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Abstract 33 

Group 2 innate lymphoid cells (ILC2) are functionally poised, tissue-resident 34 

lymphocytes that respond rapidly to damage and infection at mucosal barrier sites. 35 

ILC2 reside within complex microenvironments where they are subject to cues from 36 

the diet, commensal microbiota and invading pathogens – most notably helminths. 37 

Emerging evidence suggests ILC2 are acutely sensitive not only to canonical 38 

activating signals, but also perturbations in nutrient and metabolite availability. In the 39 

context of helminth infection, we identify amino acid availability as a nutritional cue in 40 

regulating ILC2 responses. ILC2 were found to be uniquely pre-primed to import amino 41 

acids via the large neutral amino acid transporters Slc7a5 and Slc7a8. Cell-intrinsic 42 

deletion of these transporters impaired ILC2 expansion, but not cytokine production, 43 

in part via tuning of mTOR activation. These findings implicate the import of amino 44 

acids as a metabolic requisite for optimal ILC2 responses, and further highlight 45 

nutritional cues as critical regulators of innate immune responses within mucosal 46 

barrier tissues. 47 

 48 

 49 
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Introduction 67 

Type 2 immune responses are specialised to induce effector mechanisms that 68 

mediate protective immunity to large extracellular helminth parasites that invade and 69 

inhabit mucosal barrier tissues (1, 2). Indeed, helminth infections have been 70 

postulated to be the major evolutionary driver of the type 2 immune system, although 71 

the precise factors that regulate the magnitude and quality of type 2 immune cell 72 

responses remain incompletely defined. Chronic helminth infections are associated 73 

with significant morbidity – including malnutrition potentially due to competition with 74 

the host for metabolic resources, which can have potent immunomodulatory 75 

consequences (3, 4). Indeed, an emerging body of evidence suggests the mammalian 76 

immune system is primed to sense nutrients and metabolites derived directly from the 77 

diet or produced by the commensal microbiota or pathogenic organisms (5, 6). 78 

Moreover, gastrointestinal helminth infections are associated with alterations in both 79 

the microbiota and dietary nutrient availability (3, 4, 7-9). 80 

 81 

Group 2 innate lymphoid cells (ILC2) are transcriptionally and functionally poised 82 

effector immune cells found primarily at mucosal barrier sites, and which respond 83 

rapidly during the early phases of helminth infection by robustly producing the effector 84 

cytokines Interleukin (IL)-5 and IL-13 (10, 11). Alarmin signals including IL-25, IL-33 85 

and thymic stromal lymphopoietin (TSLP) released by non-hematopoietic cells in 86 

response to tissue damage act in concert with cues from tissue-resident neurons and 87 

glial cells to induce rapid proliferation and expansion of ILC2, and induce protective 88 

responses such as eosinophilia, goblet cell hyperplasia, epithelial cell extrusion and 89 

smooth muscle hypercontractility (10, 11). In addition, it is increasingly appreciated 90 

that ILC2 sense and respond to changes in the abundance and availability of dietary 91 

and microbially derived metabolites including Vitamin A-derived retinoic acid (12), aryl-92 

hydrocarbon receptor (Ahr) ligands (13), short chain fatty acids (14) and succinate (15, 93 

16) – suggesting ILC2 are poised to sense not only tissue-associated danger signals 94 

but also the broader metabolic milieu of mucosal tissues (17). 95 

 96 

In addition, micronutrients are key determinants of immune effector function through 97 

their capacity to provide fundamental substrates for production of the energy and 98 

biomass needed to fuel proliferation and protein translation (5, 6). Indeed, the ability 99 

of ILC2 to mount an effective and appropriate response to challenge has been shown 100 
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to be dependent upon the ability to appropriately engage cell-intrinsic metabolic 101 

pathways to catabolise glucose, fatty acids and arginine (18-20). Despite these 102 

advances it remains unclear whether changes in the availability of metabolites occur 103 

during infection that may determine the quality and magnitude of ILC2 responses. 104 

Moreover, the precise nature of metabolic cues that modulate ILC2 responses and 105 

underpin their rapid and innate effector functions remain incompletely defined. 106 

 107 

Here we identify amino acid availability as a critical rheostat of ILC2 responses. 108 

Strikingly – and unlike other steady state tissue resident immune cells – ILC2 were 109 

found to express multiple solute carrier-encoded transporters that act to ensure ILC2 110 

are pre-poised to take up essential amino acids from the environment. Notably, 111 

absence of these transporters impacted the ability of ILC2 to proliferate, but not 112 

produce effector cytokines. This was found to be in part through their ability to tune 113 

ILC2 metabolic fitness and mTOR pathway activation. Together these findings 114 

suggest that ILC2 are metabolically primed to facilitate rapid expansion following 115 

activation by alarmins or in the context of helminth infection. 116 

 117 

Results and Discussion 118 

 119 

Amino acid availability impacts type 2 immunity during helminth infection 120 

To identify environmental and metabolic cues that could impact innate type 2 immune 121 

responses in the context of helminth infection we infected mice with Nippostrongylus 122 

brasiliensis for 7 days and performed unbiased metabolomic analysis on feces of 123 

infected mice and control animals (Figure 1A). Using this approach we identified a 124 

total of 32 unique molecules, of which 13 were found to differ significantly (p<0.05). 125 

We identified changes in the relative abundance of several metabolites following 126 

infection, including a relative decrease in glucose and increase in lactate in the feces 127 

of infected mice, whereas no consistent differences were observed in the abundance 128 

of common microbial metabolites such as short chain fatty acids were detected (Fig. 129 

S1A). Notably, we detected increases in the relative abundance of a number of amino 130 

acids following infection including alanine, valine, leucine and isoleucine, among 131 

others. Many of the amino acids found to be increased are “essential” amino acids that 132 

cannot be synthesised by mammalian cells and instead must be acquired from dietary 133 

and environmental sources (Figure 1A+B, Fig. S1B). Comparable analysis of mice 134 
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infected with other small intestinal dwelling helminths, specifically Heligmosomoides 135 

polygyrus and Trichinella spiralis, yielded similar changes in fecal amino acid 136 

abundance, albeit to different degrees (Figure 1B, Fig. S1B). 137 

 138 

Given the previously reported impact of nutrient availability on ILC2 responses (12, 139 

18-20), we hypothesised that an altered abundance of amino acids in the 140 

gastrointestinal tract may impact upon the quality or magnitude of a protective innate 141 

immune response during helminth infection. To test this, we fed mice a diet that was 142 

relatively low in protein (5% energy from protein), which has previously been shown 143 

to limit both tissue and systemic amino acid availability (21), and compared to mice 144 

fed a control diet (21% energy from protein; comparable with normal chow used in 145 

these studies). We focused our analysis on the lung – a tissue through which N. 146 

brasiliensis migrates during the first days of infection inducing significant tissue 147 

damage and eliciting a potent ILC2 response. Mice fed a 5% protein diet exhibited a 148 

reduced accumulation of ILC2 numbers by day 7 post-infection (Figure 1C), which was 149 

associated with a delayed proliferative response as compared to 21% protein diet-fed 150 

mice (Figure 1D+E). ILC2 exhibited only a moderate reduction in the ability to produce 151 

