

1 **Large-scale genetic screens identify BET-1 as a cytoskeleton regulator promoting actin
2 health and lifespan.**

3
4 Gilberto Garcia*¹, Raz Bar-Ziv*², Naibedya Dutta¹, Darius Moaddeli¹, Maxim Averbukh¹, Toni
5 Castro Torres¹, Athena Alcala¹, C. Kimberly Tsui², Erica A. Moehle², Ophir Shalem³, Max A.
6 Thorwald¹, Ryo Higuchi-Sanabria^{1,4}

7
8 ¹Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089.

9 ²Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of
10 California, Berkeley, Berkeley CA 94720.

11 ³Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia,
12 PA 191004, USA.

13 ⁴correspondence to ryo.sanabria@usc.edu

14 *these authors contributed equally to the work

15
16 **Key words: actin, aging, CRISPR**

17
18 **Running head: BET-1 promotes actin and longevity.**

19
20 **Abstract**

21
22 The actin cytoskeleton is a three-dimensional scaffold of proteins that is a regulatory, energy-
23 consuming network with dynamic properties to shape the structure and function of the cell. Proper
24 actin function is required for many cellular pathways, including cell division, autophagy, chaperone
25 function, endocytosis, and exocytosis. Deterioration of these processes manifests during aging
26 and exposure to stress, which is in part due to the breakdown of the actin cytoskeleton. However,
27 the regulatory mechanisms involved in preservation of cytoskeletal form and function are not well
28 understood. Here, we performed a multi-pronged, cross-organismal screen combining a whole-
29 genome CRISPR-Cas9 screen in human fibroblasts with *in vivo* *C. elegans* synthetic lethality
30 screening. We identified the bromodomain protein, BET-1, as a key regulator of actin health and
31 longevity. Overexpression of *bet-1* preserves actin health at late age and promotes lifespan and
32 healthspan in *C. elegans*. These beneficial effects are mediated through actin preservation by the
33 transcriptional regulator function of BET-1. Together, our discovery assigns a key role for BET-1
34 in cytoskeletal health, highlighting regulatory cellular networks promoting cytoskeletal
35 homeostasis.

36
37 **INTRODUCTION**

38
39 The actin cytoskeleton is composed of a complex network of filaments held together by actin-
40 binding proteins. Historically, the actin cytoskeleton has been viewed as merely the structural
41 framework of the cell, with its primary function being ascribed to cell division and the sorting and
42 transport of cellular cargo. However, actin function is also required for many other cellular
43 pathways, including autophagy, chaperone function, and transcriptional regulation (Balch et al.,
44 2008; Blanpied et al., 2003; Caviston and Holzbaur, 2006; Higuchi-Sanabria et al., 2014; McCray
45 and Taylor, 2008). The functional significance of actin in cellular health and disease is highlighted
46 by clinical data, showing that loss of function of actin is observed in clinical manifestations,
47 including neurodegeneration and muscle myopathies (Acsadi et al., 1991; Alim et al., 2002, 2004),
48 and during aging (Baird et al., 2014; Higuchi-Sanabria et al., 2018; Sing et al., 2021). Specifically,
49 actin filaments show loss of stability and marked deterioration during aging, in both single-celled
50 yeast (Sing et al., 2021) and multiple cell-types of the multicellular nematode *C. elegans* (Higuchi-
51 Sanabria et al., 2018), whereas changes in β -actin expression have been documented in

52 mammals (Moshier et al., 1993). Most recently, hypotheses that unknown mechanistic pathways
53 that can monitor and preserve the actin cytoskeleton during aging exist, have been put forward.
54 These postulated pathway(s) would be tailored to protect the cytoskeleton, and their function
55 might be compromised with age, contributing to decline in cellular and organismal health.

56 One recently identified mechanism by which the cell protects its cytoskeleton during stress
57 is through the heat shock response (HSR), mediated by the heat shock transcription factor, HSF-
58 1. HSF-1 is activated under thermal stress and promotes protein homeostasis through the
59 upregulation of chaperones and other genes related to protein quality control (Morley and
60 Morimoto, 2004). Overexpression of *hsf-1* is sufficient to confer an increase in thermal stress
61 tolerance and lifespan in *C. elegans*, and alleviates the toxic effects associated with aging (Morley
62 and Morimoto, 2004). Interestingly, overexpression of a truncated variant of *hsf-1* lacking the
63 capacity to upregulate heat-shock chaperones was also sufficient to extend lifespan (Baird et al.,
64 2014). Overexpression of this truncated form of *hsf-1* upregulated genes involved in the
65 maintenance of the actin cytoskeleton, including the troponin C/calmodulin homolog, *pat-10*,
66 which is both sufficient and necessary for HSF-1-mediated thermotolerance and longevity (Baird
67 et al., 2014). However, many actin-regulating genes are not bona fide targets of HSF-1,
68 suggesting the existence of other master regulators, which function independently or in parallel
69 with HSF-1 to modulate actin and protect the cytoskeleton. For example, the general regulation
70 of actin is governed by key actin nucleation factors that fall into three major classes 1) the Arp2/3
71 (actin-related protein 2/3) complex that builds branched actin networks (Machesky et al., 1994,
72 1999); 2) formins that build unbranched actin filaments (Pruyne et al., 2002); and 3) tandem-
73 monomer binding nucleators, which bring monomers together to form actin nucleation seeds
74 (Quinlan et al., 2005; Sagot et al., 2002). All three types of actin nucleation factors were not found
75 to be regulated by HSF-1, and the beneficial effect of *hsf-1* overexpression was actually
76 independent of the tropomyosin, *lev-11* (LEVamisole resistant) (Baird et al., 2014).

77 To identify previously unidentified regulators of actin health, we adopted a multi-pronged,
78 cross-organismal screening approach. Since actin is one of the most highly conserved proteins,
79 both in terms of sequence and functional homology, we held the rationale that an evolutionary
80 conserved perspective could provide a powerful method to identify key regulators of actin function.
81 We first utilized a CRISPR/Cas9-driven growth-based genetic screen in human cells to identify
82 genes required for survival under actin stress. Actin stress was applied by exposure to
83 cytochalasin D, a drug that inhibits actin polymerization by binding to F-actin filaments and
84 preventing the addition of actin monomers (May et al., 1998). We then performed a secondary
85 screen of the top ~500 candidate genes in the multicellular nematode, *C. elegans*, allowing us not
86 only to explore its cellular contributions, but also to associate physiological manifestations in a
87 multicellular organism. Our secondary screen consisted of a synthetic lethality screen to identify
88 genes that when knocked down cause lethality in animals exposed to a sublethal knockdown of
89 actin. These screens identified *bet-1* (two bromodomain family protein), which promotes actin
90 health, longevity, and healthspan in a multicellular eukaryote.

91

92 RESULTS

93

94 In our work to identify genes critical for actin health, we chose to inhibit actin polymerization using
95 the chemical drug cytochalasin D. Cytochalasin D prevents actin polymerization by binding to F-
96 actin filaments and blocking the addition of actin monomers (May et al., 1998). We screened for
97 a concentration of cytochalasin D that only mildly affected growth rate (**Fig. S1A**) and performed
98 a CRISPR/Cas9-driven reverse genetic screen in BJ fibroblasts, a karyotypically normal human
99 fibroblast line. Next, we performed a whole-genome CRISPR knockout screen using the AVANA
100 pooled sgRNA library (Schinzel et al., 2019; Shalem et al., 2014) in cells treated with 0.1 μ M
101 cytochalasin D (**Fig. 1A**). We compared gene-based depletion p-values between control and
102 treatment arms to curate a list of genes that were enriched or depleted in our cytochalasin-treated

103 cells (**Table S1-2, Fig. S1B**). Importantly, one of the most significantly depleted genes was the
104 actin-encoding gene, ACTB. Moreover, gene ontology (GO) analysis (Chen et al., 2013; Kuleshov
105 et al., 2016; Xie et al., 2021) revealed actin cytoskeleton, the general cytoskeleton, and actin
106 filaments as significantly enriched GO terms for the top depleted genes (**Fig. S1C**). These data
107 provide confidence that our screen is revealing genes important for actin function. Interestingly,
108 many mitochondrial genes were found amongst significantly enriched genes (**Fig. S1D**), though
109 this is consistent with many findings that have previously revealed actin-mitochondrial interactions
110 (Fehrenbacher et al., 2004; Higuchi et al., 2013; Moehle et al., 2021; Tharp et al., 2021).
111

112 To follow up on the identified hits and link their contribution to cellular and organismal physiology,
113 we opted for performing a cross-species analysis in the nematode *C. elegans* with the rationale
114 that genes important for surviving actin stress in two species must be critical regulators of actin
115 health and function. Indeed, we found in a previous study that similar cross-species screening
116 approaches provided more biologically meaningful data than computational methods alone to
117 identify candidate genes that impact lifespan (Moehle et al., 2021). Therefore, we searched the
118 top ~500 enriched and depleted genes from our screen for evolutionary-conserved orthologs in
119 *C. elegans* (Kim et al., 2018) and identified a list of ~400 genes. Next, we performed a synthetic
120 lethality screen for these candidate genes, searching for genes that when knocked down, caused
121 lethality when combined with a sub-lethal knockdown of actin (*act-1*) (**Fig. 1A**). Importantly, the
122 selected RNAi sequence of *act-1* shows overlap with all 5 isoforms of actin in *C. elegans* (*act-1*
123 through *act-5*) and exhibits visible perturbations of actin health without affecting whole organismal
124 physiology. Animals treated with 10% *act-1* RNAi develop normally to adulthood but display
125 notable perturbations of actin quality in muscle cells (**Fig. 1A**). Therefore, we proceeded with our
126 synthetic lethality screen by performing RNAi knockdown of candidate genes mixed with *act-1*
127 RNAi in a 9:1 ratio, respectively.
128

129 Our secondary screen revealed 5 potential candidate genes with varying phenotypes (**Fig. 1B**).
130 RNAi knockdown of *bet-1*, *egrh-1* (Early Growth factor Response factor Homolog), *F53B6.5*, and
131 *ikb-1* (I Kappa B homolog) resulted in delayed development when combined with 10% *act-1* RNAi
132 but exhibit no physiological phenotypes when knocked down alone. RNAi knockdown of *ZK512.4*
133 did not exhibit a developmental defect but showed sterility (no eggs were visible on the plate at
134 day 1 of adulthood) when combined with 10% *act-1* RNAi, despite showing visible progeny
135 formation when knocked down alone. *ZK512.4* is a predicted ortholog of human SRP9 (signal
136 recognition particle), a critical part of protein targeting to the endoplasmic reticulum (ER) (Mary et
137 al., 2010), with no known association with the cytoskeleton, though studies have shown that actin
138 can impact ER dynamics (Korobova et al., 2013; Poteryaev et al., 2005). *egrh-1* is the ortholog of
139 human EGR1 (early growth response 1), a major transcription factor that has been implicated in
140 multiple diseases including cancer (Wang et al., 2021), neuropsychiatric disorders (Duclot and
141 Kabbaj, 2017), and Alzheimer's disease (Qin et al., 2016). *F53B6.5* is a predicted ortholog of
142 human methionyl aminopeptidase 2 (METAP2), which removes methionine residues from
143 nascent polypeptide chains and are also implicated in cancer (Yin et al., 2012). *bet-1* is the
144 ortholog of human BRD4, a bromodomain protein involved in cell fate decisions in both *C. elegans*
145 (Shibata et al., 2010) and mammals (Lee et al., 2017; Linares-Saldana et al., 2021), and also
146 implicated in cancer progression (Huang et al., 2016).
147

148 Next, we sought to determine which of our candidate genes directly impacted actin integrity and
149 lifespan. To directly measure actin organization, we used animals expressing LifeAct::mRuby in
150 the muscle. Here, the F-actin binding protein, LifeAct is fused to a fluorescent molecule to allow
151 robust visualization of actin integrity in muscle cells (Higuchi-Sanabria et al., 2018). RNAi
152 knockdown of *bet-1* consistently resulted in decreased lifespan, whereas RNAi knockdown of
153 *egrh-1*, *F53B6.5*, and *ikb-1* resulted in inconsistent changes to lifespan (**Fig. S2A, Table S3-S4**).

154 Surprisingly, RNAi knockdown of any of the five candidate genes had no impact on actin integrity
155 (**Fig. 1C, top**). However, our previous work showed that RNAi knockdown of *hsf-1*, which has
156 dramatic effects on organismal health and lifespan (Hsu et al., 2003; Morley and Morimoto, 2004),
157 also did not impact actin organization in the muscle in young, unstressed adults, and instead only
158 exhibited measurable phenotypes during stress or aging (Higuchi-Sanabria et al., 2018).
159 Therefore, we applied an acute exposure to heat stress (1 hr at 37 °C), which has no measurable
160 effect on wild-type animals. However, RNAi knockdown of *bet-1* – and no other candidate genes
161 – resulted in a dramatic loss of actin integrity and organization under acute heat stress (**Fig. 1C,
162 bottom**). Therefore, as a gene that directly impacts actin integrity and aging, we pursued *bet-1*
163 for follow-up analysis.

164
165 Our data suggest that loss of *bet-1* results in decreased stability of actin, such that acute exposure
166 to stress is sufficient to perturb actin function. In addition, we find that knockdown of *bet-1* resulted
167 in the premature breakdown of actin during aging, such that muscle actin showed marked
168 deterioration as early as day 4, compared to wild-type animals that only start to show mild signs
169 of actin disorganization between day 7-10 (**Fig. 2A**). The RNAi knockdown of *bet-1*, as validated
170 by reduced transcript levels using RT-PCR (**Fig. S2B**), also caused a decrease in lifespan (**Fig.
171 2B**). Moreover, a *bet-1* mutant generated by introducing a premature stop codon at amino acid
172 17, consistently showed a significant decrease in lifespan (**Fig. S2C**). Surprisingly, overexpression
173 of the primary isoform of *bet-1*, *bet-1A*, previously shown to be required for its
174 canonical function in maintenance of cell fate (Shibata et al., 2010) had no impact on lifespan.
175 Similarly, overexpression of the alternative isoform *bet-1C* did not impact lifespan. Instead,
176 overexpression of the *bet-1* isoform *bet-1B* significantly increased lifespan (**Fig. 2C**), which was
177 reversed by *bet-1* RNAi, suggesting that this is not due to an off-target effect (**Fig. 2B**).
178 Importantly, overexpression of *bet-1B* also protected actin filaments at advanced age, as animals
179 with *bet-1B* overexpression display no measurable changes to actin filaments as late as day 13
180 when wild-type animals show obvious collapse (**Fig. 2A**). This increase in actin filament stability
181 also results in increased muscle function, which can be measured by increased motility both at
182 young and old age (**Fig. 4B**, see blue and green), in agreement with a previous study, which
183 described a premature loss of motility in *bet-1* loss of function animals (Fisher et al., 2013). These
184 data provide direct evidence that *bet-1* is a bona fide regulator of actin function, which has direct
185 implications in organismal health and longevity.

186
187 BET-1 is a conserved double bromodomain protein that functions as a transcriptional regulator to
188 maintain stable cell fates (Shibata et al., 2010). Specifically, it recognizes lysines of histone tails
189 acetylated by the MYST family of acetyltransferases (MYST HATs), and loss of *mys-1* and *mys-2*
190 results in mislocalization of BET-1 and loss of BET-1 function (Shibata et al., 2010). To
191 determine whether the functional role of BET-1 in aging and cytoskeletal maintenance were
192 similar to those of cell fate decisions, we first synthesized a GFP-tagged variant of BET-1B.
193 Indeed, GFP::BET-1B also localize primarily to the nucleus and creates distinct punctae,
194 consistent with previous studies (**Fig. S3A**) (Shibata et al., 2010). In contrast to cell fate decisions,
195 *mys-1* RNAi was not sufficient to fully phenocopy loss of *bet-1*, as animals did not exhibit
196 premature deterioration of actin organization despite having a comparable decrease in lifespan,
197 which were not additive with *bet-1* knockdown (**Fig. S3B, S4A**). This may be due to an incomplete
198 knockdown of *mys-1* via RNAi (**Fig. S2B**). However, RNAi knockdown of *mys-1* fully suppressed
199 the lifespan extension (**Fig. S4A**) and protection of the cytoskeleton at late age found in *bet-1B*
200 overexpression animals (**Fig. S4B**). Taken together, our data suggest that although some
201 differences exist, similar to cell fate decisions, BET-1 promotes actin integrity and lifespan
202 downstream of MYST HATs, likely as a transcriptional regulator.

