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Abstract:

Almost all living cells maintain size uniformity through successive divisions. Proteins
that sub- or super- scale with size act as rheostats which regulate cell progression. A
comprehensive atlas of these proteins is lacking; particularly in cancer cells where
both mitogen and growth signalling are dysregulated.

Utilising a multi-omic strategy, that integrates quantitative single cell imaging,
phosphoproteomic and transcriptomic datasets, we leverage the inherent size
heterogeneity of melanoma cells to investigate how peptides, post-translational
modifications, and mMRNAs scale with cell size to regulate proliferation. We find
melanoma cells have different mean sizes, but all retain uniformity. Across the
proteome, we identify proteins and phosphorylation events that ‘sub’ and ‘super’
scale with cell size. In particular, G2/M, biosynthetic, and cytoskeletal regulators sub-
and super-scale with size. In small cells growth and proliferation processes are
tightly coupled by translation which promotes CCND1 accumulation and anabolic
increases in mass. Counter intuitively, anabolic growth pathways and translational
process are low in large cells, which throttles the expression of factors such as
CCND1 and thereby coupling proliferation from anabolic growth. Strikingly, these
cells exhibit increased growth and comparable proliferation rates. Mathematical
modelling suggests that decoupling growth and proliferative signalling fosters
proliferation under mitogenic inhibition. As factors which promote adhesion and actin
reorganization super-scale with size or are enriched in large cells, we suggest that
growth/proliferation in these cells may be decoupled by cell spreading and
mechanics. This study provides one of the first demonstrations of size-scaling
phenomena in cancer and how morphology determines the chemistry of the cell.
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Introduction:

Eukaryotic cells vary widely in size; there is a billion-fold difference in cell volume
between Xenopus oocytes (~1lmm diameter (Wallace et al., 1981)) and
phytoplankton (~1um) (Palenik et al., 2007). This results in a spectrum of biology, as
cell size directly impacts nutrient acquisition and consumption, diffusive processes,
and intracellular protein concentrations (Amodeo & Skotheim, 2016; Bernal-Mizrachi
et al., 2001; Monds et al., 2014; Ruvinsky et al., 2005).

Although striking differences in size are observed when comparing between different
cell types, size distributions within proliferating cell types show only modest variance
in cell size, or size ‘uniformity’ (Ginzberg et al., 2015) (coefficients of variation, CVs,
typically 0.1-0.3 (Scotchman et al., 2021)). The size homogeneity of proliferating cell
populations implies the existence of size checkpoints that occur during proliferation
and coordinate cell cycle progression and acquisition of cell mass (Amodeo &
Skotheim, 2016; Ginzberg et al., 2015).

To maintain a stable size distribution across a population, a checkpoint system can
measure the size of individual cells with molecular ‘rulers’ (Schmoller et al., 2015).
Measurements are then coupled to the speed of the division cycle and the
acquisition of mass. Such a system would ‘penalise’ cells that deviate from the target
volume (a ‘sizer system), accelerating or diminishing the cell proliferation rate.
Notably growth is not necessarily reliant on protein synthesis and anabolism
(Miettinen et al., 2021).

Other mechanisms of size determination have been documented that do not
inherently depend on cell size measurements, such as the ‘adder’ or ‘timer’ models
where a fixed amount of cell mass is added per cycle (Amodeo & Skotheim, 2016;
Campos et al., 2014). However, recent studies allude to similarity between sizer and
adder/timer systems, with modest errors in sizer function leading to adder-like

behaviour (Facchetti, Knapp, Chang, et al., 2019).

Several studies have identified molecular mechanisms of how size measurements
are coupled to proliferation and/or growth. In budding yeast a type of ‘ruler’ appears
to consist of a mechanism where the concentration of a cell cycle progression
inhibitor, Whi5, becomes diluted with respect to the activator, CIn3, as cells grow

larger, allowing cell cycle progression only at a critical size. (Costanzo et al., 2004;
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71  Schmoller et al., 2015). The set-point appears to be in part determined by the
72 concentration of Whi5 is relative to the number of DNA binding sites for the cell cycle
73  activator SBF. (Heldt et al., 2018).

74  Recently, RB1 (an ortholog of Whi5) has been demonstrated to have a role in
75 ~mammalian size control. RB1 concentration sub-scales with size across the cell
76  cycle. Meaning, in smaller newly born daughters, the activity of RB1 exceeds that of
77 its agonist Cyclin D1 (CCND1). CCND1 scales with size, and thus as cells grow,
78 there is a point at which the activity of CCND1 exceeds that over RB1 and
79 proliferation occurs (Zatulovskiy et al., 2020). In normal cells CCDN1 levels
80 themselves are a function of mitogen signalling and translational activity (Min et al.,
81 2020). Thus, in normal mammalian cells, cells meet the RB1:CCDN1 set-point for
82 proliferation by increasing the concentration of CCND1 with regards to RB1 by
83 actively translating CCND1 while simultaneously diluting RB1 as cells grow larger
84  (Zatulovskiy et al., 2020).

85 It is becoming clear that regulation of protein function by diluting or concentrating
86 with cell size is not a rare phenomenon. Many proteins have been shown to ‘super’
87 or ‘sub’ scale (mass fraction increases/decreases) with cell size (Amodeo et al.,
88 2015; Lanz et al., 2021) beyond a small set of proliferative regulators. Indeed, recent
89 studies point to histones (Amodeo et al., 2015; Swaffer et al., 2021), translational
90 components (Yahya et al., 2021) and several metabolic elements (Lanz et al., 2021,
91 Neurohr et al., 2019) sub/super scaling with cell size. Not all these proteins will act
92 as size ‘rulers’, and may instead influence their activity. For example, chromatin-
93 associated histones have been shown to regulate equal partitioning of Whi5 in
94 asymmetric cell divisions in budding yeast (Swaffer et al., 2021) . Dilution of cell
95 proteins (and intracellular DNA) through excessive growth has also recently been

96 associated with the onset of cell senescence (Neurohr et al., 2019).

97 In other cells, size control is highly influenced by cell geometry. For example, in
98 fission yeast, (Fantes & Nurse, 1977), size is thought to be determined primarily at
99 G2/M through the accumulation of localized CDR2 nodes that accumulate at the
100 growing mid body to activate CDK1 by inhibiting Weel (Facchetti, Knapp, Flor-Parra,
101 et al, 2019; Lundgren et al., 1991; Russell & Nurse, 1987). Because CDR2

102 accumulation scales with surface area, this provides a means by which the detection
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103 of cell geometry influences a size checkpoint. Other work has shown analogous
104 regulation of size by surface area or volume in both bacterial (Harris & Theriot,
105 2016), and mammalian cells (Varsano et al., 2017). Thus, different geometric
106 quantities, such as surface area, may serve to mediate size control in different cell
107  types through coupling to signal proteins.

108 Because most studies on size control use either yeast, bacteria, or normal
109 mammalian cells, there is little understanding of size determination in cancer. Classic
110 studies suggest that increased size and morphological heterogeneity are histological
111 measures of cancer grade, with large and more morphologically varied cancers,
112 tending to be more pathogenic (Watson, 1997). Indeed, only highly heterogeneously
113 sized lines induced tumours upon transplantation in mice (Caspersson et al., 1963).
114  This diversification of cell size has been shown to be cell autonomous and not an
115 artefact of the environment (Caspersson et al., 1963). Together these observations
116  suggest modification of cell size in malignant tissues and that this contributes to (or
117 coincides with) increased cellular fithess. But the exact relationship between size
118 and disease is poorly understood.

119 Consistent with the idea that size and size heterogeneity are associated with
120 oncogenesis, dysregulation of RB1’s inhibitory actions on E2F1, a putative size ruler,
121 are frequent oncogenic events (Nevins, 2001). For example, many cancers have
122 loss of function mutations in the RB1 gene and/or have upregulated activity in ERK
123  kinases, which promotes increased CCND1 levels, and a concomitant increased
124  activation of RB1’s inhibitor CDK4/6 (Chinnam & Goodrich, 2011). Indeed, mutations
125 resulting in constitutively active BRAF or NRAS, proteins in-part responsible for the
126 activation of ERK kinases and ultimately CCND1 production (Joseph et al., 2010),
127 comprise 50% and 20% of all melanoma cases, respectively (Davies et al., 2002;
128 Reifenberger et al., 2004). These common driver mutations are likely to directly
129 affect the size control machinery, however, the specific effect of these mutations on

130 size control is essentially unknown.

131 Here we leverage the natural phenotypic heterogeneity of a panel of melanoma cell
132 lines, to investigate the size-scaling of intracellular peptides and transcripts in the
133 context of cell growth and division. We show that BRAF and NRAS mutant

134 melanomas have diverse mean sizes, but size uniformity is maintained. Both RB1
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135 and Cyclin D1 sub-scale with size across lines. However, the relative ratio of these
136 proteins is constant, suggesting a common set-point of RB1 to Cyclin D1 is a
137 conserved despite the presence of oncogenic mutations which can affect the levels
138 of both proteins. We identify sub and super-scaling across the cell proteome and
139 phosphoproteome. In particular, we show that regulators of G2/M, translation, and
140 growth sub-scale with size across lines, but stress response proteins, adhesion
141 components, and certain growth factor receptors super-scale. Through integration of
142  transcriptomic data, we show that scaling of translation is regulated transcriptionally.
143 mTOR signalling and translation couples cell growth and proliferation by promoting
144  anabolic growth and increasing CCND1 levels in small populations. In contrast,
145 larger lines counter intuitively have decreased levels of translation and altered
146  biosynthetic signalling despite exhibiting an increased growth rate. These cells may
147 spread to concentrate anabolic regulators subverting the constraints of a reduced
148 biosynthetic mass fraction. Proteomic data suggests this could be due to
149 reorganization of adhesion and actin structures. Mathematical modelling indicates
150 that uncoupling growth and proliferative systems facilitates division following a
151 reduction mitogenic signalling. This research provides one of the first datasets
152  describing how the transcriptional and proteomic profile of melanoma cells can
153 change with cell size, indicating that cell morphology can have direct and meaningful

154  effects on the chemistry of the cell.