IL-5 and IL-13 in response to infection (Figure 1F), however when coupled with 152 

decreased cellularity this led to an overall reduction in the number of cytokine 153 

producing ILC2 (Figure 1G). Thus, these data indicated that altering the availability of 154 

amino acids may modulate the quality and magnitude of the ILC2 response. 155 

 156 

ILC2 are poised for amino acid uptake 157 

Our data suggested the induction of ILC2 responses may be sensitive to changes in 158 

the abundance of essential amino acids derived from dietary intake. Intriguingly, we 159 

observed that sort-purified ILC2 isolated from IL-33 treated mice exhibited a relative 160 

enrichment within their intracellular contents for many of the same amino acids (Figure 161 

2A), including alanine, valine, leucine and isoleucine. To determine the underpinning 162 

molecular machinery through which alterations in amino acid abundance could 163 

potentially alter the ILC2 response, we examined published bulk RNA seq data (22) to 164 

analyse the expression of a range of solute carrier genes known to act as surface 165 

amino acid transporters in ILC2, in comparison to CCR6+ ILC3 (ILC3) (Figure 2B). We 166 

observed that ILC2, but not ILC3, constitutively expressed high levels of multiple solute 167 

carriers, most notably Slc3a2, Slc7a5 and Slc7a8, known to encode for amino acid 168 
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transporters (Figure 2B). Slc3a2 encodes the protein CD98 – a chaperone molecule 169 

and heavy chain subunit that heterodimerises with other solute carriers to form active 170 

amino acid transporters, and ILC2 were also enriched for the CD98 binding partners 171 

Slc7a5 and Slc7a8, which together form the surface large neutral amino acid 172 

transporters LAT1 and LAT2 respectively. In contrast, expression of other CD98 173 

binding partners such as Slc7a6, Slc7a7, Slc43a1 and Slc43a2 were either not 174 

enriched in ILC2, or not detected in the data set (Figure 2B, Immgen database, (22)). 175 

LAT1 and LAT2 primarily transport a range of amino acid substrates with overlapping 176 

specificity to those also observed to be enriched in both the feces of helminth infected 177 

mice and enriched within the intracellular content of ILC2 (Figure1A+B, Figure 2A) 178 

(23-26), suggestive of a possible role for these transporters in ILC2 responses.  179 

 180 

Consistent with this, we could detect constitutively elevated steady-state expression 181 

of CD98 on the cell surface of ILC2 – but not ILC3, CD4+ T cells or B220+ B cells – in 182 

a wide range of tissues (Figure 2C-F). Strikingly, we found a combination of GATA-3 183 

and CD98 alone was sufficient to identify ILC2 amongst total CD45+ cells without prior 184 

lineage exclusion or pre-gating on classical ILC-associated markers (CD127, CD90.2), 185 

further indicating the preferentially heightened expression of CD98 by ILC2 amongst 186 

mucosal-resident lymphocytes (Figure 2E, Fig. S2A+B), while CD98 could also be 187 

detected on bone marrow ILC2 precursors (ILC2P; Fig. S2C). To validate whether 188 

surface CD98 expression on ILC2 was indicative of LAT activity we confirmed elevated 189 

expression of both Slc7a5 and Slc7a8 by RT-PCR in sort-purified ILC2 (Figure 2G). 190 

We then utilized a previously reported assay which utilizes the autofluorescent 191 

properties of the tryptophan metabolite kynurenine as a proxy of LAT transporter 192 

activity and amino acid uptake (27). Uptake of kynurenine was detected in naïve ILC2, 193 

which was inhibited by co-culture with the LAT-inhibitor BCH (Figure 2H) and found to 194 

be enhanced in ILC2 from IL-33 treated mice (Figure 2I). Kynurenine uptake in naïve 195 

ILC2 contrasted with CD4+ T cells which required TCR engagement to both 196 

upregulate surface CD98 and actively take up kynurenine (Fig. S2D, in line with 197 

previous findings (27, 28). Moreover, uptake of kynurenine by ILC2 was reduced by 198 

competition with excess levels of the high affinity LAT-substrates leucine and 199 

methionine, as well as alanine (a high affinity substrate of Slc7a8) but not lysine - 200 

which is not transported by Slc7a5 or Slc7a8 but rather by related y+LAT family 201 

members (Figure 2J and Fig. S2E) (29-31). Together these findings indicate that ILC2 202 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.22.497162doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.497162
http://creativecommons.org/licenses/by-nc-nd/4.0/


are preferentially poised to import amino acids via the surface large neutral amino acid 203 

transporters Slc7a5 (LAT1) and Slc7a8 (LAT2). 204 

 205 

 206 

Cell-intrinsic deletion of Slc7a5 or Slc7a8 impairs ILC2 expansion  207 

As ILC2 were found to preferentially express CD98 along with two distinct partner 208 

chains Slc7a5 (LAT1) and Slc7a8 (LAT2), we next aimed to determine the role of these 209 

transporters during an ILC2 response. First, we generated mice with a conditional 210 

deletion of Slc7a5 in ILC2 by crossing Red5Cre mice (32) with Slc7a5 fl/fl mice (28) 211 

(Figure 3A), and determined the effect on ILC2 responses following activation. ILC2 212 

from IL-33 treated Red5Slc7a5 fl/fl mice exhibited comparable expression of ST2 and 213 

KLRG1 as compared to Red5Cre control animals but had a clear reduction in surface 214 

CD98 expression (Figure 3B). Moreover, while ILC2 frequencies at steady state were 215 

comparable between Red5Cre and Red5Slc7a5 fl/fl mice, ILC2 lacking cell-intrinsic Slc7a5 216 

expression demonstrated a clear defect in expansion following in vivo activation with 217 

IL-33 (Figure 3C+D). This correlated with a reduced percentage of cells expressing 218 

Ki-67 and notably, consistently reduced intensity of Ki-67 staining amongst positive 219 

cells (Figure 3E-G). In contrast, ILC2 exhibited comparable frequencies of IL-5 and IL-220 

13 positive cells in the absence of Slc7a5 (Figure 3H+I), suggesting disruption of ILC2-221 

intrinsic amino acid transport may largely perturb the magnitude but not the quality of 222 

the ILC2 response following activation. 223 

 224 

In contrast to Slc7a5, which has previously been attributed roles in the activation of 225 

other lymphocyte populations (28, 33), a role for Slc7a8 in immune cells has not 226 

previously been described. Of note however, Slc7a8 was previously listed amongst 227 

the top signature- defining genes of intestinal ILC2 by RNA sequencing (22) and was 228 

confirmed by RT-PCR to be highly and uniquely expressed in ILC2 derived from 229 

multiple tissues (Fig. S3A), but not in resting B or T cells (Fig. S3A+B), suggesting 230 

ILC2 may utilize multiple amino acid transporters to ensure a sufficient supply of these 231 

metabolic substrates. To test the role of Slc7a8 in ILC2 responses we obtained and 232 

validated a Slc7a8 knockout allele (Fig. S3B), which was subsequently converted to a 233 

loxP-flanked conditional allele via use of a FlpO recombinase. The Slc7a8 fl/fl allele 234 

was further backcrossed with Red5Cre mice to generate Red5Slc7a8 fl/fl animals with an 235 

ILC2-intrinsic deletion of Slc7a8 (Red5Slc7a8 fl/fl). In contrast to our observations with IL-236 
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33 activated ILC2 (Figure 3B), and suggestive of a complimentary nature of these two 237 

amino acid transporters, we failed to observe any reduction in surface CD98 on steady 238 

state ILC2 in the absence of Slc7a5 alone, whereas deletion of Slc7a8 led to a reduced 239 

expression of surface CD98 in naïve ILC2 (Figure 4A). However confirming our 240 

previous findings, upon IL-33 activation in vivo CD98 expression on ILC2 was 241 

markedly reduced by the absence of Slc7a5, whereas in the absence of Slc7a8 CD98 242 

expression was in part maintained on the surface of ILC2 (Figure 4A). To try and 243 

reconcile these findings we determined the relative expression of the two transporter 244 

genes in naïve and IL-33 treated ILC2 and found that indeed Slc7a8 was dominant in 245 

naïve animals but that the ratio between the two CD98 partner chains became 246 

relatively equal after activation (Figure 4B), suggestive of different contributions of 247 

