

1 **Title**

2 Pancreatic tumors activate arginine biosynthesis to adapt to myeloid-driven amino acid stress

3 **Running Title**

4 Adaptive arginine biosynthesis in PDAC

5 **Authors**

6 Juan J. Apiz-Saab^{1,†}, Lindsey N. Dzierozynski^{1,3,†}, Patrick B. Jonker¹, Zhou Zhu¹, Riona N.
7 Chen¹, Moses Oh¹, Colin Sheehan¹, Kay F. Macleod¹, Christopher R. Weber², Alexander Muir^{1#}

8 ¹ Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA.

9 ² Department of Pathology, The University of Chicago, Chicago, United States

10 ³ Current address: Department of Medicine, Johns Hopkins University School of Medicine and
11 the Bloomberg School of Public Health, Baltimore, MD 21287

12 [†] These authors contributed equally to this work

13 [#] Correspondence: amuir@uchicago.edu

14 **Abstract**

15 Nutrient stress in the tumor microenvironment requires cancer cells to adopt adaptive metabolic
16 programs to maintain survival and proliferation. Therefore, knowledge of microenvironmental
17 nutrient levels and how cancer cells cope with such nutrition is critical to understand the
18 metabolism underpinning cancer cell biology. Previously, we performed quantitative
19 metabolomics of the interstitial fluid (the local perfusate) of murine pancreatic ductal
20 adenocarcinoma (PDAC) tumors to comprehensively characterize nutrient availability in the
21 microenvironment of these tumors (Sullivan et al., 2019a). Here, we develop Tumor Interstitial
22 Fluid Medium (TIFM), a cell culture medium that contains nutrient levels representative of the
23 PDAC microenvironment, enabling study of PDAC metabolism under physiological nutrition. We
24 show that PDAC cells cultured in TIFM, compared to standard laboratory models, adopt a cellular
25 state more similar to PDAC cells in tumors. Further, using the TIFM model we identified arginine
26 biosynthesis as a metabolic adaptation PDAC cells engage to cope with microenvironmental
27 arginine starvation driven by myeloid cells in PDAC tumors. Altogether, these data show that
28 nutrient availability in tumors is an important determinant of cancer cell metabolism and behavior,

37 and cell culture models that incorporate physiological nutrient availability have improved fidelity
38 and enable the discovery of novel cancer metabolic phenotypes.

39

40 **Introduction**

41 Altered cellular metabolism is common in cancers (DeBerardinis and Chandel, 2016) and enables
42 many pathological features of tumors (Faubert et al., 2020; Vander Heiden and DeBerardinis,
43 2017). This has led to substantial interest in identifying the metabolic properties of cancers and
44 the regulation underpinning these metabolic alterations to both delineate the basic biochemistry
45 underlying these diseases and to identify novel therapeutic targets. Recent work has led to the
46 understanding that tumor metabolic phenotypes are driven both by cancer cell-intrinsic factors,
47 such as oncogenic lesions and cellular epigenetic identity (Bi et al., 2018; Nagarajan et al., 2016),
48 and by cell-extrinsic factors in the tumor microenvironment (TME) (Altea-Manzano et al., 2020;
49 Gouirand et al., 2018; Lyssiotis and Kimmelman, 2017; Muir et al., 2018). In contrast to our
50 extensive knowledge of cell-intrinsic regulation of cancer metabolism, how the TME drives altered
51 metabolism in cancers and how such TME-driven metabolic phenotypes contribute to
52 tumorigenesis are poorly understood.

53

54 Nutrient availability is a key cell-extrinsic factor that influences cellular metabolism (Elia and
55 Fendt, 2016; Garcia-Bermudez et al., 2020; Muir et al., 2018). Many solid tumors have abnormal
56 vasculature that limits tumor perfusion (Goel et al., 2011; Olive et al., 2009; Provenzano et al.,
57 2012; Wiig and Swartz, 2012), which leads to abnormal nutrient availability in the TME (Gullino et
58 al., 1964; Ho et al., 2015; Vecchio et al., 2021). Thus, perturbed nutrient availability in the TME
59 has been postulated to be a critical driver of cancer metabolic phenotypes (Martínez-Reyes and
60 Chandel, 2021; Reid and Kong, 2013). However, the precise metabolic changes in tumors driven
61 by TME-nutrient cues are largely unknown due to a dearth of information on the nutrient milieu of

62 tumors and a lack of experimentally tractable model systems to study cellular metabolism under
63 such constraints (Ackermann and Tardito, 2019; Cantor, 2019).

64

65 To determine how nutrient availability in the TME influences cancer cell metabolism, we recently
66 performed quantitative metabolite profiling of >118 major nutrients and vitamins in the interstitial
67 fluid (the local perfusate of tissues and tumors; IF) in murine models of pancreatic
68 adenocarcinoma (PDAC), providing comprehensive and quantitative knowledge of how TME
69 nutrient availability is altered in PDAC (Sullivan et al., 2019a). Here, we sought to build upon these
70 findings by determining how the abnormal nutrient availability of the PDAC TME drives metabolic
71 phenotypes in PDAC. To do so, we leveraged our knowledge of PDAC IF metabolite
72 concentrations and recent techniques for generating cell culture media with physiological
73 concentrations of nutrients (Cantor et al., 2017; Vande Voorde et al., 2019) to formulate a novel
74 cell culture media termed Tumor Interstitial Fluid Medium (TIFM) that recapitulates the nutrient
75 composition of the PDAC TME. This novel cell culture system allows us to study PDAC cells in
76 an experimentally tractable *ex vivo* model while they metabolize substrates at physiological
77 concentrations and identify critical metabolic adaptations of PDAC cells and the TME nutrient
78 cues that drive these adaptations.

79

80 To identify such metabolic adaptations, we performed transcriptomic analysis of murine PDAC
81 cells growing in TIFM, standard culture and in orthotopic tumors. Through this analysis, we found
82 that many transcriptional features of PDAC cells growing *in vivo* are better recapitulated in TIFM
83 culture compared to standard culture models. This suggests that altered nutrient availability is a
84 major regulator of the cellular state of cancer cells in the TME and *ex vivo* models incorporating
85 physiological nutrition could improve the fidelity of cell culture models of cancer (Horvath et al.,
86 2016). A major metabolic signature we found in PDAC cells in TIFM and *in vivo* was activation of
87 the amino acid starvation transcriptional signature including increased expression of the *de novo*

88 arginine synthesis pathway. We further find that myeloid driven arginase activity deprives the
89 PDAC TME of arginine and that compensatory activation of the *de novo* arginine synthesis
90 pathway enables PDAC cells in TIFM and in tumors to acquire the arginine needed for amino acid
91 homeostasis despite TME arginine starvation. Collectively, this work identifies TME nutrient
92 availability as a key regulator of the *in vivo* cancer cell phenotype and demonstrates that analysis
93 of cancer cells under physiological nutrient conditions can identify key metabolic features of
94 tumors, such as the activation of *de novo* arginine in PDAC tumors needed to cope with myeloid
95 driven TME arginine starvation.

96

97 **Results**

98 **PDAC cells grown in tumor interstitial fluid based culture medium recapitulate the 99 transcriptomic behavior of PDAC cells growing *in vivo***

100 To study how the nutrient composition of the PDAC TME can influence cancer cell metabolism,
101 we developed a cell culture medium termed Tumor Interstitial Fluid Medium (TIFM) based on
102 metabolite concentrations in PDAC IF (Sullivan et al., 2019a) using an approach similar to those
103 described for the generation of media with plasma levels of nutrients (Cantor et al., 2017; Vande
104 Voorde et al., 2019) (Fig. 1A). TIFM is composed of 115 metabolites at the average concentration
105 previously observed in the IF of *LSL-Kras*^{G12D/+}; *Trp53*^{fl/fl}; *Pdx-1-Cre* (KP^{-/-}C) (Bardeesy et al.,
106 2006; Sullivan et al., 2019a) murine PDAC tumors. These metabolites were selected on the
107 following bases: (1) commercial availability at high purity, (2) stability in aqueous solution, and (3)
108 presence in pancreatic TIF at a concentration > 0.5µM. To enable rapid identification of bio-active
109 nutrients, TIFM is composed of 9 pools of metabolites that are separately compounded (Cantor
110 et al., 2017; Vande Voorde et al., 2019). To generate the complete medium, the individual
111 metabolite powders are reconstituted in water along with salts at RPMI-1640 (RPMI)
112 concentrations and 10% dialyzed FBS (dFBS) to provide lipids, growth factors and any other
113 macromolecules necessary for cell growth. Sodium bicarbonate is also added at RPMI

114 concentrations to maintain physiological pH (Michl et al., 2019). The complete TIFM formulation
115 is described in Supplementary File 1. Importantly, quantitative metabolite profiling by liquid
116 chromatography-mass spectrometry (LC-MS) of TIFM confirmed that TIFM contained metabolites
117 at expected concentrations, confirming effective compounding of the TIFM metabolite mixture
118 (Fig. 1B). Thus, TIFM recapitulates the nutrient microenvironment of PDAC.

119

120 To determine if TIFM could sustain cancer cells, we isolated murine PDAC (mPDAC) cell lines
121 from three individual KP^{+/C} tumors (the same mouse model used for TIF metabolomics analyses
122 and which formed the basis of TIFM composition (Sullivan et al., 2019a)) by fluorescence
123 activated cell sorting (FACS). We split the isolated cells from each tumor into two populations,
124 which were plated either in TIFM or standard culture conditions (RPMI-1640) to generate paired
125 mPDAC cell lines termed mPDAC-RPMI or mPDAC-TIFM. mPDAC-TIFM cells readily proliferate
126 in TIFM culture, albeit at a slower rate than in RPMI-1640 (Fig. 1D), suggesting that TIFM has the
127 necessary nutrients to sustain PDAC cell proliferation. Interestingly, while mPDAC-TIFM cells
128 continue proliferating when transitioned directly from culture in TIFM to RPMI-1640, transferring
129 mPDAC-RPMI cells directly to TIFM results in complete arrest of cell growth (Fig. 1 – Figure
130 supplement 1), suggesting that long term growth of mPDAC cells in standard cell culture media
131 results in loss of key adaptations to grow under TME nutrient stress. Thus, analysis of PDAC cell
132 metabolism in TIFM could identify novel metabolic adaptations required for growth under TME
133 conditions that would not be apparent from studying PDAC cells under standard culture
134 conditions.

135

136 To identify such adaptations, we performed transcriptomic profiling comparing gene expression
137 patterns of the same mPDAC cells (mPDAC3-TIFM) isolated by FACS: (1) after culture in TIFM,
138 (2) after culture in RPMI-1640 and (3) after growing as a syngeneic orthotopic murine tumor to
139 provide an *in vivo* reference (Fig. 1E). This experimental design allowed us to identify

140 transcriptionally-driven metabolic adaptations in TIFM and confirm these were operative *in vivo*.
141 Further, the *in vivo* transcriptomic data allows us to assess how the transcriptional state of PDAC
142 cells in different *ex vivo* models compares to the *bona fide in vivo* cell state. This analysis has
143 recently been suggested to be a critical benchmark for assessing *ex vivo* model fidelity (Raghavan
144 et al., 2021). We first established that compared to standard culture conditions, mPDAC cells in
145 orthotopic tumors substantially alter their transcriptional profile (Fig. 1F and Fig. 1 Source Data
146 1). In fact, the majority of detected transcripts (12,066/16,378) are differentially expressed in the
147 same mPDAC cells when grown *in vivo* compared to standard culture conditions. Next, we
148 generated sets of genes significantly upregulated and significantly downregulated *in vivo*
149 compared to RPMI. We then performed gene set enrichment analysis (GSEA) (Mootha et al.,
150 2003; Subramanian et al., 2005) on the transcriptional profiles of mPDAC3-TIFM cells growing in
151 TIFM and RPMI using the ‘upregulated *in vivo*’ and ‘downregulated *in vivo*’ gene sets. The gene
152 expression patterns of mPDAC cells growing in TIFM aligns more closely with the expression
153 pattern of mPDAC cells growing *in vivo* (Fig 1G). Smaller gene sets comprised of only the top 500
154 upregulated and top 500 downregulated genes show the same enrichment patterns with similar
155 enrichment scores confirming there is no enrichment score inflation due to the large gene set size
156 (Fig 1 – Figure supplement 2). We also found a strong correlation between gene expression
157 changes induced by culture in TIFM and growth *in vivo* compared to RPMI (Fig 1 – Figure
158 Supplement 3). Lastly, amongst the top 20 up- and downregulated curated gene signatures from
159 MSigDB (Mootha et al., 2003; Subramanian et al., 2005) in TIFM cultured mPDAC cells compared
160 to RPMI, most were similarly up or down-regulated *in vivo* compared to RPMI (Fig. 1H and Fig.
161 1 Source Data 2). Together, this transcriptional analysis suggests that mPDAC cells in TIFM
162 better recapitulate the cellular state of mPDAC cells *in vivo*.

163
164 We also sought to understand which aspects of the *in vivo* mPDAC cell state were not
165 recapitulated in TIFM. To identify the cellular processes that are differentially regulated between

166 cells growing in TIFM and cells *in vivo*, we performed differential gene expression analysis
167 between mPDAC3-TIFM cells *in vivo* and in TIFM and performed GSEA using Gene ontology
168 (GO) based gene sets. The main cellular processes that differentiate PDAC cells growing *in vivo*
169 from cell growing in TIFM are cell-cell communication, response to biotic stimuli, cell surface
170 receptor activated pathways and regulation of the immune system (Fig. 1I and Fig. 1 Source Data
171 3). These differences are likely due to the presence of the immune compartment and other
172 neighboring cell populations in PDAC tumors, an aspect of the TME not modeled in TIFM. On the
173 other hand, the main cellular processes positively enriched in PDAC cells in TIFM relative to *in*
174 *vivo* are ribosome complex biogenesis, rRNA processing and mitotic cell division (Fig. 1I and Fig.
175 1 Source Data 3), suggesting that, although the slower proliferation of mPDAC cells in TIFM (Fig.
176 1D) is more reminiscent of cells *in vivo*, cell cycle progression and translation are nevertheless
177 still higher in TIFM than *in vivo*. Altogether, these results show that mPDAC cells grown in TIFM
178 more closely recapitulate the transcriptomic profile of cells growing directly in the TME, suggesting
179 that TIFM is a useful system for the discovery and characterization of cancer cell adaptations to
180 physiological tumor nutrient stress in PDAC.

181

182 **Arginine biosynthesis allows PDAC cells to adapt to TME nutrient stress.**

183 We next sought to use the transcriptional profiles in mPDAC cells in TIFM and *in vivo*, to identify
184 metabolic adaptations cancer cells exhibit in response to tumor nutrient stress. We focused on
185 adaptation to amino acid deprivation, as this gene signature is one of highly enriched in TIFM
186 (Fig. 1J) and is similarly enriched in mPDAC cells *in vivo* (Fig. 1H). Leading edge analysis
187 (Subramanian et al., 2005) identified *Ass1* as the most differentially expressed gene driving this
188 signature (Fig. 1K). We further confirmed upregulation of *ASS1* at the protein level by
189 immunoblotting in TIFM relative to RPMI (Fig. 1L). Immunohistological analysis of murine and
190 human PDAC tumors using data from the Human Protein Atlas (Uhlén et al., 2015) (Fig. 1M)
191 shows similarly robust expression of *ASS1*, especially when compared to the lack of expression

192 in the healthy exocrine pancreas. These data suggest that mPDAC cell upregulate ASS1 as part
193 of an adaptive response to amino acid deprivation to TME nutrient stress.

194
195 Argininosuccinate synthase 1 (ASS1) is the rate-limiting enzyme in the biosynthetic pathway of
196 the non-essential amino acid arginine (Haines et al., 2011). ASS1 catalyzes the synthesis of
197 argininosuccinate from citrulline and aspartate, which can then be converted to arginine and
198 fumarate by argininosuccinate lyase (Asl) (Fig. 2A). Thus, expression of ASS1 enables PDAC
199 cells to synthesize arginine *de novo*. Arginine is one of the most limiting nutrients in the murine
200 PDAC TME at 2-5 μ M relative to 125 μ M in plasma, a 20-50 fold decrease (Sullivan et al., 2019a).
201 The TME level of arginine is below the reported Km for arginine transport (Closs et al., 2004).
202 Thus, we hypothesized that mPDAC cells are starved of arginine in the TME and expression of
203 ASS1 allows mPDAC cells to adapt to such starvation by providing an alternative cellular arginine
204 source.

205
206 To test if mPDAC cells require *de novo* synthesis to maintain intracellular arginine pools, we first
207 asked if mPDAC cells in TIFM consume the precursors (citrulline or ornithine) used for arginine
208 synthesis. To do so, we used quantitative LC-MS metabolite profiling (Sullivan et al., 2019a) to
209 perform analysis of 108 metabolites that mPDAC1-TIFM and mPDAC1-RPMI cells consume or
210 release in their respective media (Hosios et al., 2016; Jain et al., 2012). We found that mPDAC1-
211 TIFM cells consumed citrulline and ornithine at levels higher than their uptake of arginine (Fig. 2B
212 and Fig. 2 Source Data 1), consistent with active arginine synthesis in TIFM cultured mPDAC
213 cells. We next used stable isotope tracing to measure intracellular arginine derived from *de novo*
214 synthesis. To do so, mPDAC cells were cultured in TIFM with $^{13}\text{C}_5$ -citrulline and steady state
215 incorporation of citrulline carbon into arginine (Fig. 2C) was assessed by gas chromatography-
216 mass spectrometry (GC-MS). The vast majority of intracellular arginine (~85%) was labeled by
217 the citrulline *de novo* synthesis tracer (Fig. 2D) and this was consistent across multiple mPDAC

218 cell lines in TIFM (Fig. 2 – Figure supplement 1A). Consistent with the citrulline tracing data
219 indicating that *de novo* arginine synthesis contributes the majority of mPDAC arginine in TIFM,
220 inhibiting arginine synthesis by deprivation of the *de novo* synthesis precursors citrulline and
221 ornithine from TIFM results in a 10-fold decrease of intracellular arginine in mPDAC cells (Fig.
222 2E; Fig. 2 – Figure supplement 1B). This decrease in intracellular arginine is accompanied by a
223 significant decrease in cell proliferation (Fig. 2F; Fig. 2 – Figure supplement 1C). Importantly,
224 individual depletion of either citrulline or ornithine further shows that depletion of citrulline, but not
225 ornithine, is the key substrate mPDAC cells require for arginine synthesis (Fig. 2 – Figure
226 supplement 1D) (Fig. 2B). To confirm the finding that *de novo* arginine synthesis is critical for
227 mPDAC proliferation in TIFM, we used CRISPR-Cas9 to knockout (KO) *Ass1* in mPDAC cells
228 (Fig. 2G). Consistent with decreased mPDAC proliferation upon *de novo* arginine synthesis
229 inhibition by citrulline withdrawal, *Ass1* KO decreases mPDAC proliferation and this affect can be
230 rescued by supplying additional exogenous arginine in TIFM (Fig. 2H). Altogether, these findings
231 suggest that that *de novo* arginine synthesis is important to maintain intracellular arginine levels
232 and mPDAC cell proliferation in TIFM.

