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Abstract

Analyses of the factors shaping spatial genetic structure in widespread plant species are important
for understanding evolutionary history and local adaptation and have applied significance for
guiding conservation and restoration decisions. Thurber’s needlegrass (Achnatherum
thurberianum) is a widespread, locally abundant grass that inhabits heterogeneous arid
environments of western North America and is of restoration significance. It is a common
component of shrubland steppe communities in the Great Basin Desert, where drought, fire, and
invasive grasses have degraded natural communities. Using a reduced representation sequencing
approach, we generated SNP data at 5,677 loci across 246 individuals from 17 4. thurberianum
populations spanning five previously delineated seed zones from the western Great Basin.
Analyses revealed pronounced population genetic structure, with individuals forming consistent
geographical clusters across a variety of population genetic analyses and spatial scales. Low levels
of genetic diversity within populations, as well as high population estimates of linkage
disequilibrium and inbreeding, were consistent with self-fertilization as a contributor to population
differentiation. Moreover, variance partitioning and partial RDA indicated local adaptation to the
environment as an additional factor influencing the spatial distribution of genetic variation. The
environmental variables driving these results were similar to those implicated in recent
genecological work which inferred local adaptation in order to delineate seed zones. However, our
analyses also reveal a complex evolutionary history of 4. thurberanium in the Great Basin, where
previously delineated seed zones contain distantly related populations. Overall, our results indicate
that numerous factors shape genetic variation in A. thurberianum and that evolutionary history,
along with differentiation across distinct geographic and environmental scales, should be

considered for conservation and restoration plans.
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Introduction

Identifying the factors that drive patterns of genetic variation among plant populations is important
for understanding ecological and evolutionary processes and has applied significance for
conservation and ecological restoration (Sork et al., 1999; Hedrick, 2005; Holderegger and Wagner
2008; Sommer et al., 2013). The spatial distribution of genetic variation reflects evolutionary
processes, including drift, migration, and selection, which shape the standing variation and the
evolutionary potential of populations. Therefore, quantifying spatial genetic structure and the
factors shaping it can help assess the degree of population connectivity, the scale of and potential
for local adaptation to environmental variation, and, consequently, the persistence of plant
populations faced with environmental change (Bauert et al., 1998; Booy et al., 2000; Manel et al.,
2003). Such analyses can also be used to guide conservation and restoration decisions using
biologically meaningful information (Ottewell et al., 2016; Carvalho et al., 2021). During the last
decade, high throughput sequencing approaches have substantially improved our ability to
quantify spatial genetic structure and infer its causes across populations of ecologically significant

non-model organisms (Andrews et al., 2016; Breed et al., 2019; Hohenlohe et al., 2021).

For plant species with large distributions spanning heterogeneous environments, spatial
genetic structure can be shaped by numerous factors, including geological, historical, and
environmental factors, as well as life-history variation (Holderegger et al., 2010). Across large
geographic scales, genetic differentiation among populations can be expected as gene flow decays
with increasing geographic distance and across geological barriers, commonly resulting in
isolation by distance (Wright, 1943; Gavrilets et al., 2000; Hoskin et al., 2005). However,
environmental and ecological factors may also play a role in shaping spatial genetic structure

(Alvarez et al., 2009; Storfer et al., 2010; Paz et al., 2015; Mosca et al., 2018). Environmental
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variation can directly influence genetic differentiation by causing local adaptation and indirectly
by generating Isolation by Environment (IBE; Shafer and Wolf, 2013; Wang and Bradburd, 2014),
where gene flow is reduced across environmental gradients or selection against migrants occurs
(Kawecki and Ebert, 2004). Thus, strong population genetic differentiation can occur across
regions experiencing different ecological and environmental conditions (Ortego et al., 2012; Orsini

et al., 2013; Wang et al., 2013; Wang and Bradburd, 2014).

Mating system also influences patterns of population genetic structure in plants (Williams
et al., 2001; Duminil et al., 2007; Gamba and Muchhala, 2020), due to variation in the frequency
with which offspring are produced asexually, through self-fertilization, or via sexual outcrossing
(Holsinger, 2000). Compared to outcrossers, asexual and selfing plants often have reduced levels
of within-population genetic diversity. In particular, selfing plants often exhibit low population
genetic variation and high inbreeding which can lead to relatively pronounced patterns of
population differentiation (Hamrick and Godt, 1996; Volis et al., 2010; Wagner et al., 2012; Huang
et al., 2021). Thus, selfing plants may show stronger patterns of population structure at a local
scale and lower genetic diversity than outcrossing plants with higher genetic diversity and non-
structured populations. Mating system could thus impact another decision increasingly common
in restoration, which is whether to combine collections from multiple populations, either to
deliberately increase diversity or as a practical decision when there are simply not enough seeds
available from one population (St. Clair et al., 2020). While there is concern about the potential
for outbreeding depression when combining populations of outbreeding species (Templeton, 1986;

Hufford et al., 2012), these concerns could be reduced for highly inbreeding species.

In complex environments, isolation and convergent evolution can result in similar but

independently derived phenotypes in populations with very different evolutionary histories (St.
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90  Clair et al., 2013; Massatti et al., 2018). While common in natural systems, these patterns may
91  confound restoration efforts, leading to situations where practitioners may be choosing between
92  seed sources that either possess phenotypes that are likely to be adaptive in a given site but are
93  distantly related to plants that used to occur there, or are more closely related to former inhabitants,
94  maintaining historical patterns of gene flow, but with sub-optimal phenotypes that may not survive
95 as well in restoration sites (Leger et al., 2021). Historically, evolutionary history has been
96  commonly considered in conservation planning for rare species (Verdu et al., 2012), while an
97  emphasis on adaptive phenotypes has been the focus for delineating seed transfer zones for
98  restoration of widely-distributed species (Baughman et al., 2019; Pedlar et al., 2021). However,
99  due to advances in DNA sequencing technology, it has recently become possible to consider
100  evolutionary history as well as both genomic and phenotypic evidence for local adaptation for
101  widely distributed species (Massatti et al., 2018; Breed et al., 2019). Here we consider how
102  evolutionary history and environmental variation shape landscape genetic structure in a
103 widespread grass species of restoration significance in the Great Basin Desert, for which seed
104  transfer zones have been previously inferred based on phenotypic evidence for local adaptation

105  (Johnson et al. 2017).

