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Abstract: 15 

Almost all living cells maintain size uniformity through successive divisions. Proteins 16 

that sub- or super- scale with size act as rheostats which regulate cell progression. A 17 

comprehensive atlas of these proteins is lacking; particularly in cancer cells where 18 

both mitogen and growth signalling are dysregulated.  19 

Utilising a multi-omic strategy, that integrates quantitative single cell imaging, 20 

phosphoproteomic and transcriptomic datasets, we leverage the inherent size 21 

heterogeneity of melanoma cells to investigate how peptides, post-translational 22 

modifications, and mRNAs scale with cell size to regulate proliferation. We find 23 

melanoma cells have different mean sizes, but all retain uniformity. Across the 24 

proteome, we identify proteins and phosphorylation events that ‘sub’ and ‘super’ 25 

scale with cell size. In particular, G2/M, biosynthetic, and cytoskeletal regulators sub- 26 

and super-scale with size. In small cells growth and proliferation processes are 27 

tightly coupled by translation which promotes CCND1 accumulation and anabolic 28 

increases in mass. Counter intuitively, anabolic growth pathways and translational 29 

process are low in large cells, which throttles the expression of factors such as 30 

CCND1 and thereby coupling proliferation from anabolic growth. Strikingly, these 31 

cells exhibit increased growth and comparable proliferation rates.  Mathematical 32 

modelling suggests that decoupling growth and proliferative signalling fosters 33 

proliferation under mitogenic inhibition.  As factors which promote adhesion and actin 34 

reorganization super-scale with size or are enriched in large cells, we suggest that 35 

growth/proliferation in these cells may be decoupled by cell spreading and 36 

mechanics. This study provides one of the first demonstrations of size-scaling 37 

phenomena in cancer and how morphology determines the chemistry of the cell.38 
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Introduction: 39 

Eukaryotic cells vary widely in size; there is a billion-fold difference in cell volume 40 

between Xenopus oocytes (~1mm diameter (Wallace et al., 1981)) and 41 

phytoplankton (~1um) (Palenik et al., 2007). This results in a spectrum of biology, as 42 

cell size directly impacts nutrient acquisition and consumption, diffusive processes, 43 

and intracellular protein concentrations (Amodeo & Skotheim, 2016; Bernal-Mizrachi 44 

et al., 2001; Monds et al., 2014; Ruvinsky et al., 2005). 45 

Although striking differences in size are observed when comparing between different 46 

cell types, size distributions within proliferating cell types show only modest variance 47 

in cell size, or size ‘uniformity’ (Ginzberg et al., 2015) (coefficients of variation, CVs, 48 

typically 0.1-0.3 (Scotchman et al., 2021)). The size homogeneity of proliferating cell 49 

populations implies the existence of size checkpoints that occur during proliferation 50 

and coordinate cell cycle progression and acquisition of cell mass (Amodeo & 51 

Skotheim, 2016; Ginzberg et al., 2015).   52 

To maintain a stable size distribution across a population, a checkpoint system can 53 

measure the size of individual cells with molecular ‘rulers’ (Schmoller et al., 2015). 54 

Measurements are then coupled to the speed of the division cycle and the 55 

acquisition of mass. Such a system would ‘penalise’ cells that deviate from the target 56 

volume (a ‘sizer’ system), accelerating or diminishing the cell proliferation rate. 57 

Notably growth is not necessarily reliant on protein synthesis and anabolism 58 

(Miettinen et al., 2021). 59 

Other mechanisms of size determination have been documented that do not 60 

inherently depend on cell size measurements, such as the ‘adder’ or ‘timer’ models 61 

where a fixed amount of cell mass is added per cycle (Amodeo & Skotheim, 2016; 62 

Campos et al., 2014). However, recent studies allude to similarity between sizer and 63 

adder/timer systems, with modest errors in sizer function leading to adder-like 64 

behaviour (Facchetti, Knapp, Chang, et al., 2019).   65 

Several studies have identified molecular mechanisms of how size measurements 66 

are coupled to proliferation and/or growth. In budding yeast a type of ‘ruler’ appears 67 

to consist of a mechanism where the concentration of a cell cycle progression 68 

inhibitor, Whi5, becomes diluted with respect to the activator, Cln3, as cells grow 69 

larger, allowing cell cycle progression only at a critical size. (Costanzo et al., 2004; 70 
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Schmoller et al., 2015).  The set-point appears to be in part determined by the 71 

concentration of Whi5 is relative to the number of DNA binding sites for the cell cycle 72 

activator SBF. (Heldt et al., 2018).  73 

Recently, RB1 (an ortholog of Whi5) has been demonstrated to have a role in 74 

mammalian size control. RB1 concentration sub-scales with size across the cell 75 

cycle. Meaning, in smaller newly born daughters, the activity of RB1 exceeds that of 76 

its agonist Cyclin D1 (CCND1). CCND1 scales with size, and thus as cells grow, 77 

there is a point at which the activity of CCND1 exceeds that over RB1 and 78 

proliferation occurs (Zatulovskiy et al., 2020). In normal cells CCDN1 levels 79 

themselves are a function of mitogen signalling and translational activity (Min et al., 80 

2020). Thus, in normal mammalian cells, cells meet the RB1:CCDN1 set-point for 81 

proliferation by increasing the concentration of CCND1 with regards to RB1 by 82 

actively translating CCND1 while simultaneously diluting RB1 as cells grow larger 83 

(Zatulovskiy et al., 2020). 84 

It is becoming clear that regulation of protein function by diluting or concentrating 85 

with cell size is not a rare phenomenon. Many proteins have been shown to ‘super’ 86 

or ‘sub’ scale (mass fraction increases/decreases) with cell size (Amodeo et al., 87 

2015; Lanz et al., 2021) beyond a small set of proliferative regulators. Indeed, recent 88 

studies point to histones (Amodeo et al., 2015; Swaffer et al., 2021), translational 89 

components (Yahya et al., 2021) and several metabolic elements (Lanz et al., 2021; 90 

Neurohr et al., 2019) sub/super scaling with cell size.  Not all these proteins will act 91 

as size ‘rulers’, and may instead influence their activity. For example, chromatin-92 

associated histones have been shown to regulate equal partitioning of Whi5 in 93 

asymmetric cell divisions in budding yeast (Swaffer et al., 2021) . Dilution of cell 94 

proteins (and intracellular DNA) through excessive growth has also recently been 95 

associated with the onset of cell senescence (Neurohr et al., 2019).  96 

In other cells, size control is highly influenced by cell geometry. For example, in 97 

fission yeast, (Fantes & Nurse, 1977), size is thought to be determined primarily at 98 

G2/M through the accumulation of localized CDR2 nodes that accumulate at the 99 

growing mid body to activate CDK1 by inhibiting Wee1 (Facchetti, Knapp, Flor-Parra, 100 

et al., 2019; Lundgren et al., 1991; Russell & Nurse, 1987). Because CDR2 101 

accumulation scales with surface area, this provides a means by which the detection 102 
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of cell geometry influences a size checkpoint.  Other work has shown analogous 103 

regulation of size by surface area or volume in both bacterial (Harris & Theriot, 104 

2016), and mammalian cells (Varsano et al., 2017). Thus, different geometric 105 

quantities, such as surface area, may serve to mediate size control in different cell 106 

types through coupling to signal proteins.  107 

Because most studies on size control use either yeast, bacteria, or normal 108 

mammalian cells, there is little understanding of size determination in cancer. Classic 109 

studies suggest that increased size and morphological heterogeneity are histological 110 

measures of cancer grade, with large and more morphologically varied cancers, 111 

tending to be more pathogenic (Watson, 1997). Indeed, only highly heterogeneously 112 

sized lines induced tumours upon transplantation in mice (Caspersson et al., 1963). 113 

This diversification of cell size has been shown to be cell autonomous and not an 114 

artefact of the environment (Caspersson et al., 1963). Together these observations 115 

suggest modification of cell size in malignant tissues and that this contributes to (or 116 

coincides with) increased cellular fitness. But the exact relationship between size 117 

and disease is poorly understood.  118 

Consistent with the idea that size and size heterogeneity are associated with 119 

oncogenesis, dysregulation of RB1’s inhibitory actions on E2F1, a putative size ruler, 120 

are frequent oncogenic events (Nevins, 2001). For example, many cancers have 121 

loss of function mutations in the RB1 gene and/or have upregulated activity in ERK 122 

kinases, which promotes increased CCND1 levels, and a concomitant increased 123 

activation of RB1’s inhibitor CDK4/6 (Chinnam & Goodrich, 2011). Indeed, mutations 124 

resulting in constitutively active BRAF or NRAS, proteins in-part responsible for the 125 

activation of ERK kinases and ultimately CCND1 production (Joseph et al., 2010), 126 

comprise 50% and 20% of all melanoma cases, respectively (Davies et al., 2002; 127 

Reifenberger et al., 2004). These common driver mutations are likely to directly 128 

affect the size control machinery, however, the specific effect of these mutations on 129 

size control is essentially unknown.  130 

Here we leverage the natural phenotypic heterogeneity of a panel of melanoma cell 131 

lines, to investigate the size-scaling of intracellular peptides and transcripts in the 132 

context of cell growth and division. We show that BRAF and NRAS mutant 133 

melanomas have diverse mean sizes, but size uniformity is maintained. Both RB1 134 
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and Cyclin D1 sub-scale with size across lines. However, the relative ratio of these 135 

proteins is constant, suggesting a common set-point of RB1 to Cyclin D1 is a 136 

conserved despite the presence of oncogenic mutations which can affect the levels 137 

of both proteins. We identify sub and super-scaling across the cell proteome and 138 

phosphoproteome. In particular, we show that regulators of G2/M, translation, and 139 

growth sub-scale with size across lines, but stress response proteins, adhesion 140 

components, and certain growth factor receptors super-scale. Through integration of 141 

transcriptomic data, we show that scaling of translation is regulated transcriptionally. 142 

mTOR signalling and translation couples cell growth and proliferation by promoting 143 

anabolic growth and increasing CCND1 levels in small populations. In contrast, 144 

larger lines counter intuitively have decreased levels of translation and altered 145 

biosynthetic signalling despite exhibiting an increased growth rate. These cells may 146 

spread to concentrate anabolic regulators subverting the constraints of a reduced 147 

biosynthetic mass fraction. Proteomic data suggests this could be due to 148 

reorganization of adhesion and actin structures. Mathematical modelling indicates 149 

that uncoupling growth and proliferative systems facilitates division following a 150 

reduction mitogenic signalling. This research provides one of the first datasets 151 

describing how the transcriptional and proteomic profile of melanoma cells can 152 

change with cell size, indicating that cell morphology can have direct and meaningful 153 

effects on the chemistry of the cell. 154 

 155 

Results:  156 

 157 

Melanoma cell lines exhibit comparable size control but different cell sizes: 158 

