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Summary

We introduce a new method for Pathway Analysis of Longitudinal data (PAL), which is suitable
for complex study designs, such as longitudinal data. The main advantages of PAL are the use
of pathway structures and the suitability of the approach for study settings beyond currently
available tools. We demonstrate the performance of PAL with three longitudinal datasets related
to the early development of type 1 diabetes, involving different study designs and only subtle
biological signals. Transcriptomic and proteomic data are represented among the test data. An
R package implementing PAL is publicly available at https://github.com/elolab/PAL.

Motivation

Pathway analysis is a frequent step in studies involving gene or protein expression data, but
most of the available pathway methods are designed for simple case versus control studies of
two sample groups without further complexity. The few available methods allowing the pathway
analysis of more complex study designs cannot use pathway structures or handle the situation
where the variable of interest is not defined for all samples. Such scenarios are common in
longitudinal studies with so long follow up time that healthy controls are required to identify the
effect of normal aging apart from the effect of disease development, which is not defined for
controls. PAL is the first available pathway method to analyse such high-investment datasets.
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Pathway analysis is a routine step when analysing gene or protein expression data and many
tools have been developed for it. Most of them are very simple and provide either a list of
pathways with different activity between case and control sample groups (e.g. Tarca et al., 2009,
Gu and Wang, 2013, Zyla et al., 2019, Fang et al., 2012, Dong et al., 2016, Sun et al., 2017), or
pathway scores for each sample as such (e.g. Tomfohr et al., 2005, Hanzelmann et al., 2013,
Foroutan et al., 2018, Jaakkola et al., 2018, Liu et al., 2017, Drier et al., 2013). However, many
research projects involving transcriptomic or proteomic data have a more complex study design
making the available pathway methods unsuited for them. In addition, the majority (e.g. all of the
above mentioned examples) of the available pathway methods are designed and validated with
transcriptomic data only.

Here we introduce a novel method for Pathway Analysis of Longitudinal data (PAL), which is
designed for complex study designs. PAL can neutralise the effect of given confounding
variables and identify pathways with significant associations with a user-defined main outcome.
Both the variables to be neutralised and the main outcome variable can be either numeric or
categorical, which supports the versatility of the method. PAL is suited to analyse longitudinal
data and it can handle non-aligned time points, which is important in many studies involving
long follow-up time. While longitudinal data is the most important application type for PAL, it can
also be applied into other types of study settings, including simple ones, such as multiple
categorical sample groups. The first main advantage of PAL is that it can estimate the
significance of pathways related to outcome variables defined only for case samples (e.g.
time-to-event or disease stage) and still control for relevant confound variables present for all
samples (e.g. age in studies with long follow-up time). As far as we know, no other pathway
method enables this. Another major advantage of PAL is its ability to use pathway structures,
which is important as methods utilising pathway structures have been shown to outperform
simple gene set approaches in the context of straightforward case versus control comparisons
(Nguyen et al. 2019, Lim et al. 2020, Jaakkola and Elo 2016). In this study, we also show that
besides transcriptomic data, PAL can be successfully applied to proteomic data, which further
expands its potential applications.