106 The Great Basin is the most extensive cold desert in North America, with an area of about
107 540,000 km?, that harbors significant environmental heterogeneity and biological diversity,
108  including high levels of genetic diversity and local adaptation across extensive environmental
109  gradients created by the complex, repeated basin and range topography (West, 1983; Pilliod et al.,
110  2017; Baughman et al., 2019; Faske et al., 2021). However, in recent decades, the combined effects
111  of altered fire regimes, invasive annual grasses, and human land use have led to widespread

112 degradation and fragmentation of habitats in the Great Basin (Balch et al., 2013; Pilliod et al.,
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113 2013). In particular, cheatgrass (Bromus tectorum) and other non-native annual species have
114  transformed native shrublands into invasive-dominated grasslands (Knapp, 1996; Parkinson et al.,
115  2013; Nagy et al., 2021). These factors, along with climate change, are contributing to native plant
116  species declines, especially native grasses, many of which are decreasing in abundance (Chambers
117  and Wisdom, 2009; Svejcar et al., 2017). Overall, restoration efforts are increasing in response to
118  global initiatives (Dudley et al., 2020; Stange et al., 2021), especially in drylands such as the Great
119  Basin (Pilliod et al., 2017; Shackelford et al., 2021). Despite the widely recognized importance of
120  considering spatial genetic structure and local adaptation for restoration planning (Knapp and Rice,
121 1994; Hufford and Mazer, 2003; McKay et al., 2005; Breed et al., 2019), and the growing number
122 of plants in this region with phenotype-based seed transfer zones (TRM Seed Zone Applications:
123 https://www.fs.fed.us/wwetac/threat-map/TRMSeedZoneMapper.php), we lack population
124 genomic perspectives for most Great Basin native plants of restoration significance (but see

125  Massatti et al., 2018).

126 Among the Great Basin grass species of restoration interest is Thurber's needlegrass,
127 Achnatherum thurberianum (Piper) Barkworth, a widespread perennial bunchgrass species and an
128  essential component of many sagebrush communities (Johnson et al., 2017). Achnatherum
129  (Poaceae, subfamily Pooideae, tribe Stipeae) consists of large perennial grasses that grow in
130  temperate grassland and savannah habitats (Soreng et al., 2015; Soreng et al., 2017), many of
131  which are thought to self-fertilize (Jones and Nielson, 1989; Durka et al., 2013; Krachmer, 2019).
132 Genetic boundaries of Achnatherum are controversial (Jacobs et al., 2007; Cialdella et al., 2010;
133 Romaschenko et al., 2010, 2012; Peterson and Romaschenko, 2019), and accordingly, the
134  taxonomy of the genus has been reviewed several times (Hamasha et al., 2012). In particular, A.

135  thurberianum has been previously classified as Stipa thurberiana (Piper), (Circ. Div. Agrostol.
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136  U.S.D.A., 1900), A. thurberianum (Piper), (Barkworth, 1993), and the more recent although not
137  yet widely in use Eriocoma thurberiana (Piper) (Peterson and Romaschenko, 2019; see the
138  Missouri Botanical Garden's taxonomic database; http://www.tropicos.org). Studies on related
139  species in Eurasia (from the tribe Stipeae) based on traditional molecular markers indicated
140  pronounced population differentiation and low diversity consistent with a selfing mating system
141  and demographic processes shaping population differentiation at small spatial scales (Wagner et
142 al, 2012; Durka et al., 2013). Other studies on Eurasian species have indicated the potential for
143 climate to shape local adaptation and population genetic structure (Hamasha et al., 2013; Gao et
144 al., 2018; Schubert et al., 2019). Recent genecological work on A. thurberianum phenotypes across
145  the Great Basin illustrated local adaptation in response to temperature and precipitation variation,
146  which led to the formation of seed transfer zones for this species (Johnson et al., 2017).
147  Specifically, in that study, populations from warmer and drier regions generally exhibited earlier
148  flowering time and narrower leaves than those from cooler wetter regions (Johnson et al., 2017).
149  However, we currently lack a baseline perspective on the spatial distribution of genetic variation
150  for A. thurberanum in the Great Basin region, which is important because a complex evolutionary
151  history could have unintended consequences for seed sourcing if transfer zones are delineated
152  based on only climate, proximity, or phenotypic evidence for local adaptation (Massatti et al.,
153 2018). Analyses of evolutionary history and how landscape genetic variation is shaped by
154  environmental, geographic, and life history variation stand to improve understanding of the
155  biology of this widespread species and provide a critical context for understanding its evolution
156 and restoration potential, including the application of phenotype-based seed transfer zones

157  (Johnson et al., 2017).
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158 Here, we used reduced representation sequencing (ddRADseq) to characterize spatial
159  genetic variation across 17 A. thurberianum populations distributed across the southwestern Great
160  Basin, in an area representing five of the twelve seed zones proposed by Johnson et al. (2017). We
161 examined phylogeographic patterns and spatial genetic structure across populations and
162  considered how geographical and environmental factors influenced them. We also quantified
163 levels of genetic diversity, linkage disequilibrium, and inbreeding coefficients within populations
164  to evaluate the extent to which mating system might influence standing variation and fine-scale
165  differentiation across the sampled populations and asked to what degree existing seed zones
166  reflected evolutionary history. We expected to see pronounced regional and fine-scale spatial
167  genetic structure, influenced by both mating system and local adaptation to environmental
168  variation in this widespread grass. Further, we expected that we might find evidence of multiple
169  lineages represented within seed zones, given the complexity of the basin and range topography

170  and the potential for convergent evolution during the process of local adaptation.

171 Material and methods

172  Plant material

173 We collected leaf material from 17 localities in the western Great Basin during the Fall of 2017
174  from a range of 20 to 39 plants per location (Figures 1a, 2a; Table 1). We sampled these locations
175  because they hosted multiple native species that could potentially serve as restoration seed sources
176  for this region; collections of other species from these locations are being used for additional
177  restoration genetic studies (e.g., Faske et al., 2021; Agneray et al., 2022). In addition, these
178  localities spanned five seed zones proposed by Johnson et al., (2017). Means for representative
179  environmental variables for each population were obtained as described below and can be found

180 in Suppl. Table 1. Because of the complex topography in this region, note that proximate
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181  populations are not necessarily within the same seed zone (Figure 1a). A total of 246 individuals,
182  from a range of 12 to 18 plants per location, were included in analyses after DNA extraction and

183  quality screening (see below).

184  Library preparation, sequencing, and variant calling

185  DNA was extracted from dried tissue using Qiagen DNeasy Plant Mini Kits and quantified with a
186  Qiagen QIAxpert microfluidic analyzer (Qiagen Inc., Valencia, CA, USA). We constructed
187  reduced-representation libraries for Illumina sequencing using a ddRADseq method (Parchman et
188 al., 2012; Peterson et al., 2012). The genomic DNA was digested with two restriction enzymes,
189  EcoRI and Msel, and custom oligos with Illumina base adaptors and unique barcodes were ligated
190  to the digested fragments (ranging from eight to 10 base pairs in length). Ligated fragments were
191 amplified by PCR using a high-fidelity proofreading polymerase (iProof High-Fidelity DNA
192 Polymerase, BioRad Inc., Hercules, CA, USA) and subsequently pooled into a single library.
193  Libraries were size selected for fragments between 350 and 450 bp in length with the Pippin Prep
194  System (Sage Sciences, Beverly, MA) at the University of Texas Genome Sequencing and
195  Analysis Facility (UTGSAF). Sequence data were generated for the full set of individuals using a

196  partial lane of sequencing on the Illumina NovaSeq platform at the UTGSAF.

