

1 **Genome-resolved analyses show an extensive diversification in key aerobic hydrocarbon-
2 degrading enzymes across bacteria and archaea**

3 Maryam Rezaei Somee¹, Mohammad Ali Amoozegar¹, Seyed Mohammad Mehdi Dastgheib², Mahmoud
4 Shavandi², Leila Ghanbari Maman³, Stefan Bertilsson⁴, Maliheh Mehrshad^{4*}

5 ¹Extremophile Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran,
6 Tehran, Iran

7 ²Biotechnology Research group, Research Institute of Petroleum Industry, Tehran, Iran

8 ³Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics,
9 University of Tehran, Tehran, Iran

10 ⁴Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050,
11 SE75007 Uppsala, Sweden

12 Corresponding author: maliheh.mehrshad@slu.se

13

14 **Abstract**

15 Hydrocarbons (HCs) are organic compounds composed solely of carbon and hydrogen. They mainly
16 accumulate in oil reservoirs, but aromatic HCs can also have other sources and are widely distributed in
17 the biosphere. Our perception of pathways for biotic degradation of major HCs and genetic information
18 of key enzymes in these bioconversion processes have mainly been based on cultured microbes and are
19 biased by uneven taxonomic representation. Here we use Annotree to provide a gene-centric view of
20 aerobic degradation of aliphatic and aromatic HCs in a total of 23446 genomes from 123 bacterial and
21 14 archaeal phyla. Apart from the widespread genetic potential for HC degradation in *Proteobacteria*,
22 *Actinobacteriota*, *Bacteroidota*, and *Firmicutes*, genomes from an additional 18 bacterial and 3 archaeal
23 phyla also hosted key HC degrading enzymes. Among these, such degradation potential has not been
24 previously reported for representatives in the phyla UBA8248, Tectomicrobia, SAR324, and
25 Eremiobacterota. While genomes containing full pathways for complete degradation of HCs were only
26 detected in *Proteobacteria* and *Actinobacteriota*, other lineages capable of mediating such key steps
27 could partner with representatives with truncated HC degradation pathways and collaboratively drive
28 the process. Phylogeny reconstruction shows that the reservoir of key aerobic hydrocarbon-degrading
29 enzymes in Bacteria and Archaea undergoes extensive diversification via gene duplication and horizontal
30 gene transfer. This diversification could potentially enable microbes to rapidly adapt to novel and
31 manufactured HCs that reach the environment.

32

33 **Introduction**

34 According to the biogenic (organic) theory, petroleum hydrocarbons originate from ancient remains of
35 detrital matter buried and diagenetically modified in marine or freshwater sediments. This organic
36 matter is then gradually converted to petroleum compounds enriched in aromatic and aliphatic
37 hydrocarbons (HCs) via the sequential activity of aerobic and anaerobic microorganisms [1][2][3]. In
38 addition to their role in the formation of oil HCs, microbes play a crucial role in the biological integration
39 of these HCs into the actively cycled carbon pool [4]. Microbial HC degradation occurs through a cascade
40 of enzymatic reactions in three main steps: (i) activation and attack of the HC-bond, producing signature
41 intermediate compounds, (ii) conversion of signature degradation intermediates to central cell
42 metabolites, followed by (iii) mineralization to CO₂. Microorganisms must overcome and break the
43 stability and energy in carbon-hydrogen bonds in order to degrade HCs. Since HCs are structurally
44 diverse, a plethora of enzymes are involved in their activation and degradation, and consequently, the
45 energy that needs to be invested in the initial degradation varies. Various microorganisms can degrade
46 different HCs according to their enzymatic repertoire and available energy [5]. Microorganisms have
47 evolved to degrade different HCs under both aerobic and anaerobic conditions. However,
48 biodegradation typically occurs much faster under aerobic conditions, in part due to the availability of
49 thermodynamically favorable electron acceptors that leads to higher energy yield [6], but also because
50 of the action of some HC-degrading enzymes requires oxygen as substrate or cofactor. Similar to all
51 biological pathways, rate-limiting key enzymes drive the main steps of HC degradation.

52 Under aerobic conditions, oxygenase enzymes initiate the degradation of different aliphatic or aromatic
53 compounds by adding one (mono-oxygenase) or two (di-oxygenase) oxygen molecules. Saturated
54 aliphatic compounds such as alkane and cycloalkane (studied here) are in this process converted to their
55 corresponding carboxylic acid. Catechol/gentisate derivatives are intermediate compounds during
56 aerobic degradation of aromatic mono- and polycyclic HCs. They are then de-aromatized via subsequent
57 meta/ortho cleavage. Intermediate compounds produced during the degradation of aliphatic and
58 aromatic HCs converge to the B-oxidation and tricarboxylic acid (TCA) cycle [7]. While enzymes involved
59 in the downstream part of the degradation process are widespread across living cells shared by many
60 metabolic pathways, the mono/di-oxygenase enzymes catalyzing the first hydroxylation of
61 aliphatic/aromatic compounds are crucial for the initial step in the HC degradation process and likely
62 rate-limiting. Accordingly, microorganisms carrying the enzymes for such initial degradation will be rate-
63 controlling drivers of HC degradation.

64 The capacity of microbial isolates to metabolically degrade oil HCs have been frequently studied [8–11].
65 However, our knowledge has until recently been mainly limited to cultivated microorganisms. The
66 present study provides a systemic and genome-resolved view of hydrocarbon degradation capability in
67 the growing database of archaeal and bacterial genomes. To provide this extensive view, we compiled a
68 database of enzymes involved in the aerobic degradation pathway of aliphatic and aromatic HCs
69 (toluene, phenol, xylene, benzene, biphenyl, naphthalene). We then explored the distribution of these
70 enzymes in 24692 publicly available archaeal (n=1246) and bacterial (n=23446) genomes via AnnTree
71 [12] and manually confirmed all annotations. We focused on the microbial genomes containing enzymes
72 for complete/near complete degradation of specific HCs and suggest that lineages with the great genetic
73 potential to degrade a broad range of HC compounds can be exploited for bioremediation purposes. We
74 also reconstructed the phylogenetic relationships of the recovered key HC degradation enzymes to
75 investigate their evolution and explore the potential role of horizontal gene transfer. Several
76 microorganisms contain multiple copies of key HC degrading genes across their genome. We thus
77 explored whether these copies are likely to have been acquired through HGT or if they are likely to be
78 paralogs. Having a genome-resolved view we also studied ecological strategies of these microbes to see
79 whether all critical HC degraders adopt similar growth strategy in terms of the canonical r and k-
80 strategists.

81 **Results and discussion**

82 **HC degradation across domain Bacteria.** alkB/M and almA/ladA genes are alkane mono-
83 oxygenases that initiate the degradation of short (C5–C15) and long-chain alkanes (>C15), respectively.
84 The alkB/M is rubredoxin-dependent, while almA and ladA are flavin-dependent mono-oxygenases. The
85 genes pheA (phenol), xyIM (xylene), xyIX, todC1, and tmoA (benzene/toluene) for monoaromatic and
86 bphA1(biphenyl), ndoB (naphthalene/phenanthrene) for polyaromatic compounds code for catalytic
87 domains of ring hydroxylating oxygenases (RHOs) that add -OH group(s) to compounds undergoing
88 degradation (**Supplementary Figure S1**). We explored the distribution of these enzymes and associated
89 degradation pathways in a total of 23446 representatives out of 143512 bacterial genomes available in
90 release 89 of the GTDB database that has been annotated via AnnTree [12]. These annotated genomes
91 are dominated by representatives of phyla *Proteobacteria* (32.5%), *Actinobacteriota* (13.3%),
92 *Bacteroidota* (12.13%), and *Firmicutes* (8.01%) (**Supplementary Figure S2** and **Supplementary Table S4**).
93 Among the 123 represented bacterial phyla, 58 phyla had \leq five genomes available per phylum and
94 combined only represented 0.57% of the explored genomes. To avoid misinterpretations due to this
95 uneven taxonomic distribution of representative genomes, we explored the contribution of members of

96 each phylum in the HC degradation process by showing what proportion of microbes containing each HC
97 degrading enzyme exist in each phylum (panel A of **Supplementary Figures S3-S6**). We also analyze the
98 percentage of members of each phylum containing each HC degrading enzyme to ensure that we
99 consider the contributions of underrepresented phyla in the HC degradation (panel B of **Supplementary**
100 **Figures S3-S6**).

101 As expected, representatives of the phylum *Proteobacteria* (*Pseudomonadales* and *Burkholderiales*
102 orders) presented the highest abundance of aliphatic and aromatic HC degrading enzymes, followed by
103 *Actinobacteriota* and *Bacteroidota* for aliphatic and *Actinobacteriota* and *Firmicutes* for aromatic HC
104 degrading enzymes (**Supplementary Figures S3** and **S4**, panel A).

105 Underrepresented phyla remain mainly uncultured and are notably underexplored for metabolic
106 potential (58 of 123 phyla, n=131 genomes). Our analyses revealed that representatives of these taxa
107 contain HC degrading enzymes involved in both the initiation and downstream steps of HC degradation
108 processes. For example, phyla *Tectomicrobia* (*Entotheonella*), *Binatota*, *Firmicutes_K*, and *Firmicutes_E*
109 contained mono-aromatic HC degradation enzymes (**Figure 2**). In addition to these phyla, we annotated
110 enzymes involved in the degradation of aliphatic HC in representatives of phyla *SAR324*,
111 *Eremiobacterota* (*Baltobacteriales*), *Bdellovibrionota_B*, and *Chloroflexota_B* (**Figure 1**).

112 Other enzymes in the degradation pathways beyond the key genes for the initial degradation
113 (**Supplementary Table S1**) are typically involved in several degradation pathways and are broadly
114 distributed accordingly. As an example, the process of converting catechol to non-aromatic compounds
115 with further conversion to intermediates of the TCA cycle (e.g., acetaldehyde and pyruvate)
116 (**Supplementary Figure S1**) is shared among degradation pathways of xylene,
117 naphthalene/phenanthrene, and phenol (blue color in **Figure 2**). These ring-cleavage enzymes are also
118 involved in the degradation of aromatic amino acids. Our analysis showed that representatives of phyla
119 *Firmicutes* (mainly from the orders *Bacillales* and *Staphylococcales*), *Firmicutes_I*, *Firmicutes_K*,
120 *Firmicutes_E*, *Firmicutes_G*, *Firmicutes_H*, *Eremiobacterota*, *Deinococcota*, *Chloroflexota*,
121 *Campylobacterota*, *Myxococcota* and *Bdellovibrionota* play a significant role in this part of HC
122 degradation process (blue color in **Figure 2**).

123 **Distribution of key genes involved in the degradation of Alkanes.** At lower taxonomic rank, the
124 *alkB/M* and *ladA* genes were differently distributed across members of phyla *Gammaproteobacteria*,
125 *Alphaproteobacteria*, and *Actinobacteriota*, hinting at their capacity for degrading hydrocarbons of
126 variable chain length. Altogether 2089 genomes in orders *Mycobacteriales* (23.95%), *Rhodobacteriales*
127 (20.46%), *Pseudomonadales* (17.13%), *Flavobacteriales* (8.3%), *Burkholderiales* (6.16%), *Cytophagales*

128 (3.66%), *Propionibacteriales* (2.47%), *Rhizobiales* (1.89%), and *Chitinophagales* (1.81%) contained
129 alkB/M genes, while ladA was present in 2154 genomes from *Pseudomonadales* (21.05%), *Rhizobiales*
130 (16.27%), *Burkholderiales* (14.44%), *Actinomycetales* (13.44%), *Mycobacteriales* (13.05%), *Bacillales*
131 (4.74%), *Enterobacteriales* (3.7%), *Acetobacteriales* (2.31%), *Streptomycetales* (1.91%) (**Figures 3 and 4**,
132 panel B, **Supplementary Table S6**).

133 An indirect role of *Cyanobacteria* in HC degradation, especially in microbial mats, has been previously
134 reported. These primary producers often have the nitrogen-fixing ability and can fuel and promote
135 aerobic and anaerobic sulfate/nitrate-reducing HC degrading microorganisms in microbial mats [13].
136 There are also reports of a minor role of some *Cyanobacteria* members like *Phormidium*, *Nostoc*,
137 *Aphanothecace*, *Synechocystis*, *Anabaena*, *Oscillatoria*, *Plectonema*, and *Aphanocapsa* in direct HC
138 degradation [14][15]. In this study, we detected the presence of long-chain alkane degrading genes,
139 ladA, in different members of *Cyanobacteria* with 0.31 and 12.54% of genomes in this phylum containing
140 ladA (in *Elainella saxicola*, *Nodosilinea* sp000763385) and almA genes (in *Synechococcales*,
141 *Cyanobacteriales*, *Elainellales*, *Phormidesmiales*, *Thermosynechococcales*, *Gloeobacterales*,
142 *Obscuribacteriales*), respectively.

143 Phylogenetic reconstruction of recovered alkB/M and ladA genes grouped them into five and nine main
144 clades, respectively (**Figures 3 and 4**, panel A). The branching pattern of these clades partially followed
145 the taxonomic signal of the genomes they were retrieved from, specifically for most dominant phyla;
146 however, some branches also contained alkB/M and ladA genes originating from different and distantly
147 related phyla. The placement of phylogenetically diverse groups in one branch is likely to result from the
148 horizontal transfer of these genes between microbial taxa [16]. Additionally, apart from the
149 chromosomal type, both alkB/M and ladA genes have previously been reported to be located on
150 plasmids (OCT and pLW1071), corroborating their potential for horizontal transfer. For instance, there
151 are reports on the intraspecies transfer of alkB/M among *Pseudomonas* members [17]. Placement of
152 rare microbial groups harboring ladA gene among clusters V-IX further suggests a prominent role of
153 *Actinobacteriota* and *Firmicutes* members in expanding the distribution of this gene (**Figure 4**).