There are few methods that allow the pathway analysis of longitudinal data. They include
Attractor analysis of Boolean network of Pathway (ABP) (Sun et al., 2019), Longitudinal Linear
Combination Test (LLCT) (Khodayari Moez et al., 2019), Time-Course Gene Set Analysis
(TcGSA) (Hejblum et al., 2015), and Gene Set Enrichment Analysis (GSEA) for time series
(Subramanian et al. 2005). ABP allows sophisticated post-processing of sample-specific
pathway scores, but it has not been implemented into an R package, which hinders the ease of
its usage. LLCT is a diverse tool building on the principles of mixed effects modelling and it can
also be used with small sample size. TcGSA uses mixed effects modelling with maximum
likelihood estimates to identify gene sets with significant variation over time. GSEA is a widely
used pathway method that can take time points as phenotypes, though such continuous
variables can not be combined with categorical ones. Despite the flexibility, usability and other
benefits of these methods, none of them can be used to analyse data with a variable
unavailable for control samples (e.g. disease stage or time-to-event), which makes them
unsuited for such study settings. They also consider pathways as simple gene sets without
further structural complexity.
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Type 1 diabetes (T1D) is a complex autoimmune disease usually developing during childhood.
As its progression is largely unknown, long follow up studies involving children with the genetic
risk factors are needed. Indeed, many such longitudinal studies have been carried out or are
ongoing, such as Type 1 Diabetes Prediction and Prevention (DIPP) (Kallionpaa et al. 2014),
Pathogenesis of Type 1 Diabetes - Testing the Hygiene Hypothesis (Diabimmune) (Kallionpaa et
al. 2019), and The Environmental Determinants of Diabetes in the Young (TEDDY) (Elding
Larsson et al. 2014). They are considerable investments of time, money, and other resources,
and suitable computational tools are required to fully utilise the large-scale omics data
generated in them. However, such data are not straightforward to analyse as the normal
age-related development of the children causes changes that can mask the delicate disease
progression related biological signals. Appearance of certain T1D-related autoantibodies, called
seroconversion, is the most reliable predictor of T1D (Chantal et al. 2018), but very little is
known about processes leading to it. In this study, we used three publicly available longitudinal
proteomic and transcriptomic datasets of children before and after seroconversion and healthy
controls to demonstrate the utility of PAL for interpretation of these challenging real-life datasets.

Results

Here we introduce a novel pathway method PAL, which allows the analysis of complex study
designs. In the PAL workflow, the effects of user-defined confounding variables are neutralised
at gene or protein level, pathway scores are calculated for all samples using pathway structures,
and the significance of their association with a given main variable of interest is calculated
using, by default, linear mixed effects models (Figure 1). A more detailed description of PAL is
available in section Materials and methods. To demonstrate the utility of PAL for detecting
significant pathways in respect to different variables of interest, we analysed three different
datasets containing longitudinal data from prediabetic and healthy control children. In all these
case studies, the normal age effect was first neutralised according to the healthy control
samples using age as fixed effect and donor as random effect in the model fitting, and the
significance for each pathway regarding 1) the time from seroconversion, and 2) the sample
group (case vs control) was calculated using the variable of interest as fixed effect and donor as
random effect in the model fitting.
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Figure 1: Schematic overview of the PAL workflow.

Case study 1: Plasma proteomic data with long follow-up time

Application of PAL to the DAISY plasma proteomics data from 11 prediabetic and 10 healthy
donors revealed nine pathways significantly associated with time from seroconversion after
neutralising the age effect based on control samples (FDR < 0.05, Supplementary Table 1).
Among these findings, pathway ‘Phenylalanine, tyrosine and tryptophan biosynthesis’ (KEGG id
hsa00400) had a particularly clear time from seroconversion effect (Figure 2A).

From the comparison between the prediabetic and healthy donors, 88 significant pathways were
identified with PAL (FDR < 0.05, Supplementary Table 1). Of these pathways, 75 had higher
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activity in the healthy control subjects (e.g. “Th1 and Th2 cell differentiation’, Figure 2B) and 13
had higher activity in the prediabetic subjects (e.g. ‘Thiamine metabolism’, Figure 2C). Out of
the 88 significant detections, 25 had sample group coefficient with absolute value > 0.1. These
25 strong detections included eight disease pathways, seven pathways related to metabolism of
different biomolecules, five signalling pathways, and five other pathways, namely 'Ferroptosis',
'Protein export', "Th1 and Th2 cell differentiation’, 'Nucleotide excision repair', and 'Mineral
absorption'.
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Figure 2. PAL results for pathways (A) Phenylalanine, tyrosine and tryptophan biosynthesis, (B) Th1 and Th2 cell
differentiation, and (C) Thiamine metabolism. Pathway activity score estimated by PAL (y-axis) is illustrated as a
function of time from seroconversion (A) or age (B and C) for only the case samples (A) or for the case and control
samples (B and C). Each line represents one donor, with cases in light blue and controls in dark blue.

