent;
1003 IHC: inner hair cell; Eff.: efferent terminal.

1004

1005 **A'-B'.** Three-D reconstructions of the IHC-ribbon synapses are shown in A and B.

1006

1007 **C.** Plots of the quantitative data of the PSD surface area and ribbon volume obtained from the
1008 3D reconstructions of *GluA3*^{WT} mice.

1009

1010 **D.** Plots of the quantitative data from single ultrathin sections of the major axis and circularity of
1011 the ribbons and the size of SVs of *GluA3*^{WT} mice.

1012

1013

1014 **Figure 4. Ultrastructural features of $GluA3^{KO}$ IHC-ribbon midcochlear synapses.**

1015 **A-B.** TEM micrographs of IHC-synapses on the modiolar (A) and pillar side (B) of $GluA3^{KO}$ mice.

1016 Aff.: afferent; IHC: inner hair cell; ER.: endoplasmic reticulum/swelling.

1017

1018 **A'-B'.** Three-D reconstructions of the IHC-ribbon synapses shown in A and B.

1019

1020 **C.** Plots of the quantitative data of the PSD surface area and ribbon volume obtained from the

1021 3D reconstructions of $GluA3^{KO}$ mice.

1022

1023 **D.** Plots of the quantitative data from single ultrathin sections of the major axis and circularity of
1024 the ribbons and the size of SVs of $GluA3^{KO}$ mice.

1025

1026

1027 **Figure 5. IHC modiolar-pillar structural differences in presynaptic ribbon size, ribbon**
1028 **shape, and vesicle size seen in $GluA3^{WT}$ were diminished or reversed in $Gria3^{KO}$.**

1029 **A.** Whisker plots show the quantitative data of the PSD surface area and ribbon volume of
1030 $GluA3^{WT}$ and $GluA3^{KO}$ mice.

1031

1032 **B.** Whisker plots of the major axis and circularity of the ribbons of $GluA3^{WT}$ and $GluA3^{KO}$ mice.
1033 Column histogram of the size of SVs of $GluA3^{WT}$ and $GluA3^{KO}$.

1034

1035

1036 **Figure 6. Inner hair cell ribbon synapse counts in 5-week-old male $GluA3^{WT}$ and $GluA3^{KO}$**
1037 **mice.**

1038 **A.** Confocal microscope immuno-fluorescence images of afferent ribbon synapses in organ of
1039 Corti whole-mount samples from *GluA3*^{WT} (upper) and *GluA3*^{KO} mice (lower) in the apical,
1040 middle, and basal cochlea (left, middle, right). Anti-CtBP2 labels the Ribeye protein in
1041 presynaptic ribbons (red); Anti-GluA2 labels the postsynaptic AMPAR subunit encoded by the
1042 *Gria2* gene (green); Anti-GluA4 labels the AMPAR subunit encoded by *Gria4* (blue). Each
1043 subpanel displays synaptic puncta of approximately 4 inner hair cells. Scale bars: 10 μ m.

1044
1045 **B.** Quantification of ribbon synapse numbers in images from *GluA3*^{WT} (black: 2,990 synapses; n
1046 = 32 images; 5 mice) and *GluA3*^{KO} (gray: n = 2,814 synapses; n = 30 images; 5 mice). Each
1047 point represents the mean number of synapses per inner hair cell (IHC) per image;
1048 approximately 12 IHCs per image and 6 images per cochlea. ¹) Paired synapses per IHC were
1049 similar in number for the whole cochlea ($p = 0.94$, U: 484, $n_{WT} = 32$, $n_{KO} = 30$) and in each of 3
1050 tonotopic regions centered at 10 kHz ($p = 0.08$, U: 59, $n_{WT} = 8$, $n_{KO} = 10$), 20 kHz ($p = 0.41$, U:
1051 61, $n_{WT} = 10$, $n_{KO} = 10$), or 40 kHz ($p = 0.10$, U: 42, $n_{WT} = 14$, $n_{KO} = 10$; two-tailed Mann-Whitney
1052 U test). ²) Lone or 'orphaned' ribbons (CtBP2-only) were significantly more frequent in *GluA3*^{KO}
1053 ($p = 0.021$, U: 44, $n_{WT} = 14$, $n_{KO} = 13$). ³) Ribbonless synapses (GluA2+GluA4) were similar in
1054 number ($p = 0.67$, U: 100, $n_{WT} = 14$, $n_{KO} = 13$). ⁴) Paired synapses lacking GluA4
1055 (CtBP2+GluA2) were similar in number ($p = 0.81$, U: 39, $n_{WT} = 7$, $n_{KO} = 12$). ⁵) Paired synapses
1056 lacking GluA2 (CtBP2+GluA4) were significantly more frequently observed in *GluA3*^{KO} ($p =$
1057 0.028, U: 21, $n_{WT} = 7$, $n_{KO} = 12$).
1058

1059 **Figure 7. Alteration of AMPAR subunit expression in *GluA3*^{KO} mice.**

1060 **A.** From images like in Fig. 2: Summed pixel intensity per synapse (raw values, a.u.) for GluA2
1061 (green), GluA4 (blue), and GluA_{Sum} (black). In each subpanel, *GluA3*^{WT} is on left and *GluA3*^{KO} is
1062 on right. Bars show mean \pm SD; n = 3 mid-cochlear images per genotype, assessed further in
1063 panels E-H.

1064

1065 **B.** Volume analysis of two exemplar images showing GluA4 vs. GluA2 volume per synapse
1066 (μm^3) in the mid-cochlea of GluA3^{WT} (black, $n = 148$ synapses) and GluA3^{KO} (gray, $n = 166$
1067 synapses). The distribution of GluA4 and GluA2 puncta are shifted to smaller volumes in
1068 GluA3^{KO} , although the upper ranges are unchanged.

1069

1070 **C.** Intensity analysis of the synapses in panel B (summed pixel intensity per synapse) reveals
1071 an increase in GluA4 and decrease in GluA2 immuno-fluorescence in GluA3^{KO} . Intensity values
1072 were normalized to the maximum synapse intensity for GluA4.

1073

1074 **D.** Volume (μm^3) vs. summed pixel intensity (norm.) per synapse for GluA3^{WT} (filled circles) and
1075 GluA3^{KO} (open circles) for GluA2, 3, and 4 puncta (green, blue, red). The positive correlation is
1076 slightly sub-linear.

1077

1078 **E.** Intensity analysis (sum of pixel intensities per synapse) of postsynaptic puncta grouped from
1079 GluA3^{WT} ($n = 545$ synapses from 3 images) or GluA3^{KO} cochlea ($n = 513$ synapses from 3
1080 images) shows reduction of overall GluA intensity ($\text{GluA}_{\text{Sum}} = \text{GluA2} + \text{GluA3} + \text{GluA4}$, gray) and
1081 reduction in GluA2 intensity (green) with increase in GluA4 intensity (red) in GluA3^{KO} . Data are
1082 normalized to the mean WT synapse intensity per group for GluA2, GluA4, or GluA_{Sum} .

1083

1084 **F.** Normalized data as in panel E displayed as cumulative distributions for GluA3^{WT} (solid line)
1085 and GluA3^{KO} (dashed lines). The overall intensity in GluA3^{KO} (black dashed line, GluA_{Sum}) is
1086 reduced relative to GluA3^{WT} (solid black line) due to lack of GluA3 and reduction in GluA2
1087 (green) despite the relatively large increase in GluA4 (red).

1088

1089 **G.** GluA puncta volume analysis reveals a reduction of GluA2 and GluA4 volume per synapse
1090 in $GluA3^{KO}$ relative to $GluA3^{WT}$. Data are normalized to the mean WT synapse volume per group
1091 for GluA2, GluA4, or $GluA_{Sum}$.

1092

1093 **H.** Data in panel G displayed as cumulative distributions. Instead of normalizing to the WT
1094 group mean as in panels E-G, here data was normalized to each image mean to visualize
1095 differences in the shape of the distributions between $GluA3^{WT}$ and $GluA3^{KO}$.