154 We also detected several genomes with multiple copies of the alkB gene that were not necessarily
155 branching together in the reconstructed alkB phylogeny, hinting at the probability of either gene
156 duplication, parologue occurrence or HGT. Examples of these genomes with several copies of alkB/M are
157 *Polycyclovorans algicola* (10), *Nevskia ramosa* (7), *Zhongshania aliphaticivorans* (7), *Solimonas aquatic*
158 (7), *Immundisolibacter cernigliae* (6), and *Rhodococcus qingshengii* (6). Multiple copies have also been

159 detected in representatives of the genera *Nocardia*, *Rhodococcus*, and *Alcanivorax* (**Supplementary**
160 **Table S6**).

161 Furthermore, the *ladA* gene was also detected in *Mycolicibacterium dioxanotrophicus*, *Cryobacterium_A*
162 sp003065485, *Kineococcus rhizosphaerae*, *Microbacterium* sp003248605, *Paenibacillus_S* sp001956045,
163 *Pararhizobium* polonicum, *Mycolicibacterium septicum*, and *Microbacterium* sp000799385 with six
164 copies in each genome. Several examples were also present in genera *Pseudomonas_E*,
165 *Bradyrhizobioum*, *Rhizobioum*, and *Paraburkholderia*, which had more than one copy (904
166 genomes) (**Supplementary Table S6**).

167 The presence of multiple copies of alkane hydroxylase genes has been hypothesized to enable cells to
168 use an expanded range of n-alkanes or to adapt to different environmental conditions. However, the
169 exact evolutionary rationale has not yet been established [18][19]. To evaluate this hypothesis, we
170 compared different sequences of each gene in an individual genome (mentioned above for *ladA* and
171 *alkB*) using BLAST (**Supplementary Table S7**). The results showed that the identity of multiple gene
172 copies in a single genome was in the range of 30 to 70 percent, while they are still predicted to have the
173 same function. This further supports the hypothesis that these genes originated from different sources
174 and were transferred horizontally.

175 **Distribution of key genes involved in the degradation of ring hydroxylating oxygenases**
176 (**RHOs**). Genomes containing RHOs (2761 genomes, 16 phyla) present an overall lower phylogenetic
177 diversity than alkane mono-oxygenases (4669 genomes, 21 phyla for both *alkB/M* and *ladA*). In general,
178 *alkB/M* and *ladA* enzymes consist of *FA_desaturase* (PF00487) and *Bac_luciferase-like mono-oxygenase*
179 (PF00296) domains, respectively (**Supplementary Table S5**). They act non-specifically on a wide range of
180 alkanes of different chain lengths. Therefore, they are likely to be more widespread in genomes,
181 especially because alkane compounds do not exclusively originate from petroleum. For instance, in
182 pristine marine ecosystems, primary producers such as *Cyanobacteria* can release long chain-length
183 aliphatic compounds (e.g., pentadecane, heptadecane). Alkane-producing *Cyanobacteria* include
184 prominent and globally abundant genera such as *Prochlorococcus* and *Synechococcus*. Therefore, marine
185 microorganisms are broadly exposed to aliphatic compounds with different chain lengths, even in
186 environments without oil spills or industrial influence. This can explain why marine ecosystems host a
187 plethora of hydrocarbonoclastic bacteria [20][21].
188 Enzymes *xylX*, *ndoB*, *bphA1*, and *todC1* are composed of two pfam domains, PF00355 (Rieske center)
189 and PF00848 (Ring_hydroxyl_A). These common domains impact the branching in the phylogenetic tree
190 and lead to the neighboring branching of these enzymes (**Figure 5**).

191 RHO enzymes are predominantly present in *Burkholderiales*, *Pseudomonadales*, *Sphingomonadales*,
192 *Caulobacterales*, and *Nevskiales* orders of the phylum *Proteobacteria* (35 different Proteobacterial
193 orders) (**Figure 5**, B part). However, a significant number of pheA and, to a lesser degree, xylX and tmoA
194 enzymes were also present in *Actinobacteriota* phylum (9 different Actinobacteriotal orders) (**Figure 5**, B
195 part).

196 *Sphingomonadales* are prominent bacteria in the rhizosphere and are also abundant in littoral zones of
197 inland waters. Accordingly, we suggest that these bacteria may have evolved a capacity to degrade
198 different aromatic compounds in response to the high concentrations of aromatic secondary
199 metabolites typically seen in the plant rhizosphere. Additionally, *Sphingomonadales* are known for their
200 large plasmids with intraspecies transmission [22].

201 Among all investigated RHO genes, the highest phylogenetic diversity was observed in tmoA (208
202 genomes in 12 phyla and 38 orders) and xylX (1486 genomes in 9 phyla and 38 orders) genes (**Figure 5**, B
203 part). In the case of tmoA gene, it might be due to the wide range of HC compounds susceptible to this
204 enzyme (e.g., benzenes, some PAHs, and alkenes)[23][24]. Therefore, more diverse genera harbor tmoA
205 gene and can degrade different types of HCs.

206 Underrepresented microbial groups with a limited number of RHO genes also featured tmoA, xylX, and
207 pheA genes. *Myxococcota*, *Acidobacteriota*, *Chloroflexota*, *Firmicutes_I,E,K*, and *Cyanobacteria* with
208 tmoA gene were clustered separately, reflecting their distinct protein sequence and the lower possibility
209 of HGT among these groups. For xylX, *Eremiobacterota* affiliated genes were placed together with genes
210 from *Gammaproteobacteria*, and *Tectomicrobia*, *Binatota*, *Chloroflexota*, and *Firmicutes_I* were placed
211 in separate branches near *Actinobacteriota*. In addition, *Acidobacteriota*, *Eremiobacterota*, and
212 *Campylobacteriota* with pheA gene were nested within *Alphaproteobacteria* members. The phylogeny of
213 RHO genes was also more consistent with taxonomy than the phylogeny of alkB/M and ladA.

214 *Bionatota*, a recently described phylum shown to be efficient in HC degradation, harbored todC1, bphA1
215 (in *Binatales* order), and xylX (Bin18, *Binatales*) genes from RHOs and ladA (in Bin18) from alkane
216 hydroxylases. Representatives of this phyla have been reported to play a role in methane and alkane
217 metabolism [25]. However, we also noted the further potential of *Binatales* and Bin18 orders of this
218 phylum in aromatic HC degradation.

219 RHOs can be located either on the chromosome or plasmid, depending on the organism. For instance,
220 todC1, bphA1, and tmoA genes were reported to be on the chromosome [26], while in another study,
221 they were detected on a plasmid [27]. Other RHOs, including xylX, xylM, pheA, and ndoB have mainly
222 been reported to be hosted by plasmids [26][24].

223 Multiple copies of RHO genes in one genome were detected for *xylX* and *pheA*. *Immundisolibacter*
224 *cernigliae* surprisingly contained 21 variants of *xylX*. This genome also had six copies of *alkB/M* and was
225 isolated from a PAH-contaminated site [28]. The high HC degradation potential of other members of this
226 genus has also been reported in the marine ecosystem [29][30]. *Rugosibacter aromaticivorans*
227 (containing 5, 2 and 2 copies of *xylX*, *ndoB*, and *tmoA* genes, respectively), *Pseudoxanthomonas_A*
228 *spadix_B* (with 4, 2 and 2 copies of *xylX*, *todC1* and *bphA1* genes, respectively), *Thauera* sp002354895
229 (4), *Pigmentiphaga* sp002188635 (4) are other examples of genomes that have multiple copies of the
230 *xylX* gene. Although *xylX* gene was detected in *Actinobacteriota*, multiple copies in a genome were seen
231 only among the *Proteobacteria* phylum.

232 The BLAST identity among variants of the *xylX* gene in *Immundisolibacter cernigliae* ranged between 35
233 to 81 percent. Three sequences of these 21 *xylX* copies (*xylX* 18, 19, and 22, in **Supplementary Figure S7**)
234 showed higher BLAST identity with the *xylX* gene of the *Rugosibacter* genus than other copies in the
235 *Immundisolibacter cernigliae* genome itself (**Supplementary Table S7** and **Supplementary Figure S7**).
236 Several *xylX* copies of *I. cernigliae* (10, 11, 13, and 15) had more edges than others in the network, and
237 their interactions (**Supplementary Figure S7**, highlighted in red) represent their similarity with *xylX*
238 copies of *Caballeronia*, *Sphingobium*, and *Pseudoxanthomonas*, *Pseudomonas*, and *Thauera* genera. In
239 addition, *xylX* 5 and 7 of *Immundisolibacter* had almost similar blast identity with *Pigmentiphaga* genus
240 and other *xylX* copies in *I. cernigliae*. This suggests that multiple copies of the *xylX* gene in *I. cernigliae*
241 potentially originated from horizontal transfer.

242 On the other hand, *Glutamicibacter mysorens* (4), *Enteractinococcus helveticum* (4), and many other
243 genomes from the *Castellaniella*, *Kocuria*, and *Halomonas* genera, had several *pheA* copies in their
244 individual genomes. To a lesser degree, *tmoA* gene was present in multiple copies in *Pseudonocardia*
245 *dioxanivorans* (4), *Rhodococcus* sp003130705 (3), *Amycolatopsis rubida* (3) and *Zavarzinia*
246 *compransoris_A* (3) genera.

247 While *bphA1* and *todC1* have different KO identifiers (**Supplementary Table S1**), our manual checks
248 showed that they had the same conserved domain based on NCBI CD-Search [31]. We kept both
249 annotations for cases where one gene was annotated with both KO identifiers. Previous studies also
250 report similar homology and substrate specificity between *todC1* and *bphA1* [27].

251 *xylM*, as one of the enzymes mediating the initial steps in toluene/xylene degradation, showed the
252 lowest abundance and phylogenetic diversity (27 genomes in 1 phylum and 6 orders). Toluene/benzene
253 can generally be degraded through different routes and three of the most prevalent approaches were
254 studied here. *xylX*, *todC1*, and *tmoA* are the initial oxygenase enzymes of these three pathways. They

255 are diverse in starting the degradation and composed of different domains, while downstream
256 degradation converges to catechol derivatives as intermediates. *xylM* can also initiate toluene
257 degradation in addition to xylene. *xylX* then converts produced benzoate to catechol. Therefore, while
258 we report a lower diversity of genomes harboring *xylM*, there are alternative degradation pathways in
259 different microorganisms that can degrade the same compound.

260 As the number of rings in aromatic compounds increases, the number and diversity of microbial groups
261 capable of degrading them decreases, and microbial groups with *ndoB* (naphthalene 1,2-dioxygenase)
262 accordingly showed the lowest abundance after *xylM* gene. The genomes hosting *ndoB* had limited
263 phylogenetic diversity (35 genomes in 1 phylum and 6 orders) and were found mainly in representatives
264 of *Alphaproteobacteria* (*Sphingomonadales* (17) and *Caulobacterales* (2)) and *Gammaproteobacteria*
265 (*Pseudomonadales* (5), *Burkholderiales* (1), *Nevskiales* (1)).

266 **Ecological strategy of HC degrading bacteria.** Microorganisms are broadly divided into two main
267 functional growth categories, i.e., oligotrophic/slow-growing/k-strategist or copiotrophic/fast-
268 growing/r-strategist. These ecological strategies are associated with the genome size that, in turn,
269 directly correlates with the GC content [32]. To get further insights into the ecological strategies of
270 organisms that feature HC degrading genes, we compared the distribution of GC content and estimated
271 genome size. This analysis revealed that HC degrading genes were present in genomes with a broad
272 genome size range (1.34 to 16.9 Mb) and GC content (26.9 to 76.6 %) (**Supplementary Figure S8**, data
273 available in **Supplementary Table S8**). Genomes with GC percent equal to or lower than 30% mainly had
274 *alkB* gene and belonged to representatives of the Flavobacteriales order (genome sizes in the range of
275 1.4 to 4.2 Mb). The largest genome studied here, *Minicystis rosea* from the phylum Myxococcota
276 (genomes size of 16.9 Mb), also contained *alkB*. The *alkB* gene of *Minicystis rosea* phylogenetically
277 clustered together with homologs from Gammaproteobacteria representatives (*Immundisolibacter* and
278 *Cycloclasticus* genera) (**Figure 3**). The large genome size of *Minicystis rosea* and its *alkB* gene placement
279 together with the Gammaproteobacteria in the reconstructed phylogeny suggests horizontal transfer for
280 this gene to *Minicystis rosea*. These analyses suggest that HC degradation ability is present in both k-
281 strategist and r-strategists microorganisms. Earlier studies have shown that r-strategist serves as the
282 principal HC degraders after oil spills and at other point sources of pollution in marine environments
283 [33–36]. Indeed, most obligate hydrocarbonoclastic bacteria are r-strategists (Proteobacteria domain)
284 and are mainly reported to be isolated from marine samples [37]. This group is adapted to live in
285 oligotrophic environments with transient nutrient inputs and rapid consumption of substrates upon
286 episodic inputs by means of fast growth and population expansion [38]. In contrast, reports of oil-

287 polluted soil samples suggest a predominance of k-strategists, especially in the harsh conditions (High
288 concentration of HC, soil dryness, etc.) commonly seen in many such soil environments [39–41]. Hosting
289 multiple copies of genes coding for HC degrading enzymes seems to be a shared feature in both r- and k-
290 strategists with small and large genome sizes alike and appears to be a universal evolutionary strategy
291 for HC degradation.