155
156 Results:

12; Melanoma cell lines exhibit comparable size control but different cell sizes:

159 To understand the relationship between cell size and different clinically relevant
160 oncogenic drivers, we quantified the morphology of 17,547 single cells from 11
161 mouse melanoma cell lines from three different genetic backgrounds (SD1, SF1).
162 Lines were either: BRAF*; constitutively active BRAF typically due to a V600E
163 mutation (Dhomen et al., 2009) (Cantwell-Dorris et al., 2011); NRAS*, constitutively
164 active NRAS, due to G12D mutations (Pedersen et al., 2013, 2014) (Burd et al.,
165 2014) or NRAS*/KDBRAF, where lines harboured a constitutively active NRAS
166 mutation and a dominant negative mutation in the BRAF kinase domain BRAF
167 (D594A) (Table 1) (Pedersen et al., 2014). NRAS*/KDBRAF mutants mimic the
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168 clinical situation where there is paradoxical activation of BRAF following treatment of

169 NRAS mutant cells with BRAF inhibitors such as Vemurafenib (Poulikakos et al.,

170 2010) (Bhargava et al., 2016).

171  For each single cell we quantified 60 features (Bakal et al., 2007). We used the ‘cell
172 area’ feature as a proxy of cell size (Facchetti, Knapp, Chang, et al., 2019).
173  Statistical analysis confirmed the ‘cell area’ distribution means were distinct (N-Way
174 ANOVA, P < 0.05)(F1A), demonstrating extensive inter cell line size heterogeneity.
175 We performed an exhaustive series of Wilcoxon rank-sum tests between area
176  distributions (all distributions found to have unique medians, P < 0.001). By retrieving
177 the W-statistic, we calculated the ‘common language effect size’ for each
178 comparison. This produced a matrix of pairwise comparisons between all cell lines
179 that measured the degree of difference in median area between them. Clustering the
180 lines according to this difference let us define three area classes (F1B): Class 1; low
181 mean (small cells), low variance high positive skew, class 2; moderate mean, (larger
182 cells) moderate variance, moderate positive skew, and class 3; high mean (largest
183 cells), high variance low skew (F1C). BRAFKD/NRAS cells tended to be larger.
184 NRAS and BRAF active cells spanned the range of sizes. Though populations
185 exhibited different extents of variance, we found that across all distributions, the
186 mean cell area linearly scaled with the variance of cell area (R = 0.93), and the
187  coefficient of variation differed only modestly between cell lines (F1D). This suggests
188 that the lines have different size ‘set points’ at which proliferation occurs rather than
189 altered control.

190 Cell size relates to DNA content and DNA cytoplasm ratio:

191 Previous studies have indicated that DNA content (Amodeo & Skotheim, 2016), and
192 concentration (Neurohr et al., 2019), are major determinants of cell size. However,
193 Flow-Assisted Cell Sorting (FACS) analysis revealed that ploidy was weakly
194  associated with cell size across lines (SF2) For example, both small (4434
195 (460um”2), 5555 (490um”2)) and large (B14341 (1500um”2), 17864A (900um”2))
196 cell lines are largely 2N; all exhibited partial 4N populations. We note that 21917
197 (800um”2) and 24038 (2400um”2) were almost entirely tetraploid.
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198 To further examine the relationship between DNA content and size in single cells, we
199 then quantified the nuclear content (as judged by integrated Hoechst intensity)
200 across lines. This metric differs from ploidy because it considers the amount of
201 Hoechst staining within the nucleus, which can be affected by factors such a packing
202 and aneuploidy in addition to polyploidy. We observed a linear relationship between
203 nuclear content and cell area across lines both between (F1F) and within lines
204 (F1G). We then investigated how the DNA/cytoplasm ratio (D/C) scaled with cell size
205 and identified two distinct clusters of cell lines; A set of smaller cell lines with a
206 relatively high D/C, and large set with a relatively low D/C ratio (F1H). Thus, cell size
207 in these cell lines is related to DNA content and concentration, but ploidy plays a

208 comparatively minor role.

209 Translation throttles CCND1 accumulation in response to upstream signalling.

210 To understand the drivers of size in our cell lines, we constructed a proteomic
211 dataset capturing 9,215 total peptides, identifying phosphorylation events on 4,312
212  peptides, with a total of 2,1355 unique phosphorylation events detected (SD2).
213 Peptide expressions, normalised to reflect the relative difference in mass fractions
214  across cells lines (Methods), were correlated to cell areas revealing proteins whose

215 concentrations continuously scale with size.

216 Previous studies have demonstrated that in normal cells there is a critical RB1
217  concentration at which cells commit to division (Zatulovskiy et al., 2020). In normal
218 cells, size dilutes RB1 with respect to a constant level of CCDN1 to drive
219 proliferation. However, whether the concentration of RB1 and CCND1 determines a
220 similar set point in cancer cells, especially in melanoma where mitogenic signalling
221 can drive CCND1 translation is unclear (Gennaro et al., 2018; Vizkeleti et al., 2012).
222  As a starting point, we thought to investigate expression of RB1 and CCNDL1 in our
223 lines. Notably 10/11 of the studied cell lines express detectable RB1, and mean RB1
224  levels strongly sub-scale with size (F2A). Specifically, larger lines exhibited lower
225 mean concentration of RB1. Thus, as within lines (Zatulovskiy et al., 2020), RB1 sub-

226 scales with size between lines.

227 Notably, CCND1 abundance was also found to broadly negatively correlate/sub-
228 scale with size (F2B). This suggests differential regulation of CCNDL1 levels between
229 lines. We do note that two lines, 21015 BRAF and C876 NRAS, two of the largest
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230 cell lines investigated, exhibited a stark upregulation of CCND1 beyond that would
231 be predicted based on size and RB1 levels. (F2B). However, the ratio of RB1 to
232 CCND1 is largely invariant with size (SD2). We conclude that the set point, where
233 CDKA4/6:CCND1 activation exceeds RB1 concentration to drive proliferation is thus
234  similar across lines.

235 To understand the molecular basis for the inter-line scaling of CCDN1 we
236 established a method to quantify the signalling activity upstream of CCND1,; utilising
237 the phosphorylation state of transcriptional regulators of CCND1, as defined by the
238 ENCODE database ((Dunham et al.,, 2012)), (henceforth labelled CCND1regs)
239 across different melanoma lines. All phosphorylations used in the analysis with
240 known causative kinases or documented cellular effects (as determined via the
241 Phosphositeplus ((Hornbeck et al., 2015)) database) are detailed in SD4. These
242 include several canonical upstream regulators of CCND1 transcription such as
243 BRAF-MEK-ERK as well as JUN and MYC amongst others. Across lines we found
244  that the phosphorylation of the majority of CCND1regs follow a similar trend to RB1
245 (or ~CCND1) expression, negatively correlating with size (F2D). These pathways
246  were largely upregulated in small cells (Class I), consistent with the presence of
247 activating mutations in BRAF and NRAS (table 1). These pathways were also
248 downregulated in large cells (Class 2/3) consistent with the fact that some of these
249 lines have inactivating mutations in BRAF which inactive kinase activity (Bhargava et
250 al., 2016; Malin Pedersen et al., 2014).

251 Interestingly, despite both negatively correlating with cell size, we observed a
252  negative relationship between cell size and the ratio between RB1 and CCND1reg
253  expressions, showing that larger cell lines in fact exhibit more pro-CCND1 signalling
254  per molecule of RB1 than smaller cell lines. Moreover, this shows that that the low

255 levels of CCND1 in larger lines are not due to reduced mitogen signalling alone.

256 Investigating this phenomenon, we identified proteins whose expression correlated
257 with the RB1/ pCCND1reg ratio (F2E) and conducted SAFE analysis (F2F). We
258 observed that low RB1/ pCCND1reg ratio (i.e. in large cells) is associated with lower
259 expression of ribosomal and spliceosome proteins (e.g. RPL26, SNRPE) (F2G,
260 SD7). Thus, as these cells have less CCND1 than would be expected, this suggests
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261 that reduced biosynthesis inhibits the conversion of CCND1 signalling to functional
262 CCNDL1.

263 Taken together, these data suggest that in large cells, while upstream activity of
264 CCND1 regulators is high relative to RB1, decreased translational efficiency

265  “throttles” CCND1 protein accumulation.
266 Proteome wide identification of sub- and super-scaling factors.

267 We next sought to describe more broad differences in protein expression between
268 the lines. By plotting correlations of protein mass fractions with size versus the fold
269 change across big and small cell lines, we conducted a volcano analysis (F3A). We
270 classified size-correlated peptides as ‘Hits’ (Fc > 1.33 or < 0.66, P < 0.05), which
271 were then sorted into two groups. One group of peptides are those expressed in
272 class | (small) cells (thus, sub-scaling) and those expressed in class2/3 (large) cells
273  (super-scaling). We conducted an ontological analysis on all the hit peptides (F3B).
274  Small cells were enriched for sub-scaling proteins encoding regulators of cell cycle
275 and mitotic processes (labels including: ‘Cell cycle process’, ‘mitotic cell cycle
276  process’, ‘cell division’, P < 107-9). These proteins included checkpoint kinases ATM,
277 BRCAL, and WEEZ1; and the mitotic cyclin CCNB2. In contrast, class 2/3 large lines
278 were statistically enriched for super-scaling peptides from lipid/glycolipid metabolic
279 processes, and components of the extra-cellular matrix (ECM). These included:
280 MVK, MVD, ACAT2 and COL2A1 (all ontology enrichments significant to at least P <
281 10 "-3). (SD3/4) (F3E for examples).