1096

1097 **Figure 8. Modiolar-side and Pillar-side Volume, Intensity, and Density of presynaptic
1098 ribbon and postsynaptic AMPAR subunits.**

1099 **A.** Quantification of CtBP2, GluA2, or GluA4 mean volume per image for $GluA3^{WT}$ (black, n
1100 = 2,990 synapses from 14 images) and $GluA3^{KO}$ (gray, n = 2,814 synapses from 14 images).
1101 Each point represents the mean number per inner hair cell (IHC) per image; approximately 12
1102 IHCs per image. Gold bars are mean \pm SD. For CtBP2, there is an overall reduction in volume in
1103 $GluA3^{KO}$ ($p = 0.008$, U: 144, $n_{WT} = 14$, $n_{KO} = 13$). For GluA2, the overall volume reduction in
1104 $GluA3^{KO}$ ($p = 0.0001$, U: 168, $n_{WT} = 14$, $n_{KO} = 13$) resulted from smaller puncta on the pillar side
1105 of $GluA3^{KO}$ ($p = 0.001$; U: 90, $n_{WT} = 10$, $n_{KO} = 10$). For GluA4, the overall volume reduction in
1106 $GluA3^{KO}$ ($p = 4.9e^{-6}$; U: 176, $n_{WT} = 14$, $n_{KO} = 13$) resulted from smaller puncta on the pillar side
1107 of $GluA3^{KO}$ ($p = 0.0001$; U: 96, $n_{WT} = 10$, $n_{KO} = 10$).

1108

1109 **B.** Quantification of median intensities per image for data in panel A. CtBP2 intensity increased
1110 in $GluA3^{KO}$ ($p = 0.0001$; U: 17, $n_{WT} = 14$, $n_{KO} = 13$); GluA2 intensity decreased in $GluA3^{KO}$ ($p =$
1111 0.01; U: 143, $n_{WT} = 14$, $n_{KO} = 13$); and GluA4 intensity decreased in $GluA3^{KO}$ ($p = 5e^{-6}$; U: 6, n_{WT}
1112 = 14, $n_{KO} = 13$).

1113

1114 **C.** Increase in CtBP2 ($p = 5e^{-5}$; U: 14, $n_{WT} = 14$, $n_{KO} = 13$) and GluA4 median density per
1115 synapse ($p = 5e^{-6}$; U: 6, $n_{WT} = 14$, $n_{KO} = 13$) in $GluA3^{KO}$ relative to $GluA3^{WT}$.

1116

1117 **D.** Increase in GluA4 : GluA2 intensity ratio in $GluA3^{KO}$ relative to $GluA3^{WT}$ ($p = 6e^{-7}$; U: 0, $n_{WT} =$
1118 14, $n_{KO} = 13$).

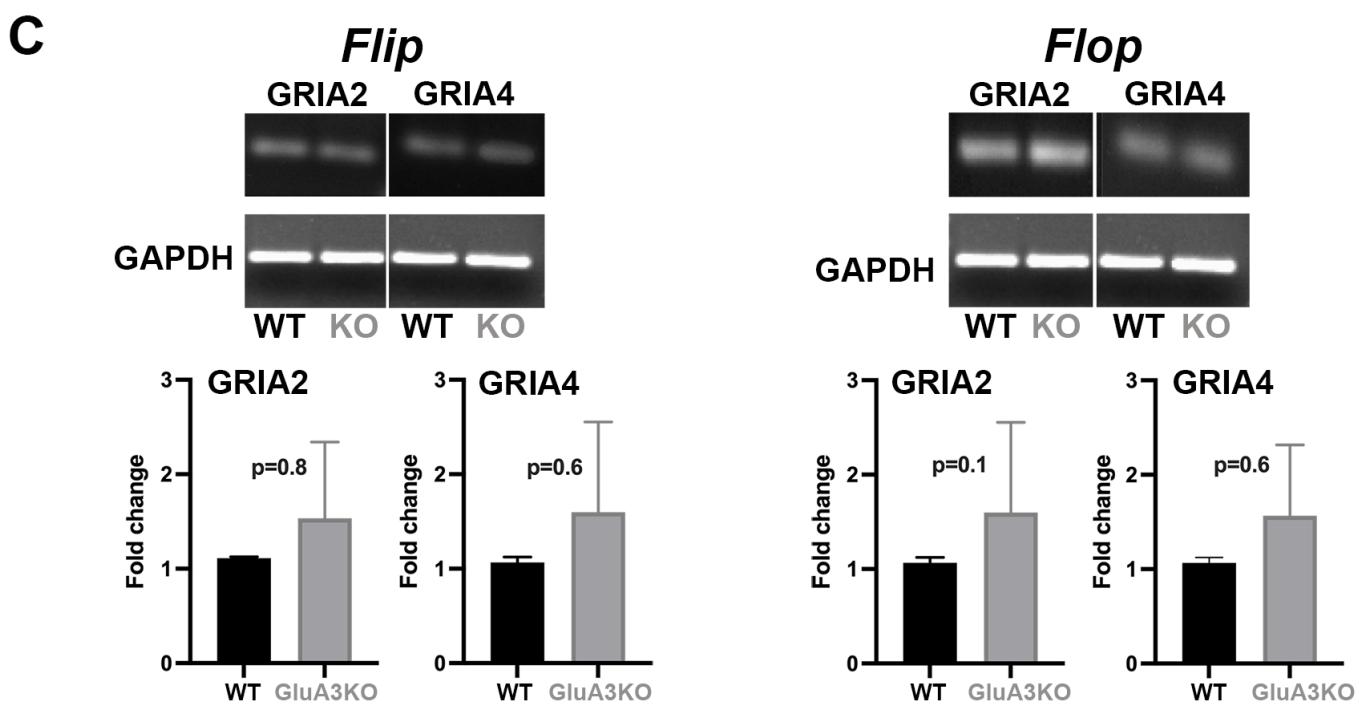
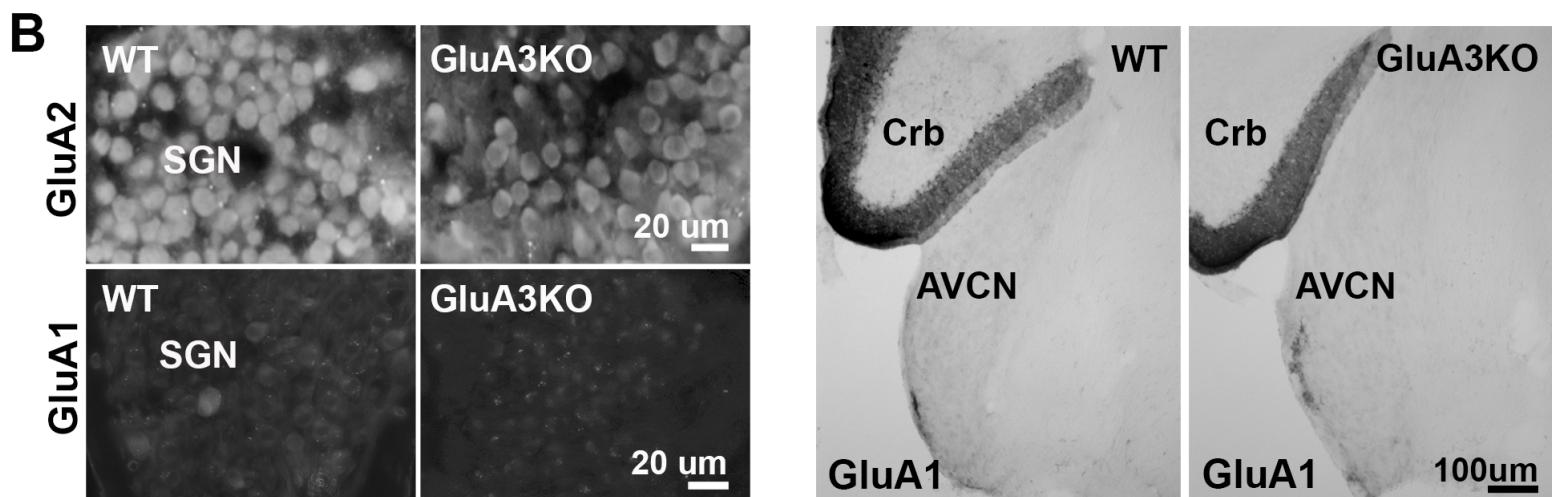
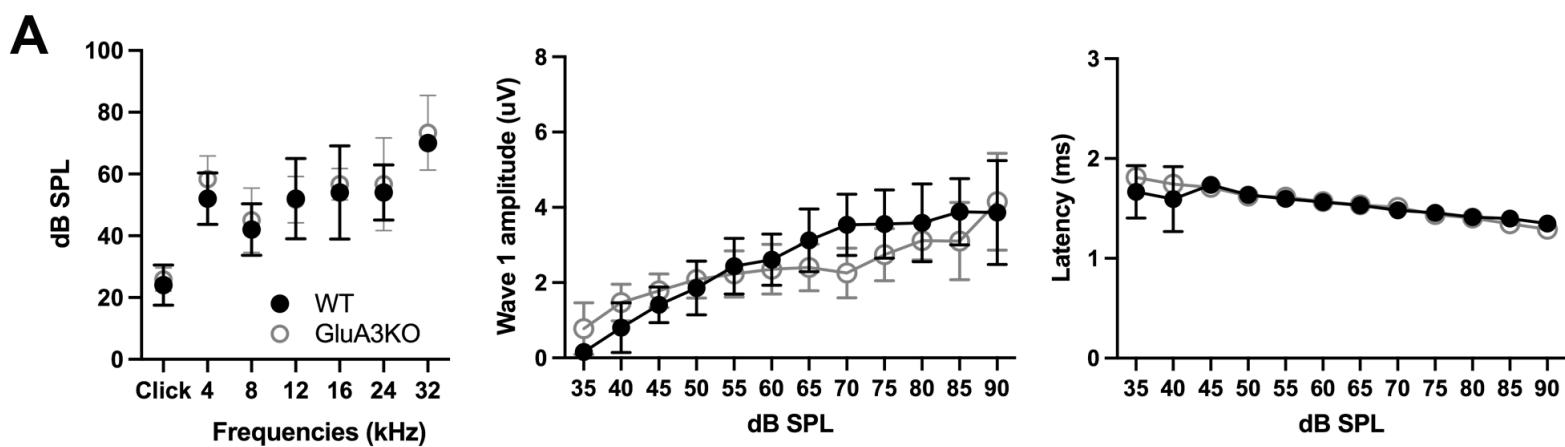
1119