233

234 We next sought to determine if ASS1-mediated arginine synthesis contributes to arginine
235 homeostasis in murine PDAC tumors. To assess intratumoral PDAC arginine synthesis, we
236 performed $^{15}\text{N}_2$ -glutamine stable isotope tracing by multiple bolus intravenous injections of $^{15}\text{N}_2$ -
237 glutamine into mPDAC orthotopic tumor bearing mice and non-tumor bearing controls (Fig. 2I).
238 $^{15}\text{N}_2$ -glutamine tracing can be used to monitor arginine synthesis and urea cycle activity in PDAC
239 (Zaytouni et al., 2017) by monitoring incorporation of labeled glutamine derived nitrogen into
240 arginine (Fig. 2C). After glutamine injection, healthy pancreas, tumor tissue and plasma samples
241 were collected and ^{15}N enrichment in arginine and relevant precursors was measured by LC-MS
242 (Fig. 2 – Source Data 2). Glutamine in plasma is also quickly metabolized by multiple organs and
243 reintroduced into the circulation as intermediate substrates that can contribute to intraorgan and

244 intratumoral labelling (Grima-Reyes et al., 2021). One of the main examples of these interorgan
245 exchange fluxes is the intestinal-renal axis, where glutamine metabolized by the small intestine
246 is released as citrulline and uptaken by the kidneys and further released as arginine for uptake
247 by different tissues (Boelens et al., 2005; Grima-Reyes et al., 2021). Consistent with this, we
248 observed an enrichment of ~14% $^{15}\text{N}_1$ -arginine and ~7% $^{15}\text{N}_2$ -arginine in the circulation of healthy
249 and tumor bearing mice (Fig. 2J). We would expect that, for tissues that rely on circulating arginine
250 and not on arginine production, the relative abundance of labelled arginine *in situ* would resemble
251 that of the circulation. In line with this, the relative abundance of arginine in non-ASS1 expressing
252 healthy pancreas resembles the arginine labeling distribution found in circulation (Fig. 2J). In
253 contrast, there is a greater amount of labelled arginine in PDAC tumor tissue compared to plasma,
254 with ~17% $^{15}\text{N}_1$ -arginine and ~9% $^{15}\text{N}_2$ -arginine in tumors (Fig. 2J). While these non-steady state
255 isotope labeling experiments cannot allow us to infer the fraction of intratumoral arginine that
256 arises from *de novo* synthesis in PDAC tumors (Buescher et al., 2015), the appearance of
257 additional ^{15}N enrichment in intratumoral arginine that cannot be explained by circulating labeled
258 arginine confirms active synthesis of arginine in PDAC tumors, consistent with previous results
259 (Fig. 1) that PDAC tumors highly express ASS1. Lastly, we measured the concentration of amino
260 acids including arginine in the interstitial fluid of orthotopic murine PDAC tumors and compared
261 this to the intratumoral arginine concentration (Fig. 2K and Fig. 2 Source Data 3). We observed
262 that for most amino acids the intratumoral concentration was similar to the IF concentration.
263 However, PDAC tumors had higher concentrations of free arginine than what is present in the
264 TIF. Thus, we conclude that PDAC tumors accumulate higher levels of arginine than available
265 from the local perfusate and that this is at least in part driven by *de novo* synthesis.

266

267 **Enhanced uptake of environmental arginine allows PDAC cells to cope with inhibition of**
268 ***de novo* arginine synthesis.**

269 Interestingly, while PDAC cell proliferative capacity is markedly reduced by inhibiting arginine
270 biosynthesis, this doesn't completely abrogate cell growth (Fig. 2F,H; Fig. 2 – Figure supplement
271 1C). Given the importance of arginine for cellular homeostasis and growth, we hypothesized that
272 PDAC cells must compensate with other mechanisms to acquire arginine when synthesis is
273 inhibited to maintain viability and proliferation, albeit at a reduced rate (Fig. 2A). In addition to *de*
274 *novo* synthesis, there are two other known mechanisms for arginine acquisition by PDAC cells:
275 macropinocytosis (Palm, 2019) and cationic amino acid transporter mediated uptake (Closs et al.,
276 2004). Therefore, we sought to determine how these pathways contribute to arginine homeostasis
277 in TIFM cultured mPDAC cells.

278

279 To test if macropinocytosis is important for arginine homeostasis in mPDAC cells, we generated
280 mPDAC1-TIFM cells with a doxycycline-inducible shRNA targeting glycoprotein syndecan-1
281 (SDC1), an important mediator of macropinocytosis in PDAC cells (Yao et al., 2019) (Fig. 3 –
282 Figure supplement 1A). Knockdown of *Sdc1* effectively reduced mPDAC1-TIFM
283 macropinocytosis rate as measured by uptake and catabolism of fluorogenic bovine serum
284 albumin (DQ-BSA), a model macropinocytosis substrate (Fig. 3 – Figure supplement 1B). *Sdc1*
285 knockdown had no effect on intracellular arginine pools nor cell proliferation in TIFM cultured
286 mPDAC cells (Fig. 3A, B). Consistent with this, pharmacological inhibition of lysosomal protein
287 breakdown with hydroxychloroquine (HQ) similarly impairs mPDAC1-TIFM macropinocytosis rate
288 without disrupting cell proliferation (Fig. 3 – Figure supplement 1C, D). Thus, in basal TIFM
289 conditions, macropinocytosis does not appear to be critical for cellular arginine homeostasis. We
290 next tested if macropinocytosis was critical for mPDAC cells upon inhibition of *de novo* arginine
291 synthesis. We measured DQ-BSA uptake and catabolism upon inhibition of arginine synthesis
292 and observed no change in macropinocytosis rate (Fig. 3 – Figure supplement 1E). Furthermore,
293 knockdown of *Sdc1* did not further impair mPDAC cell proliferation upon inhibition of arginine
294 synthesis (Fig. 3C). Thus, we conclude that macropinocytosis does not contribute to mPDAC

295 arginine homeostasis in TIFM, even as an adaptive mechanism upon inhibition of *de novo*
296 arginine synthesis.

297

298 We next tested if uptake of the small amount of free arginine in TIFM (~2.3 μ M) mediates the ability
299 of mPDAC cells to cope with inhibition of *de novo* arginine synthesis. In normal TIFM culture,
300 removal of arginine does not affect mPDAC intracellular arginine levels nor proliferative capacity
301 (Fig. 3D,E). Thus, as with macropinocytosis, arginine uptake is not critical for mPDAC arginine
302 homeostasis in TIFM conditions. We next tested if depriving mPDAC cells of the available
303 microenvironmental arginine after *de novo* biosynthesis is impaired would affect mPDAC arginine
304 homeostasis and growth. We found that inhibition of arginine synthesis in TIFM cultured mPDAC
305 cells leads to increased transcription of known arginine transporters (Fig. 3F) and leads to an
306 increased rate of arginine uptake by mPDAC cells (Fig. 3G). Furthermore, while we could not
307 detect decreases in mPDAC intracellular arginine levels after eliminating extracellular arginine
308 (Fig. 3 – Figure supplement 1F), eliminating TIFM extracellular arginine completely abrogates cell
309 growth in multiple mPDAC cell lines upon inhibition of *de novo* arginine synthesis (Fig. 3H – Figure
310 supplement 1G). Altogether, these data suggest that mPDAC cells upregulate the uptake of
311 extracellular arginine to cope with inhibition of arginine biosynthesis and that this could be in part
312 mediated by the selective upregulation of cationic amino acid transporters.

313

314 **Myeloid arginase causes local arginine depletion in PDAC**

315 Given that PDAC tumors preferentially upregulate arginine *de novo* synthesis to adapt to
316 microenvironmental depletion of arginine, we wanted to understand how arginine becomes
317 depleted in the PDAC TME. Human and murine PDAC tumors contain substantial myeloid
318 compartments (Lee et al., 2021; Zhu et al., 2017) including many arginase-1 expressing cells
319 (Trovato et al., 2019). We confirmed the presence of a robust myeloid and arginase-1 expressing
320 populations in both murine (Fig. 4A) and human PDAC (Fig. 4B) by immunohistochemical

321 analysis. Arginase-1 expressing cells are capable of metabolizing arginine into ornithine and urea
322 (Caldwell et al., 2018). Therefore, we hypothesized that myeloid arginase-1 activity could be
323 responsible for PDAC TME arginine starvation. To test this, we generated orthotopic allograft
324 mPDAC tumors in a mouse model with myeloid specific *Arg1* knockout (*LysM-Cre*^{+/+}; *Arg1*^{fl/fl})
325 (Clausen et al., 1999; El Kasmi et al., 2008) and control animals (*Arg1*^{fl/fl}). We then isolated IF
326 from these tumors at end-stage and measured the levels of amino acids including arginine and
327 ornithine in these samples (Fig. 4C). Compared to control animals, *LysM-Cre*^{+/+}; *Arg1*^{fl/fl} tumors
328 show robust reduction of arginase-1 expression in tumors (Fig. 4D) confirming most arginase-1
329 in tumors is myeloid in origin. *LysM-Cre*^{+/+}; *Arg1*^{fl/fl} tumors had ~9-fold increase in IF arginine
330 concentration and a roughly equimolar decrease in ornithine (Fig. 4E and Fig. 4 Source Data 1),
331 consistent with myeloid arginase-1 activity being responsible for TME arginine starvation in these
332 tumors. Pharmacological inhibition of arginase-1 with the small-molecule inhibitor CB-1158
333 (Steggerda et al., 2017) in mPDAC orthotopic tumors led to a similar increase in IF arginine
334 compared to control treated tumors (Fig. 4F and Fig. 4 Source Data 1). In summary, these results
335 show that arginase activity in the myeloid compartment of PDAC tumors is responsible for arginine
336 depletion in the TME, which results in activation of arginine biosynthesis by PDAC as an
337 adaptation to this metabolic stress in the PDAC TME.

338

339 **Discussion**

340 **TME nutrition is a major driver of PDAC cell state**

341 Cell-based models remain critical tools for mechanistic discovery and therapeutic target
342 identification in cancer biology. However, many biological findings and drug targets that arise from
343 these cell-based studies fail to translate to cancer cells *in vivo* or in clinical settings (Horvath et
344 al., 2016). That cancer cells behave so differently in *in vitro* cell-based systems than when in
345 tumors suggests that cancer cell behavior is not completely cell-intrinsically encoded. Rather, cell-
346 extrinsic cues in the TME are capable of dramatically influencing the cancer cell state and

347 impacting many aspects of cancer cell biology including therapy response (Hirata and Sahai,
348 2017). The importance of TME cues in regulating cancer cell behavior has prompted new efforts
349 to develop cell-based models that incorporate key microenvironmental influences to both improve
350 their disease relevance and fidelity (Horvath et al., 2016) and enable mechanistic studies
351 delineating how the microenvironment influences cancer cell biology.

352
353 We directly assessed the impact of the TME on the cellular state of murine PDAC cells by
354 transcriptomic analysis. We found that the TME does indeed induce massive changes in the
355 transcriptional state of PDAC cells compared to PDAC cells in standard culture, consistent with
356 the microenvironment dramatically changing the biology of cancer cells (Fig. 1F). We next
357 specifically asked how TME nutrition influences PDAC cell state and if better recapitulating
358 nutrient access in our cell-based PDAC models would leave PDAC cells in more *in vivo*-like state.
359 Given that metabolism is highly interconnected with epigenetic regulation of gene expression
360 (Chisolm and Weinmann, 2018; Dai et al., 2020; Diehl and Muir, 2020; Reid et al., 2017) and that
361 cellular metabolism is intricately tied to nutrient availability (Elia and Fendt, 2016; Muir et al.,
362 2018), we reasoned that physiological nutrient availability could have dramatic influences on
363 cellular state and be a key microenvironmental factor influencing cancer cell biology. Indeed, we
364 found that growth of PDAC cells in physiological nutrition caused substantial transcriptional
365 reprogramming of PDAC cells that pushed them towards the *in vivo* transcriptional state
366 compared to culture in standard non-physiological conditions (Fig. 1G, H). Thus, consistent with
367 recent studies that have employed cell culture models with physiological nutrient availability
368 (Ackermann and Tardito, 2019; Cantor, 2019; Cantor et al., 2017; Muir et al., 2017; Vande Voorde
369 et al., 2019), we have found that modeling physiological nutrient availability substantially improves
370 cell culture model fidelity. Thus, along with other efforts to improve the fidelity of cell culture
371 models by incorporating microenvironmental factors such as bio-scaffolds enabling three-
372 dimensional growth (Jensen and Teng, 2020; Pampaloni et al., 2007), we anticipate ensuring

373 proper nutrient availability will be critical in the developing more physiologically relevant *ex vivo*
374 cancer models, which will expand our ability to target cancer beyond cell-intrinsic dependencies
375 by allowing the identification and exploitation of microenvironmentally driven therapeutic targets
376 (Metcalf et al., 2021; Sela et al., 2022).

377

378 **Arginine is a limiting nutrient in the PDAC microenvironment**

379 Use of the nutrient microenvironment mimicking TIFM model uncovered arginine biosynthesis as
380 a metabolic adaptation that PDAC cells use under microenvironmental nutrient conditions. That
381 PDAC cells would synthesize arginine was initially surprising. Arginine biosynthesis is a
382 metabolically costly process that utilizes intracellular aspartate, a limiting nutrient for tumors
383 (Garcia-Bermudez et al., 2018; Sullivan et al., 2018). Aspartate limitation that arises from arginine
384 synthesis slows nucleotide synthesis and ultimately tumor growth (Rabinovich et al., 2015). Thus,
385 ASS1 acts as a metabolic tumor suppressor and is silenced in many tumor types (Lee et al.,
386 2018). Why would this tumor suppressive metabolic pathway be activated in PDAC?

387

388 Multiple studies have also shown that cancer cells can reactivate ASS1 expression and arginine
389 biosynthesis when extracellular arginine becomes limited to support tumor growth. For example,
390 ASS1-silenced tumors treated with arginine deiminase to eliminate extracellular arginine acquire
391 resistance to such therapy by reactivation of ASS1 expression (Rogers and Van Tine, 2019;
392 Rogers et al., 2021). In another example, reactivation of arginine biosynthesis was shown to be
393 necessary to support metastasis of clear cell renal cancers to the arginine limited lung
394 environment, whereas arginine biosynthesis was not necessary and inactive in the arginine-
395 replete primary tumor (Sciacovelli et al., 2021). Lastly, ATF4-CEBP β mediated upregulation of
396 ASS1 upon amino acid stress has been shown to allow AML cells to adapt to low levels of
397 microenvironmental arginine (Crump et al., 2021). Altogether, these findings suggest that the
398 tumor suppressive role of arginine biosynthesis is context dependent. In the context of

399 microenvironmental arginine deprivation, ASS1 and arginine biosynthesis can switch their role to
400 become tumor supportive. One of the most depleted nutrients in the PDAC TME is the amino acid
401 arginine, which we previously observed was depleted ~20-50 fold from circulatory concentrations
402 to only 2-5 μ M (Sullivan et al., 2019a). Thus, given the TME context of PDAC tumors, ASS1 and
403 arginine biosynthesis enables PDAC cells to cope with these TME constraints rather than acting
404 as a tumor suppressor.

405
406 Aside from TME arginine restriction in PDAC triggering adaptive responses in the cancer cells,
407 the lack of arginine in the TME can have major impacts on stromal cells that may not have the
408 adaptive capabilities of PDAC cells. For example, anti-tumor lymphocytes require arginine for
409 functionality (Geiger et al., 2016), but are not able to upregulate arginine biosynthesis upon
410 arginine starvation (Crump et al., 2021). Thus, microenvironmental arginine availability is known
411 to limit immune responses in a variety of tumor types (Murray, 2016). This has led to many recent
412 efforts to develop pharmacological tools to increase TME arginine (Canale et al., 2021; Steggerda
413 et al., 2017), which have improved immunotherapeutic outcomes in a variety of murine tumor
414 models (Canale et al., 2021; Miret et al., 2019; Sosnowska et al., 2021; Steggerda et al., 2017).
415 Thus, the severe arginine restriction in the PDAC TME could be a major barrier to immunotherapy
416 in this disease, which is refractory to most immunotherapies (Hilmi et al., 2018). Consistent with
417 this hypothesis, Menjivar and colleagues found that low arginine availability does impair anti-
418 tumor immunity in PDAC and that raising TME arginine levels can improve tumor immune
419 surveillance and response to immunotherapy (Menjivar, co-submitted manuscript). Thus, arginine
420 starvation is a key nutrient limitation that both PDAC and stromal cells face in the TME. Arginine
421 starvation drives PDAC metabolic adaptation but other cell types without adaptive capacity, such
422 as lymphocytes, face arginine starvation driven dysfunction in the TME. Future studies delineating
423 how different cellular populations are affected by TME arginine starvation will prove critical to
424 better understanding how tumor physiology impacts cancer and stromal cell biology.

425

426 **Stromal control of microenvironmental nutrient conditions**

427 We previously had found that the TME is arginine depleted (Sullivan et al., 2019a). However, what
428 drove arginine depletion in the TME was unknown. Here, we find that the large arginase-1
429 expressing myeloid compartment in PDAC tumors is largely responsible for TME arginine
430 depletion (Fig. 4). Consistent with these findings, Menjivar and colleagues also found PDAC
431 associated myeloid cells are critical for mediating TME arginine depletion (Menjivar, co-submitted
432 manuscript). Thus, the most striking nutrient perturbation in the TME is not driven by abnormal
433 cancer cell metabolism but is instead driven by stromal metabolic activity. This finding is in line
434 with recent studies documenting the critical role that stromal cells have in influencing nutrient
435 availability in the TME. For example, in addition to the role we have found for myeloid cells in
436 limiting TME arginine, myeloid cells were found to be the major glucose consuming cell type in a
437 variety of tumor types (Reinfeld et al., 2021). Thus, stromal myeloid cells are likely key regulators
438 of glucose availability in the TME. Fibroblasts have been shown to also regulate levels of key
439 metabolites in the TME (Sherman et al., 2017), such as amino acids (Francescone et al., 2020;
440 Sousa et al., 2016) and lipids (Auciello et al., 2019). Recently, tumor innervating neurons were
441 also shown to regulate availability of amino acids in the TME (Banh et al., 2020). Thus, future
442 studies delineating the complex metabolic interactions amongst tumor and stromal cells (Li and
443 Simon, 2020) will be critical to understanding how nutrient availability is regulated in the tumor
444 ecosystem and the resulting nutrient milieu impacts cancer and stromal cell metabolism and
445 biology.