Slc7a5 and Slc7a8 to functional amino acid transporter heterodimers in activated and 248 

resting ILC2. Nonetheless ILC2 frequencies and numbers were found to be 249 

comparable in naïve Red5Slc7a8 fl/fl and littermate control animals. Instead a reduced 250 

expansion of ILC2 in response to IL-33 was observed in the absence of Slc7a8 that 251 

was associated with a reduced frequency of Ki-67-expressing cells, but no cell-intrinsic 252 

defect in cytokine production (Figure 4C-G), comparable to results obtained with 253 

Slc7a5 deletion. Thus, together these findings suggest that ILC2 express distinct large 254 

amino acid transporters with differing expression patterns in resting and activated 255 

cells, both of which act to support optimal cell expansion upon activation. 256 

 257 

 258 

Amino acid transporter deficiency impairs ILC2 responses to helminth infection 259 

Our data demonstrate a reduced ability of ILC2 to expand and proliferate in response 260 

to IL-33 in the absence of either Slc7a5 or Slc7a8. To determine the role of these 261 

transporters in generating ILC2 response to a more physiological infectious stimulus, 262 

we infected control or floxed mice with N. brasiliensis (Figure 5). In line with our prior 263 

findings, we noted that while naïve ILC2 had impaired surface CD98 expression in the 264 

absence of Slc7a8 they increased compensatory solute carrier expression upon 265 

activation by helminth infection (Figure 5A). In contrast naïve ILC2 lacking Slc7a5 266 

exhibited comparable CD98 surface expression, but were unable to maintain surface 267 

CD98 upon activation by infection – again suggesting Slc7a5 is proportionally 268 

increased and constitutes an elevated proportion of LAT heterodimers following ILC2 269 

activation (Figure 5A). As with IL-33 activation, ILC2 expansion was reduced in the 270 
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absence of either amino acid transporter following helminth infection (Figure 5B). 271 

Moreover, this reduced ILC2 response correlated with altered kinetics of infection. In 272 

particular, elevated worm burdens were observed in the intestines of mice at day 4 273 

post infection as compared to control animals (Figure 5C+D). Notably, only mice 274 

lacking ILC2-intrinsic Slc7a8 showed alterations in lung worm burdens at day 2, 275 

potentially suggesting a dominant role for this transporter in the early phase of an ILC2 276 

response. Thus, in the context of a mucosal helminth infection the expression of the 277 

amino acid transporters LAT1 and/or LAT2 is required for optimal ILC2 responses. 278 

 279 

Perturbation of ILC2 amino acid transport results in metabolic stress 280 

Ensuring a sufficient intracellular supply of amino acids is critical for cellular function, 281 

not only by providing the building blocks for the generation of biomass, but also via 282 

effects on cellular metabolism. Thus, we hypothesised that the consequences of 283 

perturbed amino acid transport would most likely be evident at the level of the 284 

proteome. To our knowledge proteomic analysis has not previously been attempted 285 

on ILC populations, therefore as a proof of concept we first sort-purified wild type ILC2 286 

from IL-33 treated animals to determine feasibility. Using this approach, we were able 287 

to reproducibly detect over 5000 individual proteins from ILC2. Comparison of protein 288 

copy number with bulk RNA seq data of mRNA transcripts revealed a largely linear 289 

correlation between genes and their products, including classical ILC2 genes and 290 

proteins (Fig. S4A). However, in some cases (e.g. Thy1) the protein copy number 291 

diverged significantly from the relative gene expression level, indicating possible 292 

differences between transcriptomic and proteomic data in predicting ILC2 biology (Fig. 293 

S4A). Proteins associated with ILC2 phenotype and function, or cellular metabolism, 294 

were robustly detected but varied in their total copy number distribution (Fig. S4B). 295 

While these data demonstrate the feasibility of proteomic analysis of in vivo expanded 296 

ILC2, we were unable to generate sufficient material from naïve animals for 297 

comparison. Next, to investigate the role of amino acid transporter deletion on the ILC2 298 

proteome we similarly sort-purified ILC2 from IL-33 treated Red5Cre, Red5Slc7a5 fl/fl and 299 

Red5Slc7a8 fl/fl mice and identified over 6000 proteins, of which ~200 proteins differed 300 

significantly by genotype (Figure 6A). We confirmed efficient deletion of Slc7a5 and 301 

Slc7a8 protein in the respective knockout animals (Figure 6B), while ILC2 expression 302 

of activating cytokine receptors (Fig. S4C), transcription factors and canonical surface 303 

markers (Fig. S4D) were unchanged by transporter deletion. Via GO Term enrichment 304 
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of the differentially expressed protein list we identified cell cycle progression, 305 

metabolism and protein translation as the major pathways perturbed in the absence 306 

of either amino acid transporter (Figure 6C).  307 

 308 

Efficient nutrient uptake by ILC2 has previously been shown to act as a key 309 

determinant of cellular metabolism and the magnitude of the effector function, thus we 310 

investigated previously reported metabolic pathways implicated in the ILC2 response. 311 

However we found that Arginase-1 (Arg1) protein expression was not altered in the 312 

absence of amino acid transporter expression (Figure 6D+E)(20), nor was expression 313 

of Diacylglycerol acyltransferase 1 (Dgat1) (Figure 6F) or overall intracellular lipid 314 

storage (Figure 6G)(18). In contrast we identified protein signatures indicative of 315 

altered mitochondrial biology – especially in the absence of Slc7a5 – suggesting that 316 

lack of amino acid uptake may alter mitochondrial function of activated ILC2s (Fig. 317 

6H). To test this, we sort-purified wild type ILC2 from IL-33 treated animals and 318 

cultured them overnight with the LAT-inhibitor BCH to impede LAT-dependent uptake 319 

of amino acids, and subsequently assessed the consequences via a Mitochondrial 320 

Stress Test. We consistently observed that ILC2 incubated with BCH exhibited a 321 

higher oxygen consumption rate upon addition of FCCP, which disrupts mitochondrial 322 

proton transport and ATP synthesis (Figure 6I), and had an increased spare 323 

respiratory capacity compared to control cells (Figure 6J), together suggesting that 324 

amino acid transporter blockade may lead to altered mitochondrial function, possibly 325 

as a compensatory measure in the context of perturbed intracellular amino acid 326 

availability.  327 

 328 

Intracellular amino acid availability controls proliferation via mTOR and 329 

metabolic rewiring 330 

LAT-dependent intracellular amino acid availability has been extensively 331 

demonstrated to be a key regulator of activation of the mammalian target of rapamycin 332 

(mTOR), which in turn acts as a critical cellular hub that integrates nutrient availability 333 

with activating signals from growth factors, cytokines and other activating cues to 334 

determine downstream changes in cellular metabolism, protein translation, biomass 335 

synthesis and proliferation (23, 34, 35). To first determine the cues that activate mTOR 336 

in ILC2 under normal culture conditions we cultured sort-purified cells with cytokines, 337 

alarmins and neuropeptides known to influence ILC2 responses. As expected, we 338 
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found that IL-7 poorly induced mTOR activation, as indicated by phosphorylation of 339 

ribosomal protein S6 (pS6), which is consistent with its role in homeostatic 340 

maintenance of ILCs (Figure 7A). In contrast, ILC2 cultured with IL-2, IL-25, IL-33 and 341 