197 We used the tapioca pipeline (https://github.com/ncgr/tapioca) and a known contaminant
198  sequence database to identify and discard Illumina primer/adapter sequences and potential
199  biological sequence contaminants (e.g., PhiX, E. coli). We then demultiplexed the reads using a
200  custom Perl script that corrects one or two base sequencing errors in barcoded regions, parse reads
201  according to their associated barcode sequence, and trims restriction site-associated bases.

202  Trimmed fastq files for each individual are available at SRA (https:).
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203 Filtered reads were clustered for variant identification and filtering with the software
204  stacks v 1.46 (Catchen et al., 2013). We followed a de novo assembly approach, using the
205  "denovo map.pl" module, which allows genotype inference by identifying SNP loci without a
206  reference genome. The parameters were set as follows: the minimum number of identical reads
207  required to call an allele was set to 3 (m = 3), the maximum number of mismatches between loci
208  for individuals was set to 2 (M =2), and the maximum number of mismatches among loci when
209  comparing across individuals was set to 2 (n = 2). These parameters were selected through an
210  optimization process following recommendations from Mastretta-Yanes et al., (2015) and Paris et
211 al., (2017). In brief, we set the optimal m among values ranging 2 to 7 (for M and n = 2) and the
212 optimal M value among values ranging from 2 to 6 for the m optimal value (for n = M). Then, we
213 used the "populations" module in stacks (Catchen et al., 2011, 2013; Rochette et al., 2019) to
214  extract loci that were present in at least 80% of the individuals (--r = 0.80) and with a maximum
215  observed heterozygosity of 0.65 (--max_obs_het = 0.65) and to generate and export the SNP data
216  in vcf format for further analyses. We used vcftools v 4.2 (Danecek et al., 2011) to estimate
217  the allele frequency, the mean depth per individual, the mean depth per site, and the proportion of
218  missing data per site of the vcf outputs. We explored these statistics in R in order to decide the
219  optimal m, M, and n parameters. Additionally, we filtered the obtained pool of loci using vcftools
220 v 4.2. We allowed a maximum missing data of 20 % (--max-missing 0.8), a minimum minor
221  allele frequency of 0.03 (--maf 0.03) and specified a thin value of 5 (--thin 5), which allows that
222 no two sites are within the specified distance from one another. Also, we only included sites with

223 quality scores above 10 (--minQ 10).

224 Patterns of population genetic diversity and differentiation

10
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225  Genetic diversity estimates were calculated in R using the package hierfstat v 0.5-7 (Goudet,
226  2005). We used the "basic.stats" function to estimate mean observed heterozygosity (Ho), mean
227  expected heterozygosity (He), and individual inbreeding coefficients (Fis) within each population.
228  Pairwise Nei's Fst (Nei, 1987) and pairwise genetic distances (Nei’s D) were estimated for all
229  pairs of populations with the "genet.dist" function. The confidence intervals over Fis and Fsr
230  values were estimated using 1000 bootstraps with the "boot.ppfis" function. Additionally, we

231  estimated nucleotide diversity (m) and Tajima's D for each population, using veftools v 4.2.

232 We further quantified genetic structure within and among populations with an analysis of
233 molecular variance (AMOVA) using the R package poppr v 2.9.2 (Kamvar et al., 2014). We
234 tested whether most genetic variance was observed among individuals within populations (i.e., no
235  population structure) or between populations (i.e., population structure). The significance of
236  AMOVA results was tested with the function "randtest" from the R package adegenet v 1.3-1
237  (Jombart, 2008) using 999 simulations. A linkage disequilibrium (LD) analysis was conducted
238  based on the index of association (Ia; Brown et al., 1980) and the standardized index of association
239 (r g) overall the loci to infer the mode of reproduction within populations. Linkage disequilibrium
240  is expected to be more pronounced in populations engaging in selfing or asexual reproduction in
241  comparison to those mainly reproducing sexually. We used the package poppr v 2.9.2 (Kamvar
242  etal.,, 2014) and performed the analysis using 999 permutations. To distinguish between selfing
243 and asexual reproduction as processes leading to low genetic diversity, we estimated relatedness
244  among individuals using vcftools v 4.2 based on the Manichaikul et al., (2010) approach (--
245  relatedness2). This method gives information about the relationship of any pair of individuals by

246  assessing their kinship coefficient, which ranges from 0 (no relationship) to 0.50 (self). Individuals

11
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247  were plotted against one another using the "heatmap" function from the R package stats v 3.3.1

248  (Team, R. C., 2013).

249  Spatial genetic structure

250  We tested whether populations exhibited isolation by distance (IBD; Wright, 1943) and/or
251  isolation by environment (IBE; Wang & Bradburd, 2014), comparing the pairwise matrices of
252  genetic distances (Nei's D; see above) with geographic and environmental distances (see
253  environmental data details below) through Mantel tests. We used the "mantel” function from the
254 R package vegan v 2.5-7 (Oksanen et al., 2013), with Spearman correlation and 9999
255  permutations. We estimated the geographic distances among populations as haversine distances

256  using the “distm” function of the geosphere v 1.5-14 R package (Hijmans et al., 2017).

257 Spatial genetic variation was further assessed using model-free and model-based inference
258  of genetic variation among individuals. First, we inferred population structure and individual
259  ancestries without a priori information on sample origin using ADMIXTURE v 1.3.0 (Alexander
260 and Lange, 2011). Weused pLINK v 1.07 (Purcell et al., 2007) to convert the vcf file into unlinked
261  SNPs (i.e., LD-pruned SNPs) and then ran ApMIxTURE with K values ranging from 2 to 10. The
262  optimal value of K was estimated by evaluating cross-validation errors. Patterns of genetic
263  variation were further summarized by principal component analyses (PCA; Patterson et al., 2006)
264  using the "prcomp" function from the R package stats v 3.3.1 (Team, R. C.,2013). For each
265  ancestral population (k) we indicated the corresponding seed zone of Johnson et al. (2017). We
266  also performed uniform manifold approximation and projection analyses (UMAP; Leland et al.,
267  2018; Mclnnes et al., 2018) using the "umap" function from the R package umap v 0.2.7.0
268  (Konopka, 2020). UMAP has recently been shown to excel at detecting and conveying fine-scale

269  spatial genetic structure of populations (Diaz-Papkovich et al., 2019; Diaz-Papkovich et al., 2021).