446

447 **Figure Legends**

448 **Figure 1. Culturing PDAC cells in physiological nutrients levels better recapitulates the**
449 **transcriptomic profile of cancer cells in the tumor microenvironment, including changes**
450 **in expression of arginine metabolism genes.** (A) Diagram of the Tumor Interstitial Fluid

451 Medium (TIFM) formulation. (B) Scatter plot of LC-MS measurements of metabolite
452 concentrations in TIFM (n=2) plotted against expected concentrations (average concentration of
453 the given metabolite in KP^{-/-}C IF). The values represent the mean of LC-MS measurements and
454 the error bars represent the range. (C) Diagram of the generation of paired PDAC cell lines grown
455 in TIFM and in RPMI isolated from KP^{-/-}C tumors, the same tumors used for IF measurements
456 and TIFM formulation. (D) Cell proliferation rate of paired mPDAC cell lines grown in TIFM or
457 RPMI (n=3). The values represent the mean and the error bars represent \pm SD. (E) Diagram of
458 workflow for the transcriptomic comparison of mPDAC3-TIFM cells grown in TIFM (n=3), RPMI
459 (n=3) or as orthotopic allograft murine tumors (n=6). mPDAC cells from each condition were
460 isolated by FACS and RNA was isolated for transcriptomic analysis by next generation
461 sequencing. (F) Volcano plot of differentially expressed genes between mPDAC3-TIFM cells in *in*
462 *vivo* or cultured in RPMI. Blue: downregulated genes with adjusted p<0.05. Red: upregulated
463 genes with adjusted p<0.05. Gray: genes with adjusted p>0.05. Adjusted p-value was calculated
464 through Limma using the Benjamini and Hochberg false discovery rate method (Benjamini and
465 Hochberg, 1995) (G) GSEA of transcriptional differences between mPDAC3-TIFM cells cultured
466 in TIFM or RPMI using custom gene sets from Fig. 1F of those genes up and down *in vivo*. (H)
467 Top 40 enriched (red) or depleted (blue) gene sets from the MsigDB curated gene signature
468 collection mPDAC3-TIFM cells cultured in TIFM compared to culture in RPMI. Also shown are
469 enrichment scores of the same gene sets for mPDAC3-TIFM cells grown *in vivo* compared to
470 culture in RPMI. Grey boxes are gene sets not significantly differentially enriched in mPDAC3-
471 TIFM cells grown *in vivo* compared to cultured RPMI. (I) GSEA analysis using GO gene sets of
472 the transcriptional profile of mPDAC3-TIFM cells *in vivo* compared to mPDAC3-TIFM cells
473 cultured in TIFM. (J) GSEA analysis of the Krige_Amino_Acid_Deprivation signature in mPDAC3-
474 TIFM cells cultured in TIFM or RPMI. (K) Row scaled \log_2 fold change of total gene counts
475 normalized by trimmed mean of M values (TMM) of GSEA plot in Fig. 1J (left) and t-statistic metric
476 for differential expression calculated with limma for these genes (right). (L) Immunoblot analysis

477 of Ass1 in mPDAC cell lines grown in TIFM or RPMI. (M) Immunohistochemical staining for ASS1
478 in *LSL-KRas*^{G12D}; *LSL-P53*^{R172H}; *Pdx1-Cre* murine PDAC tumors (Hingorani et al., 2005) and
479 healthy murine pancreas (top) as well as in human PDAC tumors and in healthy human pancreas
480 (bottom). Scale bar: 100μm. Human samples are from the Human Protein Atlas (Uhlén et al.,
481 2015).

482

483 **Figure 1 – Figure supplement 1. mPDAC cells cannot proliferate in TIFM after long term**
484 **culture in RPMI.** mPDAC cells were isolated from a KP^{-/-}C tumor and cultured in either TIFM or
485 RPMI directly. After long term culture (>1 month) in either media condition, cells were passaged
486 into the other media (i.e. cells grown in TIFM were subsequently cultured in RPMI and cells grown
487 to RPMI were subsequently grown in TIFM). The proliferation rate after each media swap was
488 measured (n=3). The values represent the mean and the error bars represent ± SD.

489

490 **Figure 1 – Figure supplement 2. GSEA using gene signatures of the top 500 upregulated**
491 **and top 500 downregulated genes *in vivo* vs. RPMI shows TIFM grown cells better**
492 **recapitulate the transcriptomic behavior of PDAC cells *in vivo*.** Custom gene sets of the top
493 500 genes up- and downregulated (by adjusted p-value) in mPDAC3-TIFM cells growing *in vivo*
494 compared to standard culture were generated from the data in Fig. 1E,F. GSEA analysis was
495 performed on transcriptional data of mPDAC3-TIFM cells cultured in TIFM and RPMI using these
496 gene sets.

497

498 **Figure 1 – Figure supplement 3. Correlation between gene expression changes in**
499 **mPDAC3-TIFM cells cultured in TIFM and *in vivo*.** Mean log₂ fold changes in gene expression

500 between mPDAC3-TIFM cells cultured in TIFM (n=3) versus RPMI standard culture reference
501 (n=3) and compared to mPDAC3-TIFM cells isolated from an orthotopic tumor (n=6) compared to
502 RPMI. Pearson correlation $r = 0.3733$, $p < 0.0001$.

503

504 **Figure 2. Arginine biosynthesis allows PDAC cells to adapt to low microenvironmental**
505 **levels of arginine.** (A) Cells can acquire arginine by either of three routes: direct uptake of free
506 arginine from the microenvironment, *de novo* synthesis and uptake and breakdown of
507 extracellular protein (macropinocytosis). (B) Cellular consumption/release rate of citrulline,
508 ornithine and arginine by mPDAC1-TIFM cells cultured in TIFM (n=3). (C) Diagram showing
509 cellular metabolic pathways mediating isotopic label incorporation from $^{13}\text{C}_5$ -citrulline and $^{15}\text{N}_2$ -
510 glutamine into arginine. (D) Relative abundance of intracellular arginine isotopomers in mPDAC
511 cells grown in TIFM with $^{13}\text{C}_5$ -citrulline at PDAC IF concentration (67 μM) (n=3). (E) Relative
512 intracellular arginine levels of mPDAC cells grown in TIFM with (+) or without (-) TIF
513 concentrations of citrulline (cit) and ornithine (orn). (F) Cell proliferation rate of mPDAC cells in
514 same conditions as (E) (n=3). (G) mPDAC1-TIFM cells were infected with lentiviruses encoding
515 a *Ass1* targeting CRISPR vector. *Ass1* knockout cells were then infected with lentiviruses
516 expressing either CRISPR resistant *Ass1* cDNA or empty vector (E.V.) as indicated. Shown is an
517 immunoblot analysis of these modified cell lines for *Ass1* protein expression with vinculin as a
518 loading control. (H) Cell proliferation rate of cells in (G) (n=3). Cells were grown in TIFM with
519 different arginine concentrations as indicated (n=3). (I) Diagram of stable isotope tracing by bolus
520 intravenous injections of $^{15}\text{N}_2$ -glutamine in orthotopic mPDAC3-TIFM tumor bearing mice and non-
521 tumor-bearing controls followed by plasma sampling and tumor extraction for analysis of
522 intratumoral metabolite labeling during the period of kinetic labeling. (J) Relative abundance of
523 ^{15}N -labelled arginine isotopomers in tissues or plasma after $^{15}\text{N}_2$ -glutamine tail-vein bolus
524 injections (n=7). (K) (*left*) Concentrations of amino acids in IF (n=3) and tumor samples (n=4) of

525 mPDAC3-RPMI orthotopic tumors measured by LC-MS. (*right*) Bar graph of intratumoral versus
526 IF samples arginine concentrations. For all panels, bar graphs represent mean and error bars
527 represent \pm SD. P-value for (G) was calculated using an ordinary one-way anova test and in (K)
528 using a paired, one-tail student's t test. ns indicates $p>0.05$, * indicates $p<0.05$; ** indicates
529 $p<0.01$; *** indicates $p<0.001$.

530

531 **Figure 2—Figure supplement 1. Arginine biosynthesis allows for adaptation to low**
532 **physiological levels of microenvironmental arginine in multiple mPDAC cell lines.** (A)
533 Relative abundance of intracellular ^{13}C -labelled arginine isotopomers in mPDAC2-TIFM and
534 mPDAC3-TIFM cells grown in TIFM with $^{13}\text{C}_5$ -citrulline (n=3). (B) Relative intracellular arginine
535 levels of mPDAC2-TIFM and mPDAC3-TIFM cells grown in TIFM with (+) or without (-) PDAC IF
536 concentrations of citrulline (cit) and ornithine (orn) (n=3). (C) Cell proliferation rate of mPDAC2-
537 TIFM and mPDAC3-TIFM cells in same conditions as (B) (n=3). (D) Cell proliferation rate of
538 mPDAC1-TIFM cells with or without TIFM concentrations of ornithine (orn) (n=3). (E) Cell
539 proliferation rate of mPDAC1-TIFM cells with or without TIFM concentrations of citrulline (cit)
540 (n=3). For all panels, bars represent the mean and error bars represent the mean and the error
541 bars represent \pm SD.

542

543

544 **Figure 3. Enhanced uptake of environmental arginine allows PDAC cells to cope with**
545 **inhibition of *de novo* arginine synthesis.** (A) Relative intracellular arginine levels of mPDAC1-
546 TIFM cells infected with lentiviruses encoding a doxycycline inducible *Sdc1* targeting shRNA or
547 an empty vector (EV) control treated with 1 $\mu\text{g}/\text{mL}$ doxycycline or vehicle (n=3). (B) Cell
548 proliferation rate of mPDAC1-TIFM cells in same conditions as (A) (n=3). (C) Proliferation rate of

549 mPDAC1-TIFM cells as in (A) cultured in TIFM with or without TIFM concentrations of citrulline
550 (cit) and ornithine (orn) (n=3). (D) Relative intracellular arginine levels of mPDAC1-TIFM cells
551 grown in TIFM with or without TIFM concentrations of arginine (arg) (n=3). (E) Cell proliferation
552 rate of mPDAC1-TIFM cells in same conditions as (D) (n=3). (F) Trimmed mean of M values
553 (TMM)-normalized counts for *Slc7a1* and *Slc7a3*, two cationic amino acid transporters capable of
554 transporting arginine, from transcriptomic analysis (see **Methods**) of mPDAC3-TIFM cells grown
555 in either TIFM or TIFM without citrulline and ornithine (n=3). (G) Per-cell consumption rate of
556 arginine by mPDAC1-TIFM cells cultured in TIFM with or without TIFM concentrations of citrulline
557 and ornithine. Cells were supplemented with 20 μ M arginine to enable the consumption
558 measurements (n=9). (H) Proliferation rate of mPDAC1-TIFM cells grown with or without TIFM
559 concentrations of citrulline, ornithine, or arginine, as indicated (n=3). For all panels, bar graphs
560 represent the mean and the error bars represent \pm SD. P-values for (A) and (C) were calculated
561 using an ordinary one-way anova test and ns indicates p>0.05, * indicates p<0.05; ** indicates
562 p<0.01; *** indicates p<0.001.

563

564 **Figure 3—Figure supplement 1. mPDAC cells do not upregulate macropinocytosis after
565 inhibition of arginine synthesis, but instead require arginine uptake to cope with inhibition
566 of de novo arginine synthesis** (A) RTqPCR analysis for *Sdc1* in mPDAC cells infected with
567 lentiviruses encoding a dox inducible *Sdc1* targeting shRNA or an empty vector (EV) control with
568 and without treatment with 1 μ g/mL doxycycline or vehicle (n=2). (B) Macropinocytosis activity
569 measured by kinetic DQ-BSA uptake and catabolism in mPDAC1-TIFM cells from (A). (C)
570 Macropinocytosis activity measured by kinetic DQ-BSA uptake and catabolism in mPDAC1-TIFM
571 cells treated with 10 μ M hydroxychloroquine (HQ) or vehicle (water). (D) Cell proliferation rate of
572 mPDAC1-TIFM cells in same conditions as (C) (n=3). (E) Macropinocytosis activity measured by
573 DQ-BSA uptake and catabolism in mPDAC1-TIFM cells cultured in TIFM with or without TIF

574 concentrations of citrulline and ornithine. (F) Relative intracellular arginine levels of mPDAC1-
575 TIFM cells grown in TIFM with or without PDAC IF concentrations of citrulline, ornithine, or
576 arginine, as indicated (n=3). (G) Proliferation rate of mPDAC2-TIFM and mPDAC3-TIFM cells
577 grown in TIFM with or without PDAC IF concentrations of citrulline, ornithine, or arginine, as
578 indicated (n=3). For all panels, bar graphs represent the mean and the error bars represent \pm SD.

579

580 **Figure 4. Myeloid arginase causes microenvironmental arginine depletion in PDAC tumors.**
581 (A) Immunohistochemical (IHC) staining for F4/80 and ARG1 in an orthotopic mPDAC1-TIFM
582 tumor and in healthy murine pancreas. Scale bars: 100 μ m. (B) IHC staining for ARG1 in an
583 advanced human PDAC tumor and adjacent untransformed pancreas. Scale bar: 500 μ m (top)
584 and 100 μ m (bottom). (C) Schematic for crossing of LysM-Cre and Arg1^{f/f}, tumor implantation on
585 LysM-Cre^{+/+}; Arg1^{f/f} progeny and subsequent IF extraction. (D) IHC staining for ARG1 protein
586 expression in orthotopic mPDAC3-TIFM tumors from LysM-Cre^{+/+}; Arg1^{f/f} and Arg1^{f/f} littermate
587 controls. Scale bar: 100 μ m. (E) Absolute concentration of arginine and ornithine in the IF of
588 orthotopic mPDAC3-TIFM tumors from LysM-Cre^{+/+}; Arg1^{f/f} (n=7) and Arg1^{f/f} littermate controls
589 (n=4). (F) Absolute concentration of arginine and ornithine in the IF of mPDAC3-TIFM orthotopic
590 tumors after treatment with 100mg/kg of arginase inhibitor CB-1158 or vehicle (n=5). P-values for
591 (E) and (F) were calculated using a two-tailed Student's t test and ns indicates p>0.05, * indicates
592 p<0.05; ** indicates p<0.01; *** indicates p<0.001.

593

594 **Figure 1 Source Data 1** Table of differentially expressed genes between mPDAC3-TIFM cells
595 cultured in RPMI and isolated from orthotopic tumors generated by limma analysis of
596 transcriptomic data as show in Fig. 1F.

597

598 **Figure 1 Source Data 2** Table of the top 40 differentially enriched MSigDB curated gene sets
599 between mPDAC3-TIFM cells cultured in TIFM and RPMI as shown in Fig. 1H. Enrichment
600 scores and significance values for the same gene sets are also shown for transcriptomic data of
601 mPDAC3-TIFM cells isolated from orthotopic tumors and cultured in RPMI.

602

603 **Figure 1 Source Data 3** Table of GO gene set enrichment values comparing transcriptional
604 differences between mPDAC3-TIFM cells cultured in TIFM and isolated from orthotopic tumors
605 as show in Fig. 1I.

606

607 **Figure 2 Source Data 1** Table of metabolite consumption/release rates for mPDAC-TIFM
608 cultured in TIFM and mPDAC1-RPMI cells cultured in RPMI.

609

610 **Figure 2 Source Data 2** Mass isotopomer distributions for all metabolites analyzed by LC-MS in
611 Figure 2J.

612

613 **Figure 2 Source Data 3** All metabolite concentrations, tumor volumes, weights and densities
614 measured in Fig. 2K used to calculate IF and intratumoral concentrations of arginine.

615

616 **Figure 4 Source Data 1** All metabolite concentrations measured in the IF of orthotopic
617 mPDAC3-TIFM tumors from LysM-Cre^{+/+}; Arg1^{fl/fl} and Arg1^{fl/fl} littermate controls in Fig. 4E. All
618 metabolite concentrations measured in the IF of mPDAC3-TIFM orthotopic tumors after
619 treatment with 100mg/kg of arginase inhibitor CB-1158 or vehicle in Fig. 4F.

620

621 **Supplementary File 1** Table with complete formulation of TIFM including all commercial suppliers
622 and manufacturer part numbers for each metabolite included in TIFM.

623

624 **Supplementary File 2** Table of primers used for qPCR analyses and genotyping analysis of
625 LysM-Cre and Arg1^{f/f} alleles. Table of shRNA hairpin and sgRNA sequences used in this study.

626

627 **Materials and Methods**

628 **Formulation of Tumor Interstitial Fluid Media**

629 TIFM is composed of 115 nutrients (Supplementary File 1) at levels that match the average of
630 measurements in the IF of murine *LSL-Kras*^{G12D/+}; *Trp53*^{fl/fl} *Pdx1-Cre* (KP^{-/-}C) PDAC tumors
631 (Sullivan et al., 2019a). The medium is composed of 10 pools of metabolites each of which is
632 formulated by compounding dry powders of nutrients at appropriate ratios using a knife mill
633 homogenizer. To generate the complete medium, the 10 metabolite mixture powders are added
634 together and reconstituted in water with 10% dialyzed fetal bovine serum (FBS) to provide
635 essential lipids, proteins and growth factors. The electrolytes provided in pool 3 are adjusted so
636 that the electrolyte balance will be the same as RPMI-1640 medium, correcting for the sodium
637 chloride in the FBS and counter ions in the various metabolites in TIFM. We performed
638 quantitative LC-MS metabolite profiling (see **Quantification of metabolite levels in cell culture**
639 **media**) to ensure concentrations of nutrients in TIFM are reproducibly close to the formulated
640 concentration (Fig. 1B).

641

642 **Quantification of metabolite levels in cell culture media**

643 For quantification of metabolites in cell culture media, quantitative metabolite profiling of fluid
644 samples was performed on tissue culture media samples as previously described (Sullivan et al.,
645 2019a). Briefly, chemical standard libraries of 149 metabolites in seven pooled libraries were
646 prepared and serially diluted in HPLC grade water from in a dilution series from 5mM to 1 μ M to
647 generate 'external standard pools', which are used for calibration of isotopically labeled internal
648 standards and to quantitate concentrations of metabolites where internal standards were not
649 available.

650

651 We then extracted metabolites from 5 μ L of either cell culture media samples or external standard
652 pool dilutions using 45 μ L of a 75:25:0.1 HPLC grade acetonitrile:methanol:formic acid extraction
653 mix with the following labelled stable isotope internal standards:

654

- ^{13}C labeled yeast extract (Cambridge Isotope Laboratory, Andover, MA, ISO1)
- $^2\text{H}_9$ choline (Cambridge Isotope Laboratory, Andover, MA, DLM-549)
- $^{13}\text{C}_4$ 3-hydroxybutyrate (Cambridge Isotope Laboratory, Andover, MA, CLM-3853)
- $^{13}\text{C}_6^{15}\text{N}_2$ cystine (Cambridge Isotope Laboratory, Andover, MA, CNLM4244)
- $^{13}\text{C}_3$ lactate (Sigma Aldrich, Darmstadt, Germany, 485926)
- $^{13}\text{C}_6$ glucose (Cambridge Isotope Laboratory, Andover, MA, CLM-1396)
- $^{13}\text{C}_3$ serine (Cambridge Isotope Laboratory, Andover, MA, CLM-1574)
- $^{13}\text{C}_2$ glycine (Cambridge Isotope Laboratory, Andover, MA, CLM-1017)
- $^{13}\text{C}_5$ hypoxanthine (Cambridge Isotope Laboratory, Andover, MA, CLM8042)
- $^{13}\text{C}_2^{15}\text{N}$ taurine (Cambridge Isotope Laboratory, Andover, MA, CNLM-10253)
- $^{13}\text{C}_3$ glycerol (Cambridge Isotope Laboratory, Andover, MA, CLM-1510)
- $^2\text{H}_3$ creatinine (Cambridge Isotope Laboratory, Andover, MA, DLM-3653)

655

656 Samples in extraction mix were vortexed for 10 min at 4°C and centrifugated at 15,000x rpm for
657 10 min at 4°C to pellet insoluble material. 20 μ L of the soluble polar metabolite supernatant was
658 moved to sample vials for analysis by LC-MS as previously described (Sullivan et al., 2019b,
659 2019a).

660

661 Once LC-MS analysis was performed, XCalibur 2.2 software (Thermo Fisher Scientific) was used
662 for metabolite identification. External standard libraries were used to confirm the m/z and retention
663 time for each metabolite. For quantitative analysis, when internal standards were available,
664 external standard libraries were used to quantitate concentrations of stable isotope labeled
665 internal standards in the extraction mix. Once internal standard concentrations were obtained,
666 peak area of an unlabeled metabolite in the media samples was compared with the peak area
667 of the quantified internal standard to determine the concentration of the unlabeled metabolite.

668

669 For metabolites for which an internal standard was not present in the extraction mix, external
670 standard libraries were used to perform analysis of relevant metabolite concentrations. Briefly,
671 the peak area of the metabolite was normalized to the peak area of a labelled stable isotope
672 internal standard with the closest elution time, both in media samples and external standard library
673 dilutions. Using the external standard library dilutions, we created a standard curve based on the
674 linear relationship of the normalized peak area and the concentration of the metabolite, excluding
675 those metabolites with an $r^2 < 0.95$. This standard curve was then used to interpolate the
676 concentration of the metabolite in the media sample.