Neuromedin U (NmU) all drove robust phosphorylation of S6, which could be 342 

completely or partially prevented by co-incubation with the mTOR inhibitor PP242 343 

(Figure 7A+B). We then determined whether ablation of amino acid uptake with the 344 

LAT-inhibitor BCH could alter mTOR activation in response to an activating signal (IL-345 

33), and indeed found that pre-incubation of ILC2 with BCH reduced pS6 in the 346 

presence of IL-33 in comparison to cells activated with IL-33 alone, although pS6 was 347 

only partially suppressed when compared to complete mTOR inhibition with PP242 348 

(Figure 7C). Similarly, ILC2 cultured in leucine free media exhibited lower pS6 349 

expression in response to IL-33 when compared to cells cultured in leucine replete 350 

media (Figure 7D). Together these findings suggest amino acid uptake via LATs on 351 

ILC2 acts in part to tune mTOR activation. 352 

 353 

Finally, as Slc7a5 and Slc7a8 primarily led to a reduced expansion of ILC2 without 354 

altering cell-intrinsic cytokine production, we determined to what extent mTOR 355 

regulation could contribute to these phenotypes. To circumnavigate potential 356 

developmental defects caused by a constitutive deletion of such a key sensing hub, 357 

we generated an inducible ERT2 Cre-driven model of mTOR deletion under the control 358 

of the Id2 locus (to predominantly target ILCs), which upon tamoxifen administration 359 

drove both an RFP reporter allele as previously described (36, 37), and deletion of 360 

flanking loxP sites in mTOR (Id2mTOR fl/fl). Following tamoxifen administration and 361 

activation of ILC2 via IL-33 we noted a reduced frequency of RFP expressing cells in 362 

Id2mTOR fl/fl mice when compared to Id2mTOR +/+ control mice, indicating Cre-activated 363 

cells (RFP+) may be at a competitive disadvantage to wild type (RFP-) cells in the 364 

absence of mTOR (Figure 7E+F). In line with this, we observed an intrinsic defect in 365 

Ki-67 expression and proliferation amongst Cre-activated RFP+ cells from Id2mTOR fl/fl 366 

when compared to otherwise mTOR competent RFP- cells in which Cre had not been 367 

recombined in the same mice (Figure 7G-I). In contrast, proliferation and cell numbers 368 

were not perturbed by Cre activation and RFP expression in mice lacking the floxed 369 

allele (Figure 7G-I). Mirroring our findings with amino acid transporter deletion in ILC2, 370 

RFP+ cells lacking mTOR showed no defect in cytokine production following IL-33 371 

activation when compared to those in control mice (Figure 7J-K). Thus, our findings 372 
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suggest amino acid uptake via LATs mat regulate the magnitude of the ILC2 373 

expansion via tuning of mTOR activation upon activation. 374 

 375 

Collectively, the findings presented here suggest that ILC2 - unlike other major 376 

lymphocyte populations such as T cells - are pre-poised for the uptake of amino acids 377 

from the tissue environment in order to fuel optimal proliferation and cell expansion 378 

upon activation. This poised state appears to be in part due to the preferential 379 

expression of Slc7a8 in ILC2 at steady state, which was otherwise not detected in 380 

resting T cells. This suggests ILC2 may employ two distinct large neutral amino acid 381 

transporters, both prior to and following activation, to ensure sufficient intracellular 382 

amino acid availability to fuel a rapid innate response. One possibility is that the 383 

differing substrate specificity of the two transporters facilitates differential uptake of 384 

amino acids. Indeed, Slc7a8 has been suggested to have higher specificity for alanine 385 

(31), an amino acid found to be the most highly enriched in sort-purified ILC2 (Figure 386 

2A), and which has recently also been shown to regulate mTOR activation in addition 387 

to classical substrates such as leucine (38). To our knowledge this is the first report of 388 

a role for Slc7a8/LAT2 in immune cell functionality.  389 

 390 

In contrast, we noted a relative increase of Slc7a5 expression and associated 391 

dependence on Slc7a5 expression for surface CD98 following activation, similar to 392 

that reported for activated T cells (28). While this data suggests Slc7a8/LAT2 may 393 

preferentially act in a steady state setting we found no differences in ILC2 frequency 394 

or numbers across tissues in naïve animals, although ILC2 lacking Slc7a8 failed to 395 

proliferate and expand in response to IL-33. One possibility is that Slc7a8 may 396 

determine metabolic tone or innate fitness of naïve ILC2 to prime them for rapid 397 

proliferation, although due to the limitations in performing extensive molecular and 398 

cellular analysis of naïve ILC2 we have been unable to investigate the different 399 

contributions of LAT1 and LAT2 in resting ILC2 further within the scope of this study. 400 

Nonetheless, and in line with our findings, a recent report similarly demonstrated that 401 

human ILC2 isolated from peripheral blood are also uniquely poised for amino acid 402 

uptake and that ILC2 cultured with inhibitors of downstream pathways associated with 403 

amino acid metabolism exhibited reduced cellular fitness and proliferation (39). This 404 

highlights a conserved requirement for amino acid uptake in ILC2 across species. 405 

Further studies and refined methodologies are needed to definitively dissect the 406 
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different contributions of Slc7a5 and Slc7a8 to rare immune cell population biology 407 

and metabolism. 408 

 409 

Finally, we observed that helminth infections increase the abundance of essential 410 

amino acids within the feces, in line with a previous report (40), potentially linking 411 

changes in environmental cues with the metabolic and proliferative capacity of the 412 

responding innate immune cell. It is tempting to speculate that ILC2 may express 413 

multiple amino acid transporters not only to ensure sufficient import of metabolic 414 

substrates required to underpin their rapid innate expansion and functionality, but also 415 

to enhance their sensitivity to environmental changes associated with infections that 416 

likely acted as a key evolutionary pressure to drive the emergence of this arm of the 417 

immune system. It is increasingly clear that a broad range of microbial and dietary 418 

metabolites regulate the activation of ILC2 (17-20, 39), and together with classical 419 

activating signals, such as alarmins and neuropeptides, nutrient and metabolite 420 

availability likely act as a further regulatory layer to tune the magnitude of the immune 421 

response within the tissue microenvironment and facilitate rapid innate immune 422 

responses.  423 

 424 

Materials and Methods 425 

 426 

Mice 427 

Six to eight week old female C57BL/6 were purchased from Envigo, Cambridge, UK. 428 

Red5Cre (B6(C)-Il5tm1.1(iCre)Lky/J, stock number 030926, originally generated by Richard 429 

Locksley, UCSF), Id2ERT2Cre (B6.129S(Cg)-Id2tm1.1(Cre/ERT2)Blh/ZhuJ, stock number 430 

016222, originally generated by Yuan Zhuang, Duke University) and mTORfl/fl mice 431 

(B6.129S4-Mtortm1.2Koz/J, stock number 011009, originally generated by Sara Kozma, 432 

University of Cincinatti) were originally imported from Jackson laboratories. 433 

ROSA26tdRFP were originally a kind gift from Hans Joerg Fehling, Slc7a5fl/fl mice 434 

(B6.129P2-Slc7a5tm1.1Daca/J) were a kind gift from Doreen Cantrell (University of 435 