292 **Genome-level analysis of HC degradation.** Microorganisms are known to use division of labor or
293 mutualistic interactions to perform HC degradation in the environment [42][43]. However, 92 genomes
294 (less than 0.5%) of 23446 investigated bacterial genomes do in fact contain all the enzymes required to
295 degrade at least one HC compound completely. These 92 genomes all belong to *Actinobacteriota* (n=25)
296 and *Proteobacteria* (n=67)(**Figure 6**).

297 Microorganisms have evolved two pathways for naphthalene degradation that involve the production of
298 either catechol or gentisate as aromatic degradation intermediate (**Supplementary Figure S1**). Catechol
299 can in turn, be further degraded via meta- or -ortho cleavage. Several microorganisms, including
300 *Novosphingobium naphthalenivorans*, *Pseudomonas_E fluorescens_AQ*, *Pseudomonas_E*
301 *frederiksbergensis_E*, and *Herbaspirillum* sp000577615, feature both of the mentioned pathways and
302 even have the ability to perform ortho and meta cleavage simultaneously (**Figure 6**).

303 Moreover, *Cupriavidus pauculus_A* (long-chain alkanes and also biphenyl), *Cycloclasticus* sp002700385
304 and *Paraburkholderia_B oxyphila* (Cycloalkane and xylene/benzene), *Pigmentiphaga* sp002188465
305 (Cycloalkane and phenol), *Rhodococcus* sp003130705, *Burkholderia puraqua*, and *Paraburkholderia_B*
306 *mimosarum* (Toluene and biphenyl) can degrade more than one HC compound autonomously (**Figure 6**).
307 Members of Burkholderiales were able to degrade even more diverse compounds individually, while
308 *Actinobacteriota* representatives mainly contribute to the degradation of aliphatic compounds. This
309 ability was also apparent in **Figures 1, 3, and 4**. The potential for autonomous HC degradation wasn't
310 detected in genomes of more rare bacterial phyla. Moreover, none of the archaeal genomes
311 investigated in this study contained all genes for the complete degradation of HCs.

312 **HC degradation across domain archaea.** Generally, HC degradation ability seems to be less
313 prevalent among archaea as compared to bacteria. The phylum *Halobacterota* had the highest
314 proportion of enzymes involved in the degradation of both aliphatic (n=14 enzymes of aliphatic
315 degradation pathway) and aromatic (n=25 enzymes of aromatic degradation pathway) compounds
316 among the studied archaea (**Supplementary Figure S9**). The alkB enzyme, responsible for short-chain
317 alkane degradation, was detected in two copies in a single member of the phylum Nanoarchaeota
318 (ARS21 sp002686215). This gene was clustered together with alkB identified in Gammaproteobacteria

319 representatives (GCA-002705445 order) (**Figure 3**). Genes needed to initiate degradation of long-chain
320 alkanes and cyclododecane/cyclohexane as well as cyclopentane degradation via ladA and cddA/chnB
321 genes were more prevalent among *Halobacterota* representatives (75 genomes in 7 families;
322 *Haloferacaceae*, *Haloarculaceae*, *Natrialbaceae*, *Halococcaceae*, *Halalkalicoccaceae*, *Haloadaptaceae*,
323 and *Halobacteriaceae*) (**Figures 4 and Supplementary Figure S9**). Among investigated RHOs, only tmoA
324 that initiates toluene degradation was present in 5 *Sulfolobales* and 2 *Thermoproteales* genomes of the
325 phylum Crenarchaeota (**Figure 5**). Detected archaeal tmoA and ladA genes branched separately from
326 bacteria in the phylogenetic trees (**Figures 4 and 5**). Apart from alkB, gene duplications were present in
327 several genomes for both tmoA (*Sulfolobus* and *Acidianus* genera) and ladA (*Halopenitus persicus* and
328 *Halopenitus malekzadehii*).

329 Key enzymes needed to initiate HC degradation were rarely present in archaea (**Figures 3, 4, and 5**),
330 indicating that Archaea might not play a significant role in the typically rate-limiting initial degradation of
331 HCs. However, several studies report the ability of halophilic archaeal isolates (e.g., *Halorubrum* sp.,
332 *Halobacterium* sp., *Haloferax* sp., *Haloarcula* sp.) to degrade both aliphatic (n-alkanes with chain lengths
333 up to C18 and longer) and aromatic (e.g., naphthalene, phenanthrene, benzene, toluene and *p*-
334 hydroxybenzoic acid) HCs and use them as their sole source of carbon [44–46]. This may imply that
335 archaea carry alternative and hitherto unknown enzymes for triggering HC degradation. However, there
336 is no complete genome information available for the mentioned isolates to screen them for the
337 presence of alternative degrading enzymes [11]. The *Haloferax* sp., capable of using a wide range of HCs
338 as its sole source of carbon, present in the AnnoTree database (RS_GCF_000025685.1), contained none
339 of the key degrading genes. The AnnoTree website chooses representative genomes having
340 completeness of higher than 90%, which reduces the likelihood of incompleteness of the studied
341 genome as a reason for the absence of these genes. Therefore, alternative HC degrading genes that are
342 present in the accessory part of the genomes might be responsible for the observed degradation.

343 On the other hand, the recent reconstruction of three metagenome-assembled Thermoplasmatota
344 genomes (Poseidonia, MGIIa-L2, MGIIb-N1) from oil-exposed marine water samples (not included in the
345 GTDB release89) contained enzymes involved in alkane (alkB) and xylene (xylM) degradation [30].
346 Hence as these global genome depositories continue to expand, we may have to revise or update our
347 findings.

348 A total number of 597 archaeal genomes contain enzymes involved in the degradation of aromatic
349 compounds regarding the conversion of catechol to TCA intermediates. This is observed in the phyla
350 *Halobacterota* (176 genomes in *Haloferacaceae*, *Haloarculaceae*, *Natrialbaceae*, *Halococcaceae*,

351 *Halobacteriaceae*, *Methanocullaceae*, *Methanoregulaceae*, *Methanosarcinaceae*, *Archaeoglobaceae*,
352 and some other methano-prefixed families), *Thermoplasmatota* (175 genomes in *Poseidoniales*, Marine
353 Group III, *Methanomassiliicoccales*, UBA10834, *Acidiprofundales*, DHVEG-1, UBA9212), and
354 *Crenarchaeota* (110 genomes in *Nitrospherales*, *Desulfurococcales*, *Sufolobales*, *Thermoproteales*). This
355 widespread capacity for degrading downstream intermediates in aromatic HC degradation implies that
356 archaea interact closely with bacteria in HC degradation.

357 **Conclusions**

358 HCs are ubiquitously distributed in the biosphere and do not exclusively originate from oil. In this study,
359 the distribution of key HC degrading enzymes involved in the degradation of certain HCs (aliphatic and
360 aromatic types) is provided at genome resolution for both the archaeal and bacterial domains. Extensive
361 environmental genome and metagenome sequencing over the last decades has significantly increased
362 the number of available microbial genomes and enriched contemporary genomic databases. The
363 genome-based taxonomy using average nucleotide identity (ANI) or relative evolutionary divergence
364 adopted by the Genome Taxonomy Database; GTDB [47,48] as a reproducible method has in parallel
365 revised and updated some taxonomic ranks. The order Oceanospirillales, as an example, is a well-known
366 taxon in the marine oil degradation context, and its representatives have been frequently reported as
367 one of the main HC degrading members in response to oil pollution [49,50,37]. Nonetheless, this
368 taxonomic rank has been removed from the genome-based taxonomy, and its members have been
369 mainly placed in the order Pseudomonadales [51]. This could potentially cause a communication gap
370 between the existing literature and new research. An updated comprehensive metabolic survey of
371 Bacteria and Archaea for HC degradation potential at genome resolution could thus help bridge this gap.
372 Our extensive survey shows that a greater diversity of bacteria is involved in aliphatic HC degradation
373 compared to aromatic HCs. Few genomes were detected to contain all necessary enzymes to carry out
374 complete degradation pathways. This reiterates previous findings that microbes generally cooperate for
375 HC degradation by “division of labor” and a community perspective would therefore be crucial to
376 predicting the fate of oil HCs in the ecosystem. We detected HC degrading ability among both r and k
377 strategists and found signals of gene duplication and horizontal transfer of key HC degrading genes. This
378 could be an efficient way to increase degradation capability among microbial members and potentially
379 help them adapt to the available pool of HCs in their ecosystem.

380 **Materials and methods**

381 **Data collection of HC Degrading enzymes.** Representative compounds from each category of
382 HCs, including saturated aliphatic (short/long-chain alkanes) and alicyclic (cyclohexane/cyclododecane),
383 compounds with mono-aromatic (toluene, phenol, xylene, and benzene), and poly-aromatic (PAHs)
384 (naphthalene, phenanthrene, and biphenyl as representatives) hydrocarbons were selected to survey
385 the distribution of Bacteria and Archaea capable of their degradation under aerobic conditions.
386 A complete list of enzymes involved in the degradation pathway of mentioned HCs was compiled from
387 previous reports [52–57]. We explored these enzymes in Kyoto Encyclopedia of Genes and Genomes
388 (KEGG)[58], Pfam [59], TIGRFAMs [60], InterPro [61], and UniProt [62] databases. The accession number
389 of enzymes in each mentioned database, their function, name, reaction (if available), EC number, and
390 additional information are provided in **Supplementary Table S1**.

391 **Distribution of HC degrading enzymes among bacterial and archaeal representative genomes.**
392 The distribution of the compiled HC degrading enzymes described in **Supplementary Table S1** was
393 assessed across domains Bacteria and Archaea using AnnoTree (<http://annotree.uwaterloo.ca>) [12].
394 AnnoTree database is providing functional annotations for 24692 genome representatives in the
395 genome taxonomy database (GTDB) release 89. The phylogenetic classification of genomes is derived
396 from the GTDB database (release R89). In total, the annotation information for 18, 10, and 90 enzymes
397 involved in the degradation process of alkane, cycloalkane, and aromatic HCs, respectively, were
398 analyzed. Genome hits were collected at the thresholds of percent identity ≥ 50 , e-value cut off $\leq 1e^{-5}$,
399 subject/query percent alignment ≥ 70 for KEGG annotations, and e-value cut off $\leq 1e^{-5}$ for Pfam and
400 TIGRFAMs annotations. For each HC degrading enzyme, we first checked KEGG annotations. If there
401 were no KEGG accession numbers for the enzyme, the second priority was TIGRFAMs; otherwise, the
402 Pfam annotation was considered. The table contains information for the distribution of HC degrading
403 enzymes of each pathway present in representative genomes from bacteria and archaea domains, as is
404 shown in **Supplementary Tables S2 and S3**, respectively.

405 **Phylogeny of bacteria and archaea augmented with the abundance of HC degrading enzymes.**
406 Evolview, a web-based tool for the phylogenetic tree visualization, management, and annotation, was
407 used to present the distribution view of HC degrading enzymes in representative genomes across
408 bacterial/archaeal phylogenomic trees [63][64].
409 The phylogenomic tree of bacteria and archaea in the Newick format, at the phylum level (123 and 14
410 leaves, respectively), was adopted from the AnnoTree website (November 21st, 2020). Trees were
411 uploaded as the reference tree in Evolview. According to the abundance tables of HC degrading enzymes

412 prepared for each degradation pathway, four heatmaps were plotted for bacteria and archaea domains
413 (separately for aliphatic and aromatic compounds).

414 **Single gene phylogeny.** To provide the evolutionary history of key enzymes in each HC
415 degradation pathway, the protein sequence of that enzyme was manually confirmed by inspecting their
416 conserved domains using the NCBI web CD-Search tool
<https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi> [31]. Validated amino acid sequences
418 were then aligned using Kalign3 software [65], and their phylogenetic tree was reconstructed using
419 FastTree2 [66].

420 **Acknowledgments**

421 The computational analysis was performed at the Center for High-Performance Computing, School of
422 Mathematics, Statistics, and Computer Science, University of Tehran.

423 **Author contributions**

424 M.M. devised the study. M.R.S., L.G.M., and M.M., performed the bioinformatics analysis M.R.S. and
425 M.M. interpreted the data with input from S.M.M.D., S.B., M.A.A., and M.S.. M.R.S. and M.M drafted the
426 manuscript. All authors read and approved the manuscript.

427 **Conflict of interests**

428 Author declare no conflict of interest.

429 **References**

- 430 1. Abdel-Aal HK, Aggour M, Fahim MA. petroleum and gas field processing. 2003.
- 431 2. Speight JG. Origin and occurrence. Edition, F. Speight JG, HEINEMANN H, editors. Chem. Technol. Pet.
432 Technol. Pet. CRC Press, Taylor & Francis Group; 2014.
- 433 3. Liu Y-F, Qi Z-Z, Shou L-B, Liu J-F, Yang S-Z, Gu J-D, et al. Anaerobic hydrocarbon degradation in
434 candidate phylum “Atribacteria”(JS1) inferred from genomics. ISME J. Nature Publishing Group;
435 2019;13:2377–90.
- 436 4. Liu Q, Tang J, Bai Z, Hecker M, Giesy JP. Distribution of petroleum degrading genes and factor analysis
437 of petroleum contaminated soil from the Dagang Oilfield, China. Sci Rep. Nature Publishing Group;
438 2015;5:1–12.
- 439 5. Fuchs G, Boll M, Heider J. Microbial degradation of aromatic compounds—from one strategy to four.
440 Nat Rev Microbiol. Nature Publishing Group; 2011;9:803–16.
- 441 6. Peixoto RS, Vermelho AB, Rosado AS. Petroleum-degrading enzymes: bioremediation and new
442 prospects. Enzyme Res. Hindawi; 2011;2011.
- 443 7. Sierra-Garcia IN, de Oliveira VM. Microbial hydrocarbon degradation: efforts to understand

444 biodegradation in petroleum reservoirs. *Biodegrad Technol. InTech.* doi; 2013;10:55920.