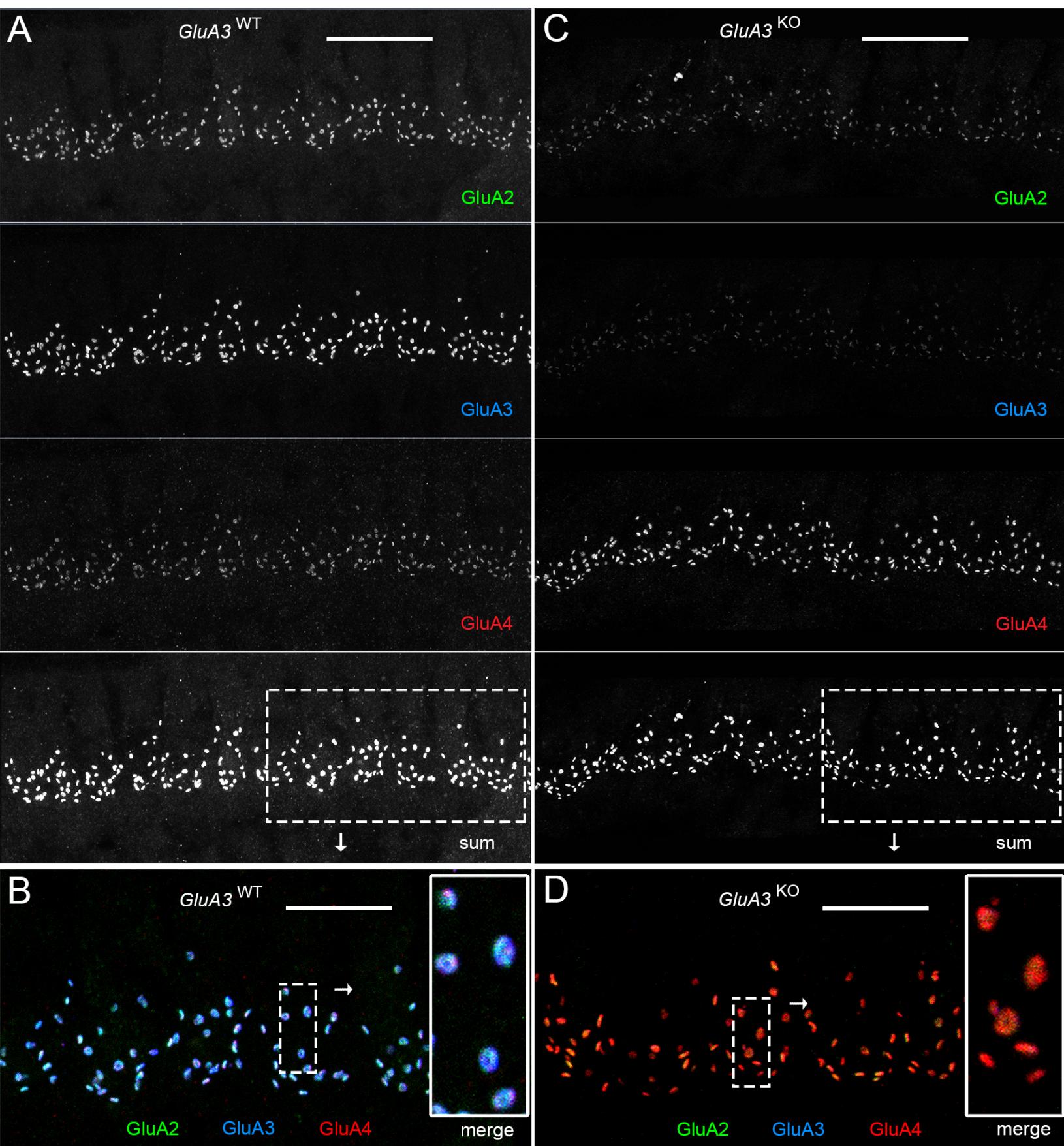
1120

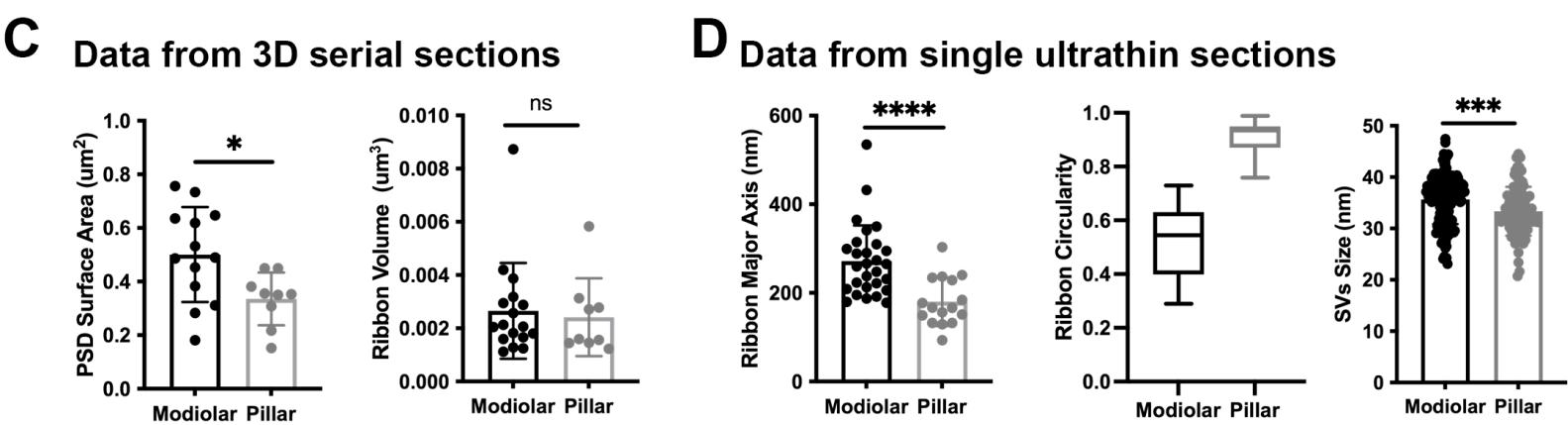
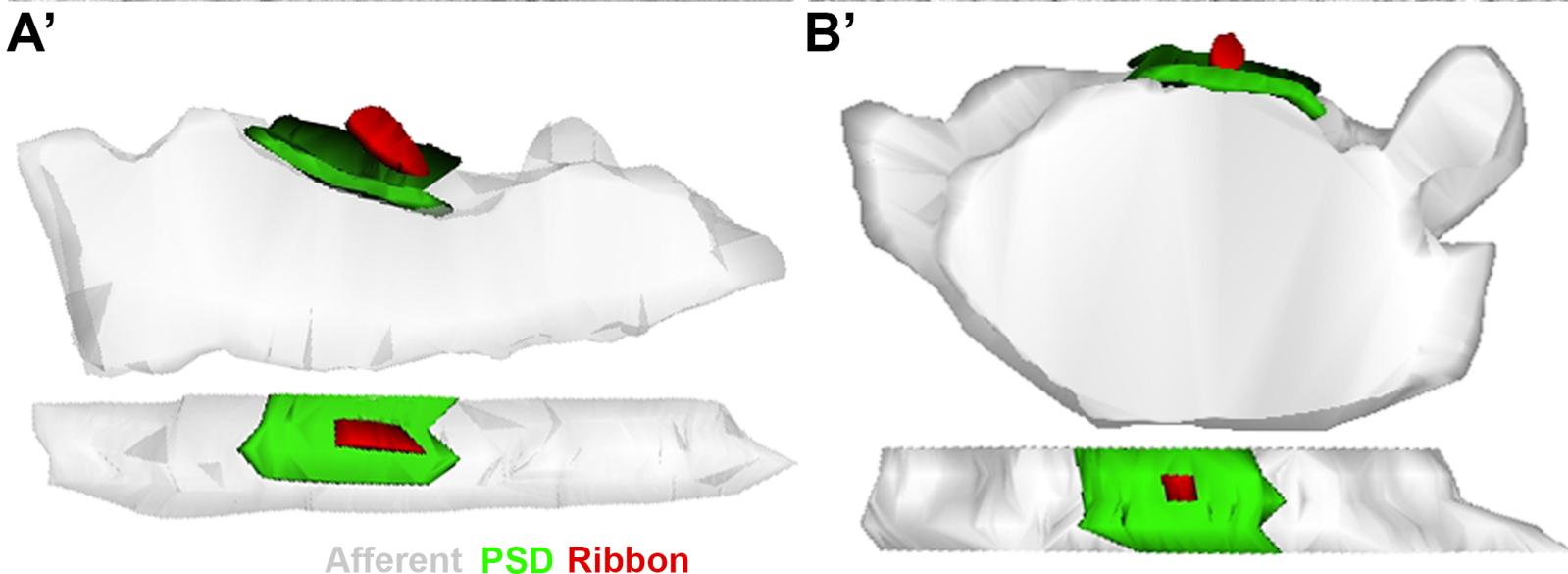
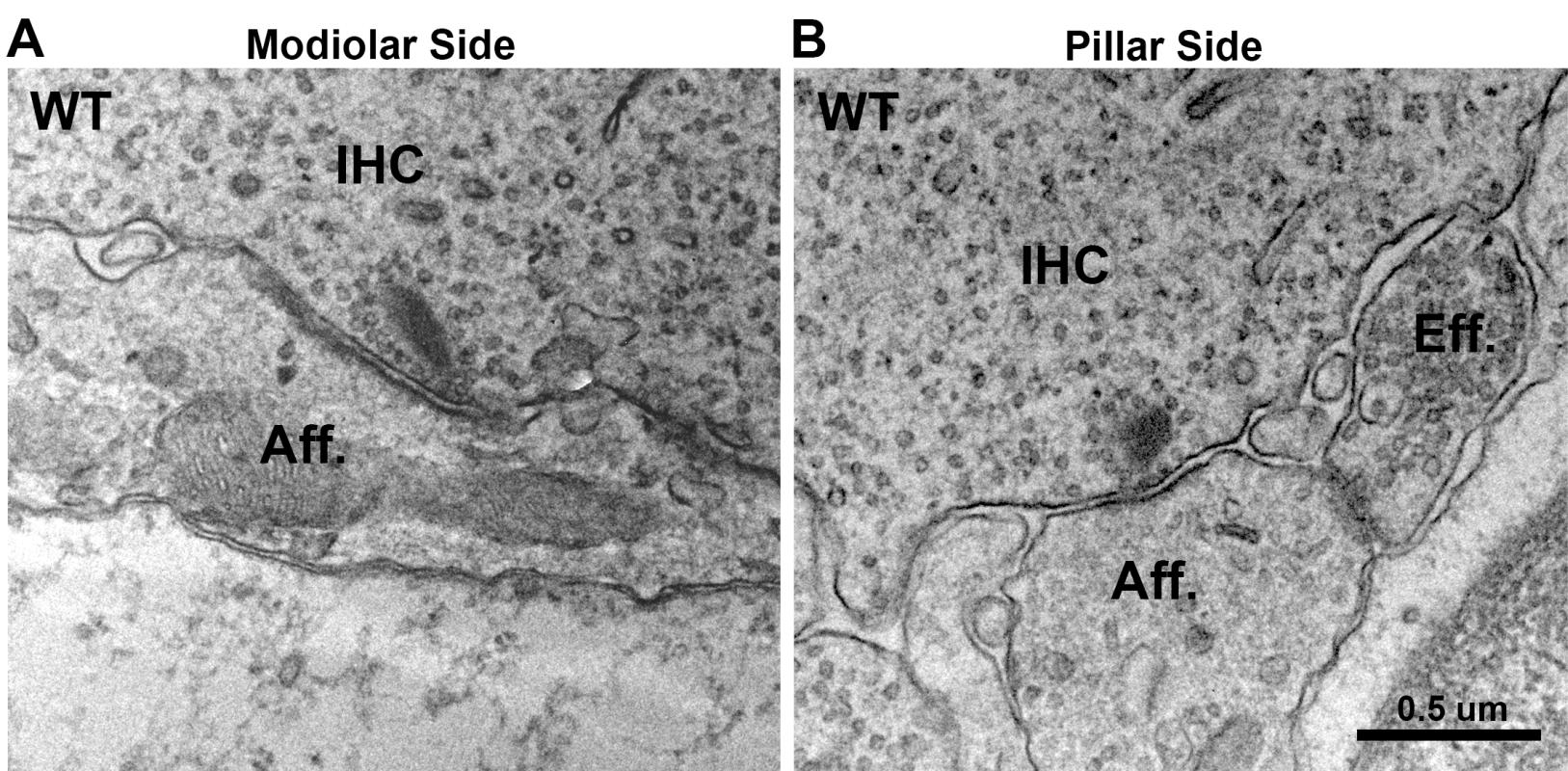
1121 **Figure 9. Spatial trends of synapse sphericity, volume, and AMPAR subunit relative**
1122 **abundance in the organ of Corti.**

1123 **A.** Volume and sphericity per synapse vs. Z-axis-position for an exemplar $GluA3^{WT}$ image from
1124 Fig. 7 showing spatial oscillations in CtBP2, GluA2, and GluA4. **Right:** Inverse relationship
1125 between synapse sphericity and volume for CtBP2, GluA2, and GluA4.