203

204 Thus, to directly test a functional role for BET-1 in transcriptional regulation of cytoskeletal gene
205 programs, we performed RNA-seq in *bet-1* loss of function and *bet-1B* overexpression animals.
206 We used both RNAi knockdown and the newly generated *bet-1* mutant. As expected, we observed
207 a high correlation between the expression profiles of the knockdown and knockout of *bet-1* (**Fig.**
208 **S5A-C**). We focused our analysis on the *bet-1B* overexpression (**Fig. 3A**) and found that genes
209 associated with the general cytoskeleton and the actin cytoskeleton were among the most
210 enriched gene ontology terms (**Fig. 3B**), similar to enrichments observed in the initial human
211 fibroblast screen (**Fig. S1**). Other enriched terms included microtubules, chromatin, and vesicle-
212 associated terms. Congruent with our observations from our cytoskeletal imaging data, these data
213 suggest that BET-1 mediated longevity was through its effects on the cytoskeleton. Therefore, we
214 further focused on all genes related to actin function as previously annotated (Holdorf et al., 2020).
215 We found that out of the five actin genes in *C. elegans*, the expression of *act-3* was significantly
216 induced. Furthermore, we observed additional changes, including induction and repression, of
217 genes involved in the actin cytoskeleton (**Fig. 3C**), with many opposing effects between the loss
218 of function and *bet-1B* overexpression datasets across different cytoskeleton-related gene groups
219 (**Fig. S5D**). Strikingly, these transcriptional changes were dependent on *mys-1*, as *mys-1*
220 knockdown reversed most of the induction and repression of differentially expressed genes,
221 including the induction in *act-3* (**Fig. S5E-F**). These data are consistent with a model whereby
222 BET-1 impacts lifespan and actin health through its role as a transcriptional regulator downstream
223 of MYS-1.

224
225 We then tested whether other protective pathways that have been linked to longevity were altered
226 upon *bet-1B* activation. We could not find activation of the mitochondrial unfolded protein
227 response (UPR^{MT}), the heat shock response (HSR), or oxidative stress response. We did observe
228 a mild activation of genes involved in the endoplasmic reticulum UPR (UPR^{ER}). These data were
229 further verified by direct comparison to a dataset identifying targets of the UPR^{ER} transcription
230 factor, XBP-1 (**Fig. 3D**). We also compared our dataset to a previously published gene expression
231 dataset of *daf-2(e1370)* (Zarse et al., 2012), a mutant with a reduced function of the insulin/IGF-
232 1 receptor signaling, which has been implicated in aging. We found that 71 out of 106 differentially
233 expressed genes overlapped between worms overexpressing *bet-1B* and the long-lived *daf-2(e1370)* (**Fig. 3E**). Among the genes unique to the *bet-1B* overexpressing worms was *act-3* (**Fig.**
234 **3F**). Interestingly, our investigation of genes that were significantly induced in the *bet-1B*
235 overexpressing worms showed a similar transcriptional signature to that induced by knockdown
236 of the transcription factor *ets-4/SPDEF* (erythroblast transformation specific/SAM pointed domain
237 containing ETS transcription factor), which has been previously linked to aging (Thyagarajan et
238 al., 2010), potentially through regulation of the actin cytoskeleton via VASP (vasodilator-
239 stimulated phosphoprotein) (Bear et al., 2002; Ye et al., 2020) (**Fig. 3G**). In addition, we also
240 observed a similarity with genes affected by knockdown of the methyl demethylase *spr-5*
241 (suppressor of presenilin), another gene whose reduction has been linked to longevity (Greer et
242 al., 2016). Together, these data provide further evidence that the pro-longevity transcriptional
243 program induced by *bet-1B* is at least in part due to a dedicated program to promote cytoskeletal
244 health.

245
246 To experimentally validate our findings from transcriptome analysis, we tested the impact of
247 destabilizing the actin cytoskeleton on the beneficial effects of *bet-1B* overexpression.
248 Importantly, perturbations of actin function completely suppressed the lifespan extension found in
249 *bet-1B* overexpression animals (**Fig. 4A**). Specifically, actin function was perturbed by 10% *act-1*
250 RNAi, similar to conditions used for our synthetic lethality screens. 10% *act-1* RNAi results in a
251 significant decrease in lifespan extension, and overexpression of *bet-1B* has no impact on lifespan
252 in these animals. Thus, the lifespan extension of *bet-1B* overexpression is indeed dependent on
253 its alterations of the actin cytoskeleton, as knockdown of actin was sufficient to reverse the

255 longevity phenotype. Similarly, perturbation of actin function suppressed the beneficial effects of
256 *bet-1B* overexpression on motility (**Fig. 4B**). These data suggest that the beneficial effects of *bet-1B*
257 are primarily due to its role in promoting cytoskeletal function, likely as a transcriptional
258 regulator.

259
260 **DISCUSSION**
261

262 The actin cytoskeleton is a complex and dynamic cellular organelle, which requires a tight
263 regulation of the biosynthesis of its building blocks, their polymerization, disassembly and
264 breakdown. The dynamic rearrangements of actin underlie many cellular functions, and have
265 critical implications on organismal phenomena, such as disease states and overall health. Many
266 previous works focused on understanding the interactions between the players which directly take
267 part in the cytoskeleton. For example, a competition model has been proposed to exist between
268 actin assembly factors and monomeric actin (Davidson and Wood, 2016). Inspired by the protein
269 homeostasis pathways of other organelles (Dutta et al., 2022), we were intrigued to explore
270 whether a master transcriptional regulator may exist, which drives and promotes cytoskeletal
271 health. Interestingly, our cross-species screen revealed potentially evolutionarily conserved
272 regulators of actin homeostasis between mammals and *C. elegans*. Through CRISPR-Cas9
273 screening in karyotypically normal human fibroblasts, we identified genes that when knocked out
274 impact survival under actin destabilization caused by exposure to cytochalasin. Cytochalasin D is
275 a mycotoxin that inhibits actin polymerization by binding to F-actin and preventing polymerization
276 of actin monomers (May et al., 1998). Gene ontology analysis of our significantly depleted genes
277 identified actin cytoskeletal organization as the highest enriched gene set, as well as genes
278 involved in cell-matrix adhesion, cell motility, wound healing, intracellular transport, and
279 autophagy. These pathways all mechanistically require a properly functional actin cytoskeleton,
280 which gave us high confidence in our initial screen. However, a few limitations of our screen are
281 that we used the Avana sgRNA KO library, which since its production has been outperformed by
282 some other libraries, especially CRISPR interference (CRISPRi) or CRISPR activation
283 (CRISPRa) platforms, which can enable more flexible gene modulation (Sanson et al., 2018). In
284 addition, our utilization of cytochalasin D can be limiting due to the wide-range effects of the drug
285 (Foissner and Wasteneys, 2007).

286 Rather than optimize our primary screen with alternative libraries or other actin-destabilizing drugs
287 (e.g., latrunculin), we opted for a secondary screening platform in *C. elegans*. We reasoned that
288 as one of the most highly conserved gene/protein across eukaryotes in sequence and function, a
289 cross-species approach would be optimal to identify critical regulators of actin. In addition, *C. elegans*
290 are an *in vivo* whole animal model, free from some of the restrictions or caveats of an *in vitro*
291 cell culture system, such as major changes to actin cytoskeletal integrity when grown in a
292 plastic dish (Tharp et al., 2021). Finally, phenotypic analysis in *C. elegans* is not limited solely to
293 growth rate, and has multiple levels of phenotyping, including development, motility, fecundity,
294 size, and overall physiological health, all of which can be rapidly screened simultaneously. For
295 our secondary screen, we used a genetic screening method whereby we performed partial
296 knockdown of all actin genes using RNAi. We opted for this method as the thick cuticle of *C. elegans*
297 lead to low permeability of many drugs (Xiong et al., 2017), making the usage of
298 cytochalasin D not only cost-prohibitive for this study, but low confidence in maintaining a
299 homogenous effect. Moreover, the actin cytoskeleton is important for cuticle development in
300 worms (Costa et al., 1997) further compounding on this problem, and thus screening for regulators
301 of actin using a drug may introduce several caveats that can bias hits for those involved in cuticle
302 development. Overall, our two-species screening platform attempted to make use of two robust
303 platforms equipped with a unique set of benefits that allowed for identification of evolutionary
304 conserved regulators of actin.

306
307 Through our cross-species approach, we identified *bet-1*, the *C. elegans* ortholog of human BRD2
308 and BRD4. *bet-1* encodes a double bromodomain protein that has been originally characterized
309 for its role in cell fate decisions (Shibata et al., 2010). In addition, BET-1 has been found to directly
310 impact muscle myosin levels during aging, likely as a transcriptional regulator (Fisher et al., 2013).
311 Actin filaments are usually in direct association with myosin (Cooper, 2000) and actin-myosin
312 interactions are critical for *C. elegans* body wall muscle structure and function (Gieseler et al.,
313 2017). Moreover, BRD4 has been implicated in cancer aggression as an angiogenesis promoting
314 factor, a process that directly involves actin polymerization (Huang et al., 2016). Interestingly,
315 BRD2 (an alternative homolog of *bet-1*) dosage has been previously linked to longevity in
316 C57B6/J mice, although the underlying molecular basis was not identified (Pathak et al., 2020).
317 While these previous studies showed potential correlation of BET-1/BRD2/BRD4 with actin
318 function and/or longevity, our study has now provided evidence that expression of *bet-1* directly
319 impacts actin organization and function, which has direct significance in longevity. Specifically,
320 loss of function of *bet-1* results in premature breakdown of actin during aging, while its
321 overexpression protects actin filaments at late age and promotes both healthspan and lifespan.
322
323 Our fluorescent studies suggest that BET-1 does not impact actin through direct protein
324 interactions, as all visible BET-1 protein is found within the nucleus and localizes to puncta which
325 in no way resembles actin filaments. Moreover, the beneficial effects of BET-1 on actin and
326 lifespan are dependent on MYS HATs, which acetylate histones at specific lysine residues,
327 allowing BET-1 binding to alter gene expression (Shibata et al., 2010). Thus, BET-1 likely impacts
328 actin function as a transcriptional regulator that promotes expression of actin regulatory genes
329 (**Fig. 4C**). Indeed, our transcriptome analysis revealed that cytoskeletal regulators make up a
330 large majority of upregulated genes in *bet-1* overexpressing animals, with *act-3* specifically being
331 highly induced. We also observed changes in other cytoskeletal genes, including different
332 regulatory factors. These genes showed opposing effects when compared to *bet-1* loss of function
333 animals and were largely dependent on the HAT, *mys-1*. Importantly, the transcriptional changes
334 induced by BET-1 were largely distinct from the UPR^{MT}, UPR^{ER}, HSR, and the oxidative stress
335 response. However, while we did observe an overlap with a mutant with reduced *daf-2* function,
336 a third of the genes induced by BET-1 were unique and included cytoskeletal and chromatin-
337 related genes, suggesting that at least part of BET-1's transcriptional program is independent of
338 DAF-2/DAF-16.
339
340 In both mammals and *C. elegans*, BET-1/BRD4 has been shown to directly bind chromatin (Dey
341 et al., 2000; Floyd et al., 2013; Shibata et al., 2010) and play an active role in gene expression
342 (Fisher et al., 2013; Lovén et al., 2013). In mammals, BRD4 has direct chromatin decompaction
343 activity. Specifically, BRD4 can act as a HAT to directly acetylate histones H3 and H4, resulting
344 in nucleosome clearance and chromatin decompaction (Devaiah et al., 2016). BRD4 can also
345 recruit transcription super-complexes that promote RNA-PolII activity to stimulate transcription
346 (Donati et al., 2018). While mammalian research has progressed in characterizing a mechanism
347 whereby BRD4 impacts transcription, work on how BET-1 modulates transcription in *C. elegans*
348 has yet to be discovered. Since both BRD4 and BET-1 bind chromatin at histones acetylated at
349 similar lysine residues (H3 K14 or H4 K5/K12 in mammals (Chiang, 2009; Dey et al., 2000) H4
350 K5, K8, K12, and K16 in *C. elegans* (Shibata et al., 2010)) through conserved bromodomains, it
351 is feasible that the mechanisms of action are similar between mammals and worms. However,
352 additional work is necessary to uncover the direct mechanism whereby BET-1 modulates
353 transcription.
354
355 Together, our cross-species approach identified a unique function for BET-1 in actin cytoskeletal
356 maintenance during aging, likely through a conserved function as a transcriptional regulator.

357 Whether BET-1 can directly sense perturbations to cytoskeleton health, or whether the
358 information is relayed by an upstream cytoplasmic sensor, remains to be explored. These findings
359 assign BET-1 a key role as a regulator of cytoskeleton homeostasis, possibly linking previous
360 associations with disease states to this underlying cellular function.

361
362 **AUTHOR CONTRIBUTIONS**
363

364 G.G. and R.H.S. designed all experiments, performed or oversaw all experiments, and prepared
365 the figures and manuscript. R.B.Z. performed computational analysis, figure construction, and
366 writing for all transcriptomics data. C.K.T., E.A.M., and O.S. performed all computational analysis
367 for CRISPR-Cas9 screening. N.D. performed RT-PCR analysis and assisted with lifespans. D.M.
368 and A.A. assisted with motility assays. M.A. and T.C.T. assisted with lifespan assays. M.A.T.
369 performed essential experiments that assisted in development of the manuscript. All authors
370 edited the manuscript.

371
372 **COMPETING FINANCIAL INTERESTS**
373

374 All authors of the manuscript declare that they have no competing interests.

375 **DATA AVAILABILITY**
376

377 All data required to evaluate the conclusions in this manuscript are available within the manuscript
378 and Supplementary Materials. All strains synthesized in this manuscript are derivatives of N2 or
379 other strains from CGC and are either made available on CGC or available upon request. All raw
380 datasets, including CRISPR-Cas9 and RNA-seq, are available through Annotare 2.0 Array
381 Express Accession E-MTAB-11786.

382
383 **ACKNOWLEDGEMENTS**
384

385 We are grateful to Drs. Andrew Dillin and Sean Curran and all members of the Dillin and Curran
386 labs for technical support and sharing of reagents and equipment. GG is supported by
387 T32AG052374, RBZ is supported by the Larry L. Hillblom Foundation Fellowship 019-A-023,
388 C.K.T. is supported by F32AG069388 from the NIA, OS is supported by through the National
389 Institute of General Medical Sciences, and RHS is supported by R00AG065200 from the National
390 Institute on Aging. Some strains were provided by the CGC, which is funded by the NIH Office of
391 Research Infrastructure Programs (P40 OD010440).

392
393 **METHODS**
394

395 *Culturing BJ fibroblasts and cytochalasin screen*

396 The immortalized human foreskin fibroblast line BJ ATCC CRL-2522 (BJ fibroblasts) expressing
397 hTERT and Cas9 were used for the CRISPR-Cas9 based screen as previously described
398 (Schinzel et al., 2019). Cells were cultured in gelatin-coated dishes in DMEM, 15% fetal bovine
399 serum (FBS), 1% glutamax, 1% non-essential amino acids (NEAA), and 1%
400 penicillin/streptomycin. For splitting, cells were washed with PBS, trypsinized, and replated at 1:3
401 or 1:6 ratios based on confluence. Fresh media was applied every other day.

402
403 CellTiter-Glo was used to estimate cell density for titration of cytochalasin D as previously
404 described (Schinzel et al., 2019). Briefly, cells were treated with indicated concentrations of
405 cytochalasin D or a DMSO vehicle control. Plates were washed 1x with PBS to eliminate excess

406 media and CellTiter-Glo media was added to each cell in a 1:3 dilution into cell/PBS mix. Mix was
407 incubated for 30 min at 37°C and luminescence was measured using a Tecan M1000.
408

409 For the CRISPR-Cas9 screen, cells were transduced with the AVANA genome-wide sgRNA
410 lentiviral library (Doench et al., 2016; Shalem et al., 2014) and selected for 2 weeks with
411 puromycin to maximize genome editing and target protein depletion. Cells were then split into a
412 control (DMSO) arm and 0.1 μ M cytochalasin D treatment arm and harvested after 2 weeks of
413 treatment for sequencing. Genomic DNA (gDNA) extraction was performed on a frozen cell pellet
414 in a 15 mL conical tube on 3x10⁷ – 5x10⁷ cells. Cells were lysed in 50 mM Tris, 50 mM EDTA, 1%
415 SDS, 0.1 mg/mL Proteinase K overnight at 55 °C. Then RNase A was added to a final
416 concentration of 50 μ g/mL and incubated at 37 °C for 30 min. Next, ammonium acetate was added
417 to a final concentration of 2.5 M to precipitate proteins, samples were vortexed at max speed for
418 20 s and centrifuged at 4,000 x g for 10 min. The supernatant was carefully removed and genomic
419 DNA was extracted with cold 100% isopropanol, washed with cold 70% ethanol, air dried for 30
420 min to remove excess ethanol, and resuspended in Tris-EDTA. Sequencing was performed using
421 Illumina Next Generation Sequencing as previously described (Shalem et al., 2014). Raw sgRNA
422 counts are provided in **Table S6**.
423

424 *C. elegans* strains and maintenance

425 All strains used in this study are derivatives of the N2 wild-type worm from the Caenorhabditis
426 Genetics Center (CGC) and are listed below. Worms are maintained at 15 °C on OP50 *E. coli* B
427 strain, and switched to growth at 20 °C on HT115 *E. coli* K strain for all experimentation. HT115
428 bacteria carrying a pL4440 empty vector control or expressing double-stranded RNA containing
429 the sequence against a specific target gene were used for all experimentation. Experiments are
430 performed on age-matched animals synchronized using a standard bleaching protocol (Bar-Ziv
431 et al., 2020). Briefly, animals are collected using M9 solution (22 mM KH₂PO₄ monobasic, 42.3
432 mM Na₂HPO₄, 85.6mM NaCl, 1 mM MgSO₄) and bleached in 1.8% sodium hypochlorite and
433 0.375M KOH diluted in M9 until all carcasses were digested. Intact eggs were then washed 4x
434 with M9 solution followed by L1 synchronization by floating eggs in M9 overnight in a 20 °C
435 incubator on a rotator for a maximum of 16 hours. Synchronized animals are always grown on
436 standard RNAi plates (1 mM CaCl₂, 5 μ g/mL cholesterol, 25 mM KPO₄, 1 mM MgSO₄, 2% agar
437 w/v, 0.25% Bacto-Peptone w/v, 51.3 mM NaCl, 1 μ M IPTG, and 100 μ g/mL carbenicillin; HT115
438 *E. coli* K strain containing pL4440 vector control or pL4440 with RNAi of interest).