282 To capture how protein kinase activity may also sub- or super-scale, we analysed
283 the set of proteins for which at least one phosphorylation was detected; using the
284 same system as that above (F3C/D). In Class | small cells we observed a clear
285 enrichment of sub-scaling phosphopeptides from cell cycle regulators (‘mitotic cell
286 cycle’, ‘cell cycle process’, ‘cell cycle’, P < 10*-9, eg: BRCA1, SPDL1, LIG1) and
287  biosynthetic processes (‘regulation of cellular biosynthetic process’, ‘regulation of
288 macromolecule biosynthetic process’, ‘positive regulation of RNA metabolic process’,
289 P < 109, eg: mTOR, TSC1, EIF4B, EIF4AG1, MED26 ) including the canonical
290 mTORC1 activating phosphorylation, S2448 (Chiang & Abraham, 2005) implying
291 upregulation in small cell lines. Class 2/3 larger cell lines were enriched for super-

292  scaling phosphorylations on GTPase and cytoskeletal regulators (‘positive regulation
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293 of GTPase activity’, ‘cell junction assembly’, ‘regulation of cytoskeleton organization’,
294 P <1074, e.g: CTNNB1, LATS1, ROCK1, ARHGEF5, ARFGEF1, ARHGAP12 ) and
295 also set of growth regulators (‘regulation of macromolecule biosynthetic process’ , P
296 < 10M6, PDGRFA, PDGFRB, IRS1, PRKCD, DEPTOR) implying differential
297 regulation of biosynthesis across the size range (SD3, F3E/F/G for examples).
298 These included activating phosphorylations on ROCK1 (S1341) and a CTNNB1
299 degradation signal (S29) (Hornbeck et al., 2015). Notably, DEPTOR phosphorylation
300 and expression super-scaled with size implying downregulation of insulin-TOR
301 signalling; this is consistent with the observed reduction in mMTOR S2448 expression.
302 See SF4/5 for a full set of mMTOR and cytoskeletal phosphorylations associated with

303 cell size.

304 We then sought to define a regulatory network of proteins that scale with size. By
305 integrating protein-protein interaction data (Franceschini et al., 2013) (see SD2 for
306 these unfiltered hits) with our list of phospho-peptide and peptide whose mass
307 fractions correlated with size, we derived a protein-protein network (Shannon et al.,
308 2003) (F3H). At this stage, we replaced scaled abundance of the phosphopeptide
309 with an ‘adjusted abundance’, measuring the phosphopeptide abundance relative to
310 the amount of peptide detected (Methods). This way we could reveal peptides that

311 were more/less phosphorylated than expected, given their mass fraction.

312  Application of the SAFE algorithm (Baryshnikova, 2016) revealed networks of super-
313 and sub-sclaing proteins. These networks were enriched for ontological themes of
314  proteins/phospho-proteins with high expression in each class (F3H) ((Ashburner et
315 al., 2000; Carbon et al., 2021; Eden et al., 2009; Mi et al., 2019)). Analysis of these
316 networks echoed the prior results, that it is the disproportionate expression and
317 phosphorylation of ‘G2/M control’ phosphopeptides that defines our smaller cell lines
318 (e.g. BRCAL, WEE1, CCNB2, ATM), including BRCA1 S686 an AKT1 target and
319 stabilising phosphorylation (Hornbeck et al., 2015). In larger lines we observed
320 altered phosphorylation of ‘translation control’ (e.g. eEIF4B, EIF5B), ‘spliceosome
321 machinery’ (e.g. SNRPE, SF3B4), ‘cell adhesion’ peptides (e.g. YAP1, YESI,
322 CTNND1) and increased expression of ‘growth signalling’ (e.g. EGFR, PDGFR)
323 peptides (F3H). Interestingly, despite mTOR S2448 sub-scaling, many
324  phosphorylations enriched in larger cell lines correspond to insulin signalling events
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325 such as EIF4B S497 (Hornbeck et al., 2015) implying differential interpretation of
326  upstream signals in big/small lines.

327 Inflammatory transcripts enrich in larger cell lines:

328 We next performed transcriptomic experiments to gain further insight into the
329 relationship between size and signalling network organization and activity. We
330 measured the abundance of 24988 RNA molecules overlapping with 9290 measured
331 peptides (SD5).

332 We conducted a volcano analysis, as described prior (Methods), to identify a list of
333 transcripts that super- and sub- scale with size across lines (F4A). mRNA’s relating
334 to cell cycle regulation (‘regulation of cell cycle’; BARD1, WEE1, E2F8, RB1) and
335 control of gene expression (‘negative regulation of gene expression’, ‘chromatin
336 organisation’, ‘cell differentiation’; e.g: SIN3A, SOX2, HMGAL1) sub-scaled with cell
337 size (F4AB/C) (SD3). These observations are in line with observations that small cells
338 express relatively higher levels of cell cycle regulatory proteins such as WEEL.
339 Transcripts pertaining to inflammation processes (‘inflammatory signalling’,
340 ‘Interferon signalling’ including: STAT1, IFIT1, IRF5 (and 7) and ADAR) were
341  upregulated in larger cell lines.

342 In conjunction with that observed in the proteomic data, these data show that
343 compared to Class | smaller cells, Class 2/3 larger cells have decreased levels G2/M
344 requlators, altered metabolism and biosynthesis, and increased expression of
345 inflammatory effectors.

346 Transcription regulates ribosomal scaling.

347 To examine the role of translation and transcription in size and proliferation control,
348 we first related mMRNA and peptide abundances in each line. Correlation coefficients
349 between mMRNA and expression ranged between 0.56-0.38, in agreement with
350 previous studies (Gry et al.,, 2009) (F5A/B). We then calculated correlations at the
351 gene level, across cell lines. Strikingly, this revealed that for most genes there is
352 poor correlation between mRNA fraction (reads of gene/total reads in the cell line)
353 and peptide mass fraction. Indeed, of those that exhibited significant correlations
354  (1116/9290), many showed negative relationships (277/1116) (F5C).
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355 By conducting ontological analysis on the genes with significant, (P < 0.05, R > 0.55,
356 n = 11) positive correlation with peptide abundances, we observed an obvious
357 enrichment of cell cycle and DNA repair/replication genes (‘cell cycle process’, ‘DNA
358 Replication’, ‘mitotic cell cycle phase transition’, P < 10 -6, eg: ‘BRCA1’, ‘CCNB2’,
359 ‘CCND2, ‘CCNA2’, ‘BRIP1’, ‘CDK4’, ‘ECT2’) (F5D/E). Interestingly, this suggests
360 that the sub-scaling of G2/M regulators with size is occurring at the transcriptional
361 level; as cells get larger fewer G2/M transcripts are being produced reducing peptide

362  expression.

363 To identify genes that were strongly correlated in specific size classes we split the
364 transcript/proteomic datasets into ‘large’ and ‘small’ subsets, comprised of cell lines
365 with sizes above/below the mean (900um”2), and recalculated the correlation
366 coefficients between mRNA and peptide fractions. At the gene level, In the smaller
367 subset, we observe enrichment of inflammatory, adhesion and cell cycle regulators
368 (‘type 1 interferon signalling pathway’, ‘regulation of cell adhesion’, ‘mitotic cell cycle
369 checkpoint’ P < 107-5, eg: ‘IRF9’, ‘IFIT3, ‘STAT1’, RHOD’, ‘CTHRC1’, 'CCNB2’,
370 ’'BRCAT’) (F5F-H). In large cells, there was a strong correlation between mRNA and
371 protein mass fraction of ribosomal and translational genes (n = 5, P<0.05, |[R| >
372 0.75) (‘translation’, ‘cytoplasmic translation’, ‘cytoplasmic large ribosomal subunit’,
373 P<107-9, eg; RPL26, RPL8, RPL23, RPL5, ETF1) (F5I-K). This suggests, like that
374 observed for G2/M regulators, that control of the expression of translational
375 components occurs through transcription, rather than translation, at larger cell sizes.
376 Indeed, correlating RNA poll-3 component expressions (F5L) to the mRNA
377 abundance of ribosomal components, we note a clear positive relationship (for
378 POL1/2). This extended to the peptide abundance suggesting that the production of
379 ribosomal peptides is transcriptionally limited in these cell lines. This was not
380 observed in smaller cell lines; whilst the correlation between poll/2 expression and
381 peptide expression was maintained, the relationship with mRNA was disrupted

382 indicting a translational dependency in smaller lines (SD5/3).

383 Validation of size scaling relationships in an independent panel of melanoma

384 cell lines:

385 To assess the universality of our size-scaling relationships, we extended our panel of

386 11 lines to include a further 12 comprised of the same genotypes as before and
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387 conducted further quantitative morphological analyses and phospho-proteomic
388 experiments and repeated the volcano analysis. In contrast to the previous analysis,
389 we note an additional ‘arm’ of the volcano plot indicating a subset of peptides
390 extremely enriched in larger cell lines (SF3). We hypothesise that tis result
391 represents gene overexpression rather than super-scaling relationships. Initially
392 including these genes in the analysis, we found that upregulation of apoptotic
393 effectors (‘apoptotic signalling pathway’, ‘positive regulation of mitochondrial
394 membrane permeability involved in apoptotic process’, 'necrotic cell death’, P < 10*-
395 3, eg. ‘BOK’, ‘TLR3, ‘TLR4’, ‘BCL2’, ‘TICAM1’), and lipid/carbohydrate metabolism
396 (‘lipid metabolic process’, ‘small molecule metabolic process’, ‘oligosaccharide
397 metabolic process’, P < 10-8, eg. GAA, NEU1, ALG11, ACOX3) is most associated
398 with large cell lines. Excluding the ‘overexpressed’ genes, we observe enrichment of
399 lipid metabolic proteins alone (‘lipid biosynthetic process’,” lipid metabolic process’,
400 ‘sterol metabolic process’, P < 107-5). In contrast, we observe a clear enrichment of
401 cell cycle (‘cell cycle process’, ‘cell cycle checkpoint’, P < 10" -15, eg. CDK2,
402 CCNB2, CCNA2, CDC45), mitotic (‘mitotic cell cycle checkpoint’, ‘chromosome
403 segregation’, P < 10*-10, eg. SPDL1, ECT2, PLK1) and DNA repair (‘DNA repair’,
404  ‘cellular response to DNA damage’ P < 107-10, eg. BRCAL, LIG1) peptides in
405 smaller lines indicating sub-scaling (SF4) (SD3).