1126

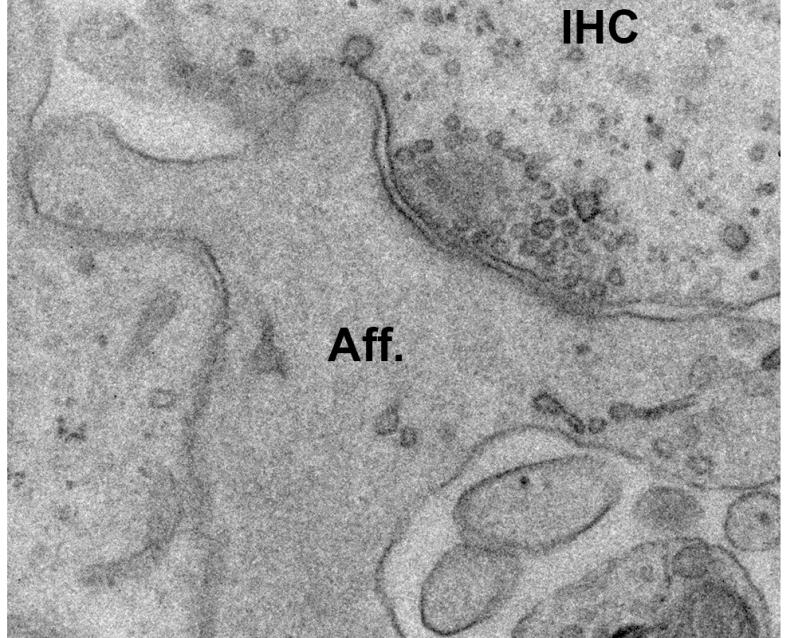



1127 **B.** For $GluA3^{KO}$, as in panel A.

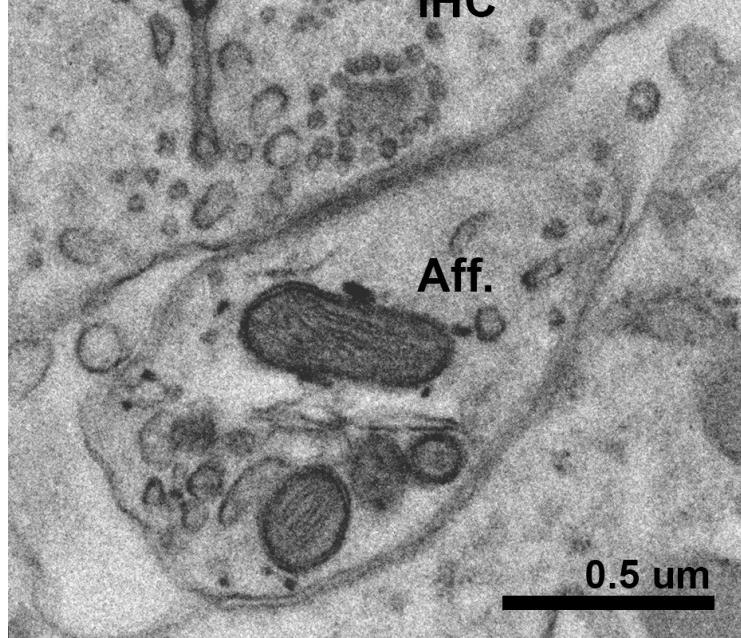

1128




1129 **C.** **Left:** Normalized intensity of GluA4 vs. normalized intensity of GluA2 for $GluA3^{WT}$ (black)
1130 and $GluA3^{KO}$ (gray). **Center:** Normalized intensity of GluA4 vs. normalized intensity of CtBP2.
1131 **Right:** Normalized intensity of GluA2 vs. normalized intensity of CtBP2.

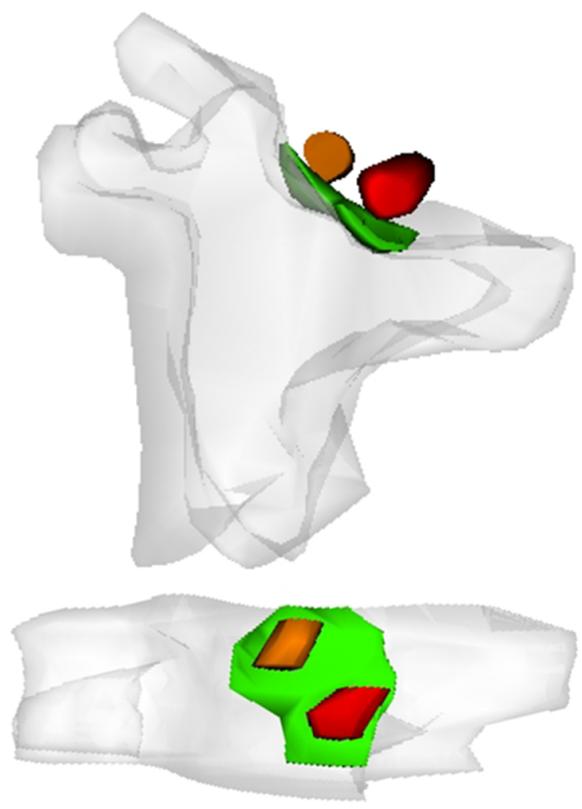
1132

1133 **D.** GluA4:GluA2 intensity ratio vs. Z-axis-position. Panels C-D for 6 WT and 6 KO images from
1134 the midcochlea.

