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Abstract 20 

Analyses of the factors shaping spatial genetic structure in widespread plant species are important 21 

for understanding evolutionary history and local adaptation and have applied significance for 22 

guiding conservation and restoration decisions. Thurber’s needlegrass (Achnatherum 23 

thurberianum) is a widespread, locally abundant grass that inhabits heterogeneous arid 24 

environments of western North America and is of restoration significance. It is a common 25 

component of shrubland steppe communities in the Great Basin Desert, where drought, fire, and 26 

invasive grasses have degraded natural communities. Using a reduced representation sequencing 27 

approach, we generated SNP data at 5,677 loci across 246 individuals from 17 A. thurberianum 28 

populations spanning five previously delineated seed zones from the western Great Basin. 29 

Analyses revealed pronounced population genetic structure, with individuals forming consistent 30 

geographical clusters across a variety of population genetic analyses and spatial scales. Low levels 31 

of genetic diversity within populations, as well as high population estimates of linkage 32 

disequilibrium and inbreeding, were consistent with self-fertilization as a contributor to population 33 

differentiation. Moreover, variance partitioning and partial RDA indicated local adaptation to the 34 

environment as an additional factor influencing the spatial distribution of genetic variation. The 35 

environmental variables driving these results were similar to those implicated in recent 36 

genecological work which inferred local adaptation in order to delineate seed zones. However, our 37 

analyses also reveal a complex evolutionary history of A. thurberanium in the Great Basin, where 38 

previously delineated seed zones contain distantly related populations. Overall, our results indicate 39 

that numerous factors shape genetic variation in A. thurberianum and that evolutionary history, 40 

along with differentiation across distinct geographic and environmental scales, should be 41 

considered for conservation and restoration plans. 42 

43 
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Introduction 44 

Identifying the factors that drive patterns of genetic variation among plant populations is important 45 

for understanding ecological and evolutionary processes and has applied significance for 46 

conservation and ecological restoration (Sork et al., 1999; Hedrick, 2005; Holderegger and Wagner 47 

2008; Sommer et al., 2013). The spatial distribution of genetic variation reflects evolutionary 48 

processes, including drift, migration, and selection, which shape the standing variation and the 49 

evolutionary potential of populations. Therefore, quantifying spatial genetic structure and the 50 

factors shaping it can help assess the degree of population connectivity, the scale of and potential 51 

for local adaptation to environmental variation, and, consequently, the persistence of plant 52 

populations faced with environmental change (Bauert et al., 1998; Booy et al., 2000; Manel et al., 53 

2003). Such analyses can also be used to guide conservation and restoration decisions using 54 

biologically meaningful information (Ottewell et al., 2016; Carvalho et al., 2021). During the last 55 

decade, high throughput sequencing approaches have substantially improved our ability to 56 

quantify spatial genetic structure and infer its causes across populations of ecologically significant 57 

non-model organisms (Andrews et al., 2016; Breed et al., 2019; Hohenlohe et al., 2021). 58 

For plant species with large distributions spanning heterogeneous environments, spatial 59 

genetic structure can be shaped by numerous factors, including geological, historical, and 60 

environmental factors, as well as life-history variation (Holderegger et al., 2010). Across large 61 

geographic scales, genetic differentiation among populations can be expected as gene flow decays 62 

with increasing geographic distance and across geological barriers, commonly resulting in 63 

isolation by distance (Wright, 1943; Gavrilets et al., 2000; Hoskin et al., 2005). However, 64 

environmental and ecological factors may also play a role in shaping spatial genetic structure 65 

(Alvarez et al., 2009; Storfer et al., 2010; Paz et al., 2015; Mosca et al., 2018). Environmental 66 
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variation can directly influence genetic differentiation by causing local adaptation and indirectly 67 

by generating Isolation by Environment (IBE; Shafer and Wolf, 2013; Wang and Bradburd, 2014), 68 

where gene flow is reduced across environmental gradients or selection against migrants occurs 69 

(Kawecki and Ebert, 2004). Thus, strong population genetic differentiation can occur across 70 

regions experiencing different ecological and environmental conditions (Ortego et al., 2012; Orsini 71 

et al., 2013; Wang et al., 2013; Wang and Bradburd, 2014).  72 

Mating system also influences patterns of population genetic structure in plants (Williams 73 

et al., 2001; Duminil et al., 2007; Gamba and Muchhala, 2020), due to variation in the frequency 74 

with which offspring are produced asexually, through self-fertilization, or via sexual outcrossing 75 

(Holsinger, 2000). Compared to outcrossers, asexual and selfing plants often have reduced levels 76 

of within-population genetic diversity. In particular, selfing plants often exhibit low population 77 

genetic variation and high inbreeding which can lead to relatively pronounced patterns of 78 

population differentiation (Hamrick and Godt, 1996; Volis et al., 2010; Wagner et al., 2012; Huang 79 

et al., 2021). Thus, selfing plants may show stronger patterns of population structure at a local 80 

scale and lower genetic diversity than outcrossing plants with higher genetic diversity and non-81 

structured populations. Mating system could thus impact another decision increasingly common 82 

in restoration, which is whether to combine collections from multiple populations, either to 83 

deliberately increase diversity or as a practical decision when there are simply not enough seeds 84 

available from one population (St. Clair et al., 2020). While there is concern about the potential 85 

for outbreeding depression when combining populations of outbreeding species (Templeton, 1986; 86 

Hufford et al., 2012), these concerns could be reduced for highly inbreeding species. 87 

In complex environments, isolation and convergent evolution can result in similar but 88 

independently derived phenotypes in populations with very different evolutionary histories (St. 89 
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Clair et al., 2013; Massatti et al., 2018). While common in natural systems, these patterns may 90 

confound restoration efforts, leading to situations where practitioners may be choosing between 91 

seed sources that either possess phenotypes that are likely to be adaptive in a given site but are 92 

distantly related to plants that used to occur there, or are more closely related to former inhabitants, 93 

maintaining historical patterns of gene flow, but with sub-optimal phenotypes that may not survive 94 

as well in restoration sites (Leger et al., 2021). Historically, evolutionary history has been 95 

commonly considered in conservation planning for rare species (Verdú et al., 2012), while an 96 

emphasis on adaptive phenotypes has been the focus for delineating seed transfer zones for 97 

restoration of widely-distributed species (Baughman et al., 2019; Pedlar et al., 2021). However, 98 

due to advances in DNA sequencing technology, it has recently become possible to consider 99 

evolutionary history as well as both genomic and phenotypic evidence for local adaptation for 100 

widely distributed species (Massatti et al., 2018; Breed et al., 2019). Here we consider how 101 

evolutionary history and environmental variation shape landscape genetic structure in a 102 

widespread grass species of restoration significance in the Great Basin Desert, for which seed 103 

transfer zones have been previously inferred based on phenotypic evidence for local adaptation 104 

(Johnson et al. 2017). 105 

The Great Basin is the most extensive cold desert in North America, with an area of about 106 

540,000 km2, that harbors significant environmental heterogeneity and biological diversity, 107 

including high levels of genetic diversity and local adaptation across extensive environmental 108 

gradients created by the complex, repeated basin and range topography (West, 1983; Pilliod et al., 109 