445 8. Xu X, Liu W, Tian S, Wang W, Qi Q, Jiang P, et al. Petroleum hydrocarbon-degrading bacteria for the
446 remediation of oil pollution under aerobic conditions: a perspective analysis. *Front Microbiol. Frontiers*;
447 2018;9:2885.

448 9. Varjani SJ. Microbial degradation of petroleum hydrocarbons. *Bioresour Technol. Elsevier*;
449 2017;223:277–86.

450 10. Xue J, Yu Y, Bai Y, Wang L, Wu Y. Marine oil-degrading microorganisms and biodegradation process
451 of petroleum hydrocarbon in marine environments: a review. *Curr Microbiol. Springer*; 2015;71:220–8.

452 11. McGenity TJ. *Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes*.
453 Springer; 2019.

454 12. Mendler K, Chen H, Parks DH, Lobb B, Hug LA, Doxey AC. AnnoTree: visualization and exploration of
455 a functionally annotated microbial tree of life. *Nucleic Acids Res. Oxford University Press*; 2019;47:4442–
456 8.

457 13. Cohen Y. Bioremediation of oil by marine microbial mats. *Int Microbiol. Springer*; 2002;5:189–93.

458 14. Ibraheem IBM. *BIODEGRADABILITY OF HYDROCARBONS BY CYANOBACTERIA 1*. *J Phycol. Wiley*
459 *Online Library*; 2010;46:818–24.

460 15. Raghukumar C, Vipparthy V, David J, Chandramohan D. Degradation of crude oil by marine
461 cyanobacteria. *Appl Microbiol Biotechnol. Springer*; 2001;57:433–6.

462 16. Rodrigues EM, Gerais M, Gerais M, Gerais M. Detection of horizontal transfer of housekeeping and
463 hydrocarbons catabolism genes in bacterial genus with potential to application in bioremediation
464 process. *Open Access Libr J. Scientific Research Publishing*; 2018;5:1.

465 17. Phale PS, Shah BA, Malhotra H. Variability in assembly of degradation operons for naphthalene and
466 its derivative, carbaryl, suggests mobilization through horizontal gene transfer. *Genes (Basel)*.
467 *Multidisciplinary Digital Publishing Institute*; 2019;10:569.

468 18. Korshunova A V, Tourova TP, Shestakova NM, Mikhailova EM, Poltaraus AB, Nazina TN. Detection
469 and transcription of n-alkane biodegradation genes (alk B) in the genome of a hydrocarbon-oxidizing
470 bacterium *Geobacillus subterraneus* K. *Microbiology. Springer*; 2011;80:682–91.

471 19. Hashmat AJ, Afzal M, Fatima K, Anwar-ul-Haq M, Khan QM, Arias CA, et al. Characterization of
472 hydrocarbon-degrading bacteria in constructed wetland microcosms used to treat crude oil polluted
473 water. *Bull Environ Contam Toxicol. Springer*; 2019;102:358–64.

474 20. Nie Y, Chi C-Q, Fang H, Liang J-L, Lu S-L, Lai G-L, et al. Diverse alkane hydroxylase genes in
475 microorganisms and environments. *Sci Rep. Nature Publishing Group*; 2014;4:1–11.

476 21. Love CR, Arrington EC, Gosselin KM, Reddy CM, Van Mooy BAS, Nelson RK, et al. Microbial
477 production and consumption of hydrocarbons in the global ocean. *Nat Microbiol*. Nature Publishing
478 Group; 2021;6:489–98.

479 22. Kertesz MA, Kawasaki A, Stolz A. Aerobic hydrocarbon-degrading alphaproteobacteria:
480 Sphingomonadales. *Taxon genomics Ecophysiol Hydrocarb microbes*. Springer; 2019;105–24.

481 23. Tao Y, Fishman A, Bentley WE, Wood TK. Altering toluene 4-monoxygenase by active-site
482 engineering for the synthesis of 3-methoxycatechol, methoxyhydroquinone, and methylhydroquinone. *J*
483 *Bacteriol*. Am Soc Microbiol; 2004;186:4705–13.

484 24. Parales RE, Parales J V, Pelletier DA, Ditty JL. Diversity of microbial toluene degradation pathways.
485 *Adv Appl Microbiol*. Elsevier; 2008;64:1–73.

486 25. Murphy CL, Sheremet A, Dunfield PF, Spear JR, Stepanauskas R, Woyke T, et al. Genomic Analysis of
487 the Yet-Uncultured Binatota Reveals Broad Methylotrophic, Alkane-Degradation, and Pigment
488 Production Capacities. *MBio*. Am Soc Microbiol; 2021;12:e00985-21.

489 26. Khomenkov VG, Shevelev AB, Zhukov VG, Zagustina NA, Bezborodov AM, Popov VO. Organization of
490 metabolic pathways and molecular-genetic mechanisms of xenobiotic degradation in microorganisms: A
491 review. *Appl Biochem Microbiol*. Springer; 2008;44:117–35.

492 27. Furukawa K, Suenaga H, Goto M. Biphenyl dioxygenases: functional versatilities and directed
493 evolution. *J Bacteriol*. Am Soc Microbiol; 2004;186:5189–96.

494 28. Corteselli EM, Aitken MD, Singleton DR. Description of *Immundisolibacter cernigliae* gen. nov., sp.
495 nov., a high-molecular-weight polycyclic aromatic hydrocarbon-degrading bacterium within the class
496 Gammaproteobacteria, and proposal of *Immundisolibacterales* ord. nov. and *Immundisolibacteraceae* f.
497 *Int J Syst Evol Microbiol*. Microbiology Society; 2017;67:925.

498 29. Schreiber L, Fortin N, Tremblay J, Wasserscheid J, Sanschagrin S, Mason J, et al. In situ microcosms
499 deployed at the coast of British Columbia (Canada) to study dilbit weathering and associated microbial
500 communities under marine conditions. *FEMS Microbiol Ecol*. Oxford University Press; 2021;97:fiab082.

501 30. Somee MR, Dastgheib SMM, Shavandi M, Maman LG, Kavousi K, Amoozegar MA, et al. Distinct
502 microbial communities along the chronic oil pollution continuum of the Persian Gulf converge with oil
503 spill accidents. *bioRxiv*. Cold Spring Harbor Laboratory; 2020;

504 31. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. CDD/SPARCLE: the conserved
505 domain database in 2020. *Nucleic Acids Res*. Oxford University Press; 2020;48:D265–8.

506 32. Okie JG, Poret-Peterson AT, Lee ZMP, Richter A, Alcaraz LD, Eguiarte LE, et al. Genomic adaptations
507 in information processing underpin trophic strategy in a whole-ecosystem nutrient enrichment

508 experiment. *Elife*. eLife Sciences Publications Limited; 2020;9:e49816.

509 33. Somee MR, Dastgheib SMM, Shavandi M, Maman LG, Kavousi K, Amoozegar MA, et al. Distinct

510 microbial community along the chronic oil pollution continuum of the Persian Gulf converge with oil spill

511 accidents. *Sci Rep.* Nature Publishing Group; 2021;11:1–15.

512 34. Barbato M, Mapelli F, Crotti E, Daffonchio D, Borin S. Cultivable hydrocarbon degrading bacteria

513 have low phylogenetic diversity but highly versatile functional potential. *Int Biodeterior Biodegradation*.

514 Elsevier; 2019;142:43–51.

515 35. Kleindienst S, Grim S, Sogin M, Bracco A, Crespo-Medina M, Joye SB. Diverse, rare microbial taxa

516 responded to the Deepwater Horizon deep-sea hydrocarbon plume. *ISME J.* Nature Publishing Group;

517 2016;10:400–15.

518 36. Bacosa HP, Liu Z, Erdner DL. Natural sunlight shapes crude oil-degrading bacterial communities in

519 Northern Gulf of Mexico surface waters. *Front Microbiol. Frontiers*; 2015;6:1325.

520 37. Gutierrez T. Marine, aerobic hydrocarbon-degrading gammaproteobacteria: overview. *Taxon*

521 *Genomics Ecophysiol Hydrocarb Microbes*. Springer; 2017;1–10.

522 38. Sun X, Kostka JE. Hydrocarbon-degrading microbial communities are site specific, and their activity is

523 limited by synergies in temperature and nutrient availability in surface ocean waters. *Appl Environ*

524 *Microbiol. Am Soc Microbiol*; 2019;85:e00443-19.

525 39. Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG. Characterization of hydrocarbon-degrading

526 microbial populations in contaminated and pristine alpine soils. *Appl Environ Microbiol. Am Soc*

527 *Microbiol*; 2003;69:3085–92.

528 40. Brzeszcz J, Steliga T, Kapusta P, Turkiewicz A, Kaszycki P. r-strategist versus K-strategist for the

529 application in bioremediation of hydrocarbon-contaminated soils. *Int Biodeterior Biodegradation*.

530 Elsevier; 2016;106:41–52.

531 41. Guo Q, Yin Q, Du J, Zuo J, Wu G. New insights into the r/K selection theory achieved in methanogenic

532 systems through continuous-flow and sequencing batch operational modes. *Sci Total Environ.* Elsevier;

533 2022;807:150732.

534 42. Wang M, Chen X, Liu X, Fang Y, Zheng X, Huang T, et al. Even allocation of benefits stabilizes

535 microbial community engaged in metabolic division of labor. *bioRxiv*. Cold Spring Harbor Laboratory;

536 2021;

537 43. Tsoi R, Wu F, Zhang C, Bewick S, Karig D, You L. Metabolic division of labor in microbial systems. *Proc*

538 *Natl Acad Sci. National Acad Sciences*; 2018;115:2526–31.

539 44. Krzmarzick MJ, Taylor DK, Fu X, McCutchan AL. Diversity and niche of archaea in bioremediation.

540 Archaea. Hindawi; 2018;2018.

541 45. Somee MR, Dastgheib SMM, Shavandi M, Zolfaghar M, Zamani N, Ventosa A, et al. Halophiles in
542 bioremediation of petroleum contaminants: challenges and prospects. *Bioremediation Environ Sustain.*
543 Elsevier; 2021. p. 251–91.

544 46. Fathepure BZ. Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline
545 environments. *Front Microbiol. Frontiers*; 2014;5:173.

546 47. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarszewski A, Chaumeil P-A, et al. A standardized
547 bacterial taxonomy based on genome phylogeny substantially revises the tree of life. *Nat Biotechnol.*
548 Nature Publishing Group; 2018;

549 48. Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-
550 species taxonomy for Bacteria and Archaea. *Nat Biotechnol.* Nature Publishing Group; 2020;1–8.

551 49. Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Bælum J, Kimbrel J, et al. Metagenomics reveals
552 sediment microbial community response to Deepwater Horizon oil spill. *ISME J.* Nature Publishing
553 Group; 2014;8:1464.

554 50. King GM, Kostka JE, Hazen TC, Sobecky PA. Microbial responses to the Deepwater Horizon oil spill:
555 from coastal wetlands to the deep sea. *Ann Rev Mar Sci. Annual Reviews*; 2015;7:377–401.

556 51. Liao H, Lin X, Li Y, Qu M, Tian Y. Reclassification of the taxonomic framework of orders
557 cellvibrionales, oceanospirillales, pseudomonadales, and alteromonadales in class gammaproteobacteria
558 through phylogenomic tree analysis. *Msystems. Am Soc Microbiol*; 2020;5:e00543-20.

559 52. Pérez-Pantoja D, González B, Pieper DH. Aerobic degradation of aromatic hydrocarbons. *Handb*
560 *Hydrocarb lipid Microbiol.* Springer; 2010;799–837.

561 53. Abbasian F, Lockington R, Mallavarapu M, Naidu R. A comprehensive review of aliphatic hydrocarbon
562 biodegradation by bacteria. *Appl Biochem Biotechnol.* Springer; 2015;176:670–99.

563 54. Abbasian F, Lockington R, Megharaj M, Naidu R. A review on the genetics of aliphatic and aromatic
564 hydrocarbon degradation. *Appl Biochem Biotechnol.* Springer; 2016;178:224–50.

565 55. Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Tarouco PC, Weyrauch P, et al. Anaerobic
566 degradation of benzene and polycyclic aromatic hydrocarbons. *J Mol Microbiol Biotechnol.* Karger
567 Publishers; 2016;26:92–118.

568 56. Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W, Einsle O, et al. Anaerobic microbial
569 degradation of hydrocarbons: from enzymatic reactions to the environment. *J Mol Microbiol Biotechnol.*
570 Karger Publishers; 2016;26:5–28.

571 57. Espínola F, Dionisi HM, Borglin S, Brislawn CJ, Jansson JK, Mac Cormack WP, et al. Metagenomic

572 analysis of subtidal sediments from polar and subpolar coastal environments highlights the relevance of
573 anaerobic hydrocarbon degradation processes. *Microb Ecol*. Springer; 2018;75:123–39.