Dundee). Slc7a8fl/fl mice were generated by crossing C57BL/6N-436 

Slc7a8tm2a(EUCOMM)Hmgu/BayMmucd mice with mice containing a FlpO recombinase 437 

allele to remove the lacZ and Neomycin cassettes (KOMP/MMRRC repository, stock 438 

number 041243-UCD originally generated by Arthur Beaudet, Baylor College of 439 

Medicine), generating flanking loxP sites spanning the critical exon. In some 440 
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experiments mice were fed a diet containing 21% protein or 5% protein for two weeks 441 

prior to infection or subsequent manipulation, diets were purchased from Envigo 442 

laboratories (TD. 140918 and TD. 140711). For activation of inducible Cre alleles mice 443 

were orally gavaged 5mg Tamoxifen in Corn oil every 2-3 days for a period of two 444 

weeks and rested one week prior to further experimental manipulation. For transgenic 445 

animal studies age- and sex-matched littermate controls were used within experiments 446 

where possible, mice were maintained at University of Manchester under specific 447 

pathogen free conditions, with water and chow provided ad libitum, with constant 448 

temperature and 12 hour light and dark cycle. All experiments were performed under 449 

license of the U.K. Home Office and under approved protocols. All animal studies were 450 

ethically reviewed and carried out in accordance with Animals (Scientific Procedures) 451 

Act 1986 and the GSK Policy on the Care, Welfare and Treatment of Animals. 452 

 453 

In vivo IL-33 treatment 454 

Mice were injected intraperitoneally with 0.5µg of recombinant IL-33 (BioTechne) on 455 

day 0, 2 and 4 unless otherwise indicated. To maximise cell yield for sort-purification 456 

of ILC2 and ex vivo assays mice received additional doses of IL-33 and/or a higher 457 

dosing regimen (1µg).  458 

 459 

Helminth infections 460 

Mice were infected with 300 L3 Nippostrongylus brasiliensis via subcutaneous 461 

injection, or 250 infective larvae of either Heligmosomoides polygyrus or Trichnella 462 

spiralis via oral gavage. Helminth life cycles were maintained and infective larvae 463 

kindly provided by the groups of Judi Allen, Richard Grencis and John Grainger at the 464 

University of Manchester. 465 

 466 

Tissue processing  467 

Briefly, Lungs were collected in 2ml of PBS and thoroughly minced prior to the addition 468 

of 2mg/ml Collagenase D and 33µg/ml DNase. Tissue was shaken at 37C for 40 469 

minutes at 200rpm, prior to mechanical disruption and passing over a 70µm nylon filter 470 

and flushing of remaining tissue with PBS. Supernatants were pelleted and cells briefly 471 

incubated with 2ml ACK buffer to lyse residual red blood cells, prior to being washed 472 

and resuspended in PBS containing 5% FCS and 1mM EDTA for flow cytometry 473 
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staining. Mesenteric lymph nodes (mLN) were processed in a similar manner without 474 

enzymatic digestion, via manual disruption over a 70µm nylon filter. Intestinal lamina 475 

propria preparations were isolated by removing all fat and Peyer’s patch from 476 

intestines, opening longitudinally and flushing in PBS, followed by extensive vigorous 477 

vortexing of intestinal tissue in PBS and subsequent rounds of incubation and constant 478 

shaking with PBS containing 5% FCS, 1mM EDTA and 1mM DTT at 37C to remove 479 

mucus and epithelium. The remaining tissue was then incubated with constant shaking 480 

at 37C in RPMI media containing 0.1mg/ml collagenase/dispase (Roche) and 20µg/ml 481 

DNase (Sigma-Aldrich) for 45 minutes. Supernatant containing liberated lymphocytes 482 

was collected by passing tissue over a 70µm nylon filter, and cells pelleted and 483 

resuspended in PBS containing 5% FCS and 1mM EDTA for flow cytometry staining. 484 

 485 

Flow cytometry and cell sorting 486 

Surface antibody staining was performed in PBS containing 5% FCS and 1mM EDTA 487 

and using a Fixable Aqua Dead Cell (Invitrogen) to determine viability. Cells were 488 

stained with the following cell surface antibodies and using the conjugates indicated 489 

in the figure labels and utilized for analysis with a BD Fortessa or cell-sorting with a 490 

BD Aria Influx; CD127 (IL-7Rα, Brilliant Violet 421, PE, or FITC, eBioscience; clone 491 

A7R34), ST2 (IL-33R Biotin; eBioscience, clone RMST2-33), CD45 (brilliant violet 650; 492 

clone 30-F11, BioLegend), CD3 (PerCP-Cyanine 5.5 or PE/Cy7; clone 145-2C11), 493 

CD5 (PerCP-Cyanine 5.5 or PE/Cy7, BioLegend; clone 53-7.3) NK1.1 (PerPC- 494 

Cyanine 5.5, BV395, or PE/Cy7, eBioscience; clone PK136), CD90-2 (alexa fluor 700 495 

AM; clone 30-H12, BioLegend), B220 (CD45R, APC-e Fluor 780, eBioscience; clone 496 

RA3-6B2) CD11b (super bright 600, Invitrogen, APC-e Fluor 780; clone M1/70) CD11c 497 

(APC-e Fluor 780, eBioscience; clone N418), CD4 (super bright 600, eBioscience; 498 

clone RM4-5; BV395, eBioscience; clone GK1.5), SA-APC (streptavidin APC, 499 

eBioscience), SA-SB600 (streptavidin super bright 600, eBioscience), CD98 (Alexa 500 

Fluor 647; clone RL388, BioLegend), CD8a (FITC; clone 53-6.7, BioLegend), KLRG1 501 

(PeCyanine 7, Invitrogen, FITC, or Pe-eFlour 610, eBioscience; clone 2F1), MHCII 502 

(eFluor 450; clone M5/114,15.2, Invitrogen).  503 

 504 

Intracellular staining was performed by fixing cells for 30 minutes FoxP3 fix/perm 505 

buffers (eBioscience) prior to staining for 30 minutes in permeabilisation buffer 506 
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(eBioscience) at 4C. Alternatively in order to retain reporter signals cells were first 507 

fixed with BD Cytofix/Cytoperm buffer (BD Biosciences) for 1 hour at 4C prior to 508 

staining intracellular antigens overnight at room temperature. Intracellular antbodies 509 

utilized in this study RORγt (PE; clone B2D), Ki-67 (eFluor 450, eBioscience; clone 510 

SolA1s), GATA 3 (PercP eFluor 710, eBioscience; clone TWAJ), Arg1 (Alexa fluor 511 

700, eBioscience; clone A1exF5), IL-5 (PE or APC, eBioscience; clone TRFK5, 512 

BioLegend), and IL-13 (Alexa Fluor 488, or PeCyanine 7, Invitrogen; or eFluor 660, 513 

eBioscience; clone eBio13A). For phosphoFlow, stimulated cells were fixed with pre-514 

warmed Phosflow Lyse/Fix buffer (BD Biosciences) for 10 minutes, washed and 515 

permeabilised with ice cold Perm Buffer III (BD biosciences) for 30 minutes, and 516 

subsequently stained with pS6 (Ser235 Ser236; APC, eBioscience; clone cupk43k). 517 