406 Enacting the same analysis for the phospho-peptides (SF4), we again observe
407 additional ‘arms’ indicating gene overexpression in big/small cell lines. We first
408 calculated enrichments for the two ‘central arms’ finding phosphorylations on cell
409 cycle, DNA repair, and biosynthetic regulatory peptides (‘cell cycle process’, ‘DNA
410 repair’, ‘regulation of macromolecule biosynthetic process’, P < 107-7, eg: ‘BRCA1’,
411 ‘CHEKT’, ‘CDK4’, ‘EIF4B’, ‘RPS5, ‘EIF3G’) enrich in smaller cell lines. In larger cell
412 lines, phosphorylations pertaining to cytoskeletal and growth factor signalling
413 (‘Regulation of GTPase activity’, ‘cytoskeletal organisation’, ’cell adhesion’,
414  ‘regulation of epidermal growth factor receptor signalling pathway’, P < 10 2-3, eg;
415 ARHGEF6, GIT1, TSC2, ROCK1/2, CDC42, TLN1, AKT1/3) are enriched. Within
416 each overexpressed group, we found that larger cell lines were upregulating GTPase
417 signalling elements (‘positive regulation of GTPase activity’, ‘regulation of small
418 GTPase mediated signalling’, ‘Rho protein signal transduction’, (P < 10*-10, 10"-10,
419 1075 respectively), eg. ARFGAP1, TIAM2, ARHGAP1) whilst upregulations in
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420 smaller cell lines followed no theme (SF3, see SF3 for examples) (SD3). We then
421  investigated which ontological themes were enriched in both analyses finding good
422 agreement, a full discussion of this analysis can be found in the supplemental
423 information. Interestingly we recover a large, BRCAL centric set of interacting genes

424  in both analyses, implicating BRCAL in size-dependent phenomena (SF3).

425 These data corroborate our previous analysis, strengthening the claim that G2/M and
426  DNA repair processes define smaller melanoma cell lines, (with associated peptides
427  sub-scaling with cell size), whilst cytoskeletal organisation and the rewiring of lipid

428 metabolism define larger cell lines (peptides super-scaling with size).

429 Cell growth rate scales with cell size despite downregulation of biosynthetic
430 effectors

431 Having observed sub-scaling of ribosomal and spliceosome peptides expression,
432  differential phosphorylation of biosynthetic regulators, depressed proliferative
433 signalling and a clear inflammatory response in larger cell lines, we expected them to
434  exhibit a notably decreased growth rate. To investigate this, we live imaged two cell
435 lines from each genotype spread across the observed range of cell sizes and
436 quantified the average rate of growth as the area gain per time, (um”2/hour). To our
437  surprise, growth rate was found to increase with cell size despite the observed
438 downregulation of biosynthetic effectors (F6A) and proliferation rate was only
439 modestly affected (SF3). We note, however, that this relationship does not appear
440 linear suggesting that the system behind this phenomenon begins to fail at large cell
441  sizes. These data show that larger melanoma cell lines can maintain cell growth

442  without the scaling of classical growth regulators.

443 Investigating mTOR signalling specifically, we note that while the primary activating
444 mTOR phosphorylation sites (S2448, S2481; phosphorylations responsible for
445  signalling through mTORC1/ 2 respectively (Chiang & Abraham, 2005)) are under-
446 phosphorylated in larger cells (phosphopeptide abundance is lower than expected
447 given peptide abundance), many upstream regulators exhibit phosphorylations
448 typical of insulin driven RTK signalling. However, these genes were differentially
449  phosphorylated across the cell sizes; for example, IRS1 S414 is enriched in smaller
450 cell lines whilst IRS1 T448 is enriched in larger lines, despite both being related to
451 insulin signalling (Hornbeck et al., 2015). These data further indicate that differential,
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452 rather than reduced, RTK signalling across sizes leads to the observed
453  downregulation of biosynthetic effectors in larger cell lines (SF5).

454  Given the altered signalling state and having noted an upregulation of cytoskeletal
455  peptide expression and phosphorylation in larger cell lines, we were interested in the
456 state of canonical RTK driven pathways of cytoskeletal activation. Interestingly, we
457 noted that HER2, (1108), SRC (S17), PAK4 (S476), ROCK1 (S1341), VASP (S317)
458 and LIMK1 (S298), (all of which activating phosphorylations (Hornbeck et al., 2015))
459 amongst others, where disproportionately abundant in larger cell lines indicating that
460 RTK-driven cytoskeletal activity is upregulated (SF6). We hypothesise that larger cell
461 lines have skewed their RTK-signalling machinery toward the activation of
462  cytoskeletal rather than anabolic processes. This may lead to increased spreading of
463 the cell.

464 Theoretical modelling suggests decoupling of low mitogen and growth
465 signalling drive proliferation of larger cells:

466 Noticing that growth rate is maintained in larger cell lines in the background of
467 downregulated proliferative and biosynthetic signalling, we sought to understand the
468 significance of this effect at a more systems level. We utilised a simplification of
469 recent models, where the transition rate between cell cycle stages is governed by a

470 power-law relationship with cell size:
471 R = aA(t)” equ.1

472  Following previous studies (Nieto et al., 2020), the transition time probability
473  distribution under an exponential growth condition is given as:

avy?
- k)l; (eayt_l)

t
474 A(Y) = Apekt | P(T>t) = e Jo@AlYds — equ.?2

475 Indicating that the y™ power of the added area follows an exponential distribution

476 centred on yk/«a;

at
477 P(V,Y(e*t—1)>t) = e ¥ equ.3
478 Taking y =1, the mean added mass equals k/a. We could capture similar behaviour
479 when considering the simpler case where the probability of transitioning between
480 cycle stages and growth rate are taken to be a constant within a cycle but are

481 adjusted according to cell division size (Adiv), (P = aAdv, B = KAdv , respectively)
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482  defining a Poissionian system. We believe that this simplification provides a useful
483 tool for the understanding of cell size determination in the adder case. Here we have
484 assumed adder-like behaviour, as small errors in sizer mechanisms can lead to
485 phenomenological adder systems (Facchetti, Knapp, Chang, et al., 2019). Using
486 these, we could derive expressions for the expected proliferation rate and added
487  size, given as exponential distributions;

1
488 P(t)= 2e™M |, A= —Eln(l— algi,) equ.4

489 P(A(Y)) = Ae ™t | 2, = In(1 - ady,) equ.5

" In(2) Agik

490 We include the derivations in the supplemental information. This facilitated the

491 construction of a simple system of equations dictating cell size:

( [ = —In (2) \
{l ln(l — aAdl-v(n)) |}
492 S(a, Agivn, k) = 1 —In (2 .6
o) lAd"”(”“): 2 A+ —na(A,z.ﬁ(n))J -
B = kAgiy(n)

493  Where ‘tm’ is the mean proliferation time, and ‘n’ is the number of proliferative cycles
494 that have passed. Perturbing the parameters of this system, we find it is stable to
495  perturbations in Adiv (F6B) but unstable to changes in a or k. That is, a constant
496 mean size is maintained under this system that may be adaptively regulated by

497  modification of a, related to mitogenic signalling and k, controlling growth rate.

498 If alpha is perturbed, the proliferation rate initially decreases, but exponentially
499 decays back to the initial value across successive division cycles. Thus, if the alpha
500 and k parameters are independent, cell growth provides a means to ‘correct

501 proliferation rate under perturbation to mitogenic signalling. (F6B)

502 Using equations 4 and 5, we could derive the moments of the expected size
503 distribution (SI). This is a hypo-exponential function, with a mean and variance given
504 as:

2% 2xklIn2 4 4xk”(In 2)*

equ.7
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506 Where X’ is the number of ‘stages’ in the model of cycle. This yields a coefficient of

508 cV = -
27’6 V3x

507 variation;

equ.8

509 The cell lines have CV’s of ~ 0.7 — 0.6, and x was calculated to range between 0.7
510 and 0.9. For simplicity, we took x = 1 from this to avoid complications stemming from
511 a decimal number of cell cycle stages (although this may be rationalised as the cell
512  ‘skipping’ cell cycle regulation every 1/x divisions). We note this approach is only
513 feasible when the CV > ~0.25 as the differences in CV values for neighbouring ‘X’

514 tend to O as x increases; this is equivalent to an ~ 5 stage system. (F6C)

515 These results allow us to define a simple and efficient algorithm to calculate
516 predicted cell size distributions (methods) (F6E). ‘a’ values were fit to experimentally
517 determined area distributions by minimising the Kullbeck-Leibler divergence
518 (Andrew, 2004) between measured and calculated distributions (beta is a measured
519 parameter); ‘a’ values decrease with increasing cell size (F6F) (Table 2). The
520 simulation accurately recapitulated much of the measured data, however, In the case
521  of larger cell lines, the model partially under-predicted the abundance of ‘small’ (A <
522  500um”2) cells (see 24038 (2500um”2), C876 (1600um”2), 17864A (1000um”2)
523 and B14341 (1500um”2) (F6G). A summary of the model can be found in F6H.

524  Taken together our modelling has shown that given a proportionality between cell
525 size and division probability, increased cell growth is an effective means of triggering
526 proliferation when scaling of proliferative factors is perturbed, for example, by a
527  reduction in mitogenic signalling.

528 Discussion

529 We have identified scaling relationships between cell size and peptide/gene
530 expression in melanoma. Expression and phosphorylation of G2/M, DNA-associated
531 and biosynthetic peptides exhibited a clear sub-scaling relationship with cell size
532 across two independent panels of melanoma cell lines, whilst expression of lipid
533 metabolic genes and phosphorylation of cytoskeletal regulators showed the reverse.

534 This is in strong agreement with numerous recent studies investigating the
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535 relationships between cell size and gene/peptide expression; identifying histones as
536 sub-scaling components (Amodeo et al., 2015), observing an upregulation of lipid
537 metabolism in larger cell lines (Neurohr et al., 2019), noting a decreased abundance
538 of translational components and translation rate in large polyploid cells (Yahya et al.,
539 2021) and a full proteome survey of scaling components in human lung fibroblasts
540 (Lanzetal., 2021).

541 Interestingly, we observe that the mean RB1 mass fraction decreased with
542 increasing cell size corroborating the findings of recent studies associating RB1 (and
543  Whi5) dilution to size determination and control (Schmoller et al., 2015) (Zatulovskiy
544 et al., 2020). This trend extended to the abundance of phosphopeptides associated
545 with CCNDL1 transcription and the abundance of core ribosomal and spliceosomal
546 peptides. These data suggest that the state of the RB1-CCNDL1 axis in melanoma, or
547 indeed an RB1-dilution system (Zatulovskiy et al., 2020), is sensitive to both the
548 strength of proliferative signalling and translational capacity of the cell in melanoma.
549 Reduced signalling and protein production may decrease CCND1 abundance, and
550 therefore, RB1 must dilute further to induce division commitment; thereby delaying
551  proliferation until a greater cell size. Interestingly, recent literature suggests G2-
552 driven synthesis of CCND1 (Min et al., 2020; Stallaert et al., 2021) noticing a tight
553 dependence on cellular translation (Min et al., 2020). Translation and mitogen
554  signalling in the prior G2 may colour events in the subsequent G1. ‘Sub scaling’ of
555 G2/M regulators, such as WEE1 and BRCA1, may relate to smaller cells exhibiting

556 increased expression of CCND1.