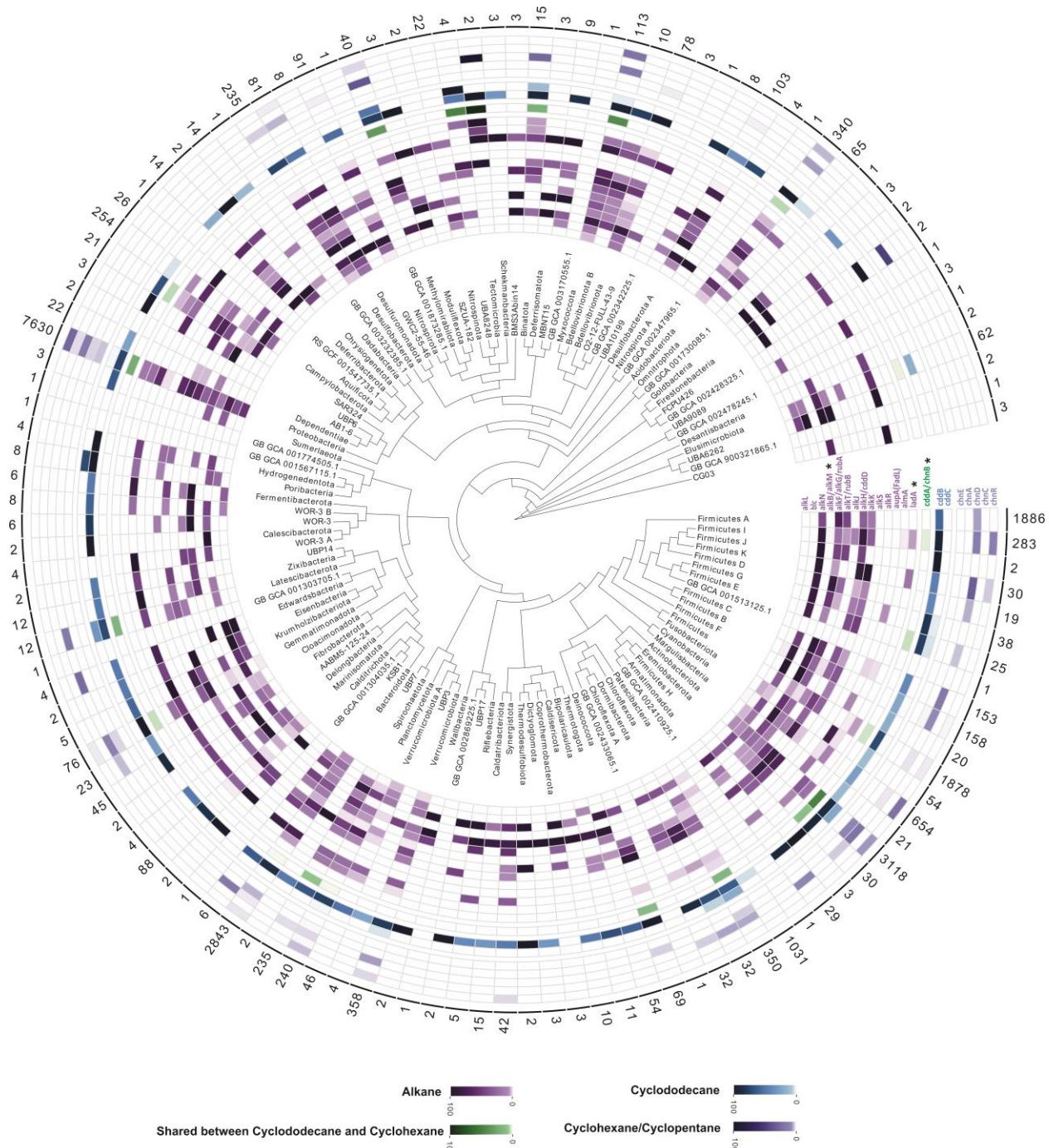
574 58. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res*. Oxford
575 University Press; 2000;28:27–30.

576 59. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families
577 database: towards a more sustainable future. *Nucleic Acids Res*. Oxford University Press; 2016;44:D279–
578 85.

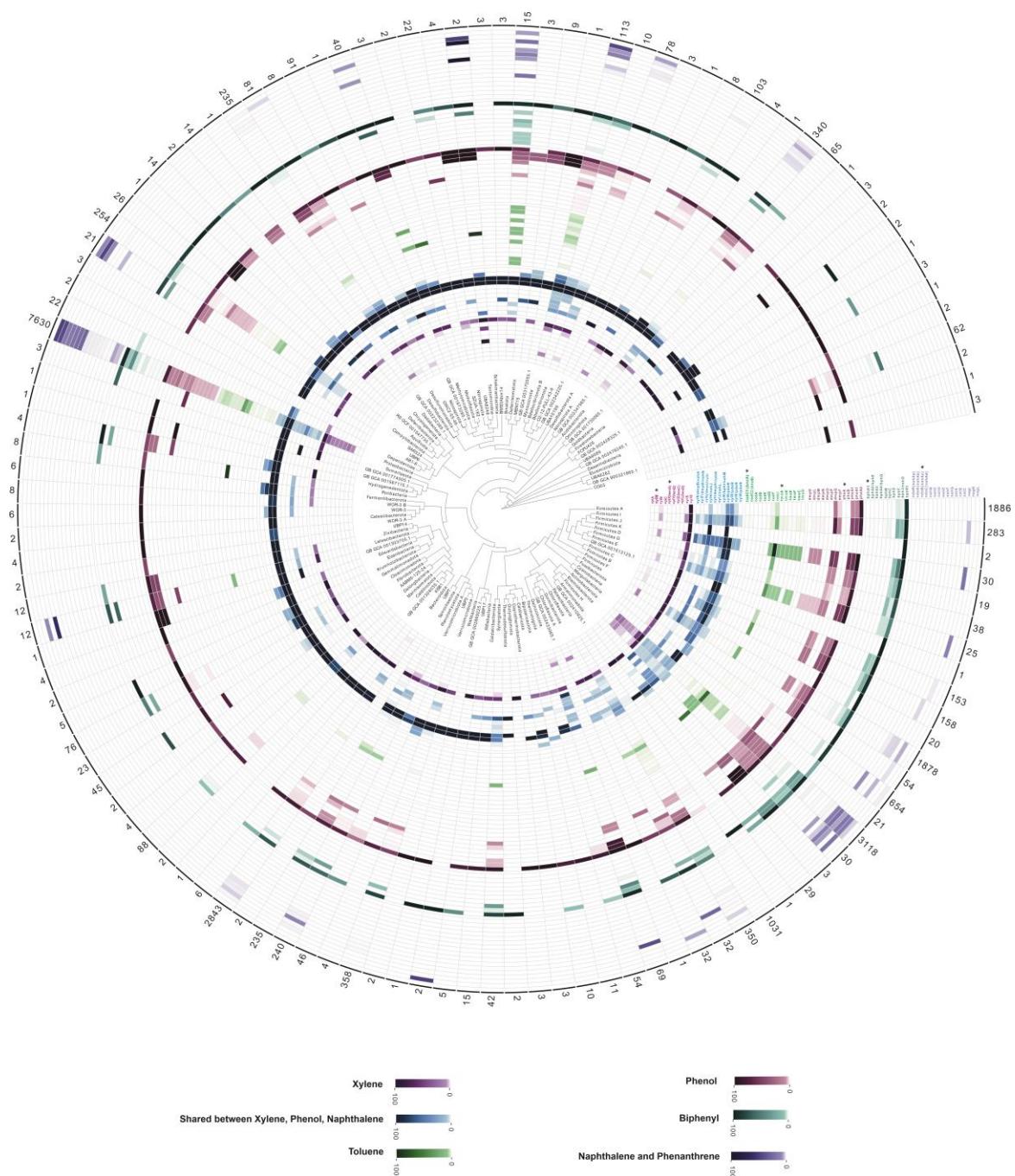
579 60. Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families. *Nucleic Acids Res*. Oxford
580 University Press; 2003;31:371–3.

581 61. Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, et al. The InterPro database, an
582 integrated documentation resource for protein families, domains and functional sites. *Nucleic Acids Res*.
583 Oxford University Press; 2001;29:37–40.

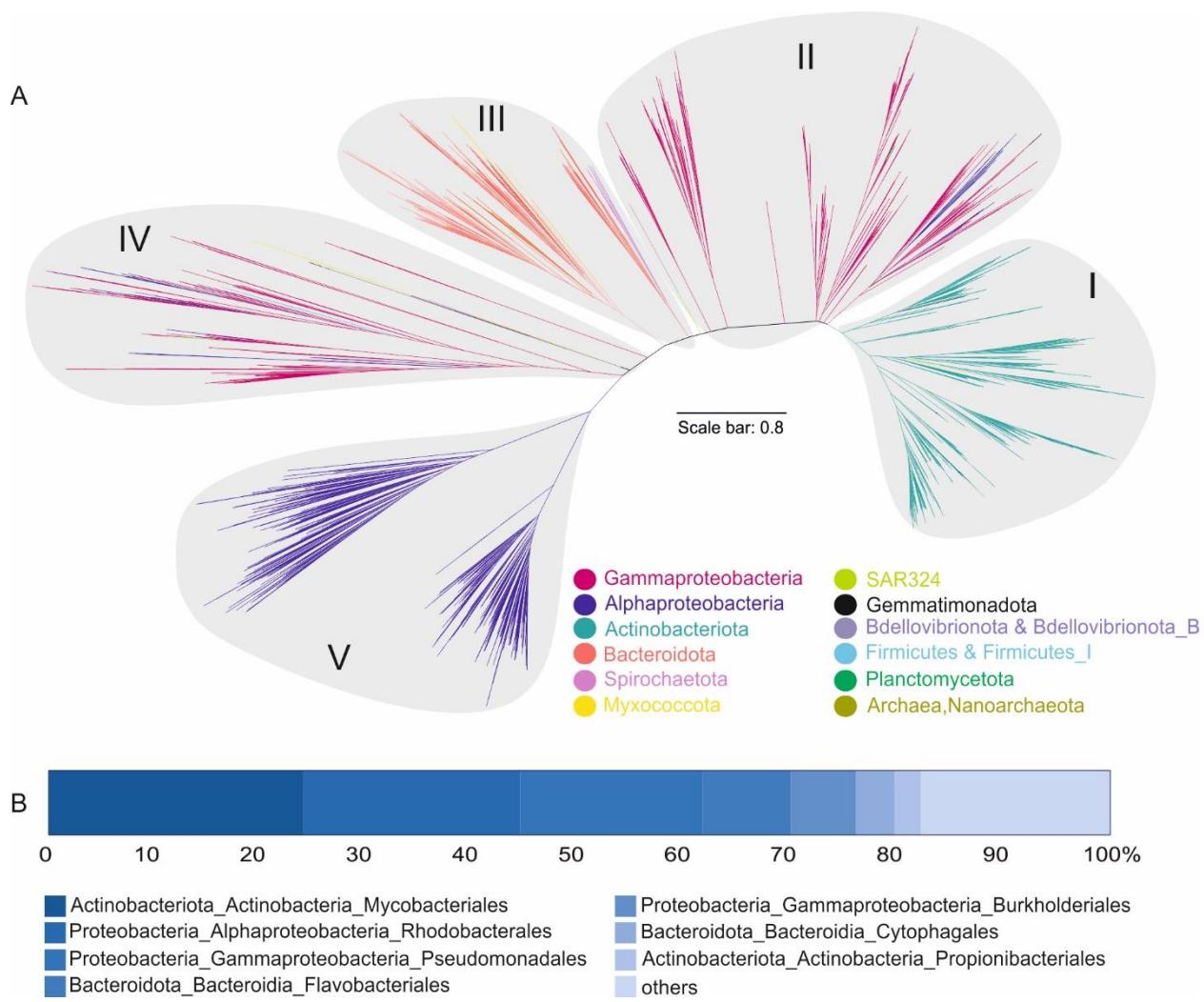
584 62. Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, et al. The universal protein
585 resource (UniProt). *Nucleic Acids Res*. Oxford University Press; 2005;33:D154–9.