677

678 **Cell Isolation from tumors**

679 Murine cancer cell lines were derived from tumor bearing C57Bl6J *LSL-Kras*^{G12D/+}; *Trp53*^{flox/flox};
680 *LSL-YFP*; *Pdx1-Cre* (KP^{l/-}CY) mice to allow for fluorescent lineage tracing and isolation of cancer
681 cells (Li et al., 2018). To isolate cancer cells from these tumors, the tumors were chopped finely

682 and digested with 30mg/mL dipase II (Roche 28405100), 10mg/mL collagenase I (Worthington
683 LS004194) and 10mg/mL DNase by constant rotation at 37C for 30 min. Digestion was quenched
684 with 0.5M Ethylenediaminetetraacetic acid (EDTA) and cells were passed through a 70 μ M filter
685 and rinsed with PBS before platting in RPMI-1640 (Corning 50-020-PC). YFP+ Cancer cells from
686 each tumor were sorted twice on a BD FACSaria II Cell Sorter.

687

688 **Cell lines and cell culture**

689 Use of cancer cell lines was approved by the Institutional Biosafety Committee (IBC no. 1560).
690 All cell lines were tested quarterly for mycoplasma using the MycoAlert Mycoplasma Detection
691 Kit (Lonza LT07-318). All cells were cultured in Heracell vios 160i incubators (Thermofisher) at
692 37°C and 5% CO₂. Cell lines were routinely maintained in RPMI-1640 or TIFM supplemented
693 with 10% diaFBS (Gibco, #26400-044, Lot#2244935P).

694

695 All cell culture was performed in static culture conditions. TIFM contains substantially lower levels
696 of nutrients than most standard media formulations. Therefore, to ensure that there was not
697 nutrient deprivation in static cultures the following modifications to standard tissue culture
698 practices were made. Cells were cultured in larger volumes of media (8mL/35mm diameter well)
699 to prevent depletion of nutrients during the culture. Additionally, media were replaced every 24
700 hrs. We routinely measured concentration of the most rapidly consumed nutrient, glucose, using
701 a GlucCell glucometer (Bechard et al., 2020) to ensure that cultures used in experiments did not
702 experience a greater than 30% drop in glucose availability, which is within the range of KP^{-/-}C IF
703 glucose concentration measurements (Sullivan et al., 2019a). Lastly, passaging TIFM maintained
704 cells using standard trypsin (0.025%)/EDTA solution to detach cells leads to loss of viability upon
705 replating of cells. Therefore, cells were detached with a 1:1 mixture of 0.5% trypsin-EDTA
706 (Thermofisher) and serum free RPMI-1640 media (Thermofisher). This allowed routine passaging

707 and plating of cells with less loss of viability. These modifications were followed for both TIFM and
708 RPMI cultured cells.

709

710 **Determining cellular proliferation rate**

711 Quantification of cellular proliferation rate was performed by sulforhodamine B (SRB) assay as
712 described (Lien et al., 2021). Briefly, 10,000-15,000 cells were plated in 12-well plates in triplicates
713 for each condition and allowed to attach overnight. After attachment, one set of triplicate wells
714 were fixed by adding 10% trichloroacetic acid (TCA) to the media and incubating plates in 4°C to
715 provide an 'initial day' value. Media was changed on remaining cultures and were allowed to grow
716 for the indicated number of days. At the end of the growth period, cells were fixed by adding 10%
717 trichloroacetic acid (TCA) to the media and incubating plates in 4°C for at least one hour. All wells,
718 including the initial day wells were washed with deionized water, air-dried at room temperature,
719 and dyed with SRB in 1% acetic acid for 30 min. After, cells were washed with 1% acetic acid
720 three times and dried at 30°C for 15 minutes. SRB dye was solubilized with 10mM Tris pH 10.5
721 by gentle horizontal shaking for 5 min. Absorbance (abs) was measured at 510 nm in a clear 96-
722 well plate using a BioTek Cytation 1 Cell Imaging Multi-Mode Reader. After all measurements
723 were normalized to an averaged blank measurement (wells without cells but with media), growth
724 rate was calculated using the following equation:

725

726 Doublings/day = $\log_2(\text{Final Day Abs}_{510}/\text{Initial Day Abs}_{510}) / \text{number of days elapsed in culture}$
727 period

728

729 **Consumption/Release (Co/Re) analysis**

730 Measurement of cellular consumption and release of metabolites was performed according to
731 previous publications (Hosios et al., 2016; Jain et al., 2012; Muir et al., 2017). For the experimental
732 set up, 100,000-150,000 cells were seeded in 2mL of culture medium in six-well plates with 3

733 technical replicates per condition per time point and allowed to attach overnight. The following
734 day (day 1), cells were washed twice with 2mL PBS. They were then given 2mL of media, either
735 TIFM or RPMI. An unspent media sample was collected at this time as well and stored at -80 °C.
736 Cell number on day 1 was measured using a Vi-CELL XR Cell Viability Analyzer (Beckman
737 Coulter). 24h later (day 2), 1mL of spent media from cells was collected, centrifuged and stored
738 at -80 °C. Cell number was counted again. Quantification of metabolite levels in unspent (day 1)
739 and day 2 cell culture media samples was performed as described in **Quantification of**
740 **metabolite levels in cell culture media.**

741
742 To calculate Co/Re rates of a given metabolite, cell numbers on day 1 and day 2 were used to fit
743 an exponential growth function, which integrated yielded the number of (cell · days) the day 2
744 media was conditioned. Changes in nutrient concentration in cultures were then normalized to
745 this integrated growth curve to yield metabolite Co/Re per cell per unit of time.

746
747 **Experimental set up for consumption of arginine by GC-MS analysis**
748 Cells were plated as described for consumption/release (Co/Re) analysis as described in
749 **Consumption/Release (Co/Re) analysis.** The following day, cells were changed into either TIFM
750 or TIFM without citrulline and ornithine. Both media were supplemented with 20 μ M extracellular
751 arginine. Day 1 and day 2 media samples were collected and cell numbers were measured as in
752 **Consumption/Release (Co/Re) analysis.**

753
754 10 μ L of each media sample were mixed 10 μ L of water containing $^{13}\text{C}_6, ^{15}\text{N}_4$ arginine at 20 μ M and
755 600 μ L cold HPLC grade methanol. The solution was then vortexed for 10 min, and centrifuged at
756 21,000xg for 10 min. Finally, 450 μ L of each extract was aliquoted, dried under nitrogen gas and
757 stored at -80°C before further analysis. Sample derivatization GC-MS was then used to measure

758 the arginine concentration in each media sample as described below in **GC-MS analysis of**
759 **arginine.**

760

761 **RNA extraction, library preparation and transcriptomic analyses**

762 *Isolation of cultured and tumor cancer cell samples*

763 mPDAC3-TIFM cells were plated at 200,000 (TIFM) to 350,000 (RPMI) cells per 6cm plate in
764 triplicate cultures. RNA was extracted from cells 24 hrs later when the cells were proliferating
765 exponentially, the cells were trypsinized and isolated by fluorescence activated cell sorting
766 (FACS) for RNA extraction. For the *in vivo*, condition cells were isolated by FACS from end stage
767 orthotopic mPDAC3-TIFM tumors, as described in **Cell Isolation from tumors**.

768

769 *RNA extraction*

770 Cells from all conditions were sorted by FACS prior to RNA extraction to eliminate the FACS
771 sorting process as a confounder between cultured mPDAC3-TIFM cells and those isolated from
772 orthotopic tumors. For FACS sorting, cells were stained with DAPI (750 ng/mL) to separate
773 dead/dying cells from live cells, and live YFP+/DAPI- cells were sorted with a BD FACSAria II Cell
774 Sorter with a 100 μ m nozzle directly into Qiagen RLT RNA extraction buffer. The ratio of RNA
775 extraction buffer to sorted cellular volume was kept at 100 μ L of sorted sample per 350 μ L of RNA
776 extraction buffer. Total messenger RNA (mRNA) was extracted using the RNeasy Micro Kit
777 (Qiagen #74004) and RNA quality and quantity was assessed using the 2100 Bioanalyzer System
778 (Agilent).

779

780 *Library preparation and sequencing*

781 Strand-specific RNA-SEQ libraries were prepared using an TruSEQ mRNA RNA-SEQ library
782 protocol (Illumina). Library quality and quantity was assessed using the Agilent bio-analyzer and
783 libraries were sequenced using an Illumina NovaSEQ6000.

784

785 *Transcriptomic analyses*

786 Data processing and analysis was done using the R-based Galaxy platform
787 (<https://usegalaxy.org/>) (Afgan et al., 2018). Quality control was performed prior and after
788 concatenation of the raw data with the tools *MultiQC* and *FastQC* respectively. All samples
789 passed the quality check with most showing ~20% sequence duplication, sequence alignment
790 greater or equal to 80%, below and below 50% GC coverage, all of which is acceptable and/or
791 indicative of good quality for RNASeq samples (Dündar et al., 2015; Parekh et al., 2016). Samples
792 were then aligned, and counts were generated using the tools *HISAT2* (Galaxy Version
793 2.2.1+galaxy0, NCBI genome build GRCm38/mm10) and *featureCounts* (Galaxy Version
794 2.0.1+galaxy1), respectively. Differential expression analyses were performed with *limma* (Galaxy
795 Version 3.48.0+galaxy1) and Genome Set Enrichment Analysis (GSEA) with *fgsea* (Galaxy
796 Version 1.8.0+galaxy1) or GSEAPreranked (v6.0.12, [https://gsea-
797 msigdb.github.io/gseapreranked-gpmodule/v6/index.html](https://gsea-msigdb.github.io/gseapreranked-gpmodule/v6/index.html)) (Jain et al., 2012; Reich et al., 2006;
798 Subramanian et al., 2005). GSEA plots were generated as previously described (Morris et al.,
799 2019).

800

801 **Immunoblot analysis**

802 For immunoblotting analysis, cells growing in log phase in a 6 well dish were washed with 2mL of
803 PBS and lysed in 100µL RIPA buffer [25 mM Tris-Cl, 150 mM NaCl, 0.5% sodium deoxycholate,
804 1% Triton X-100, 1x cOmplete protease inhibitor (Roche)]. Cells were scraped and the resulting
805 lysate was clarified by centrifugation at 21,000xg for 10 min. Protein concentration of the lysate
806 was determined by BCA assay (Thermofisher). Proteins (20–30µg) were resolved on SDS-PAGE,
807 4 to 12% Bis-Tris Gels (Invitrogen) and transferred to a polyvinylidene difluoride membrane using
808 the iBlot 2 Dry Blotting System (Invitrogen). Membrane was blocked with Intercept Blocking Buffer

809 (Li-cor) at room temperature for 2h, stained with primary and secondary antibodies and then
810 visualized using a LI-COR imager with Image Studio software version 2.1.10.

811
812 The following primary antibodies were used: Ass1 (Atlas HPA020896; 1:200 dilution), Vinculin
813 (Proteintech 66305-1-Ig; 1:10000 dilution), Beta-Actin (Proteintech 660009-1-Ig; 1:10000 dilution).
814 The following secondary antibodies: IRDye 680LT Goat Anti-Mouse Ig (Li-cor G926-68020;
815 1:10000 dilution) IRDye 800CW Goat anti-Rabbit IgG (Li-cor 926-32211; 1:10000 dilution), IRDye
816 800CW Goat anti-Mouse IgG (Li-cor 926-32210; 1:10000 dilution)

817
818 **qRT-PCR analysis**
819 RNA was extracted using the RNeasy Mini Kit and optional on-the-column DNase digestion
820 (Qiagen). Extracted RNA was converted to cDNA by reverse transcription using the High-Capacity
821 cDNA Reverse Transcription Kit (Applied Biosystems). Expression levels of *Sdc1* transcript were
822 amplified using PowerUp SYBR Green Master Mix (Invitrogen) and custom primers
823 (Supplementary File 2). Quantification was performed using a QuantStudio 3 Real-Time PCR
824 System (Applied Biosystems). The average change in threshold cycle (ΔCt) values was
825 determined for each of the samples relative to *Gapdh* levels and compared with vehicle control
826 ($\Delta\Delta Ct$). Finally relative gene expression was calculated as $(2^{-\Delta\Delta Ct})$. Experiments were performed
827 in with triplicate cultures and RNA extraction.

828
829 **GC-MS analysis of arginine**
830 Dry polar metabolites extracts from intracellular extracts or media samples were derivatized with
831 16 μ L MOX reagent (ThermoFisher) for 1h at 37°C and then with 20 μ L 1% tert-
832 butyldimethylchlorosilane in N-tert-Butyldimethylsilyl-N-methyltrifluoroacetamide (Sigma Aldrich)
833 for 3h at 60°C. Derivatized samples were analyzed with an 8890 gas chromatograph system
834 (Agilent Technologies) with a HP-5ms Ultra Inert column (Agilent Technologies) coupled with an

835 5997B Mass Selective Detector (MSD) mass spectrometer (Agilent Technologies). Helium was
836 used as the carrier gas at a flow rate of 1.2 mL/min. One microliter of sample was injected in
837 splitless mode at 280°C. After injection, the GC oven was held at 100°C for 1 min. and increased
838 to 300°C at 3.5 °C/min. The oven was then ramped to 320°C at 20 °C/min. and held for 5 min. at
839 this 320°C. The MS system operated under electron impact ionization at 70 eV and the MS source
840 was held at 230 °C and quadrupole at 150 °C. Detector was set in scanning mode with a scanned
841 ion range of 100–650 m/z. Mass isotopomer distribution was determined using ion fragments
842 integration for each individual metabolite (Lewis et al., 2014) and natural abundance correction
843 was performed using IsoCor (Millard et al., 2019).

844

845 **Isotopic labeling experiments in cell culture and intracellular metabolite extraction**

846 To measure steady state labeling of polar metabolites by citrulline in cultured cells, triplicate
847 cultures of 150,000 cells/well were seeded in a 6 well dish in 2 mL of medium. Cells were allowed
848 to attach overnight. The following day cells were washed twice with PBS and then incubated with
849 8mL for 8 or 24h in TIFM with ¹³C₅-citrulline (Cambridge Isotope Laboratories, CLM-8653) added
850 at TIFM concentrations. Immediately after the labeling period, cells were quickly washed with
851 ~8mL of ice-cold blood bank saline. Cellular metabolites were extracted with addition of 600µL of
852 an ice-cold methanol followed by scraping the cells on ice. The solution was then vortexed for 10
853 min, and centrifuged at 21,000xg for 10 min. 450µL of each extract was aliquoted to fresh sample
854 tubes, dried under nitrogen gas and stored at -80°C before further analysis.

855

856 **CRISPR knockout and re-expression of Ass1**

857 sgRNAs targeting Ass1 (Supplementary File 2) were generated through the Broad Institute's
858 Genetic Perturbation Platform Web Portal (<https://portals.broadinstitute.org/gpp/public/>).
859 Oligonucleotide pairs were manufactured by Integrated DNA Technologies (IDT) and cloned into
860 lentiCRISPRv2 (Addgene: #52961) as previously described (Sanjana et al., 2014; Shalem et al.,

861 2014). HEK293T cells (Dharmacon) were transfected with the *Ass1* targeting lentiCRISPRv2
862 vectors and the lentiviral packing plasmids psPAX2 (Addgene: #12260) and pMD2.G (Addgene:
863 #12259). Medium was replaced after 24h, and lentivirus was harvested after 48h. Subconfluent
864 mPDAC3-TIFM cells were infected with lentivirus using 8 μ g/mL polybrene and infected cells were
865 selected in 2 μ g/mL puromycin and maintained with 100 μ M arginine. Single cell clones with
866 immunoblot-confirmed loss of *Ass1* were selected. A single cell clone without detectable *Ass1*
867 expression was transformed with a lentivirus produced as above with a vector encoding CMV-
868 driven murine *Ass1* cDNA that would not be targeted by the *Ass1* sgRNA (VectorBuilder).

869

870 **shRNA knockdown of *Sdc1***

871 Hairpin sequences targeting *Sdc1* were obtained from (Fellmann et al., 2013). Oligonucleotide
872 pairs were manufactured by IDT and cloned into a lentiviral LT3GEPIR vector (Addgene:
873 #111177) to allow for doxycycline-inducible repression of gene expression. Lentiviral transfection
874 and transformation were performed as described in **CRISPR knockout and re-expression of**
875 ***Ass1*** and successfully transformed cells were selected and maintained with 2 μ g/mL puromycin.
876 Cells transformed with LT3GEPIR without an shRNA were used as a control.

877

878 **Analysis macropinocytic capacity by DQ-BSA**

879 The macropinocytic capacity of PDAC cells was assessed using a DQ Red BSA (Invitrogen)
880 uptake assay. Cells were seeded at either 15,000 cells/well for 12 wells or 50,000 cells/well for 6
881 wells and allowed to attach over night. The following day the media was replaced with fresh media
882 + 0.02mg/mL of the DQ Red BSA fluorogenic substrate and cells were harvested at different
883 timepoints for up to 6 hours. Cells were then washed with PBS, trypsinized, washed again with
884 PBS, fixed in 4% paraformaldehyde for 15 minutes at 4°C and DQ Red BSA fluorescence was
885 quantified by flow cytometry in at least 10,000 cells per sample.

886

887 **Animal Experiments**

888 Animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC,
889 Protocol #72587) and performed in strict accordance with the Guide for the Care and Use of
890 Laboratory Animals of the National Institutes of Health (Bethesda, MD). Mice were housed in a
891 pathogen-free animal facility at the University of Chicago with a 12 h light/12 h dark cycle, 30–
892 70% humidity and 68–74°F temperatures maintained.

893

894 *Orthotopic tumor implantation and monitoring*

895 C57BL6J mice 8-12 weeks of age were purchased from Jackson Laboratories. 250,000
896 cells/tumor were resuspended in 20 μ L of 5.6mg/mL Cultrex Reduced Growth Factor Basement
897 Membrane Extract (RGF BME; R&D Biosystems #3433-010-01) and serum-free RPMI (SF-RPMI)
898 solution. The BME:cellular mixture was injected into the splenic lobe of the pancreas of the mice
899 as previously described (Erstad et al., 2018). After implantation mice, were monitored daily by
900 abdominal palpation.

901

902 *In vivo Arg1 knockout*

903 LysM-Cre and Arg1^{fl/fl} C57BL6J mice were bred to generate LysM-Cre ^{+/+}; Arg1^{fl/fl} and litter mate
904 control Arg1^{fl/fl} mice. All mice were genotyped using primes described in Supplementary File 2.
905 Animal husbandry was carried out in strict accordance with the University of Chicago Animal
906 Resource Center guidelines. Tumor implantation as described above was performed in mice at
907 8-12 weeks of age.

908

909 *In vivo arginase-1 pharmacological inhibition*

910 Orthotopic tumors were implanted in C57BL6J mice at 8-12 weeks of age. 4 weeks after induction,
911 once tumors were close end stage disease, CB-1158 (MedChem Express) dissolved in sterile
912 water was administered by oral gavage at 100mg/kg as previously described (Steggerda et al.,

913 2017). The acidity caused by the HCl in the drug solution was neutralized by adding equivalent
914 amount of NaOH and an equivalent NaCl in sterile water solution was prepared as vehicle. 2hrs
915 after treatment with CB-1158 or vehicle, mice were euthanized by cervical dislocation, and tumors
916 were harvested for TIF extraction.