12
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270  Weran UMAP with the minimum distance between points in low-dimensional space (MD) ranging
271 from 0.1 to 0.99 and the number of approximate nearest neighbors used to construct the initial
272 high-dimensional graph (NN) ranging from two to 16. Based on an assessment of clustering results
273  across this range of parameter space (Suppl. Figures 2 a-h), we present results here with min_dist

274  =0.25 and n_neighbors = 16.

275 We conducted two analyses to visualize variation in differentiation and effective migration
276  across the sampled populations. Both analyses essentially quantify the extent to which
277  differentiation among populations departs from the expectation of isolation by distance. First, we
278  visualized effective migration rates using EEMS (Estimated Effective Migration Surfaces; Petkova
279  etal., 2016). This analysis assigns individuals to the nearest deme, and by using a stepping-stone
280  model, estimates effective migration rates between demes. A genetic dissimilarity matrix was
281  calculated using the bundled bed2diffs script (Petkova et al., 2016). The habitat polygon was
282  obtained manually to include the sampling localities of all the populations, using Google Maps
283  API v 3 Tool (http://www.birdtheme.org/useful/v3tool.html). We chose a deme size of 300
284  (nDemes parameter) and performed three independent analyses using runeems_snps script, with a
285  burn-in of 100,000,000 (numBurnlter parameter), MCMC length of 200,000,000 (numMCMClter
286  parameter), and the number of iterations to thin between two writing steps of 999,999
287  (numThinlter parameter). We combined the results of the three independent runs and plotted the
288  results corresponding to the surfaces of effective diversity (q) and effective migration rates (m)

289  using the R package rEEMSplots v 0.0.1 (Petkova et al., 2016).

290 As an additional method to visualize differentiation and effective migration across
291  populations, we employed unbundled principal components (unPC) as a complementary method

292  to EEMS, to reveal potential long-distance migration using the unpc v 0.1.0 R package (House
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293  and Hahn, 2018). UnPC uses principal components in combination with geographic coordinates
294  of samples to create visualizations of genetic differentiation across the landscape. It first calculates
295  the Euclidean distance between PCA coordinates for each pair of populations and then estimates
296  the pairwise geographic distance between populations. The ratio of the genetic distance to the

297  geographic distance for each pair of populations is the unPC value for each pair.

298 Finally, we analyzed and visualized population structure using a phylogenomic approach.
299  First, we converted the vcf file to fasta format using vef2phylip v 2.0 (Ortiz, 2019). We trimmed
300 the fasta alignment to exclude unreliably aligned positions with trimal v 1.2 using the
301  "gappyout" method (Capella-Gutiérrez et al., 2009). Then, we ran 10-TREE v 1.6.10 (Nguyen et
302  al, 2015) using the "Model Finder Plus" parameter (-m MFP) to determine the best substitution
303  model (choosing the model that minimizes the BIC score), the ascertainment bias correction
304  method (ASC; Lewis, 2001), and the ultrafast bootstrap option with 1000 bootstrap replicates (-bb
305 1000). We visualized the obtained tree in Figtree v 1.4.4 (Rambaut, 2018), and indicated the
306  appropriate seed zone for each sampled individual. We then plotted the tree linked with the
307  population's geographical coordinates after simplifying the tree to retain one sample tip per
308  population using the drop.tip function in the R APE package v 5.5 (Paradis et al., 2004). We
309  used the "phylo.to.map" function in the R package phytools v 0.7-80 to plot a map (Revell,
310  2014), using the dropped tree and the geographical coordinates and choosing the "state" database,
311  again indicating seed zone for each population. To quantify the extent to which seed zones reflect
312 evolutionary history, we tested for phylogenetic signal by estimating Pagel's A (Pagel, 1999) for
313 the distribution of seed zones across sampled populations. We used the “fitDiscerte” function from

314  the R package geiger v 2.0.7 (Harmon et al., 2015). To test the significance of our results, we
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315  estimated the log-likelihood if A = 0 and if A = 1 using the function “rescale” and did a likelihood

316  ratio test.

317 Influence of environmental variation on spatial genetic variation

318  We conducted genetic-environment association (GEA) analyses using partial redundancy analysis
319 (pRDA) to identify environmental variables that covary with genetic differentiation among
320  populations. Climate environmental variables for each site were obtained from the PRISM
321  database (https://prism.nacse.org) using the "get prism normals" function from the R prims
322 library (Hart et al., 2015), with a data range from 1981 to 2010 with an 800 m x 800 m resolution.
323  Following Faske et al.,, (2021), we converted monthly normals to estimates of potential
324 evapotranspiration, actual evapotranspiration, soil water balance, and climatic water deficit, which
325  have been shown to effectively predict aspects of spatial and distributional variation across plant
326  communities (Barga et al., 2018). Elevation data was acquired from the R library elevatr v
327  0.2.0 (Hollister and Shah, 2017). We also included several climatic variables that predicted
328  genecological variation and were used for seed zone delineation in a previous study (Johnson et
329  al. 2017; see Suppl. Tables 2a, b for details). Before any analyses, we examined multicollinearity
330  among the pool of variables using the “pairs.panels” function from the pyshc v 2.1.9 R package
331  (Revelle, 2015), based on Pearson's || < 0.60, to select the most orthogonal subset of variables
332 possible. We removed all the environmental variables that were highly correlated with other
333  wvariables, thus reducing the data set from 46 to 8 environmental variables (Table 2). Then, we
334  applied partial redundancy analysis variance partitioning to decompose the contribution of climate,
335  population structure, and geography in explaining genetic variation. We used three sets of
336  variables: 1) climate environmental variables (Table 2); 2) two proxies of genetic structure

337  (population scores along the two previously estimated PC axes); and 3) each population's
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338 coordinates (longitude and latitude). As a response variable, we used the individual-based
339  genotypes (coded as the count of one allele, i.e., 0/1/2). We used the "rda" function from the vegan
340 v 2.5-7 R package (Oksanen et al., 2013) for pPRDA. Following Capblancq and Forester (2021),
341 we first tested the significance of the full RDA model (with all the variables included).
342 Subsequently, explanatory variables were added one by one, using the "ordiR2step" function of
343 thevegan v 2.5-7 R package, with the following stopping criteria: variable significance of p <
344  0.01, 1000 permutations, and the adjusted R2 of the global model. Then, we performed three
345  different pRDA models: first, a model accounting for environmental variables only (conditioning
346  the model by geography and population structure); second, a model accounting for population
347  structure (conditioning the model by geography and environmental variables); and third, a model
348  accounting for geography (conditioning the model by population structure and environmental
349  variables). We then compared the amount of variance explained by each pRDA to the variance of
350  the full model (including all explanatory variables) to estimate the independent contribution of

351  each set of variables together with any confounding effects induced by collinearity.