557 We also observed an upregulated inflammatory response and decreased
558 DNA/cytoplasm ratio in larger cell lines; phenomena recently related to the onset of
559 cell senescence (Neurohr et al., 2019). But while larger lines appear morphologically
560 senescent, they are clearly not senescent, as they grow and proliferate at a similar
561 rate to smaller cells. Indeed, this finding is particularly striking given the observed
562 downregulation of canonical pro-biosynthetic phosphorylations (for example in the
563 AKT-mTOR pathway, see SF5), given the NRAS activating mutations of larger cell
564 lines (or PTEN null mutation in the case of 21015 BRAF). This shows that larger cell
565 lines maintain high growth rates despite downregulation of anabolic pathways and
566 decreased ribosomal mass fractions, qualities typically associated with decreased
567 biosynthesis (Fingar et al., 2004; Serbanescu et al., 2020).
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568 The mechanism behind this phenomenon is unclear but may relate to mechano-
569 biological processes, given the observed upregulation of ECM components and RAC
570 GTPase signalling in larger cell lines. Indeed, mechanical activation of YAP/TAZ
571 signalling has been observed to facilitate growth/proliferation under MAPK inhibition
572 (Kim et al., 2016; Lin & Bivona, 2016). Furthermore, cell volume has recently been
573 tied to substrate stiffness and adherence, engaging in a feedback system with
574 YAP/TAZ (Gonzalez et al.,, 2018). Interestingly, several studies suggest that
575 actomyosin contractility during cell spreading can also reduce cell volume through
576 the expulsion of water, concentrating cell constituents (Guo et al., 2017; Venkova et
577 al., 2021; Xie et al., 2018). Large cell lines may activate cytoskeletal signalling to

578 concentrate key biosynthetic regulators and sustain growth.

579  We constructed a simple theoretical model to demonstrate how continued growth
580 under proliferative stress, could maintain the cells proliferation rate. This relied on
581 the probability of a cell transitioning to the next stage of the cell cycle being
582  proportional to its size (Nieto et al., 2020), for example, via RB1 dilution. This is
583 consistent with the recent observation that cell cycle phase lengths across
584 generations are coupled in cancer cell lines (Chao et al., 2019), here via mother cell
585 size (Min et al., 2020). Interestingly, the same study notes this effect may be unique
586 to cancerous cell lines due to a disproportional abundance of regulators acting at
587 multiple stages of the cell cycle (Chao et al., 2019) in effect ‘simplifying’ regulation.
588 Indeed, through analysis of cell size variation, we found our cell lines were most
589 effectively modelled by a one-(growth) stage cycle, implying the dominance of a
590 small subset of proliferative regulators. This suggests a more central role for the RB1

591 sub-scaling observed in these cell lines.

592 Taken together, our data shows that despite sub-scaling relationships between key
593 biosynthetic and proliferative regulators and cell size, and a robust inflammatory
594  response, larger melanoma cell lines exhibit a higher growth rate than smaller lines.
595 Theoretical modelling suggests that proliferation may be maintained under mitogenic
596 inhibition by decoupling growth and proliferative signalling. Oncogenic mutations

597  could facilitate this process and may be associated with cytoskeletal activity.
598

599 Methods:
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600 Cell Culture

601 Cell lines were maintained in standard culture conditions (DMEM+10% FBS).
602 Passage was carried out using 0.25% trypsin-EDTA (GIBCO) followed by
603 centrifugation (1000 rpm, 4 min) and resuspension in complete medium. Cell
604 counting was performed using Countess automated cell counter with trypan blue

605 exclusion (Thermo).
606 Growth Curves

607 Each cell line was seeded into 3 wells of a 6 well tissue culture plate. Cells were
608 incubated in DMEM media with 10% fetal bovine serum and Primocin antibiotic, at
609 37 degrees Celsius and 5 % carbon dioxide. Cells were imaged at 4 hour intervals
610 using the Incucyte imaging system. 9 fields of view were imaged from each well.
611 Images were segmented using llastik image segmentation software to identify
612 individual cells. The number of cells in each field of view was calculated using
613  CellProfiler. Growth curves were plotted using the ggplot2 library from the R

614 programming language.
615 Immunostaining:

616  Samples were fixed in freshly prepared 4% PFA/PBS for 15 minutes. Slides were
617 subsequently permeabilized with 0.25% Triton/PBS for 10 mins and blocked with
618 0.5% BSA/0.02% glycine/PBS for 30 minutes. Primary antibodies were introduced
619 via the same solution in a 1:1000 dilution and left on for 1 hour. The slides were
620 washed with PBS and the same was carried out for the secondary antibodies (kept in
621 the dark to avoid bleaching). Hoechst stain was added post-secondary (1:500) to

622 stain DNA as was phalloidin to stain actin.
623 Image Acquisition and Feature Extraction

624 Image acquisition was performed using an Opera Cell: Explorer-automated spinning
625 disk confocal microscope. 20 fields of view were imaged in each well. Cell
626 segmentation was performed using Acapella software (PerkinElmer). Nuclei were
627 segmented using the Hoechst channel (405-450) and cell bodies defined by the
628 tubulin signal (568-603). Geometric features measured include: the area of all

629 subcellular regions; the length, width, and elongation (length/ width) of the cell and
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630 nucleus, cell and nuclear roundness and nucleus area/cytoplasm area. Texture
631 features were also measured representing the distribution of pixel intensities in a cell
632  or subcellular region. Haralick and Gabor features (Fogel & Sagi, 1989; Haralick et
633 al., 1973) as well as SER (“Saddle/Edge/Ridge”, PerkinElmer) features were

634 measured on the Hoechst and tubulin channels.
635 Statistical Analysis of Cell Size

636  Statistical test were carried out in the MATLAB (math works) environment. Cell area
637 data was ‘acosh’ transformed to induce a normal distribution of areas in each cell
638 line and standardise the variances prior to ANOVA and Mann-Whitney/Wilcoxon
639 tests. Standardisation success was determined using the Shapiro-Wilks
640 normalization test, ensuring the data is normally distributed, and the Bartlett test, to
641 guarantee equal variances across lines.

642 FACS Analysis

643 Cells were trypsinized and harvested into a 15ml falcon tube for cell counting. After
644  centrifuging the falcon at 2400rpm for 5 minutes, the supernatant was discarded and
645 the cells were resuspended in 1mL of 1% FCS in PBS. 3mL ice cold 100% ethanol
646 was added dropwise to the cells while slowly vortexing, and left to fix overnight. The
647 cells were then pelleted by centrifugation for 5 minutes at 2400rpm, and
648 resuspended in 5mL PBS. They were incubated at room temperature for 20 minutes.
649  After centrifuging for 7 minutes at 1200rpm, the pellet was resuspended in 1mL of
650 Propidium lodide (PI) solution through the cell strainer into a FACS tube. The PI
651 solution was made with 1:100 PI at 5mg/mL and 1:1000 RNAaseA at 10mg/mL in
652 PBS. The cell cycle composition was measured using the BDSAria and the data
653 analysed using FlowJo . For EdU (5-ethynyl-2'-deoxyuridine) incorperation assays,
654 cells were treated with a final concentration of 10uM EdU prior to harvesting. Instead
655  of fixing with ethanol and staining with PI, cells were resuspended in 4% PFA for 15
656 minutes at room temperature. They were then pelleted by centrifugation and PFA
657 aspirated, followed by a wash. 500uL of the appropriate Thermo Fisher Click-iT™
658 reaction cocktail was added to each sample and incubated for 30 minutes in the
659 dark, according to the manufacturer's instructions. Cells were washed once, stained
660 and then transferred via a cell strainer into a FACS tube for analysis as above.
661 Washes used 1% BSA in PBS. Staining used 20ug/mL Hoechst added to 0.1%
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662  Triton-X in PBS. If applicable, 10° cells were seeded in Falcon T25 flasks and
663 incubated overnight in media containing the appropriate Aphidicolin concentration

664 (total volume of 4mL) before FACS analysis of DNA content as above.

665 Proteomics Sample Preparation

666 Cell pellets were dissolved in 150 pL lysis buffer containing 1% sodium deoxycholate
667 (SDC), 100mM triethylammonium bicarbonate (TEAB), 10% isopropanol, 50mM
668 NaCl and Halt protease and phosphatase inhibitor cocktail (100X) (Thermo, #78442)
669 on ice with pulsed probe sonication for 15 sec. Samples were boiled at 90 °C for 5
670 min and sonicated for another 5 sec. Protein concentration was measured with the
671 Quick Start™ Bradford Protein Assay (Bio-Rad) according to manufacturer’s
672 instructions. Aliquots containing 100 ug of protein were reduced with 5 mM tris-2-
673 carboxyethyl phosphine (TCEP) for 1 h at 60 °C and alkylated with 10 mM
674 lodoacetamide (IAA) for 30 min in dark. Proteins were then digested overnight by
675 adding trypsin at final concentration 75 ng/uL (Pierce). The resultant peptides were
676 labelled with the TMT-11lplex reagents (Thermo) according to manufacturer’s
677 instructions and were combined in equal amounts into a single tube. The combined
678 sample was then dried with a centrifugal vacuum concentrator. Two technical
679 replicate TMT batches from the same protein extracts were prepared to assess
680 reproducibility. One TMT batch was fractionated offline with high-pH Reversed-
681 Phase (RP) chromatography using the XBridge C18 column (2.1 x 150 mm, 3.5 ym,
682 Waters) on a Dionex UltiMate 3000 HPLC system. Mobile phase A was 0.1%
683 ammonium hydroxide (v/v) and mobile phase B was acetonitrile, 0.1% ammonium
684 hydroxide (v/v). The TMT labelled peptide mixture was reconstituted in 100 uL
685 mobile phase A and fractionated with a gradient elution method at 0.2 mL/min as
686 follows: for 5 min isocratic at 5% B, for 35 min gradient to 35% B, gradient to 80% B
687 in 5 min, isocratic for 5 min and re-equilibration to 5% B. Fractions were collected
688 every 42 sec and vacuum dried. The second TMT replicate batch was fractionated
689 with the Pierce High pH Reversed-Phase Peptide Fractionation Kit according to

690 manufacturer’s instructions.
691 Phosphopeptide enrichment

692 Peptide fractions from the first TMT batch were reconstituted in 10 pL of 20%

693 isopropanol, 0.5% formic acid binding solution and were loaded on 10 pL of
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694  phosphopeptide enrichment IMAC resin (PHOS-Select™ Iron Affinity Gel, Sigma)
695 already washed and conditioned with binding solution in custom made filter tips fitted
696 on Eppendorf tubes caps. After 2 h of binding at room temperature, the resin was
697 washed three times with 40 uL of binding solution at 300 g and the flow-through
698 solutions were collected for total proteome analysis. Phosphopeptides were eluted
699 three times with 70 pL of 40% acetonitrile, 400 mM ammonium hydroxide solution.
700 Eluents and flow-through samples were vacuum dried and stored at -20 °C until the
701 LC-MS analysis.

