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ABSTRACT 

 

Most dynamic functional connectivity in fMRI data is focused on linear correlations, and to our knowledge, no 

study has studied whole brain explicitly nonlinear dynamic relationships within the data. While some 

approaches have attempted to study overall connectivity more generally using flexible models, we are 

particularly interested in whether the non-linear relationships, above and beyond linear, are capturing unique 

information. This study thus proposes an approach to assess the explicitly nonlinear dynamic functional network 
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connectivity derived from the relationship among independent component analysis time courses. Linear 

relationships were removed at each time point to evaluate, typically ignored, explicitly nonlinear dFNC using 

normalized mutual information. Simulations showed the proposed method accurately estimated NMI over time, 

even within relatively short windows of data. Results on fMRI data included 151 schizophrenia patients, and 163 

healthy controls showed three unique, highly structured, mostly long-range, functional states that also showed 

significant group differences. This analysis identifies a higher level of explicitly nonlinear dependencies in 

transient connectivity within the visual network in healthy controls compared to schizophrenia patients. In 

particular, nonlinear relationships tend to be more widespread than linear ones. We also find highly significant 

differences in the relative co-occurrence of linear and explicitly nonlinear states in HC and SZ, suggesting these 

may be an important aspect of the disorder. Overall, this work suggests that quantifying nonlinear dependencies 

of dynamic functional connectivity may provide a complementary and potentially valuable tool for studying 

brain function by exposing relevant variation that is typically ignored. 

Keywords: Mutual information, explicitly nonlinear, dynamic nonlinear functional network connectivity, 

independent component analysis (ICA), intrinsic connectivity networks (ICNs)  
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 Introduction 

 

Functional connectivity (FC) and its network analog, functional network connectivity (FNC), are widely used to 

study whole brain resting brain function. These methods study the relationship between time courses (TC) from 

different brain regions or networks (E. Allen et al., 2011; Bastos & Schoffelen, 2016; Friston, 2011; Sala-Llonch, 

Bartrés-Faz, & Junqué, 2015; van den Heuvel & Hulshoff Pol, 2010). Other research has focused on modeling 

brain activity using nonlinear models (Lahaye, Poline, Flandin, Dodel, & Garnero, 2003; Stam, 2005; Su, Wang, 

Shen, Feng, & Hu, 2013; Wismüller, Wang, Dsouza, & Nagarajan, 2014). The nonlinear effects of hemodynamic 

responses in fMRI data (Deneux & Faugeras, 2006; Miller et al., 2001; Obata et al., 2004), which, crucially, can 

also vary with time (and location) and changes from subject to subject (de Zwart et al., 2009). Considering even 

just these few examples of nonlinear effects, it is likely, even expected, that distinct brain areas might be 

nonlinearly related in a way that would be missed by conventional linear F(N)C analysis. Our prior work in this 

direction indicated a modular nonlinear FNC between whole brain networks (Motlaghian et al., 2021). 

The work mentioned thus far is all focused on static functional connectivity measuring temporal coherence 

averaged across the entire experiment. More recent studies have focused on assessing the dynamics in FNC 

(dFNC) over time to capture additional insight into the underlying properties of brain activities. One way to 

approach this is to divide the time courses into smaller windows and measure the temporal coherence between 

signals within each successive window. This method is known as the sliding window approach (E. A. Allen et al., 

2014; Hindriks et al., 2016; Lindquist, Xu, Nebel, & Caffo, 2014) and is widely used in the field. However, virtually 

all time-resolved whole brain approaches have focused only on time-varying linear dependencies among 

networks or regions. 

The current work is motivated by our prior work (Motlaghian et al., 2021) which identified informative and 

highly structured explicitly nonlinear relationships in static FNC. Here, our focus is to extend our previous 

approach to study the dynamic of explicitly nonlinear (EN) dependencies between ICN’s time courses and 

evaluate the properties of these relationships. That is, we are interested in studying the nonlinear information 

above and beyond the linear effects, i.e., what is typically ignored in a linear analysis. We first propose an 
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approach to capture explicitly nonlinear information by removing the linear relationships identified within a 

sliding window approach, then analyzing the residual, explicitly nonlinear relationships using normalized mutual 

information (NMI). We first show our approach works well within simulated data, even though we are 

estimating NMI over relatively short windows of time. For real fMRI data, we extract the transient nonlinear 

patterns of FNC and then we evaluate whether these activities are different in controls (HC) and patients with 

schizophrenia (SZ). We present the approach in section 2.3, then demonstrate it via simulation in section 2.4. 