352 Given the results from the above analyses, we conducted pRDA on the genotypic and
353  environmental data to infer the influence of specific environmental variables on spatial genetic
354  structure and detect the genetic signal of local adaptation and its environmental causes. We used a
355 partial RDA (pRDA) conditioning by population structure (PC1 and PC2) and geography (latitude
356  and longitude) to assess whether the degree of adaptive genetic variation among individuals is
357 explained by a particular set of environmental variables. The significance of models and RDA
358  axes, and the proportion of variation explained by each environmental variable were tested with
359  an analysis of variance (ANOVA) and permutation (n = 999), using the “anova.cca” function of

360  the vegan v 2.5-7 R package. Also, we used RDA to identify outlier loci potentially under
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361  selection using loadings of SNPs from the first three constrained ordination axes. We used
362  stringent outliers filtering of 3.5 standard deviations (p < 0.0005) (Forester et al., 2018). Then, we
363  checked for duplicate candidate loci associated with more than one RDA axis and used Pearson's

364  correlation (r) to identify the strongest predictor.

365 Results

366  Patterns of genetic diversity and differentiation

367  We identified a total of 5,677 SNPs in a subset of 246 individuals that were retained after filtering
368  with mean coverage depth per individual of 21.83. Population genetic statistics were obtained for
369  each population (Table 1). Observed heterozygosity (H,) values were lower than the expected (He)
370  in all the cases, indicating low heterozygosity in all the populations studied. As follows, inbreeding
371  coefficient (Fis) values were positive for all populations, indicating reduced diversity that is
372 consistent with self-pollination. Fis values were variable across populations but were significantly
373 positive for all populations except DH, EW, SC, SS, and VM, based on bootstrap coefficient
374  intervals. Nucleotide diversity () estimates were low, congruent with previous results. Moreover,
375  all populations had positive values of Tajima's D consistent with population size contraction. The
376  index of association (Ix) and the standardized index of association (r 4) were different from zero
377 and significant in all cases (p < 0.001), indicating elevated levels of linkage disequilibrium
378  consistent with selfing influencing variation within populations. Lastly, 98.58 % of the pairwise
379  combinations among individuals had mean relatedness coefficients of 0, and 1% had a mean
380 relatedness coefficient of 0.33, ranging from 0.005 to 0.47 (considering the 1 % left from
381  comparisons among same individuals) indicating that populations are diverse and do not consist

382  of apomicts (see Suppl. Table 3 and Suppl. Figure 1).
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383  Spatial genetic structure

384  AMOVA analyses indicated that 79.66 % (p < 0.01) of the observed genetic variance was
385  explained by variation between populations, consistent with strong population differentiation, with
386  the remaining 20.33 % (p < 0.01) reflecting variation among individuals within populations (Table
387  3). The results of the Mantel test indicated a positive association between geographic distance and
388  genetic distance (IBD: Mantel statistic 7: 0.257, p: 0.026; Figure 2a) and between environmental
389  and geographic distances (Mantel 7: 0.238, p: 0.025; Figure 2c¢). No significant association was
390  found between environmental and genetic distances (Mantel statistic 7: -0.001, p: 0.437; Figure

391 2b).

392 Population pairwise Fst values were significant in all pairwise comparisons (mean: 0.18,
393  range: 0.02 — 0.31), even for those involving populations that were highly spatially proximate,
394  indicating significant genetic differentiation between populations (Suppl. Table 4). PCA revealed
395  three strongly separated population genetic clusters (Figure 1b), but also suggested a high degree
396  of identifiability of individuals from most populations. The first two principal components
397  accounted for 16.75 and 13.27% of the variation. One cluster grouped the eastern populations (AH,
398 AS, BM, FR, SC) and the HO population, the second cluster grouped the western populations (BV,
399 GB, JC, LV, MD, PL, PT, SS, and VM), and lastly, the third cluster grouped EW and DH. The
400 UMAP analyses revealed a striking fine-scale population genetic structure in which all individuals
401  for each population clustered tightly together (note that the distances among UMAP clusters do
402  not represent genetic differentiation among them; Figure 1c). UMAP analyses across the ranges of
403  the minimum distance (MD) and the number of nearest neighbors (NN) parameters also produced

404  generally consistent clustering patterns (Suppl. Figures 2a-h).
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405 ADMIXTURE identified K = 8 as the most likely number of clusters among the 17 populations
406  sampled (Figure 1d), based on cross-validation error values (Suppl. Figure 3). Ancestry coefficient
407  estimates for this analysis produced a similar pattern to the PCA and the UMAP results. Eastern
408  populations formed an ancestry cluster (AH, AS, BM, FR, and SC), while western populations
409  split into two different ancestry clusters (GB, JC, MD, and SS, in one, and PL, PT, and VM, in
410  another). Lastly, the BV, DH, EW, HO, and LV populations were assigned to additional single
411  clusters, reflecting relatively stronger differentiation of these populations in relation to those within
412 the larger ancestral clusters above. Notably, populations from individual seed zones of Johnson et
413 al. (2017) were commonly assigned to multiple ancestral groups in the AbMIXTURE results (Figure
414  1d,e.g., populations in seed zones represented by circles belong to three different ancestry groups),
415  illustrating discordance among evolutionary history and seed zones delineated with phenotype-
416  environment associations. The two other most likely K values, K =9 and K = 10, generated similar
417  patterns of cluster membership and similar discordance among seed zones and ancestry (see Suppl.
418  Figure 3b).

419 The EEMS results suggested effective migration patterns congruent with previous results.
420  Some populations were connected by higher migration rates (m) than expected under isolation by
421  distance. For example, HO and AH, while separated by approximately 350 km, were connected
422 with high effective migration (Figure 1, Figures 3b, c). Moreover, other groups of populations
423 seem to have resistance barriers to gene flow despite being highly proximate geographically
424  (Figure 3b). For example, PL and PT appear to be distinguished by low effective migration rates
425  despite being separated by only 19 km. Results of unPC analyses (Suppl. Table 5) were broadly
426  consistent with those from the EEMS, suggesting the same regions of low and high effective

427  migration (Figure 3c).
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428 The maximum likelihood tree in which all main clades yielded branch support higher than
429 99 produced topologies similarly illustrated pronounced population divergence. Similar to the
430  patterns of clustering in PCA and ApMIXTURE analyses above, tree topology resolved four main
431  clades; the eastern populations (AH, AS, BM, FR, and SC) with HO, the BV population, the EW
432 and DH populations, and lastly, the western populations (GB, JC, MD, SS, LV, PL, PT, and VM)
433 (Figures 4a, b). Similar to evidence for population identifiability in UMAP analyses, individuals
434  from the same populations predominantly clustered together in the maximum likelihood tree,
435  further illustrating population differentiation at fine spatial scales. Consistent with ancestry based
436  analyses above, there was no evidence for phylogenetic signal for seed zones (A = 0.000);
437  populations from the same seed zones often appeared in multiple distantly related clades (e.g., DH

438 and EW, or PL and VM, Figures 4 a, b).