The Kynurenine uptake assay was performed as previously described (27). 518 

 519 

RT-PCR and Bulk RNA sequencing 520 

Total RNA was purified using the RNeasy Micro Kit (Qiagen) and cDNA was prepared 521 

using the high capacity cDNA reverse transcription kit (Applied Biosystems). Real-time 522 

qPCR was performed with the real-time PCR StepOnePlus system (Applied 523 

Biosystems). Bulk RNA Seq of wild type ILC2, RNA was isolated from sort-purified 524 

cells, as above, and library preparation and bulk RNA sequencing was performed 525 

commercially with Novogene (UK) Company Ltd. Briefly, normalised RNA was used 526 

to generate libraries using NEB Next Ultra RNA library Prep Kit (Illumina). Indices were 527 

included to multiplex samples and mRNA was purified from total RNA using poly-T 528 

oligo-attached magnetic beads. After fragmentation, the first strand cDNA was 529 

synthesised using random hexamer primers followed by second strand cDNA 530 

synthesis. Following end repair, A-tailing, adaptor ligation and size section libraries 531 

were further amplified and purified and insert size validated on an Agilent 2100, and 532 

quantified using quantitative PCR (qPCR). Libraries were then sequenced on an 533 

Illumina NovaSeq 6000 S4 flowcell with PE150 according to results from library quality 534 

control and expected data volume. 535 

 536 

Extracellular flux analysis 537 

ILC2 were sort-purified from IL-33 treated mice and incubated overnight with or without 538 

10mM BCH. Seahorse plates and cartridges were prepared 18h before by adding 539 

200µl XF Calibrant to each well (Seahorse Bioscience/Agilent, USA) to emerge 540 
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probes, and incubating at 37C to calibrate. ILC2 were washed and plated onto poly-541 

D-lysine-coated XF96 plates with XF RPMI media and rested for 30 minutes at 37C 542 

prior to analysis. For the mitochondrial stress test, Seahorse medium was 543 

supplemented with 25mM glucose (Thermo Scientific), 1mM sodium pyruvate and 544 

2mM L-glutamine (Sigma Aldrich) and pH adjusted to 7.4. Cellular bioenergetics were 545 

assessed at 5-min intervals following sequential addition of 2µM Oligomycin, 2µM 546 

FCCP, 0.5µM Antimycin A and 0.5µM Rotenone (all Sigma-Aldrich) using an XF96e 547 

extracellular flux analyzer (Seahorse Bioscience/Agilent, USA) via sequential addition 548 

of 2µM Oligomycin, 1.5µM FCCP, 0.5µM Antimycin A and 0.5µM Rotenone (all Sigma 549 

Aldrich).  550 

 551 

Fecal metabolomics  552 

The metabolic profiles of fecal samples were measured using 1H nuclear magnetic 553 

resonance (NMR) spectroscopy as previously described (41). Briefly, fecal samples 554 

(30 mg) were defrosted and combined with 600µL of water and zirconium beads (0.45 555 

g). Samples were homogenized with a Precellys 24 instrument (45 s per cycle, speed 556 

6500, 2 cycles) and spun at 14,000 g for 10 minutes. The supernatants (400µL) were 557 

combined with 250µL phosphate buffer (pH 7.4, 100% D2O containing 3 mM NaN3, 558 

and 1 mM of 3-(trimethyl-silyl)-[2,2,3,3-2H4]-propionic acid [TSP] for the chemical shift 559 

reference at d0.0), before vortexing and centrifugation at 14,000 g for 10 minutes and 560 

transfer to 5 mm NMR tubes. All samples were anlaysed on a Bruker 700 MHz 561 

spectrometer equipped with a cryoprobe (Bruker Biospin, Karlsruhe, Germany) 562 

operating at 300 K. 1H NMR spectra were acquired for each sample using a standard 563 

one-dimensional pulse sequence using the first increment of the NOE pulse sequence 564 

for water suppression as previously described (42). Raw spectra were automatically 565 

phased, baseline corrected and calibrated to TSP using Topspin 3.2 (Bruker Biospin) 566 

and then digitized in a Matlab environment (Version 2018; Mathworks Inc, USA) using 567 

in-house scripts. Redundant spectral regions (related to water and TSP resonance) 568 

were removed, and the spectral data was manually aligned and normalized to the 569 

probabilistic quotient using in-house Matlab scripts. Peak integrals (relating to relative 570 

abundance) for metabolites of interest were calculated for each sample. 571 

 572 

Proteomics and Mass Spectrometry 573 
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For initial establishment of proteomic methodology, technical replicate pools of 5 574 

million ILC2 were sort-purified from IL-33 treated mice. For comparison of control and 575 

conditional knockout mice, technical replicates averaging between 500,000 - 1 million 576 

ILC2 pooled from two individual mice were sort purified. Cell pellets were washed 577 

extensively with PBS to remove residual FCS and snap frozen. Samples were 578 

prepared for mass spectrometry by adding 100 µl of lysis buffer (5 % sodium dodecyl 579 

sulphate, 50 mM TEAB pH 8.5, 10 mM TCEP) to each cell pellet and shaking at 1000 580 

rpm at room temperature for 5 minutes. Lysates were boiled for 5 minutes at 95 °C, 581 

sonicated for 15 cycles of 30 seconds each and treated with 1 µl benzonase for 15 582 

minutes at 37 °C. Protein yield was determined using the EZQ protein quantitation kit 583 

(ThermoFisher Scientific) according to manufacturer’s instructions. Lysates were 584 

alkylated with 20 mM iodoacetamide for 1 hour at room temperature in the dark. 585 

Protein lysates were loaded on to S-Trap micro columns (ProtiFi) following the 586 

manufacturer’s instructions. Proteins were digested with 20:1 protein:trypsin (Trypsin 587 

Gold, Promega) in 50 mM ammonium bicarbonate for 3 hours at 47 °C before adding 588 

an additional 1 µg of trypsin and digesting for a further 1 hour at 47 °C. Peptides were 589 

eluted from columns and dried by SpeedVac and resuspended in 1 % formic acid at a 590 

peptide concentration of 0.1 µg/µl.  591 

 592 

For LC-MS analysis of wild type ILC2 1.5 µg of peptide for each sample was analysed 593 

on a Q-Exactive-HF-X (Thermo Scientific) mass spectrometer coupled with a Dionex 594 

Ultimate 3000 RS (Thermo Scientific). The following LC buffers were used:  buffer A 595 

(0.1% formic acid in Milli-Q water (v/v)) and buffer B (80% acetonitrile and 0.1% formic 596 

acid in Milli-Q water (v/v)). 1.5 μg aliquot of each sample was loaded at 15 μL/min onto 597 

a trap column (100 μm × 2 cm, PepMap nanoViper C18 column, 5 μm, 100 Å, Thermo 598 

Scientific) equilibrated in 0.1% trifluoroacetic acid (TFA). The trap column was washed 599 

for 3 min at the same flow rate with 0.1% TFA then switched in-line with a Thermo 600 

Scientific, resolving C18 column (75 μm × 50 cm, PepMap RSLC C18 column, 2 μm, 601 

100 Å). Peptides were eluted from the column at a constant flow rate of 300 nl/min 602 

with a linear gradient from 3% buffer B to 6% buffer B in 5 min, then from 6% buffer B 603 

to 35% buffer B in 115 min, and finally to 80% buffer B within 7 min. The column was 604 

then washed with 80% buffer B for 4 min and re-equilibrated in 3% buffer B for 15 min. 605 

Two blanks were run between each sample to reduce carry-over. The column was 606 

kept at a constant temperature of 50oC at all times. Data was acquired using an easy 607 
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spray source operated in positive mode with spray voltage at 1.9 kV, the capillary 608 

temperature at 250 °C and the funnel RF at 60 °C.  The MS was operated in DIA mode 609 

using parameters previously described (43), with some modifications. A scan cycle 610 

comprised a full MS scan (m/z range from 350-1650, with a maximum ion injection 611 

time of 20 ms, a resolution of 120 000 and automatic gain control (AGC) value of 5 × 612 