Section 2.5 explained how the proposed method is applied to resting-state fMRI data, including 163 controls and 

151 patients. We also compute the linear dFNC and compare the result with nonlinear dFNC findings in section 

2.6.  

Results showed three distinctive and highly structured EN dynamic states. Several evaluations, such as fractional 

occupancy, dwell time, and state transition probability, are performed to study how brain contributes to each 

state (Section 3.2). The interpretation of these analyses indicates a high level of linear and nonlinear 

dependency coefficients within and between networks in controls compared to individuals with schizophrenia. 

We also find significant differences in the concurrence of the linear and explicitly nonlinear states, again 

highlighting the importance of capturing such, typically ignored, information. 

 

Materials and Methods 

 

2.1. Quantifying Explicitly Nonlinear Dependency via a Normalized Mutual Information Approach 

 

The main aim of this work is to estimate the dynamic of EN dependencies among ICNs, using a sliding window 

analysis approach (E. A. Allen et al., 2014; Hutchison, Womelsdorf, Allen, et al., 2013; Hutchison, Womelsdorf, 

Gati, Everling, & Menon, 2013; Saha et al., 2020). For each pair x and y of ICNs, we first estimate the linear 

correlation measured by a linear model y� � αx � β, where y� is the best linear fit predicting y given x, α is the 

slope and β is the vertical intercept. Next, the linear effect is removed by calculating z � y 
 y.� Then 

dependencies between x and z is measured by NMI. The formula for calculating the value of NMI is 
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NMI�x, z� �
H�x� �  H�z � 
  H�x, z�

max �H�x�, H�z ��
 , 

where H�x� and, H�z� are marginal entropies and H�x, z� is the joint entropy. The NMI measurement can values 

between 0 and 1, if it has a value of 0 this means there is no dependency between x and z, and 1 indicates an 

absolute dependence of two variables. 

We apply the same method for assessing the dynamics of the nonlinear dependencies. Let x� and y� represent 

samples of x and y in the window t. Then by linear regression y��  �  α�x�  � β�, we estimate linear relation 

between x� and y�. Next, the linear effect is removed by calculating z�  �  y�  
  y�� . Lastly, dependencies 

between x� and z� is measured by NMI. Swapping x� and y� may result in a slightly different value. Thus, we 

consider the average of both results to ensure symmetry. 

 

2.2. Simulated Experiment  

 

The length of the sliding window (number of time points in the window) needed to be wide enough to ensure a 

valuable estimation of nonlinear dependencies. This size is selected by measuring dependencies in simulated 

data by NMI. The decisive length is determined by the criteria where NMI can successfully distinguish nonlinear 

dependency from linear dependency. The impact of the shape of the relationship and the number of sample 

points on NMI are studied in this simulation.  

Our focus for the shape was on linear and nonlinear dependencies. To do so, we modeled three types of 

relationships. We created a vector x of size 1000 � 1 where its components are generated from a random 

uniform distribution on [0 1], for three cases as follows: 

I: Vector y� has a purely linear relationship with x.  

II: Vector y� has a quadratic relationship and no linear correlation with x. That is x and y� have only a 

nonlinear dependency.  

III: Vector y� has a combination of linear and nonlinear correlation with x.  
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Gaussian noise of zero mean is added to each equation and plotted in Figure. 1Figure. 1. 

 

Figure. 1: Three simulation cases for linear and nonlinear correlation between two vectors. Vector � has its components randomly 

derived from a uniform distribution [0 1]. From left to right, we have Case I, Case II, and Case III such that in Case I,  �� � 2� � � (linear 

relationship between � and ��). In Case II, we have �� � 5	� 
 0.5
� � � (nonlinear relationship between � and ��) and for Case III, 

�� � 5	� 
 0.5
� � 2� � � (combination of linear and nonlinear relationships between � and  ��). Noise � is a Gaussian distribution with 

a mean of zero. 