2017; Baughman et al., 2019; Faske et al., 2021). However, in recent decades, the combined effects 110 

of altered fire regimes, invasive annual grasses, and human land use have led to widespread 111 

degradation and fragmentation of habitats in the Great Basin (Balch et al., 2013; Pilliod et al., 112 
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2013). In particular, cheatgrass (Bromus tectorum) and other non-native annual species have 113 

transformed native shrublands into invasive-dominated grasslands (Knapp, 1996; Parkinson et al., 114 

2013; Nagy et al., 2021). These factors, along with climate change, are contributing to native plant 115 

species declines, especially native grasses, many of which are decreasing in abundance (Chambers 116 

and Wisdom, 2009; Svejcar et al., 2017). Overall, restoration efforts are increasing in response to 117 

global initiatives (Dudley et al., 2020; Stange et al., 2021), especially in drylands such as the Great 118 

Basin (Pilliod et al., 2017; Shackelford et al., 2021). Despite the widely recognized importance of 119 

considering spatial genetic structure and local adaptation for restoration planning (Knapp and Rice, 120 

1994; Hufford and Mazer, 2003; McKay et al., 2005; Breed et al., 2019), and the growing number 121 

of plants in this region with phenotype-based seed transfer zones (TRM Seed Zone Applications: 122 

https://www.fs.fed.us/wwetac/threat-map/TRMSeedZoneMapper.php), we lack population 123 

genomic perspectives for most Great Basin native plants of restoration significance (but see 124 

Massatti et al., 2018). 125 

Among the Great Basin grass species of restoration interest is Thurber's needlegrass, 126 

Achnatherum thurberianum (Piper) Barkworth, a widespread perennial bunchgrass species and an 127 

essential component of many sagebrush communities (Johnson et al., 2017). Achnatherum 128 

(Poaceae, subfamily Pooideae, tribe Stipeae) consists of large perennial grasses that grow in 129 

temperate grassland and savannah habitats (Soreng et al., 2015; Soreng et al., 2017), many of 130 

which are thought to self-fertilize (Jones and Nielson, 1989; Durka et al., 2013; Kraehmer, 2019). 131 

Genetic boundaries of Achnatherum are controversial (Jacobs et al., 2007; Cialdella et al., 2010; 132 

Romaschenko et al., 2010, 2012; Peterson and Romaschenko, 2019), and accordingly, the 133 

taxonomy of the genus has been reviewed several times (Hamasha et al., 2012). In particular, A. 134 

thurberianum has been previously classified as Stipa thurberiana (Piper), (Circ. Div. Agrostol. 135 
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U.S.D.A., 1900), A. thurberianum (Piper), (Barkworth, 1993), and the more recent although not 136 

yet widely in use Eriocoma thurberiana (Piper) (Peterson and Romaschenko, 2019; see the 137 

Missouri Botanical Garden's taxonomic database; http://www.tropicos.org). Studies on related 138 

species in Eurasia (from the tribe Stipeae) based on traditional molecular markers indicated 139 

pronounced population differentiation and low diversity consistent with a selfing mating system 140 

and demographic processes shaping population differentiation at small spatial scales (Wagner et 141 

al., 2012; Durka et al., 2013). Other studies on Eurasian species have indicated the potential for 142 

climate to shape local adaptation and population genetic structure (Hamasha et al., 2013; Gao et 143 

al., 2018; Schubert et al., 2019). Recent genecological work on A. thurberianum phenotypes across 144 

the Great Basin illustrated local adaptation in response to temperature and precipitation variation, 145 

which led to the formation of seed transfer zones for this species (Johnson et al., 2017). 146 

Specifically, in that study, populations from warmer and drier regions generally exhibited earlier 147 

flowering time and narrower leaves than those from cooler wetter regions (Johnson et al., 2017). 148 

However, we currently lack a baseline perspective on the spatial distribution of genetic variation 149 

for A. thurberanum in the Great Basin region, which is important because a  complex evolutionary 150 

history could have unintended consequences for seed sourcing if transfer zones are delineated 151 

based on only climate, proximity, or phenotypic evidence for local adaptation (Massatti et al., 152 

2018). Analyses of evolutionary history and how landscape genetic variation is shaped by 153 

environmental, geographic, and life history variation stand to improve understanding of the 154 

biology of this widespread species and provide a critical context for understanding its evolution 155 

and restoration potential, including the application of phenotype-based seed transfer zones 156 

(Johnson et al., 2017). 157 
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Here, we used reduced representation sequencing (ddRADseq) to characterize spatial 158 

genetic variation across 17 A. thurberianum populations distributed across the southwestern Great 159 

Basin, in an area representing five of the twelve seed zones proposed by Johnson et al. (2017). We 160 

examined phylogeographic patterns and spatial genetic structure across populations and 161 

considered how geographical and environmental factors influenced them. We also quantified 162 

levels of genetic diversity, linkage disequilibrium, and inbreeding coefficients within populations 163 

to evaluate the extent to which mating system might influence standing variation and fine-scale 164 

differentiation across the sampled populations and asked to what degree existing seed zones 165 

reflected evolutionary history. We expected to see pronounced regional and fine-scale spatial 166 

genetic structure, influenced by both mating system and local adaptation to environmental 167 

variation in this widespread grass. Further, we expected that we might find evidence of multiple 168 

lineages represented within seed zones, given the complexity of the basin and range topography 169 

and the potential for convergent evolution during the process of local adaptation. 170 

Material and methods 171 

Plant material 172 

We collected leaf material from 17 localities in the western Great Basin during the Fall of 2017 173 

from a range of 20 to 39 plants per location (Figures 1a, 2a; Table 1). We sampled these locations 174 

because they hosted multiple native species that could potentially serve as restoration seed sources 175 

for this region; collections of other species from these locations are being used for additional 176 

restoration genetic studies (e.g., Faske et al., 2021; Agneray et al., 2022). In addition, these 177 

localities spanned five seed zones proposed by Johnson et al., (2017). Means for representative 178 

environmental variables for each population were obtained as described below and can be found 179 

in Suppl. Table 1. Because of the complex topography in this region, note that proximate 180 
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populations are not necessarily within the same seed zone (Figure 1a). A total of 246 individuals, 181 

from a range of 12 to 18 plants per location, were included in analyses after DNA extraction and 182 

quality screening (see below). 183 

Library preparation, sequencing, and variant calling 184 

DNA was extracted from dried tissue using Qiagen DNeasy Plant Mini Kits and quantified with a 185 

Qiagen QIAxpert microfluidic analyzer (Qiagen Inc., Valencia, CA, USA). We constructed 186 

reduced-representation libraries for Illumina sequencing using a ddRADseq method (Parchman et 187 

al., 2012; Peterson et al., 2012). The genomic DNA was digested with two restriction enzymes, 188 

EcoRI and MseI, and custom oligos with Illumina base adaptors and unique barcodes were ligated 189 

to the digested fragments (ranging from eight to 10 base pairs in length). Ligated fragments were 190 

amplified by PCR using a high-fidelity proofreading polymerase (iProof High-Fidelity DNA 191 

Polymerase, BioRad Inc., Hercules, CA, USA) and subsequently pooled into a single library. 192 

Libraries were size selected for fragments between 350 and 450 bp in length with the Pippin Prep 193 