To understand the relationship between cell size and different clinically relevant 159 

oncogenic drivers, we quantified the morphology of 17,547 single cells from 11 160 

mouse melanoma cell lines from three different genetic backgrounds (SD1, SF1). 161 

Lines were either: BRAF*; constitutively active BRAF typically due to a V600E 162 

mutation (Dhomen et al., 2009) (Cantwell-Dorris et al., 2011); NRAS*, constitutively 163 

active NRAS, due to G12D mutations (Pedersen et al., 2013, 2014) (Burd et al., 164 

2014) or NRAS*/KDBRAF, where lines harboured a constitutively active NRAS 165 

mutation and a dominant negative mutation in the BRAF kinase domain  BRAF 166 

(D594A) (Table 1) (Pedersen et al., 2014). NRAS*/KDBRAF mutants mimic the 167 
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clinical situation where there is paradoxical activation of BRAF following treatment of 168 

NRAS mutant cells with BRAF inhibitors such as Vemurafenib (Poulikakos et al., 169 

2010) (Bhargava et al., 2016). 170 

For each single cell we quantified 60 features (Bakal et al., 2007). We used the ‘cell 171 

area’ feature as a proxy of cell size (Facchetti, Knapp, Chang, et al., 2019). 172 

Statistical analysis confirmed the ‘cell area’ distribution means were distinct (N-Way 173 

ANOVA, P < 0.05)(F1A), demonstrating extensive inter cell line size heterogeneity. 174 

We performed an exhaustive series of Wilcoxon rank-sum tests between area 175 

distributions (all distributions found to have unique medians, P < 0.001). By retrieving 176 

the W-statistic, we calculated the ‘common language effect size’ for each 177 

comparison. This produced a matrix of pairwise comparisons between all cell lines 178 

that measured the degree of difference in median area between them. Clustering the 179 

lines according to this difference let us define three area classes (F1B): Class 1; low 180 

mean (small cells), low variance high positive skew, class 2; moderate mean, (larger 181 

cells) moderate variance, moderate positive skew, and class 3; high mean (largest 182 

cells), high variance low skew (F1C). BRAFKD/NRAS cells tended to be larger. 183 

NRAS and BRAF active cells spanned the range of sizes. Though populations 184 

exhibited different extents of variance, we found that across all distributions, the 185 

mean cell area linearly scaled with the variance of cell area (R = 0.93), and the 186 

coefficient of variation differed only modestly between cell lines (F1D). This suggests 187 

that the lines have different size ‘set points’ at which proliferation occurs rather than 188 

altered control. 189 

Cell size relates to DNA content and DNA cytoplasm ratio: 190 

Previous studies have indicated that DNA content (Amodeo & Skotheim, 2016), and 191 

concentration (Neurohr et al., 2019), are major determinants of cell size.  However, 192 

Flow-Assisted Cell Sorting (FACS) analysis revealed that ploidy was weakly 193 

associated with cell size across lines (SF2) For example, both small (4434 194 

(460um^2), 5555 (490um^2)) and large (B14341 (1500um^2), 17864A (900um^2)) 195 

cell lines are largely 2N; all exhibited partial 4N populations. We note that 21917 196 

(800um^2) and 24038 (2400um^2) were almost entirely tetraploid. 197 
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To further examine the relationship between DNA content and size in single cells, we 198 

then quantified the nuclear content (as judged by integrated Hoechst intensity) 199 

across lines. This metric differs from ploidy because it considers the amount of 200 

Hoechst staining within the nucleus, which can be affected by factors such a packing 201 

and aneuploidy in addition to polyploidy. We observed a linear relationship between 202 

nuclear content and cell area across lines both between (F1F) and within lines 203 

(F1G). We then investigated how the DNA/cytoplasm ratio (D/C) scaled with cell size 204 

and identified two distinct clusters of cell lines; A set of smaller cell lines with a 205 

relatively high D/C, and large set with a relatively low D/C ratio (F1H). Thus, cell size 206 

in these cell lines is related to DNA content and concentration, but ploidy plays a 207 

comparatively minor role. 208 

Translation throttles CCND1 accumulation in response to upstream signalling. 209 

To understand the drivers of size in our cell lines, we constructed a proteomic 210 

dataset capturing 9,215 total peptides, identifying phosphorylation events on 4,312 211 

peptides, with a total of 2,1355 unique phosphorylation events detected (SD2). 212 

Peptide expressions, normalised to reflect the relative difference in mass fractions 213 

across cells lines (Methods), were correlated to cell areas revealing proteins whose 214 

concentrations continuously scale with size.  215 

Previous studies have demonstrated that in normal cells there is a critical RB1 216 

concentration at which cells commit to division (Zatulovskiy et al., 2020). In normal 217 

cells, size dilutes RB1 with respect to a constant level of CCDN1 to drive 218 

proliferation. However, whether the concentration of RB1 and CCND1 determines a 219 

similar set point in cancer cells, especially in melanoma where mitogenic signalling 220 

can drive CCND1 translation is unclear (Gennaro et al., 2018; Vízkeleti et al., 2012). 221 

As a starting point, we thought to investigate expression of RB1 and CCND1 in our 222 

lines. Notably 10/11 of the studied cell lines express detectable RB1, and mean RB1 223 

levels strongly sub-scale with size (F2A). Specifically, larger lines exhibited lower 224 

mean concentration of RB1. Thus, as within lines (Zatulovskiy et al., 2020), RB1 sub-225 

scales with size between lines.   226 

Notably, CCND1 abundance was also found to broadly negatively correlate/sub-227 

scale with size (F2B). This suggests differential regulation of CCND1 levels between 228 

lines. We do note that two lines, 21015 BRAF and C876 NRAS, two of the largest 229 
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cell lines investigated, exhibited a stark upregulation of CCND1 beyond that would 230 

be predicted based on size and RB1 levels. (F2B). However, the ratio of RB1 to 231 

CCND1 is largely invariant with size (SD2). We conclude that the set point, where 232 

CDK4/6:CCND1 activation exceeds RB1 concentration to drive proliferation is thus 233 

similar across lines.  234 

To understand the molecular basis for the inter-line scaling of CCDN1 we 235 

established a method to quantify the signalling activity upstream of CCND1; utilising 236 

the phosphorylation state of transcriptional regulators of CCND1, as defined by the 237 

ENCODE database ((Dunham et al., 2012)), (henceforth labelled CCND1regs) 238 

across different melanoma lines. All phosphorylations used in the analysis with 239 

known causative kinases or documented cellular effects (as determined via the 240 

Phosphositeplus ((Hornbeck et al., 2015)) database) are detailed in SD4. These 241 

include several canonical upstream regulators of CCND1 transcription such as 242 

BRAF-MEK-ERK as well as JUN and MYC amongst others.  Across lines we found 243 

that the phosphorylation of the majority of CCND1regs follow a similar trend to RB1 244 

(or ~CCND1) expression, negatively correlating with size (F2D).  These pathways 245 

were largely upregulated in small cells (Class I), consistent with the presence of 246 

activating mutations in BRAF and NRAS (table 1).  These pathways were also 247 

downregulated in large cells (Class 2/3) consistent with the fact that some of these 248 

lines have inactivating mutations in BRAF which inactive kinase activity (Bhargava et 249 

al., 2016; Malin Pedersen et al., 2014).  250 

Interestingly, despite both negatively correlating with cell size, we observed a 251 

negative relationship between cell size and the ratio between RB1 and CCND1reg 252 

expressions, showing that larger cell lines in fact exhibit more pro-CCND1 signalling 253 

per molecule of RB1 than smaller cell lines. Moreover, this shows that that the low 254 

levels of CCND1 in larger lines are not due to reduced mitogen signalling alone. 255 

Investigating this phenomenon, we identified proteins whose expression correlated 256 

with the RB1/ pCCND1reg ratio (F2E) and conducted SAFE analysis (F2F). We 257 

observed that low RB1/ pCCND1reg ratio (i.e. in large cells) is associated with lower 258 

expression of ribosomal and spliceosome proteins (e.g. RPL26, SNRPE) (F2G, 259 

SD7). Thus, as these cells have less CCND1 than would be expected, this suggests 260 
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that reduced biosynthesis inhibits the conversion of CCND1 signalling to functional 261 

CCND1. 262 

Taken together, these data suggest that in large cells, while upstream activity of 263 

CCND1 regulators is high relative to RB1, decreased translational efficiency 264 

“throttles” CCND1 protein accumulation.  265 

Proteome wide identification of sub- and super-scaling factors. 266 

We next sought to describe more broad differences in protein expression between 267 

the lines. By plotting correlations of protein mass fractions with size versus the fold 268 

change across big and small cell lines, we conducted a volcano analysis (F3A). We 269 

classified size-correlated peptides as ‘Hits’ (Fc > 1.33 or < 0.66, P < 0.05), which 270 

were then sorted into two groups. One group of peptides are those expressed in 271 

class I (small) cells (thus, sub-scaling) and those expressed in class2/3 (large) cells 272 

(super-scaling). We conducted an ontological analysis on all the hit peptides (F3B). 273 