As seroconversion in T1D is still not fully understood and the underlying reasons leading to it
are heterogeneous and likely include both genetic and environmental factors (Blanter et al.
2019), it is difficult to determine which pathways should be detected and which ones not.
Several of the nine significant pathways associated with the time from seroconversion were
related to metabolism of different biomolecules, which have been identified also in other studies.
The strongest detection was ‘Phenylalanine, tyrosine and tryptophan biosynthesis’ and
particularly changes related to phenylalanine and tyrosine have been found in the context of
early stage T1D (Kostic et al. 2015, Sen et al. 2020), supporting also the significant pathways
‘Tyrosine metabolism’ and ‘Phenylalanine metabolism’. Similarly, the pathway ‘Bile secretion’ is
supported by the literature (Lamichhane et al. 2021), while ‘Pancreatic secretion’ has obvious
relevance. Peroxisome proliferator-activated receptors (PPARs) regulate processes like T cell
differentiation and insulin secretion, supporting the significant detection of ‘PPAR signaling
pathway’.

The strongest finding from the sample group comparison was ‘Alpha-Linoleic acid metabolism’,
which is supported by Overgaard et al. as they showed the deregulation of diglyceride in early
states of the type 1 diabetes progression (Overgaard et al. 2016). The second strongest
detection was ‘Ferroptosis’, referring to iron-dependent regulated cell death, which was
identified only 10 years ago and is currently under intensive study; it has already been linked to
the development of metabolic diseases (Duan et al. 2021). The pathway ‘Th1 and Th2 cell
differentiation’ has been strongly linked to development of T1D (Walker et al. 2016, Bradley et
al. 1999). Besides ‘Alpha-Linoleic acid metabolism’, among the strong biomolecule metabolism
pathway detections ‘Alanine, aspartate and glutamate metabolism’ and ‘Thiamine metabolism’
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have also been linked to T1D (Sen et al. 2020, Pacal et al. 2014). In addition, different glycans
and ascorbate are related to immune system, supporting the detected pathways ‘N-Glycan
biosynthesis’, ‘Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate’, and
‘Ascorbate and aldarate metabolism’. Several of the strong signalling pathway detections are
also related to immune system, as ‘RIG-I-like receptor signaling pathway’ works in defence
against virus infections, ‘Rap1 signaling pathway’ has been shown to regulate T cell response
(Katagiri et al. 2002), and ‘IL-17 signaling pathway’ recruits immune cells to the site of
inflammation and it has been linked to different autoimmune diseases (Hu et al. 2011). ‘Notch
signaling pathway’ has very diverse functions including regulating apoptosis and pancreatic
development and its potential role in development of T1D has been discussed (Kim et al. 2010).
The eight disease related strong pathway findings from the sample group comparison included
autoimmune diseases (‘Autoimmune thyroid disease’ and ‘Type | diabetes mellitus’), rejection
reaction related diseases (‘Graft-versus-host disease’, ‘Allograft rejection’, and ‘Endocrine
resistance’), and infection pathways (‘Salmonella infection’ and ‘African trypanosomiasis’). While
there is unlikely to be direct causality between the early stage T1D and these diseases
(excluding T1D itself), they share some mechanisms or characteristics, which can explain the
detection of these pathways.

Finally, we wanted to compare the PAL findings to the findings in the original study. Notably, as
no other pathway tools can directly analyse this study design, the only alternative to PAL was to
do the analysis at the protein level and then use the detected proteins as an input for a standard
pathway analysis method. In the original publication (Liu et al., 2018), only two significantly
differentially expressed proteins were detected at FDR of 0.05 between the prediabetic and
healthy subjects. Therefore, we used a more relaxed FDR cutoff of 0.1, with which 29
differentially expressed proteins were identified. Database for Annotation, Visualization and
Integrated Discovery (DAVID) analysis of them did not identify any significant KEGG pathways.
This highlights the utility of PAL for discovering significant pathways from challenging datasets
with complex designs and only delicate signals.

Case study 2: Transcriptomic time series data from young children

The Diabimmune data (Kallionpaa et al. 2019) containing gene expression measurements from
seven prediabetic and eight healthy children were analysed using PAL separately for the
peripheral blood mononuclear cells (PBMCs), CD4+ T cells, and CD8+ T cells. Only one
pathway in PBMC data, namely ‘Lysosome’, was significantly associated with time from
seroconversion after neutralising the age effect based on control samples (FDR < 0.05,
Supplementary Table 1).