439 For *bet-1* overexpression, isoforms A, B, and C were defined as per (Shibata et al., 2010) and
440 sequences are provided below. Coding sequences were cloned from cDNA, the endogenous
441 *bet-1* promoter was cloned from gDNA, and an unc-54 3'UTR was cloned from gDNA. Plasmids
442 were injected into N2 worms using a standard microinjection protocol as described (Garcia et
443 al., 2022) with 10 ng/ μ L of overexpression plasmid, 2.5 ng/ μ L of pEK2 (*myo-2p::tdtomato*) as a
444 co-injection marker, and 100 ng/ μ L of pD64 vehicle as filler DNA. Worms positive for the
445 fluorescent pharynx were selected to identify stable arrays. Integration was performed by gamma
446 irradiation where L4 worms were irradiated with 4000-4400 rems of radiation and integration
447 events were selected by finding animals that maintained 100% frequency of co-injection marker
448 in the F3 generation. Lines were then backcrossed into N2 a minimum of 8x to eliminate
449 mutations. For overexpression of 3xHA::GFP::*bet-1B*, a GFP sequence containing introns and a
450 3xHA cassette was cloned upstream of the *bet-1B* coding sequence. Injection and integrations
451 were performed by SUNY Biotech.

452 To synthesize the *bet-1(uth41)* mutant line, we used a Cas9-RNA protocol as published on the
453 IDT website via the Dernberg lab. Briefly, a mixture of 15 μ M trRNA, and 22 μ M crRNA
454 (accatggcaagtccgcgac) were incubated for 5 min at 95 °C, cooled, then mixed with 24 μ M
455 Cas9 protein and left at room temperature for 5 °C. 2.5 ng/ μ L of pEK2 (*myo-2p::tdtomato*) was
456 used added as a co-injection marker and this mixture was injected into *C. elegans* gonads. All
457 progeny positive for the co-injection marker were selected, then sequenced for INDELs that
458 incorporated a premature stop codon. The *bet-1(uth41)* mutant has a premature stop codon at
459 amino acid 17.

Strains used in this study		
<i>C. elegans</i> : Bristol (N2) strain as wild type (WT)	CGC	N2
<i>C. elegans</i> : AGD2051: <i>bet-1(uth41)</i> I	This study	N/A
<i>C. elegans</i> : AGD2161: uthls505(<i>bet-1p::bet-1A::unc-54</i> UTR; <i>myo-2p::tdTomato</i>)	This study	N/A
<i>C. elegans</i> : AGD2414: uthls 498 (<i>bet-1p::bet-1B::unc-54</i> UTR; <i>myo-2p::tdTomato</i>)	This study	N/A
<i>C. elegans</i> : AGD2498: <i>unc-119(ed3)</i> III; uthSi7[<i>myo-3p::LifeAct::mRuby::unc-54</i> 3'UTR::cb- <i>unc-119(+)</i>] IV LINE 1; uthls498 (<i>bet-1p::bet-1BCDS::unc-54</i> UTR; <i>myo-2p::tdTomato</i>)	This study	N/A
<i>C. elegans</i> : AGD2332: uthEx907(<i>bet-1p::bet-1C::unc-54</i> UTR; <i>myo-2p::tdTomato</i>)	This study	N/A
<i>C. elegans</i> : RHS01c: sybIS4029(<i>bet-1p::3xHA::GFP::bet-1B</i>)	This study	PHX4031

460

461 *bet-1A*

462 ATGTCTGAGGGCAGCGGAGACCAATCACAACAACGACCATGGCAAGTCCGCACAGCAA
463 CCAATCAAAGGAATCGTACAGCCACGAGTACTCCACCATTGGAAAGCCAACACGACACA
464 CAAACAAACTGGACTACATTATGACAACAGTACTCAAAGAGGGCTGGAAAACATAAACATGT
465 CTGGCCGTTTCAGAACGCCGTCGATGCGGTTGCTTATGTATTCTCTATATCACGAGAGA
466 GTCGCCCGACCAATGGACTTGAAAACAATCGAGAAATAGACTGAAAAGTACTTATTACACAT
467 GTGCTCAAGAACATGCATTGATGATATCGAAACAGTTTCCAAAATGCTACACATTCAATGGG
468 AAAGAGGACGACGTGACAATTATGCCAAAATGTGCACGAAGTGTAAAAAGTCACTGG
469 AACAAAGCACCTCGCGAAGAGCATGATATGGATGTTATTGGGGAAAAAATAAGAAAAAAC
470 GGCAAAAAGTGACGGTGGATCGAAATCTCGTCGAGCAAGAAGAATGATGCTCGTGGACC
471 ATCTGAAGCACCGTCAGAGGCTGGAAGTGAAGTTCTGTGTAACAACAGCATCAGCAGC
472 AGCCCCGACGGTTCTGAGTCTCGAGTGTGCCCGAAGCCAGAACGAAAAGTGGCCG
473 GAAAGAACGCGGAAAACGAAAAGCCGAATCAGAACAGATGACGAGAACGCCGAAACCTTGA
474 GAGCAAAACGAGAGGGCTGTTGTCAAAAAAAGAACGTTCATCAGCCATTGCTCCCAGTAT
475 GAAGCCCTGTCTGAAGCTGCTCAATGATTCTACAAAAAAATATCAGGAATTGCTTGGC
476 CATTCAACGAACCAGTAGACGCTGAACAACTGGGACTCCATGATTATCATAAAATTATCAA
477 GAACCAATGGATCTGAAATCAATGAAAGCAAAATGGAAAGTGGAGCATACAAGGAACCTT
478 CAGATTCGAGCATGATGTTGTTAATGCTCAGGAATTGTTCTTATAATCCAGTCGGT
479 GATCCGGTTCACAGTTGGCTTCAAGAACGAGTTGATAGACGATGGCTGAAC
480 AGGTGATTGAGTTCTCGTGCCTCATCAGTTGCACCTCAATCAGCTCCGATTGCTCCA
481 CCGAAAGTAGCAAAATCAAGTGCTCCAAAAGAACCGAAAGAGTCTCGAAAAGAGCATAAAA
482 AGGAGACGACTTTGAAGCAAGCGGTGCAAAATCGGAGGATTAATGCAGATAAACACGC

483 GTTGAGCATGATTGAGAACGTGAGGAAAAGCTAAAGCAGAGCTGCCGCTGCACAAGC
484 GATAAAGGATAAACTGACGAGTGTGAAGAATCGACGAGAAGATAATCCGAATGAGCCATT
485 CCGGAGAAGCTTATCAATGAGACAAGAGCCTGTGCACGACGCAAGTGGACAAATGCTT
486 CAAGTTCTCAGCTTCTGCTGCTTGAGGAACGGACGAAGCAAAAAAGCAGCATCCGC
487 ACGTCTCTATGGTTACGAATTGATTGGATGAGGATAATAAGATGGCACTGACTTATG
488 AGGAAAAACGAAACTTGAGCAATCTGATTAATAATTACCCAACAATCAACTCAACACCATA
489 ATTTGATTATTCAACGGAGAGAACGAAGCGCTGTGATGCAACAACAACACTCGATGACAGTG
490 AGGTTGAACGGATTCGAATCAGTGGAGATATGTCCTGAGAGAGAAATGGGTGCATTAT
491 CAAAACAATTCCAACATTAAACGGAAATGGCGATGATGAGAAGGCCAAAACGTCTTCAAT
492 CCGACATCTTCTGGAGCAACAGGATCAAAGGGTCTCGTGTGGAGAGCAAAATGGA
493 AAGAAAAAGAAAAACTTCAATATGTCGAATCCTCGGATGATGAGACGTCGAATAGTCGA
494 AACGTCGAAAGAGAGAGAGCAGTGAATCACAGAGCTTCGTCAGTGTGATGATTCA
495 TGATGAGGATAGGCCGAGTATTCCCCGTAATCAGGTCAACCACCATCACGTGAA
496 TGAATCAATCATCAGCTCCTCCACCACGAATGGGAGGAATGGGAGGACAACCACCAATG
497 TCACGAGTACCTGCATCATCCACATCTGTATCAGCAATCGGAAAGAACACGCG
498 CCTCGTCAATTATCAAGCTCCAAACCTGCACCAAGTACAGCACCAACATCATCAAG
499 ACCTCCGGCAGCACCGAGACCACCGTCAAAACCAAGAAAACGGTGGAGCGAGTATTCT
500 TGATACTCTACTCCAGATACATTGGAGCATCACCTCCCCAGTTTCCAGTCGAACCAA
501 CAACGTGGCTACGATTAGATCACCAACGGAAAGCCAACCCGGGAATGGTGAAGACGAGC
502 AGACCAGGATTCAAGGGATGCGGATGGAGGCAAAGCGAGCCGCCAAAAAGAAGACGAA
503 GGCAGTGTCTCGTTGTCAAACCAATGGAAATGATGGCTGCATTGAATTGATAATACATA
504 TTAA

505 *bet-1B*

506 ATGTCTGAGGGCAGCGGAGACCAATCACAACAACGACCATGGGCAAGTCCCGACAGCAA
507 CCAATCAAAGGAATCGTACAGCCACGAGTACTTCCACCATTGGAAAGCCAACACGACACA
508 CAAACAAACTGGACTACATTATGACAACAGTACTCAAAGAGGGCTGGAAAACATAAACATGT
509 CTGGCCGTTTCAGAAGGCCGTCGATGCGGTTGCTTATGTATTCTCTATATCACGAGAGA
510 GTCGCCCCACCAATGGACTTGAAAACAATCGAGAAATAGACTGAAAAGTACTTATTACACAT
511 GTGCTCAAGAATGCATTGATGATATCGAAACAGTTTCAAAACTGCTACACATTCAATGGG
512 AAAGAGGACGACGTGACAATTATGCCCAAAATGTGCACGAAGTGATAAAAAGTCACTGG
513 AACAAAGCACCTCGCGAAGAGCATGATATGGATGTTATTGGGGAAAAATAAGAAAAAC
514 GGCAAAAAGTGACGGTGGATCGAAATCTCGTCGAGCAAGAAGAATGATGCTCGTGGACC
515 ATCTGAAGCACCCTGAGAGGCTGGAAGTGAAGTTCGTCTGTAACAACAGCATCAGCAGC
516 AGCCCCGACGGTTCTGAGTCTCGAGTGTGCGAGTGTGCCCGAAGCCAGAACGAAAAGTGGCCG
517 GAAAGAAGACGGAAAACGAAAAGCCGAATCAGAAGATGACGAGAAGCCGGAACCTTGA
518 GAGCAAAACGAGAGGTGGCTGTTGTCAAAAAAAGAAGTTCATCAGCCATTGCTCCCAAGTAT
519 GAAGCCCTGCTGAAGCTGCTCAATGATTCTACAAAAAAATATCAGGAATTGCTTGGC
520 CATTCAACGAACCAGTAGACGCTGAACAACACTGGGACTCCATGATTATCATAAAATTATCAA
521 GAACCAATGGATCTGAAATCAATGAAAGCAAAATGGAAAGTGGAGCATAAGGAACCTT
522 CAGATTCGAGCATGATGTTGTTAATGCTCAGGAATTGTTTCTTATAATCCAGTCGGT
523 GATCCGGTTCACAGTTGGTCTTAGGTTCAAGAAGTTTGATAGACGATGGCTGAAC
524 AGGTGATTGAGTTCTCGTGCCTCATCAGTTGCACCTCAATCAGCTCCGATTGCTCCA
525 CCGAAAGTAGCAAAATCAAGTGCCTCAAAAGAACCGAAAGAGTCTCGAAAAGAGCATA
526 AGGAGACGACTTTGAAGCAAGCGGTGAAAATCGGAGGATTAATGCAGATAAACACGC
527 GTTGAGCATGATTGAGAACGTGAGGAAAAGCTAAAGCAGAGCTGCCGCTGCACAAGC
528 GATAAAGGATAAACTGACGAGTGTGAAGAATCGACGAGAAGATAATCCGAATGAGCCATT

529 CCGGAGAAGCTTATCAATGAGACAAGAGCCTGTGCACGACGCAAGTGGACAAAATGCTT
530 CAAGTTCTCAGCTTCTGCTGCTTGGAGGAACGGACGAAGCAAAAAAGCAGCATCCGC
531 ACGTCTCTATGGTTACGAATTGATTGGATGAGGATAATAAGATGGCACTGACTTATG
532 AGGAAAAACGAAACTTGAGCAATCTGATTAATAATTACCCAACAATCAACTCAACACCATA
533 ATTTGATTATTCAACGGAGAGAACGAAGCGCTCTGATGCAACAAACAACCGATGACAGTG
534 AGGTTGAACGGATTTCGAATCACTGGAGATATGTGCCTGAGAGAAAATGGGTGCATTAT
535 CAAAACAATTCCAACATTAAACGGAAATGGCGATGATGAGAAGGCCGAAAACGTCTCGAAT
536 CCGACATCTTCTGGAGCAACAGGATCAAAGGGTCGTCGTTGGAGAGCAAAAATGGA
537 AAGAAAAAGAAAAACTTCAATATGTCCGAATCCTCGGATGATGAGACGTCGAATAGTCGAA
538 AACGTCGAAAGAGAGAGAGCAGTGAATCACAGAGCTTCTCGTCCAGTGTGATGATTAGA
539 TGATGAGGATAGGCCGAGTATTCCCCGTAATCAGGTCAACCACCATCACATCACGTGAA
540 TGGAAATCAATCATCAGCTCCTCCACCACGAATGGGAGGAATGGGAGGACAACCACCAATG
541 TCACGAGTACCTGCATCATCCACATCTGTATCAGCAATCGGAAAGAACACCGCAGCCG
542 CCTCGTGAATTATCATAAAATTATAATTGTTTCACAGTTACTCCACCTTAAAG
543 TTGAAAAAAAATCATCAAATTACTGGTAAATTGTTAA

544 *bet-1C*

545 ATGTCTGAGGGCAGCGGAGACCAATCACACAAACGACCATGGCAAGTCCCGACAGCAA
546 CCAATCAAAGGAATCGTACAGCCACGAGTACTCCACCATTGGAAAGCCAACACGACACA
547 CAAACAAACTGGACTACATTATGACAACAGTACTCAAAGAGGCTGGAAAACATAAACATGT
548 CTGGCCGTTTCAGAAGGCCGTCGATGCGGTTGCTTATGTATTCTCTATATCACGAGAGA
549 GTCGCCCGACCAATGGACTTGAAAACAATCGAGAAATAGACTGAAAAGTACTTATTACACAT
550 GTGCTCAAGAATGCATTGATGATATCGAAACAGTTTCCAAAATGCTACACATTCAATGGG
551 AAAGAGGACGACGTGACAATTATGCCAAAATGTGCACGAAGTGTAAAAAGTCAGTGG
552 AACAAAGCACCTCGCGAAGAGCATGATATGGATGTTATTGGGGAAAAATAAGAAAAAAC
553 GGCAAAAAGTGACGGTGGATCGAAATCTCGTCGAGCAAGAAGAATGATGCTCGTGGACC
554 ATCTGAAGCACCCTCAGAGGCTGGAAGTGAAGTTCTGTAACAACAGCATCAGCAGC
555 AGCCCCGACGGTTCTGAGTCTGCGAGTGTGCCCGAAGCCAGAACGAAAAGTGGCCG
556 GAAAGAAGACGGAAAACGAAAAGCCGAATCAGAAGATGACGAGAAGCCGAAACCTTGA
557 GAGCAAAACGAGAGGTGGCTGTTGTCAAAAAAGAAGTTCATCAGCCATTGCTCCCAAGTAT
558 GAAGCCCTGTGAAAGCTGCTCAATGATTCTACAAAAAAATATCAGGAATTGCTTGGC
559 CATTCAACGAACCAGTAGACGCTGAACAACCTGGACTCCATGATTATCATAAAATTATCAA
560 GAACCAATGGATCTGAAATCAATGAAAGCAAAATGGAAAGTGGAGCATACAAGGAACCTT
561 CAGATTTCGAGCATGATGTTCTGTTAATGCTCAGGAATTGTTCTTATAATCCAGTCGGT
562 GATCCGGTTCACAGTTGGCTTAGGTTCAAGAAGTTTGATAGACGATGGCCTGAACCT
563 AGGTGATTGAGTTCTGCTTCATCAGTTGCACCTCAATCAGCTCCGATTGCTCCAACCT
564 CCGAAAGTAGAAAATCAAGTGCTCCAAAAGAACCGAAAGAGTCTCGAAAAGAGCATAAAA
565 AGGAGACGACTTTGAAGCAAGCGGTGAAAATCGGAGGATTAATGCGAGATAAACACGC
566 GTTGAGCATGATTGAGAACGTGAGGAAAAGCTTAAAGCAGAGCTGCCGCTGCACAAGC
567 GATAAAGGATAAAACTGACCGAGTGTGAAGAATCGACGAGAAGATAATCGAATGAGCCATT
568 CCGGAGAAGCTTATCAATGAGACAAGAGCCTGTGCACGACGCAAGTGGACAAAATGCTT
569 CAAGTTCTCAGCTTCTGCTGCTTGGAGGAACGGACGAAGCAAAAAAGCAGCATCCGC
570 ACGTCTCTATGGTTACGAATTGATTGGATGAGGATAATAAGATGGCACTGACTTATG
571 AGGAAAAACGAAACTTGAGCAATCTGATTAATAATTACCCAACAATCAACTCAACACCATA
572 ATTTGATTATTCAACGGAGAGAACGAAGCGCTCTGATGCAACAAACAACCGATGACAGTG
573 AGGTTGAACGGATTTCGAATCACTGGAGATATGTGCCTGAGAGAAAATGGGTGCATTAT
574 CAAAACAATTCCAACATTAAACGGAAATGGCGATGATGAGAAGGCCGAAAACGTCTCGAAT