Small cells were enriched for sub-scaling proteins encoding regulators of cell cycle 274 

and mitotic processes (labels including: ‘Cell cycle process’, ‘mitotic cell cycle 275 

process’, ‘cell division’, P < 10^-9). These proteins included checkpoint kinases ATM, 276 

BRCA1, and WEE1; and the mitotic cyclin CCNB2. In contrast, class 2/3 large lines 277 

were statistically enriched for super-scaling peptides from lipid/glycolipid metabolic 278 

processes, and components of the extra-cellular matrix (ECM). These included: 279 

MVK, MVD, ACAT2 and COL2A1 (all ontology enrichments significant to at least P < 280 

10 ^-3). (SD3/4) (F3E for examples).  281 

To capture how protein kinase activity may also sub- or super-scale, we analysed 282 

the set of proteins for which at least one phosphorylation was detected; using the 283 

same system as that above (F3C/D). In Class I small cells we observed a clear 284 

enrichment of sub-scaling phosphopeptides from cell cycle regulators  (‘mitotic cell 285 

cycle’, ‘cell cycle process’, ‘cell cycle’, P < 10^-9, eg: BRCA1, SPDL1, LIG1) and 286 

biosynthetic processes (‘regulation of cellular biosynthetic process’, ‘regulation of 287 

macromolecule biosynthetic process’, ‘positive regulation of RNA metabolic process’, 288 

P < 10^-9, eg: mTOR, TSC1, EIF4B, EIF4G1, MED26 ) including the canonical 289 

mTORC1 activating phosphorylation, S2448 (Chiang & Abraham, 2005) implying 290 

upregulation in small cell lines. Class 2/3  larger cell lines were enriched for super-291 

scaling phosphorylations on GTPase and cytoskeletal regulators (‘positive regulation 292 
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of GTPase activity’, ‘cell junction assembly’, ‘regulation of cytoskeleton organization’, 293 

P < 10^-4, e.g: CTNNB1, LATS1, ROCK1, ARHGEF5, ARFGEF1, ARHGAP12 ) and 294 

also set of growth regulators (‘regulation of macromolecule biosynthetic process’ , P 295 

< 10^-6, PDGRFA, PDGFRB, IRS1, PRKCD, DEPTOR) implying differential 296 

regulation of biosynthesis across the size range (SD3, F3E/F/G for examples). 297 

These included activating phosphorylations on ROCK1 (S1341) and a CTNNB1 298 

degradation signal (S29) (Hornbeck et al., 2015). Notably, DEPTOR phosphorylation 299 

and expression super-scaled with size implying downregulation of insulin-TOR 300 

signalling; this is consistent with the observed reduction in mTOR S2448 expression. 301 

See SF4/5 for a full set of mTOR and cytoskeletal phosphorylations associated with 302 

cell size. 303 

We then sought to define a regulatory network of proteins that scale with size. By 304 

integrating protein-protein interaction data (Franceschini et al., 2013) (see SD2 for 305 

these unfiltered hits) with our list of phospho-peptide and peptide whose mass 306 

fractions correlated with size, we derived a protein-protein network (Shannon et al., 307 

2003) (F3H). At this stage, we replaced scaled abundance of the phosphopeptide 308 

with an ‘adjusted abundance’, measuring the phosphopeptide abundance relative to 309 

the amount of peptide detected (Methods). This way we could reveal peptides that 310 

were more/less phosphorylated than expected, given their mass fraction. 311 

Application of the SAFE algorithm (Baryshnikova, 2016) revealed networks of super- 312 

and sub-sclaing proteins. These networks were enriched for ontological themes of 313 

proteins/phospho-proteins with high expression in each class (F3H) ((Ashburner et 314 

al., 2000; Carbon et al., 2021; Eden et al., 2009; Mi et al., 2019)). Analysis of these 315 

networks echoed the prior results, that it is the disproportionate expression and 316 

phosphorylation of ‘G2/M control’ phosphopeptides that defines our smaller cell lines 317 

(e.g. BRCA1, WEE1, CCNB2, ATM), including BRCA1 S686 an AKT1 target and 318 

stabilising phosphorylation (Hornbeck et al., 2015).  In larger lines we observed 319 

altered phosphorylation of ‘translation control’ (e.g. eEIF4B, EIF5B), ‘spliceosome 320 

machinery’ (e.g. SNRPE, SF3B4), ‘cell adhesion’ peptides (e.g. YAP1, YES1, 321 

CTNND1) and increased expression of ‘growth signalling’ (e.g. EGFR, PDGFR) 322 

peptides (F3H). Interestingly, despite mTOR S2448 sub-scaling, many 323 

phosphorylations enriched in larger cell lines correspond to insulin signalling events 324 
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such as EIF4B S497 (Hornbeck et al., 2015) implying differential interpretation of 325 

upstream signals in big/small lines. 326 

Inflammatory transcripts enrich in larger cell lines:  327 

We next performed transcriptomic experiments to gain further insight into the 328 

relationship between size and signalling network organization and activity. We 329 

measured the abundance of 24988 RNA molecules overlapping with 9290 measured 330 

peptides (SD5). 331 

We conducted a volcano analysis, as described prior (Methods), to identify a list of 332 

transcripts that super- and sub- scale with size across lines (F4A). mRNA’s relating 333 

to cell cycle regulation (‘regulation of cell cycle’; BARD1, WEE1, E2F8, RB1) and 334 

control of gene expression (‘negative regulation of gene expression’, ‘chromatin 335 

organisation’, ‘cell differentiation’; e.g: SIN3A, SOX2, HMGA1) sub-scaled with cell 336 

size (F4B/C) (SD3). These observations are in line with observations that small cells 337 

express relatively higher levels of cell cycle regulatory proteins such as WEE1. 338 

Transcripts pertaining to inflammation processes (‘inflammatory signalling’, 339 

‘Interferon signalling’ including: STAT1, IFIT1, IRF5 (and 7) and ADAR) were 340 

upregulated in larger cell lines. 341 

In conjunction with that observed in the proteomic data, these data show that 342 

compared to Class I smaller cells, Class 2/3 larger cells have decreased levels G2/M 343 

regulators, altered metabolism and biosynthesis, and increased expression of 344 

inflammatory effectors.  345 

Transcription regulates ribosomal scaling. 346 

To examine the role of translation and transcription in size and proliferation control, 347 

we first related mRNA and peptide abundances in each line. Correlation coefficients 348 

between mRNA and expression ranged between 0.56-0.38, in agreement with 349 

previous studies (Gry et al., 2009) (F5A/B). We then calculated correlations at the 350 

gene level, across cell lines. Strikingly, this revealed that for most genes there is 351 

poor correlation between mRNA fraction (reads of gene/total reads in the cell line) 352 

and peptide mass fraction. Indeed, of those that exhibited significant correlations 353 

(1116/9290), many showed negative relationships (277/1116) (F5C). 354 
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By conducting ontological analysis on the genes with significant, (P < 0.05, R > 0.55, 355 

n = 11) positive correlation with peptide abundances, we observed an obvious 356 

enrichment of cell cycle and DNA repair/replication genes (‘cell cycle process’, ‘DNA 357 

Replication’, ‘mitotic cell cycle phase transition’, P < 10 ^-6, eg: ‘BRCA1’, ‘CCNB2’, 358 

‘CCND2’, ‘CCNA2’, ‘BRIP1’, ‘CDK4’, ‘ECT2’) (F5D/E).  Interestingly, this suggests 359 

that the sub-scaling of G2/M regulators with size is occurring at the transcriptional 360 

level; as cells get larger fewer G2/M transcripts are being produced reducing peptide 361 

expression. 362 

To identify genes that were strongly correlated in specific size classes we split the 363 

transcript/proteomic datasets into ‘large’ and ‘small’ subsets, comprised of cell lines 364 

with sizes above/below the mean (900um^2), and recalculated the correlation 365 

coefficients between mRNA and peptide fractions. At the gene level, In the smaller 366 

subset, we observe enrichment of inflammatory, adhesion and cell cycle regulators 367 

(‘type 1 interferon signalling pathway’, ‘regulation of cell adhesion’, ‘mitotic cell cycle 368 

checkpoint’ P < 10^-5, eg: ‘IRF9’, ‘IFIT3’, ‘STAT1’, RHOD’, ‘CTHRC1’, ’CCNB2’, 369 

’BRCA1’) (F5F-H). In large cells, there was a strong correlation between mRNA and 370 

protein mass fraction of  ribosomal and translational genes (n = 5, P<0.05, |R| > 371 

0.75) (‘translation’, ‘cytoplasmic translation’, ‘cytoplasmic large ribosomal subunit’, 372 

P<10^-9, eg; RPL26, RPL8, RPL23, RPL5, ETF1) (F5I-K). This suggests, like that 373 

observed for G2/M regulators, that control of the expression of translational 374 

components occurs through transcription, rather than translation, at larger cell sizes.  375 

Indeed, correlating RNA pol1-3 component expressions (F5L) to the mRNA 376 

abundance of ribosomal components, we note a clear positive relationship (for 377 

POL1/2). This extended to the peptide abundance suggesting that the production of 378 

ribosomal peptides is transcriptionally limited in these cell lines. This was not 379 

observed in smaller cell lines; whilst the correlation between pol1/2 expression and 380 

peptide expression was maintained, the relationship with mRNA was disrupted 381 

indicting a translational dependency in smaller lines (SD5/3).  382 

Validation of size scaling relationships in an independent panel of melanoma 383 

cell lines: 384 

To assess the universality of our size-scaling relationships, we extended our panel of 385 

11 lines to include a further 12 comprised of the same genotypes as before and 386 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2022. ; https://doi.org/10.1101/2022.06.21.496989doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.496989
http://creativecommons.org/licenses/by-nd/4.0/