In the comparison between the prediabetic and healthy control subjects, 28 pathways were
significant in the PBMC samples, 17 in the CD4+ T cells, and 99 in the CD8+ T cells
(Supplementary Table 1). This is in line with the original study (Kallionpaa et al. 2019), where
early changes in prediabetes already before seroconversion were reported particularly in the
CD8+ T cells. Interestingly, the significant pathways from CD4+ T cells and CD8+ T cells were
almost exclusively downregulated in case samples, whereas in the PBMC data 16 of the
significant pathways were downregulated and 12 were upregulated in the case samples. Among
the significant pathways, four had absolute sample group coefficient > 0.1 in PBMC data, three
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in CD4+ T cell data, and 25 in CD8+ T cell data (Supplementary Table 1). Pathways
‘Spliceosome’, ‘Mitophagy - animal’, and ‘Circadian rhythm’ were among these strongest
detections in both PBMC and CD8+ T cells, and they were all downregulated in case samples in
both cell types (Figure 3).
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Figure 3. Pathway activity score (y-axis) as function of age (x-axis) of (A-B) Spliceosome, (C-D) Mitophagy - animal,
and (E-F) Circadian rhythm in PBMC (upper panel) and in CD8+ T cells (lower panel). Case individuals are indicated
with light blue lines and control individuals with dark blue lines.

The 25 strongest detections with the absolute sample group coefficient > 0.1 from CD8+ T cells
(Supplementary Table 1) included several pathways that have been linked to the destruction of
beta cells (‘Autophagy - other’, ‘Proteasome’, ‘Mitophagy - animal’, ‘JAK-STAT signaling
pathway’, ‘Protein processing in endoplasmic reticulum’) (Lambelet et al. 2018, Thomaidou et al.
2018, Sidarala et al. 2020, Gurzov et al. 2016, Vig et al. 2021), but it is unclear if such
processes are altered already at this early stage of the disease development. Three of the
strong findings (‘Autophagy - other’, ‘Proteasome’, and ‘Mitophagy - animal’) are related to
within-cell homeostasis and one (‘Apoptosis - multiple species’) to tissue/organ-level
homeostasis. The ‘JAK-STAT signaling pathway’ is also related to apoptosis and the ‘B cell
receptor signaling pathway’ to autoimmunity (Rawlings et al. 2017). Changes in citrate acid
cycle have been identified in children who will develop T1D in the future (Oresic et al. 2008),
which supports two of the strong detections (‘2-Oxocarboxylic acid metabolism’ and ‘Citrate
cycle (TCA cycle)), as 2-Oxocarboxylic acid is part of the TCA cycle. Besides the TCA cycle,
‘Oxidative phosphorylation’ is related to the ATP production. The most interesting observation
among the strongest disease specific pathways was the presence of three pathways related to
cardiomyopathy (‘Arrhythmogenic right ventricular cardiomyopathy’, 'Viral myocarditis’, and
'Dilated cardiomyopathy’). While increased risk of cardiomyopathy among T1D patients is
strongly supported in the literature (Ritchie et al. 2017), this connection with early stage disease
was surprising.
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Eight of the significant detections from the PBMC data were also identified from the DAISY
proteomics data. Among these eight pathways, four (‘Protein processing in endoplasmic
reticulum’, ‘Autophagy - animal’, ‘Non-small cell lung cancer’, and ‘Epstein-Barr virus infection’)
were downregulated in case samples of both dataset and one (‘Biosynthesis of cofactors’) was
upregulated in them.