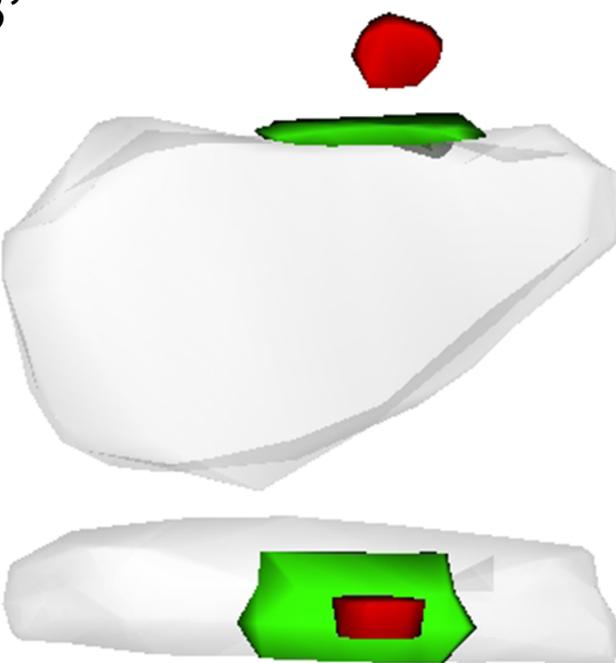



A **Modiolar Side**

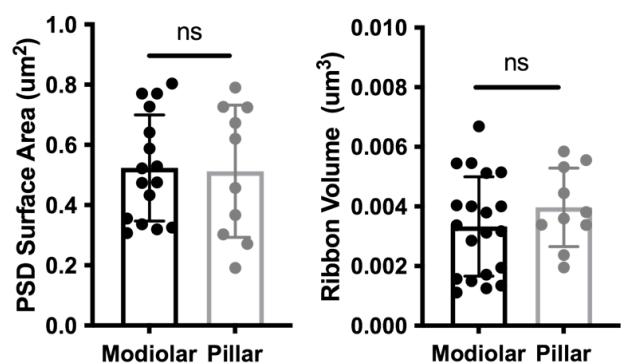
GluA3KO



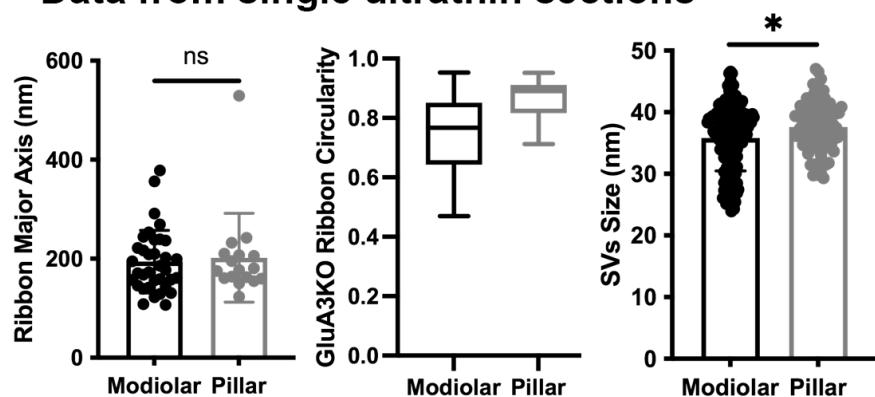
B **Pillar Side**


GluA3KO

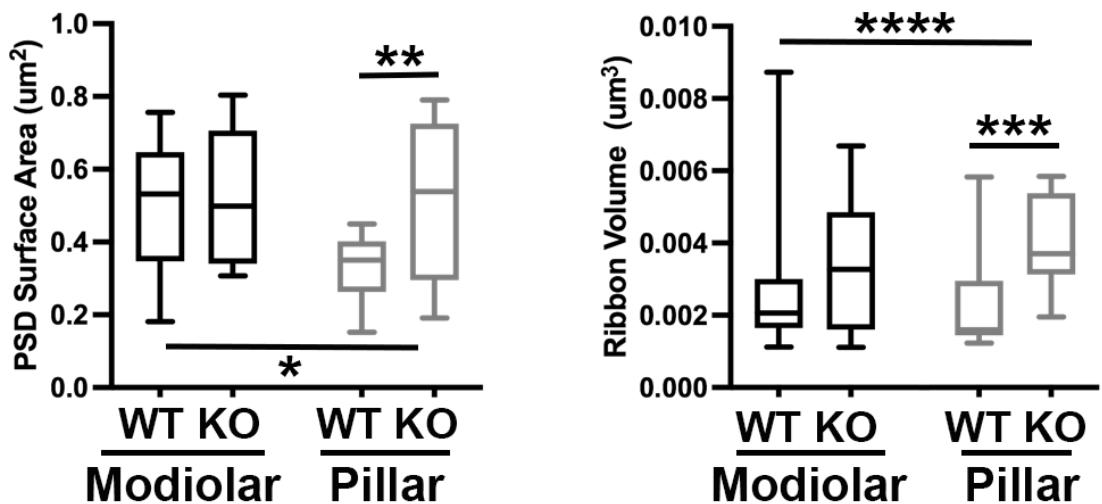
A'

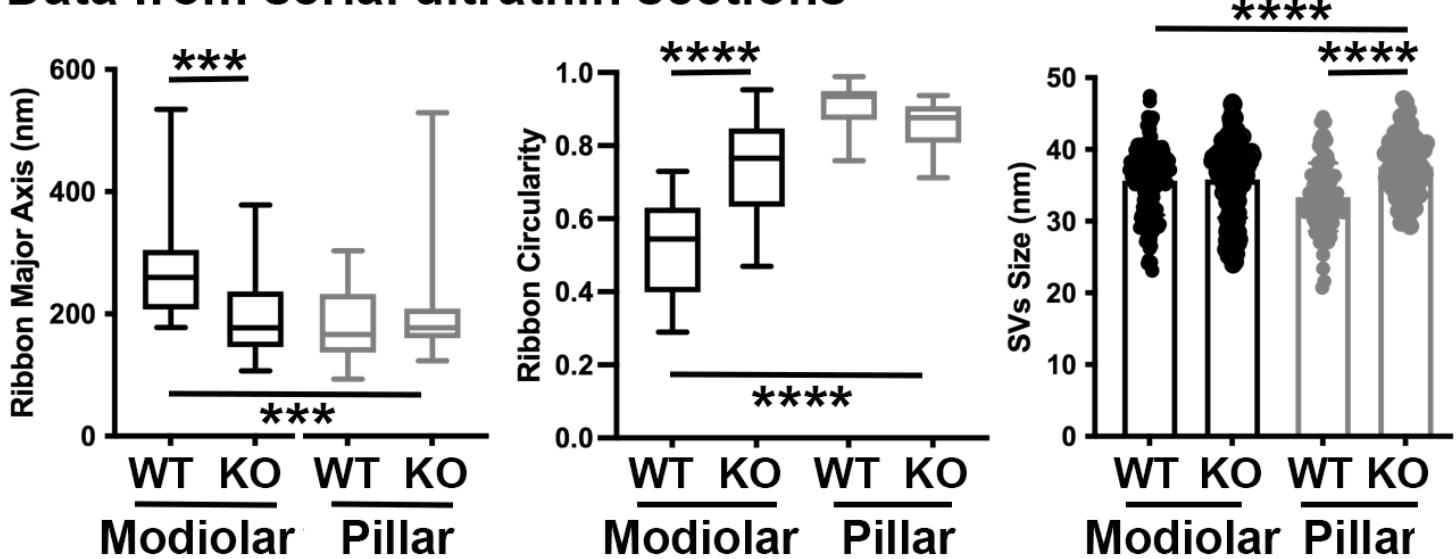


B'