702 LC-MS Analysis

703 LC-MS analysis was performed on the Dionex UltiMate UHPLC 3000 system
704  coupled with the Orbitrap Lumos Mass Spectrometer (Thermo Scientific). Peptides
705  were loaded to the Acclaim PepMap 100, 100 ym x 2 cm C18, 5 ym, 100 A trapping
706  column at 10 uL/min flow rate. The sample was then subjected to a gradient elution
707  on the Acclaim PepMap RSLC (75 um x 50 cm, 2 ym, 100 A) C18 capillary column
708 at 45 °C. Mobile phase A was 0.1% formic acid and mobile phase B was 80%
709 acetonitrile, 0.1% formic acid. The separation method at flow rate 300 nL/min was as
710 follows: for 90 min (or 150 min for the replicate batch) gradient from 10% to 38% B,
711  for 10 min up to 95% B, for 5 min isocratic at 95% B, re-equilibration to 10% B in 5
712  min, for 10 min isocratic at 10% B. Precursors between 375-1,500 m/z were selected
713  with mass resolution of 120 K, AGC 4x105 and IT 50 ms with the top speed mode in
714 3 sec and were isolated for CID fragmentation with quadrupole isolation width 0.7
715 Th. Collision energy (CE) was 35% with AGC 1x104 and IT 50 ms. MS3
716 quantification was obtained with HCD fragmentation of the top 5 most abundant CID
717 fragments isolated with Synchronous Precursor Selection (SPS). Quadrupole
718 isolation width was 0.7 Th, CE 65%, AGC 1x105 and 105 ms IT. The HCD MS3
719 spectra were acquired for the mass range 100-500 with 50K resolution. Targeted
720 precursors were dynamically excluded for further isolation and activation for 45
721 seconds with 7 ppm mass tolerance. Phosphopeptide samples were analysed with
722 an HCD method at the MS2 level with CE 38%, AGC 1x105 and max IT 105 ms.

723 Database search and protein quantification

724  The SequestHT search engine was used to analyse the acquired mass spectra in

725 Proteome Discoverer 2.2 (Thermo Scientific) for protein identification and

24


https://doi.org/10.1101/2022.06.21.496989
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.21.496989; this version posted June 24, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

726 quantification. Precursor mass tolerance was 20 ppm and fragment ion mass
727  tolerance was 0.5 Da for the CID and 0.02 Da for the HCD spectra. Spectra were
728 searched for fully tryptic peptides with maximum 2 miss-cleavages. TMT6plex at N-
729 terminus/K and Carbamidomethyl at C were defined as static modifications. Dynamic
730 modifications included oxidation of M and Deamidation of N/Q. Dynamic
731 phosphorylation of S/T/Y was included for the phospho-enriched samples. Peptide
732 confidence was estimated with the Percolator node. Peptide FDR was set at 0.01
733 and validation was based on g-value and decoy database search. Spectra were
734  searched against reviewed UniProt mouse protein entries. The reporter ion quantifier
735 node included a TMT 1lplex quantification method with an integration window
736 tolerance of 15 ppm and integration method based on the most confident centroid
737 peak at the MS3 or MS2 level. Only unique peptides were used for quantification,
738 considering protein groups for peptide uniqueness. Peptides with average reporter
739  signal-to-noise >3 were used for quantification.

740 Proteomic Analysis:

741 Peptide abundances were scaled relative to other detected peptides in the sample
742  such that they reflect abundance/total protein mass. The expression of each peptide
743  was correlated to average cell line area to derive a correlation coefficient, R, and an
744  area-weighted fold change was calculated between cells lying above or below the

745 mean according to:

n
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747  Where Aj is the mean area of the jth cell and Ej is the peptide expression for the jth
748 cell. Lines with areas greater than the mean across lines have their expressions
749  contribute to the large group and vice versa. The weight of this contribution is
750 determined by the lines area contribution to the total of the group. A large
751  contribution results in a higher weighting in large lines and the reverse in smaller
752  lines.
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753 In conjunction with P, the correlation coefficient between peptide and area, the fold
754  change facilitates calculation of a z-score for each peptide, representing its apparent

755 importance to cell area:

1
(|Fcil + P;) — n k=1(IFcy|l + Py)

756 Z; =

L
1 1
Jn_ =S (Fgl + B — 25, (Fed + PO)?

757
758 Network Analysis

759  High scoring proteins are taken forward and entered into STRING ((Franceschini et
760 al., 2013)) to screen for interactions within the hits. Accepted interactions were those
761 identified experimentally or identified in previous co-expression studies and achieved
762 a confidence value > 0.4. This network was then exported to Cytoscape ((Shannon
763 et al., 2003) for ontological analysis via the SAFE ((Baryshnikova, 2016)) tool. All
764  ‘biological process’ annotations for each node in the network were derived from
765 Geneontology.org’'s downloadable database ((Ashburner et al., 2000; Carbon et al.,
766  2021; Eden et al., 2009; Mi et al., 2019)). A binary matrix was constructed; each
767 node (row) would receive either a 1 or 0 in each column (annotation) depending on
768 whether the node was associated with the label. This was then entered into the
769 SAFE Cytoscape plugin, where we used default settings besides a percentile
770 threshold of 10 and minimum neighbourhood size of 5 (SD5). A second binary matrix
771 was then constructed now with an annotation set reflecting whether the node was an
772  expression or phosphorylation hit in big or small cells. The same settings were used
773  for SAFE.

774  RNA extraction, Quality control and RNA Sequencing

775

776  RNA from 11 cell lines was extracted using the RNeasy Mini Kit (Qiagen, #74104)
777 according to the manufacturer's protocol. The evaluation of the isolated RNA
778 integrity and quantity was carried out by the Agilent TapeStation system using an
779 RNA ScreenTape (Agilent Technologies, #5067-5576).

780 For the mRNA Library preparation 4000ng of total RNA was treated with
781 TurboDNase to remove genomic DNA contamination, (Invitrogen, #AM1907). PolyA
782 RNA was selected from 1000ng of the purified RNA using NEBNext mMRNA magnetic
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783 Isolation Module (NEB, #E7490) following manufacturer directions. From the
784  resulting mRNA, Strand-specicific libraries were created using NEBNext Ultra I
785  Directional RNA Library Prep Kit for lllumina (NEB, #E7760). Final libraries were
786 quantified using qPCR and clustered at a Molarity of 300 pM. Sequencing was
787 performed on an lllumina NovaSeq 6000 (lllumina) using PE x100 cycles v1.0
788  chemistry, to achieve coverage of 25 million reads per sample.

789  Transcriptomic Analysis

790 RNA abundances were normalised across cell lines and filtered through a sigmoidal
791 expression to dampen the effects of extreme over/under expressions warping the
792 analysis. Beyond this, the transcripts abundances were treated identically to the
793  peptide abundances.

794  Model Algorithm:

795 The initial cell area distribution is considered a delta function centred on ‘k’/’a’ (the
796 expected mean of the distribution). Every generation, the area distribution is
797 convolved with the mass-gain distribution, computed by performing an inverse
798 Fourier transform on the product of the two distributions respective Fourier
799 transforms. This produces the division area distribution, Ad(A), which must be
800 transformed to Ad(2A) to capture the effects of cell division. We perform this by
801 setting Ab(Ax) = Ad(Ai) + Ad(Ai+1) , where 'I' = xn-Xxn-1 for all x, where Ab denotes
802 the birth size distribution. This is then convolved with the gain distribution as before
803 to generate the next division distribution and so on until a desired number of

804 generations has been reached.
805 Numerical Simulation:

806 An initial population of 1000 cells is assigned an ‘alpha’ and ‘beta’ value and a
807 random initial area. At each time step, the division probability for each cell is
808 calculated, according to P = aAdiv, and a random number, ’r’, is drawn from a flat
809 distribution. Should ‘r be less than the division probability of a cell, the cell divides
810 symmetrically in two, adding a new cell to the population with half the size of the
811 mother, and halving the mother size. If ’r’ is greater than the division probability, the
812 cell size increases according to B = kAdiv. This system continues until a final cell

813 count of 20,000 is achieved.
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814 Model Fitting Procedure

815 Initially, alpha values were exhaustively tested (beta is determined from the
816 proliferation and area measurements on a per cell line basis). For each we
817 calculated the Kullbeck-Liebler divergence between the experimental and simulated
818 data (38). For discrete probability distributions defined on the same probability
819 space, X, the Kullback—Leibler divergence from P to Q is ((Andrew, 2004)):

P(X))

820 Dy, (P||Q) = Z P(x)logyo <@

XEX
821 Having identified an approximate-minima from the low resolution parameter screen,
822  we used the values defining this region as an initial state for a stochastic gradient

823 descent minimising along the gradient:

d Dy, (P
824 % =4(P(x) = Q())Q()

825  Model fitting was conducted within the commercial MATLAB (Math Works) software’s

826  machine learning toolbox.
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FIGURE LEGENDS
Figure 1:

Melanoma cell lines exhibit comparable size control but different cell sizes: A)
Violin plot summarizing cell area distributions across lines. Acosh normalised
Distribution means were subjected to an 1l-way Anova test to confirm the
significance of observed differences. ** indicates a P-value < 0.01 B) Heatmap
showing a clustering of lines based on effects sizes calculated post Mann-Whitney
tests (median uniqueness follows the same pattern as the means P < 0.01). Three
distinct area ‘classes’ emerge. C) Sample distributions from each class; from C1 to
C3, skew decreases, whilst the means and variances increase. D) Shows the
relationship between the means and variances of the area distributions. The mean
scales approximately linearly with variance. The coefficient of variation inconsistently
varies with cell size. E) As in ‘A’ but for the DNA content distributions. Lines are
coloured by size class, and will be throughout the manuscript. F) The relationship
between mean cell area and mean DNA content, area positively correlates with cell
area. Error bars represent the standard deviation of the single cell data G)
Relationship between DNA content and DNA per area. Despite large lines often
having more DNA, they exhibit a lower DNA concentration than the smaller cells. H)
DNA-content area relationship across all lines at the single cell level. All cell lines

exhibit a positive correlation between DNA abundance and size.
Figure 2:
Translation throttles CCND1 accumulation in response to upstream signalling:

A) Negative correlation between RB1 mass fraction and cell size. B) Relationship
between CCND1 mass fraction and cell size, C876 and 21015 exhibit surprising high
levels of CCND1 given their RB1 abundance C) Cartoon schematic depicting the role
of RB1 in the dilution model of G1/S transition. D) heatmap depicting the ratio of RB1
against detected CCNDL1 regulator phosphopeptides, ratios are typically lower in
larger lines. E) The average value for all RB1/rCCND1 ratios for each line plotted
against cell area. F) Network describing interactions between proteins correlating
with RB1/pCCND1reg. SAFE overlay on ‘F’ screening for graph regions enriched for
ontological labels. Colour intensity denotes the confidence of the enrichment. G)
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heatmaps showing the expression of peptides found in enriched regions of the

interaction network across lines.
Figure 3:

Proteome wide identification of sub- and super-scaling factors. A) Fold change
in peptide abundance across large and small cell lines plotted against the
significance of the expressions correlation with size (genes achieving abs(log2(fc)) >
0.5, P <0.05 are taken forward for ontological analysis) Colour represents data point
density B) Ontologies enriched in peptides differentially expressed across big/small
lines C) Fold change in phosphopeptide abundance across large and small cell lines
plotted against the significance of the expressions correlation with size (genes
achieving abs(log2(fc)) > 0.5, P < 0.05 are taken forward for ontological analysis).
Colour represents datapoint density D) Ontologies enriched in phosphopeptides
differentially expressed across big/small lines F) Heatmap of select G2/M controllers
revealed to enrich in smaller cell lines. G) Expression of phosphopeptides pertaining
to the MAPK pathway H Network derived from screening for interactions within the
list of size predicting, kinase regulated, peptides. Interaction data was obtained from
the STRING database. Right; SAFE overlay on ‘D’ screening for graph regions
enriched for ontological labels. Lower; SAFE overlay on ‘D’ screening for regions
with high expression/phosphorylation in large/small cell lines.

Figure 4:

Inflammatory transcripts enrich in larger cell lines: A) Heatmap of
transcriptomes across cell lines. Lines/transcripts are grouped through hierarchical
clustering conducted using the 'Morpheus’ software (Broad Institute). B) Volcano plot
for the fold change of transcripts across size groups against the RNA-size
correlation. C) Ontologies enriched in large/small cell lines, Inflammatory transcripts
enrich in larger lines whilst those related to cell cycle and gene regulation enrich in

smaller lines. D) Examples of correlating transcripts in either group.
Figure 5:

Transcription regulates ribosomal scaling. A) Correlation between gene and
peptide expression within each cell line, coefficients range between 0.4 and 0.6 B)

Log-log plots of RNA against peptide abundance, colour intensity is proportional to
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the density of the data points C) Distribution of correlation coefficients between
peptide and mRNA abundances across cell lines, dotted box indicates genes with
significant correlations. D) Enriched gene ontologies detected in the genes with
significant RNA-peptide correlations. E) Example protein-mRNA correlations from
the ‘Cell-cycle process’ and ‘Mitotic cell cycle process’ themes. F) Distribution of
correlation coefficients between mMRNA and peptide abundances in small
(Area<900um”2) cell lines. We note a positive skew and more positive mean than in
the pooled distribution. G) Themes enriched in the set of genes exhibiting significant
positive correlations between peptide and mRNA abundance in small cell lines. H)
Example correlation between CCNB2 peptide and mRNA abundance from the
‘Mitotic cell cycle checkpoint’ theme. 1) Distribution of correlation coefficients
between mRNA and peptide abundances in big (Area>900um”2) cell lines. We note
a negative skew and more negative mean than in the pooled distribution. J) Themes
enriched in the set of genes exhibiting significant positive correlations between
peptide and mRNA abundance in big cell lines. K) Example correlation between Rpl5
peptide and mRNA abundance from the ‘Translation’ theme. L) Expression of all
detected RNA Poll (top left)/2 (right)/3 (bottom left) components across cell lines.
Large lines tend to exhibit lower expression. M) Relationship between RNA Pol1/2/3
(left to right) peptide expression and the peptide (top) /mMRNA (bottom) expression of
identified RNA-peptide correlates in large cells in the ‘translation’ theme. We note
that both RNA and peptide abundance correlate suggesting transcription regulation

of peptide expression.
Figure 6:

Theoretical modelling suggests decoupling of low mitogen and growth
signalling drive proliferation of larger cells: A) The relationship between cell
growth rate and cell size across six lines representing each genotype and size class.
Growth rate increases with increasing cell size. B) A demonstration of the stability of
the size distribution mean to perturbations to a cell division area and instability of the
mean with respect to perturbations to alpha. The lower panel depicts the stability of
proliferation rate with respect to both parameters C) The function describing how the
coefficient of variation changes with increasing cycle complexity, the pink box marks
the the CV’s observed in our cell lines and the yellow, those observed in other

studies. D) The relationship between fitted alpha values and cell size, alpha
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96 broadly negatively correlates with the mean size of the cell line E) Model outputs
97 demonstrating the best fits achieved. Orange histograms are model outputs and blue
98 experimental data. The blue line shows D(experimental||measured) and the red line
99 the reverse. F) Cartoon summary on the model relating parameters to biologically

100 processes.
101  Supplemental Figure 1:

102 Images of the cell lines: A) Representative images from the 11 cell lines. In blue is
103 the Hoechst intensity, and grey, the tubulin intensity. All images were taken at 20X
104  magnification using an Opera Cell: Explorer-automated spinning disk confocal
105 microscope. Images have been auto-adjusted to optimise contrast within the
106 acapella environment (PerkinElmer).

107 Supplemental Figure 2:

108 FACs Analysis: A) Quantification of cell DNA through FACs analysis. Many of the
109 cell lines, both large and small, exhibit a small polyploid population. No clear

110 relationship emerges between ploidy and cell size.
111 Supplemental Figure 3:

112  Cell growth data: Cell population growth curves for a subset of the investigated
113 lines. Cell density is normalised relative to the starting confluence of the culture.
114 Note that a large line, B14341, shows a comparable doubling time to smaller line,
115  5555.

116  Supplemental figure 4:

117 Validation of size controllers in an independent panel of melanoma cell lines:
118 A) Volcano plot relating the ‘fold change’ across the small and large cell lines
119 (defined as either side of the mean size) to the significance of the correlation
120 between cell size. and peptide expression. B) Themes enriched in each region of ‘A’
121 as denoted by the colour of the box in the top right of each panel. From left to right;
122  hypo-scales with size, hyper scales with size, over expressed in large cells. C)
123  Volcano plot relating the ‘fold change’ across the small and large cell lines (defined
124  as either side of the mean size) to the significance of the correlation between cell

125 size and phosphopeptide expression. D) Themes enriched in each region of ‘C’ as
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126 denoted by the colour of the box in the top right of each panel. From left to right;
127 hypo-scales with size, hyper scales with size, over expressed in large cells (bottom =
128 overexpressed in small cells). E) Example hits from each analysis, the top half the
129 peptide expression analysis, the bottom, the phosphopeptide expression analysis. F-
130 1) Venn diagrams depicting the overlap of themes enriched across both sets of cell
131 lines. Top left = peptide expression in small lines, top right = peptide expression in
132 big lines, bottom left = phosphopeptide expression in small lines, bottom right,
133 phosphopeptide expression in big lines. J) Percent overlap between analyses at the
134 gene level. K) Example genes that are hits across both analyses, the top panel
135 shows BRCAL peptide expression and the bottom ASS1 peptide expression. L) A set
136 of interacting peptides derived from the overlapping list of hit genes enriched in

137 smaller cell lines centred on BRCAL.
138 Supplemental Figure 5:

139 Growth signalling across cell lines: A) subset of phosphopeptides that negatively
140 correlate with cell size pertaining to the ‘mTOR signalling’ KEGG pathway. B) As in
141 ‘A’, but showing elements that positively correlate with cell size. C) Example

142  correlation between mTOR signalling phosphorylations and cell size.
143  Supplemental Figure 6:

144  Cytoskeletal phosphorylation across cell lines: A) subset of phosphopeptides
145 that negatively correlate with cell size pertaining to the ‘cytoskeleton’ and ‘adhesion’
146 KEGG pathways. B) As in ‘A’, but showing elements that positively correlate with cell

147  size. C) Example correlation between cytoskeletal phosphorylations and cell size.