 

We need to ensure the NMI estimation is robust because we are using windowed NMI, which involves a smaller 

number of time points. To study the impact of the number of data points in the NMI estimation, in each case, 

we took sample points x� and  y� of size 35, 50, 75, 100 and measured their relationship before and after 

removing linear correlation. The dependency before removing linear correlation is represented as MI1, and 

dependence after removing linear correlation is measured and represented by MI2 (Table 1). 

 

2.3. Participants and Preprocessing 

 

We used the fBIRN dataset analyzed previously used in (Damaraju et al.). The final curated dataset consisted of 

163 healthy participants (mean age 36.9, 117 males; 46 females) and 151 age- and gender-matched patients 

with schizophrenia (mean age 37.8; 114 males, 37 females). Eyes-closed rsfMRI data were collected at seven 

sites across the United States (Keator et al., 2016). Informed consent was obtained from all subjects before 

scanning by the Internal Review Boards of affiliated institutions. Imaging data of one site was captured on a 3-

Tesla General Electric Discovery MR750 scanner, and the rest of the six sites were collected on 3-Tesla Siemens 

Tim Trio scanners. Resting-state fMRI (rsfMRI) scans were acquired using a standard gradient-echo echo-planar 
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imaging paradigm: FOV of 220 × 220 mm (64 × 64 matrices), TR = 2 s, TE = 30 ms, FA = 770, 162 volumes, 32 

sequential ascending axial slices of 4 mm thickness and 1 mm skip.  

Data preprocessed by using several toolboxes such as AFNI, SPM, GIFT. Rigid body motion correction was 

applied using the INRIAlign (Freire & Mangin, 2001) toolbox in SPM to correct head motion. To remove the 

outliers, the AFNI3s 3dDespike algorithm was performed. The rsfMRI data were resampled to 3 mm
3
 isotropic 

voxels. Then data were smoothed to 6 mm full width at half maximum (FWHM) using AFNI3s BlurToFWHM 

algorithm, and each voxel time course was variance normalized. Subjects with larger movements were excluded 

from the analysis to mitigate motion effects during the curation process.  

 

2.4. ICA Analysis  

 

The group ICA of fMRI toolbox (GIFT, http://trendscenter.org/software/gift) implementation of Group-level 

Spatial ICA was used to estimate intrinsic connectivity networks (ICNs). A subject-specific data reduction step 

was first used to reduce 162 time point data into 100 directions of maximal variability using principal 

component analysis. After PCA, the infomax approach (Bell & Sejnowski, 1995) was used to estimate 100 

maximally independent components from the group PCA reduced matrix. To ensure the stability of the 

estimation, the ICA algorithm was repeated 20 times, and the most central run was selected as representative 

(Du, Ma, Fu, Calhoun, & Adalı, 2014). Subject-specific spatial maps (SMs) and time courses (TCs) were obtained 

using the spatiotemporal regression back reconstruction approach (Calhoun, Adali, Pearlson, & Pekar, 2001; 

Erhardt et al., 2011) implemented in the GIFT software. 

To label the components, regions of peak activation for each specific spatial map were obtained. After ICA 

processing, to acquire regions of peak activation, one sample t-test maps are taken for each SM across all 

subjects and then thresholded; also, mean power spectra of the corresponding TCs were computed. An 

independent component was identified as an intrinsic connectivity network (ICN) if its peak activation fell within 

gray matter and has low spatial overlap with known vascular, susceptibility, ventricular, and edge components 

corresponding to head motion. This results in 47 ICNs out of the 100 independent components. 
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 The ICN time courses were detrended by removing linear, quadratic, and cubic trends and orthogonalized with 

respect to estimated subject motion parameters. Spikes were detected by AFNI3s 3dDespike algorithm and 

replaced by values of third-order spline fit. For more detail see (E. Allen et al., 2012; Damaraju et al., 2014). The 

fBIRN dataset obtained after processing resulted in a matrix of 159 time points � 47 ICNs � 314 subjects, 

including 163 Control and 151 SZ subjects. For more details, please see (Damaraju et al.). 