14 
 

conducted further quantitative morphological analyses and phospho-proteomic 387 

experiments and repeated the volcano analysis. In contrast to the previous analysis, 388 

we note an additional ‘arm’ of the volcano plot indicating a subset of peptides 389 

extremely enriched in larger cell lines (SF3). We hypothesise that tis result 390 

represents gene overexpression rather than super-scaling relationships. Initially 391 

including these genes in the analysis, we found that upregulation of apoptotic 392 

effectors (‘apoptotic signalling pathway’, ‘positive regulation of mitochondrial 393 

membrane permeability involved in apoptotic process’, ’necrotic cell death’, P < 10^-394 

3, eg. ‘BOK’, ‘TLR3’, ‘TLR4’, ‘BCL2’, ‘TICAM1’), and lipid/carbohydrate metabolism 395 

(‘lipid metabolic process’, ‘small molecule metabolic process’, ‘oligosaccharide 396 

metabolic process’, P < 10-8, eg. GAA, NEU1, ALG11, ACOX3) is most associated 397 

with large cell lines. Excluding the ‘overexpressed’ genes, we observe enrichment of 398 

lipid metabolic proteins alone (‘lipid biosynthetic process’,’ lipid metabolic process’, 399 

‘sterol metabolic process’, P < 10^-5). In contrast, we observe a clear enrichment of 400 

cell cycle (‘cell cycle process’, ‘cell cycle checkpoint’, P < 10^ -15, eg. CDK2, 401 

CCNB2, CCNA2, CDC45), mitotic (‘mitotic cell cycle checkpoint’, ‘chromosome 402 

segregation’, P < 10^-10,  eg. SPDL1, ECT2, PLK1) and DNA repair (‘DNA repair’, 403 

‘cellular response to DNA damage’ P < 10^-10, eg. BRCA1, LIG1) peptides in 404 

smaller lines indicating sub-scaling (SF4) (SD3).  405 

Enacting the same analysis for the phospho-peptides (SF4), we again observe 406 

additional ‘arms’ indicating gene overexpression in big/small cell lines. We first 407 

calculated enrichments for the two ‘central arms’ finding phosphorylations on cell 408 

cycle, DNA repair, and biosynthetic regulatory peptides (‘cell cycle process’, ‘DNA 409 

repair’, ‘regulation of macromolecule biosynthetic process’, P < 10^-7, eg: ‘BRCA1’, 410 

‘CHEK1’, ‘CDK4’, ‘EIF4B’, ‘RPS5, ‘EIF3G’) enrich in smaller cell lines. In larger cell 411 

lines, phosphorylations pertaining to cytoskeletal and growth factor signalling 412 

(‘Regulation of GTPase activity’, ‘cytoskeletal organisation’, ’cell adhesion’, 413 

‘regulation of epidermal growth factor receptor signalling pathway’, P < 10 ^-3, eg; 414 

ARHGEF6, GIT1, TSC2, ROCK1/2, CDC42, TLN1, AKT1/3) are enriched. Within 415 

each overexpressed group, we found that larger cell lines were upregulating GTPase 416 

signalling elements (‘positive regulation of GTPase activity’, ‘regulation of small 417 

GTPase mediated signalling’, ‘Rho protein signal transduction’, (P < 10^-10, 10^-10, 418 

10^-5 respectively), eg. ARFGAP1, TIAM2, ARHGAP1) whilst upregulations in 419 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2022. ; https://doi.org/10.1101/2022.06.21.496989doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.496989
http://creativecommons.org/licenses/by-nd/4.0/


15 
 

smaller cell lines followed no theme (SF3, see SF3 for examples) (SD3). We then 420 

investigated which ontological themes were enriched in both analyses finding good 421 

agreement, a full discussion of this analysis can be found in the supplemental 422 

information. Interestingly we recover a large, BRCA1 centric set of interacting genes 423 

in both analyses, implicating BRCA1 in size-dependent phenomena (SF3). 424 

These data corroborate our previous analysis, strengthening the claim that G2/M and 425 

DNA repair processes define smaller melanoma cell lines, (with associated peptides 426 

sub-scaling with cell size), whilst cytoskeletal organisation and the rewiring of lipid 427 

metabolism define larger cell lines (peptides super-scaling with size). 428 

Cell growth rate scales with cell size despite downregulation of biosynthetic 429 

effectors 430 

Having observed sub-scaling of ribosomal and spliceosome peptides expression, 431 

differential phosphorylation of biosynthetic regulators, depressed proliferative 432 

signalling and a clear inflammatory response in larger cell lines, we expected them to 433 

exhibit a notably decreased growth rate. To investigate this, we live imaged two cell 434 

lines from each genotype spread across the observed range of cell sizes and 435 

quantified the average rate of growth as the area gain per time, (um^2/hour). To our 436 

surprise, growth rate was found to increase with cell size despite the observed 437 

downregulation of biosynthetic effectors (F6A) and proliferation rate was only 438 

modestly affected (SF3). We note, however, that this relationship does not appear 439 

linear suggesting that the system behind this phenomenon begins to fail at large cell 440 

sizes. These data show that larger melanoma cell lines can maintain cell growth 441 

without the scaling of classical growth regulators.  442 

Investigating mTOR signalling specifically, we note that while the primary activating 443 

mTOR phosphorylation sites (S2448, S2481; phosphorylations responsible for 444 

signalling through mTORC1/ 2 respectively (Chiang & Abraham, 2005)) are under-445 

phosphorylated in larger cells (phosphopeptide abundance is lower than expected 446 

given peptide abundance), many upstream regulators exhibit phosphorylations 447 

typical of insulin driven RTK signalling. However, these genes were differentially 448 

phosphorylated across the cell sizes; for example, IRS1 S414 is enriched in smaller 449 

cell lines whilst IRS1 T448 is enriched in larger lines, despite both being related to 450 

insulin signalling (Hornbeck et al., 2015). These data further indicate that differential, 451 
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rather than reduced, RTK signalling across sizes leads to the observed 452 

downregulation of biosynthetic effectors in larger cell lines (SF5). 453 

Given the altered signalling state and having noted an upregulation of cytoskeletal 454 

peptide expression and phosphorylation in larger cell lines, we were interested in the 455 

state of canonical RTK driven pathways of cytoskeletal activation. Interestingly, we 456 

noted that HER2, (1108), SRC (S17), PAK4 (S476), ROCK1 (S1341), VASP (S317) 457 

and LIMK1 (S298), (all of which activating phosphorylations (Hornbeck et al., 2015)) 458 

amongst others, where disproportionately abundant in larger cell lines indicating that 459 

RTK-driven cytoskeletal activity is upregulated (SF6). We hypothesise that larger cell 460 

lines have skewed their RTK-signalling machinery toward the activation of 461 

cytoskeletal rather than anabolic processes. This may lead to increased spreading of 462 

the cell. 463 

Theoretical modelling suggests decoupling of low mitogen and growth 464 

signalling drive proliferation of larger cells: 465 

Noticing that growth rate is maintained in larger cell lines in the background of 466 

downregulated proliferative and biosynthetic signalling, we sought to understand the 467 

significance of this effect at a more systems level. We utilised a simplification of 468 

recent models, where the transition rate between cell cycle stages is governed by a 469 

power-law relationship with cell size: 470 

𝑅 = 𝛼𝐴(𝑡)𝑦 𝑒𝑞𝑢. 1 471 

Following previous studies (Nieto et al., 2020), the transition time probability 472 

distribution under an exponential growth condition is given as: 473 

 𝐴(𝑡) =  𝐴𝑏𝑒
𝑘𝑡   ,    𝑃(𝑇 > 𝑡) = 𝑒−∫ 𝛼𝐴(𝑠)𝑦𝑑𝑠

𝑡
0 = 𝑒

−
𝛼𝑉𝑏

𝛾

𝑘𝛾
(𝑒𝛼𝛾𝑡−1)

 𝑒𝑞𝑢. 2 474 

Indicating that the 𝛾th power of the added area follows an exponential distribution 475 

centred on 𝛾𝑘/𝛼; 476 

𝑃(𝑉𝑏
𝛾(𝑒𝛼𝛾𝑡 − 1) > 𝑡) =  𝑒

−
𝛼𝑡
𝑘𝛾 𝑒𝑞𝑢. 3 477 

Taking y =1, the mean added mass equals 𝑘/𝛼. We could capture similar behaviour 478 

when considering the simpler case where the probability of transitioning between 479 

cycle stages and growth rate are taken to be a constant within a cycle but are 480 

adjusted according to cell division size (Adiv), (P = αAdiv, β = kAdiv , respectively) 481 
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defining a Poissionian system. We believe that this simplification provides a useful 482 

tool for the understanding of cell size determination in the adder case. Here we have 483 

assumed adder-like behaviour, as small errors in sizer mechanisms can lead to 484 

phenomenological adder systems (Facchetti, Knapp, Chang, et al., 2019). Using 485 

these, we could derive expressions for the expected proliferation rate and added 486 

size, given as exponential distributions; 487 

𝑃(𝑡) =  𝜆𝑒−𝜆𝑡    ,    𝜆 =  −
1

ln 2
ln(1 −  𝛼𝐴𝑑𝑖𝑣)    𝑒𝑞𝑢. 4 488 

𝑃(𝐴(𝑡)) =  𝜆2𝑒
−𝜆2𝑡    ,    𝜆2 = −

1

ln(2) 𝐴𝑑𝑖𝑣𝑘
ln(1 −  𝛼𝐴𝑑𝑖𝑣)     𝑒𝑞𝑢. 5 489 

 We include the derivations in the supplemental information. This facilitated the 490 

construction of a simple system of equations dictating cell size: 491 

𝑆(𝛼, 𝐴𝑑𝑖𝑣, 𝑘) =

{
 
 

 
 𝑡𝑚 =

−ln (2)

ln(1 −  𝛼𝐴𝑑𝑖𝑣(𝑛))

𝐴𝑑𝑖𝑣(𝑛 + 1) =  
1

2
𝐴𝑑𝑖𝑣(𝑛) +

−ln (2)𝛽

ln(1 −  𝛼𝐴𝑑𝑖𝑣(𝑛))