575 CCGACATCTCTGGAGCAACAGGATCAAAGGGTCGTCGTTGGAGAGCAAAAATGGA
576 AAGAAAATAA
577 *bet-1p*
578 CACAGGTCTCTAGTGTATCCACTTCGAATGCGATGCCGAAACCTCTCATCCATCCGTCT
579 CCTTCTCGCTCTCTCTCTCTCTCTCTCCATCTCTCCACATTGCGCTATCTCG
580 TGATTGTCGTCCCGTCCGTGTTCCGCCGACACACTGCCTGCTTCTCTTAACCGTGTGTC
581 GATCAACTCCCAAACCGCTACGCTATTCTCTCTCCCTCTCTCTCCGCGGTGAC
582 ATTTCTGACTAGATGGTCATACAAAACGCGTGCCTCGCGCGCTCGCAAAAATCGACG
583 CGAATCGATTAATGTGCGTCTCGTTCTATCTCTGACCGCCCGCTCAACCTAACACT
584 ATTTTGAAATGCTTTCAACTGTAACCTGCAGCTAATTAGAAGTTGAGAGATAACCTGTTGC
585 GATTGGCTCCGGGCAAGGGTTGGGAGGTCGCACCAGAAATTAGAGCTCTAGGATTCA
586 AATTTTGGGTTCAAGACCGTAACATGATTTCTGGAAATTATCACAAATCATGTAGAAA
587 ATCGATATCAGTAAGAGGGAGTGAGTGATCTATCATTATCTTCGATCTGAAATTCCA
588 CAGCGAAGGTTTCTGCCGAAATTGCAAATTGGTATTGAACTATCCGATAATTCTGAGA
589 ACATCAAGATAAAGTGTCAACCTATAGAAAATCACATGATTGTCAGAAAATAACATTAATT
590 CATATGAAATAGTTGAGAAAGTGCTAAAAATGGCTAAAATTATCCAATAATCGACATTG
591 ACAACTTCAGCACACTTTGAACCGTTATCAATTGTTCTGCTGAAATAGACGTATTTC
592 GGACGAATCGAGTGATTCTCTATAGTTTACACTGATTTTGACAAAAAAATTGATAGAAC
593 ATGGTGCAATTAGGCAATTAGAATTGCCGTCTACACCTGATTGATGGTCCTCGTGA
594 CAAGACCCAAAATTATTATTCGTTGAAAAAAATCAAATCAATAACACCCGCAATCAC
595 CATTGCAAAGTTAATTAAATACAATTATTAAATTTCAAGGAAATAATTAGTCA
596 GAATAATCCCATTGCTTAGCGATTCAACTAATTCTTGAAAATAACATTCTTGGAAATT
597 TAAGAATACGAAAATAGTCACCTCTTGTATTCTAGAAACGCTAATTCTGCAACCGACAAA
598 TTAAAAGTACAAAAAAATGATACGGCAAGCGCGCTCCAATTCAAATCGAGTCTCCGCCCTC
599 CTTGACGTCATTGCTAACAGCTGCTCGGTTTCTCCAAATTCTGGTTCAAATT
600 TTTAATTGAATTAAACAAAATAGGAAGCTAGTTGAGTAACATTATTAAATTGTAAAA
601 TATTCTGCAAATTGGCGTTTCTTTAATTCAAATAAAAGTTCAATAAAAAAAATCGATAT
602 TTTCAG
603 *unc-54 3' UTR*
604 CATCTCGCGCCCGTGCCTCTGACTTCTAAGTCCAATTACTCTCAACATCCCTACATGCTCT
605 TTCTCCCTGTGCTCCCACCCCTATTGTTATTATCAAACAAACTTCTCTTAATTCTTGT
606 TTTAGCTCTTTAAGTCACCTCTAACATGAAATTGTGAGATTCAAATAGAATTAAATT
607 CGTAATAAAAAGTCGAAAAAAATTGTGCTCCCTCCCCCCTTAATAATAATTCTATCCAAA
608 ATCTACACAATGTTCTGTGTACACTCTTATGTTTTACTCTGATAAATTGAAACAT
609 CATAGAAAAACCGCACACAAATACCTTATCATATGTTACGTTCAGTTATGACCGCAAT
610 TTTTATTCTTCGACGTCTGGCCTCTCATGACGTCAAATCATGCTCATCGTAAAAAGTT
611 TTGGAGTATTGGAAATTTCATCAAGTGAAGTTATGAAATTAAATTCTGCTTTG
612 CTTTTGGGTTCCCTATTGTTGTCAGATTGAGGACGGCGTTTCTGCTAAAT
613 CACAAGTATTGATGAGCACGATGCAAGAAAGATCGGAAGAAGGTTGGTTGAGGCTCA
614 GTGGAAG
615 *GFP (introns are lower case, stop codon removed)*
616 ATGAGTAAAGGAGAAGAACCTTCACTGGAGTTGCCAATTCTGTTGAATTAGATGGTGA
617 TGTTAATGGCACAATTCTGTCAGTGGAGAGGGTGAAGGTGATGCAACATACGGAAAA
618 CTTACCCCTAAATTATTGCACTACTGGAAAACCTACCTGTTCCATGGtaagttaaacatataataac

619 taactaaccctgattatttaaatttcagCCAACACTTGTCACTACTTCTGTTATGGTGTCAATGCTTCTC
620 GAGATACCCAGATCATATGAAACGGCATGACTTTCAAGAGTGCCATGCCGAAGGTTAT
621 GTACAGGAAAGAACTATTTCAAAGATGACGGAACTACAAGACACgtaaacagttcg
622 tactaactaaccatacatattaaatttcagGTGCTGAAGTCAAGTTGAAGGTGATACCCTGTTAATAGA
623 ATCGAGTTAAAGGTATTGATTAAAGAAGATGGAAACATTCTGGACACAAATTGGAATA
624 CAACTATAACTCACACAATGTATACATCATGGCAGACAAACAAAAGAATGGAATCAAAGTTgt
625 aagttaaacatgatttactaactaactaatctgattaaatttcagAACTTCAAAATTAGACACAAACATTGAAGATG
626 GAAGCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGCCCTGTCCT
627 TTTACCAGACAACCATTACCTGTCCACACAATCTGCCCTTCGAAAGATCCCAACGAAAAGA
628 GAGACCACATGGCCTTCTGAGTTGTAACAGCTGCTGGATTACACATGGCATGGATGA
629 ACTATACAAA
630 3xHA
631 TATCCATATGACGTGCCGACTACCGTACCGTATGATGTTCCAGACTACGCCATCCGT
632 ACGACGTACCAAGATTATGCA
633 *bet-1 RNAi*
634 CAGCAACCAATCAAAGGAATCGTACAGCCACGAGTACTTCCACCATTGGAAAGCCAACAC
635 GACACACAAACAAACTGGACTACATTATGACAACAGTACTCAAAGAGGCTGGAAAACATAA
636 ACATGTCTGGCCGTTCAGAAGCCCGTCATGCCGTTGTTATGTATTCCCTATATCAC
637 GAGAGAGTCGCCCCGACCAATGGACTTGAAAACAATCGAGAATAGACTGAAAAGTACTTATT
638 ACACATGCGCTCAAGAATGCATTGATGATATCGAAACAGTTTCAAAACTGCTACACATT
639 AATGGGAAAGAGGACGACGTACAATTATGCCAAAATGTCACGAAGTGTATAAAAAGT
640 CACTGGAAACAAGCACCTCGCGAAGAGCATGATATGGATGTTATTGGGGAAAAAATAAGAA
641 AAAACCGGCAAAAGTGACGGTGGATCGAAATCTCGTCGAGCAAGAAGAATGATGCTCG
642 TGGACCATCTGAAGCACCGTCAGAGGCTGGAAGTGAAGTTCGTCTGTAACACAGCATCA
643 GCAGCAGCCCCGACGGTTCTGAGTCTCGAGTGTGCCG
644 *mys-1 RNAi*
645 AAAAAAGCAGGCTTGACCGAGCCGAAGAAGGAGATTATAGAGGACGAAATCATGGAATAT
646 CCAAGAAAATACCAACAGATCCCAGGCAATACGAGAAAGTTACAGAGGGATGCCGTTATT
647 GGTCAATGGCTTCACAAGAAGAAGAAAGATGGCCGAAGTTATTCAAGATGCCGAGCT
648 GCAAATGTTCAATTAAATTCTATGTCATTATCGATTGCAACCGAAGACTGACGAATG
649 GGTCAGTCTGATAGGCTCAATTAGCGTCGTGAGCTACCAAAAAAGGAGGAAAGAAA
650 GGAGCACACTGCGGAAGAAAATCGAGATTGAATGAAAATGAAGGAAAGAAAAGCGGC
651 CGAAAACGAAAGATTCCACTACTTCCGATGGATGATCTCAAGGCGGAATCCGTAGATCCAT
652 TACAAGCAATTCAACGATGACCAGCGGATCTACTCCAAGTCTCGAGGTTCCATGTCGAT
653 GGTGCGCCATAGTGAAGATGCAATGACAAGGATCCGAATGTCGAATGCAACTAGG
654 AAGATCACGAATTCAAGGCCATGGTACTTGCACCTTATCCACAACATTGACAAGTTGGATT
655 GTATTATATTGCGAATTGTCTGAAATATCTAAAGTCGAAAACATTGTCTGAAACGGCAC
656 NTGGAAAAATGTGCAATGTGTCACCCACCTGGCAATCAAATCTACAGTCACGATAAAACTTC
657 ATTTTTGAAATCGACGGCCGAAAAACAAAAGCTATGCTCAGAATCTATGCCCTGCTGCCA
658 AACCT
659 *C. elegans screen*

660 *C. elegans* orthologs of human genes from the cytochalasin screen were identified using
661 Ortholist 2 (Kim et al., 2018). RNAis were isolated from the Vidal (Reboul et al., 2001) or
662 Ahringer (Lee et al., 2003) RNA libraries and sequence-verified using standard sanger
663 sequencing. RNAi constructs that matched the expected sequences at a bp length > 150 were
664 included in the screen. For synthetic lethality screens, RNAi cultures were grown in a deep-well
665 96-well plate to saturation and were mixed at a 10%/90% ratio of *act-1* RNAi to candidate gene
666 RNAi. Animals were grown on these 10%/90% mix and grown at 20 °C and screened at day 1 of
667 adulthood. All hits are defined as those that show any observable difference between the
668 10%/90% gene/*act-1* mix in comparison to 100% candidate gene RNAi alone. All screening was
669 performed with the researcher blind to the identity of each RNAi and was screened by two
670 independent researchers. Only hits that had phenotypes scored as positive by both researchers
671 were included as hits and images are made available in **Fig. 1**.

672 *C. elegans* microscopy

673 Animals were always imaged at the specified ages in figure legends using standard bleaching
674 protocols for synchronization. For all aging experiments, animals were aged on RNAi plates
675 supplemented with FUDR from day 1 of adulthood until the desired stage. 100 µL of 10 mg/mL
676 FUDR were spotted on the bacterial lawn. At least 1 replicate was performed without FUDR and
677 manual picking of animals away from their progeny as previously described (Higuchi-Sanabria
678 et al., 2018) to ensure that measurable effects were independent of FUDR. For all microscopy,
679 representative images of three independent biological replicates are shown.

680 For live-cell imaging, animals are picked off of plates and mounted directly onto a microscope
681 slide containing M9 + 0.1 M sodium azide. For standard wide-field microscopy, images were
682 acquired on either a Zeiss AxioObserver.Z1 microscope equipped with a lumencor sola light
683 engine and Zeiss axiocam 506 camera driven by Zeiss ZenBlue software using a 63x/1.4
684 PlanApochromat objective, standard dSRed filter (Zeiss filter set 43), and a DFC9000 camera;
685 or a Leica Thunder Imager equipped with a 63x/1.4 Plan AproChromat objective, standard
686 dsRed filter (11525309), Leica DFC9000 GT camera, a Leica LED5 light source, and run on
687 LAS X software.

688 For imaging of GFP::BET-1, animals were bleached to isolate eggs. 100 µL of egg/M9 mix was
689 mixed with 500 µL of 4% PBS diluted in PBS and fixed at room temperature on a belly dancer
690 for 11 min. Samples were frozen at – 80°C until imaging. Prior to imaging, PFA was washed
691 using 1 mL of PBS and shaking on a belly dancer for 10 min at room temperature. A total of 3x
692 PBS washes was performed. For staining, samples were submerged in 1 mL of PBS, then 0.75
693 µL of 5 mg/mL DAPI dissolved in DMSO was added. Eggs were incubated with DAPI for 50 min
694 at room temperature on a belly dancer. Excess DAPI was washed with 3x PBS washes at 10
695 min each at room temperature on the belly dancer. 5 µL of egg/PBS mix was mounted onto a
696 slide and mixed with 5 µL of VectaShield mounting media and imaged on a Stellaris 5 confocal
697 microscope equipped with a white light laser source and 405 nm laser source, HyD detector,
698 63x/1.4 Plan Apochromat objective, and run on LAS X software.

699 *C. elegans* RT-PCR and RNA-seq analysis

700 For RNA isolation, all RNA collection was performed at day 1 of adulthood. ~1000 animals were
701 harvested from RNAi plates using M9. Animals were pelleted by gravity by allowing adult worms
702 to settle to the bottom of the tube and aspirating off eggs and L1. Animals were washed and
703 gravity settled 3x to remove a majority of progeny, then animals were placed into Trizol solution

704 and worms were freeze/thawed 3x with liquid nitrogen with a 30 sec vortexing step between
705 each freeze cycle. After the final thaw, chloroform was added at a 1:5 chloroform/trizol ratio and
706 aqueous separation of RNA was performed via centrifugation in a heavy gel phase-lock tube
707 (VWR, 10847-802). The aqueous phase was mixed 1:1 with isopropanol then applied to a
708 Qiagen RNeasy Mini Kit (74106) and RNA purification was performed as per manufacturer's
709 directions.

710 Library preparation was performed using a Kapa Biosystems mRNA Hyper Prep Kit.
711 Sequencing was performed at the Vincent J Coates Genomic Sequencing Core at the University
712 of California, Berkeley using an Illumina HS4000 mode SR100. Four biological replicates were
713 measured per condition. Reads per gene were quantified using kallisto (Bray et al., 2016), with
714 WBcel235 as the worm reference genome. Fold changes were determined using DESeq2 (Love
715 et al., 2014). XBP-1 gene targets were defined as previously experimentally determined (Urano
716 et al., 2002). GO enrichment was calculated using WormEnrichr (Chen et al., 2013). *bet-1B*
717 overexpression, *bet-1* RNAi, and *bet-1(uth41)* mutants were compared to N2 wildtype control. In
718 addition, *bet-1* overexpressing worms were grown on *mys-1* RNAi and compared to a *mys-1*
719 RNAi control.

720 For RT-PCR, cDNA synthesis was performed using the QuantaBio cDNA supermix Qscript
721 (101414-102) using 1 µg of RNA. RT-PCR was performed using NEB Q5 DNA polymerase as
722 per manufacturer's guidelines using primers listed below. Four biological replicates were
723 performed per condition. Image quantification was performed using ImageJ by drawing an ROI
724 of equal size around each band and quantifying for integrated density. Data was normalized to a
725 *tba-1* loading control.