106).  MS survey scan was followed by MS/MS DIA scan events using the following 613 

parameters: default charge state of 3, resolution 30.000, maximum ion injection time 614 

55 ms, AGC 3 x 106, stepped normalized collision energy 25.5, 27 and 30, fixed first 615 

mass 200 m/z. Data for both MS and MS/MS scans were acquired in profile mode.   616 

For conditional knockout LC-MS analysis, peptides were analysed on a Q Exactive™ 617 

plus, Mass Spectrometer (Thermo Scientific) coupled to a Dionex Ultimate 3000 RS 618 

(Thermo Scientific). The following LC buffers were used:  buffer A (0.1 % formic acid 619 

in Milli-Q water (v/v)) and buffer B (80 % acetonitrile and 0.1 % formic acid in Milli-Q 620 

water (v/v). An equivalent of 1.5 µg of each sample was loaded at 10 μL/min onto a 621 

µPAC trapping C18 column (Pharmafluidics). The trapping column was washed for 6 622 

min at the same flow rate with 0.1 % TFA and then switched in-line with a Pharma 623 

Fluidics, 200 cm, µPAC nanoLC C18 column. The column was equilibrated at a flow 624 

rate of 300 nl/min for 30 min. The peptides were eluted from the column at a constant 625 

flow rate of 300 nl/min with a linear gradient from 1 % buffer B to 3.8 % buffer B in 6 626 

min, from 3.8 % B to 12.5 % buffer B in 40 min, from 12.5 % buffer B to 41.3 % buffer 627 

B within 176 min and then from 41.3 % buffer B to 61.3 % buffer B in 14 min. The 628 

gradient was finally increased from 61.3 % buffer B to 100 % buffer B in 1 min, and 629 

the column was then washed at 100 % buffer B for 10 min.  Two blanks were run 630 

between each sample to reduce carry-over.  The column was kept at a constant 631 

temperature of 50 oC.  632 

 633 

Q-exactive plus was operated in positive ionization mode using an easy spray source. 634 

The source voltage was set to 2.2 Kv and the capillary temperature was 275 oC. Data 635 

were acquired in Data Independent Acquisition Mode as previously described 636 

(Doellinger et al., 2020), with some modifications.  A scan cycle comprised of a full MS 637 

scan (m/z range from 345-1155), resolution was set to 70,000, AGC target 3 x 106, 638 

maximum injection time 200 ms.  MS survey scans were followed by DIA scans of 639 

dynamic window widths with an overlap of 0.5 Th. DIA spectra were recorded at a 640 

resolution of 17,500 at 200 m/z using an automatic gain control target of 3 x 106, a 641 
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maximum injection time of 55 ms and a first fixed mass of 200 m/z. Normalised 642 

collision energy was set to 25 % with a default charge state set at 3. Data for both MS 643 

scan and MS/MS DIA scan events were acquired in profile mode.  644 

 645 

Raw mass spectrometry data was processed using Spectronaut (Biognosys; version 646 

14.5.200813.47784 for wild type ILC2 and version 14.10.201222.47784 for conditional 647 

knockout comparisons). For all searches the DirectDIA option was selected. The 648 

following parameters were chosen: cleavage rules were set to Trypsin/P, maximum 649 

peptide length 52 amino acids, minimum peptide length 7 amino acids, maximum 650 

missed cleavages 2 and calibration mode automatic. Carbamidomethylation of 651 

cysteine was set as a fixed modification while the following variable modifications were 652 

selected: oxidation of methionine, deamidation of asparagine and glutamine and 653 

acetylation of the protein N-terminus. The FDR threshold for both precursor and 654 

protein was set at 1 %. DirectDIA data were searched against a mouse database from 655 

Uniprot release 2020 06. This database consisted of all manually annotated mouse 656 

SwissProt entries along with mouse TrEMBL entries with protein level evidence and a 657 

manually annotated homologue within the human SwissProt database. Estimates of 658 

protein copy number per cell were calculated using the histone ruler method (44).  659 

 660 

Statistics 661 

Data presented as mean +/- SEM, unless indicated otherwise. Statistical analyses 662 

were performed using either Student’s t-test, Mann-Whitney test, Kruskal-Wallis test 663 

or one-way ANOVA, as indicated, and unless otherwise specified. 664 
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 897 
Figure 1. Metabolite and dietary factors influence innate type 2 response to 898 

helminth infection. A) Relative levels of fecal amino acids and amino acid-related 899 

metabolites in control and day 7 post infection N. brasiliensis infected C57BL/6 mice 900 

(n=4 mice per group, representative of two independent experiments, data shows z-901 
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scores). B) Relative abundance of selected amino acids in naïve mice or mice infected 902 

with N. brasiliensis (day 7 p.i. blue), H. polygyrus (day 7 p.i., purple) or T. spiralis (day 903 

7 p.i., pink), (n=4 mice per group, representative of one experiment, data shows 904 

relative abundance). C) Numbers of ILC2 in naïve or N. brasiliensis infected (day 7 905 

p.i.) mice, D) frequency and E) number of Ki-67+ ILC2 at day 4 and day 7 post N. 906 

brasiliensis infection, and F) frequency and G) number of IL-5 and IL-13 producing 907 

ILC2 at day 7 post N. brasiliensis infection in C57BL/6 mice fed a normal (21%) or low 908 

(5%) protein diet. Data shown as individual values or mean +/- SEM, * p< 0.05, ** p< 909 

0.01, *** p< 0.001. 910 
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 936 
Figure 2. ILC2 are preferentially poised to import large neutral amino acids. A) 937 

Analysis of the intracellular amino acid content of ILC2 sort-purified from IL-33 treated 938 

mice (n=3 independent replicates of cells pooled from 2 mice and representative of 939 

two independent experiments). B) Comparison of mean expression of amino acid 940 

transporter-associated genes in ILC2 and CCR6+ ILC3 (ILC3) from public data 941 

(www.Immgen.org; (22)). C) Representative gating and D) surface expression of 942 

KLRG1 and CD98 on CD4+ T cells (black), ILC2 (red) and ILC3 (green) from small 943 

intestinal lamina propria (siLPL). E) Representative flow plots demonstrating co-944 

expression of GATA-3 and CD98 in lung and siLPL amongst total CD45+ cells. F) 945 

Expression of CD98 on CD4+ T cells (black), B220+ B cells (white), ILC3 (green) and 946 

ILC2 (red) in siLPL, colon lamina propria (cLPL), mesenteric lymph node (mLN), lung, 947 

white adipose tissue (fat) and meninges. G) Relative expression of Slc7a5 and Slc7a8 948 

in ILC subsets and B cells, normalised to CCR6+ ILC3 (n=4 per group and 949 

representative of at least two independent experiments). H) Representative histogram 950 
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of Kynurenine uptake in lung ILC2 incubated for 5 minutes with either HBSS alone 951 

(negative control), 200µM Kynurenine (Kyn) or Kynurenine plus 10mM BCH. I) 952 

Kynurenine uptake in ILC2 from naïve (Ctrl) or IL-33 treated mice, or incubated with 953 

Kynurenine and BCH (n=3 per group and representative of two independent 954 

experiments). J) Kynurenine uptake in lung ILC2 in the presence or absence of excess 955 