𝛽 = 𝑘𝐴𝑑𝑖𝑣(𝑛) }
 
 

 
 

    𝑒𝑞𝑢. 6 492 

Where ‘tm’ is the mean proliferation time, and ‘n’ is the number of proliferative cycles 493 

that have passed. Perturbing the parameters of this system, we find it is stable to 494 

perturbations in Adiv (F6B) but unstable to changes in α or k. That is, a constant 495 

mean size is maintained under this system that may be adaptively regulated by 496 

modification of α, related to mitogenic signalling and k, controlling growth rate. 497 

If alpha is perturbed, the proliferation rate initially decreases, but exponentially 498 

decays back to the initial value across successive division cycles. Thus, if the alpha 499 

and k parameters are independent, cell growth provides a means to ‘correct’ 500 

proliferation rate under perturbation to mitogenic signalling. (F6B)   501 

Using equations 4 and 5, we could derive the moments of the expected size 502 

distribution (SI). This is a hypo-exponential function, with a mean and variance given 503 

as: 504 

〈𝑃(𝐴(𝑡))〉 =
2𝑥

𝜆2
= 
2𝑥 k ln 2 

𝛼
   , 〈〈𝑃(𝐴(𝑡))〉〉 =    

4𝑥

3(𝜆2)2
=  
4𝑥𝑘2(ln 2)2 

3𝛼2
   𝑒𝑞𝑢. 7 505 
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Where ‘x’ is the number of ‘stages’ in the model of cycle. This yields a coefficient of 506 

variation; 507 

𝐶𝑉 = 
√
4𝑥
3(𝜆)2

2𝑥
𝜆

=
1

√3𝑥
     𝑒𝑞𝑢. 8 508 

The cell lines have CV’s of ~ 0.7 – 0.6, and x was calculated to range between 0.7 509 

and 0.9. For simplicity, we took x = 1 from this to avoid complications stemming from 510 

a decimal number of cell cycle stages (although this may be rationalised as the cell 511 

‘skipping’ cell cycle regulation every 1/x divisions). We note this approach is only 512 

feasible when the CV > ~0.25 as the differences in CV values for neighbouring ‘x’ 513 

tend to 0 as x increases; this is equivalent to an ~ 5 stage system. (F6C)  514 

These results allow us to define a simple and efficient algorithm to calculate 515 

predicted cell size distributions (methods) (F6E). ‘α’ values were fit to experimentally 516 

determined area distributions by minimising the Kullbeck-Leibler divergence 517 

(Andrew, 2004) between measured and calculated distributions (beta is a measured 518 

parameter); ‘𝛼’ values decrease with increasing cell size (F6F) (Table 2).  The 519 

simulation accurately recapitulated much of the measured data, however, In the case 520 

of larger cell lines, the model partially under-predicted the abundance of ‘small’ (A < 521 

500um^2) cells (see 24038 (2500um^2), C876 (1600um^2), 17864A (1000um^2) 522 

and B14341 (1500um^2) (F6G). A summary of the model can be found in F6H.  523 

Taken together our modelling has shown that given a proportionality between cell 524 

size and division probability, increased cell growth is an effective means of triggering 525 

proliferation when scaling of proliferative factors is perturbed, for example, by a 526 

reduction in mitogenic signalling.   527 

Discussion 528 

We have identified scaling relationships between cell size and peptide/gene 529 

expression in melanoma. Expression and phosphorylation of G2/M, DNA-associated 530 

and biosynthetic peptides exhibited a clear sub-scaling relationship with cell size 531 

across two independent panels of melanoma cell lines, whilst expression of lipid 532 

metabolic genes and phosphorylation of cytoskeletal regulators showed the reverse. 533 

This is in strong agreement with numerous recent studies investigating the 534 
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relationships between cell size and gene/peptide expression; identifying histones as 535 

sub-scaling components (Amodeo et al., 2015), observing an upregulation of lipid 536 

metabolism in larger cell lines (Neurohr et al., 2019), noting a decreased abundance 537 

of translational components and translation rate in large polyploid cells (Yahya et al., 538 

2021) and a full proteome survey of scaling components in human lung fibroblasts 539 

(Lanz et al., 2021).  540 

Interestingly, we observe that the mean RB1 mass fraction decreased with 541 

increasing cell size corroborating the findings of recent studies associating RB1 (and 542 

Whi5) dilution to size determination and control (Schmoller et al., 2015) (Zatulovskiy 543 

et al., 2020). This trend extended to the abundance of phosphopeptides associated 544 

with CCND1 transcription and the abundance of core ribosomal and spliceosomal 545 

peptides. These data suggest that the state of the RB1-CCND1 axis in melanoma, or 546 

indeed an RB1-dilution system (Zatulovskiy et al., 2020), is sensitive to both the 547 

strength of proliferative signalling and translational capacity of the cell in melanoma. 548 

Reduced signalling and protein production may decrease CCND1 abundance, and 549 

therefore, RB1 must dilute further to induce division commitment; thereby delaying 550 

proliferation until a greater cell size. Interestingly, recent literature suggests G2-551 

driven synthesis of CCND1 (Min et al., 2020; Stallaert et al., 2021) noticing a tight 552 

dependence on cellular translation (Min et al., 2020). Translation and mitogen 553 

signalling in the prior G2 may colour events in the subsequent G1. ‘Sub scaling’ of 554 

G2/M regulators, such as WEE1 and BRCA1, may relate to smaller cells exhibiting 555 

increased expression of CCND1. 556 

We also observed an upregulated inflammatory response and decreased 557 

DNA/cytoplasm ratio in larger cell lines; phenomena recently related to the onset of 558 

cell senescence (Neurohr et al., 2019). But while larger lines appear morphologically 559 

senescent, they are clearly not senescent, as they grow and proliferate at a similar 560 

rate to smaller cells. Indeed, this finding is particularly striking given the observed 561 

downregulation of canonical pro-biosynthetic phosphorylations (for example in the 562 

AKT-mTOR pathway, see SF5), given the NRAS activating mutations of larger cell 563 

lines (or PTEN null mutation in the case of 21015 BRAF). This shows that larger cell 564 

lines maintain high growth rates despite downregulation of anabolic pathways and 565 

decreased ribosomal mass fractions, qualities typically associated with decreased 566 

biosynthesis (Fingar et al., 2004; Serbanescu et al., 2020).  567 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2022. ; https://doi.org/10.1101/2022.06.21.496989doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.496989
http://creativecommons.org/licenses/by-nd/4.0/


20 
 

The mechanism behind this phenomenon is unclear but may relate to mechano-568 

biological processes, given the observed upregulation of ECM components and RAC 569 

GTPase signalling in larger cell lines. Indeed, mechanical activation of YAP/TAZ 570 

signalling has been observed to facilitate growth/proliferation under MAPK inhibition 571 

(Kim et al., 2016; Lin & Bivona, 2016). Furthermore, cell volume has recently been 572 

tied to substrate stiffness and adherence, engaging in a feedback system with 573 

YAP/TAZ (Gonzalez et al., 2018). Interestingly, several studies suggest that 574 

actomyosin contractility during cell spreading can also reduce cell volume through 575 

the expulsion of water, concentrating cell constituents (Guo et al., 2017; Venkova et 576 

al., 2021; Xie et al., 2018). Large cell lines may activate cytoskeletal signalling to 577 

concentrate key biosynthetic regulators and sustain growth.    578 

 We constructed a simple theoretical model to demonstrate how continued growth 579 

under proliferative stress, could maintain the cells proliferation rate. This relied on 580 

the probability of a cell transitioning to the next stage of the cell cycle being 581 

proportional to its size (Nieto et al., 2020), for example, via RB1 dilution. This is 582 

consistent with the recent observation that cell cycle phase lengths across 583 

generations are coupled in cancer cell lines (Chao et al., 2019), here via mother cell 584 

size (Min et al., 2020). Interestingly, the same study notes this effect may be unique 585 

to cancerous cell lines due to a disproportional abundance of regulators acting at 586 

multiple stages of the cell cycle (Chao et al., 2019) in effect ‘simplifying’ regulation. 587 

Indeed, through analysis of cell size variation, we found our cell lines were most 588 

effectively modelled by a one-(growth) stage cycle, implying the dominance of a 589 

small subset of proliferative regulators. This suggests a more central role for the RB1 590 

sub-scaling observed in these cell lines. 591 

Taken together, our data shows that despite sub-scaling relationships between key 592 

biosynthetic and proliferative regulators and cell size, and a robust inflammatory 593 

response, larger melanoma cell lines exhibit a higher growth rate than smaller lines. 594 

Theoretical modelling suggests that proliferation may be maintained under mitogenic 595 

inhibition by decoupling growth and proliferative signalling.  Oncogenic mutations 596 

could facilitate this process and may be associated with cytoskeletal activity. 597 

 598 

Methods: 599 
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Cell Culture 600 

Cell lines were maintained in standard culture conditions (DMEM+10% FBS). 601 

Passage was carried out using 0.25% trypsin-EDTA (GIBCO) followed by 602 

centrifugation (1000 rpm, 4 min) and resuspension in complete medium. Cell 603 

counting was performed using Countess automated cell counter with trypan blue 604 

exclusion (Thermo). 605 

Growth Curves 606 

Each cell line was seeded into 3 wells of a 6 well tissue culture plate. Cells were 607 

incubated in DMEM media with 10% fetal bovine serum and Primocin antibiotic, at 608 

37 degrees Celsius and 5 % carbon dioxide. Cells were imaged at 4 hour intervals 609 

using the Incucyte imaging system. 9 fields of view were imaged from each well. 610 

Images were segmented using Ilastik image segmentation software to identify 611 

individual cells. The number of cells in each field of view was calculated using 612 

CellProfiler. Growth curves were plotted using the ggplot2 library from the R 613 

programming language. 614 

Immunostaining: 615 

 Samples were fixed in freshly prepared 4% PFA/PBS for 15 minutes. Slides were 616 

subsequently permeabilized with 0.25% Triton/PBS for 10 mins and blocked with 617 