System (Sage Sciences, Beverly, MA) at the University of Texas Genome Sequencing and 194 

Analysis Facility (UTGSAF). Sequence data were generated for the full set of individuals using a 195 

partial lane of sequencing on the Illumina NovaSeq platform at the UTGSAF.  196 

 We used the tapioca pipeline (https://github.com/ncgr/tapioca) and a known contaminant 197 

sequence database to identify and discard Illumina primer/adapter sequences and potential 198 

biological sequence contaminants (e.g., PhiX, E. coli). We then demultiplexed the reads using a 199 

custom Perl script that corrects one or two base sequencing errors in barcoded regions, parse reads 200 

according to their associated barcode sequence, and trims restriction site-associated bases. 201 

Trimmed fastq files for each individual are available at SRA (https:). 202 
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 Filtered reads were clustered for variant identification and filtering with the software 203 

Stacks v 1.46 (Catchen et al., 2013). We followed a de novo assembly approach, using the 204 

"denovo_map.pl" module, which allows genotype inference by identifying SNP loci without a 205 

reference genome. The parameters were set as follows: the minimum number of identical reads 206 

required to call an allele was set to 3 (m = 3), the maximum number of mismatches between loci 207 

for individuals was set to 2 (M =2), and the maximum number of mismatches among loci when 208 

comparing across individuals was set to 2 (n = 2). These parameters were selected through an 209 

optimization process following recommendations from Mastretta-Yanes et al., (2015) and Paris et 210 

al., (2017). In brief, we set the optimal m among values ranging 2 to 7 (for M and n = 2) and the 211 

optimal M value among values ranging from 2 to 6 for the m optimal value (for n = M). Then, we 212 

used the "populations" module in Stacks (Catchen et al., 2011, 2013; Rochette et al., 2019) to 213 

extract loci that were present in at least 80% of the individuals (--r = 0.80) and with a maximum 214 

observed heterozygosity of 0.65 (--max_obs_het = 0.65) and to generate and export the SNP data 215 

in vcf format for further analyses. We used vcftools v 4.2 (Danecek et al., 2011) to estimate 216 

the allele frequency, the mean depth per individual, the mean depth per site, and the proportion of 217 

missing data per site of the vcf outputs. We explored these statistics in R in order to decide the 218 

optimal m, M, and n parameters. Additionally, we filtered the obtained pool of loci using vcftools 219 

v 4.2. We allowed a maximum missing data of 20 % (--max-missing 0.8), a minimum minor 220 

allele frequency of 0.03 (--maf 0.03) and specified a thin value of 5 (--thin 5), which allows that 221 

no two sites are within the specified distance from one another. Also, we only included sites with 222 

quality scores above 10 (--minQ 10). 223 

Patterns of population genetic diversity and differentiation 224 
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Genetic diversity estimates were calculated in R using the package hierfstat v 0.5-7 (Goudet, 225 

2005). We used the "basic.stats" function to estimate mean observed heterozygosity (Ho), mean 226 

expected heterozygosity (He), and individual inbreeding coefficients (FIS) within each population. 227 

Pairwise Nei's FST (Nei, 1987) and pairwise genetic distances (Nei’s D) were estimated for all 228 

pairs of populations with the "genet.dist" function. The confidence intervals over FIS and FST 229 

values were estimated using 1000 bootstraps with the "boot.ppfis" function. Additionally, we 230 

estimated nucleotide diversity (π) and Tajima's D for each population, using vcftools v 4.2.  231 

  We further quantified genetic structure within and among populations with an analysis of 232 

molecular variance (AMOVA) using the R package poppr v 2.9.2 (Kamvar et al., 2014). We 233 

tested whether most genetic variance was observed among individuals within populations (i.e., no 234 

population structure) or between populations (i.e., population structure). The significance of 235 

AMOVA results was tested with the function "randtest" from the R package adegenet v 1.3-1 236 

(Jombart, 2008) using 999 simulations. A linkage disequilibrium (LD) analysis was conducted 237 

based on the index of association (IA; Brown et al., 1980) and the standardized index of association 238 

(r¯d) over all the loci to infer the mode of reproduction within populations. Linkage disequilibrium 239 

is expected to be more pronounced in populations engaging in selfing or asexual reproduction in 240 

comparison to those mainly reproducing sexually. We used the package poppr v 2.9.2 (Kamvar 241 

et al., 2014) and performed the analysis using 999 permutations. To distinguish between selfing 242 

and asexual reproduction as processes leading to low genetic diversity, we estimated relatedness 243 

among individuals using vcftools v 4.2 based on the Manichaikul et al., (2010) approach (--244 

relatedness2). This method gives information about the relationship of any pair of individuals by 245 

assessing their kinship coefficient, which ranges from 0 (no relationship) to 0.50 (self). Individuals 246 
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were plotted against one another using the "heatmap" function from the R package stats v 3.3.1 247 

(Team, R. C., 2013).  248 

Spatial genetic structure 249 

We tested whether populations exhibited isolation by distance (IBD; Wright, 1943) and/or 250 

isolation by environment (IBE; Wang & Bradburd, 2014), comparing the pairwise matrices of 251 

genetic distances (Nei's D; see above) with geographic and environmental distances (see 252 

environmental data details below) through Mantel tests. We used the "mantel" function from the 253 

R package vegan v 2.5-7 (Oksanen et al., 2013), with Spearman correlation and 9999 254 

permutations. We estimated the geographic distances among populations as haversine distances 255 

using the “distm” function of the geosphere v 1.5-14 R package (Hijmans et al., 2017).  256 

Spatial genetic variation was further assessed using model-free and model-based inference 257 

of genetic variation among individuals. First, we inferred population structure and individual 258 

ancestries without a priori information on sample origin using ADMIXTURE v 1.3.0 (Alexander 259 

and Lange, 2011). We used PLINK v 1.07 (Purcell et al., 2007) to convert the vcf file into unlinked 260 

SNPs (i.e., LD-pruned SNPs) and then ran ADMIXTURE with K values ranging from 2 to 10. The 261 

optimal value of K was estimated by evaluating cross-validation errors. Patterns of genetic 262 

variation were further summarized by principal component analyses (PCA; Patterson et al., 2006) 263 

using the "prcomp" function from the R package stats v 3.3.1 (Team, R. C., 2013).  For each 264 

ancestral population (k) we indicated the corresponding seed zone of Johnson et al. (2017). We 265 

also performed uniform manifold approximation and projection analyses (UMAP; Leland et al., 266 

2018; McInnes et al., 2018) using the "umap" function from the R package umap v 0.2.7.0 267 

(Konopka, 2020). UMAP has recently been shown to excel at detecting and conveying fine-scale 268 

spatial genetic structure of populations (Diaz-Papkovich et al., 2019; Diaz-Papkovich et al., 2021). 269 
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We ran UMAP with the minimum distance between points in low-dimensional space (MD) ranging 270 

from 0.1 to 0.99 and the number of approximate nearest neighbors used to construct the initial 271 

high-dimensional graph (NN) ranging from two to 16. Based on an assessment of clustering results 272 

across this range of parameter space (Suppl. Figures 2 a-h), we present results here with min_dist 273 