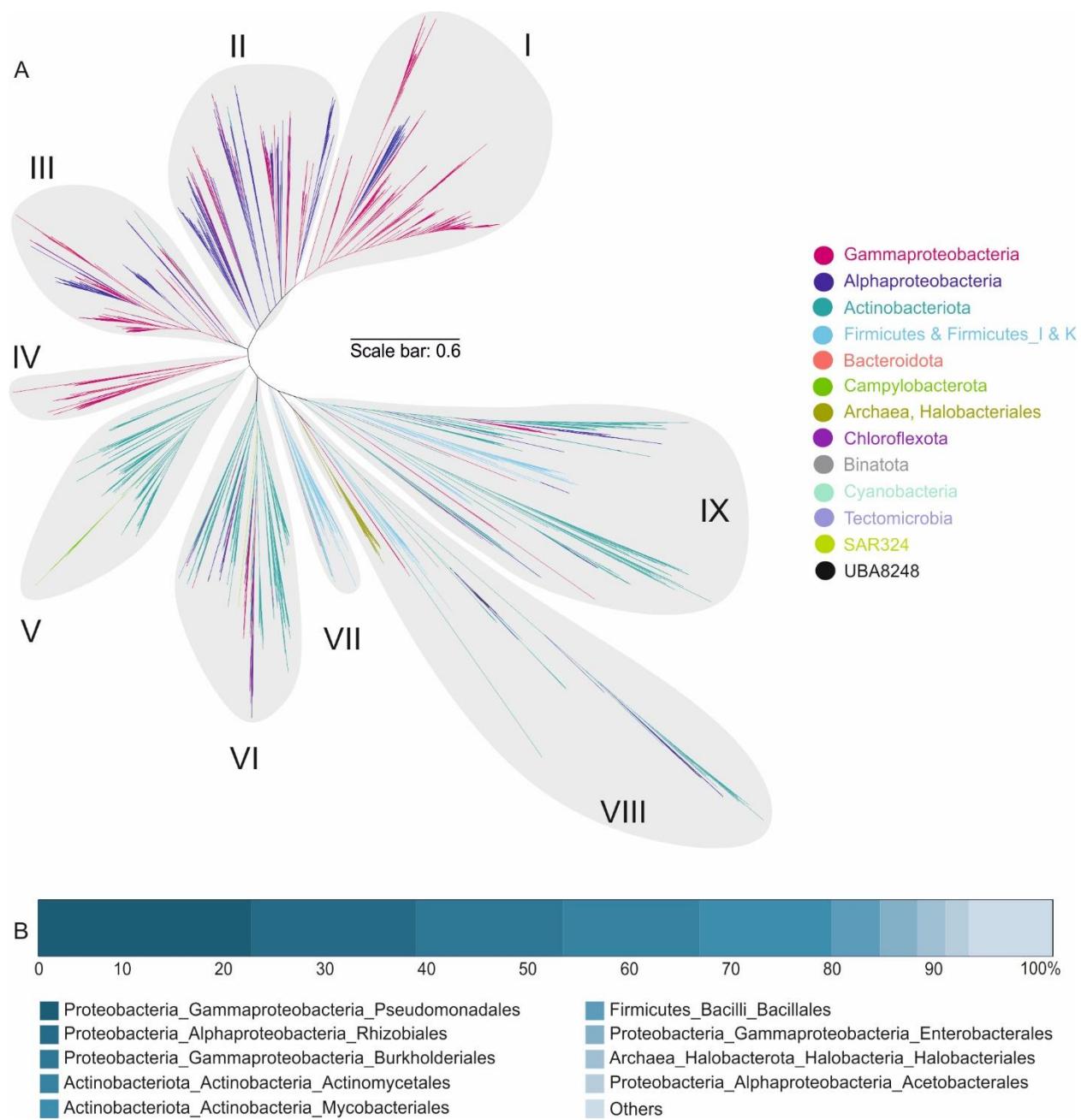

586 63. Subramanian B, Gao S, Lercher MJ, Hu S, Chen W-H. Evolview v3: a webserver for visualization,
587 annotation, and management of phylogenetic trees. *Nucleic Acids Res*. Oxford University Press;
588 2019;47:W270–5.

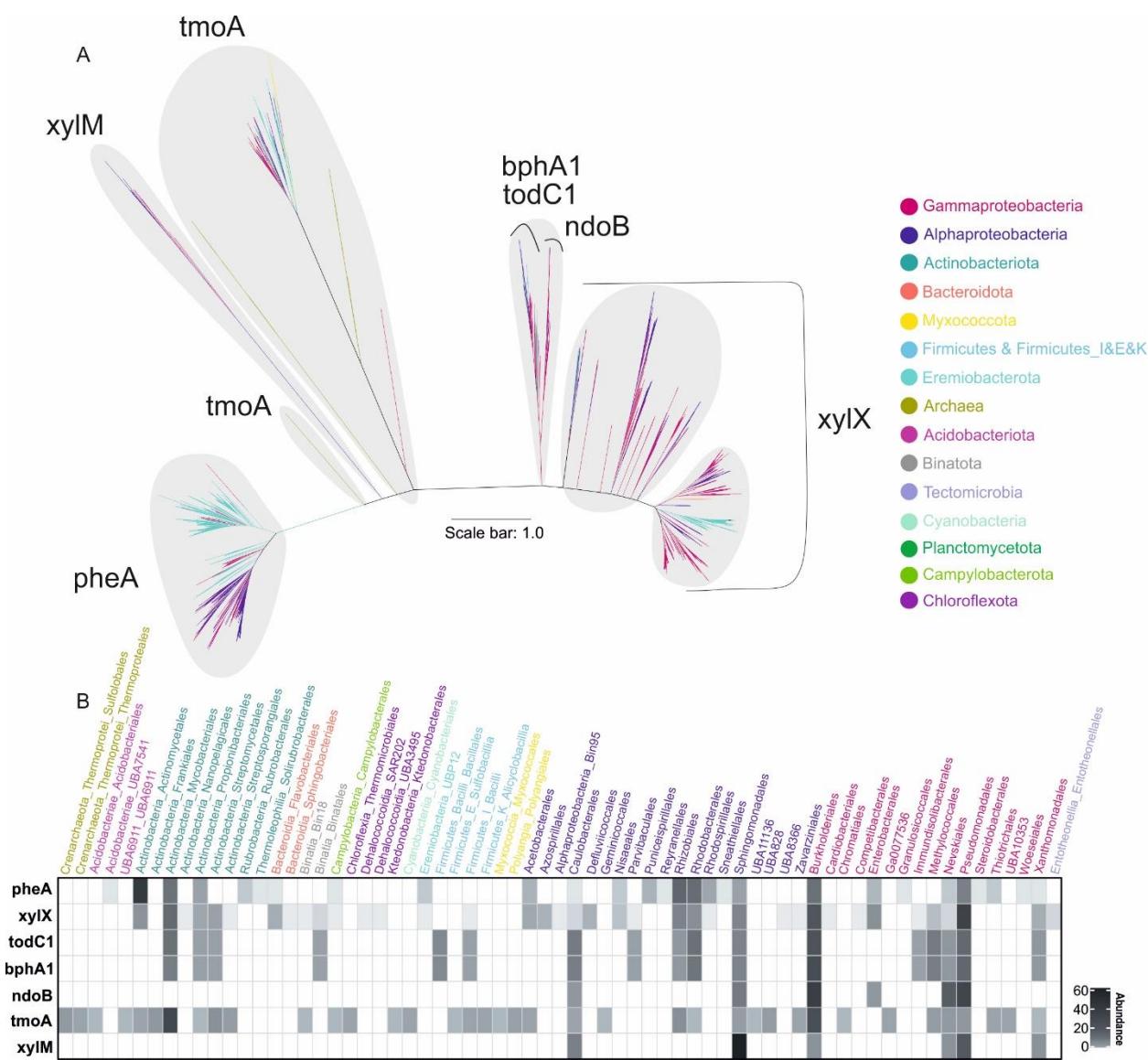
589 64. He Z, Zhang H, Gao S, Lercher MJ, Chen W-H, Hu S. Evolview v2: an online visualization and
590 management tool for customized and annotated phylogenetic trees. *Nucleic Acids Res*. Oxford
591 University Press; 2016;44:W236–41.


592 65. Lassmann T. Kalign 3: multiple sequence alignment of large datasets. Oxford University Press; 2020.

593 66. Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large
594 alignments. *PLoS One*. Public Library of Science; 2010;5:e9490.


Figures


Figure 1 - Distribution of aliphatic hydrocarbon-degrading genes across domain bacteria at the phylum level. Each circle of the heatmap represents a gene involved in HC degradation. Various compounds are shown in different colors, as represented in the color legend at the bottom of the figure. Genes marked with an asterisk represent key enzymes of the degradation pathway. Numbers written on each row's edge indicate the number of screened genomes in that phylum in the AnnoTree website (adopted from GTDB R89). The color gradient for genes of each compound indicates the percentage of HC degrading members of each phylum.


Figure 2- Distribution of aromatic hydrocarbon-degrading genes across domain bacteria at the phylum level. Each circle of the heatmap represents a gene involved in HC degradation. Various compounds are shown in different colors, as represented in the color legend at the bottom of the figure. Genes marked with an asterisk represent key enzymes of the degradation pathway. Numbers written on each row's edge indicate the number of screened genomes in that phylum in the AnnoTree website (adopted from GTDB R89). The color gradient for genes of each compound indicates the percentage of HC degrading members of each phylum.

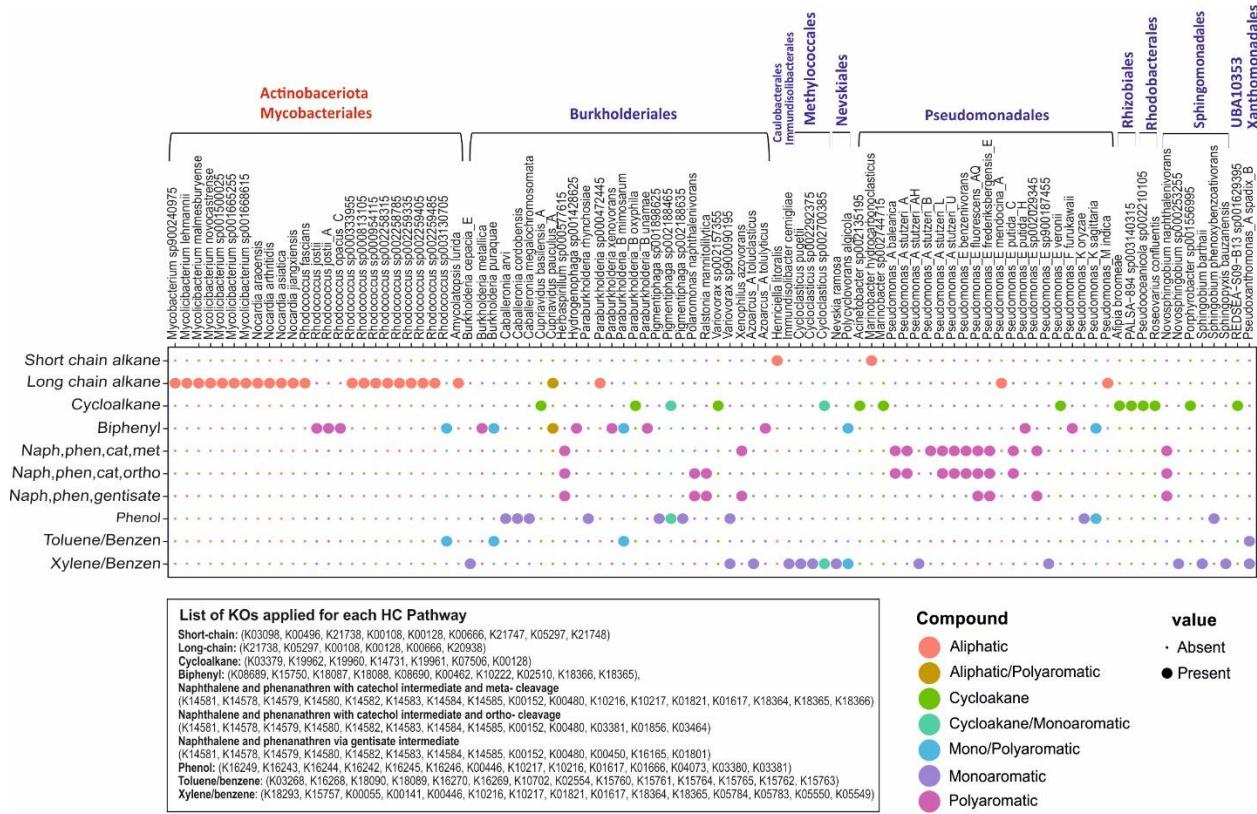

Figure 3- Maximum-likelihood phylogenetic reconstruction of amino acid sequences of alkB/M protein recovered from genomes (short-chain length alkane monooxygenase). A: Major clusters of alkB/M genes according to the reconstructed phylogeny. The scale bar indicates 0.1 branch distance. B: Bar plot representations of the distribution of recovered genes at the order level. The detailed information of the fraction “others” is provided in Supplementary Table S6.

Figure 4- Maximum-likelihood phylogenetic reconstruction of amino acid sequences of ladA protein recovered from genomes (long-chain length alkane monooxygenase). A: Major clusters of ladA genes. The scale bar indicates 0.6 branch distance. B: Bar plot representations of the distribution of recovered genes at the order level. The detailed information of the fraction “others” is provided in Supplementary Table S6.