To compare the PAL findings to the findings in the original study (Kallionpaa et al. 2019), we
considered the genes reported to be differentially expressed between the sample groups across
all timepoints (FDR < 0.05) and used the DAVID pathway tool. With this, we did not identify any
significant KEGG pathways at FDR of 0.05 from the CD8+ T cells or the CD4+ T cells, whereas
17 pathways were detected from the PBMCs (Supplementary Table 1). This is an interesting
observation as PAL detected the largest number of pathways from the CD8+ T cells. One
DAVID detection from the PBMC samples (‘Epstein-Barr virus infection’) overlapped with the
corresponding PAL detections, and four ("Th1 and Th2 cell differentiation’, "'Th17 cell
differentiation’, 'Epstein-Barr virus infection', and 'Type | diabetes mellitus') overlapped with the
PAL detections from the CD8+ T cells.

Case study 3: Transcriptomic longitudinal data with long follow up time

Finally, we applied PAL to the BabyDiet data (Ferreira et al. 2014) containing longitudinal
transcriptomic PBMC data measured from 22 prediabetic and 87 healthy control children. PAL
detected seven significant pathways associated with the time from seroconversion after
neutralising the age effect based on the control samples (FDR < 0.05, Supplementary Table 1),
but the absolute coefficients were small indicating that the effect was relatively weak despite
being significant. All of the seven significant pathways had increasing trend over time from
seroconversion and four out of the seven (‘Thiamine metabolism’, ‘Lysine degradation’, ‘Purine
metabolism’, and ‘Primary bile acid biosynthesis’) were related to metabolism of different
biomolecules. Relatedly, the detected pathway ‘One carbon pool by folate’ supports
biosynthesis and homeostasis of several amino acids (Ducker and Rabinowitz 2017).

PAL identified seven significant pathways with altered activity between the sample groups, but
again, the absolute coefficients were relatively small (Supplementary Table 1). All of the seven
significant pathways were upregulated in the case samples. The strongest detection was the
pathway ‘Phagosome’ while all the other significant findings were related to metabolism of
different biomolecules.

Time from seroconversion had a significant effect on two pathways related to the genome and
on five pathways associated with metabolism of different biomolecules. The pathway ‘One
carbon pool by folate’ was the strongest among the latter. One-carbon metabolism mediated by
the folate cofactor supports methionine homeostasis (Ducker and Rabinowitz 2017), and
methionine has been associated with early stage T1D (Overgaard et al. 2016). In addition,
Pacal et al. have studied connections between altered thiamine metabolism and diabetes (Pacal
et al. 2014), Li et al. have provided a clear overview of roles of different amino acids, including
lysine, in immune system (Li et al. 2007), and Ahmad and Haeusler have evaluated the roles of
bile acids in glucose metabolism and insulin signalling (Ahmad and Haeusler 2019), supporting
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the detected pathways ‘Thiamine metabolism’, ‘Lysine degradation’, and ‘Primary bile acid
biosynthesis’, respectively.

From the sample group comparison, six of the seven significant detections were related to
metabolism of different biomolecules. The only exception was pathway ‘Phagosome’, which is
part of the immune system. Among the detected biomolecule metabolism pathways, ‘Alanine,
aspartate and glutamate metabolism’ has also been identified in another study of early T1D
(Sen et al. 2020), while ‘Retinol metabolism’ (retinol is a type of vitamin A) plays a role in
immune system (Kim et al. 2015) and two of the detections (‘Galactose metabolism’ and
‘Pentose and glucuronate interconversions’) are related to sugar metabolism. The detected
‘Biosynthesis of cofactors’ is a large pathway inducing the biosynthesis of multiple cofactors,
including retinol. Interestingly, pathways ‘Alanine, aspartate and glutamate metabolism’ and
‘Biosynthesis of cofactors’ were also detected from both the DAISY and the Diabimmune PBMC
datasets when the sample groups were compared. In addition, ‘Phagosome’ was detected from
the DAISY and ‘Retinol metabolism’ from the Diabimmune PBMC data.

Discussion and conclusions

Here we introduced a new method for pathway analysis of longitudinal data PAL and
demonstrated its performance with challenging longitudinal data with only moderate biological
signals. Even from these datasets, PAL identified several relevant pathways that remained
undetected in the original studies but were well supported by the literature. Particularly
pathways related to metabolism of different biomolecules were well represented among the
detections.