= 0.25 and n_neighbors = 16. 274 

We conducted two analyses to visualize variation in differentiation and effective migration 275 

across the sampled populations. Both analyses essentially quantify the extent to which 276 

differentiation among populations departs from the expectation of isolation by distance. First, we 277 

visualized effective migration rates using EEMS (Estimated Effective Migration Surfaces; Petkova 278 

et al., 2016). This analysis assigns individuals to the nearest deme, and by using a stepping-stone 279 

model, estimates effective migration rates between demes. A genetic dissimilarity matrix was 280 

calculated using the bundled bed2diffs script (Petkova et al., 2016). The habitat polygon was 281 

obtained manually to include the sampling localities of all the populations, using Google Maps 282 

API v 3 Tool (http://www.birdtheme.org/useful/v3tool.html). We chose a deme size of 300 283 

(nDemes parameter) and performed three independent analyses using runeems_snps script, with a 284 

burn-in of 100,000,000 (numBurnIter parameter), MCMC length of 200,000,000 (numMCMCIter 285 

parameter), and the number of iterations to thin between two writing steps of 999,999 286 

(numThinIter parameter). We combined the results of the three independent runs and plotted the 287 

results corresponding to the surfaces of effective diversity (q) and effective migration rates (m) 288 

using the R package rEEMSplots v 0.0.1 (Petkova et al., 2016).  289 

As an additional method to visualize differentiation and effective migration across 290 

populations, we employed unbundled principal components (unPC) as a complementary method 291 

to EEMS, to reveal potential long-distance migration using the unPC v 0.1.0 R package (House 292 
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and Hahn, 2018). UnPC uses principal components in combination with geographic coordinates 293 

of samples to create visualizations of genetic differentiation across the landscape. It first calculates 294 

the Euclidean distance between PCA coordinates for each pair of populations and then estimates 295 

the pairwise geographic distance between populations. The ratio of the genetic distance to the 296 

geographic distance for each pair of populations is the unPC value for each pair. 297 

 Finally, we analyzed and visualized population structure using a phylogenomic approach. 298 

First, we converted the vcf file to fasta format using vcf2phylip v 2.0 (Ortiz, 2019). We trimmed 299 

the fasta alignment to exclude unreliably aligned positions with trimAl v 1.2 using the 300 

"gappyout" method (Capella-Gutiérrez et al., 2009). Then, we ran IQ-TREE v 1.6.10 (Nguyen et 301 

al., 2015) using the "Model Finder Plus" parameter (-m MFP) to determine the best substitution 302 

model (choosing the model that minimizes the BIC score), the ascertainment bias correction 303 

method (ASC; Lewis, 2001), and the ultrafast bootstrap option with 1000 bootstrap replicates (-bb 304 

1000). We visualized the obtained tree in Figtree v 1.4.4 (Rambaut, 2018), and indicated the 305 

appropriate seed zone for each sampled individual. We then plotted the tree linked with the 306 

population's geographical coordinates after simplifying the tree to retain one sample tip per 307 

population using the drop.tip function in the R APE package v 5.5 (Paradis et al., 2004). We 308 

used the "phylo.to.map" function in the R package phytools v 0.7-80 to plot a map (Revell, 309 

2014), using the dropped tree and the geographical coordinates and choosing the "state" database, 310 

again indicating seed zone for each population. To quantify the extent to which seed zones reflect 311 

evolutionary history, we tested for phylogenetic signal by estimating Pagel's λ (Pagel, 1999) for 312 

the distribution of seed zones across sampled populations. We used the “fitDiscerte” function from 313 

the R package geiger v 2.0.7 (Harmon et al., 2015). To test the significance of our results, we 314 
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estimated the log-likelihood if λ = 0 and if λ = 1 using the function “rescale” and did a likelihood 315 

ratio test. 316 

Influence of environmental variation on spatial genetic variation 317 

We conducted genetic-environment association (GEA) analyses using partial redundancy analysis 318 

(pRDA) to identify environmental variables that covary with genetic differentiation among 319 

populations. Climate environmental variables for each site were obtained from the PRISM 320 

database (https://prism.nacse.org) using the "get_prism_normals" function from the R prims 321 

library (Hart et al., 2015), with a data range from 1981 to 2010 with an 800 m x 800 m resolution. 322 

Following Faske et al., (2021), we converted monthly normals to estimates of potential 323 

evapotranspiration, actual evapotranspiration, soil water balance, and climatic water deficit, which 324 

have been shown to effectively predict aspects of spatial and distributional variation across plant 325 

communities (Barga et al., 2018). Elevation data was acquired from the R library elevatr v 326 

0.2.0 (Hollister and Shah, 2017). We also included several climatic variables that predicted 327 

genecological variation and were used for seed zone delineation in a previous study (Johnson et 328 

al. 2017; see Suppl. Tables 2a, b for details). Before any analyses, we examined multicollinearity 329 

among the pool of variables using the “pairs.panels” function from the pyshc v 2.1.9 R package 330 

(Revelle, 2015), based on Pearson's |r| ≤ 0.60, to select the most orthogonal subset of variables 331 

possible. We removed all the environmental variables that were highly correlated with other 332 

variables, thus reducing the data set from 46 to 8 environmental variables (Table 2). Then, we 333 

applied partial redundancy analysis variance partitioning to decompose the contribution of climate, 334 

population structure, and geography in explaining genetic variation. We used three sets of 335 

variables: 1) climate environmental variables (Table 2); 2) two proxies of genetic structure 336 

(population scores along the two previously estimated PC axes); and 3) each population's 337 
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coordinates (longitude and latitude). As a response variable, we used the individual-based 338 

genotypes (coded as the count of one allele, i.e., 0/1/2). We used the "rda" function from the vegan 339 

v 2.5-7 R package (Oksanen et al., 2013) for pRDA. Following Capblancq and Forester (2021), 340 

we first tested the significance of the full RDA model (with all the variables included). 341 

Subsequently, explanatory variables were added one by one, using the "ordiR2step" function of 342 

the vegan v 2.5-7 R package, with the following stopping criteria: variable significance of p < 343 

0.01, 1000 permutations, and the adjusted R2 of the global model. Then, we performed three 344 

different pRDA models: first, a model accounting for environmental variables only (conditioning 345 

the model by geography and population structure); second, a model accounting for population 346 

structure (conditioning the model by geography and environmental variables); and third, a model 347 

accounting for geography (conditioning the model by population structure and environmental 348 

variables). We then compared the amount of variance explained by each pRDA to the variance of 349 

the full model (including all explanatory variables) to estimate the independent contribution of 350 

each set of variables together with any confounding effects induced by collinearity. 351 