Primers used in this study		
Primer Name	Primer Sequence	Primer Purpose
bet-1 qPCR F	CCAACCCGGGAAT GGTGAAGAC	Forward primer to RT-PCR/qPCR <i>bet-1</i> without overlapping with RNAi sequence
bet-1 qPCR R	CCATCATTCCATT TGGTTGACAACG	Reverse primer to RT-PCR/qPCR <i>bet-1</i> without overlapping with RNAi sequence
mys-1 qPCR F	CAGATCATGTTCT AGCAACAACG	Forward primer to RT-PCR/qPCR <i>mys-1</i> without overlapping with RNAi sequence
mys-1 qPCR R	GATAGCGTAAGCT TTTCGGTG	Reverse primer to RT-PCR/qPCR <i>mys-1</i> without overlapping with RNAi sequence

tbas-1 qPCR F	TCAACACTGCCAT CGCCGCC	Forward primer to RT-PCR/qPCR <i>tba-1</i> loading control
tba-1 qPCR R	TCCAAGCGAGACC AGGCTTCAG	Reverse primer to RT-PCR/qPCR <i>tba-1</i> loading control

726

727 *C. elegans* thrashing assay

728 Thrashing assays were performed on animals synchronized via bleaching and aged on plates
729 containing FUDR from day 1. 100 μ L of 10 mg/mL FUDR were spotted on the bacterial lawn. At
730 the desired age, plates containing adult animals were flooded with 100 μ L of M9 solution, and
731 30 sec videos were acquired on an M205FCA stereomicroscope equipped with a Leica K5
732 microscope and run on LAS X software. Thrashing was measured by eye over a 10 second
733 period. A single trash is defined as bending of >50% of the animal's body in the opposite
734 direction. Representative data of three independent biological replicates are presented. Dot
735 plots were generated using Prism 7 software where every dot represents a single animal and
736 lines represent median and interquartile range. All statistics were performed using non-
737 parametric Mann-Whitney testing.

738 *C. elegans* brood size assay

739 A synchronized population of animals were collected via bleaching and 10 L4 animals were
740 moved onto individual plates. Every 12 hours, animals were moved onto fresh plates and plates
741 containing eggs were stored in a 15 ° incubator for 2-3 days. All live progeny on every egg-lay
742 plate were scored and summed to determine brood size. Dot plots were generated using Prism
743 7 software where every dot represents a single animal and lines represent median and
744 interquartile range. All statistics were performed using non-parametric Mann-Whitney testing.

745 *C. elegans* lifespan assay

746 *C. elegans* lifespan assays were performed on standard RNAi plates and were all performed at
747 20 °C as previously described (Bar-Ziv et al., 2020). Adult worms were moved away from
748 progeny daily onto fresh RNAi plates until no progeny were visible (~7-8 days). Animals were
749 then scored every other day until all animals were scored as either dead or censored. All
750 animals exhibiting bagging, intestinal leaking out of the vulva, or other age-unrelated death were
751 censored and removed from quantification. For lifespans on FUDR, animals were grown on
752 RNAi plates supplemented with FUDR from day 1 of adulthood until the desired stage. 100 μ L of
753 10 mg/mL FUDR were spotted on the bacterial lawn. At least 1 replicate for every lifespan was
754 performed in the absence of FUDR. All statistical analysis was performed using Prism7 software
755 using LogRank testing. All lifespan experiments were performed with researchers blinded to
756 sample conditions. Representative data are represented in figures and all replicates are made
757 available in **Table S3-4**.

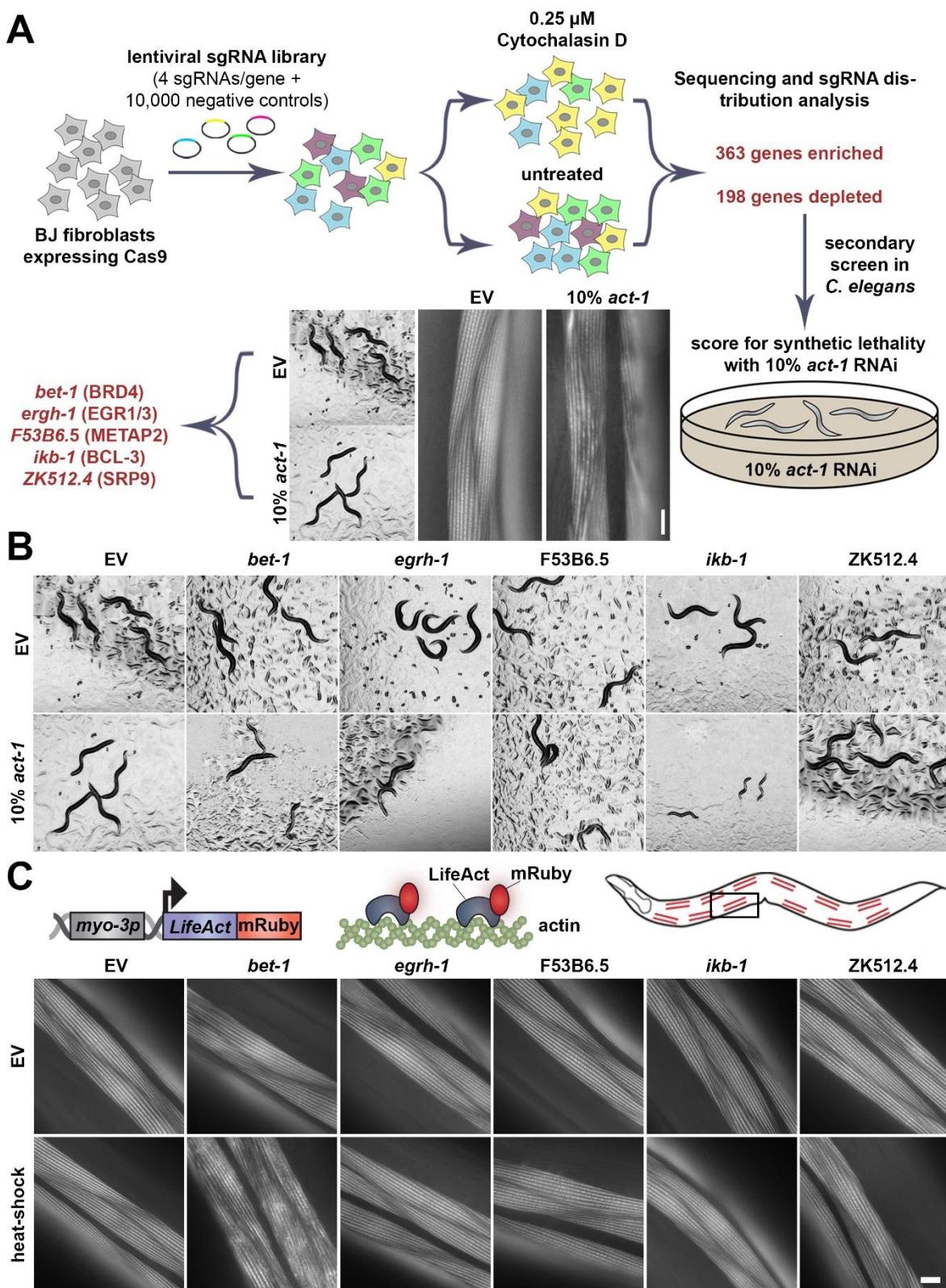
758

759 REFERENCES

- 760 Acsadi, G., Dickson, G., Love, D.R., Jani, A., Walsh, F.S., Gurusasinghe, A., Wolff, J.A., and
761 Davies, K.E. (1991). Human dystrophin expression in mdx mice after intramuscular injection of
762 DNA constructs. *Nature* 352, 815–818. <https://doi.org/10.1038/352815a0>.
- 763 Alim, M.A., Hossain, M.S., Arima, K., Takeda, K., Izumiya, Y., Nakamura, M., Kaji, H.,
764 Shinoda, T., Hisanaga, S., and Ueda, K. (2002). Tubulin seeds alpha-synuclein fibril formation.
765 *J. Biol. Chem.* 277, 2112–2117. <https://doi.org/10.1074/jbc.M102981200>.
- 766 Alim, M.A., Ma, Q.-L., Takeda, K., Aizawa, T., Matsubara, M., Nakamura, M., Asada, A., Saito,
767 T., Kaji, H., Yoshii, M., et al. (2004). Demonstration of a role for alpha-synuclein as a functional
768 microtubule-associated protein. *J. Alzheimers Dis.* 6, 435–442; discussion 443-449. .
- 769 Baird, N.A., Douglas, P.M., Simic, M.S., Grant, A.R., Moresco, J.J., Wolff, S.C., Yates, J.R.,
770 Manning, G., and Dillin, A. (2014). HSF-1-mediated cytoskeletal integrity determines
771 thermotolerance and life span. *Science* 346, 360–363. <https://doi.org/10.1126/science.1253168>.
- 772 Balch, W.E., Morimoto, R.I., Dillin, A., and Kelly, J.W. (2008). Adapting Proteostasis for Disease
773 Intervention. *Science* 319, 916–919. <https://doi.org/10.1126/science.1141448>.
- 774 Bar-Ziv, R., Frakes, A.E., Higuchi-Sanabria, R., Bolas, T., Frankino, P.A., Gildea, H.K., Metcalf,
775 M.G., and Dillin, A. (2020). Measurements of Physiological Stress Responses in *C. Elegans*.
776 *JoVE (Journal of Visualized Experiments)* e61001. <https://doi.org/10.3791/61001>.
- 777 Bear, J.E., Svitkina, T.M., Krause, M., Schafer, D.A., Loureiro, J.J., Strasser, G.A., Maly, I.V.,
778 Chaga, O.Y., Cooper, J.A., Borisy, G.G., et al. (2002). Antagonism between Ena/VASP Proteins
779 and Actin Filament Capping Regulates Fibroblast Motility. *Cell* 109, 509–521.
780 [https://doi.org/10.1016/S0092-8674\(02\)00731-6](https://doi.org/10.1016/S0092-8674(02)00731-6).
- 781 Blanpied, T.A., Scott, D.B., and Ehlers, M.D. (2003). Age-related regulation of dendritic
782 endocytosis associated with altered clathrin dynamics. *Neurobiol. Aging* 24, 1095–1104. .
- 783 Bray, N.L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic RNA-
784 seq quantification. *Nat Biotechnol* 34, 525–527. <https://doi.org/10.1038/nbt.3519>.
- 785 Caviston, J.P., and Holzbaur, E.L.F. (2006). Microtubule motors at the intersection of trafficking
786 and transport. *Trends Cell Biol.* 16, 530–537. <https://doi.org/10.1016/j.tcb.2006.08.002>.
- 787 Ceol, C.J., and Horvitz, H.R. (2004). A New Class of *C. elegans* synMuv Genes Implicates a
788 Tip60/NuA4-like HAT Complex as a Negative Regulator of Ras Signaling. *Developmental Cell* 6,
789 563–576. [https://doi.org/10.1016/S1534-5807\(04\)00065-6](https://doi.org/10.1016/S1534-5807(04)00065-6).
- 790 Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark, N.R., and Ma'ayan,
791 A. (2013). Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. *BMC*
792 *Bioinformatics* 14, 128. <https://doi.org/10.1186/1471-2105-14-128>.
- 793 Chiang, C.-M. (2009). Brd4 engagement from chromatin targeting to transcriptional regulation:
794 selective contact with acetylated histone H3 and H4. *F1000 Biol Rep* 1, 98.
795 <https://doi.org/10.3410/B1-98>.
- 796 Cooper, G.M. (2000). Actin, Myosin, and Cell Movement. *The Cell: A Molecular Approach*. 2nd
797 Edition.

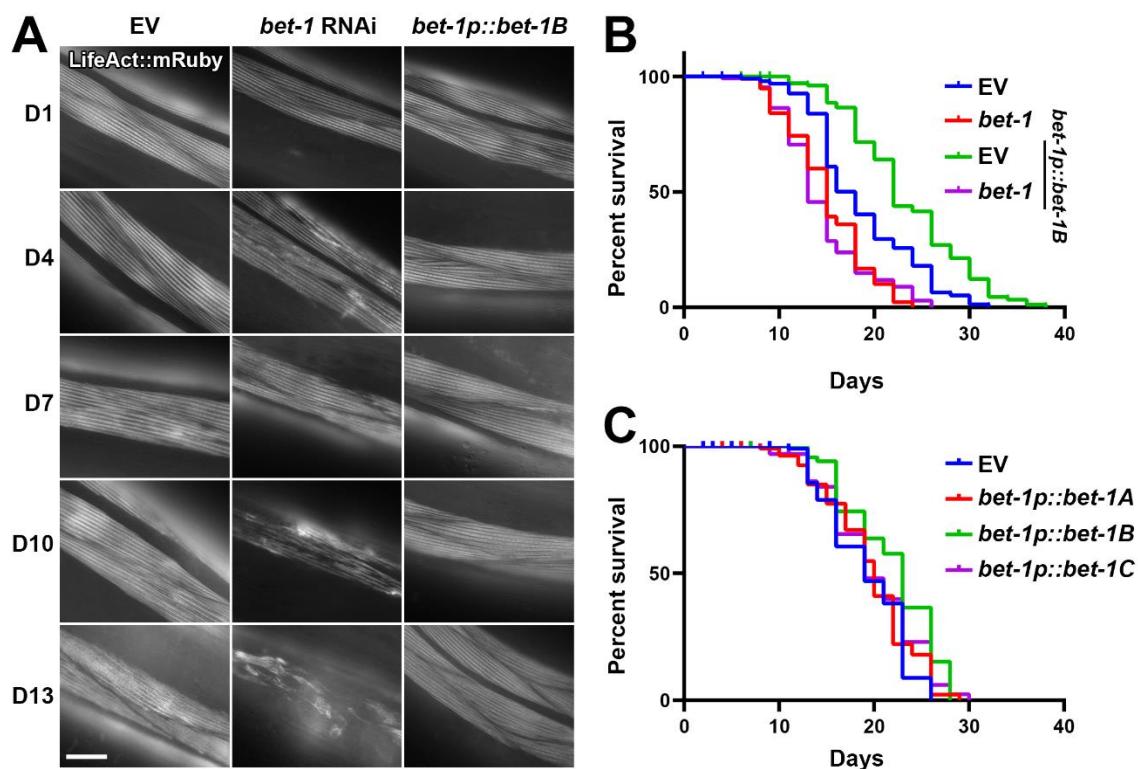
- 798 Costa, M., Draper, B.W., and Priess, J.R. (1997). The role of actin filaments in patterning the
799 *Caenorhabditis elegans* cuticle. *Dev Biol* 184, 373–384. <https://doi.org/10.1006/dbio.1997.8530>.
- 800 Davidson, A.J., and Wood, W. (2016). Unravelling the Actin Cytoskeleton: A New Competitive
801 Edge? *Trends Cell Biol* 26, 569–576. <https://doi.org/10.1016/j.tcb.2016.04.001>.
- 802 Devaiah, B.N., Case-Borden, C., Gegonne, A., Hsu, C.H., Chen, Q., Meerzaman, D., Dey, A.,
803 Ozato, K., and Singer, D.S. (2016). BRD4 is a histone acetyltransferase that evicts
804 nucleosomes from chromatin. *Nat Struct Mol Biol* 23, 540–548.
805 <https://doi.org/10.1038/nsmb.3228>.
- 806 Dey, A., Ellenberg, J., Farina, A., Coleman, A.E., Maruyama, T., Sciortino, S., Lippincott-
807 Schwartz, J., and Ozato, K. (2000). A Bromodomain Protein, MCAP, Associates with Mitotic
808 Chromosomes and Affects G2-to-M Transition. *Molecular and Cellular Biology* 20, 6537–6549.
809 <https://doi.org/10.1128/MCB.20.17.6537-6549.2000>.
- 810 Doench, J.G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E.W., Donovan, K.F., Smith, I.,
811 Tothova, Z., Wilen, C., Orchard, R., et al. (2016). Optimized sgRNA design to maximize activity
812 and minimize off-target effects of CRISPR-Cas9. *Nat Biotechnol* 34, 184–191.
813 <https://doi.org/10.1038/nbt.3437>.
- 814 Donati, B., Lorenzini, E., and Ciarrocchi, A. (2018). BRD4 and Cancer: going beyond
815 transcriptional regulation. *Molecular Cancer* 17, 164. <https://doi.org/10.1186/s12943-018-0915-9>.
- 817 Duclot, F., and Kabbaj, M. (2017). The Role of Early Growth Response 1 (EGR1) in Brain
818 Plasticity and Neuropsychiatric Disorders. *Frontiers in Behavioral Neuroscience* 11. .
- 819 Dutta, N., Garcia, G., and Higuchi-Sanabria, R. (2022). Hijacking Cellular Stress Responses to
820 Promote Lifespan. *Frontiers in Aging* 3. .
- 821 Fehrenbacher, K.L., Yang, H.-C., Gay, A.C., Huckaba, T.M., and Pon, L.A. (2004). Live Cell
822 Imaging of Mitochondrial Movement along Actin Cables in Budding Yeast. *Current Biology* 14,
823 1996–2004. <https://doi.org/10.1016/j.cub.2004.11.004>.
- 824 Fisher, K., Gee, F., Wang, S., Xue, F., Knapp, S., Philpott, M., Wells, C., Rodriguez, M., Snoek,
825 L.B., Kammenga, J., et al. (2013). Maintenance of muscle myosin levels in adult *C. elegans*
826 requires both the double bromodomain protein BET-1 and sumoylation. *Biology Open* 2, 1354–
827 1363. <https://doi.org/10.1242/bio.20136007>.
- 828 Floyd, S.R., Pacold, M.E., Huang, Q., Clarke, S.M., Lam, F.C., Cannell, I.G., Bryson, B.D.,
829 Rameseder, J., Lee, M.J., Blake, E.J., et al. (2013). The bromodomain protein Brd4 insulates
830 chromatin from DNA damage signalling. *Nature* 498, 246–250.
831 <https://doi.org/10.1038/nature12147>.
- 832 Foissner, I., and Wasteneys, G.O. (2007). Wide-Ranging Effects of Eight Cytochalasins and
833 Latrunculin A and B on Intracellular Motility and Actin Filament Reorganization in Characean
834 Internodal Cells. *Plant and Cell Physiology* 48, 585–597. <https://doi.org/10.1093/pcp/pcm030>.