917

918 *In vivo ¹⁵N₂-glutamine tracing*

919 Orthotopic tumors were implanted in C57BL6J mice at 8-12 weeks of age. 4 weeks after induction
920 tumor-bearing mice and healthy littermate controls were treated with ¹⁵N₂-glutamine (Cambridge
921 Isotope Laboratory #NLM-1328-PK) dissolved in sterile phosphate buffered saline at
922 7.2mg/animal by tail vein injection as previously described (Lane et al., 2015). Briefly, animals
923 were dosed three times at 15-minute intervals. 15 minutes after the final dose, ~100uL of blood
924 were be obtained by submandibular sampling as described previously (Parasuraman et al., 2010)
925 and animals were euthanized. The tumor or pancreas from each animal was then harvested and
926 immediately snap frozen using a BioSqueezer (BioSpec) cooled with liquid nitrogen and stored at
927 -80°F until further analysis.

928

929 *IF isolation from PDAC tumors*

930 IF was isolated from tumors as described before (Sullivan et al., 2019a). Briefly, tumors were
931 rapidly dissected after euthanizing animals. Tumors were weighed and rinsed in blood bank saline
932 solution (150 mM NaCl) and blotted on filter paper (VWR, Radnor, PA, 28298–020). The process
933 of dissection and tumor preparation took < 3min. Tumors were cut in half and put onto 20μm nylon
934 mesh filters (Spectrum Labs, Waltham, MA, 148134) on top of 50 mL conical tubes, and
935 centrifuged for 10min. at 4°C at 400xg. IF was then collected, snap-frozen in liquid nitrogen and
936 stored at -80°C until further analysis.

937

938 **HPLC-MS-MS analysis amino acid levels in PDAC IF samples upon arginase inhibition**

939 IF samples were analyzed by High-Performance Liquid Chromatography and Tandem Mass
940 Spectrometry (HPLC-MS-MS). Specifically, the system consisted of a Thermo Q-Exactive in line
941 with an electrospray source and an Ultimate3000 (Thermo) series HPLC consisting of a binary
942 pump, degasser, and auto-sampler outfitted with a Xbridge Amide column (Waters; dimensions
943 of 3.0 mm × 100 mm and a 3.5 µm particle size). The mobile phase A contained 95% (vol/vol)
944 water, 5% (vol/vol) acetonitrile, 10 mM ammonium hydroxide, 10 mM ammonium acetate, pH =
945 9.0; B was 100% Acetonitrile. The gradient was as following: 0 min, 15% A; 2.5 min, 64% A; 12.4
946 min, 40% A; 12.5 min, 30% A; 12.5-14 min, 30% A; 14-21 min, 15% A with a flow rate of 150
947 µL/min. The capillary of the ESI source was set to 275 °C, with sheath gas at 35 arbitrary units,
948 auxiliary gas at 5 arbitrary units and the spray voltage at 4.0 kV. In positive/negative polarity
949 switching mode, an m/z scan range from 60 to 900 was chosen and MS1 data was collected at a
950 resolution of 70,000. The automatic gain control (AGC) target was set at 1×10^6 and the maximum
951 injection time was 200 ms. The targeted ions were subsequently fragmented, using the higher
952 energy collisional dissociation (HCD) cell set to 30% normalized collision energy in MS2 at a
953 resolution power of 17,500. Besides matching m/z, target metabolites are identified by matching
954 either retention time with analytical standards and/or MS2 fragmentation pattern. Data acquisition
955 and analysis were carried out by Xcalibur 4.1 software and Tracefinder 4.1 software, respectively
956 (both from Thermo Fisher Scientific).

957

958 **Measurement of intratumoral metabolite levels and metabolite isotope labeling patterns**

959 Cryogenically frozen tumor pieces were ground to a fine homogenous powder with a liquid
960 nitrogen cooled mortar and pestle. ~30mg of tissue powder was weighed into sample tubes, and
961 metabolites were extracted with 600µL HPLC grade methanol, 300µL HPLC grade water, and
962 400µL chloroform. Samples were vortexed for 10min at 4°C, centrifuged 21,000xg at 4°C for 10
963 min. 400µL of the aqueous top layer was removed into a new tube and dried under nitrogen. Dried
964 tumor extracts were resuspended in 100µL HPLC grade water and LC-MS analysis was

965 performed as described before(Sullivan et al., 2019b, 2019a). XCalibur 2.2 software (Thermo
966 Fisher Scientific) was used identification and relative quantification for metabolites. Natural
967 abundance correction was performed using the IsoCor (Millard et al., 2019).

968

969 **Measuring intratumor and IF concentrations of amino acids**

970 To quantitatively measure IF amino acid abundance, polar metabolites were extracted from 5 μ L
971 IF samples using 45 μ L 75:25:0.1 HPLC grade acetonitrile:methanol:formic acid extraction mix
972 into which a mixture of isotopically labeled amino acids of known concentrations (Cambridge
973 Isotope Laboratories, MSK-A2-1.2) was added. Samples were vortexed for 10 min, and
974 centrifuged at maximum speed for 10 min. 30 μ L of each extract was removed and dried under
975 nitrogen gas and stored -80°C until further analysis by LC-MS as described in **Quantification of**
976 **metabolite levels in cell culture media**. Amino acids amounts in IF samples were determined
977 by comparison of peak areas of unlabeled amino acids with peak areas of labeled amino acids
978 that were present at known amounts. Concentrations were determined by dividing the amino acid
979 amount by the 5 μ L volume of the IF sample.

980

981 To measure amino acid amounts in intratumoral samples, intratumoral metabolites were extracted
982 from ~30mg and dried down in **Measurement of intratumoral metabolite levels and metabolite**
983 **isotope labeling patterns**. Dried samples were rehydrated with 2:1 methanol:water into which
984 a mixture of isotopically labeled amino acids of known concentrations (Cambridge Isotope
985 Laboratories, MSK-A2-1.2) was added. Samples were then analyzed by LC-MS as described in
986 **Quantification of metabolite levels in cell culture media**. Amino acid amounts per tumor
987 weight were determined by comparison of peak areas of unlabeled amino acids with peak areas
988 of labeled amino acids that were present at known amounts and dividing by the mass of tumor
989 extracted.

990

991 To compare metabolite concentrations between tumor and TIF samples, the density for orthotopic
992 mPDAC tumors was needed to convert amino acid amount per unit tumor mass into a
993 concentration (amino acid amount per unit volume). The density of freshly isolated mPDAC3-
994 RPMI tumors was measured by measuring tumor mass and calculating the volume (V) of the
995 tumors with the following formula:

996
$$V = \frac{4}{3} * \pi * A * B * C$$

997 where A, B, C are the lengths of the semi-axes of an ellipsoidal shape, which were measured
998 from tumors with an electronic caliper (Thermofisher). Tumor density was then calculated by
999 dividing the tumor mass by the calculated volume. Tumor density was then used to convert amino
1000 acid amount per tumor mass measurements into an intratumoral concentration.

1001

1002 **Human samples regulation**

1003 Human histology samples were obtained under approval by the Institutional Review Boards at the
1004 University of Chicago (IRB 17-0437).

1005

1006 **Immunohistochemistry**

1007 For ARG1 and ASS1 staining, the slides were stained using Leica Bond RX automatic stainer.
1008 Dewax (AR9222, Leica Microsystems) and rehydration procedure were performed in the system
1009 and a 20 min treatment of epitope retrieval solution I (Leica Biosystems, AR9961) was applied.
1010 anti-Arginase-1 (1:100, Cell Signaling #93668) or anti-Ass1 (1:100, Atlas HPA020896;) and were
1011 applied on tissue sections for 60min. Antigen-antibody binding was detected using Bond polymer
1012 refine detection (Leica Biosystems, DS9800). The tissue sections were counter stained with
1013 hematoxylin and covered with cover glasses.

1014

1015 For F4/80 staining, tissue sections were deparaffinized and rehydrated with xylenes and serial
1016 dilutions of EtOH to deionized water. They were incubated in antigen retrieval buffer (DAKO,

1017 S1699) and heated in steamer at 97°C for 20 minutes. Anti-mouse F4/80 antibody (1:200,
1018 MCA497GA, AbD Serotec) was applied on tissue sections for 1hr at room temperature. Tissue
1019 sections were washed with Tris buffered saline and then incubated with biotinylated anti-rat IgG
1020 (10 µg/ml, BA-4001, Vector laboratories) for 30 min at room temperature. Antigen-antibody
1021 binding was detected by Elite kit (PK-6100, Vector Laboratories) and DAB (DAKO, K3468)
1022 system.

1023

1024 **Acknowledgements**

1025 We thank all members of the Muir lab for many discussions, feedback, and support. We thank
1026 Lev Becker and Catherine Reardon from the University of Chicago for the generous gift of
1027 LysM-Cre and Arg1fl/fl mice and guidance with the use of these animals. We thank Brandon
1028 Faubert for the useful discussions about in vivo isotope labelling experiments and critical review
1029 of the manuscript. We also thank Mark Sullivan and Laura Danai for discussions and feedback
1030 about the manuscript. We thank the Metabolite Profiling Core Facility at the Whitehead Institute
1031 for processing metabolomics samples and assistance with data analysis. We thank the
1032 Metabolomics Core Facility at Robert H. Lurie Comprehensive Cancer Center of Northwestern
1033 University for assistance with metabolomics services. We thank The University of Chicago
1034 Animal Resources Center (RRID:SCR_021806), especially Ani Solanki, for their assistance with
1035 animal models of pancreatic cancer. We thank The University of Chicago Genomics Facility
1036 (RRID:SCR_019196), Human Tissue Resource Center (RRID:SCR_019199) and Cytometry
1037 and Antibody Technology Facility (RRID: SCR_017760) for their invaluable technical
1038 assistance. All of these facilities receive financial support from the Cancer Center Support Grant
1039 (P30CA014599). We also thank resources at the University of Chicago dedicated to promoting
1040 the recruitment and retention and support of underrepresented minority (URM) students in
1041 science, including The Graduate Recruitment Initiative Team (GRIT), and those promoting
1042 accessible mental health resources, including UChicago Student Wellness. This work was

1043 supported by grants to AM from the American Cancer Society (IRG-16-222-56), the University
1044 of Chicago Cancer Center Support Grant (P30 CA14599), the Pancreatic Cancer Action
1045 Network (2020 Career Development Award), the Brinson Foundation, the Cancer Research
1046 Foundation and the Ludwig Center for Metastasis Research. KAF was supported by the
1047 National Cancer Institute (R01 CA200310). JJAS, PBJ and CS were supported by the NCI (T32
1048 CA009594). JJAS also received support from the MaryEllen Connelan Award, the Robert C. and
1049 Mary Jane Gallo Scholarship Fund and the Harper Fellowship at the University of Chicago.

1050

1051 **Competing interests**

1052 No competing interests declared

1053

1054 **Data availability**

1055 Sequencing data from Figures 1 and 3 have been deposited in GEO under accession code
1056 GSE199163: <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199163>. Source data
1057 files with measured metabolite concentrations and isotopic labeling patterns are provided for
1058 Figures 2 and 4 and we are in the process of depositing raw mass spectra from these
1059 experiments in Metabolomics Workbench. Prior to upload, this data is available upon request.

1060

1061 **References**

1062 Ackermann, T., and Tardito, S. (2019). Cell Culture Medium Formulation and Its Implications in
1063 Cancer Metabolism. *Trends Cancer Res.* 5, 329–332. .

1064 Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Cech, M., Chilton, J., Clements,
1065 Coraor, N., Grüning, B.A., et al. (2018). The Galaxy platform for accessible, reproducible
1066 and collaborative biomedical analyses: 2018 update. *Nucleic Acids Res.* 46, W537–W544. .

1067 Altea-Manzano, P., Cuadros, A.M., Broadfield, L.A., and Fendt, S.-M. (2020). Nutrient
1068 metabolism and cancer in the in vivo context: a metabolic game of give and take. *EMBO Rep.*
1069 21, e50635. .

1070 Auciello, F.R., Bulusu, V., Oon, C., Tait-Mulder, J., Berry, M., Bhattacharyya, S., Tumanov, S.,
1071 Allen-Petersen, B.L., Link, J., Kendersky, N.D., et al. (2019). A Stromal Lysolipid-Autotxin
1072 Signaling Axis Promotes Pancreatic Tumor Progression. *Cancer Discov.* 9, 617–627. .

1073 Banh, R.S., Biancur, D.E., Yamamoto, K., Sohn, A.S.W., Walters, B., Kuljanin, M., Gikandi, A.,
1074 Wang, H., Mancias, J.D., Schneider, R.J., et al. (2020). Neurons Release Serine to Support
1075 mRNA Translation in Pancreatic Cancer. *Cell* 0. <https://doi.org/10.1016/j.cell.2020.10.016>.

1076 Bardeesy, N., Aguirre, A.J., Chu, G.C., Cheng, K.-H., Lopez, L.V., Hezel, A.F., Feng, B.,
1077 Brennan, C., Weissleder, R., Mahmood, U., et al. (2006). Both p16(INK4a) and the p19(Arf)-p53
1078 pathway constrain progression of pancreatic adenocarcinoma in the mouse. *Proc. Natl. Acad. Sci. U. S. A.* 103, 5947–5952. .

1080 Bechard, M.E., Smalling, R., Hayashi, A., Zhong, Y., Word, A.E., Campbell, S.L., Tran, A.V.,
1081 Weiss, V.L., Iacobuzio-Donahue, C., Wellen, K.E., et al. (2020). Pancreatic cancers suppress
1082 negative feedback of glucose transport to reprogram chromatin for metastasis. *Nat. Commun.* 11, 4055. .

1084 Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and
1085 powerful approach to multiple testing. *J. R. Stat. Soc.* 57, 289–300. .

1086 Bi, J., Wu, S., Zhang, W., and Mischel, P.S. (2018). Targeting cancer's metabolic co-
1087 dependencies: A landscape shaped by genotype and tissue context. *Biochimica et Biophysica Acta (BBA) - Reviews on Cancer* 1870, 76–87. .

1089 Boelens, P.G., van Leeuwen, P.A.M., Dejong, C.H.C., and Deutz, N.E.P. (2005). Intestinal renal
1090 metabolism of L-citrulline and L-arginine following enteral or parenteral infusion of L-alanyl-L-
1091 [2,15N]glutamine or L-[2,15N]glutamine in mice. *Am. J. Physiol. Gastrointest. Liver Physiol.* 289,
1092 G679-85. .

1093 Buescher, J.M., Antoniewicz, M.R., Boros, L.G., Burgess, S.C., Brunengraber, H., Clish, C.B.,
1094 DeBerardinis, R.J., Feron, O., Frezza, C., Ghesquiere, B., et al. (2015). A roadmap for
1095 interpreting (13)C metabolite labeling patterns from cells. *Curr. Opin. Biotechnol.* 34, 189–201. .

1096 Caldwell, R.W., Rodriguez, P.C., Toque, H.A., Narayanan, S.P., and Caldwell, R.B. (2018).
1097 Arginase: A Multifaceted Enzyme Important in Health and Disease. *Physiol. Rev.* 98, 641–665. .

1098 Canale, F.P., Basso, C., Antonini, G., Perotti, M., Li, N., Sokolovska, A., Neumann, J., James,
1099 M.J., Geiger, S., Jin, W., et al. (2021). Metabolic modulation of tumours with engineered
1100 bacteria for immunotherapy. *Nature* 1–5. .

1101 Cantor, J.R. (2019). The Rise of Physiologic Media. *Trends Cell Biol.* 29, 854–861. .

1102 Cantor, J.R., Abu-Remaileh, M., Kanarek, N., Freinkman, E., Gao, X., Louissaint, A., Jr, Lewis,
1103 C.A., and Sabatini, D.M. (2017). Physiologic Medium Rewires Cellular Metabolism and Reveals
1104 Uric Acid as an Endogenous Inhibitor of UMP Synthase. *Cell* 169, 258–272.e17. .

1105 Chisolm, D.A., and Weinmann, A.S. (2018). Connections Between Metabolism and Epigenetics
1106 in Programming Cellular Differentiation. *Annu. Rev. Immunol.* 36, 221–246. .

1107 Clausen, B.E., Burkhardt, C., Reith, W., Renkawitz, R., and Förster, I. (1999). Conditional gene
1108 targeting in macrophages and granulocytes using LysMcre mice. *Transgenic Res.* 8, 265–277. .

1109 Closs, E.I., Simon, A., Vékony, N., and Rotmann, A. (2004). Plasma membrane transporters for
1110 arginine. *J. Nutr.* 134, 2752S-2759S; discussion 2765S-2767S. .

1111 Crump, N.T., Hadjinicolaou, A.V., Xia, M., Walsby-Tickle, J., Gileadi, U., Chen, J.-L., Setshedi,
1112 M., Olsen, L.R., Lau, I.-J., Godfrey, L., et al. (2021). Chromatin accessibility governs the
1113 differential response of cancer and T cells to arginine starvation. *Cell Rep.* 35, 109101. .

1114 Dai, Z., Ramesh, V., and Locasale, J.W. (2020). The evolving metabolic landscape of chromatin
1115 biology and epigenetics. *Nat. Rev. Genet.* 21, 737–753. .

1116 DeBerardinis, R.J., and Chandel, N.S. (2016). Fundamentals of cancer metabolism. *Sci Adv* 2,
1117 e1600200. .

1118 Diehl, K.L., and Muir, T.W. (2020). Chromatin as a key consumer in the metabolite economy.
1119 *Nat. Chem. Biol.* 16, 620–629. .

1120 Dündar, F., Skrabanek, L., and Zumbo, P. (2015). Introduction to differential gene expression
1121 analysis using RNA-seq. <https://doi.org/10.5281/ZENODO.3985047>.

1122 El Kasmi, K.C., Qualls, J.E., Pesce, J.T., Smith, A.M., Thompson, R.W., Henao-Tamayo, M.,
1123 Basaraba, R.J., König, T., Schleicher, U., Koo, M.-S., et al. (2008). Toll-like receptor-induced
1124 arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. *Nat.*
1125 *Immunol.* 9, 1399–1406. .

1126 Elia, I., and Fendt, S.-M. (2016). In vivo cancer metabolism is defined by the nutrient
1127 microenvironment. *Transl. Cancer Res.* 5, S1284–S1287. .

1128 Erstad, D.J., Sojoodi, M., Taylor, M.S., Ghoshal, S., Razavi, A.A., Graham-O'Regan, K.A.,
1129 Bardeesy, N., Ferrone, C.R., Lanuti, M., Caravan, P., et al. (2018). Orthotopic and heterotopic
1130 murine models of pancreatic cancer and their different responses to FOLFIRINOX
1131 chemotherapy. *Dis. Model. Mech.* 11. <https://doi.org/10.1242/dmm.034793>.

1132 Faubert, B., Solmonson, A., and DeBerardinis, R.J. (2020). Metabolic reprogramming and
1133 cancer progression. *Science* 368. <https://doi.org/10.1126/science.aaw5473>.

1134 Fellmann, C., Hoffmann, T., Sridhar, V., Hopfgartner, B., Muhar, M., Roth, M., Lai, D.Y.,
1135 Barbosa, I.A.M., Kwon, J.S., Guan, Y., et al. (2013). An optimized microRNA backbone for
1136 effective single-copy RNAi. *Cell Rep.* 5, 1704–1713. .

1137 Francescone, R., Barbosa Vendramini-Costa, D., Franco-Barraza, J., Wagner, J., Muir, A., Lau,
1138 A.N., Gabitova, L., Pazina, T., Gupta, S., Luong, T., et al. (2020). Netrin G1 promotes
1139 pancreatic tumorigenesis through cancer associated fibroblast driven nutritional support and
1140 immunosuppression. *Cancer Discov.* <https://doi.org/10.1158/2159-8290.CD-20-0775>.