 

2.5. Quantifying (Nonlinear) Dynamic Connectivity in fMRI Data  

 

We compared HCs and SZs' states of dynamic functional connectivity (dFNC), using both linear (Pearson 

correlation) and nonlinear (NMI approach as described in Section 0) dependencies. There are 47 ICN time 

courses of length 159 time points for each subject. From each time course x, a set of sliding windows x�, each of 

length 50 time points, is derived, that is 110 windows in total. To obtain linear dFNC, Pearson correlation 

between x� and y� is evaluated and resulted to 110 symmetric windowed-FNC matrices per individual. To 

quantify EN dFNC, for each t, the nonlinear dependency of pairs �x�, y�� are evaluated as described in Section 

2.1. Quantifying Explicitly Nonlinear Dependency via a Normalized Mutual Information Approa, the linear 

dependency between x� and y� removed and then residual dependency is calculated by NMI. This procedure 

also resulted in 110 symmetric windowed-FNC matrices for each subject (Figure 2).  
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Figure 2. An overview of the linear and nonlinear dynamic FNC. 1) Group independent component analysis (ICA) is used to decompose 

resting-state data from 314 subjects into 100 components, 49 of which are identified as intrinsic connectivity networks (ICNs). Subject-

specific spatial maps (SMs) and time courses (TCs) are estimated by the spatiotemporal regression back reconstruction method. 2) Sliding 

windows of length 50 time points are taken for each subject. 3) (Linear) Dynamic FNC is analyzed. First, the correlation matrices from 

windowed portions of each subject's component TCs are assessed. Then the matrices are aggregated across all subjects and clustered by 

k-means clustering. Lastly, to probe the group differences between HC and SZ states are performed. 4) Nonlinear dynamic FNC is 

analyzed. Steps are identical as (3) except that linear correlation is removed for each window, and the remaining explicitly nonlinear 

dependencies are assessed by NMI. Matrices obtained from NMI are concatenated and grouped to states by using k-means clustering. 

Subject-specific state-types for each window are used to evaluate group differences. 

 

We applied the k-means clustering method (using correlation distance) to obtain states for linear and nonlinear 

dFNC for cluster sizes of k = 2-10. The optimal number of distinct 3 dFNC states was estimated by conducting the 

elbow method. Final states are achieved by 100 repetitions, as shown in Figure 3.  

After obtaining states, we assessed the group differences. Several quantities are computed at the level of 

individual's window set and their corresponding K-means indices:  

1) Fractional Occupancy (FO)- the percentage of overall time spent in each state.  

2) Dwell Time (DT)- average duration of time spent in each state. 

3) Probability of Transitions (PT)- the probability of transition from one state to other states.  

Next, we compute a two-sample t-test to compare the differences of these results between controls and 

schizophrenia patients.  
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2.6. Relation between linear and nonlinear states 

 

In this section, we are interested in finding out if there is any relationship between the three linear and 

nonlinear states. Several approaches are conducted. The contingency table of simultaneously being in each pair 

of states is calculated first for all individuals and then for HC and SZ separately (Error! Reference source not 

found.). The chi-square test rejects the null hypothesis that the linear and nonlinear dFNC's states are 

independent (likewise in HC and SZ).  

To further evaluate the group differences between the linear and nonlinear state vectors, a contingency table is 

computed for each individual. Then for each pair of linear and nonlinear states (9 pairs), the differences 

between HC and SZ are compared by a two-sample t-test.  

 

Results 

 

3.1. Simulated Experiment 

 

We examined 35, 50, 75, and 100 sample points on simulated data to find an applicable window length that 

captures nonlinear dependency by implementing the NMI method (Table 1).  

Table 1. Assessing NMI performance on several samples with 35, 50, 75, and 100 elements in each set for linear, explicitly nonlinear, and 

combination dependencies. MI1 denotes the dependence before linear relationship removal, and MI2 represents dependency after linear 

removal. As the number of sample points gets smaller, the result goes further from ground truth, but the differences between before and 

after linear removal are still distinguishable. 