The tested datasets were of different origin (proteomics, RNA-sequencing, and gene expression
microarrays of serum, PBMCs, CD4+ T cells, or CD8+ T cells). This, together with the
heterogeneity of T1D and the very early disease stage, likely explains the modest overlaps
between the detected pathways from the different datasets. When detecting pathways
significantly associated with time from seroconversion, PAL detected the largest number of
pathways in the DAISY dataset, and those detections included many processes associated with
the development of T1D in the literature, suggesting the utility of proteomics for studying the
early stage development of T1D. In general, PAL detected more significant pathways from the
sample group comparison than from the time from seroconversion analysis.

The benefits of breaking the model fitting into two parts (neutralisation step at gene/protein level
and significance step at pathway level) are: 1) the main variable of interest (e.g. disease stage)
may not be defined for control samples, but with this approach they can still be utilised, 2) while
the significance step has to be done at pathway level, doing the neutralisation already at
gene/protein level supports the robustness of the approach, and 3) using only the control
samples for neutralisation does not mask the possibly altered effect of these variables in the
case samples. In addition, PAL provides a very flexible user interface and utilises pathway
structures instead of simple gene sets.
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The main limitation of PAL is its inability to neutralise categorical features that are only partially
shared between the sample groups. A toy example of a partially shared feature is ethnicity when
cases and controls include ethnicities 'caucasian' and 'hispanic', but only cases have also some
‘asian' samples. If both sample groups would include all three groups, there would be no
problem. However, such an imbalanced study setting can also be seen as a weakness of the
original study itself. This study suffers from difficulty of validation. As T1D is widely studied, but
heterogeneous and not that well understood, very many detected pathways can be linked to its
development, but there is no gold standard available. However, datasets like these are the ones
that most benefit from PAL analysis, which makes them realistic case studies for demonstration
purposes.

To summarise, PAL is a novel pathway method suitable for analysing datasets with complex
study design, such as longitudinal data. It is simple to use, can be applied on transcriptomic or
proteomic data, uses pathway structures, detects relevant pathways even from challenging
data, and allows the analysis of study designs that cannot be analysed with the other currently
available pathway methods.

Materials and methods

The PAL algorithm

PAL requires normalised expression data and sample group information (dummy values can be
used if the study design has no sample groups) as mandatory inputs, but further information
about the samples enables analysis of complex study designs. Based on the additional
information, the effect of some variables (e.g. normal aging) can be neutralised already at the
gene/protein level. Then PAL will automatically access KEGG pathways via APl and determines
sample-specific pathway scores utilising pathway structures with the Pathway Analysis for
Sample-level Information (PASI) method (Jaakkola et al., 2018). Finally, if sufficient input is
provided, PAL calculates the significance of a given variable (e.g. disease stage) to the pathway
activity/deregulation scores while considering the effect of given variables, such as donor, in the
model fitting.

The effect of a given confounding variable is neutralised separately for each gene/protein prior
to the pathway analysis. The default neutralisation step starts with fitting a linear mixed effects
model to the control samples using function Imer from the R package Ime4 (Bates et al., 2015).
By default, the given confounding variables to be neutralised are used as fixed effects and given
variables (e.g. donor) as random effects. Then the estimated coefficients multiplied by the
corresponding observed values are subtracted from the expression values to neutralise their
effect. The variables to be neutralised can be either numeric (e.g. age or bmi), or categorical
(e.g. smoking status) and many of them can be provided simultaneously. The end-user can also
provide a custom formula used in the model fitting, if the default model is unsuited for their study
design, and the linear mixed effects model itself can be replaced with either robust linear model
(function rim from R package MASS (Venables and Ripley, 2002)) or robust linear mixed effects
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model (function rimm from R package robustimm (Koller 2016)) using the relevant arguments.
However, the robust mixed effect model is slow to fit, which limits its usage (see PAL R package
documentation in GitHub for further information). Notably, if the number of variables in the model
is high and the sample size is not, the risk of overfitting is considerable. With PASI, it is
recommended to use at least 10-15 control samples (Jaakkola et al., 2018), but multiple
variables to be neutralised likely require a higher number in PAL analysis. The pathway scores
are calculated from these processed gene/protein expression values using PASI. The output is a
matrix of pathway scores with samples as columns and pathways as rows. The pathway scores
can represent either activity (default) or deregulation of the analysed pathways.