148
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Cell ID Species | Genotype Details Derived from Publication
19161 murine | NRAS mut/Tyrosinase CreA Brain melanoma Pedersen et al.
Cancer Discovery
2013
19398 murine | NRAS mut/Tyrosinase CreA Brain melanoma Pedersen et al.
Cancer Discovery
2013
C873 murine | NRAS mut/Tyrosinase CreA Brain melanoma Pedersen et al.
Cancer Discovery
2013
Ear tum murine | NRAS mut/BRAF KD under Cutaneous melanoma Pedersen et al. PCMR
Tyrosinase CreERT with TAM 2014
EARB murine | NRAS mut/BRAF KD under Cutaneous melanoma Pedersen et al. PCMR
Tyrosinase CreERT with TAM 2014
22532 murine | NRAS mut/Tyrosinase CreA Brain melanoma Pedersen et al.
Cancer Discovery
2013
14508 LN | murine | NRAS mut/BRAF KD under Cutaneous melanoma Pedersen et al. PCMR
(A) Tyrosinase CreERT with TAM 2014
17569 murine | NRAS mut/Tyrosinase CreA Brain melanoma Pedersen et al.
Cancer Discovery
2013
22783 murine | NRAS mut/BRAF KD under Cutaneous melanoma Pedersen et al. PCMR
Tyrosinase CreERT with TAM 2014
4434 (KB) | murine | BRAF mut/p16-/- Cutaneous melanoma Dhomen et al. Cancer
Cell 2009
17864 murine | NRAS mut/UV Cutaneous melanoma Pedersen
unpublished
17864A murine | NRAS mut/UV Cutaneous melanoma Pedersen
unpublished
21917 murine | NRAS mut/UV Cutaneous melanoma Pedersen
unpublished
21015 murine | BRAF mut/PTEN null Cutaneous melanoma Pedersen
unpublished
24038 murine | NRAS mut/BRAF KD Cutaneous melanoma Pedersen et al. PCMR
2014
B14341 murine | NRAS mut/BRAF KD Cutaneous melanoma Pedersen et al. PCMR
2014
C876 murine | NRAS mut/Tyrosinase CreA Brain melanoma Pedersen et al.
Cancer Discovery
2013
C790 murine | NRAS mut/Tyrosinase CreA Brain melanoma Pedersen et al.
Cancer Discovery
2013
17568 murine | NRAS mut/Tyrosinase CreA Brain melanoma Pedersen et al.
Cancer Discovery
2013
5555 murine | BRAF mut/p16-/- Cutaneous melanoma Dhomen et al. Cancer
Cell 2009
NRASQ61 | murine | NRAS Q61A Cutaneous melanoma Pedersen
unpublished
149

150 Table 1: Cell Line Details

151
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152 Table 2: Model Parameter Values

Cell Line Alpha (P per Beta (um”2 per
umn2) sec)
4434 3.49E-06 0.16
17864 3.67E-06 0.22
17864A 4.71E-06 0.43
21917 1.82E-06 0.35
21015 1.73E-06 0.55
24038 6.38E-07 0.98
B14341 1.35E-06 0.52
C876 6.38E-07 0.60
C790 2.46E-06 0.25
17568 3.32E-06 0.19
5555 2.59E-06 0.20
153
154
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155 Supplemental Information:
156 Analysis of gene and theme overlap of size-scaling factors between datasets:

157 We investigated which ontological themes were enriched in both analyses finding
158 that peptides pertaining to cell cycle, DNA repair, and division processes remained
159 enriched in smaller cell lines (eg; ‘DNA repair’, ‘Cell cycle process’, ‘Cytokinesis’,
160 80% Al1l-A2, 16 % A2-Al indicating 80% of themes enriched in the first analysis
161 match the second and 16% detected in the second match the first) whilst lipid and
162 carbohydrate metabolic peptides (eg; ‘Lipid metabolic process’, 'Carbohydrate
163 derivative metabolic process’, ‘Sterol metabolic process’, 30% Al1-A2, 21% A2-Al )
164 are consistently enriched in larger cell lines. Due to the lack of agreement, the
165 enrichment of ECM components in larger cell lines detected in the prior analysis may
166 reflect an upregulation or overexpression rather than a scaling relationship. Enacting
167 the same analysis for the phosphorylation data, we note excellent agreement
168 between analyses (63% Al -A2, 60% A2-Al) for small cell lines, with both enriching
169 for cell cycle and biosynthetic processes (eg; regulation of cellular biosynthetic
170 process, mitotic cell cycle, DNA replication). Larger cell lines exhibited much weaker
171 agreement (9% Al1l-A2, 30% A2-Al) but both analyses revealed enrichment of
172  cytoskeletal and GTPase regulatory phosphorylations (eg; Regulation of GTPase

173  activity, ‘Cell junction assembly’, ’Actin filament based process’) (SF4).

174  Investigating the overlap of individual genes, we note a particularly strong overlap
175 between analyses for phosphopeptides enriched in smaller cell lines (36% Al1l-A2,
176  30% A2-Al). Phosphopeptides enriched in larger cell lines show a more modest
177 overlap (16% Al1l-A2, 14% A2-Al) like that observed in peptide expressions for
178 smaller cell lines (15% A1-A2, 27% A2-Al). Peptide expressions in larger cell lines
179 exhibit the weakest overlap (5% A1-A2, 8% A2-Al) (SF3). Screening for interactions
180 between overlapping genes we observe a set of 21 physically interacting genes
181 centred on BRCA1 enriched in smaller cell lines. As a ‘hit’ in two separate scaling

182 analyses, these data indicate that the BRCA1 complex scales with cell size (SF4).

183 These data corroborate our previous analysis, strengthening the claim that G2/M and
184  DNA repair processes define smaller melanoma cell lines, (with associated peptides
185 sub-scaling with cell size), whilst cytoskeletal organisation and the rewiring of lipid

186 metabolism define larger cell lines (peptides super-scaling with size). Interestingly
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187 we recover a large, BRCA1 complex in both analyses, implicating the complex in
188 size-dependent phenomena.

189 Derivation of the proliferation time and size gain distributions:

190 We are interested in the waiting time distribution before the first successful event.

191 The probability to fail a division is:
192 Pfail =1- Pdiv equ.Sl

193 For a cell to have not divided by a given time point, it must have failed to divide at
194  every prior time point. The probability of successive failures occurring at a given time

195 is equal to:
196 F(£) = (Pray) = (1— adgy)t equ.S2

197 Where ‘t’ is time since the last division. The probability of having divided by a given ‘t’
198 s the probability that the cell has not failed at every prior step:

199 Ct)=1—(1—- adyy,)t equ.S3

200 The probability distribution follows as:

d
201 P(t) =

%[1 — (1= adg)'] = -1 = adg)' In(1 — adgy) equ.S4

202 P(t)= de ™ , 1= —In(1 - adyy,) equ.S5

203 We may extract the expected gained mass by scaling the time by In(2)/(dt/dA). The
204 In(2) factor accounts for a division event having happened any time in the interval O-
205 t.

__t
206 CAA®) =1— (1 — adyy)n@Aawk  equ.S6

e
207 PCAE) = —(1 — adyy) @ Aank [( )1n(1 —adg)|  equ.s7

1
ln(Z) kAdiv

208 P(t)= 2e™M |, A= In(1 — @Ag,) equ.S8

~ In(2) Aaiwk
209  With a mean of known form given as 1/ 1 :

_ —In(Q)kAgy
210 (P(t)) = (L — adu) equ.S9
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211 We can see that this result constitutes an adder —type system when expressing the
212 expected area gain as a Laurent series about @ = 0 (fitted values never exceed
213 1X107-5) (F6B/C, table 2):

~In (QkAgy, InQk kdAg, 1 2 1 3
- — — —Agi, ak — — Ay, a?k ... .S1
In(1— adgy) a 2 qzfaw MET gpfiaw @ eau-510

214

215

216 The mean area gain is approximately constant, as the first term dominates the
217  expression by virtue of alpha = 0. Thus, a constant average mass is added each

218 cycle, despite the area gain distribution itself being dependent on division size.
219 Deriving the moments of the cell size distribution:

220  Starting with an initial size distribution, F(A), and size gain distribution, G(A), we may
221  define the expected size distribution up to the first division, H(A) as:

222 F(A)*G(A) = H(A) equ.S11

223 On division, the value of cell size is considered to halve. Thus, the birth size

224  distribution is given as:
225 F(24) * G(24) = H(2A) = B(A) equ.S12

226  Where the inclusion of 2A has mapped the probability of A to half its value, thereby
227  simulating a division event. This is then convolved with G(A) again for the next
228 division cycle, and so on:

229 [[F(2"4) » G(2"A)] * G(2"1A)] ..x G(A) = H(A) equ.S13

230 Where n denotes the number of divisions. Note that as n increases, the influence of
231 the initial size distribution on the total convolution decreases as F(2"A) has non-
232 zeros values only at extremely low sizes as n increases. Indeed, we can

233  approximate the above as:
234 Ppiy(A) = [[F(2"4) * G(2"A)] * G(2" 2 A)] ... G (A)
235 ~ G(A) * G(24) * ...G(2"A) equ.S14

236  G(A) has been shown to be an exponential distribution. Convolution of n exponential
237  functions with different scale parameters results in a hypo-exponential function with

238 mean equal to the sum of the means of all participating distributions:

X
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239 (o (A)) = —4 iy L S15
piw(A) = T+t Ty e

240 The sum can be written as:

241 1t 1.1 1—1(1+1+1+ 1)—2 516
2T AT T T 2T on) T 7 eI

242 Indicating that the distribution tends toward a constant mean. The corresponding

243  variance is similarly given as:

1 1 1 1 1 1 1
244 (Pou(A)) = (

4
oy @ @ T ap e T = s St

245  Yielding a constant coefficient of variation:

4
302 1
246 cV = =—=0.5774 equ.S18
R a

247 These results may be trivially adjusted to account for ‘X’ identical events governing
248  division. Indeed, G(A) is merely transformed from a constant exponential distribution
249 to a constant Erlang distribution of shape factor ‘x’ and rate parameter 1/x k/a. This
250 stems from G(A) being generated from the convolution of ‘X’ exponentially distributed
251 gain variables corresponding to the area gain in each cycle stage each with mean
252  1/(x) k/a. As is the case for the hypoexponential, Erlang distributions have means
253 and variance equal to the sum of those of the participating distributions allowing us
254  to easily modify equ.S16/17:

5 _ 1.1 1y 2
256 Ppiv(4, X x x o x (1.1 ) &
(Pos 400 = G+ G * G~ o~ P (L3 16 ) = 5

/ 4x
257 CV(x) = 3(M)? _ Vx —

1
ZTX /3 V3x

equ.519

258 Equ.S19 tells us that from the coefficient of variation, we may estimate the number of
259 stages needed to effectively model the cell size distributions. This relationship is
260 similar to that obtained recently (Nieto et al., 2020) where (CV)"2 was found to be

Xi
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261 proportional to one over the number of modelled cell cycle stages. Importantly, given
262 a single value of the ‘a’ or ‘k’ parameters, this is entirely independent of ‘a’ or ‘k’

263 facilitating simple calculation of the required X’:

264 X equ.S20

= 3(CV)2

265
266
267
268
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