0.5% BSA/0.02% glycine/PBS for 30 minutes. Primary antibodies were introduced 618 

via the same solution in a 1:1000 dilution and left on for 1 hour. The slides were 619 

washed with PBS and the same was carried out for the secondary antibodies (kept in 620 

the dark to avoid bleaching). Hoechst stain was added post-secondary (1:500) to 621 

stain DNA as was phalloidin to stain actin. 622 

Image Acquisition and Feature Extraction 623 

Image acquisition was performed using an Opera Cell: Explorer-automated spinning 624 

disk confocal microscope. 20 fields of view were imaged in each well. Cell 625 

segmentation was performed using Acapella software (PerkinElmer). Nuclei were 626 

segmented using the Hoechst channel (405-450) and cell bodies defined by the 627 

tubulin signal (568-603). Geometric features measured include: the area of all 628 

subcellular regions; the length, width, and elongation (length/ width) of the cell and 629 
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nucleus, cell and nuclear roundness and nucleus area/cytoplasm area. Texture 630 

features were also measured representing the distribution of pixel intensities in a cell 631 

or subcellular region. Haralick and Gabor features (Fogel & Sagi, 1989; Haralick et 632 

al., 1973) as well as SER (“Saddle/Edge/Ridge”, PerkinElmer) features were 633 

measured on the Hoechst and tubulin channels. 634 

Statistical Analysis of Cell Size 635 

Statistical test were carried out in the MATLAB (math works) environment. Cell area 636 

data was ‘acosh’ transformed to induce a normal distribution of areas in each cell 637 

line and standardise the variances prior to ANOVA and Mann-Whitney/Wilcoxon 638 

tests. Standardisation success was determined using the Shapiro-Wilks 639 

normalization test, ensuring the data is normally distributed, and the Bartlett test, to 640 

guarantee equal variances across lines.  641 

FACS Analysis 642 

Cells were trypsinized and harvested into a 15ml falcon tube for cell counting. After 643 

centrifuging the falcon at 2400rpm for 5 minutes, the supernatant was discarded and 644 

the cells were resuspended in 1mL of 1% FCS in PBS. 3mL ice cold 100% ethanol 645 

was added dropwise to the cells while slowly vortexing, and left to fix overnight. The 646 

cells were then pelleted by centrifugation for 5 minutes at 2400rpm, and 647 

resuspended in 5mL PBS. They were incubated at room temperature for 20 minutes. 648 

After centrifuging for 7 minutes at 1200rpm, the pellet was resuspended in 1mL of 649 

Propidium Iodide (PI) solution through the cell strainer into a FACS tube. The PI 650 

solution was made with 1:100 PI at 5mg/mL and 1:1000 RNAaseA at 10mg/mL in 651 

PBS. The cell cycle composition was measured using the BDSAria and the data 652 

analysed using FlowJo . For EdU (5-ethynyl-2'-deoxyuridine) incorperation assays, 653 

cells were treated with a final concentration of 10uM EdU prior to harvesting. Instead 654 

of fixing with ethanol and staining with PI, cells were resuspended in 4% PFA for 15 655 

minutes at room temperature. They were then pelleted by centrifugation and PFA 656 

aspirated, followed by a wash. 500uL of the appropriate Thermo Fisher Click-iTTM 657 

reaction cocktail was added to each sample and incubated for 30 minutes in the 658 

dark, according to the manufacturer's instructions. Cells were washed once, stained 659 

and then transferred via a cell strainer into a FACS tube for analysis as above. 660 

Washes used 1% BSA in PBS. Staining used 20ug/mL Hoechst added to 0.1% 661 
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Triton-X in PBS. If applicable, 106 cells were seeded in Falcon T25 flasks and 662 

incubated overnight in media containing the appropriate Aphidicolin concentration 663 

(total volume of 4mL) before FACS analysis of DNA content as above. 664 

Proteomics Sample Preparation  665 

Cell pellets were dissolved in 150 μL lysis buffer containing 1% sodium deoxycholate 666 

(SDC), 100mM triethylammonium bicarbonate (TEAB), 10% isopropanol, 50mM 667 

NaCl and Halt protease and phosphatase inhibitor cocktail (100X) (Thermo, #78442) 668 

on ice with pulsed probe sonication for 15 sec. Samples were boiled at 90 °C for 5 669 

min and sonicated for another 5 sec. Protein concentration was measured with the 670 

Quick Start™ Bradford Protein Assay (Bio-Rad) according to manufacturer’s 671 

instructions. Aliquots containing 100 μg of protein were reduced with 5 mM tris-2-672 

carboxyethyl phosphine (TCEP) for 1 h at 60 °C and alkylated with 10 mM 673 

Iodoacetamide (IAA) for 30 min in dark. Proteins were then digested overnight by 674 

adding trypsin at final concentration 75 ng/μL (Pierce). The resultant peptides were 675 

labelled with the TMT-11plex reagents (Thermo) according to manufacturer’s 676 

instructions and were combined in equal amounts into a single tube. The combined 677 

sample was then dried with a centrifugal vacuum concentrator. Two technical 678 

replicate TMT batches from the same protein extracts were prepared to assess 679 

reproducibility. One TMT batch was fractionated offline with high-pH Reversed-680 

Phase (RP) chromatography using the XBridge C18 column (2.1 x 150 mm, 3.5 μm, 681 

Waters) on a Dionex UltiMate 3000 HPLC system. Mobile phase A was 0.1% 682 

ammonium hydroxide (v/v) and mobile phase B was acetonitrile, 0.1% ammonium 683 

hydroxide (v/v). The TMT labelled peptide mixture was reconstituted in 100 uL 684 

mobile phase A and fractionated with a gradient elution method at 0.2 mL/min as 685 

follows: for 5 min isocratic at 5% B, for 35 min gradient to 35% B, gradient to 80% B 686 

in 5 min, isocratic for 5 min and re-equilibration to 5% B. Fractions were collected 687 

every 42 sec and vacuum dried. The second TMT replicate batch was fractionated 688 

with the Pierce High pH Reversed-Phase Peptide Fractionation Kit according to 689 

manufacturer’s instructions.  690 

Phosphopeptide enrichment 691 

Peptide fractions from the first TMT batch were reconstituted in 10 μL of 20% 692 

isopropanol, 0.5% formic acid binding solution and were loaded on 10 μL of 693 
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phosphopeptide enrichment IMAC resin (PHOS-Select™ Iron Affinity Gel, Sigma) 694 

already washed and conditioned with binding solution in custom made filter tips fitted 695 

on Eppendorf tubes caps. After 2 h of binding at room temperature, the resin was 696 

washed three times with 40 μL of binding solution at 300 g and the flow-through 697 

solutions were collected for total proteome analysis. Phosphopeptides were eluted 698 

three times with 70 μL of 40% acetonitrile, 400 mM ammonium hydroxide solution. 699 

Eluents and flow-through samples were vacuum dried and stored at -20 °C until the 700 

LC-MS analysis.  701 

LC-MS Analysis 702 

LC-MS analysis was performed on the Dionex UltiMate UHPLC 3000 system 703 

coupled with the Orbitrap Lumos Mass Spectrometer (Thermo Scientific). Peptides 704 

were loaded to the Acclaim PepMap 100, 100 μm × 2 cm C18, 5 μm, 100 Ȧ trapping 705 

column at 10 μL/min flow rate. The sample was then subjected to a gradient elution 706 

on the Acclaim PepMap  RSLC (75 μm × 50 cm, 2 μm, 100 Å) C18 capillary column 707 

at 45 °C. Mobile phase A was 0.1% formic acid and mobile phase B was 80% 708 

acetonitrile, 0.1% formic acid. The separation method at flow rate 300 nL/min was as 709 

follows: for 90 min (or 150 min for the replicate batch) gradient from 10% to 38% B, 710 

for 10 min up to 95% B, for 5 min isocratic at 95% B, re-equilibration to 10% B in 5 711 

min, for 10 min isocratic at 10% B. Precursors between 375-1,500 m/z were selected 712 

with mass resolution of 120 K, AGC 4×105 and IT 50 ms with the top speed mode in 713 

3 sec and were isolated for CID fragmentation with quadrupole isolation width 0.7 714 

Th. Collision energy (CE) was 35% with AGC 1×104 and IT 50 ms. MS3 715 

quantification was obtained with HCD fragmentation of the top 5 most abundant CID 716 

fragments isolated with Synchronous Precursor Selection (SPS). Quadrupole 717 

isolation width was 0.7 Th, CE 65%, AGC 1×105 and 105 ms IT. The HCD MS3 718 

spectra were acquired for the mass range 100-500 with 50K resolution. Targeted 719 

precursors were dynamically excluded for further isolation and activation for 45 720 

seconds with 7 ppm mass tolerance. Phosphopeptide samples were analysed with 721 

an HCD method at the MS2 level with CE 38%, AGC 1×105 and max IT 105 ms. 722 

Database search and protein quantification 723 

The SequestHT search engine was used to analyse the acquired mass spectra in 724 

Proteome Discoverer 2.2 (Thermo Scientific) for protein identification and 725 
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quantification. Precursor mass tolerance was 20 ppm and fragment ion mass 726 

tolerance was 0.5 Da for the CID and 0.02 Da for the HCD spectra. Spectra were 727 

searched for fully tryptic peptides with maximum 2 miss-cleavages. TMT6plex at N-728 

terminus/K and Carbamidomethyl at C were defined as static modifications. Dynamic 729 

modifications included oxidation of M and Deamidation of N/Q. Dynamic 730 

phosphorylation of S/T/Y was included for the phospho-enriched samples. Peptide 731 

confidence was estimated with the Percolator node. Peptide FDR was set at 0.01 732 

and validation was based on q-value and decoy database search. Spectra were 733 

searched against reviewed UniProt mouse protein entries. The reporter ion quantifier 734 

node included a TMT 11plex quantification method with an integration window 735 

tolerance of 15 ppm and integration method based on the most confident centroid 736 

peak at the MS3 or MS2 level. Only unique peptides were used for quantification, 737 

considering protein groups for peptide uniqueness. Peptides with average reporter 738 

signal-to-noise >3 were used for quantification.  739 

Proteomic Analysis: 740 

Peptide abundances were scaled relative to other detected peptides in the sample 741 

such that they reflect abundance/total protein mass. The expression of each peptide 742 

was correlated to average cell line area to derive a correlation coefficient, R, and an 743 

area-weighted fold change was calculated between cells lying above or below the 744 

mean according to: 745 

𝐹𝑐 = 

∑
𝐴𝑖𝐸𝑖

∑ 𝐴𝑖
𝑖𝑚𝑎𝑥
𝑖≠∈𝐴𝑆𝑚𝑎𝑙𝑙

𝑖𝑚𝑎𝑥
𝑖≠∈𝐴𝑆𝑚𝑎𝑙𝑙

∑

1 −
𝐴𝑗𝐸𝑗

∑ 𝐴𝑗
𝑖𝑚𝑎𝑥
𝑗≠∈𝐴𝐿𝑎𝑟𝑔𝑒

|𝐴𝑆𝑚𝑎𝑙𝑙| − 1
𝑖𝑚𝑎𝑥
𝑗≠∈𝐴𝐿𝑎𝑟𝑔𝑒

   , 𝑖 

{
 
 