 

 

T=35 T=50 T=75 T=100 T=10,000 

(ground truth) 

Case I:  �� � �� � �  

(linear relationship) 
MI1= 0.2399 

MI2= 0.0088 

MI1= 0.2765 

MI2= 0.0276 
MI1= 0.2875 

MI2= 0.0206 

 

MI1= 0.3183 

MI2= 0.0133 
MI1= 0.3305 

MI2= 0.0127 

Case II: �� � �	� 
 �. �
� � �  

(nonlinear relationship) 

MI1= 0.1211 

MI2= 0.1216 

MI1= 0.1633 

MI2= 0.1591 

MI1= 0.1515 

MI2= 0.1535 

 

MI1= 0.1754 

MI2= 0.1758 

MI1= 0.2404 

MI2= 0.2402 

Case III: �� � �	� 
 �. �
� � �� � �  

(linear and nonlinear relationships) 

MI1= 0.1558 

MI2= 0.1176 

MI1= 0.1748 

MI2= 0.1385 

MI1= 0.2431 

MI2= 0.1606 

MI1= 0.2419 

MI2= 0.1777 

MI1= 0.3001 

MI2= 0.2357 
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In this work, we select 50-time points (100 s) from the result on simulation data (Table 1). This selection is based 

on two factors. The outcome of using sliding window analysis is sensitive to the length of the sliding window; in 

many studies, this length is between the 30s to 60s (E. A. Allen et al., 2014; Damaraju et al., 2014; Leonardi & 

Van De Ville, 2015), and in some cases longer (Leonardi & Van De Ville, 2015; Vergara, Abrol, & Calhoun, 2019). 

The other factor to consider is how small this length can be chosen. A small window size may result in the 

absence of nonlinearity. The NMI performance on various sample points in Table 1 shows that by taking 50 

sample points, NMI can successfully distinguish between the linear and nonlinear relationships.  

 

3.2. Results from fMRI Data 

 

We measured linear and EN dynamic functional connectivity network (dFNC) of 163 healthy controls and 151 

schizophrenia patients. The implementation of sliding window analysis and k-means clustering resulted in three 

states for each linear and nonlinear dFNC. Figure 3 shows dFNC states and their connectograms for better 

visualization of the nature of each state.  

T-tests were used to identify group differences in several quantities of each linear and nonlinear states between 

controls and schizophrenic patients. The average fraction occupancy (FO) across healthy controls and 

schizophrenic patients of each state is calculated and listed in Table 2. The average dwell time (DT) across 

healthy controls and schizophrenic patients of each state is calculated and reported in Table 3.  

For each subject, the probability of transition (PT) from state i to other states j, where j=1, 2, or 3, are 

calculated, i.e., the conditional probability p("next state is j"|"now is in state i"). The comparison between 

healthy controls and schizophrenia patients is stated in (i, j) entry of the matrix in ..  
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Figure 3. Linear and explicitly nonlinear states are acquired from the K-means clustering approach for k = 3. A) States achieved from 

clustering windows' Pearson correlation of ICNs. The connectograms are thresholded at 0.3. B) States derived from clustering windows' 

nonlinear dependencies of ICN's. The connectograms are scaled by 1: 0.01 and thresholded at 0.025. Linear and nonlinear states 

demonstrate a distinctive contribution in and between networks. The rows of dFNC matrices were partitioned into sub-cortical (SC), 

auditory (AUD), visual (VIS), sensori-motor (SM), a broad set of regions involved in cognitive control (CC) and attention, default-mode 

network (DMN) regions, and cerebellar (CB) components.  

State 3  State 2  State 1 

State 3  State 2  State 1  

A. Linear dFNC States 

B. Explicitly Nonlinear dFNC States 
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Linear states show a high level of positive correlation within networks, and correlation between other networks 

fluctuates between negative and positive in each linear state. The graphical representations of linear dFNC 

states show dense interconnectivity within clusters but sparse (or negative in directed graphs) connections 

between nodes in different clusters. State 1 shows a considerable level of correlation within SC, AUD, VIS, SM, 

CC, DM networks, and between AUD, VIS, SM networks. However, State 2 shows a uniformly negative 

correlation between (AUD, VIS, SM) sets of networks and (CC) but a high level of positive correlation within 

networks and between AUD, VIS, and SM. State 3 shows a noticeably smaller range of correlation among all 

networks.  