- 835 Garcia, G., Homentcovschi, S., Kelet, N., and Higuchi-Sanabria, R. (2022). Imaging of Actin
836 Cytoskeletal Integrity During Aging in *C. elegans*. *Methods Mol Biol* 2364, 101–137.
837 https://doi.org/10.1007/978-1-0716-1661-1_5.
- 838 Gieseler, K., Qadota, H., and Benian, G.M. (2017). Development, structure, and maintenance of
839 *C. elegans* body wall muscle. *WormBook* 2017, 1–59. <https://doi.org/10.1895/wormbook.1.81.2>.
- 840 Greer, E.L., Becker, B., Latza, C., Antebi, A., and Shi, Y. (2016). Mutation of *C. elegans*
841 demethylase spr-5 extends transgenerational longevity. *Cell Res* 26, 229–238.
842 <https://doi.org/10.1038/cr.2015.148>.
- 843 Higuchi, R., Vevea, J.D., Swayne, T.C., Chojnowski, R., Hill, V., Boldogh, I.R., and Pon, L.A.
844 (2013). Actin dynamics affect mitochondrial quality control and aging in budding yeast. *Curr.*
845 *Biol.* 23, 2417–2422. <https://doi.org/10.1016/j.cub.2013.10.022>.
- 846 Higuchi-Sanabria, R., Pernice, W.M.A., Vevea, J.D., Alessi Wolken, D.M., Boldogh, I.R., and
847 Pon, L.A. (2014). Role of asymmetric cell division in lifespan control in *Saccharomyces*
848 *cerevisiae*. *FEMS Yeast Res.* 14, 1133–1146. <https://doi.org/10.1111/1567-1364.12216>.
- 849 Higuchi-Sanabria, R., Paul Rd, J.W., Durieux, J., Benitez, C., Frankino, P.A., Tronnes, S.U.,
850 Garcia, G., Daniele, J.R., Monshietehadi, S., and Dillin, A. (2018). Spatial regulation of the actin
851 cytoskeleton by HSF-1 during aging. *Mol. Biol. Cell* 29, 2522–2527.
852 <https://doi.org/10.1091/mbc.E18-06-0362>.
- 853 Holdorf, A.D., Higgins, D.P., Hart, A.C., Boag, P.R., Pazour, G.J., Walhout, A.J.M., and Walker,
854 A.K. (2020). WormCat: An Online Tool for Annotation and Visualization of *Caenorhabditis*
855 *elegans* Genome-Scale Data. *Genetics* 214, 279–294.
856 <https://doi.org/10.1534/genetics.119.302919>.
- 857 Hsu, A.-L., Murphy, C.T., and Kenyon, C. (2003). Regulation of aging and age-related disease
858 by DAF-16 and heat-shock factor. *Science* 300, 1142–1145.
859 <https://doi.org/10.1126/science.1083701>.
- 860 Huang, M., Qiu, Q., Xiao, Y., Zeng, S., Zhan, M., Shi, M., Zou, Y., Ye, Y., Liang, L., Yang, X., et
861 al. (2016). BET Bromodomain Suppression Inhibits VEGF-induced Angiogenesis and Vascular
862 Permeability by Blocking VEGFR2-mediated Activation of PAK1 and eNOS. *Scientific Reports*
863 6, 23770. <https://doi.org/10.1038/srep23770>.
- 864 Jang, M.K., Mochizuki, K., Zhou, M., Jeong, H.-S., Brady, J.N., and Ozato, K. (2005). The
865 Bromodomain Protein Brd4 Is a Positive Regulatory Component of P-TEFb and Stimulates RNA
866 Polymerase II-Dependent Transcription. *Molecular Cell* 19, 523–534.
867 <https://doi.org/10.1016/j.molcel.2005.06.027>.
- 868 Kim, W., Underwood, R.S., Greenwald, I., and Shaye, D.D. (2018). OrthoList 2: A New
869 Comparative Genomic Analysis of Human and *Caenorhabditis elegans* Genes. *Genetics* 210,
870 445–461. <https://doi.org/10.1534/genetics.118.301307>.
- 871 Korobova, F., Ramabhadran, V., and Higgs, H.N. (2013). An actin-dependent step in
872 mitochondrial fission mediated by the ER-associated formin INF2. *Science* 339, 464–467.
873 <https://doi.org/10.1126/science.1228360>.


- 874 Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z., Koplev, S.,
875 Jenkins, S.L., Jagodnik, K.M., Lachmann, A., et al. (2016). Enrichr: a comprehensive gene set
876 enrichment analysis web server 2016 update. *Nucleic Acids Res* 44, W90-97.
877 <https://doi.org/10.1093/nar/gkw377>.
- 878 Lee, J.-E., Park, Y.-K., Park, S., Jang, Y., Waring, N., Dey, A., Ozato, K., Lai, B., Peng, W., and
879 Ge, K. (2017). Brd4 binds to active enhancers to control cell identity gene induction in
880 adipogenesis and myogenesis. *Nat Commun* 8, 2217. <https://doi.org/10.1038/s41467-017-02403-5>.
- 882 Lee, S.S., Lee, R.Y.N., Fraser, A.G., Kamath, R.S., Ahringer, J., and Ruvkun, G. (2003). A
883 systematic RNAi screen identifies a critical role for mitochondria in *C. elegans* longevity. *Nat*
884 *Genet* 33, 40–48. <https://doi.org/10.1038/ng1056>.
- 885 Linares-Saldana, R., Kim, W., Bolar, N.A., Zhang, H., Koch-Bojalad, B.A., Yoon, S., Shah, P.P.,
886 Karnay, A., Park, D.S., Luppino, J.M., et al. (2021). BRD4 orchestrates genome folding to
887 promote neural crest differentiation. *Nat Genet* 53, 1480–1492. <https://doi.org/10.1038/s41588-021-00934-8>.
- 889 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and
890 dispersion for RNA-seq data with DESeq2. *Genome Biology* 15, 550.
891 <https://doi.org/10.1186/s13059-014-0550-8>.
- 892 Lovén, J., Hoke, H.A., Lin, C.Y., Lau, A., Orlando, D.A., Vakoc, C.R., Bradner, J.E., Lee, T.I.,
893 and Young, R.A. (2013). Selective inhibition of tumor oncogenes by disruption of super-
894 enhancers. *Cell* 153, 320–334. <https://doi.org/10.1016/j.cell.2013.03.036>.
- 895 Machesky, L.M., Atkinson, S.J., Ampe, C., Vandekerckhove, J., and Pollard, T.D. (1994).
896 Purification of a cortical complex containing two unconventional actins from Acanthamoeba by
897 affinity chromatography on profilin-agarose. *J Cell Biol* 127, 107–115.
898 <https://doi.org/10.1083/jcb.127.1.107>.
- 899 Machesky, L.M., Mullins, R.D., Higgs, H.N., Kaiser, D.A., Blanchoin, L., May, R.C., Hall, M.E.,
900 and Pollard, T.D. (1999). Scar, a WASp-related protein, activates nucleation of actin filaments
901 by the Arp2/3 complex. *Proc Natl Acad Sci U S A* 96, 3739–3744.
902 <https://doi.org/10.1073/pnas.96.7.3739>.
- 903 Mary, C., Scherrer, A., Huck, L., Lakkaraju, A.K.K., Thomas, Y., Johnson, A.E., and Strub, K.
904 (2010). Residues in SRP9/14 essential for elongation arrest activity of the signal recognition
905 particle define a positively charged functional domain on one side of the protein. *RNA* 16, 969–
906 979. <https://doi.org/10.1261/rna.2040410>.
- 907 May, J.A., Ratan, H., Glenn, J.R., Lösche, W., Spangenberg, P., and Heptinstall, S. (1998).
908 GPIIb-IIIa antagonists cause rapid disaggregation of platelets pre-treated with cytochalasin D.
909 Evidence that the stability of platelet aggregates depends on normal cytoskeletal assembly.
910 Platelets 9, 227–232. <https://doi.org/10.1080/09537109876744>.
- 911 McCray, B.A., and Taylor, J.P. (2008). The role of autophagy in age-related neurodegeneration.
912 *Neurosignals* 16, 75–84. <https://doi.org/10.1159/000109761>.

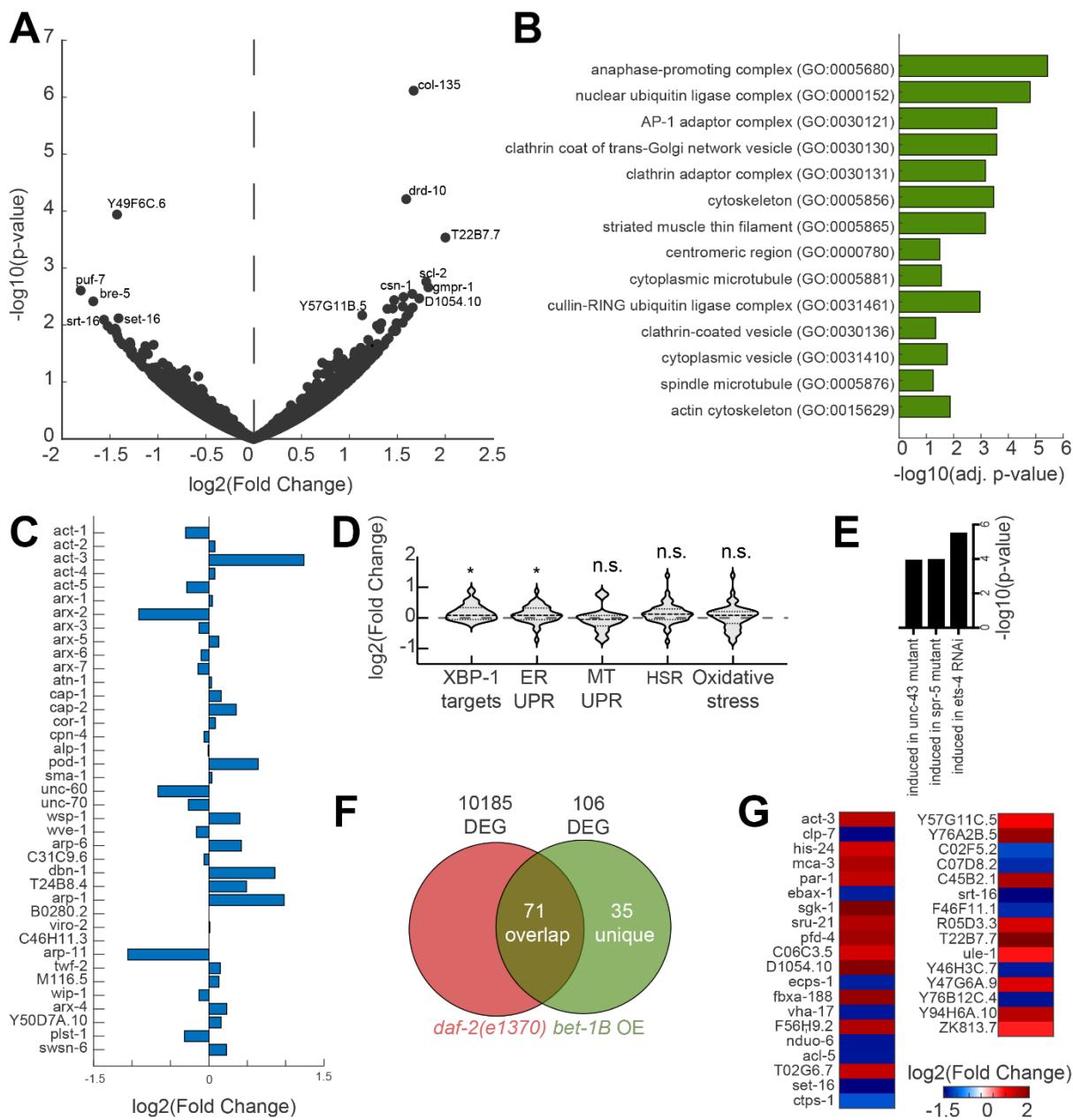
- 913 Moehle, E.A., Higuchi-Sanabria, R., Tsui, C.K., Homentcovschi, S., Tharp, K.M., Zhang, H., Chi,
914 H., Joe, L., de Los Rios Rogers, M., Sahay, A., et al. (2021). Cross-species screening platforms
915 identify EPS-8 as a critical link for mitochondrial stress and actin stabilization. *Sci Adv* 7,
916 eabj6818. <https://doi.org/10.1126/sciadv.abj6818>.
- 917 Morley, J.F., and Morimoto, R.I. (2004). Regulation of longevity in *Caenorhabditis elegans* by
918 heat shock factor and molecular chaperones. *Mol. Biol. Cell* 15, 657–664.
919 <https://doi.org/10.1091/mbc.E03-07-0532>.
- 920 Moshier, J.A., Cornell, T., and Majumdar, A.P.N. (1993). Expression of protease genes in the
921 gastric mucosa during aging. *Experimental Gerontology* 28, 249–258.
922 [https://doi.org/10.1016/0531-5565\(93\)90032-9](https://doi.org/10.1016/0531-5565(93)90032-9).
- 923 Pathak, S., Stewart, W.C.L., Burd, C.E., Hester, M.E., and Greenberg, D.A. (2020). Brd2
924 haploinsufficiency extends lifespan and healthspan in C57B6/J mice. *PLOS ONE* 15, e0234910.
925 <https://doi.org/10.1371/journal.pone.0234910>.
- 926 Poteryaev, D., Squirrell, J.M., Campbell, J.M., White, J.G., and Spang, A. (2005). Involvement
927 of the actin cytoskeleton and homotypic membrane fusion in ER dynamics in *Caenorhabditis*
928 *elegans*. *Mol Biol Cell* 16, 2139–2153. <https://doi.org/10.1091/mbc.e04-08-0726>.
- 929 Pruyne, D., Evangelista, M., Yang, C., Bi, E., Zigmond, S., Bretscher, A., and Boone, C. (2002).
930 Role of formins in actin assembly: nucleation and barbed-end association. *Science* 297, 612–
931 615. <https://doi.org/10.1126/science.1072309>.
- 932 Qin, X., Wang, Y., and Paudel, H.K. (2016). Early Growth Response 1 (Egr-1) Is a
933 Transcriptional Activator of β -Secretase 1 (BACE-1) in the Brain *. *Journal of Biological*
934 *Chemistry* 291, 22276–22287. <https://doi.org/10.1074/jbc.M116.738849>.
- 935 Quinlan, M.E., Heuser, J.E., Kerkhoff, E., and Mullins, R.D. (2005). Drosophila Spire is an actin
936 nucleation factor. *Nature* 433, 382–388. <https://doi.org/10.1038/nature03241>.
- 937 Reboul, J., Vaglio, P., Tzellas, N., Thierry-Mieg, N., Moore, T., Jackson, C., Shin-i, T., Kohara,
938 Y., Thierry-Mieg, D., Thierry-Mieg, J., et al. (2001). Open-reading-frame sequence tags (OSTs)
939 support the existence of at least 17,300 genes in *C. elegans*. *Nat Genet* 27, 332–336.
940 <https://doi.org/10.1038/85913>.
- 941 Sagot, I., Rodal, A.A., Moseley, J., Goode, B.L., and Pellman, D. (2002). An actin nucleation
942 mechanism mediated by Bni1 and profilin. *Nat Cell Biol* 4, 626–631.
943 <https://doi.org/10.1038/ncb834>.
- 944 Sanson, K.R., Hanna, R.E., Hegde, M., Donovan, K.F., Strand, C., Sullender, M.E., Vaimberg,
945 E.W., Goodale, A., Root, D.E., Piccioni, F., et al. (2018). Optimized libraries for CRISPR-Cas9
946 genetic screens with multiple modalities. *Nat Commun* 9, 5416. <https://doi.org/10.1038/s41467-018-07901-8>.
- 948 Schinzel, R.T., Higuchi-Sanabria, R., Shalem, O., Moehle, E.A., Webster, B.M., Joe, L., Bar-Ziv,
949 R., Frankino, P.A., Durieux, J., Pender, C., et al. (2019). The Hyaluronidase, TMEM2, Promotes
950 ER Homeostasis and Longevity Independent of the UPRER. *Cell* 179, 1306–1318.e18.
951 <https://doi.org/10.1016/j.cell.2019.10.018>.