439  Genetic-environment association analyses

440 The pool of environmental variables was reduced from 46 to 8 after removing highly

441  correlated variables (based on Pearson's || < 0.60; note that the environmental variables used for

442  seed zone delineation in Johnson et al. (2017), were not included in the analyses to control for
443  multicollinearity, but some of them were correlated with the eight variables selected from our
444  analyses see Suppl. Table 2c). Results from the pRDA provided evidence that specific
445  environmental variables may influence spatial patterns of genetic variation. In particular, the
446  climatic variables explained 23% of the total genetic variation (39% of the variance explained by
447  the full model), suggesting an association between genetic variation and environmental gradients
448  (IBE) (Table 4). The environmental variables with the greatest explained variance in the pRDA
449  were the magnitude of climate water deficit (MaxCWD; 21.01 %, p <0.001) and the folded aspect

450  (AfRad; 17.80 %, p < 0.001) (Table 2; Figure 5). The first two constrained axes were significant
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451  (p <0.001), explaining 24.63 % and 23.44 % of the total variation (Figure 5). We identified ten
452  loci across the environmental variables associated with the second and third RDA axes (Suppl.
453  Table 2d). Four of these ten loci were associated with the difference between water supply and
454  actual evapotranspiration during the spring (WsAETspr), two with the maximum temperature
455  during the winter season (mxtmpwin), and the four remaining were associated with the cumulative
456  annual actual evapotranspiration during the growing season (AETgdd), the difference between
457  actual evapotranspiration summer low and fall peak (FallAET), the magnitude of climatic water
458  deficit (MaxCWD), and the slope (SlopRad). One of the variables strongly associated with genetic
459  variation the maximum temperature during the winter season (mxtmpwin; Table 2) was highly
460  correlated with the mean average temperature (MAT; Pearson's |r| = 0.82), which was among the

461  variables most strongly predicting genecological variation in Johnson et al. (2017).

462  Discussion

463  Understanding the nature of genetic variation in native plants is crucial not only for understanding
464  the origin and maintenance of diversity but also for conserving and restoring populations. Our
465  analyses of population genetic variation in Thurber's needlegrass (Achnatherum thurberianum), a
466  widespread bunchgrass in the Great Basin, illustrated strong regional differentiation as well as
467  remarkably fine-scale spatial genetic structure among populations. These patterns, along with low
468 levels of genetic diversity within populations, high inbreeding coefficients, and elevated linkage
469  disequilibrium, are consistent with self-pollination reducing genetic diversity and contributing to
470  spatial genetic structure. Despite low genetic diversity within the sampled populations, our
471  analyses indicated that environmental variation has shaped spatial genetic structure and influenced
472  local adaptation across 4. thurberianum populations. Our results suggested the potential for local

473  adaptation driven particularly by climate water deficit, aspect, and summer precipitation. Notably,
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474  our results illustrated previously unidentified differences in evolutionary history within seed zones
475  proposed for A. thurberianum based on phenotype-environment associations (Johnson et al. 2017).
476  Altogether, our results suggest that numerous factors have shaped the spatial genetic structure of
477  A. thurberianum across fine geographic and environmental scales and provide baseline
478  information that may be of value for restoration, including allowing managers to consider both

479  phenotypic variation and evolutionary history when making seed source decisions.

480 Strongly congruent results across multiple analyses (Fst, PCA, ADMIXTURE, phylogenomic
481  analyses, AMOVA, and UMAP) illustrated spatial genomic structure across both broad geographic
482  regions and among proximate populations at finer scales than might otherwise be expected for a
483  primarily wind-dispersed species (Linder et al., 2018). For example, at broad regional scales, our
484  analyses consistently illustrated pronounced differentiation among eastern and western groups of
485  populations (Figures 1, 4) including differentiation of two populations at the southwestern limit of
486  sampling. Interestingly, the HO population clustered within the eastern populations, despite being
487  geographically distant and in closer proximity to populations in the northwestern portion of the
488  sampled area (e.g., JC; see Figures la, b). These broad patterns of regional differentiation could
489  be explained by historical habitat contractions during the multiple Pleistocene glacial cycles that
490  shaped the Great Basin landscape (Beck and Jones, 1997). In particular, during the Last Glacial
491 Maximum and throughout the last deglaciation, the Great Basin region was marked by the
492  formation of multiple extensive lacustrine systems (Tchakerian and Lancaster, 2002; Lyle et al.,
493  2012), which would have reduced the availability of suitable habitat for 4. thurberianum. More
494  specifically, a large portion of our study area was historically occupied by Lake Lahontan (38.75—
495  40.75°N, 117.5-120.5°W; Russell, 1885; Matsubara and Howard, 2009), which may have played

496  a central role in shaping regional patterns of marked differentiation in Thurber's needlegrass.
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497  Consistent with such history, estimates of effective migration (EEMS and unPC) indicated barriers
498  to gene flow among eastern and western groups of populations, which continue to be separated by
499  low-elevation playas that are inhospitable to this plant (Figures 3b, c). Further, positive values of
500 Tajima's D for each population indicated past population contraction (Table 1; Tajima, 1989).
501  Temperate grass species of Europe (Hensen et al., 2010; Blanco-Pastor et al., 2019; Blanco-Pastor
502  etal., 2021), Africa (Mairal et al., 2021), and North America (Avendafio-Gonzélez et al., 2019;
503  Palacio-Mejia et al., 2021) demonstrate comparable regional patterns of differentiation and gene

504  flow also influenced by Pleistocene glacial cycles.

505 In addition to the larger-scale geographic patterns, genetic differentiation across smaller
506  geographic scales was evident in phylogenetic analyses, where individuals clustered largely by
507  population, and in the UMAP analyses, where individuals formed population-specific clusters
508  (Figure 1c). UMAP analyses provided remarkable resolution of spatial genetic structure, with all
509  A. thurberianum individuals having 100% identifiability to their population of origin. While
510  parameter settings can influence the UMAP depiction of clustering (MD and NN; Diaz-Papkovich
511 etal., 2021), our analyses across a range of two parameters produced largely congruent results
512 with minor variation in the strength of clustering (Suppl. Figure 2). These results suggest that the
513  degree of differentiation among populations seen here could possibly be used to retroactively
514  identify the constituents of historically seeded populations with a high degree of certainty.
515  Estimates of effective migration (EEMS and unPC) also appeared strongly reduced among a
516  number of geographically proximate populations (PT and DH separated by 58 km, or EW and FR
517  separated by 127 km, for example, Figures 3b, c¢). While gene flow among spatially proximate
518  populations can be high in some wind-dispersed grasses (Vogel et al., 2009; Stritt et al., 2022),

519  pronounced spatial genetic structure has also been reported in Eurasian species of Stipeae (Wagner
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520 et al., 2011; Durka et al., 2013). Patterns of population differentiation and identifiability across
521  both large and small geographic scales indicates that genetic variation in 4. thurberianum has been
522  shaped by a combination of historical isolation, local adaptation to environment, as well as life
523  history variation.