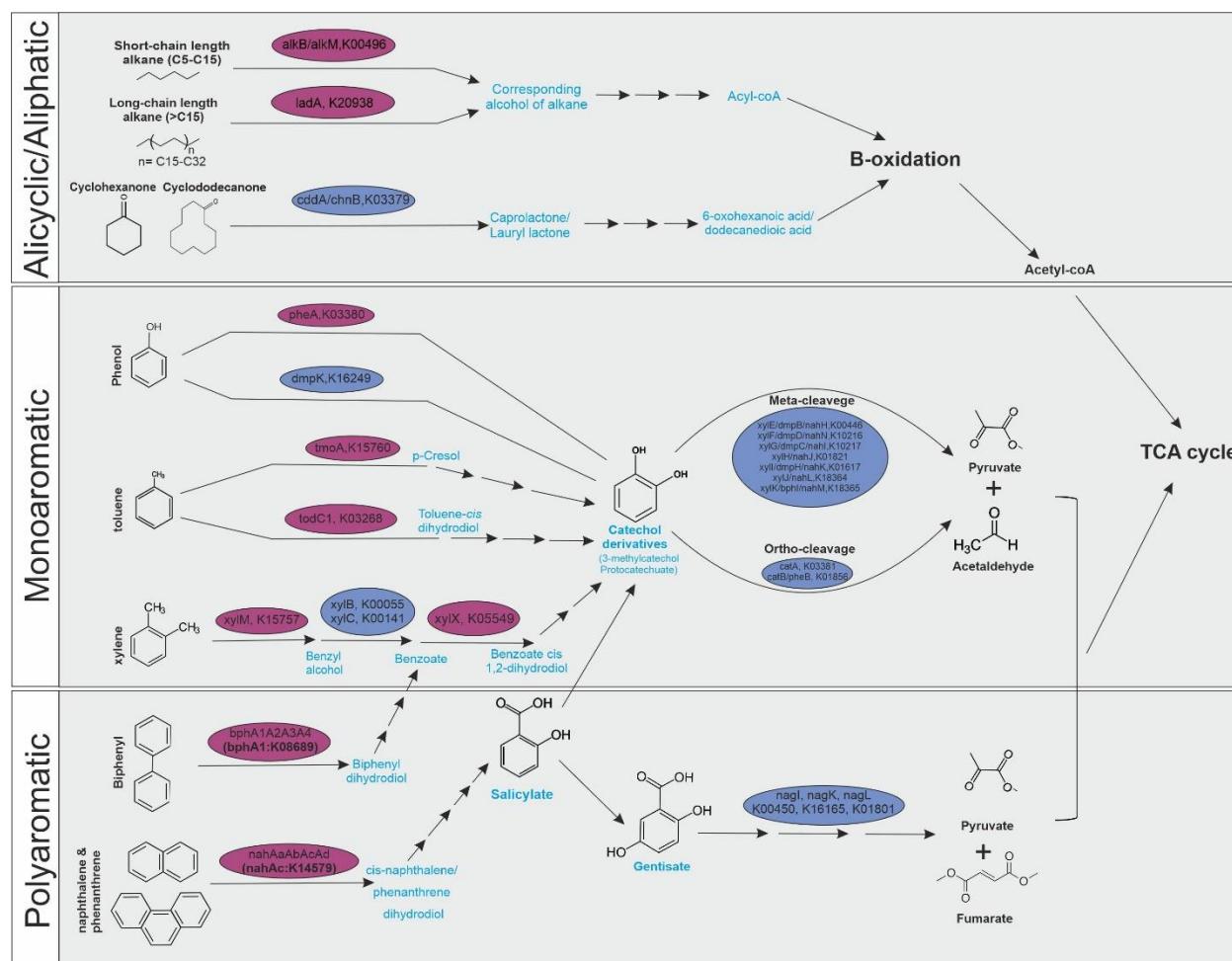


Figure 5- Maximum-likelihood phylogenetic reconstruction of amino acid sequences of ring-hydroxylating oxygenase (RHO) protein recovered from genomes. A: Major clusters of RHO genes. The scale bar indicates 1.0 branch distance. B: Heatmap representations of the distribution of recovered genes at the order level.

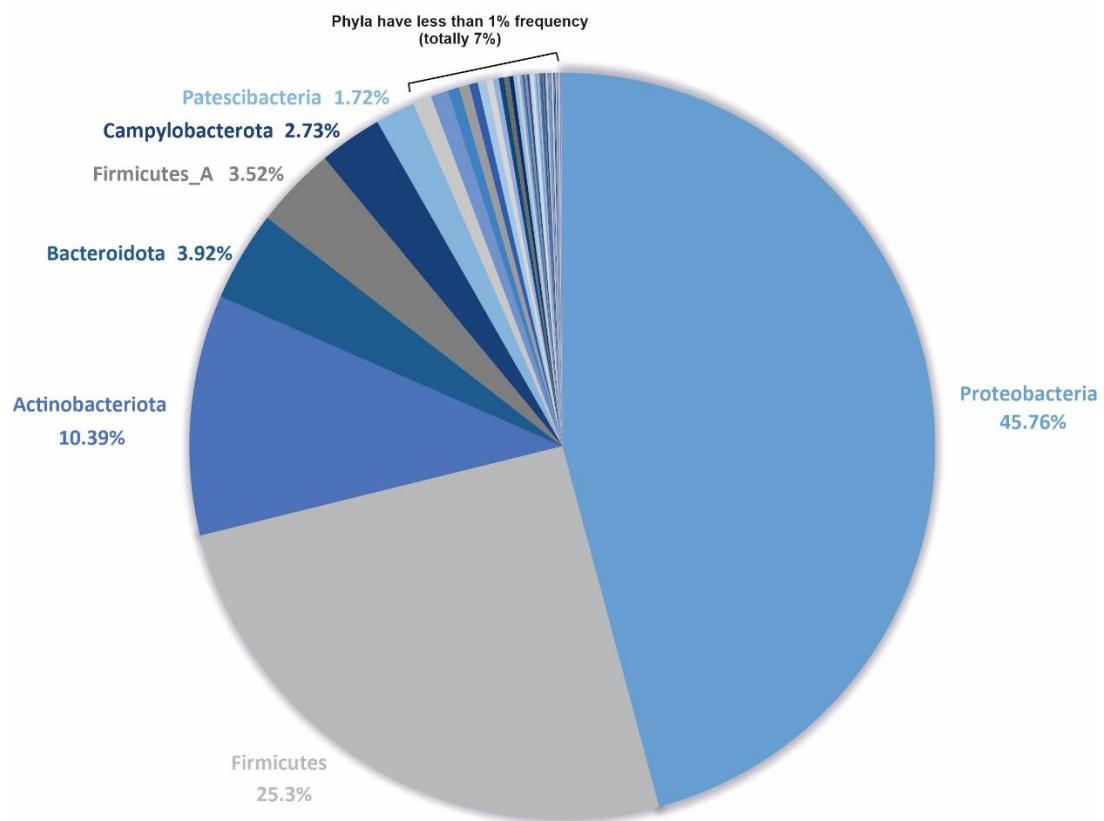
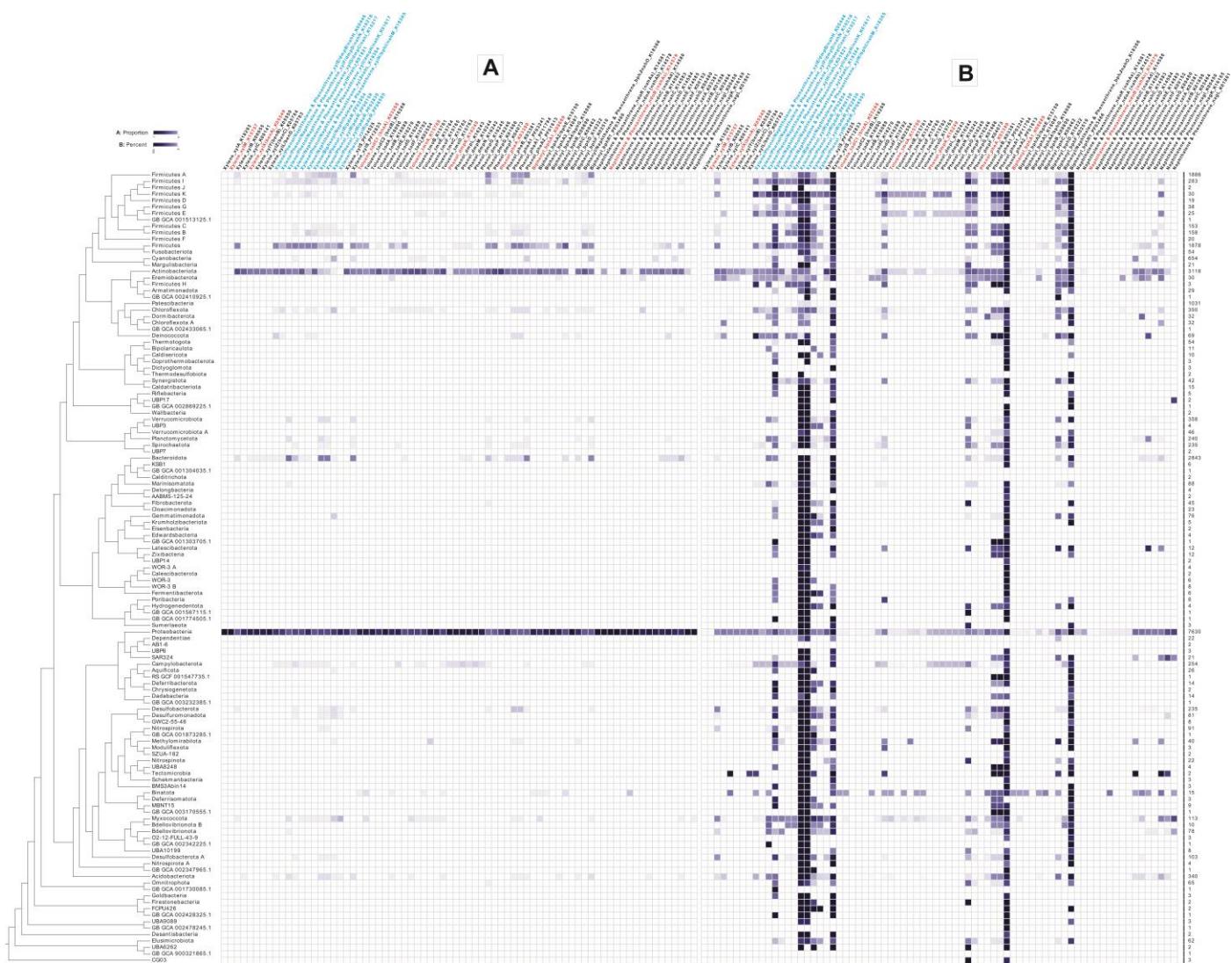
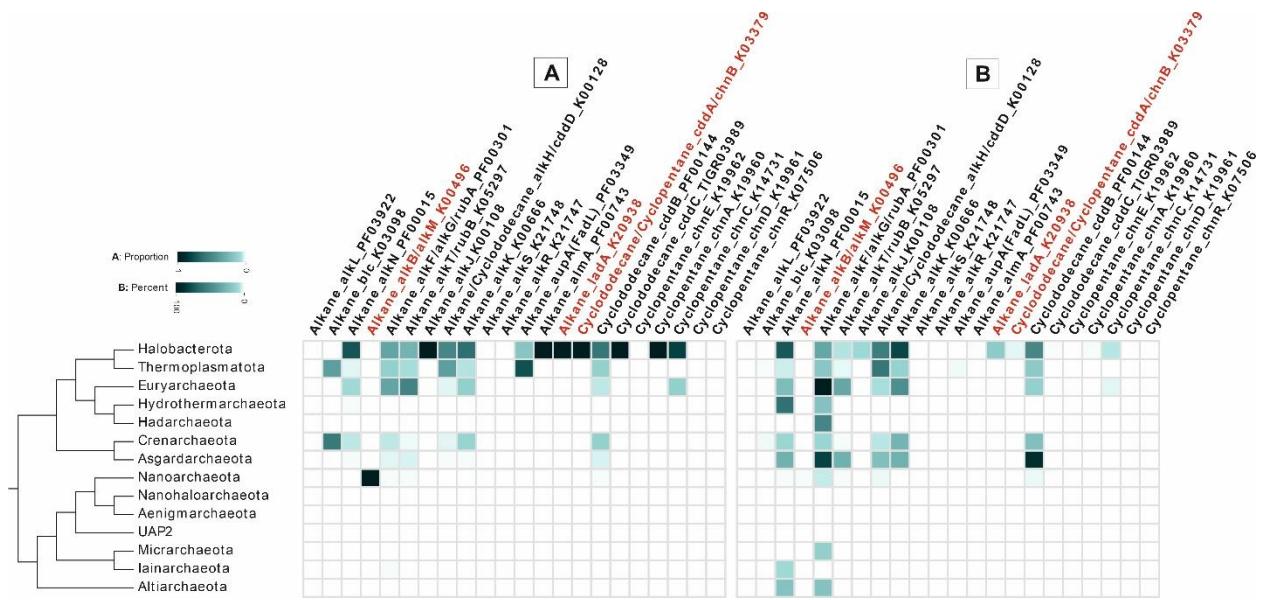


Figure 6- Genomes with complete/near complete degradation pathways of different HCs. Colors represent the type of HC that microbial genomes could degrade. Rows represent the type of HCs and columns show the name of genomes. Orders belonging to Proteobacteria and Actinobacteriota phyla are written in blue and red, respectively. KEGG orthologous accession number of enzymes for the complete degradation process of each compound is written at the figure's bottom.