Given the results from the above analyses, we conducted pRDA on the genotypic and 352 

environmental data to infer the influence of specific environmental variables on spatial genetic 353 

structure and detect the genetic signal of local adaptation and its environmental causes. We used a 354 

partial RDA (pRDA) conditioning by population structure (PC1 and PC2) and geography (latitude 355 

and longitude) to assess whether the degree of adaptive genetic variation among individuals is 356 

explained by a particular set of environmental variables. The significance of models and RDA 357 

axes, and the proportion of variation explained by each environmental variable were tested with 358 

an analysis of variance (ANOVA) and permutation (n = 999), using the “anova.cca” function of 359 

the vegan v 2.5-7 R package. Also, we used RDA to identify outlier loci potentially under 360 
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selection using loadings of SNPs from the first three constrained ordination axes. We used 361 

stringent outliers filtering of 3.5 standard deviations (p < 0.0005) (Forester et al., 2018). Then, we 362 

checked for duplicate candidate loci associated with more than one RDA axis and used Pearson's 363 

correlation (r) to identify the strongest predictor.  364 

Results 365 

Patterns of genetic diversity and differentiation 366 

We identified a total of 5,677 SNPs in a subset of 246 individuals that were retained after filtering 367 

with mean coverage depth per individual of 21.83. Population genetic statistics were obtained for 368 

each population (Table 1). Observed heterozygosity (Ho) values were lower than the expected (He) 369 

in all the cases, indicating low heterozygosity in all the populations studied. As follows, inbreeding 370 

coefficient (FIS) values were positive for all populations, indicating reduced diversity that is 371 

consistent with self-pollination. FIS values were variable across populations but were significantly 372 

positive for all populations except DH, EW, SC, SS, and VM, based on bootstrap coefficient 373 

intervals. Nucleotide diversity (π) estimates were low, congruent with previous results. Moreover, 374 

all populations had positive values of Tajima's D consistent with population size contraction. The 375 

index of association (IA) and the standardized index of association (r¯d) were different from zero 376 

and significant in all cases (p < 0.001), indicating elevated levels of linkage disequilibrium 377 

consistent with selfing influencing variation within populations. Lastly, 98.58 % of the pairwise 378 

combinations among individuals had mean relatedness coefficients of 0, and 1% had a mean 379 

relatedness coefficient of 0.33, ranging from 0.005 to 0.47 (considering the 1 % left from 380 

comparisons among same individuals) indicating that populations are diverse and do not consist 381 

of apomicts (see Suppl. Table 3 and Suppl. Figure 1). 382 
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Spatial genetic structure 383 

AMOVA analyses indicated that 79.66 % (p < 0.01) of the observed genetic variance was 384 

explained by variation between populations, consistent with strong population differentiation, with 385 

the remaining 20.33 % (p < 0.01) reflecting variation among individuals within populations (Table 386 

3). The results of the Mantel test indicated a positive association between geographic distance and 387 

genetic distance (IBD: Mantel statistic r: 0.257, p: 0.026; Figure 2a) and between environmental 388 

and geographic distances (Mantel r: 0.238, p: 0.025; Figure 2c). No significant association was 389 

found between environmental and genetic distances (Mantel statistic r: -0.001, p: 0.437; Figure 390 

2b). 391 

Population pairwise FST values were significant in all pairwise comparisons (mean: 0.18, 392 

range: 0.02 – 0.31), even for those involving populations that were highly spatially proximate, 393 

indicating significant genetic differentiation between populations (Suppl. Table 4). PCA revealed 394 

three strongly separated population genetic clusters (Figure 1b), but also suggested a high degree 395 

of identifiability of individuals from most populations. The first two principal components 396 

accounted for 16.75 and 13.27% of the variation. One cluster grouped the eastern populations (AH, 397 

AS, BM, FR, SC) and the HO population, the second cluster grouped the western populations (BV, 398 

GB, JC, LV, MD, PL, PT, SS, and VM), and lastly, the third cluster grouped EW and DH. The 399 

UMAP analyses revealed a striking fine-scale population genetic structure in which all individuals 400 

for each population clustered tightly together (note that the distances among UMAP clusters do 401 

not represent genetic differentiation among them; Figure 1c). UMAP analyses across the ranges of 402 

the minimum distance (MD) and the number of nearest neighbors (NN) parameters also produced 403 

generally consistent clustering patterns (Suppl. Figures 2a-h).  404 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.22.497217doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.497217
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 
 

ADMIXTURE identified K = 8 as the most likely number of clusters among the 17 populations 405 

sampled (Figure 1d), based on cross-validation error values (Suppl. Figure 3). Ancestry coefficient 406 

estimates for this analysis produced a similar pattern to the PCA and the UMAP results. Eastern 407 

populations formed an ancestry cluster (AH, AS, BM, FR, and SC), while western populations 408 

split into two different ancestry clusters (GB, JC, MD, and SS, in one, and PL, PT, and VM, in 409 

another). Lastly, the BV, DH, EW, HO, and LV populations were assigned to additional single 410 

clusters, reflecting relatively stronger differentiation of these populations in relation to those within 411 

the larger ancestral clusters above. Notably, populations from individual seed zones of Johnson et 412 

al. (2017) were commonly assigned to multiple ancestral groups in the ADMIXTURE results (Figure 413 

1d, e.g., populations in seed zones represented by circles belong to three different ancestry groups), 414 

illustrating discordance among evolutionary history and seed zones delineated with phenotype-415 

environment associations. The two other most likely K values, K = 9 and K = 10, generated similar 416 

patterns of cluster membership and similar discordance among seed zones and ancestry (see Suppl. 417 

Figure 3b).  418 

The EEMS results suggested effective migration patterns congruent with previous results. 419 

Some populations were connected by higher migration rates (m) than expected under isolation by 420 

distance. For example, HO and AH, while separated by approximately 350 km, were connected 421 

with high effective migration (Figure 1, Figures 3b, c). Moreover, other groups of populations 422 

seem to have resistance barriers to gene flow despite being highly proximate geographically 423 

(Figure 3b). For example, PL and PT appear to be distinguished by low effective migration rates 424 

despite being separated by only 19 km. Results of unPC analyses (Suppl. Table 5) were broadly 425 

consistent with those from the EEMS, suggesting the same regions of low and high effective 426 

migration (Figure 3c).  427 
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The maximum likelihood tree in which all main clades yielded branch support higher than 428 

99 produced topologies similarly illustrated pronounced population divergence. Similar to the 429 

patterns of clustering in PCA and ADMIXTURE analyses above, tree topology resolved four main 430 

clades; the eastern populations (AH, AS, BM, FR, and SC) with HO, the BV population, the EW 431 

and DH populations, and lastly, the western populations (GB, JC, MD, SS, LV, PL, PT, and VM) 432 

(Figures 4a, b). Similar to evidence for population identifiability in UMAP analyses, individuals 433 

from the same populations predominantly clustered together in the maximum likelihood tree, 434 

further illustrating population differentiation at fine spatial scales. Consistent with ancestry based 435 

analyses above, there was no evidence for phylogenetic signal for seed zones (λ = 0.000); 436 

populations from the same seed zones often appeared in multiple distantly related clades (e.g., DH 437 

and EW, or PL and VM, Figures 4 a, b). 438 

Genetic-environment association analyses 439 

The pool of environmental variables was reduced from 46 to 8 after removing highly 440 

correlated variables (based on Pearson's |r| ≤ 0.60; note that the environmental variables used for 441 

seed zone delineation in Johnson et al. (2017), were not included in the analyses to control for 442 

multicollinearity, but some of them were correlated with the eight variables selected from our 443 

analyses see Suppl. Table 2c). Results from the pRDA provided evidence that specific 444 

environmental variables may influence spatial patterns of genetic variation. In particular, the 445 

climatic variables explained 23% of the total genetic variation (39% of the variance explained by 446 

the full model), suggesting an association between genetic variation and environmental gradients 447 