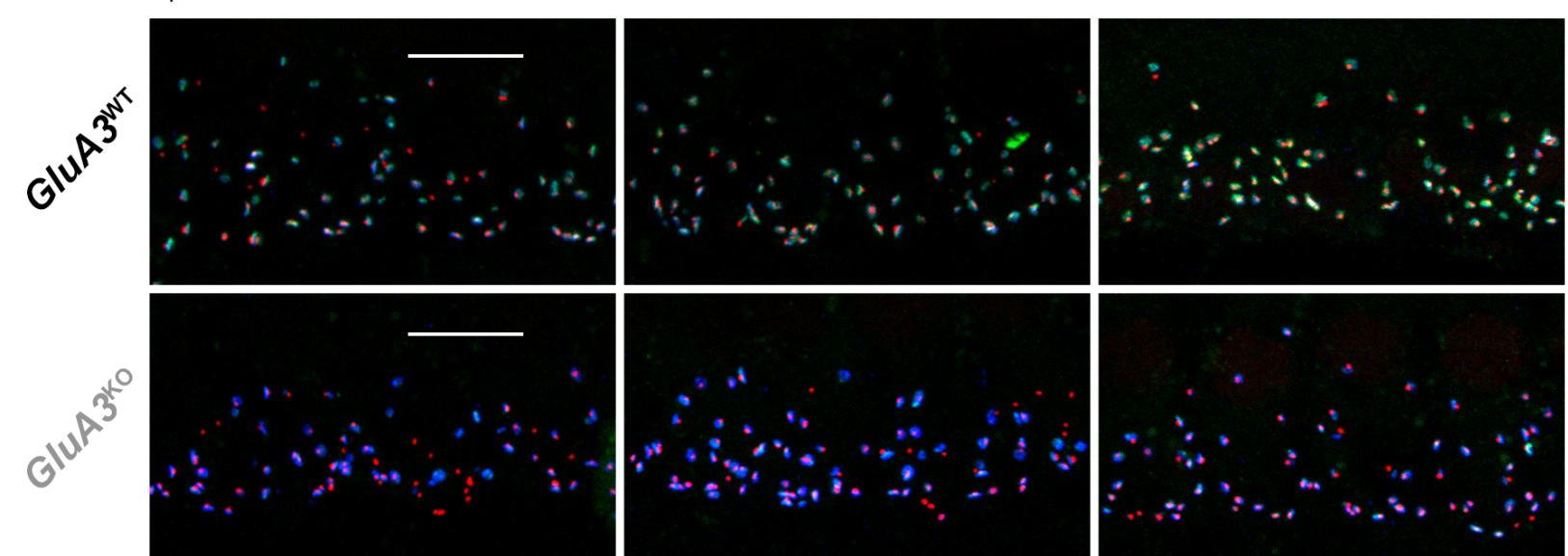
Afferent **Ribbon**
PSD **Ribbon**


C **Data from 3D reconstructions**


D **Data from single ultrathin sections**

A Data from 3D reconstructions

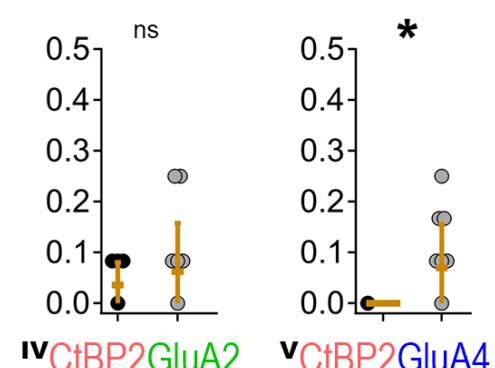
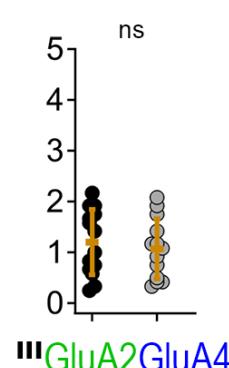
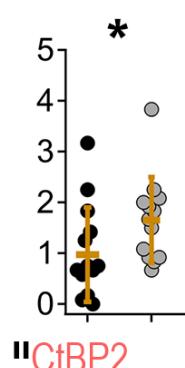
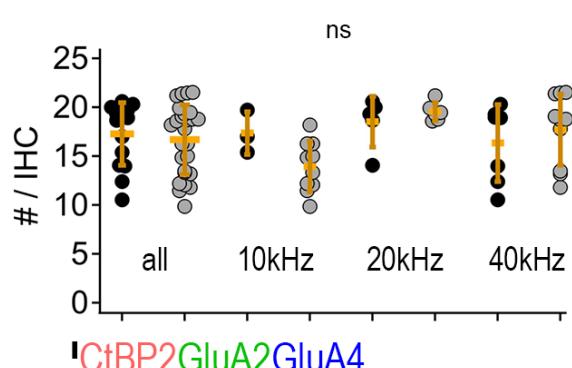
B Data from serial ultrathin sections

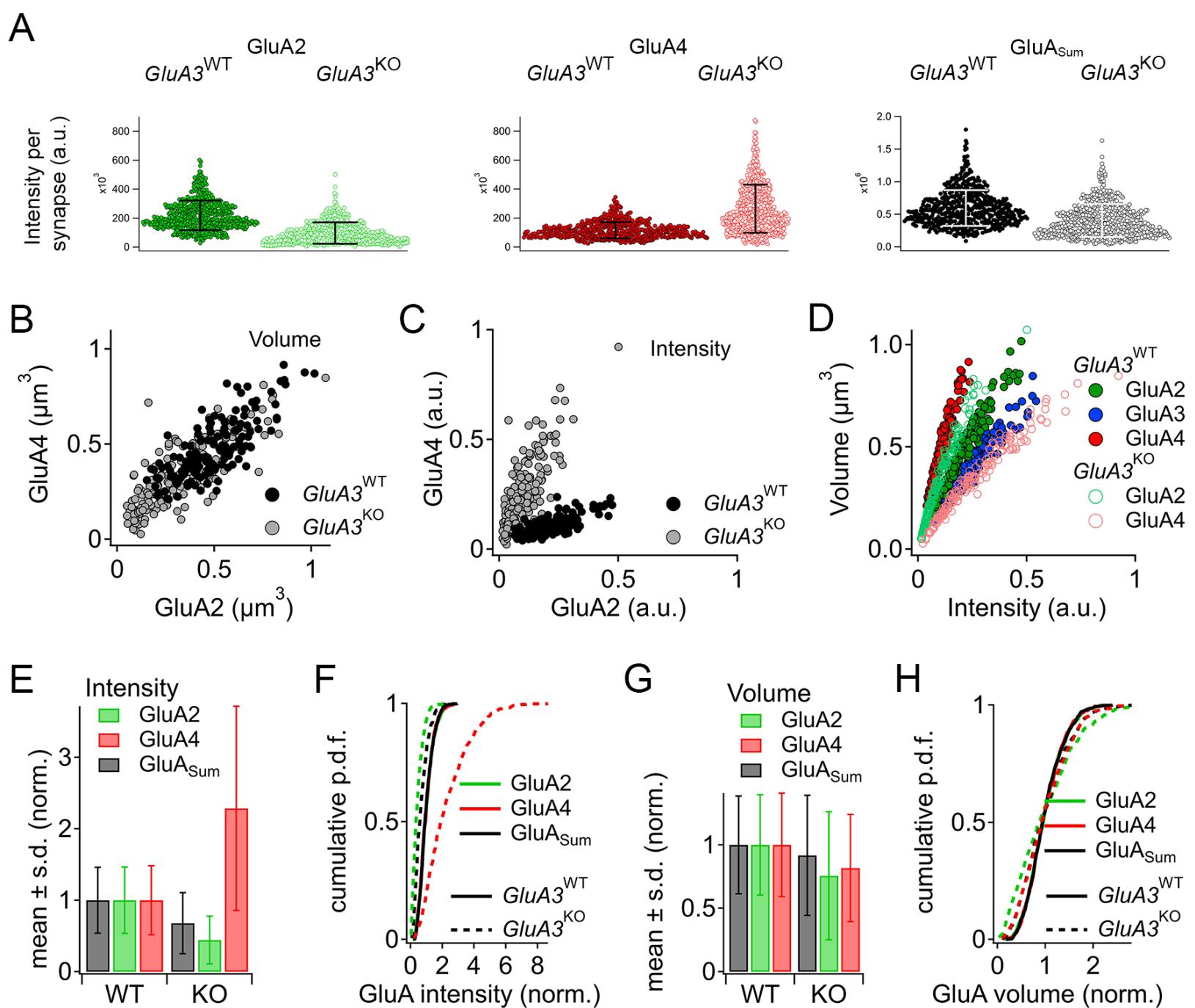

A

CtBP2 **GluA2** **GluA4**

apical cochlea

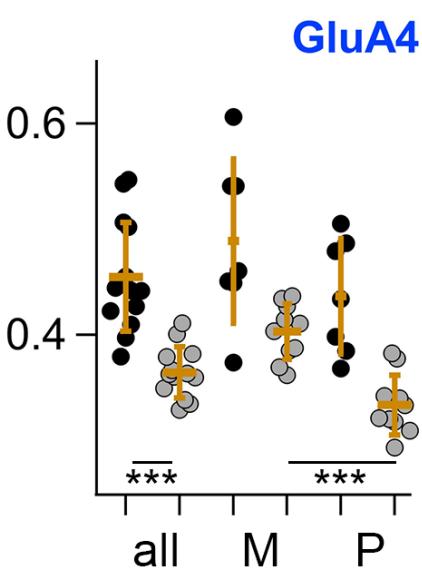
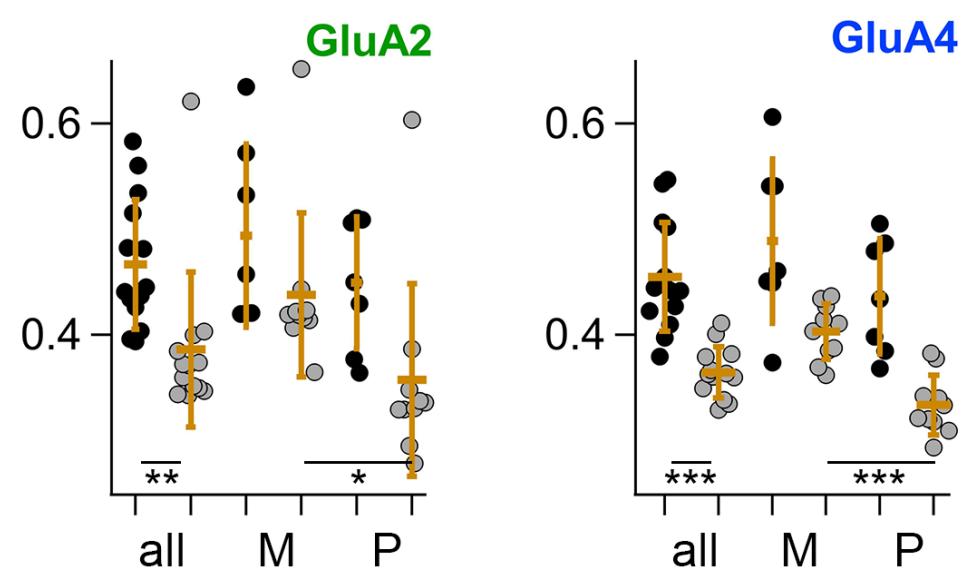
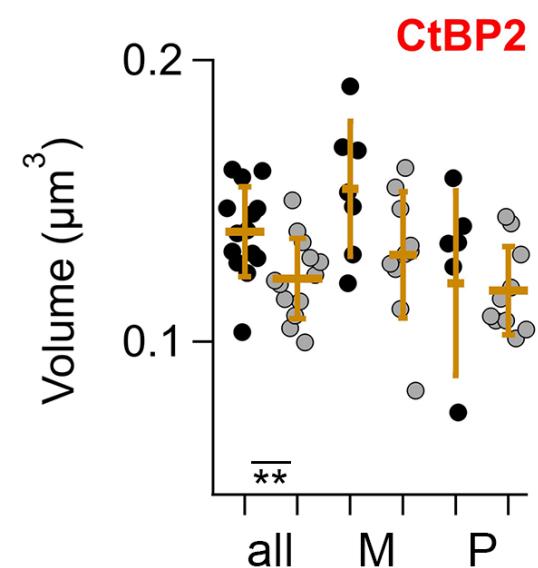
mid-cochlea