Finally, the significance of each pathway is calculated from the pathway scores with respect to
the given outcome of interest. Notably, not all samples necessarily have the variable of interest
(e.g. seroconversion time is missing from control samples). By default, a linear mixed effects
model with a given variable of interest as fixed effect and given random effects (e.g. donor) is
fitted for each pathway using the function Imer from the R package Ime4. However, using the
corresponding arguments (see the R package documentation for PAL in GitHub), the user can
choose to use either robust linear model with only fixed effect (rim) or robust linear mixed effect
model (rimm) instead of Imer, and/or give different model formula to be fitted. In each pathway,
the p-value for the given main variable of interest is calculated by first fitting the model and
extracting the coefficient describing the effect of the main variable, and then randomly sampling
the main variable over the samples multiple times (n=1000 in this study). Then it is calculated
how often the original coefficient has value greater than the corresponding value from a model
with a randomly sampled variable and those frequencies are converted into p-value estimates.
The resulting p-values are then further converted into false discovery rates (FDR) using function
p.adjust with the method argument “fdr”, and finally the p-values, the FDR values, and the
coefficients are returned for all pathways together with the sample specific pathway scores. It is
possible to provide variables to be neutralised, outcome variable of interest, both, or neither.
The PAL R package documentation in GitHub contains further instructions about the usage.

Datasets
We demonstrate the accuracy and utility of PAL with three publicly available datasets involving
longitudinal proteomics or transcriptomics data.

DAISY dataset was downloaded from ProteomeXchange (Deutsch et al., 2020) with accession
number PXD007884. It contains longitudinal plasma proteomics data across nine time points
from 11 prediabetic and 10 healthy 0-15 years old donors, measured using TMT-based
quantitative mass spectrometry (Liu et al., 2018). The dataset was preprocessed similarly as in
(Valikangas et al. 2021). The protein identifiers were converted to corresponding Entrez gene
identifiers using R package biomaRt (version 2.48.3) (Durinck et al. 2009).

Diabimmune dataset was downloaded from European Genome-phenome Archive with
accession number EGAC00001001443. It contains longitudinal transcriptomics data across five
time points (3, 6, 12, 24, and 36 months of age) from 7 seroconverted and 8 healthy control
children (Kallionpaa et al., 2019). All the sample donors have increased genetic risk of T1D.
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Peripheral blood mononuclear cells (PBMC), CD4+ T cells, and CD8+ T cells were measured
separately using RNA-sequencing. The data was normalised using the Trimmed Mean of
M-values (TMM) method.

BabyDiet dataset was downloaded from Array Express with accession number MTAB1724. It
contains longitudinal transcriptomics data of PBMC samples across 1 to 12 time points (median
4) from 22 seroconverted and 87 healthy control children, measured using the the Affymetrix
GeneChip Human Gene 1.1 ST microarray (Ferreira et al. 2014). The readily available
preprocessed data was used. While the age range of the children was wide, ranging from young
babies to 10 years of age, the majority of the samples were from children under 3 years and we
removed outlier samples according to age prior to the analyses. The cutoff for an outlier was
defined using interquartile range (IQR) criteria, in which normal range was defined from 1st
quartile - 1.5*IQR to 3rd quartile + 1.5*IQR, where IQR = (3rd quartile - 1st quartile). One case
donor and 15 control donors had only one sample and these samples without longitudinal
aspect were also removed prior to the analysis.

Statistical analysis

The baseline pathway analysis was done by using the Database for Annotation, Visualization
and Integrated Discovery (DAVID) tool (2021 update) on differentially expressed genes/proteins
identified in the original studies introducing the data. Notably, no such differentially expressed
genes were available from the BabyDiet study, so the baseline analysis is missing for that
dataset. All analysed genes/proteins were used as a background for DAVID. From the DAVID
results, statistically significant KEGG pathways were considered. In all analyses, a finding was
considered as statistically significant if it had FDR below 0.05, unless otherwise stated.
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