(IBE) (Table 4). The environmental variables with the greatest explained variance in the pRDA 448 

were the magnitude of climate water deficit (MaxCWD; 21.01 %, p < 0.001) and the folded aspect 449 

(AfRad; 17.80 %, p < 0.001) (Table 2; Figure 5). The first two constrained axes were significant 450 
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(p < 0.001), explaining 24.63 % and 23.44 % of the total variation (Figure 5). We identified ten 451 

loci across the environmental variables associated with the second and third RDA axes (Suppl. 452 

Table 2d). Four of these ten loci were associated with the difference between water supply and 453 

actual evapotranspiration during the spring (WsAETspr), two with the maximum temperature 454 

during the winter season (mxtmpwin), and the four remaining were associated with the cumulative 455 

annual actual evapotranspiration during the growing season (AETgdd), the difference between 456 

actual evapotranspiration summer low and fall peak (FallAET), the magnitude of climatic water 457 

deficit (MaxCWD), and the slope (SlopRad). One of the variables strongly associated with genetic 458 

variation the maximum temperature during the winter season (mxtmpwin; Table 2) was highly 459 

correlated with the mean average temperature (MAT; Pearson's |r| = 0.82), which was among the 460 

variables most strongly predicting genecological variation in Johnson et al. (2017). 461 

Discussion 462 

Understanding the nature of genetic variation in native plants is crucial not only for understanding 463 

the origin and maintenance of diversity but also for conserving and restoring populations. Our 464 

analyses of population genetic variation in Thurber's needlegrass (Achnatherum thurberianum), a 465 

widespread bunchgrass in the Great Basin, illustrated strong regional differentiation as well as 466 

remarkably fine-scale spatial genetic structure among populations. These patterns, along with low 467 

levels of genetic diversity within populations, high inbreeding coefficients, and elevated linkage 468 

disequilibrium, are consistent with self-pollination reducing genetic diversity and contributing to 469 

spatial genetic structure. Despite low genetic diversity within the sampled populations, our 470 

analyses indicated that environmental variation has shaped spatial genetic structure and influenced 471 

local adaptation across A. thurberianum populations. Our results suggested the potential for local 472 

adaptation driven particularly by climate water deficit, aspect, and summer precipitation. Notably, 473 
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our results illustrated previously unidentified differences in evolutionary history within seed zones 474 

proposed for A. thurberianum based on phenotype-environment associations (Johnson et al. 2017). 475 

Altogether, our results suggest that numerous factors have shaped the spatial genetic structure of 476 

A. thurberianum across fine geographic and environmental scales and provide baseline 477 

information that may be of value for restoration, including allowing managers to consider both 478 

phenotypic variation and evolutionary history when making seed source decisions. 479 

Strongly congruent results across multiple analyses (FST, PCA, ADMIXTURE, phylogenomic 480 

analyses, AMOVA, and UMAP) illustrated spatial genomic structure across both broad geographic 481 

regions and among proximate populations at finer scales than might otherwise be expected for a 482 

primarily wind-dispersed species (Linder et al., 2018). For example, at broad regional scales, our 483 

analyses consistently illustrated pronounced differentiation among eastern and western groups of 484 

populations (Figures 1, 4) including differentiation of two populations at the southwestern limit of 485 

sampling. Interestingly, the HO population clustered within the eastern populations, despite being 486 

geographically distant and in closer proximity to populations in the northwestern portion of the 487 

sampled area (e.g., JC; see Figures 1a, b). These broad patterns of regional differentiation could 488 

be explained by historical habitat contractions during the multiple Pleistocene glacial cycles that 489 

shaped the Great Basin landscape (Beck and Jones, 1997). In particular, during the Last Glacial 490 

Maximum and throughout the last deglaciation, the Great Basin region was marked by the 491 

formation of multiple extensive lacustrine systems (Tchakerian and Lancaster, 2002; Lyle et al., 492 

2012), which would have reduced the availability of suitable habitat for A. thurberianum. More 493 

specifically, a large portion of our study area was historically occupied by Lake Lahontan (38.75–494 

40.75°N, 117.5–120.5°W; Russell, 1885; Matsubara and Howard, 2009), which may have played 495 

a central role in shaping regional patterns of marked differentiation in Thurber's needlegrass. 496 
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Consistent with such history, estimates of effective migration (EEMS and unPC) indicated barriers 497 

to gene flow among eastern and western groups of populations, which continue to be separated by 498 

low-elevation playas that are inhospitable to this plant (Figures 3b, c). Further, positive values of 499 

Tajima's D for each population indicated past population contraction (Table 1; Tajima, 1989). 500 

Temperate grass species of Europe (Hensen et al., 2010; Blanco-Pastor et al., 2019; Blanco-Pastor 501 

et al., 2021), Africa (Mairal et al., 2021), and North America (Avendaño-González et al., 2019; 502 

Palacio-Mejía et al., 2021) demonstrate comparable regional patterns of differentiation and gene 503 

flow also influenced by Pleistocene glacial cycles. 504 

In addition to the larger-scale geographic patterns, genetic differentiation across smaller 505 

geographic scales was evident in phylogenetic analyses, where individuals clustered largely by 506 

population, and in the UMAP analyses, where individuals formed population-specific clusters 507 

(Figure 1c). UMAP analyses provided remarkable resolution of spatial genetic structure, with all 508 

A. thurberianum individuals having 100% identifiability to their population of origin. While 509 

parameter settings can influence the UMAP depiction of clustering (MD and NN; Diaz-Papkovich 510 

et al., 2021), our analyses across a range of two parameters produced largely congruent results 511 

with minor variation in the strength of clustering (Suppl. Figure 2). These results suggest that the 512 

degree of differentiation among populations seen here could possibly be used to retroactively 513 

identify the constituents of historically seeded populations with a high degree of certainty. 514 

Estimates of effective migration (EEMS and unPC) also appeared strongly reduced among a 515 

number of geographically proximate populations (PT and DH separated by 58 km, or EW and FR 516 

separated by 127 km, for example, Figures 3b, c). While gene flow among spatially proximate 517 

populations can be high in some wind-dispersed grasses (Vogel et al., 2009; Stritt et al., 2022), 518 

pronounced spatial genetic structure has also been reported in Eurasian species of Stipeae (Wagner 519 
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et al., 2011; Durka et al., 2013). Patterns of population differentiation and identifiability across 520 

both large and small geographic scales indicates that genetic variation in A. thurberianum has been 521 

shaped by a combination of historical isolation, local adaptation to environment, as well as life 522 

history variation.  523 

Species that rely strongly on self-fertilization cannot maintain high levels of genetic 524 

diversity within populations through frequent pollen movement and therefore tend to have low 525 

genetic diversity (Hamrick and Godt, 1996; Honnay and Jacquemyn, 2007; Durka et al., 2013; 526 

Huang et al., 2021). Moreover, selfing plant species can be prone to developing fine-scale spatial 527 

genetic structure due to reduction in effective population sizes and effective migration (Volis et 528 

al., 2010; Huang et al., 2021). The populations studied here were characterized by low levels of 529 

genetic diversity (mean He: 0.04; mean Ho: 0.02; mean π: 0.05), strongly positive inbreeding 530 

coefficient estimates (FIS), and a high degree of linkage disequilibrium (r¯d and IA) (Table 1), all 531 

of which are consistent with a mating system dominated by self-fertilization. While studies directly 532 

assessing the mating system of A. thurberianum are lacking, many closely related species from the 533 