In the nonlinear dFNC states, we observe a high level of explicitly nonlinear dependencies within a specific 

network that contributes with broadly all other ICNs. Analogous graphical representations of states 2 and 3 are 

close to a star graph where only the center node is connected to other nodes. State 1 shows high EN 

dependency in SM and CC (based on the connectogram). State 2 shows the EN dependency between DM and 

other networks, and State 3 signifies substantial EN dependencies within VIS and SM and between other 

networks. 

 

Table 2. Fraction Occupancy of HC and SZ in linear and nonlinear dFNC. All linear states and nonlinear state 1 and 3 show highly 

significant group differences.    

          

 State 1 State 2 State 3 

Average across HC %30 %43 %27 

Average across ZS %14 %21 %65 

p-value 6.5383 x 10-5 2.5613 x 10-7 1.7319 x 10-14 

 

 

 State 1 State 2 State 3 

Average across HC %22 %30 %49 

Average across ZS %34 %37 %29 

p-value 1.2635 x 10
-4

 0.0425 7.3181 x 10
-8

 

 

Fraction Occupancy of HC and SZ in Linear dFNC State 

Fraction Occupancy of HC and SZ in Nonlinear dFNC 
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Table 3. Statical analysis of dwell time for linear and nonlinear states in HC and SZ. SZ spends significantly longer in linear state 3.  

          

 State 1 State 2 State 3 

Average across HC 54.69 59.08 68.35 

Average across ZS 42.16 47.41 151.98 

p-value 0.0177 0.0310 5.096 x 10
-12

 

 

 

 State 1 State 2 State 3 

Average across HC 13.15 12.98 19.52 

Average across ZS 17.72 18.23 15.60 

p-value 0.0147 0.0051 0.03244 

 

 

As it is shown in Table 2 and Table 3, HCs spend more time in the VIS and SM system (linear state 2 and 

nonlinear state 3) compared to patients that spend more frequently and longer in a low range of correlation 

(linear state 3) in SM, CC and DM networks (nonlinear state 1 and 2) where VIS network's EN dependency has 

almost vanished.  

Dwell Time for HC and SZ in Linear dFNC State 

Dwell Time for HC and SZ in Nonlinear dFNC 
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Figure 4.  A) Contingency table of linear and nonlinear dFNC’s states for each group. B) FDR- adjusted p-values from comparing HC-SZ. 

Significant level indicated by red pointer for alpha= 0.05. HCs are observed significantly more in pairs (2,3) and (1,3), while SZs tend to be 

in (3,1) and (3,2) of linear-nonlinear states. 
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Figure 5. Comparing linear and nonlinear dFNC's state transition. The probability of moving from state i to state j is calculated for each 

individual, and then for each pair (i,j), the difference between HC and SZ is measured and denoted in the (i,j) entry of the matrix. P-values 

are adjusted by FDR, and significant level indicated by red pointer for alpha= 0.05, and cells with significant value are denoted by asterisk. 

HC significantly tends to move to linear state 2 when they are in linear state 3. Also, they tend to move to nonlinear state 3, while SZ be 

inclined to move to nonlinear state 1. However, SZ tends to move and stay in linear state 3. They also show significantly transitions 

between nonlinear state 1 and also to nonlinear state 2. 
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Figure 6. A) Another representation of fraction occupancy and dwell time. Asterisks denote significant p-values. B) Linear and nonlinear 

states that HC (left) and SZ (right) spend significantly more time in. 
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With this view in Figure 6, HCs tend to spend longer and transit with a higher probability to EN state 3, which 

has higher explicitly nonlinear dependencies in VIS and SM. SZ spends longer in higher EN dependency of DM 

(state 2) but also transitions more to EN state 1 than 2. The average fraction occupancy for SZ in three explicitly 

nonlinear states is close to equal, while HC are comparably distributed uniformly. Unlike EN states, the average 

fraction occupancy of SZ is much higher in linear state 3.   