- 952 Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T., Heckl, D., Ebert,
953 B.L., Root, D.E., Doench, J.G., et al. (2014). Genome-scale CRISPR-Cas9 knockout screening
954 in human cells. *Science* 343, 84–87. <https://doi.org/10.1126/science.1247005>.
- 955 Shibata, Y., Takeshita, H., Sasakawa, N., and Sawa, H. (2010). Double bromodomain protein
956 BET-1 and MYST HATs establish and maintain stable cell fates in *C. elegans*. *Development*
957 137, 1045–1053. <https://doi.org/10.1242/dev.042812>.
- 958 Sing, C.N., Garcia, E.J., Lipkin, T.G., Huckaba, T.M., Tsang, C.A., Coughlin, A.C., Yang, E.J.,
959 Boldogh, I.R., Higuchi-Sanabria, R., and Pon, L.A. (2021). Identification of a novel modulator of
960 the actin cytoskeleton, mitochondria, nutrient metabolism and lifespan in yeast.
- 961 Tharp, K.M., Higuchi-Sanabria, R., Timblin, G.A., Ford, B., Garzon-Coral, C., Schneider, C.,
962 Muncie, J.M., Stashko, C., Daniele, J.R., Moore, A.S., et al. (2021). Adhesion-mediated
963 mechanosignaling forces mitohormesis. *Cell Metab* S1550-4131(21)00183-2.
964 <https://doi.org/10.1016/j.cmet.2021.04.017>.
- 965 Thyagarajan, B., Blaszczak, A.G., Chandler, K.J., Watts, J.L., Johnson, W.E., and Graves, B.J.
966 (2010). ETS-4 Is a Transcriptional Regulator of Life Span in *Caenorhabditis elegans*. *PLOS*
967 *Genetics* 6, e1001125. <https://doi.org/10.1371/journal.pgen.1001125>.
- 968 Urano, F., Calfon, M., Yoneda, T., Yun, C., Kiraly, M., Clark, S.G., and Ron, D. (2002). A
969 survival pathway for *Caenorhabditis elegans* with a blocked unfolded protein response. *J Cell*
970 *Biol* 158, 639–646. <https://doi.org/10.1083/jcb.200203086>.
- 971 Wang, B., Guo, H., Yu, H., Chen, Y., Xu, H., and Zhao, G. (2021). The Role of the Transcription
972 Factor EGR1 in Cancer. *Frontiers in Oncology* 11. .
- 973 Xie, Z., Bailey, A., Kuleshov, M.V., Clarke, D.J.B., Evangelista, J.E., Jenkins, S.L., Lachmann,
974 A., Wojciechowicz, M.L., Kropiwnicki, E., Jagodnik, K.M., et al. (2021). Gene Set Knowledge
975 Discovery with Enrichr. *Current Protocols* 1, e90. <https://doi.org/10.1002/cpz1.90>.
- 976 Xiong, H., Pears, C., and Woppard, A. (2017). An enhanced *C. elegans* based platform for
977 toxicity assessment. *Sci Rep* 7, 9839. <https://doi.org/10.1038/s41598-017-10454-3>.
- 978 Yang, W., Dierking, K., and Schulenburg, H. (2016). WormExp: a web-based application for a
979 *Caenorhabditis elegans*-specific gene expression enrichment analysis. *Bioinformatics* 32, 943–
980 945. <https://doi.org/10.1093/bioinformatics/btv667>.
- 981 Ye, T., Feng, J., Wan, X., Xie, D., and Liu, J. (2020). <p>Double Agent: SPDEF
982 Gene with Both Oncogenic and Tumor-Suppressor Functions in Breast Cancer</p>. *CMAR* 12,
983 3891–3902. <https://doi.org/10.2147/CMAR.S243748>.
- 984 Yin, S.-Q., Wang, J.-J., Zhang, C.-M., and Liu, Z.-P. (2012). The development of MetAP-2
985 inhibitors in cancer treatment. *Curr Med Chem* 19, 1021–1035.
986 <https://doi.org/10.2174/092986712799320709>.
- 987 Zarse, K., Schmeisser, S., Groth, M., Priebe, S., Beuster, G., Kuhlwe, D., Guthke, R., Platzer,
988 M., Kahn, C.R., and Ristow, M. (2012). Impaired insulin/IGF1 signaling extends life span by
989 promoting mitochondrial L-proline catabolism to induce a transient ROS signal. *Cell Metab.* 15,
990 451–465. <https://doi.org/10.1016/j.cmet.2012.02.013>.


991
992

993 **FIGURES AND FIGURE LEGENDS**

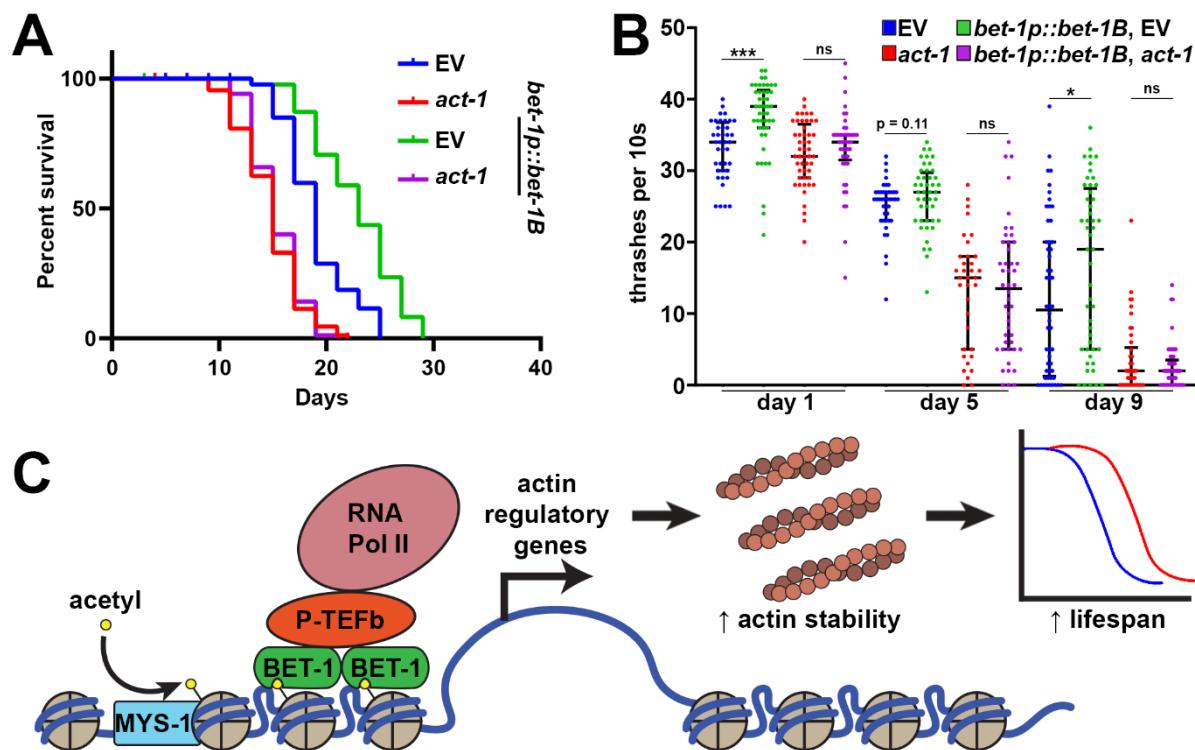
995 **Fig. 1. Multiplex screening reveals *bet-1* is involved in regulation of actin. (A)** Schematic of
996 cross-species screening. CRISPR-Cas9 screening was performed in BJ fibroblasts with 0.1 μ M
997 cytochalasin D and top hits were screened in *C. elegans* with 90% candidate RNAi and 10% *act-1*
998 RNAi. **(B)** Images of N2 animals grown on 90% candidate RNAi mixed with either 10% empty
1000 vector (EV) or 10% *act-1*. Hits were defined as those that exhibit an observable phenotype when
1001 combined with *act-1* RNAi, but not with EV. **(C)** LifeAct::mRuby is expressed specifically in the
1002 body wall muscle cells with the *myo-3* promoter. LifeAct::mRuby binds to F-actin filaments to allow
1003 visualization of actin. Representative fluorescent images of body wall muscle actin are shown.
1004 Animals were grown on RNAi from hatch. Animals were heat-shocked for 1 hr at 37 °C and
immediately imaged. Images were captured on a Zeiss AxioObserver.Z1. Scale bar is 10 μ m.


1005

1007 **Fig. 2. *bet-1* expression directly impacts actin health and lifespan.** (A) Representative
1008 fluorescent images of adult animals expressing Lifeact::mRuby from a muscle-specific promoter
1009 *myo-3p*. N2, wild-type animals were grown on empty vector (EV) or *bet-1* RNAi from hatch, and
1010 *bet-1B* overexpression animals (*bet-1p::bet-1B*) were grown on EV from hatch. All animals were
1011 imaged at day 1, 4, 7, 10, and 13 of adulthood. Images were captured on a Zeiss
1012 AxioObserver.Z1. Scale bar is 10 μ m. (B) Lifespans of N2 (blue) and *bet-1B* overexpression
1013 (green) animals grown on EV or *bet-1* RNAi (N2, red; *bet-1B* overexpression, purple) from hatch.
1014 See **Table S3-4** for lifespan statistics. (C) Lifespans of N2 (EV, blue) and overexpression of
1015 *bet-1A* (*bet-1p::bet-1A*, red), *bet-1B* (*bet-1p::bet-1B*, green), and *bet-1C* (*bet-1p::bet-1C*, purple)
1016 grown on EV from hatch. See **Table S3-4** for lifespan statistics.

1017

1018

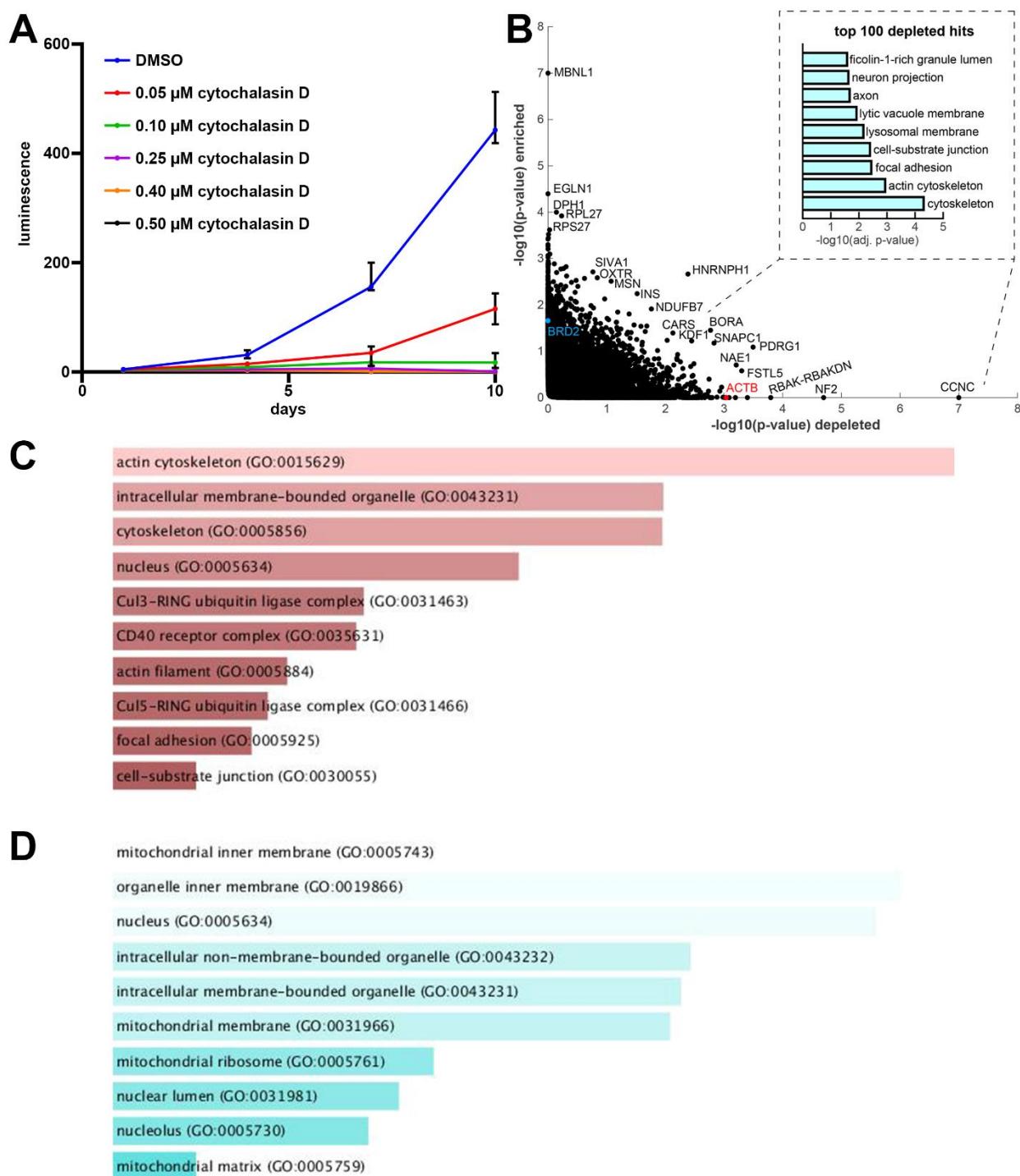

1019

1020 **Fig. 3. Overexpression of *bet-1* overexpression drives changes in cytoskeletal regulatory**
1021 **genes.**

1022 **(A)** Differentially expressed genes upon overexpression of *bet-1B*: Volcano plot of the genome-
1023 wide changes in gene expression upon over-expressing *bet-1B*, as compared to an N2 wildtype
1024 control. **(B)** Gene ontology enrichments (Chen et al., 2013) for differentially expressed genes (*p*-
1025 value < 0.05) in worms over-expressing *bet-1B*. **(C)** log₂(Fold changes) for all genes annotated
1026 as cytoskeleton: actin function in WormCat (Holdorf et al., 2020). **(D)** Gene expression changes
1027 in groups of genes linked to longevity: UPR^{ER} GO:0030968; Mitochondrial UPR (UPR^{MT})
1028 GO:0034514; Heat shock response (HSR) GO:0009408; Oxidative stress response GO:
1029 0006979. XBP-1 targets as previously defined (Urano et al., 2002). **(E)** Comparison of

1030 differentially expressed genes (*p-value* < 0.05) in *bet-1B* over-expressing worms as compared to
1031 a long-lived *daf-2(e1370)* mutant (Zarse et al., 2012) reveals a group of 35 unique genes, plotted
1032 in **(F)**. **(G)** WormExp (Yang et al., 2016) analysis integrating previously published datasets reveals
1033 significant enrichment for the annotated perturbations. See **Table S5** for all differentially
1034 expressed genes.