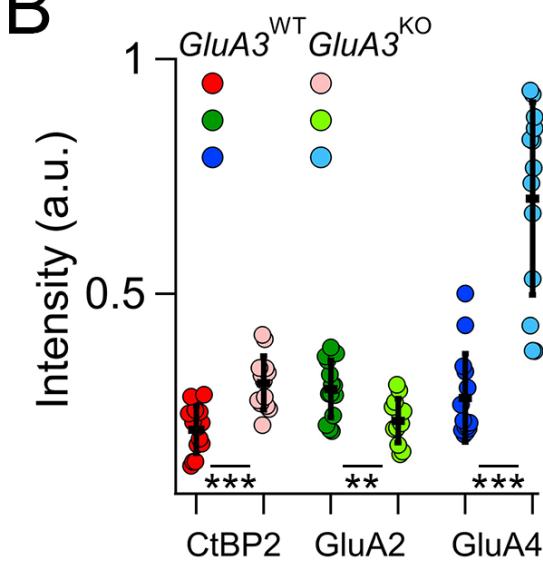




basal cochlea



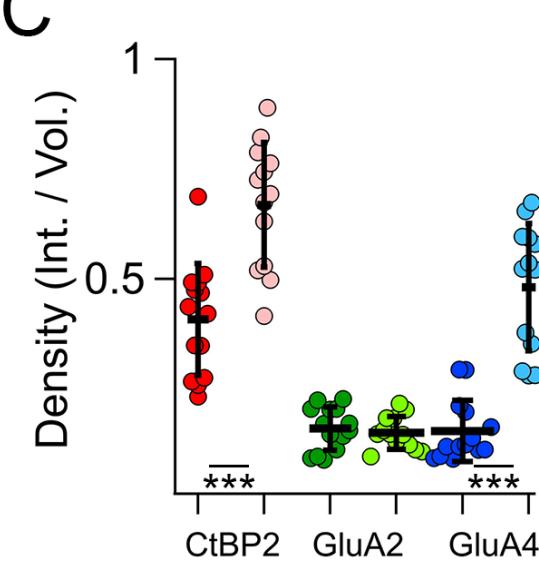
B

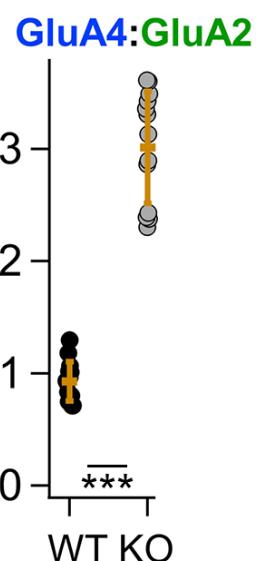
GluA3^{WT}

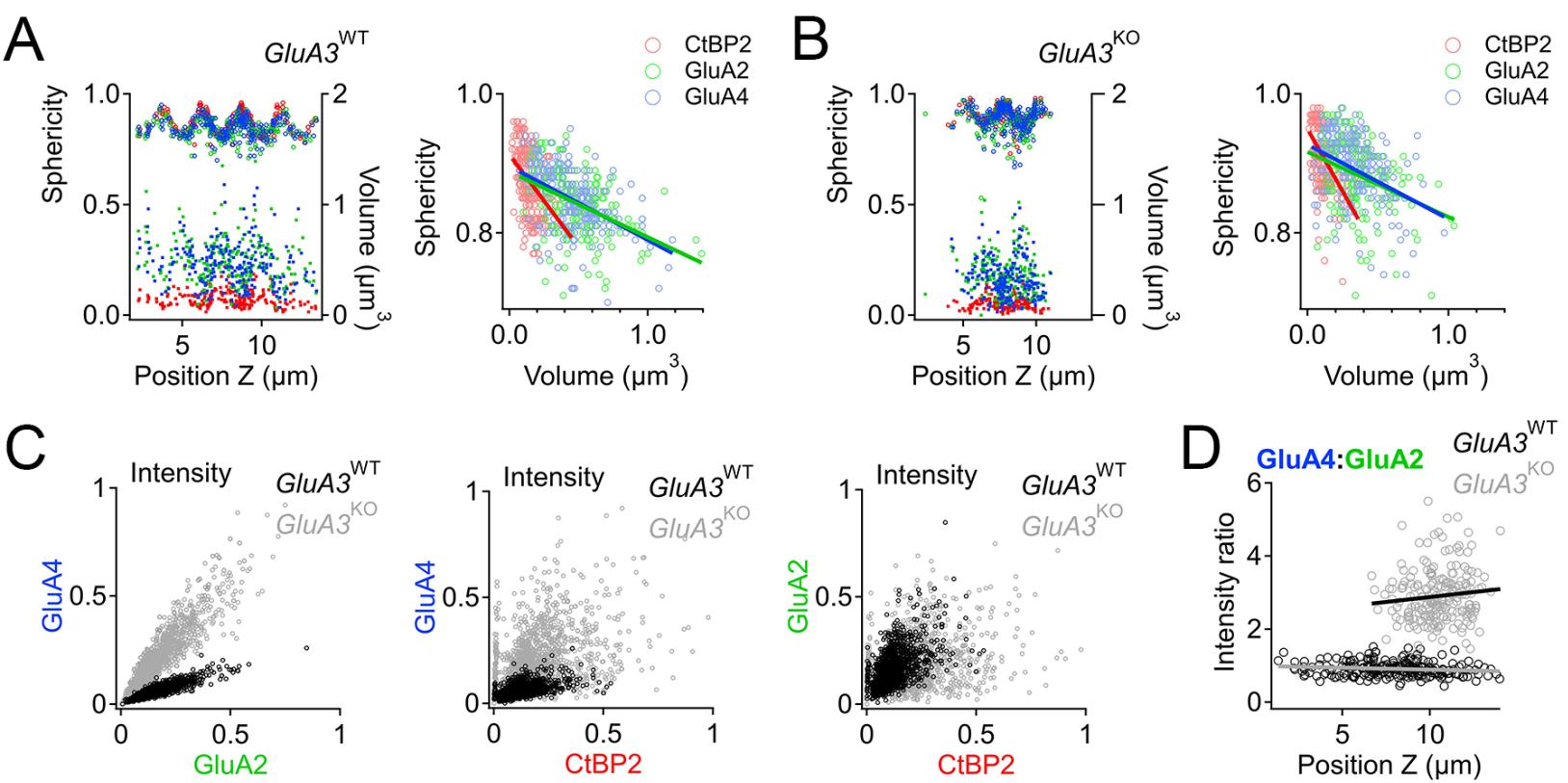



GluA3^{KO}



A


GluA3^{WT} *GluA3*^{KO}


B



C

D