1141 Garcia-Bermudez, J., Baudrier, L., La, K., Zhu, X.G., Fidelin, J., Sviderskiy, V.O.,
1142 Papagiannakopoulos, T., Molina, H., Snuderl, M., Lewis, C.A., et al. (2018). Aspartate is a
1143 limiting metabolite for cancer cell proliferation under hypoxia and in tumours. *Nat. Cell Biol.* 20,
1144 775–781. .

1145 Garcia-Bermudez, J., Williams, R.T., Guarecuco, R., and Birsoy, K. (2020). Targeting
1146 extracellular nutrient dependencies of cancer cells. *Mol Metab* 33, 67–82. .

1147 Geiger, R., Rieckmann, J.C., Wolf, T., Basso, C., Feng, Y., Fuhrer, T., Kogadeeva, M., Picotti, P., Meissner, F., Mann, M., et al. (2016). L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. *Cell* 167, 829-842.e13. .

1150 Goel, S., Duda, D.G., Xu, L., Munn, L.L., Boucher, Y., Fukumura, D., and Jain, R.K. (2011). Normalization of the vasculature for treatment of cancer and other diseases. *Physiol. Rev.* 91, 1071-1121. .

1153 Gouirand, V., Guillaumond, F., and Vasseur, S. (2018). Influence of the tumor microenvironment on cancer cells metabolic reprogramming. *Front. Oncol.* 8. <https://doi.org/10.3389/fonc.2018.00117>.

1156 Grima-Reyes, M., Martinez-Turtos, A., Abramovich, I., Gottlieb, E., Chiche, J., and Ricci, J.-E. (2021). Physiological impact of in vivo stable isotope tracing on cancer metabolism. *Molecular Metabolism* 53, 101294. .

1159 Gullino, P.M., Clark, S.H., and Grantham, F.H. (1964). THE INTERSTITIAL FLUID OF SOLID TUMORS. *Cancer Res.* 24, 780-794. .

1161 Haines, R.J., Pendleton, L.C., and Eichler, D.C. (2011). Argininosuccinate synthase: at the center of arginine metabolism. *Int. J. Biochem. Mol. Biol.* 2, 8-23. .

1163 Hilmi, M., Bartholin, L., and Neuzillet, C. (2018). Immune therapies in pancreatic ductal adenocarcinoma: Where are we now? *World J. Gastroenterol.* 24, 2137-2151. .

1165 Hingorani, S.R., Wang, L., Multani, A.S., Combs, C., Deramaudt, T.B., Hruban, R.H., Rustgi, A.K., Chang, S., and Tuveson, D.A. (2005). Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. *Cancer Cell* 7, 469-483. .

1169 Hirata, E., and Sahai, E. (2017). Tumor Microenvironment and Differential Responses to Therapy. *Cold Spring Harb. Perspect. Med.* 7. <https://doi.org/10.1101/csphperspect.a026781>.

1171 Ho, P.-C., Bihuniak, J.D., Macintyre, A.N., Staron, M., Liu, X., Amezquita, R., Tsui, Y.-C., Cui, G., Micevic, G., Perales, J.C., et al. (2015). Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses. *Cell* 162, 1217-1228. .

1174 Horvath, P., Aulner, N., Bickle, M., Davies, A.M., Nery, E.D., Ebner, D., Montoya, M.C., Östling, P., Pietiäinen, V., Price, L.S., et al. (2016). Screening out irrelevant cell-based models of disease. *Nat. Rev. Drug Discov.* 15, 751-769. .

1177 Hosios, A.M., Hecht, V.C., Danai, L.V., Johnson, M.O., Rathmell, J.C., Steinhauser, M.L., Manalis, S.R., and Vander Heiden, M.G. (2016). Amino Acids Rather than Glucose Account for the Majority of Cell Mass in Proliferating Mammalian Cells. *Dev. Cell* 36, 540-549. .

1180 Jain, M., Nilsson, R., Sharma, S., Madhusudhan, N., Kitami, T., Souza, A.L., Kafri, R., Kirschner, M.W., Clish, C.B., and Mootha, V.K. (2012). Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. *Science* 336, 1040-1044. .

1183 Jensen, C., and Teng, Y. (2020). Is It Time to Start Transitioning From 2D to 3D Cell Culture? *Front Mol Biosci* 7, 33. .

1185 Lane, A.N., Yan, J., and Fan, T.W.-M. (2015). *13C Tracer Studies of Metabolism in Mouse*
1186 *Tumor Xenografts*. *Bio Protoc* 5. <https://doi.org/10.21769/bioprotoc.1650>.

1187 Lee, J.J., Bernard, V., Semaan, A., Monberg, M.E., Huang, J., Stephens, B.M., Lin, D.,
1188 Rajapakshe, K.I., Weston, B.R., Bhutani, M.S., et al. (2021). Elucidation of tumor-stromal
1189 heterogeneity and the ligand-receptor interactome by single-cell transcriptomics in real-world
1190 pancreatic cancer biopsies. *Clin. Cancer Res.* 27, 5912–5921. .

1191 Lee, J.S., Adler, L., Karathia, H., Carmel, N., Rabinovich, S., Auslander, N., Keshet, R.,
1192 Stettner, N., Silberman, A., Agemy, L., et al. (2018). Urea cycle dysregulation generates
1193 clinically relevant genomic and biochemical signatures. *Cell* 174, 1559-1570.e22. .

1194 Lewis, C.A., Parker, S.J., Fiske, B.P., McCloskey, D., Gui, D.Y., Green, C.R., Vokes, N.I., Feist,
1195 A.M., Vander Heiden, M.G., and Metallo, C.M. (2014). Tracing compartmentalized NADPH
1196 metabolism in the cytosol and mitochondria of mammalian cells. *Mol. Cell* 55, 253–263. .

1197 Li, F., and Simon, M.C. (2020). Cancer Cells Don't Live Alone: Metabolic Communication within
1198 Tumor Microenvironments. *Dev. Cell* <https://doi.org/10.1016/j.devcel.2020.06.018>.

1199 Li, J., Byrne, K.T., Yan, F., Yamazoe, T., Chen, Z., Baslan, T., Richman, L.P., Lin, J.H., Sun,
1200 Y.H., Rech, A.J., et al. (2018). Tumor Cell-Intrinsic Factors Underlie Heterogeneity of Immune
1201 Cell Infiltration and Response to Immunotherapy. *Immunity* 49, 178-193.e7. .

1202 Lien, E.C., Westermark, A.M., Zhang, Y., Yuan, C., Li, Z., Lau, A.N., Sapp, K.M., Wolpin, B.M.,
1203 and Vander Heiden, M.G. (2021). Low glycaemic diets alter lipid metabolism to influence tumour
1204 growth. *Nature* 1–6. .

1205 Lyssiotis, C.A., and Kimmelman, A.C. (2017). Metabolic interactions in the tumor
1206 microenvironment. *Trends Cell Biol.* 27, 863–875. .

1207 Martínez-Reyes, I., and Chandel, N.S. (2021). Cancer metabolism: looking forward. *Nat. Rev.*
1208 *Cancer* <https://doi.org/10.1038/s41568-021-00378-6>.

1209 Metcalf, K.J., Alazzeh, A., Werb, Z., and Weaver, V.M. (2021). Leveraging microenvironmental
1210 synthetic lethaliies to treat cancer. *J. Clin. Invest.* 131. <https://doi.org/10.1172/JCI143765>.

1211 Michl, J., Park, K.C., and Swietach, P. (2019). Evidence-based guidelines for controlling pH in
1212 mammalian live-cell culture systems. *Commun. Biol.* 2, 144. .

1213 Millard, P., Delépine, B., Guionnet, M., Heuillet, M., Bellvert, F., and Létisse, F. (2019). IsoCor:
1214 isotope correction for high-resolution MS labeling experiments. *Bioinformatics* 35, 4484–4487. .

1215 Miret, J.J., Kirschmeier, P., Koyama, S., Zhu, M., Li, Y.Y., Naito, Y., Wu, M., Malladi, V.S.,
1216 Huang, W., Walker, W., et al. (2019). Suppression of Myeloid Cell Arginase Activity leads to
1217 Therapeutic Response in a NSCLC Mouse Model by Activating Anti-Tumor Immunity. *J*
1218 *Immunother Cancer* 7, 32. .

1219 Mootha, V.K., Lindgren, C.M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, J.,
1220 Puigserver, P., Carlsson, E., Ridderstråle, M., Laurila, E., et al. (2003). PGC-1alpha-responsive
1221 genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.
1222 *Nat. Genet.* 34, 267–273. .

1223 Morris, J.P., 4th, Yashinskie, J.J., Koche, R., Chandwani, R., Tian, S., Chen, C.-C., Baslan, T.,
1224 Marinkovic, Z.S., Sánchez-Rivera, F.J., Leach, S.D., et al. (2019). α -Ketoglutarate links p53 to
1225 cell fate during tumour suppression. *Nature* 573, 595–599. .

1226 Muir, A., Danai, L.V., Gui, D.Y., Waingarten, C.Y., Lewis, C.A., and Vander Heiden, M.G.
1227 (2017). Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to
1228 glutaminase inhibition. *Elife* 6. <https://doi.org/10.7554/eLife.27713>.

1229 Muir, A., Danai, L.V., and Vander Heiden, M.G. (2018). Microenvironmental regulation of cancer
1230 cell metabolism: implications for experimental design and translational studies. *Dis. Model.
1231 Mech.* 11. <https://doi.org/10.1242/dmm.035758>.

1232 Murray, P.J. (2016). Amino acid auxotrophy as a system of immunological control nodes. *Nat.
1233 Immunol.* 17, 132–139. .

1234 Nagarajan, A., Malvi, P., and Wajapeyee, N. (2016). Oncogene-directed alterations in cancer
1235 cell metabolism. *Trends Cancer* 2, 365–377. .

1236 Olive, K.P., Jacobetz, M.A., Davidson, C.J., Gopinathan, A., McIntyre, D., Honess, D., Madhu,
1237 B., Goldgraben, M.A., Caldwell, M.E., Allard, D., et al. (2009). Inhibition of Hedgehog signaling
1238 enhances delivery of chemotherapy in a mouse model of pancreatic cancer. *Science* 324,
1239 1457–1461. .

1240 Palm, W. (2019). Metabolic functions of macropinocytosis. *Philos. Trans. R. Soc. Lond. B Biol.
1241 Sci.* 374, 20180285. .

1242 Pampaloni, F., Reynaud, E.G., and Stelzer, E.H.K. (2007). The third dimension bridges the gap
1243 between cell culture and live tissue. *Nat. Rev. Mol. Cell Biol.* 8, 839–845. .

1244 Parasuraman, S., Raveendran, R., and Kesavan, R. (2010). Blood sample collection in small
1245 laboratory animals. *J. Pharmacol. Pharmacother.* 1, 87–93. .

1246 Parekh, S., Ziegenhain, C., Vieth, B., Enard, W., and Hellmann, I. (2016). The impact of
1247 amplification on differential expression analyses by RNA-seq. *Sci. Rep.* 6, 25533. .

1248 Provenzano, P.P., Cuevas, C., Chang, A.E., Goel, V.K., Von Hoff, D.D., and Hingorani, S.R.
1249 (2012). Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic
1250 ductal adenocarcinoma. *Cancer Cell* 21, 418–429. .

1251 Rabinovich, S., Adler, L., Yizhak, K., Sarver, A., Silberman, A., Agron, S., Stettner, N., Sun, Q.,
1252 Brandis, A., Helbling, D., et al. (2015). Diversion of aspartate in ASS1-deficient tumours fosters
1253 de novo pyrimidine synthesis. *Nature* 527, 379–383. .

1254 Raghavan, S., Winter, P.S., Navia, A.W., Williams, H.L., DenAdel, A., Lowder, K.E., Galvez-
1255 Reyes, J., Kalekar, R.L., Mulugeta, N., Kapner, K.S., et al. (2021). Microenvironment drives cell
1256 state, plasticity, and drug response in pancreatic cancer. *Cell* 184, 6119-6137.e26. .

1257 Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., and Mesirov, J.P. (2006). GenePattern
1258 2.0. *Nat. Genet.* 38, 500–501. .

1259 Reid, M.A., and Kong, M. (2013). Dealing with hunger: Metabolic stress responses in tumors. *J.
1260 Carcinog.* 12, 17. .

1261 Reid, M.A., Dai, Z., and Locasale, J.W. (2017). The impact of cellular metabolism on chromatin
1262 dynamics and epigenetics. *Nat. Cell Biol.* 19, 1298–1306. .

1263 Reinfeld, B.I., Madden, M.Z., Wolf, M.M., Chytil, A., Bader, J.E., Patterson, A.R., Sugiura, A.,
1264 Cohen, A.S., Ali, A., Do, B.T., et al. (2021). Cell-programmed nutrient partitioning in the tumour
1265 microenvironment. *Nature* 1–7. .

1266 Rogers, L.C., and Van Tine, B.A. (2019). Innate and adaptive resistance mechanisms to
1267 arginine deprivation therapies in sarcoma and other cancers. *Canc. Drug Resist.* 2, 516–526. .

1268 Rogers, L.C., Zhou, J., Baker, A., Schutt, C.R., Panda, P.K., and Van Tine, B.A. (2021).
1269 Intracellular arginine-dependent translation sensor reveals the dynamics of arginine starvation
1270 response and resistance in ASS1-negative cells. *Cancer Metab.* 9, 4. .

1271 Sanjana, N.E., Shalem, O., and Zhang, F. (2014). Improved vectors and genome-wide libraries
1272 for CRISPR screening. *Nat. Methods* 11, 783–784. .

1273 Sciacovelli, M., Dugourd, A., Jimenez, L.V., Yang, M., Nikitopoulou, E., Costa, A.S.H., Tronci,
1274 L., Caraffini, V., Rodrigues, P., Schmidt, C., et al. (2021). Nitrogen partitioning between
1275 branched-chain amino acids and urea cycle enzymes sustains renal cancer progression.

1276 Sela, Y., Li, J., Maheswaran, S., Norgard, R., Yuan, S., Hubbi, M., Doeppner, M., Xu, J.P., Ho,
1277 E.S., Mesaros, C., et al. (2022). Bcl-xL Enforces a Slow-Cycling State Necessary for Survival in
1278 the Nutrient-Deprived Microenvironment of Pancreatic Cancer. *Cancer Res.* 82, 1890–1908. .

1279 Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T., Heckl, D., Ebert,
1280 B.L., Root, D.E., Doench, J.G., et al. (2014). Genome-scale CRISPR-Cas9 knockout screening
1281 in human cells. *Science* 343, 84–87. .

1282 Sherman, M.H., Yu, R.T., Tseng, T.W., Sousa, C.M., Liu, S., Truitt, M.L., He, N., Ding, N.,
1283 Liddle, C., Atkins, A.R., et al. (2017). Stromal cues regulate the pancreatic cancer epigenome
1284 and metabolome. *Proc. Natl. Acad. Sci. U. S. A.* 114, 1129–1134. .

1285 Sosnowska, A., Chlebowska-Tuz, J., Matryba, P., Pilch, Z., Greig, A., Wolny, A., Grzywa, T.M.,
1286 Rydzynska, Z., Sokolowska, O., Rygiel, T.P., et al. (2021). Inhibition of arginase modulates T-
1287 cell response in the tumor microenvironment of lung carcinoma. *Oncoimmunology* 10, 1956143.
1288 .

1289 Sousa, C.M., Biancur, D.E., Wang, X., Halbrook, C.J., Sherman, M.H., Zhang, L., Kremer, D.,
1290 Hwang, R.F., Witkiewicz, A.K., Ying, H., et al. (2016). Pancreatic stellate cells support tumour
1291 metabolism through autophagic alanine secretion. *Nature* 536, 479–483. .

1292 Steggerda, S.M., Bennett, M.K., Chen, J., Emberley, E., Huang, T., Janes, J.R., Li, W.,
1293 MacKinnon, A.L., Makkouk, A., Marguier, G., et al. (2017). Inhibition of arginase by CB-1158
1294 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. *J
1295 Immunother Cancer* 5, 101. .

1296 Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A.,
1297 Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment
1298 analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc.
1299 Natl. Acad. Sci. U. S. A.* 102, 15545–15550. .

1300 Sullivan, L.B., Luengo, A., Danai, L.V., Bush, L.N., Diehl, F.F., Hosios, A.M., Lau, A.N., Elmiligy,
1301 S., Malstrom, S., Lewis, C.A., et al. (2018). Aspartate is an endogenous metabolic limitation for
1302 tumour growth. *Nat. Cell Biol.* 20, 782–788. .

1303 Sullivan, M.R., Danai, L.V., Lewis, C.A., Chan, S.H., Gui, D.Y., Kunchok, T., Dennstedt, E.A.,
1304 Vander Heiden, M.G., and Muir, A. (2019a). Quantification of microenvironmental metabolites in
1305 murine cancers reveals determinants of tumor nutrient availability. *Elife* 8.
1306 <https://doi.org/10.7554/elife.44235>.

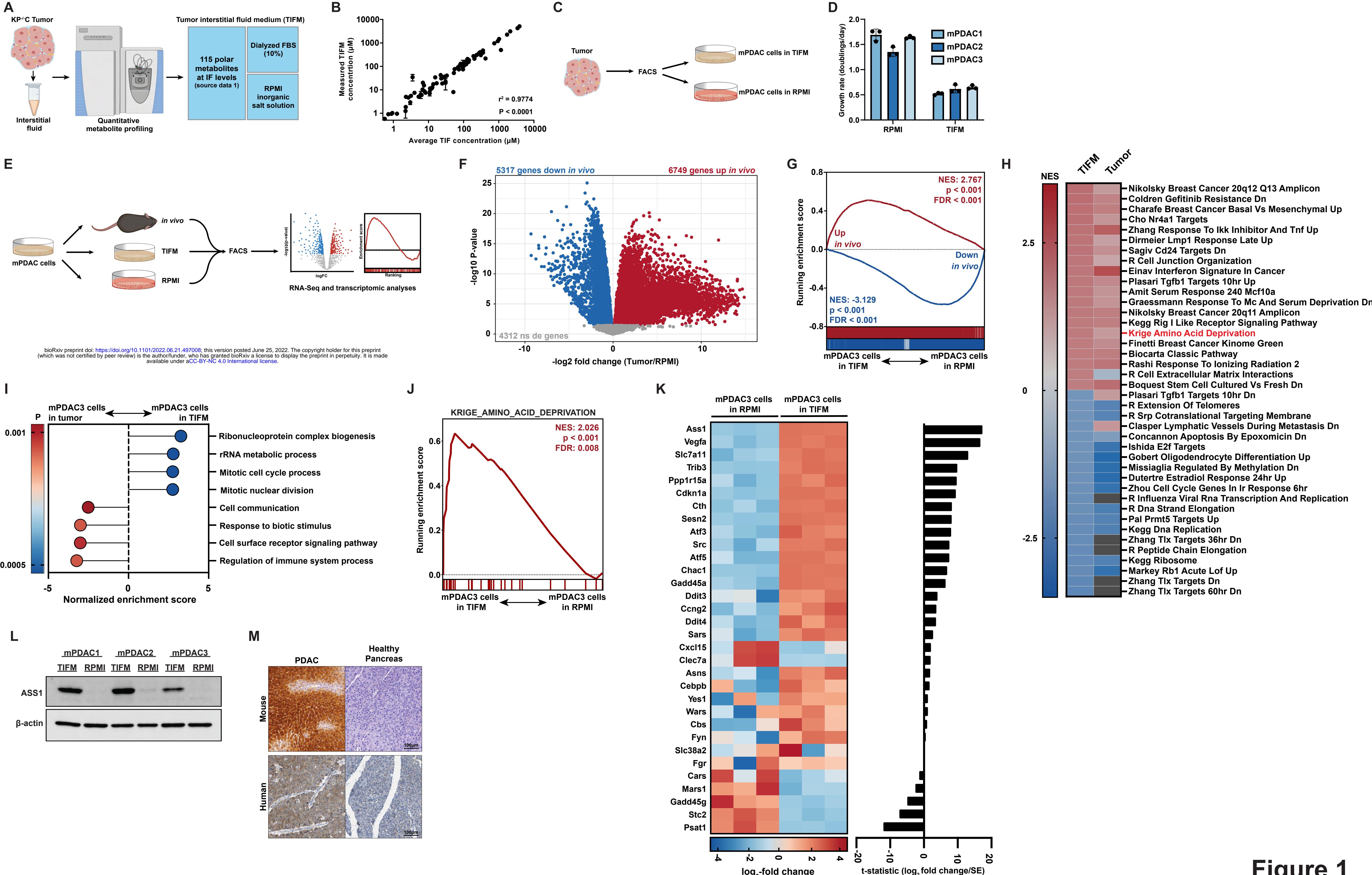
1307 Sullivan, M.R., Lewis, C.A., and Muir, A. (2019b). Isolation and Quantification of Metabolite
1308 Levels in Murine Tumor Interstitial Fluid by LC/MS. *Bio Protoc* 9, e3427. .