 

Discussion 

 

Dynamic FNC provides a more natural way to analyze uncontrolled resting fMRI data and provide additional 

insight into brain activity (Hindriks et al., 2016; Hutchison, Womelsdorf, Allen, et al., 2013). However, virtually all 

research in this area, at least at the whole brain/connectome level, has focused on the linear correlation among 

time courses (E. Allen et al., 2012; Damaraju et al., 2014; Hutchison, Womelsdorf, Gati, et al., 2013; Obata et al., 

2004). However, there is considerable evidence of nonlinearity in fMRI data (de Zwart et al., 2009; Sheth et al., 

2004; Wan et al., 2006). Given that, in this work, we focus on the dynamics of explicitly nonlinear dependency 

among brain regions.  

We measured explicitly nonlinear dFNC and dFNC between TCs obtained from processed fMRI data collected 

from HC and SZ in this work. Using a k-means classifier, each set of concatenated windows of either Pearson 

correlation or explicitly nonlinear dependencies are grouped into three integrated patterns of linear dFNC and 

explicitly nonlinear dFNC (Figure 3). These states are analyzed, and the differences between HC and SZ in each 

linear and EN state are compared and studied.  

Our results suggest that EN states and linear states complement each other as their behavior has basic 

differences. For example, the average EN dwell time is considerably shorter than the linear dwell time (Figure 6). 

Also, the transition probability matrices are unique and reveal different information regarding HC and SZ (Figure 

5). These unique aspects can also be observed in the average fraction occupancy.  

In the linear states, we observe a strong positive correlation within networks such as (SC), (AUD, VIS, and SM), 

(CC), (DM), and (CB). For the relation between these networks, it is noted that the correlation swings between 
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negative and positive in each linear state (Figure 3). Linear state 2 shows a sharp, clear, and intense pattern in 

terms of correlation between the networks. This pattern fades as moving to linear state 1 and becomes lowest 

in linear state 3.  

For the explicitly nonlinear dFNC states, we measured NMI after removing linear correlation at each window. 

NMI takes values between 0 to 1. So, we lose the positivity and negativity interpretation here. Multi-network 

connections were observed in the EN compared to linear dFNC, one predominantly SM (with less but 

considerable level within CC and DM), one predominantly DM, one predominantly VIS and SM. 

Our results (Figure 4, Figure 5, Figure 6) indicate that HC tend to have a high level of linear and EN dependencies 

(linear state 1, 2, and nonlinear state 3). At the same time, SZ tend to stay not only in a lower level of 

dependencies overall brain networks (linear state 3) but also in the absence of EN dependency in the VIS 

network (nonlinear state 1 and 2). However, SZ tend to have higher EN dependencies in CC and DM than HC. 

These results agree with our earlier findings in evaluating (static) EN FNC (Motlaghian et al., 2021), which 

indicated significant differences in EN dependencies within and between AUD, VIS, CC, and DM networks in HC 

and SZ over the entire run. Studying explicitly nonlinear dependencies in dynamic FNC helps unpack the 

informative structure of how temporally VIS and AUD networks are more active and CC is less involved in HC.  

We also analyzed the relationship between fraction occupancy, dwell time of EN states, and symptoms of SZs, 

and didn’t find a significant relationship. 

Measuring explicitly nonlinear dependencies by NMI is not symmetric, respecting the order of TCs. However, the 

preference is for being symmetric because we expect to observe the same amount of dependency regardless of 

the order of inputs. We addressed the symmetricity by taking the average between two results in our work.  

Another limitation of using NMI is that the interpretation of positivity and negativity is missed compared to the 

correlation.  

For future work, more investigation of the impact of the window size on the sliding window analysis may drive 

more information about the dynamic states. The simulation demonstrated NMI showed good performance 
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before and after removing the linear correlation with as few as 35 sample points. In our work, we used 50 time 

points which can be reduced without losing the NMI sensibility. It would also be interesting to utilize a filter 

bank approach to cover a larger range of window sizes/frequencies (Faghiri, Iraji, Damaraju, Turner, & Calhoun, 

2021). 
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