 
 𝑖 ∈ 𝐴𝐿𝑎𝑟𝑔𝑒  , 𝑓𝑜𝑟 𝐴𝑖 > 

1

𝑛
∑𝐴𝑖   

𝑛

𝑖=1

𝑖 ∈ 𝐴𝑆𝑚𝑎𝑙𝑙  , 𝑓𝑜𝑟 𝐴𝑖 < 
1

𝑛
∑𝐴𝑖   

𝑛

𝑖=1

           746 

Where Aj is the mean area of the jth cell and Ej is the peptide expression for the jth 747 

cell. Lines with areas greater than the mean across lines have their expressions 748 

contribute to the large group and vice versa. The weight of this contribution is 749 

determined by the lines area contribution to the total of the group. A large 750 

contribution results in a higher weighting in large lines and the reverse in smaller 751 

lines. 752 
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In conjunction with P, the correlation coefficient between peptide and area, the fold 753 

change facilitates calculation of a z-score for each peptide, representing its apparent 754 

importance to cell area:  755 

𝑍𝑖 = 
(|𝐹𝑐𝑖| +  𝑃𝑖) − 

1
𝑛
∑ (|𝐹𝑐𝑘| +  𝑃𝑘)
𝑛
𝑘=1

√ 1
𝑛 − 1

∑ (|𝐹𝑐𝑗| + 𝑃𝑗 − 
1
𝑛
∑ (|𝐹𝑐𝑘| +  𝑃𝑘))2
𝑛
𝑘=1

𝑛
𝑗=1

 756 

 757 

Network Analysis 758 

High scoring proteins are taken forward and entered into STRING ((Franceschini et 759 

al., 2013)) to screen for interactions within the hits. Accepted interactions were those 760 

identified experimentally or identified in previous co-expression studies and achieved 761 

a confidence value > 0.4. This network was then exported to Cytoscape ((Shannon 762 

et al., 2003) for ontological analysis via the SAFE ((Baryshnikova, 2016)) tool. All 763 

‘biological process’ annotations for each node in the network were derived from 764 

Geneontology.org’s downloadable database ((Ashburner et al., 2000; Carbon et al., 765 

2021; Eden et al., 2009; Mi et al., 2019)). A binary matrix was constructed; each 766 

node (row) would receive either a 1 or 0 in each column (annotation) depending on 767 

whether the node was associated with the label. This was then entered into the 768 

SAFE Cytoscape plugin, where we used default settings besides a percentile 769 

threshold of 10 and minimum neighbourhood size of 5 (SD5). A second binary matrix 770 

was then constructed now with an annotation set reflecting whether the node was an 771 

expression or phosphorylation hit in big or small cells. The same settings were used 772 

for SAFE. 773 

RNA extraction, Quality control and RNA Sequencing  774 

 775 

RNA from 11 cell lines was extracted using the RNeasy Mini Kit (Qiagen, #74104) 776 

according to the manufacturer’s protocol. The evaluation of the isolated RNA 777 

integrity and quantity was carried out by the Agilent TapeStation system using an 778 

RNA ScreenTape (Agilent Technologies, #5067-5576). 779 

For the mRNA Library preparation 4000ng of total RNA was treated with 780 

TurboDNase to remove genomic DNA contamination, (Invitrogen, #AM1907). PolyA 781 

RNA was selected from 1000ng of the purified RNA using NEBNext mRNA magnetic 782 
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Isolation Module (NEB, #E7490) following manufacturer directions. From the 783 

resulting mRNA, Strand-specicific libraries were created using NEBNext Ultra II 784 

Directional RNA Library Prep Kit for Illumina (NEB, #E7760). Final libraries were 785 

quantified using qPCR and clustered at a Molarity of 300 pM. Sequencing was 786 

performed on an Illumina NovaSeq 6000 (Illumina) using PE x100 cycles v1.0 787 

chemistry, to achieve coverage of 25 million reads per sample.  788 

Transcriptomic Analysis 789 

RNA abundances were normalised across cell lines and filtered through a sigmoidal 790 

expression to dampen the effects of extreme over/under expressions warping the 791 

analysis. Beyond this, the transcripts abundances were treated identically to the 792 

peptide abundances.  793 

Model Algorithm: 794 

The initial cell area distribution is considered a delta function centred on ‘k’/’a’ (the 795 

expected mean of the distribution). Every generation, the area distribution is 796 

convolved with the mass-gain distribution, computed by performing an inverse 797 

Fourier transform on the product of the two distributions respective Fourier 798 

transforms. This produces the division area distribution, Ad(A), which must be 799 

transformed to Ad(2A) to capture the effects of cell division. We perform this by 800 

setting Ab(Ax) = Ad(Ai) + Ad(Ai+1) ,  where ’I’ = xn-xn-1 for all x, where Ab denotes 801 

the birth size distribution. This is then convolved with the gain distribution as before 802 

to generate the next division distribution and so on until a desired number of 803 

generations has been reached.  804 

Numerical Simulation: 805 

An initial population of 1000 cells is assigned an ‘alpha’ and ‘beta’ value and a 806 

random initial area. At each time step, the division probability for each cell is 807 

calculated, according to P = αAdiv, and a random number, ’r’, is drawn from a flat 808 

distribution. Should ‘r’ be less than the division probability of a cell, the cell divides 809 

symmetrically in two, adding a new cell to the population with half the size of the 810 

mother, and halving the mother size. If ‘r’ is greater than the division probability, the 811 

cell size increases according to β = kAdiv. This system continues until a final cell 812 

count of 20,000 is achieved. 813 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2022. ; https://doi.org/10.1101/2022.06.21.496989doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.496989
http://creativecommons.org/licenses/by-nd/4.0/


28 
 

Model Fitting Procedure 814 

Initially, alpha values were exhaustively tested (beta is determined from the 815 

proliferation and area measurements on a per cell line basis). For each we 816 

calculated the Kullbeck-Liebler divergence between the experimental and simulated 817 

data (38). For discrete probability distributions defined on the same probability 818 

space, X, the Kullback–Leibler divergence from P to Q is ((Andrew, 2004)): 819 

𝐷𝐾𝐿(𝑃‖𝑄) = ∑𝑃(𝑥)𝑙𝑜𝑔10 (
𝑃(𝑥)

𝑄(𝑥)
) 

 

𝑥∈𝑋

 820 

Having identified an approximate-minima from the low resolution parameter screen, 821 

we used the values defining this region as an initial state for a stochastic gradient 822 

descent minimising along the gradient: 823 

𝑑𝐷𝐾𝐿(𝑃‖𝑄)

𝑑𝑝
= 4(𝑃(𝑥) − 𝑄(𝑥))𝑄(𝑥)   824 

Model fitting was conducted within the commercial MATLAB (Math Works) software’s 825 

machine learning toolbox. 826 
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FIGURE LEGENDS 1 

Figure 1: 2 

Melanoma cell lines exhibit comparable size control but different cell sizes: A) 3 

Violin plot summarizing cell area distributions across lines. Acosh normalised 4 

Distribution means were subjected to an 11-way Anova test to confirm the 5 

significance of observed differences. ** indicates a P-value < 0.01 B) Heatmap 6 

showing a clustering of lines based on effects sizes calculated post Mann-Whitney 7 

tests (median uniqueness follows the same pattern as the means P < 0.01). Three 8 

distinct area ‘classes’ emerge. C) Sample distributions from each class; from C1 to 9 

C3, skew decreases, whilst the means and variances increase. D) Shows the 10 

relationship between the means and variances of the area distributions. The mean 11 

scales approximately linearly with variance. The coefficient of variation inconsistently 12 

varies with cell size. E) As in ‘A’ but for the DNA content distributions. Lines are 13 

coloured by size class, and will be throughout the manuscript. F) The relationship 14 

between mean cell area and mean DNA content, area positively correlates with cell 15 

area. Error bars represent the standard deviation of the single cell data G) 16 

Relationship between DNA content and DNA per area. Despite large lines often 17 

having more DNA, they exhibit a lower DNA concentration than the smaller cells. H) 18 