Poaceae family have been described as self-fertilized (Jones and Nielson, 1989; Arnesen et al., 534 

2017; Marques et al., 2017; Stritt et at. 2022). Indeed, grass species employing self-fertilization 535 

have been commonly documented to have low genetic diversity and pronounced spatial genetic 536 

structure (Dell’Acqua et al., 2014; Marques et al., 2017; Guo et al., 2017), presumably due to small 537 

effective population sizes and genetic drift in the absence of much gene flow. Our results suggest 538 

high rates of self-fertilization in A. thurberianum have likely contributed to its pronounced spatial 539 

genetic structure in the western Great Basin.  540 

Although mating system and low genetic diversity have allowed genetic drift to influence 541 

spatial genetic structure, environmental variation also appears to have contributed to genetic 542 
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variation in A. thurberianum. The environmental variables influencing spatial genetic variation in 543 

A. thurberianum are known to predict genetic and phenotypic variation across populations of other 544 

plant species (Dilts et al., 2015; Barga et al., 2018; Faske et al., 2021) and have been commonly 545 

implicated as underlying local adaptation in genecological studies of Great Basin plant species 546 

(Johnson et al. 2017; Baughman et al., 2019). Variance partitioning with partial RDA illustrated 547 

that neutral genetic structure, geography, and environmental variation together explained a 548 

substantial proportion of genetic variance (Table 4). However, the individual contribution of 549 

environmental variation was substantially stronger than that of both genetic structure and 550 

geography (Table 4). Variation in environmental variables (Table 2), especially climate water 551 

deficit, aspect, and summer precipitation, explained a substantial proportion of genetic variation 552 

and influenced spatial genetic structure (Table 2, Figure 5). The pronounced environmental 553 

heterogeneity of the Great Basin (Figure 2c) could commonly give rise to Isolation by 554 

Environment (IBE), where environmental transitions act as barriers to gene flow or where local 555 

adaptation to different environments leads to low migrant fitness (Shafer and Wolf, 2013; Wang 556 

and Bradburd, 2014). Genomic evidence for environment contributing to spatial genetic structure 557 

and perhaps local adaptation is consistent with results from a common garden study of phenotypic 558 

variation across 66 Great Basin A. thurberianum populations that inferred local adaptation to 559 

environment as a basis for delineating seed zones (Johnson et al. 2017).  560 

Given the strong influence of environmental variables on genetic variation observed here 561 

and in Johnson et al. (2017), along with the topographically and environmentally heterogeneous 562 

nature of this region, we suspected that proposed seed zones might span populations from distantly 563 

related clades. Indeed, geographically differentiated groups of populations commonly crossed 564 

multiple seed zones, and specific seed zones were represented across distantly related clades 565 
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(Figures 1, 4). It is worth noting that our sampling focused on an area that was not well represented 566 

in the sampling design for the phenotype-based seed zone development (Johnson et al. 2017), 567 

which might indicate that caution is warranted when designating seed zones outside areas of 568 

extensive sampling. Convergent evolution, or adaptation to parallel environmental conditions 569 

across divergent lineages, is well documented across diverse groups of plants (e.g., Rellstab et al. 570 

2020; Xu et al. 2020), and this possibility should be considered for seed zone design in the Great 571 

Basin, especially if particular geographic regions show consistent barriers to gene flow for multiple 572 

species. Indeed, other plant species from the Great Basin have been found to have similar patterns 573 

of population genetic structure in the vicinity of historic Lake Lahontan (e.g., Faske et al., 2021). 574 

Convergent evolution could have consequences for restoration if outbreeding depression 575 

(reviewed in Edmands, 2007) or genetic incompatibilities (Etterson et al. 2007) occur in seed 576 

mixes containing distantly related populations delineated as part of a single seed zone.  577 

In addition to its relevance for seed zones, a general understanding of genetic diversity, 578 

population differentiation, and local adaptation in A. thurberianum could have utility for guiding 579 

ecological restoration (Mijangos et al., 2015; Breed et al., 2019). Populations exhibited very low 580 

levels of standing variation, presumably due to high self-fertilization rates, which likely 581 

contributed to population differentiation at such fine spatial scales. Low diversity can be a concern 582 

when sourcing seeds for restoration, as genetic diversity is often viewed as a proxy for evolutionary 583 

potential (Ellstrand and Elam, 1993), and some have proposed mixing populations of low-diversity 584 

species as a way to increase the chances of long-term persistence of restored populations (Bischoff 585 

et al., 2010; Bucharova et al., 2019; St. Clair et al., 2020). While this may lead to risks of 586 

outbreeding depression in some species, this might be reduced for highly-selfing species like A. 587 

thurberianum (Jones and Nielson, 1989). Despite very low diversity, our analyses indicated that 588 
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environmental variation has shaped spatial genetic structure and influenced local adaptation 589 

across A. thurberianum populations of the Great Basin. Generally, consistent results of inference 590 

of local adaptation in our study with that from phenotypic analyses of genecological experiments 591 

(Johnson et al., 2017; Baughman et al., 2019) highlight the utility of population genomic analyses 592 

for characterizing the environmental variables contributing to local adaptation while additionally 593 

characterizing levels of diversity and differentiation across space, all of which have value for 594 

guiding provenance and seed sourcing (Breed et al., 2019; Rossetto et al., 2019).  595 
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Data Archiving Statement 596 

The trimmed vcf file and scripts used for analyses can be found at the Dryad Digital Repository: 597 

https://doi.org/10.5061/dryad.pvmcvdnpn. The raw data from this project were submitted to NCBI 598 

Sequence Read Archive (SRA) and can be found by the BioProject ID PRJNA849003. The 599 

individual fastq files for each population can be found under the following accession numbers: AH 600 

(SRR19646741), AS (SRR19646740), BM (SRR19646732), BV (SRR19646731), DH 601 

(SRR19646730), EW (SRR19646729), FR (SRR19646728), GB (SRR19646727), HO 602 

(SRR19646726), JC (SRR19646725), LV (SRR19646739), MD (SRR19646738), PL 603 

(SRR19646737), PT (SRR19646736), SC (SRR19646735), SS (SRR19646734), VM 604 

(SRR19646733). 605 
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Tables 1013 

Table 1. Population genetic summary statistics for each sampled A. thurberianum population. For 1014 

each sampling location (population), the table shows the number of individuals (N), expected (He) 1015 

and observed heterozygosity (Ho), inbreeding coefficient (FIS), nucleotide diversity (π), Tajima’s 1016 

D (D), standardized index of association (r¯d), and index of association (IA). Significant FIS results 1017 

based on bootstrap coefficient intervals are depicted with an asterisk. The seed zone for each 1018 

population corresponds to those proposed by Johnson et al., (2017). The MD population has no 1019 

seed zone information as it was located outside of the Johnson et al., (2017) projected area. 1020 

 1021 

Population name, 

State 

Population 

abbr. 