524 Species that rely strongly on self-fertilization cannot maintain high levels of genetic
525  diversity within populations through frequent pollen movement and therefore tend to have low
526  genetic diversity (Hamrick and Godt, 1996; Honnay and Jacquemyn, 2007; Durka et al., 2013;
527  Huang et al., 2021). Moreover, selfing plant species can be prone to developing fine-scale spatial
528  genetic structure due to reduction in effective population sizes and effective migration (Volis et
529 al., 2010; Huang et al., 2021). The populations studied here were characterized by low levels of
530  genetic diversity (mean He: 0.04; mean Ho: 0.02; mean m: 0.05), strongly positive inbreeding
531  coefficient estimates (Fis), and a high degree of linkage disequilibrium (r 4 and 1) (Table 1), all
532 of which are consistent with a mating system dominated by self-fertilization. While studies directly
533  assessing the mating system of 4. thurberianum are lacking, many closely related species from the
534  Poaceae family have been described as self-fertilized (Jones and Nielson, 1989; Arnesen et al.,
535  2017; Marques et al., 2017; Stritt et at. 2022). Indeed, grass species employing self-fertilization
536  have been commonly documented to have low genetic diversity and pronounced spatial genetic
537  structure (Dell’Acqua et al., 2014; Marques et al., 2017; Guo et al., 2017), presumably due to small
538  effective population sizes and genetic drift in the absence of much gene flow. Our results suggest
539  high rates of self-fertilization in A. thurberianum have likely contributed to its pronounced spatial

540  genetic structure in the western Great Basin.

541 Although mating system and low genetic diversity have allowed genetic drift to influence

542  spatial genetic structure, environmental variation also appears to have contributed to genetic
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543  variation in A. thurberianum. The environmental variables influencing spatial genetic variation in
544  A. thurberianum are known to predict genetic and phenotypic variation across populations of other
545  plant species (Dilts et al., 2015; Barga et al., 2018; Faske et al., 2021) and have been commonly
546  implicated as underlying local adaptation in genecological studies of Great Basin plant species
547  (Johnson et al. 2017; Baughman et al., 2019). Variance partitioning with partial RDA illustrated
548  that neutral genetic structure, geography, and environmental variation together explained a
549  substantial proportion of genetic variance (Table 4). However, the individual contribution of
550  environmental variation was substantially stronger than that of both genetic structure and
551  geography (Table 4). Variation in environmental variables (Table 2), especially climate water
552 deficit, aspect, and summer precipitation, explained a substantial proportion of genetic variation
553  and influenced spatial genetic structure (Table 2, Figure 5). The pronounced environmental
554  heterogeneity of the Great Basin (Figure 2c¢) could commonly give rise to Isolation by
555  Environment (IBE), where environmental transitions act as barriers to gene flow or where local
556  adaptation to different environments leads to low migrant fitness (Shafer and Wolf, 2013; Wang
557  and Bradburd, 2014). Genomic evidence for environment contributing to spatial genetic structure
558  and perhaps local adaptation is consistent with results from a common garden study of phenotypic
559  variation across 66 Great Basin A. thurberianum populations that inferred local adaptation to

560 environment as a basis for delineating seed zones (Johnson et al. 2017).

561 Given the strong influence of environmental variables on genetic variation observed here
562  and in Johnson et al. (2017), along with the topographically and environmentally heterogeneous
563  nature of this region, we suspected that proposed seed zones might span populations from distantly
564  related clades. Indeed, geographically differentiated groups of populations commonly crossed

565 multiple seed zones, and specific seed zones were represented across distantly related clades
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566  (Figures 1, 4). It is worth noting that our sampling focused on an area that was not well represented
567 in the sampling design for the phenotype-based seed zone development (Johnson et al. 2017),
568  which might indicate that caution is warranted when designating seed zones outside areas of
569  extensive sampling. Convergent evolution, or adaptation to parallel environmental conditions
570  across divergent lineages, is well documented across diverse groups of plants (e.g., Rellstab et al.
571  2020; Xu et al. 2020), and this possibility should be considered for seed zone design in the Great
572 Basin, especially if particular geographic regions show consistent barriers to gene flow for multiple
573  species. Indeed, other plant species from the Great Basin have been found to have similar patterns
574  of population genetic structure in the vicinity of historic Lake Lahontan (e.g., Faske et al., 2021).
575  Convergent evolution could have consequences for restoration if outbreeding depression
576  (reviewed in Edmands, 2007) or genetic incompatibilities (Etterson et al. 2007) occur in seed

577  mixes containing distantly related populations delineated as part of a single seed zone.

578 In addition to its relevance for seed zones, a general understanding of genetic diversity,
579  population differentiation, and local adaptation in 4. thurberianum could have utility for guiding
580  ecological restoration (Mijangos et al., 2015; Breed et al., 2019). Populations exhibited very low
581 levels of standing variation, presumably due to high self-fertilization rates, which likely
582  contributed to population differentiation at such fine spatial scales. Low diversity can be a concern
583  when sourcing seeds for restoration, as genetic diversity is often viewed as a proxy for evolutionary
584  potential (Ellstrand and Elam, 1993), and some have proposed mixing populations of low-diversity
585  species as a way to increase the chances of long-term persistence of restored populations (Bischoff
586 et al.,, 2010; Bucharova et al., 2019; St. Clair et al., 2020). While this may lead to risks of
587  outbreeding depression in some species, this might be reduced for highly-selfing species like A.

588  thurberianum (Jones and Nielson, 1989). Despite very low diversity, our analyses indicated that
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environmental variation has shaped spatial genetic structure and influenced local adaptation
across A. thurberianum populations of the Great Basin. Generally, consistent results of inference
of local adaptation in our study with that from phenotypic analyses of genecological experiments
(Johnson et al., 2017; Baughman et al., 2019) highlight the utility of population genomic analyses
for characterizing the environmental variables contributing to local adaptation while additionally
characterizing levels of diversity and differentiation across space, all of which have value for

guiding provenance and seed sourcing (Breed et al., 2019; Rossetto et al., 2019).
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individual fastq files for each population can be found under the following accession numbers: AH
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1013 Tables

1014  Table 1. Population genetic summary statistics for each sampled A. thurberianum population. For
1015  each sampling location (population), the table shows the number of individuals (N), expected (He)
1016  and observed heterozygosity (H,), inbreeding coefficient (Fis), nucleotide diversity (m), Tajima’s
1017 D (D), standardized index of association (r 4), and index of association (I4). Significant Fis results
1018  based on bootstrap coefficient intervals are depicted with an asterisk. The seed zone for each
1019  population corresponds to those proposed by Johnson et al., (2017). The MD population has no

1020  seed zone information as it was located outside of the Johnson et al., (2017) projected area.