1309 Trovato, R., Fiore, A., Sartori, S., Canè, S., Giugno, R., Cascione, L., Paiella, S., Salvia, R., De
1310 Sanctis, F., Poffe, O., et al. (2019). Immunosuppression by monocytic myeloid-derived
1311 suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3. *J.*
1312 *Immunother. Cancer* 7, 255. .

1313 Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson,
1314 Å., Kampf, C., Sjöstedt, E., Asplund, A., et al. (2015). Tissue-based map of the human
1315 proteome. *Science* 347. <https://doi.org/10.1126/science.1260419>.

1316 Vande Voorde, J., Ackermann, T., Pfetzer, N., Sumpton, D., Mackay, G., Kalna, G., Nixon, C.,
1317 Blyth, K., Gottlieb, E., and Tardito, S. (2019). Improving the metabolic fidelity of cancer models
1318 with a physiological cell culture medium. *Sci Adv* 5, eaau7314. .

1319 Vander Heiden, M.G., and DeBerardinis, R.J. (2017). Understanding the Intersections between
1320 Metabolism and Cancer Biology. *Cell* 168, 657–669. .


1321 Vecchio, E., Caiazza, C., Mimmi, S., Avagliano, A., Iaccino, E., Brusco, T., Nisticò, N., Maisano,
1322 D., Aloisio, A., Quinto, I., et al. (2021). Metabolites Profiling of Melanoma Interstitial Fluids
1323 Reveals Uridine Diphosphate as Potent Immune Modulator Capable of Limiting Tumor Growth.
1324 *Front Cell Dev Biol* 9, 730726. .

1325 Wiig, H., and Swartz, M.A. (2012). Interstitial fluid and lymph formation and transport:
1326 physiological regulation and roles in inflammation and cancer. *Physiol. Rev.* 92, 1005–1060. .

1327 Yao, W., Rose, J.L., Wang, W., Seth, S., Jiang, H., Taguchi, A., Liu, J., Yan, L., Kapoor, A.,
1328 Hou, P., et al. (2019). Syndecan 1 is a critical mediator of macropinocytosis in pancreatic
1329 cancer. *Nature* 568, 410–414. .

1330 Zaytouni, T., Tsai, P.-Y., Hitchcock, D.S., DuBois, C.D., Freinkman, E., Lin, L., Morales-
1331 Oyarvide, V., Lenehan, P.J., Wolpin, B.M., Mino-Kenudson, M., et al. (2017). Critical role for
1332 arginase 2 in obesity-associated pancreatic cancer. *Nat. Commun.* 8, 242. .

1333 Zhu, Y., Herndon, J.M., Sojka, D.K., Kim, K.-W., Knolhoff, B.L., Zuo, C., Cullinan, D.R., Luo, J.,
1334 Bearden, A.R., Lavine, K.J., et al. (2017). Tissue-resident macrophages in pancreatic ductal
1335 adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression.
1336 *Immunity* 47, 597. .