(5mM) Lysine (Lys), Leucine (Leu) or 10mM BCH (n=3 replicates per condition, and 956 

representative of at least three independent experiments).  957 
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 984 
Figure 3. Slc7a5 / LAT1 regulates the magnitude of ILC2 expansion following 985 

activation. A) Validation of Slc7a5 deletion in Red5Cre x Slc7a5fl/fl mice (n=3 technical 986 

replicates of sort-purified ILC2 pooled from the lungs of 2-3 IL-33 treated mice per 987 

replicate, representative of two independent experiments). B) Representative 988 

histograms of ST2, KLRG1 and CD98 in Red5Cre control and Red5Cre x Slc7a5fl/fl mice 989 

(representative of 3-4 mice per group and at least three independent experiments). C) 990 

Frequencies and D) numbers of KLRG1+ CD127+ ILC2 (pre-gated on CD45+ Lineage 991 

negative cells) in the lungs of naïve or IL-33 treated Red5Cre control and Red5Cre x 992 

Slc7a5fl/fl mice. (C+D, n=4-5 mice per group, representative of at least three 993 

independent experiments). E) Representative flow plots, F) quantification and G) 994 

mean fluorescent intensity of Ki-67 expression in ILC2 from control and IL-33 treated 995 

Red5Cre control and Red5Cre x Slc7a5fl/fl mice. (E+F, n=4 mice per group, 996 

representative of three independent experiments, G, n=9-10 per group and pooled 997 

from two independent experiments) H) Representative flow plots and I) quantification 998 

of IL-5 and IL-13 producing ILC2 from control and IL-33 treated Red5Cre control and 999 

Red5Cre x Slc7a5fl/fl mice. (H+I, n=5-6 mice per group, representative of at two 1000 

independent experiments). Data shown as individual values and mean +/- SEM, * p< 1001 

0.05. 1002 
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 1003 
Figure 4. Differential expression of Slc7a8 / LAT2 is required for optimal ILC2 1004 

expansion following activation. A) Representative histograms of CD98 expression 1005 

in lung ILC2 from control (Ctrl) and IL-33 treated Red5Cre control and Red5Cre x 1006 

Slc7a8fl/fl mice (representative of n=3-5 mice per group and at least two independent 1007 

experiments). B) Relative expression ratio of Slc7a8 to Slc7a5 in sort-purified ILC2 1008 

from control or IL-33 treated animals (n=3-4 technical replicates per group, 1009 

representative of two independent experiments). C) ILC2 numbers, D) representative 1010 

flow cytometry plots and E) quantification of Ki-67+ ILC2. F) Representative flow 1011 

cytometry plots and G) quantification of IL-5+ IL-13+ ILC2 in lung ILC2 from control 1012 

(Ctrl) and IL-33 treated Red5Cre control and Red5Cre x Slc7a8fl/fl mice (n=3-5 mice per 1013 

group and representative of at least two independent experiments). Data shown as 1014 

individual values or mean +/- SEM, * p< 0.05, ** p< 0.01. 1015 
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 1017 
Figure 5. Disruption of large neutral amino acid transport in ILC2 dampens 1018 

protection to N. brasiliensis infection. A) Mean Fluorescent Intensity of CD98 1019 

expression in lung ILC2, B) ILC2 cell numbers from control naïve and N. brasiliensis 1020 

infected (day 7 p.i.) Red5Cre x Slc7a5fl/fl and Red5Cre x Slc7a8fl/fl mice (n=3-6 mice per 1021 

group and representative of two independent experiments). Worm burdens in the C) 1022 

lung and D) small intestine of N. brasiliensis infected (day 2+4 p.i.) Red5Cre controls, 1023 

Red5Cre x Slc7a5fl/fl and Red5Cre x Slc7a8fl/fl mice (n=4-6 mice per group and 1024 

representative of two independent experiments). Data shown as individual values or 1025 

mean +/- SEM, * p< 0.05, ** p< 0.01, *** p< 0.001. 1026 
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 1045 
Figure 6. Proteomics of LAT-deficient ILC2 reveals metabolic imbalance. A) 1046 

Differentially expressed proteins and B) copy numbers of target amino acid transporter 1047 

associated proteins in sort-purified lung ILC2 from IL-33 treated Red5Cre controls, 1048 

Red5 x Slc7a5fl/fl or Red5 x Slc7a8fl/fl mice (n=3 replicates of cells pooled from 2-3 mice 1049 

and representative of a single experiment). C) Go-term enrichment analysis of 1050 

differentially expressed proteins across all genotypes in A. D) Arg1 protein copy 1051 

number and E) flow cytometry analysis in lung ILC2 of IL-33 treated mice. F) Dgat1 1052 

copy number and G) intracellular lipid content (lipidTox staining) analysed by flow 1053 

cytometry analysis in lung ILC2 of IL-33 treated mice (D+F, n=3 replicates of cells 1054 

pooled from 2-3 mice and representative of a single experiment, E+G representative 1055 

of at least n=3 per genotype). H) Enrichment of mitochondrial associated proteins 1056 

amongst differentially expressed proteins (identified with MitoCarta and MitoMiner). I) 1057 

Extracellular flux analysis and J) spare respiratory capacity (SRC) of sort-purified ILC2 1058 

from IL-33 treated mice cultured with or without 10mM BCH overnight (n=3-4 technical 1059 

replicates per experiment, I represents a single experiment, representative of two 1060 
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independent experiments, J representative of data pooled from two independent 1061 

experiments). Data shown as individual values or mean +/- SEM, * p< 0.05. 1062 
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 1095 
Figure 7. Regulation of mTOR activation by amino acid transport controls 1096 

magnitude of ILC2 response. A) Representative flow plots and B) quantification of 1097 

pS6 in sort-purified ILC2 cultured for 30 minutes in the presence of 20ng/ml IL-7 alone 1098 

or IL-7 in combination with 20ng/ml IL-2, IL-25, IL-33 or 1µg/ml NmU, with or without 1099 

the mTOR inhibitor PP242 (500nm). (n=3 technical replicates per condition, 1100 

representative of two independent experiments). C+D) Phosphorylation of S6 in sort-1101 

purified ILC2 cultured with either C) IL-33 with or without a two hour pre-incubation 1102 

with 10mM BCH (n=3 technical replicates per condition, representative of two 1103 

independent experiments), or D) IL-33 in ILC2 cultured with either Leucine sufficient 1104 

or deficient media (n=3-6 technical replicates per condition, representative of two 1105 

independent experiments). E) Representative flow plots and F) quantification of RFP 1106 
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expression in IL-33 elicited lung ILC2 from Id2ERT2Cre x Rosa26tdRFP controls 1107 

(Id2mTOR+/+) or Id2ERT2Cre x Rosa26tdRFP x mTORfl/fl mice (Id2mTORfl/fl) (n=9 per group, 1108 

pooled from two independent experiments). G) Representative flow plots and H) 1109 

quantification of Ki-67 expression and I) cell numbers of RFP negative and RFP+ lung 1110 

ILC2 from naïve and IL-33 treated Id2mTOR+/+ and Id2mTORfl/fl mice (n=5-9 per group for 1111 

naïve mice and n=11-13 for IL-33 treated mice, pooled from three independent 1112 

experiments). J) Representative flow plots and K) quantification of IL-5 and IL-13 1113 

expression in RFP+ ILC2 from naïve and IL-33 treated Id2mTOR+/+ and Id2mTORfl/fl mice 1114 

(n=5-9 per group for naïve mice and n=11-13 for IL-33 treated mice, pooled from three 1115 

independent experiments). Data shown as individual values or mean +/- SEM, * p< 1116 

0.05, ** p< 0.01, *** p< 0.001, **** p< 0.0001. 1117 