1021
Population name, Population N H. H, Fis n D ra Ia Seed
State abbr. zone
Austin Hwy, NV AH 14 0.029 0.007 0.719* 0.039 0.487 0.283 122.350 8
Austin Summit, NV AS 15 0.028 0.010 0.649* 0.027 0.519 0.226 93.120 5
Bald Mountain, NV BM 18 0.025 0.008 0.671* 0.025 1.030 0.186 58.549 4
Buena Vista, OR BV 15 0.066 0.029 0.509* 0.067 0.339 0.019 21.443 8
Dayton Hill, NV DH 14 0.044 0.011 0.728 0.045 0.577 0.137 87.699 &
East Walker, CA EW 15 0.028 0.011 0.704 0.028 0.307 0.314 148.414 11
Finger Rock, NV FR 14 0.026 0.010 0.675* 0.026 0.487 0.271 106.050 7
Grey’s Butte, NV GB 14 0.060 0.024 0.522* 0.061 0.311 0.090 89.900 5
Hwy 140, NV HO 15 0.052 0.024 0.484* 0.052 0.252 0.025 22.540 8
Jones Canyon, NV JC 15 0.059 0.014 0.740* 0.058 0.752 0.102 86.020 11
Long Valley, CA LV 14 0.075 0.012 0.816* 0.074 0.512 0.236 270.389 8
Modoc, CA MD 15 0.058 0.016 0.715* 0.057 0.483 0.047 43.020 NA
Peavine Low, NV PL 15 0.049 0.032 0.368* 0.054 0.787 0.180 121.440 5
Patagonia, NV PT 12 0.035 0.024 0.344* 0.041 0.183 0.133 81.633 5
Smith Creek, NV SC 15 0.030 0.010 0.611 0.029 0.536 0.329 143.590 8
Spanish Springs, CA SS 14 0.060 0.024 0.551 0.067 0.273 0.029 29.786 5
Virginia Mountains, NV. - VM 12 0.049 0.017 0.603 0.054 0.401 0.084 64.681 8
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1022 Table 2. ANOVA results showing the variance explained by each environmental variable in the

1023 partial RDA, the F' value, and the associated p value.

1024
Environmental Variables Description df Variance F p
MaxCWD Magnitude of climatic water 1 21.001  28.743 0.0009
deficit
AfRad Folded aspect converted to 1 17.772  24.323 0.0009
radians
prcpsum PRISM total precipitation from 1 16.801  22.994 0.0009
June-Aug
WsAETspr Difference between water supply 1 15.934  21.807 0.0009
and AET during the spring
mxtmpwin PRISM average max temp from 1 15715 21.507 0.0009
Dec-Feb (C°)
FallAET Difference between actual 1 14.417  19.731 0.0009
evapotranspiration summer low
and fall peak
SlopRad Slope converted to radians 1 13.412  18.356 0.0009
AETgdd Cumulative annual actual 1 11.450  15.671 0.0009
evapotranspiration during the
growing season
Residuals 233 170.245
1025
1026
1027
1028
1029
1030
1031
1032
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Table 3. Molecular analysis of variance (AMOVA) results for the 17 populations of Achnatherum
thurberianum. Here, we provide the degrees of freedom (df), sum of squares (SS), mean squares
(MS), total variance (sigma), and the percentage of variance explained by each source of variation
(Variance %).

Source of variation df SS MS Sigma Variance %
Between populations 16 203377.59 12711.09 863.60 79.66
Within populations 229 50468.42  220.38 220.38 20.33

Total 245 253846.01 1036.10 1083.99 100
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Table 4. The influence of climate, structure, and geography on genetic variation decomposed with

partial RDA. The proportion of explainable variance represents the total constrained variation

explained by the full model.

Partial RDA models Variance R? p value  Proportion of Proportion of
explainable total Variance
Variance

Full model: 276.21 0.59  0.001 1 0.59

F ~ clim. + geog. + struct.

Pure climate: 110.23 0.23  0.001 0.39 0.23

F ~ clim. | (geog. + struct.)

Pure structure: 49.93 0.10  0.001 0.17 0.10

F ~ struct. | (clim. + geog.)

Pure geography: 19.53 0.04  0.001 0.06 0.03

F ~ geog. | (clim. + struct.)

Confounded 96.52 0.33 0.19

climate/structure/geography

Total unexplained 189.92

Total variance 466.13
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1054  Figure Legends

1055

1056  Figure 1. Population genetic structure of 17 populations of Achnatherum thurberianum based on
1057 5,677 SNPs. a) Map of the sampled locations with each population code. Each population is
1058  colored consistently in panels a, b, and ¢, and represented by one of five shapes corresponding to
1059  the seed zone of Johnson et al. (2017) containing each population (Table 1). b) The first and second
1060  principal components (PCs) resulting from PCA on the genotypic data plotted for each individual.
1061  c¢) Each individual plotted for the first two axes from a Uniform Manifold Approximation and
1062  Projection (UMAP) clustering analysis based on the genotypic data. d) ADMIXTURE plot
1063  representing estimated ancestry coefficients for each individual, following results of an analysis
1064  with K set to eight ancestral populations.

1065

1066  Figure 2. Mantel test results and relationships between genetic (Nei’s D) and geographic distances
1067  (km) (a), genetic (Nei’s D) and environmental distances (b), and geographic (km) and
1068  environmental distances (c).

1069

1070  Figure 3. Landscape genetic differentiation for the 17 Achnatherum thurberianum populations. a)
1071  Map of the sampled locations with each population (colors) and seed zone (symbols) code (Table
1072 1). b) Estimated effective migration surface (EEMS) plot depicting estimated migration rates (in
1073 log 10 scale) that deviate from isolation by distance expectations. Brown represents areas of low
1074  effective migration relative to the average, and green represents areas of higher effective migration.
1075  c¢) Unbundled principal components (unPC) representation; higher unPC values, representing

1076  greater differentiation than expected among populations, are colored in progressively darker
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shades of brown, while lower unPC values, representing lower differentiation among populations,
are colored in progressively darker shades of green. The unPC values near the mean of the

distribution are colored in white.

Figure 4. Population phylogenetic differentiation of the 17 Achnatherum thurberianum
populations. a) Maximum likelihood topology inferred with 10-TREE. The scale bar represents the
expected number of nucleotide substitutions per site. Ultrafast bootstrap support values (UFBS)
are indicated at the nodes. b) Projected phylogeny onto the geographic map showing each
population’s location. One individual is represented for each population to minimize overlap. The

different symbols in both panels correspond to the different seed zones studied (Table 1).

Figure 5. Redundancy analysis (RDA) plot depicting the environmental variables studied

significantly associated with genetic variation. The direction and length of arrows correspond to

the loadings of each variable on the two RDA axes.
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