KP^{-/-} C Tumor

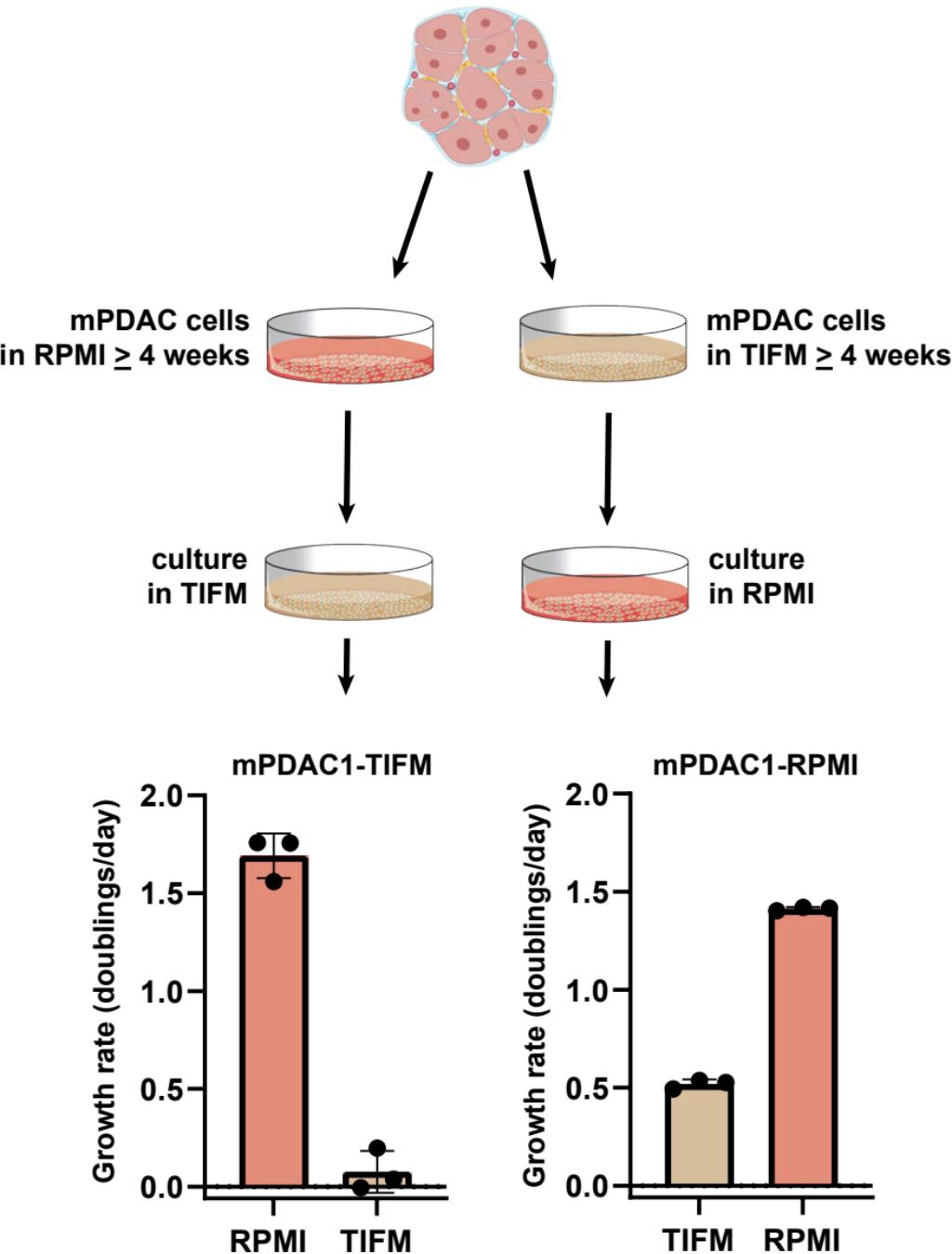


Figure 1 Supplement 1

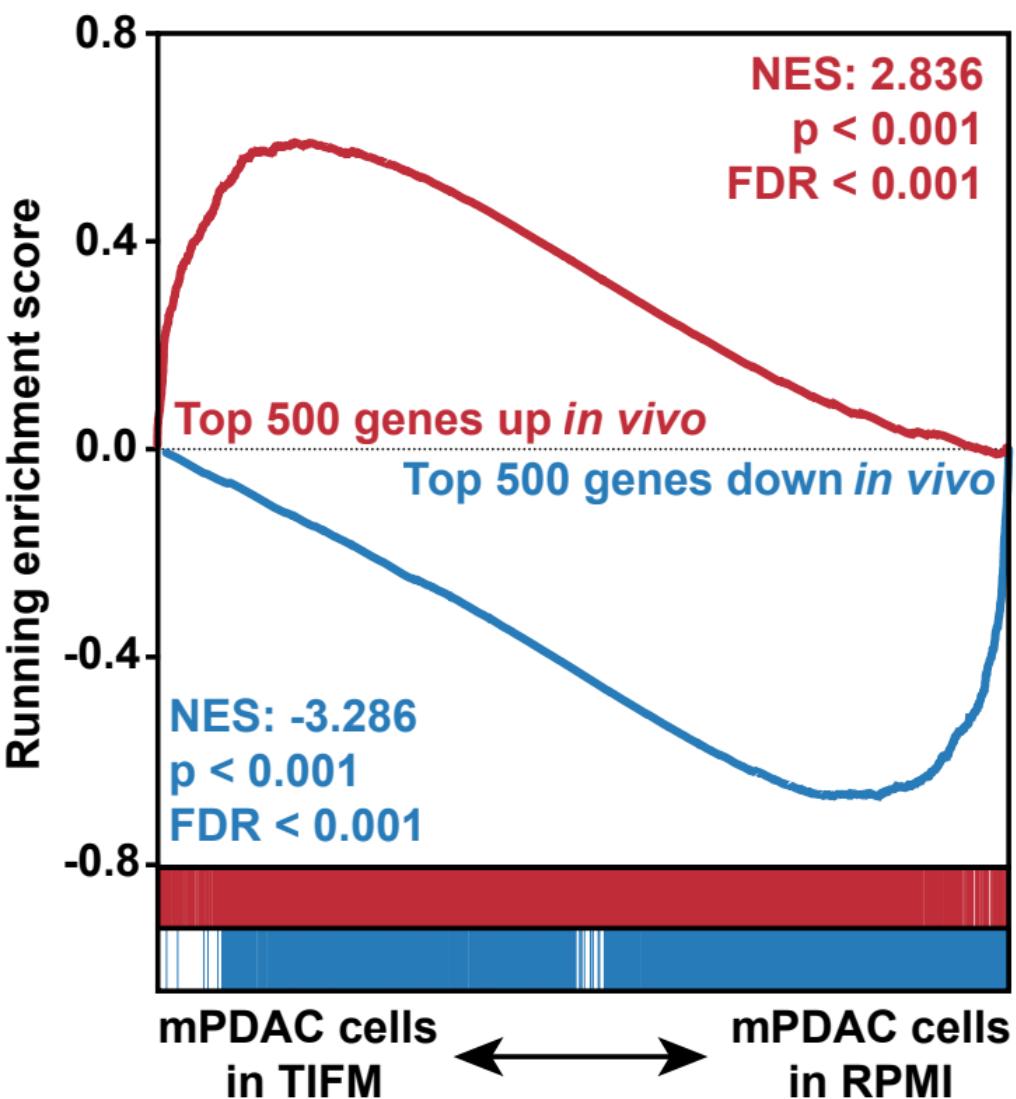


Figure 1 Supplement 2

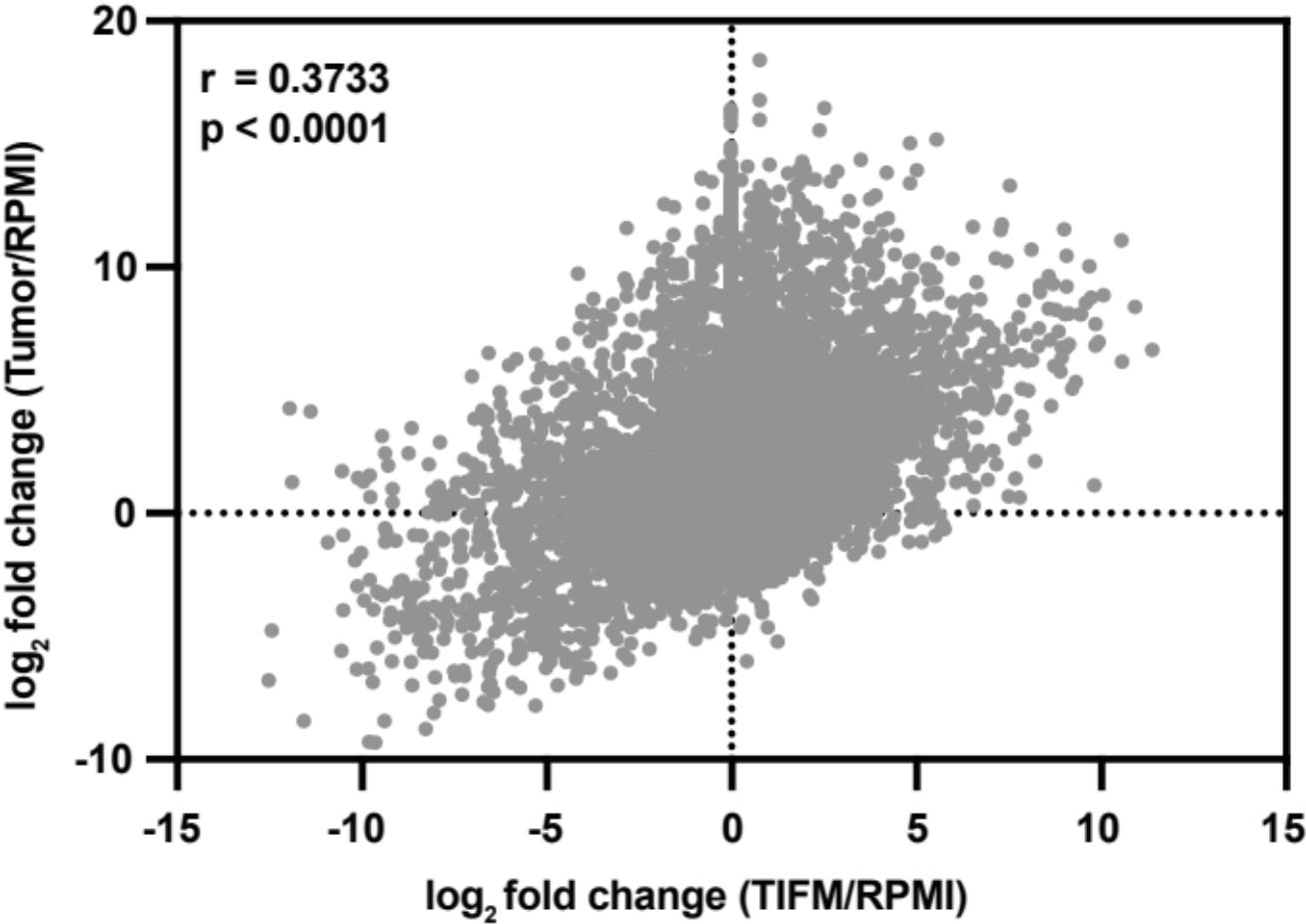


Figure 1 Supplement 3

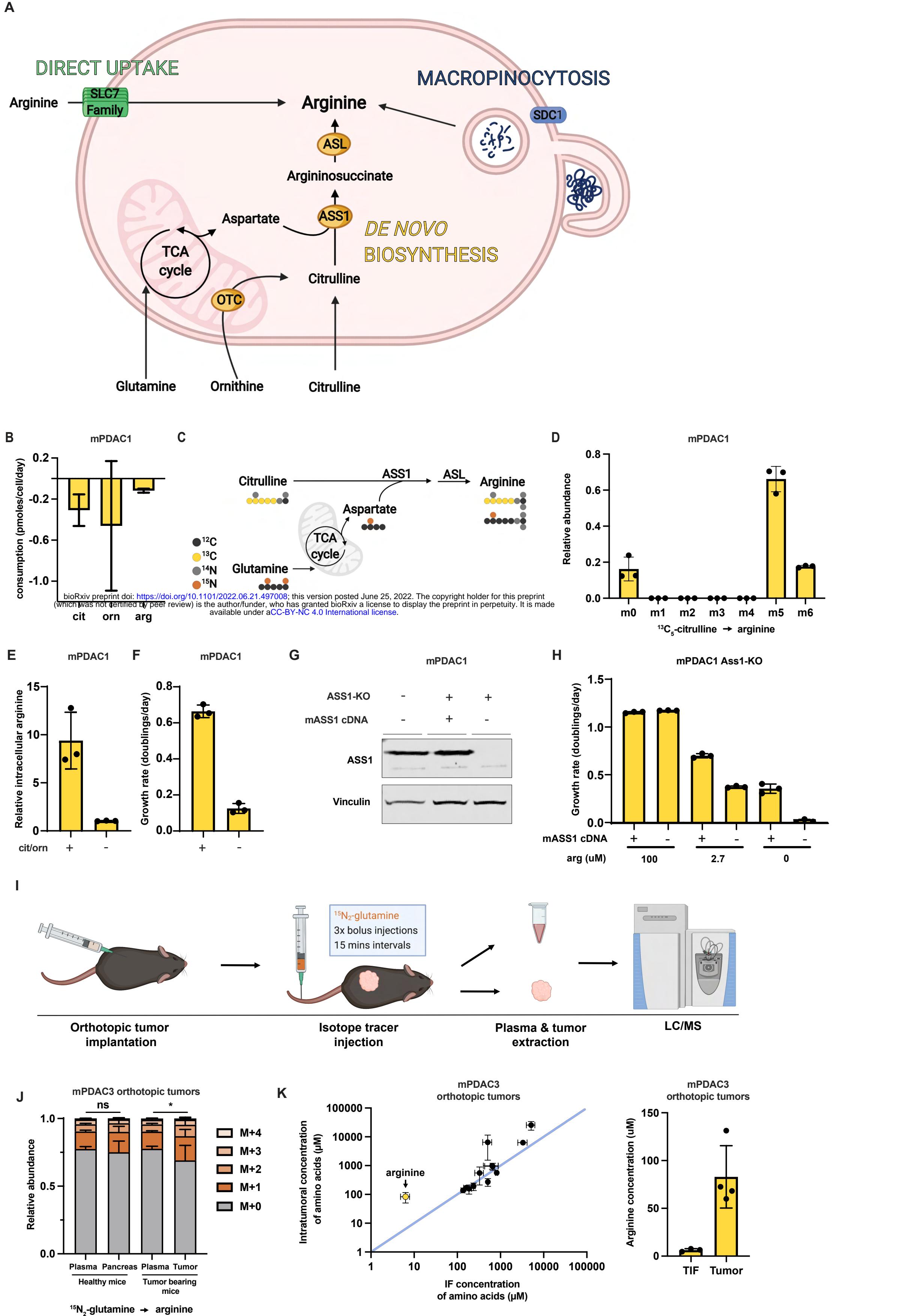


Figure 2

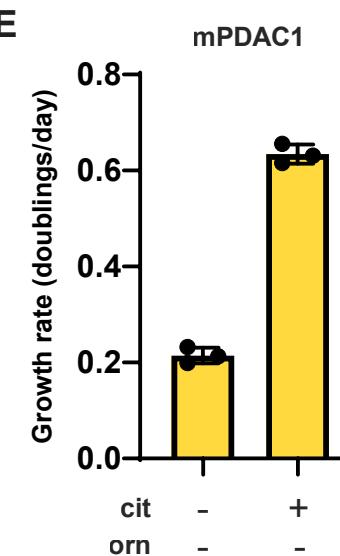
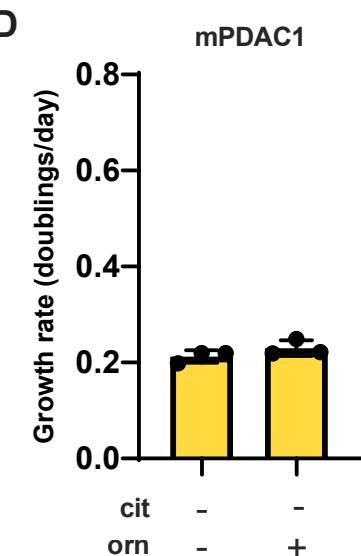
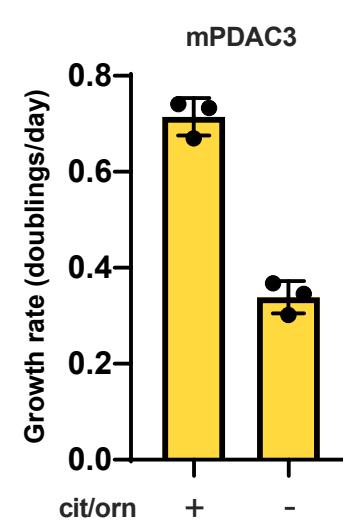
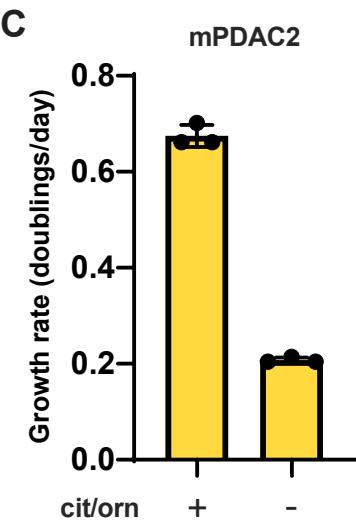
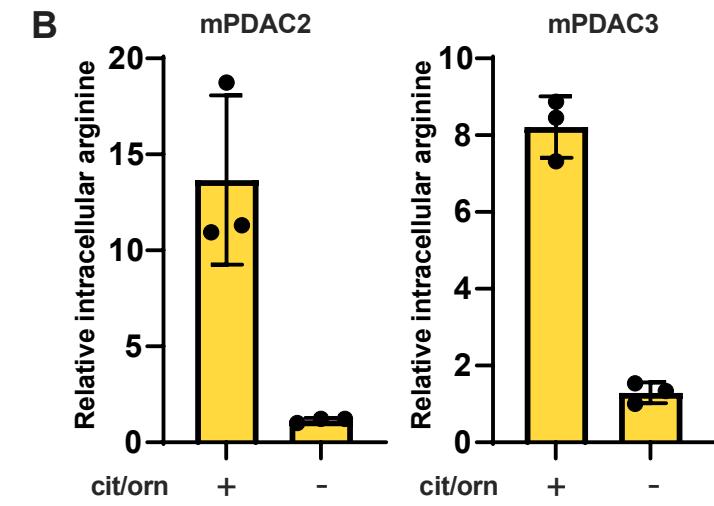
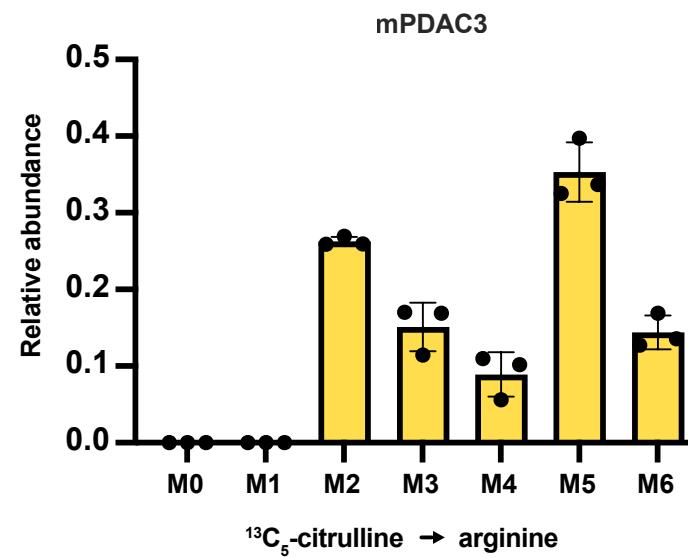
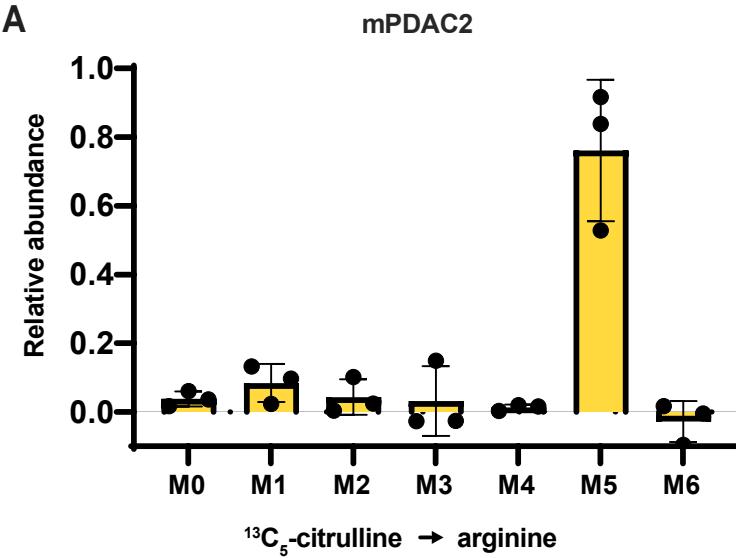








Figure 2 Supplement 1

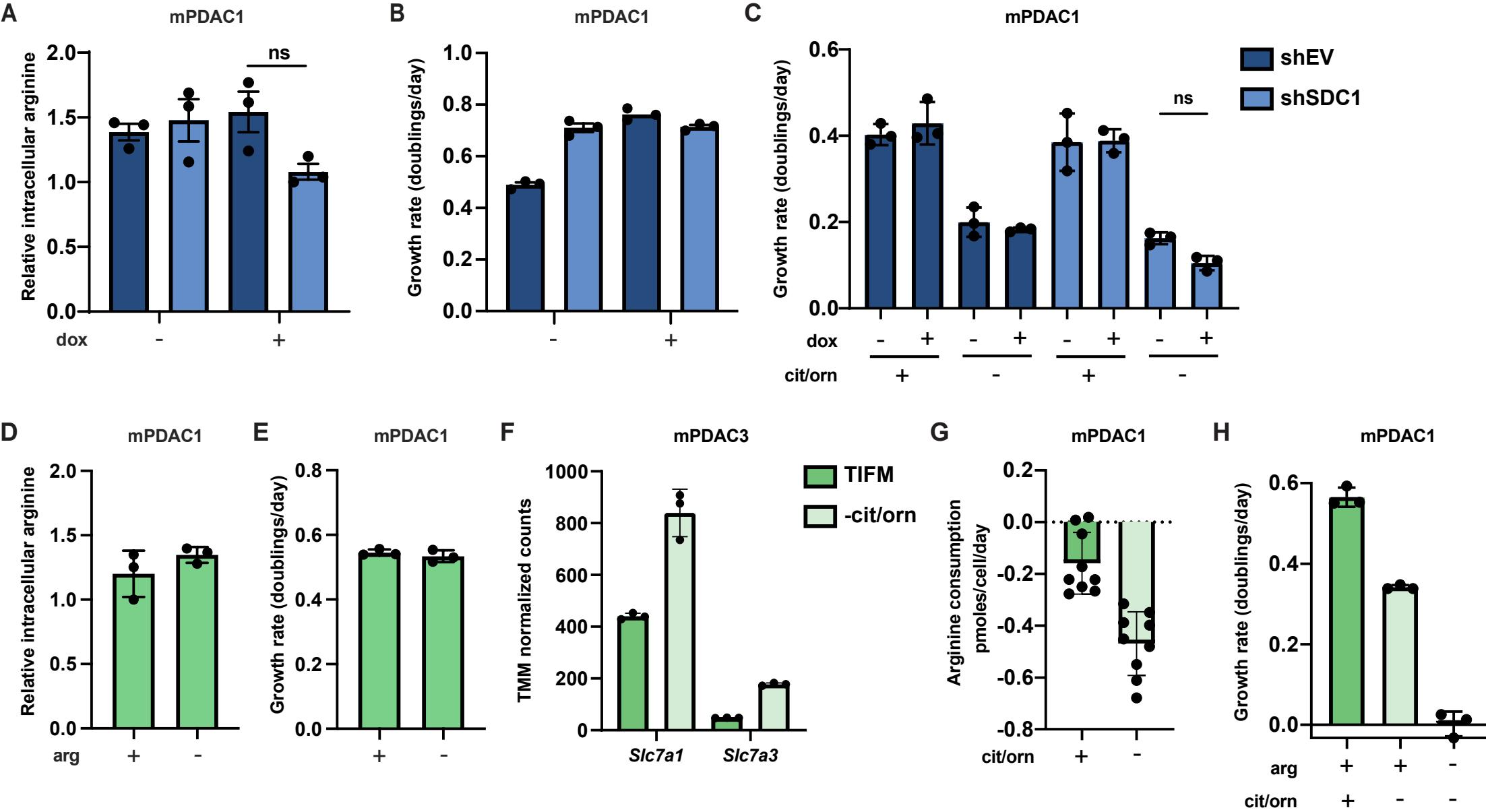
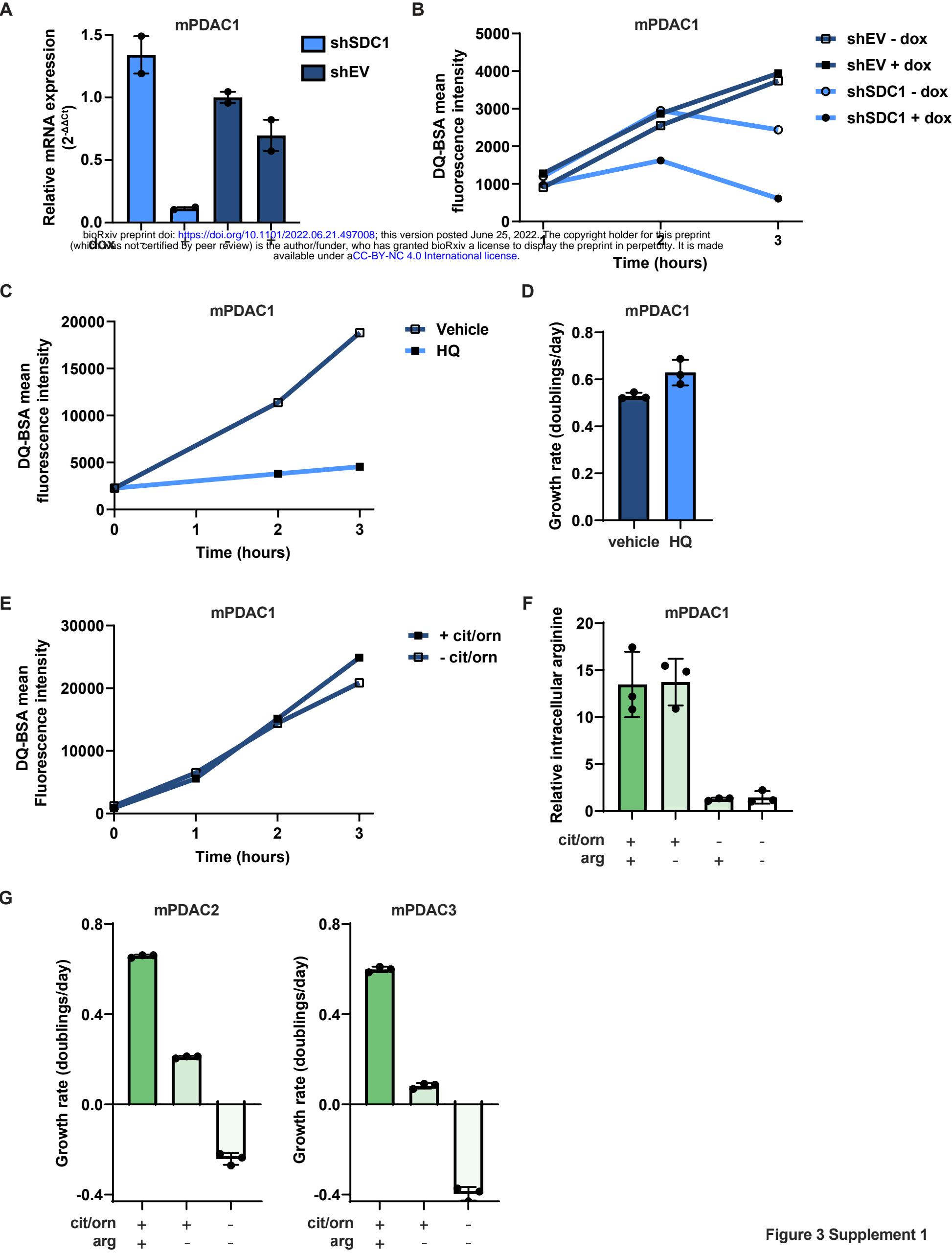
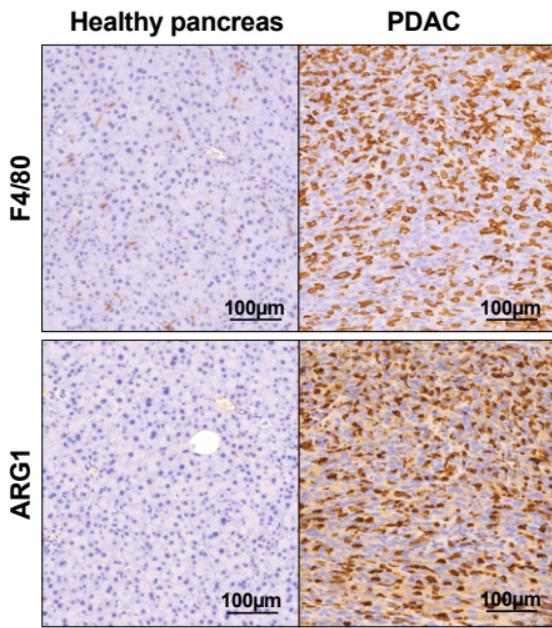
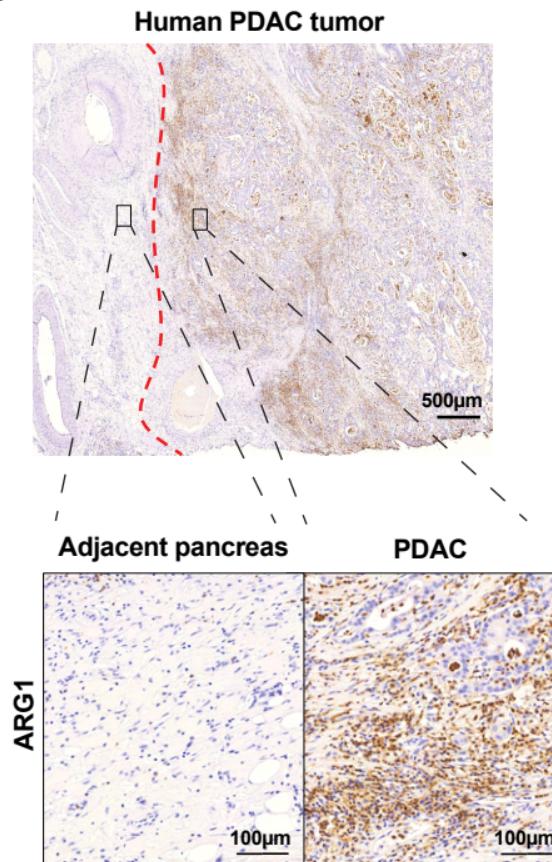
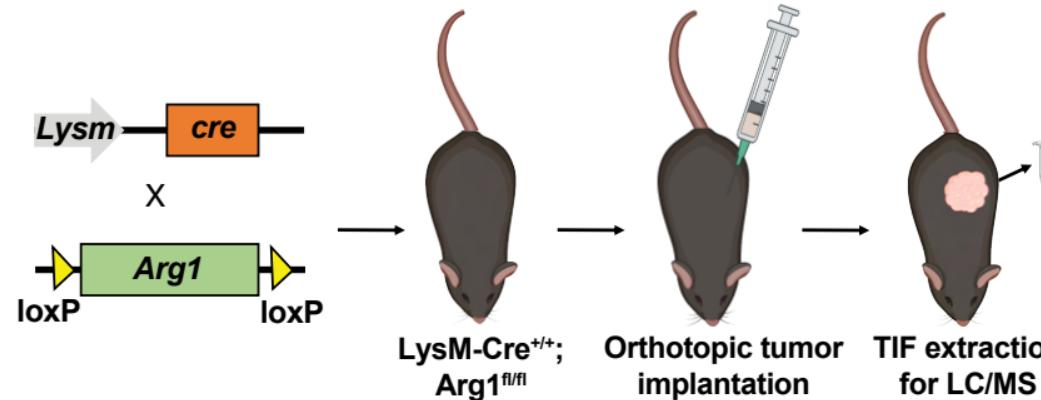
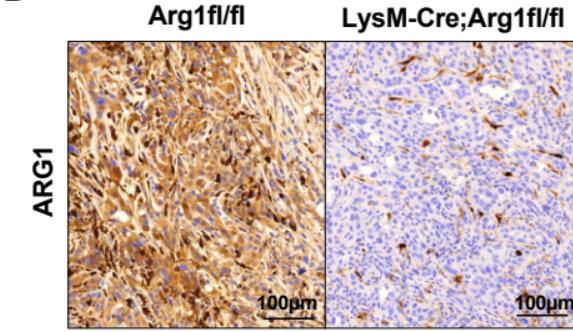
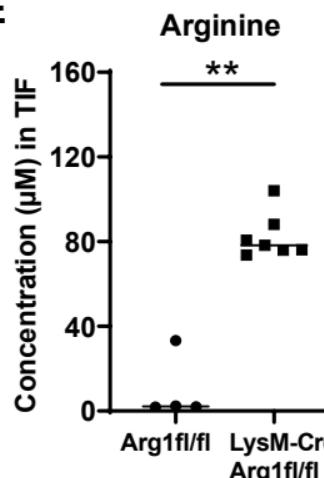
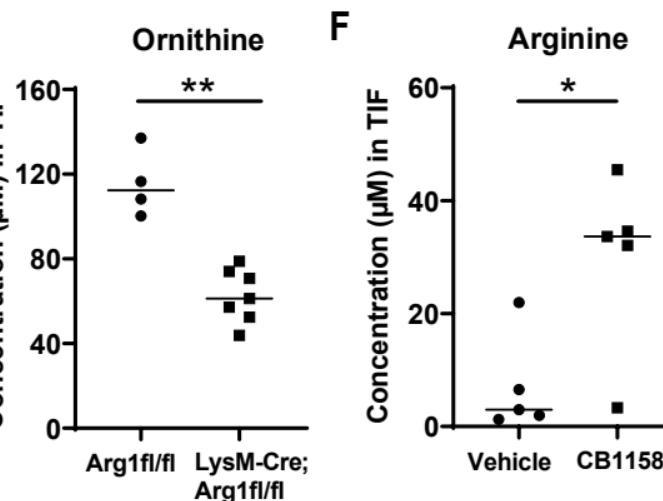









Figure 3

A**B****C****D****E****F****Figure 4**