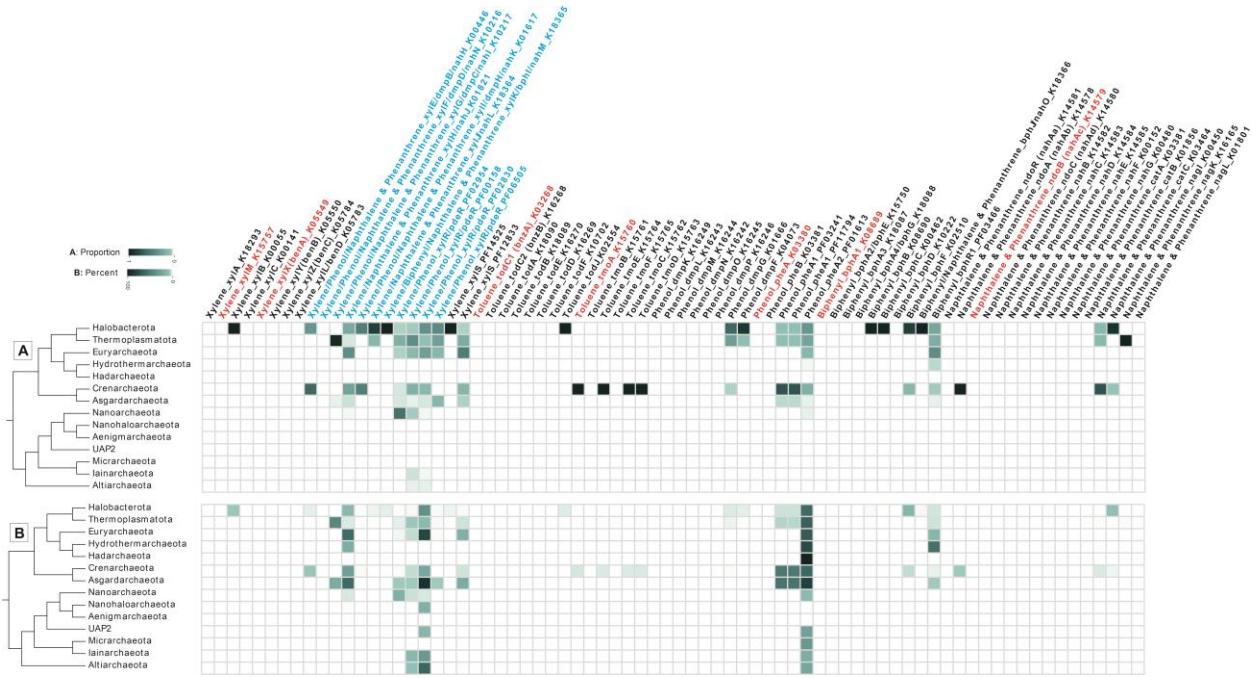
Supplementary Figures

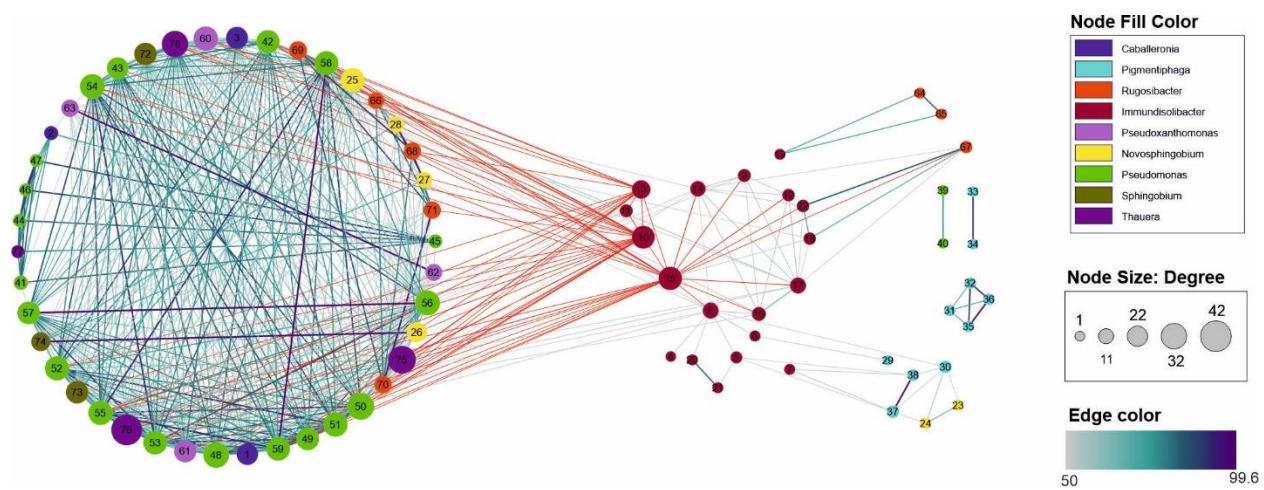


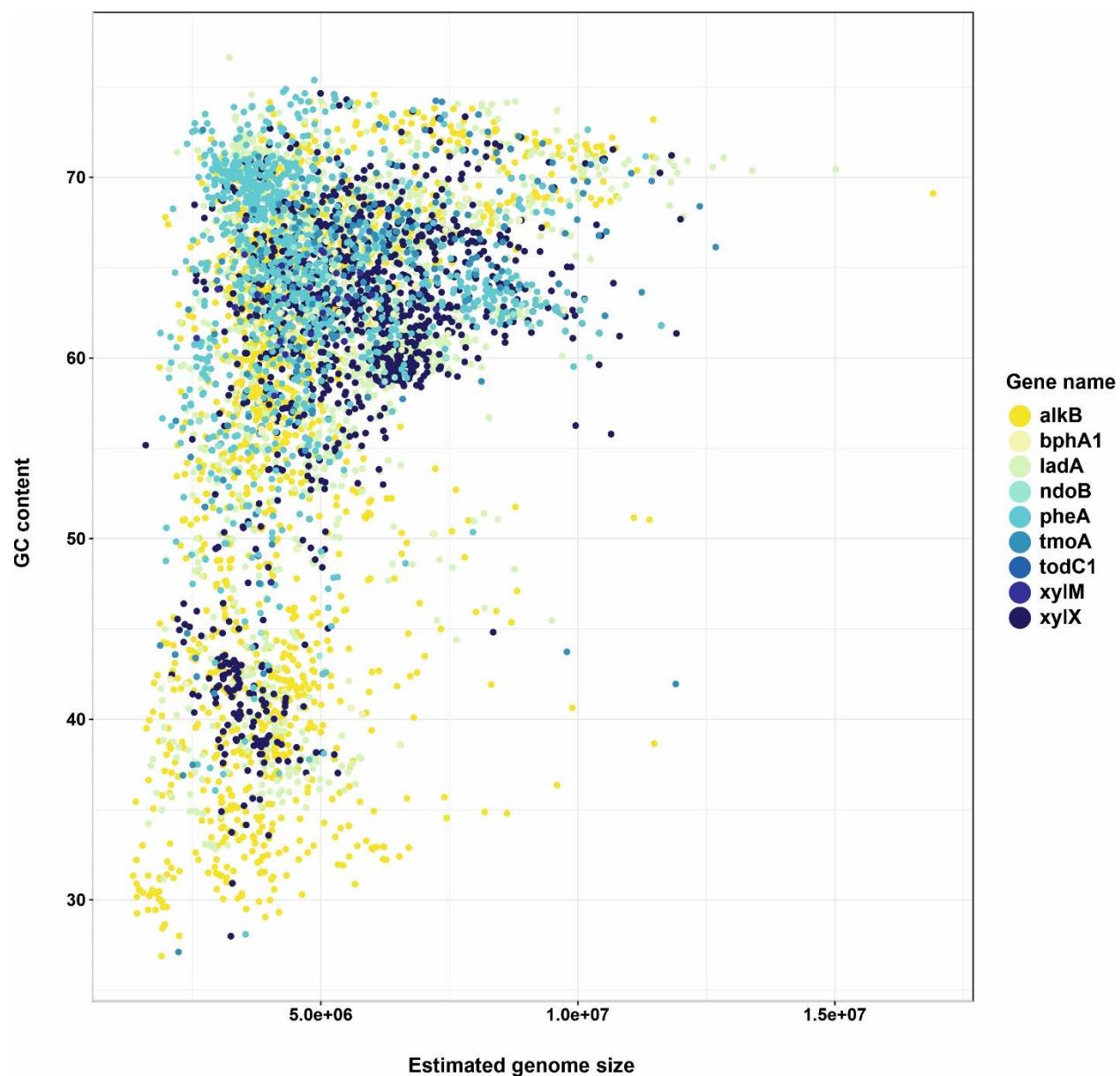
Supplementary Figure S1- Schematic representation of HC degradation pathways studied in this work. Purple circles show key HC degrading enzymes triggering the degradation. Blue circles are other crucial enzymes. Important intermediate compounds are written in blue.

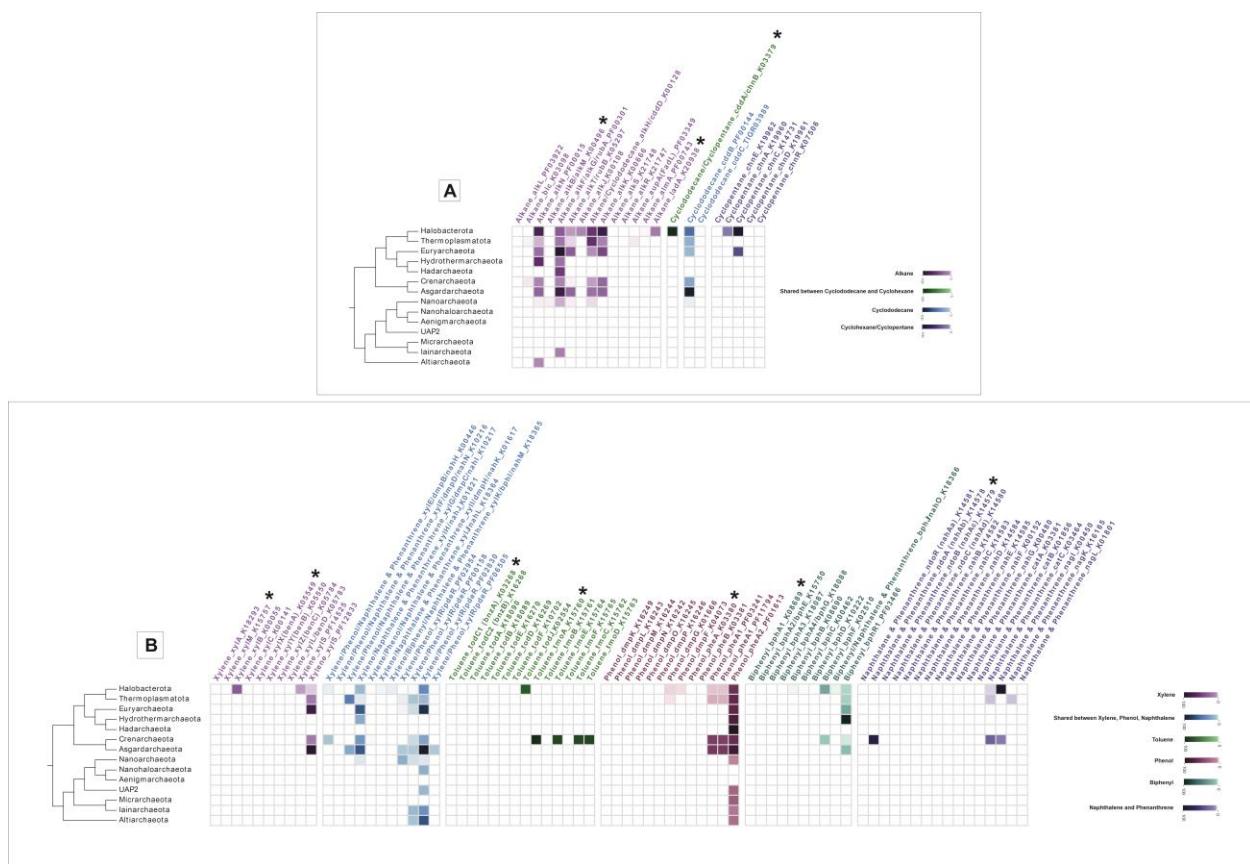


Supplementary Figure S2- Distribution of 143512 genomes of the GTDB database release 89 in different phyla.




Supplementary Figure S4- Distribution of aromatic hydrocarbon-degrading genes across domain bacteria at the phylum level. In plot A, the color gradient indicates the proportion of degrading members of each phylum to the entire HC degrading community. In plot B, the color gradient shows the percentage of HC degrading members of each phylum. Columns are the name of genes involved in HC degradation, which key ones are represented in red. Enzymes written in blue are shared among the degradation processes of different aromatic compounds (xylene, phenol and naphthalene).


Supplementary Figure S5- Distribution of aliphatic hydrocarbon-degrading genes across domain archaea at the phylum level. In plot A, the color gradient indicates the proportion of degrading members of each phylum to the entire HC degrading community. In plot B, the color gradient shows the percentage of HC degrading members of each phylum. Columns are the name of genes involved in HC degradation, which key ones are represented in red.


Supplementary Figure S6- Distribution of aromatic hydrocarbon-degrading genes across domain archaea at the phylum level. In plot A, the color gradient indicates the proportion of degrading members of each phylum to the entire HC degrading community. In plot B, the color gradient shows the percentage of HC degrading members of each phylum. Columns are the name of genes involved in HC degradation, which key ones are represented in red. Enzymes with blue color are shared among the degradation processes of different aromatic compounds (xylene, phenol and naphthalene).

Supplementary Figure S7- Network interaction between 18 copies of *xylX* gene in *Immundisolibacter cernigliae* and other genomes with more than two copies of this gene. Only the blast identity values between 50 to 100 percent are shown. Edges are color-coded based on their blast identity. The size of nodes is based on the “Degree,” which is determined by the number of edges of each node. Edges in red are versions of *xylX* in *Immundisolibacter cernigliae* that had a higher degree than others. The gene ID of the assigned number of each node is represented in Supplementary Table S7.

Supplementary Figure S8- Distribution of genome size versus GC content of the studied genomes with key HC degrading genes.

Supplementary Figure S9- Distribution of aliphatic (A) and aromatic (B) hydrocarbon-degrading genes across domain archaea at the phylum level. Columns show the name of genes involved in HC degradation and are represented in different colors for various compounds. The color gradient for genes of each compound indicates the percentage of HC degrading members of each phylum.