N He Ho FIS π D r¯d IA Seed 

zone 

Austin Hwy, NV AH 14 0.029 0.007 0.719* 0.039 0.487 0.283 122.350 8 
Austin Summit, NV AS 15 0.028 0.010 0.649* 0.027 0.519 0.226 93.120 5 
Bald Mountain, NV BM 18 0.025 0.008 0.671* 0.025 1.030 0.186 58.549 4 
Buena Vista, OR BV 15 0.066 0.029 0.509* 0.067 0.339 0.019 21.443 8 
Dayton Hill, NV DH 14 0.044 0.011 0.728 0.045 0.577 0.137 87.699 8 
East Walker, CA EW 15 0.028 0.011 0.704 0.028 0.307 0.314 148.414 11 
Finger Rock, NV FR 14 0.026 0.010 0.675* 0.026 0.487 0.271 106.050 7 
Grey’s Butte, NV GB 14 0.060 0.024 0.522* 0.061 0.311 0.090 89.900 5 
Hwy 140, NV HO 15 0.052 0.024 0.484* 0.052 0.252 0.025 22.540 8 
Jones Canyon, NV JC 15 0.059 0.014 0.740* 0.058 0.752 0.102 86.020 11 
Long Valley, CA LV 14 0.075 0.012 0.816* 0.074 0.512 0.236 270.389 8 
Modoc, CA MD 15 0.058 0.016 0.715* 0.057 0.483 0.047 43.020 NA 
Peavine Low, NV PL 15 0.049 0.032 0.368* 0.054 0.787 0.180 121.440 5 
Patagonia, NV PT 12 0.035 0.024 0.344* 0.041 0.183 0.133 81.633 5 
Smith Creek, NV SC 15 0.030 0.010 0.611 0.029 0.536 0.329 143.590 8 
Spanish Springs, CA SS 14 0.060 0.024 0.551 0.067 0.273 0.029 29.786 5 
Virginia Mountains, NV VM 12 0.049 0.017 0.603 0.054 0.401 0.084 64.681 8 
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Table 2. ANOVA results showing the variance explained by each environmental variable in the 1022 

partial RDA, the F value, and the associated p value.  1023 

 1024 

Environmental Variables Description df Variance F p 

MaxCWD Magnitude of climatic water 
deficit 

1 21.001 28.743 0.0009 

AfRad Folded aspect converted to 
radians 

1 17.772 24.323 0.0009 

prcpsum PRISM total precipitation from 
June-Aug 

1 16.801 22.994 0.0009 

WsAETspr Difference between water supply 
and AET during the spring 

1 15.934 21.807 0.0009 

mxtmpwin PRISM average max temp from 
Dec-Feb (C°) 

1 15.715 21.507 0.0009 

FallAET Difference between actual 
evapotranspiration summer low 
and fall peak 

1 14.417 19.731 0.0009 

SlopRad Slope converted to radians 1 13.412 18.356 0.0009 
AETgdd Cumulative annual actual 

evapotranspiration during the 
growing season 

1 11.450 15.671 0.0009 

 Residuals 233 170.245   

 1025 

 1026 

 1027 

 1028 

 1029 

 1030 

 1031 

 1032 
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Table 3. Molecular analysis of variance (AMOVA) results for the 17 populations of Achnatherum 1033 

thurberianum. Here, we provide the degrees of freedom (df), sum of squares (SS), mean squares 1034 

(MS), total variance (sigma), and the percentage of variance explained by each source of variation 1035 

(Variance %).  1036 

 1037 

Source of variation df SS MS Sigma Variance % 
Between populations 16 203377.59 12711.09 863.60 79.66 
Within populations 229 50468.42 220.38 220.38 20.33 
Total 245 253846.01 1036.10 1083.99 100 

 1038 

  1039 
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Table 4. The influence of climate, structure, and geography on genetic variation decomposed with 1040 

partial RDA. The proportion of explainable variance represents the total constrained variation 1041 

explained by the full model. 1042 

 1043 

Partial RDA models Variance R2 p value Proportion of 
explainable 
Variance 
 

Proportion of 
total Variance 
 

Full model:  
F ~ clim. + geog. + struct. 

276.21 0.59 0.001 1 0.59 

Pure climate:  
F ~ clim. | (geog. + struct.) 

110.23 0.23 0.001 0.39 0.23 

Pure structure:  
F ~ struct. | (clim. + geog.) 

49.93 0.10 0.001 0.17 0.10 

Pure geography:  
F ~ geog. | (clim. + struct.) 

19.53 0.04 0.001 0.06 0.03 

Confounded 
climate/structure/geography 

96.52   0.33 0.19 

Total unexplained 189.92     
Total variance 466.13     
 1044 

 1045 

 1046 

 1047 

 1048 

 1049 

 1050 

 1051 

 1052 

  1053 
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Figure Legends 1054 

 1055 

Figure 1. Population genetic structure of 17 populations of Achnatherum thurberianum based on 1056 

5,677 SNPs. a) Map of the sampled locations with each population code. Each population is 1057 

colored consistently in panels a, b, and c, and represented by one of five shapes corresponding to 1058 

the seed zone of Johnson et al. (2017) containing each population (Table 1). b) The first and second 1059 

principal components (PCs) resulting from PCA on the genotypic data plotted for each individual. 1060 

c) Each individual plotted for the first two axes from a Uniform Manifold Approximation and 1061 

Projection (UMAP) clustering analysis based on the genotypic data. d) ADMIXTURE plot 1062 

representing estimated ancestry coefficients for each individual, following results of an analysis 1063 

with K set to eight ancestral populations. 1064 

 1065 

Figure 2. Mantel test results and relationships between genetic (Nei’s D) and geographic distances 1066 

(km) (a), genetic (Nei’s D) and environmental distances (b), and geographic (km) and 1067 

environmental distances (c).  1068 

 1069 

Figure 3. Landscape genetic differentiation for the 17 Achnatherum thurberianum populations. a) 1070 

Map of the sampled locations with each population (colors) and seed zone (symbols) code (Table 1071 

1). b) Estimated effective migration surface (EEMS) plot depicting estimated migration rates (in 1072 

log 10 scale) that deviate from isolation by distance expectations. Brown represents areas of low 1073 

effective migration relative to the average, and green represents areas of higher effective migration. 1074 

c) Unbundled principal components (unPC) representation; higher unPC values, representing 1075 

greater differentiation than expected among populations, are colored in progressively darker 1076 
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shades of brown, while lower unPC values, representing lower differentiation among populations, 1077 

are colored in progressively darker shades of green. The unPC values near the mean of the 1078 

distribution are colored in white. 1079 

 1080 

Figure 4. Population phylogenetic differentiation of the 17 Achnatherum thurberianum 1081 

populations. a) Maximum likelihood topology inferred with IQ-TREE. The scale bar represents the 1082 

expected number of nucleotide substitutions per site. Ultrafast bootstrap support values (UFBS) 1083 

are indicated at the nodes. b) Projected phylogeny onto the geographic map showing each 1084 

population’s location. One individual is represented for each population to minimize overlap. The 1085 

different symbols in both panels correspond to the different seed zones studied (Table 1).  1086 

 1087 

Figure 5. Redundancy analysis (RDA) plot depicting the environmental variables studied 1088 

significantly associated with genetic variation. The direction and length of arrows correspond to 1089 

the loadings of each variable on the two RDA axes. 1090 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.22.497217doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.497217
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

57 
 

Figure 5. 
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