1035

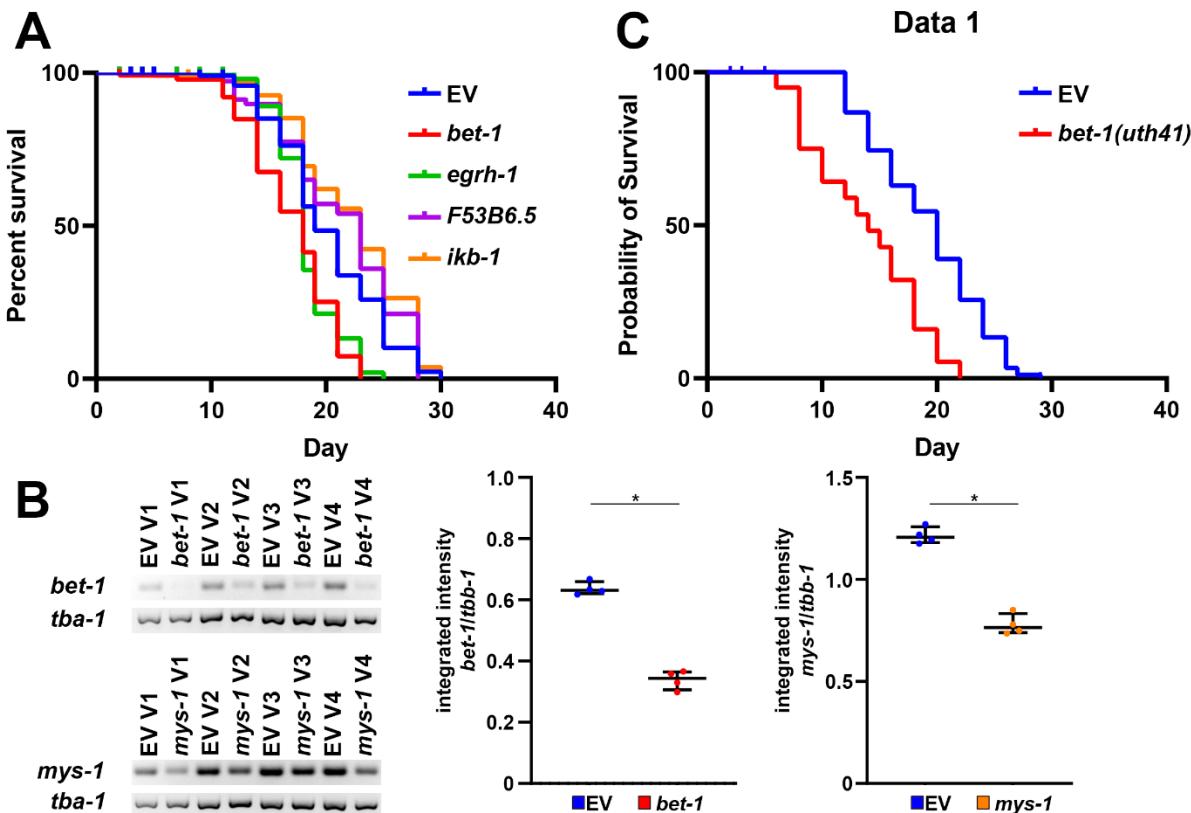


1036

1037 **Fig. 4. bet-1 overexpression promotes lifespan and healthspan through effects on actin.**
1038 **(A)** Lifespans of wild-type, N2 (EV, blue) and *bet-1B* overexpression (*bet-1p::bet-1B*, green)
1039 animals grown on EV or 10% *act-1* RNAi (N2, red; *bet-1B* overexpression, purple) from hatch.
1040 See **Table S3-4** for lifespan statistics. **(B)** Thrashing assays were performed on N2 (EV, blue)
1041 and *bet-1B* overexpression (*bet-1p::bet-1B*, green) animals grown on EV or 10% *act-1* RNAi (N2,
1042 red; *bet-1B* overexpression, purple) from hatch. Animals were grown on FUDR to prevent progeny
1043 development and assayed on day 1, 5, and 9 of adulthood. Recordings were performed in M9
1044 solution on a Leica M205FCA stereomicroscope with a Leica K5 camera and thrashing was
1045 scored manually over a 10 second recording. Data is representative of three independent trials.
1046 n = 36-54 worms per condition. *** = p < 0.001; * = p < 0.05; ns = p > 0.05 calculated using non-
1047 parametric Mann-Whitney testing. Each dot represents a single animal and lines represent
1048 median and interquartile range. **(C)** Model for BET-1 regulation of actin. MYS-1 acetylates
1049 histones (Ceol and Horvitz, 2004), allowing recruitment of BET-1 to chromatin (Shibata et al.,
1050 2010). BET-1 recruitment to chromatin allows for recruitment of transcription initiation factors like
1051 P-TEFb, which allows recruitment of RNA Pol II (Jang et al., 2005) to promote transcription of
1052 actin regulatory genes, which promotes actin function and lifespan.

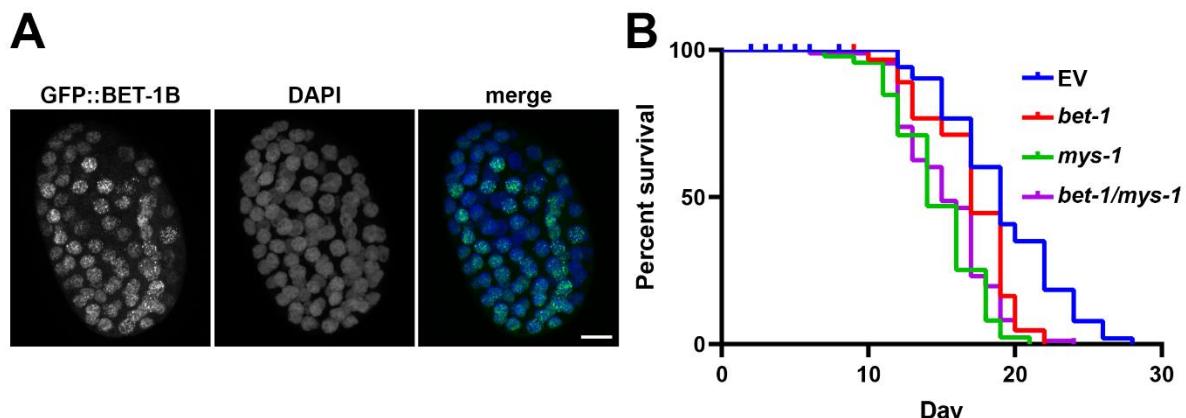
1053

1054 **SUPPLEMENTARY FIGURES, TABLES, LEGENDS.**

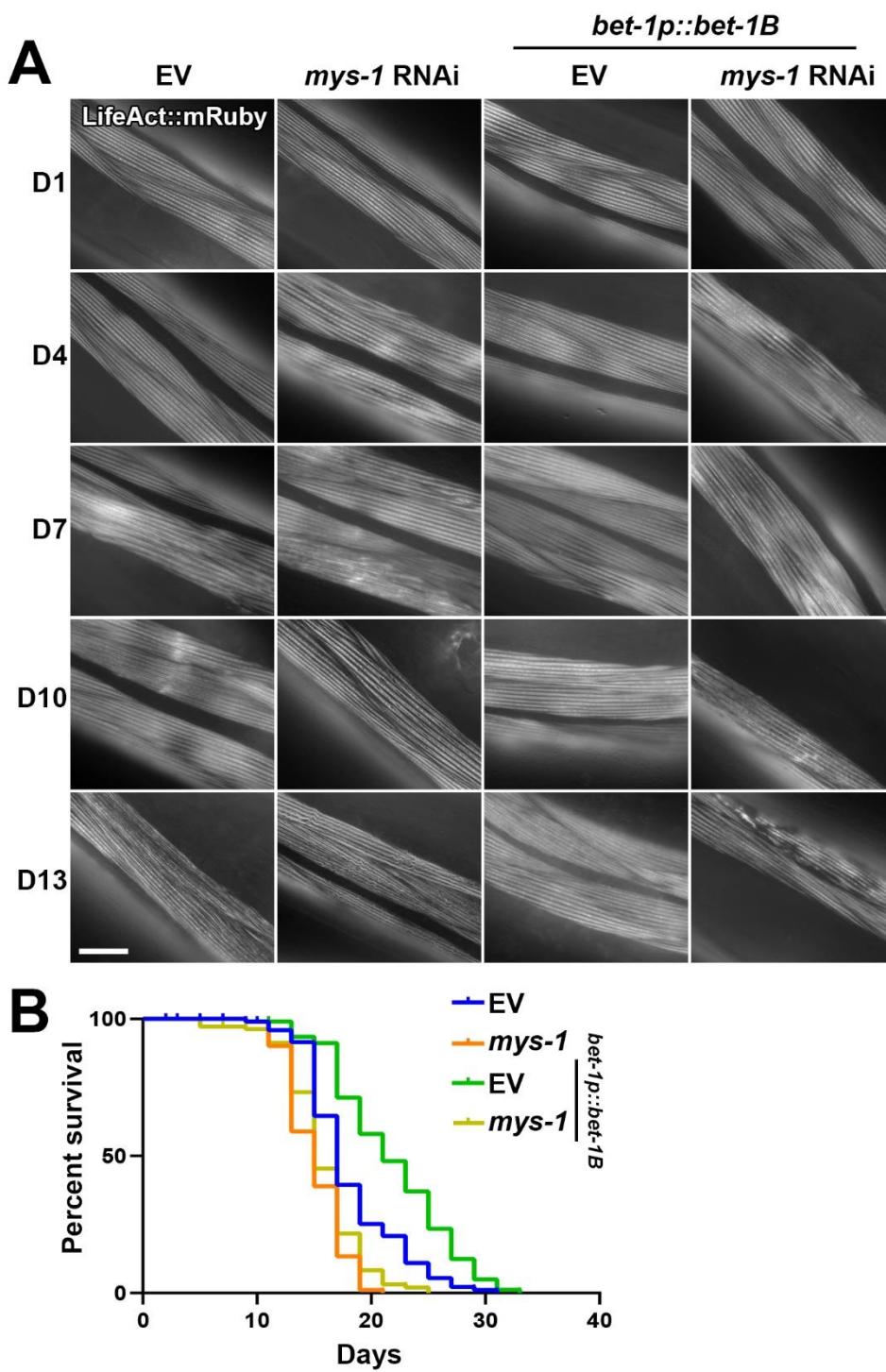


1055

1056 **Fig. S1. Cytochalasin CRISPR-Cas9 screening.** (A) Cell density was determined via CellTiter-
 1057 Glo analysis at day 1, day 4, and day 10 of exposure to indicated concentration of cytochalasin
 1058 D or DMSO control as described in STAR Methods. n = 4 per condition and data is represented
 1059 as median +/- interquartile range. (B) The p-values (max p-val) of each gene when calculated
 1060 for enriched and depleted genes, upon Cytochalasin D treatment, is shown. (inset) enrichment


1061 analysis for cellular components of the top 100 depleted genes (Chen et al., 2013). All
1062 significantly depleted (**C**) and enriched (**D**) genes were defined as those with a p-value < 0.05
1063 and can be found in **Table S1-2**. Gene lists were run through Enrichr and gene ontologies (GO)
1064 for cellular component were graphed and sorted by p-value ranking. All raw counts are available
1065 on **Table S6**.

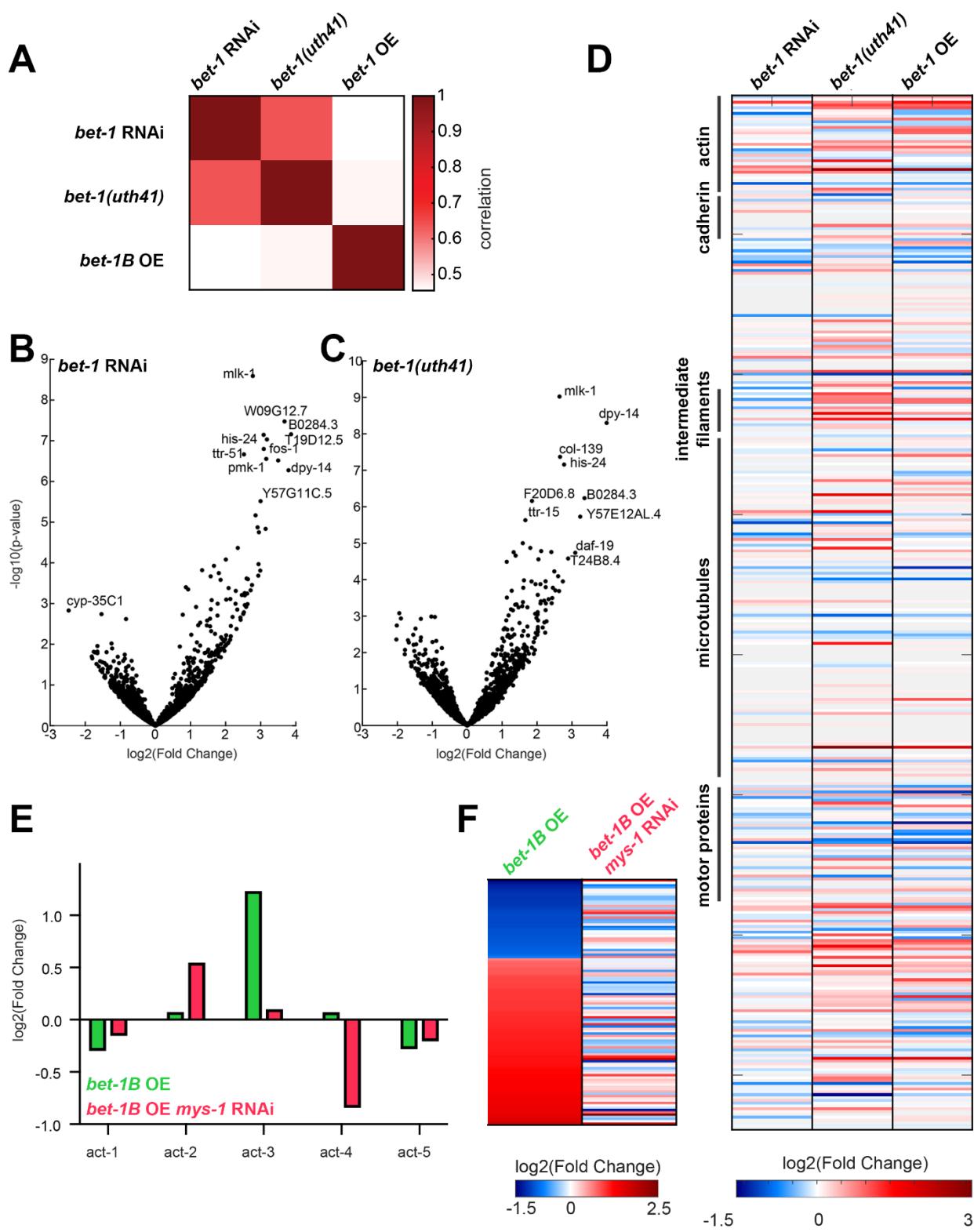
1066



1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

Fig. S2. Knockdown and knockout of *bet-1* decrease lifespan. (A) Lifespans of wild-type, N2 animals grown on empty vector (EV, blue), *bet-1* (red), *egrh-1* (green), *F53B6.5* (purple), or *ikb-1* (orange) RNAi from hatch. See **Table S3-4** for lifespan statistics. (B) RT-PCR of transcripts in N2 animals grown on empty vector (EV), *bet-1*, or *mys-1* RNAi from hatch. RNA was isolated in day 1 adults, followed by cDNA synthesis and PCR. Quantification was performed in ImageJ measuring the integrated intensity of bands and normalizing against a *tba-1* loading control. Left side shows PCR band for each of four biological replicates (V1-V4). Right side are dot plots where each dot represents a single biological replicate and lines represent median and interquartile range. * = p < 0.05 calculated using non-parametric Mann-Whitney testing. (C) Lifespans of N2 (EV, blue) and *bet-1(uth41)* (red) animals grown on empty vector RNAi from hatch. See **Table S3-4** for lifespan statistics.

1079
1080 **Fig. S3. BET-1 functions as a transcriptional regulator. (A)** Animals overexpressing
1081 *GFP::bet-1B* were grown on empty vector RNAi from hatch. Eggs were isolated by a standard
1082 bleaching protocol, fixed using 4% PFA, and counterstained with DAPI as described in STAR
1083 Methods. Images were collected on a Leica Stellaris 5 confocal. Scale bar is 5 μ . **(B)** Lifespans
1084 of wild-type, N2 animals grown on empty vector (EV, blue) or a 50/50 mix of EV/*bet-1* (red),
1085 EV/*mys-1* (green), or *bet-1/mys-1* (purple) from hatch. See **Table S3-4** for lifespan statistics.
1086
1087



1088

1089 **Fig. S4. *mys-1* is required for BET-1 mediated effects on actin and lifespan. (A)**

1090 Representative fluorescent images of adult animals expressing Lifeact::mRuby from a muscle-
1091 specific promoter *myo-3p*. Wild-type, N2 and *bet-1B* overexpression (*bet-1p::bet-1B*) animals
1092 were grown on empty vector (EV) or *mys-1* RNAi from hatch and imaged at day 1, 4, 7, 10, and
1093 13 of adulthood. Images were captured on a Zeiss AxioObserver.Z1. Scale bar is 10 μ m. (B)

1094 Lifespans of N2 (EV, blue) and *bet-1B* overexpression (*bet-1p::bet-1B*, green) animals grown on
1095 EV or *mys-1* RNAi (N2, orange; *bet-1B* overexpression, yellow) from hatch. See **Table S3-4** for
1096 lifespan statistics.

1097

1098 **Fig. S5. Gene expression analysis of bet-1 knockdown, knockout, and over-expression.**

1099 **(A)** Pearson's correlation of log2(fold changes) in gene expression between the different
1100 datasets, normalized by N2 wild-type control. Gene expression changes, as in Figure 3A, for
1101 *bet-1* RNAi (**B**) or *bet-1* CRISPR mutant (**C**). (**D**) Gene expression changes for all cytoskeleton
1102 genes as annotated in WormCat (Holdorf et al., 2020): actin function; cadherin; centrosome;
1103 claudin; innexin; integrin; intermediate filament protein; microtubule; motor protein; other. (**E-F**)
1104 Changes in differentially expressed genes is dependent on *mys-1*: Gene expression of *bet-1B*
1105 over-expressing worms subjected to *mys-1* RNAi was compared to a *mys-1* RNAi only baseline
1106 control. The five actin genes are plotted in (**E**), and all differentially expressed genes in the *bet-*
1107 *1B* over-expressing worms are plotted in (**F**). See **Table S5** for all differentially expressed
1108 genes.

1109

1110

1111

1112 **Table S1. Enriched genes from cytochalasin screen.**

1113

1114 **Table S2. Depleted genes from cytochalasin screen.**

1115

1116 **Table S3. Statistics for lifespans.**

1117

1118 **Table S4. Replicates for lifespans.**

1119

1120 **Table S5. Differentially expressed genes from RNA-seq analysis.**

1121

1122 **Table S6. Raw sgRNA counts from cytochalasin screen.**

1123