DNA-content area relationship across all lines at the single cell level. All cell lines 19 

exhibit a positive correlation between DNA abundance and size. 20 

Figure 2: 21 

Translation throttles CCND1 accumulation in response to upstream signalling: 22 

A) Negative correlation between RB1 mass fraction and cell size. B) Relationship 23 

between CCND1 mass fraction and cell size, C876 and 21015 exhibit surprising high 24 

levels of CCND1 given their RB1 abundance C) Cartoon schematic depicting the role 25 

of RB1 in the dilution model of G1/S transition. D) heatmap depicting the ratio of RB1 26 

against detected CCND1 regulator phosphopeptides, ratios are typically lower in 27 

larger lines. E) The average value for all RB1/rCCND1 ratios for each line plotted 28 

against cell area. F) Network describing interactions between proteins correlating 29 

with RB1/pCCND1reg. SAFE overlay on ‘F’ screening for graph regions enriched for 30 

ontological labels. Colour intensity denotes the confidence of the enrichment. G) 31 
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heatmaps showing the expression of peptides found in enriched regions of the 32 

interaction network across lines.  33 

Figure 3: 34 

Proteome wide identification of sub- and super-scaling factors. A) Fold change 35 

in peptide abundance across large and small cell lines plotted against the 36 

significance of the expressions correlation with size (genes achieving abs(log2(fc)) > 37 

0.5, P < 0.05 are taken forward for ontological analysis) Colour represents data point 38 

density B) Ontologies enriched in peptides differentially expressed across big/small 39 

lines C) Fold change in phosphopeptide abundance across large and small cell lines 40 

plotted against the significance of the expressions correlation with size (genes 41 

achieving abs(log2(fc)) > 0.5, P < 0.05 are taken forward for ontological analysis). 42 

Colour represents datapoint density D) Ontologies enriched in phosphopeptides 43 

differentially expressed across big/small lines F) Heatmap of select G2/M controllers 44 

revealed to enrich in smaller cell lines. G) Expression of phosphopeptides pertaining 45 

to the MAPK pathway H Network derived from screening for interactions within the 46 

list of size predicting, kinase regulated, peptides. Interaction data was obtained from 47 

the STRING database. Right; SAFE overlay on ‘D’ screening for graph regions 48 

enriched for ontological labels. Lower;  SAFE overlay on ‘D’ screening for regions 49 

with high expression/phosphorylation in large/small cell lines.  50 

Figure 4: 51 

Inflammatory transcripts enrich in larger cell lines: A) Heatmap of 52 

transcriptomes across cell lines. Lines/transcripts are grouped through hierarchical 53 

clustering conducted using the 'Morpheus’ software (Broad Institute). B) Volcano plot 54 

for the fold change of transcripts across size groups against the RNA-size 55 

correlation. C) Ontologies enriched in large/small cell lines, Inflammatory transcripts 56 

enrich in larger lines whilst those related to cell cycle and gene regulation enrich in 57 

smaller lines. D) Examples of correlating transcripts in either group. 58 

Figure 5: 59 

Transcription regulates ribosomal scaling. A) Correlation between gene and 60 

peptide expression within each cell line, coefficients range between 0.4 and 0.6 B) 61 

Log-log plots of RNA against peptide abundance, colour intensity is proportional to 62 
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the density of the data points C) Distribution of correlation coefficients between 63 

peptide and mRNA abundances across cell lines, dotted box indicates genes with 64 

significant correlations. D) Enriched gene ontologies detected in the genes with 65 

significant RNA-peptide correlations. E) Example protein-mRNA correlations from 66 

the ‘Cell-cycle process’ and ‘Mitotic cell cycle process’ themes. F) Distribution of 67 

correlation coefficients between mRNA and peptide abundances in small 68 

(Area<900um^2) cell lines. We note a positive skew and more positive mean than in 69 

the pooled distribution. G) Themes enriched in the set of genes exhibiting significant 70 

positive correlations between peptide and mRNA abundance in small cell lines. H) 71 

Example correlation between CCNB2 peptide and mRNA abundance from the 72 

‘Mitotic cell cycle checkpoint’ theme.  I) Distribution of correlation coefficients 73 

between mRNA and peptide abundances in big (Area>900um^2) cell lines. We note 74 

a negative skew and more negative mean than in the pooled distribution. J) Themes 75 

enriched in the set of genes exhibiting significant positive correlations between 76 

peptide and mRNA abundance in big cell lines. K) Example correlation between Rpl5 77 

peptide and mRNA abundance from the ‘Translation’ theme.  L) Expression of all 78 

detected RNA Pol1 (top left)/2 (right)/3 (bottom left) components across cell lines. 79 

Large lines tend to exhibit lower expression. M) Relationship between RNA Pol1/2/3 80 

(left to right) peptide expression and the peptide (top) /mRNA (bottom) expression of 81 

identified RNA-peptide correlates in large cells in the ‘translation’ theme. We note 82 

that both RNA and peptide abundance correlate suggesting transcription regulation 83 

of peptide expression. 84 

Figure 6:  85 

Theoretical modelling suggests decoupling of low mitogen and growth 86 

signalling drive proliferation of larger cells: A) The relationship between cell 87 

growth rate and cell size across six lines representing each genotype and size class. 88 

Growth rate increases with increasing cell size.  B) A demonstration of the stability of 89 

the size distribution mean to perturbations to a cell division area and instability of the 90 

mean with respect to perturbations to alpha. The lower panel depicts the stability of 91 

proliferation rate with respect to both parameters C) The function describing how the 92 

coefficient of variation changes with increasing cycle complexity, the pink box marks 93 

the the CV’s observed in our cell lines and the yellow, those observed in other 94 

studies.   D)  The relationship between fitted alpha values and cell size, alpha 95 
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broadly negatively correlates with the mean size of the cell line E) Model outputs 96 

demonstrating the best fits achieved. Orange histograms are model outputs and blue 97 

experimental data. The blue line shows D(experimental||measured) and the red line 98 

the reverse. F) Cartoon summary on the model relating parameters to biologically 99 

processes. 100 

Supplemental Figure 1: 101 

Images of the cell lines: A) Representative images from the 11 cell lines. In blue is 102 

the Hoechst intensity, and grey, the tubulin intensity. All images were taken at 20X 103 

magnification using an Opera Cell: Explorer-automated spinning disk confocal 104 

microscope. Images have been auto-adjusted to optimise contrast within the 105 

acapella environment (PerkinElmer). 106 

Supplemental Figure 2: 107 

FACs Analysis: A) Quantification of cell DNA through FACs analysis. Many of the 108 

cell lines, both large and small, exhibit a small polyploid population. No clear 109 

relationship emerges between ploidy and cell size.  110 

Supplemental Figure 3: 111 

Cell growth data: Cell population growth curves for a subset of the investigated 112 

lines. Cell density is normalised relative to the starting confluence of the culture. 113 

Note that a large line, B14341, shows a comparable doubling time to smaller line, 114 

5555. 115 

Supplemental figure 4: 116 

Validation of size controllers in an independent panel of melanoma cell lines: 117 

A) Volcano plot relating the ‘fold change’ across the small and large cell lines 118 

(defined as either side of the mean size) to the significance of the correlation 119 

between cell size.  and peptide expression. B) Themes enriched in each region of ‘A’ 120 

as denoted by the colour of the box in the top right of each panel. From left to right; 121 

hypo-scales with size, hyper scales with size, over expressed in large cells. C) 122 

Volcano plot relating the ‘fold change’ across the small and large cell lines (defined 123 

as either side of the mean size) to the significance of the correlation between cell 124 

size and phosphopeptide expression.  D) Themes enriched in each region of ‘C’ as 125 
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denoted by the colour of the box in the top right of each panel. From left to right; 126 

hypo-scales with size, hyper scales with size, over expressed in large cells (bottom = 127 

overexpressed in small cells). E) Example hits from each analysis, the top half the 128 

peptide expression analysis, the bottom, the phosphopeptide expression analysis. F-129 

I) Venn diagrams depicting the overlap of themes enriched across both sets of cell 130 

lines. Top left = peptide expression in small lines, top right = peptide expression in 131 

big lines, bottom left = phosphopeptide expression in small lines, bottom right, 132 

phosphopeptide expression in big lines. J) Percent overlap between analyses at the 133 

gene level. K) Example genes that are hits across both analyses, the top panel 134 

shows BRCA1 peptide expression and the bottom ASS1 peptide expression. L) A set 135 

of interacting peptides derived from the overlapping list of hit genes enriched in 136 

smaller cell lines centred on BRCA1. 137 

Supplemental Figure 5: 138 

Growth signalling across cell lines: A) subset of phosphopeptides that negatively 139 

correlate with cell size pertaining to the ‘mTOR signalling’ KEGG pathway. B) As in 140 

‘A’, but showing elements that positively correlate with cell size. C) Example 141 

correlation between mTOR signalling phosphorylations and cell size. 142 

Supplemental Figure 6: 143 

Cytoskeletal phosphorylation across cell lines: A) subset of phosphopeptides 144 

that negatively correlate with cell size pertaining to the ‘cytoskeleton’ and ‘adhesion’ 145 

KEGG pathways. B) As in ‘A’, but showing elements that positively correlate with cell 146 

size. C) Example correlation between cytoskeletal phosphorylations and cell size. 147 

  148 
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Cell ID Species Genotype Details Derived from Publication 

19161 murine NRAS mut/Tyrosinase CreA  Brain melanoma Pedersen et al. 

Cancer Discovery 

2013 

19398 murine NRAS mut/Tyrosinase CreA  Brain melanoma Pedersen et al. 

Cancer Discovery 

2013 

C873 murine NRAS mut/Tyrosinase CreA  Brain melanoma Pedersen et al. 

Cancer Discovery 

2013 

Ear tum murine NRAS mut/BRAF KD under 

Tyrosinase CreERT with TAM  

Cutaneous melanoma Pedersen et al. PCMR 

2014 

EAR B murine NRAS mut/BRAF KD under 

Tyrosinase CreERT with TAM  

Cutaneous melanoma Pedersen et al. PCMR 

2014 

22532 murine NRAS mut/Tyrosinase CreA  Brain melanoma Pedersen et al. 

Cancer Discovery 

2013 

14508 LN 

(A) 

murine NRAS mut/BRAF KD under 

Tyrosinase CreERT with TAM  

Cutaneous melanoma Pedersen et al. PCMR 

2014 

17569 murine NRAS mut/Tyrosinase CreA  Brain melanoma Pedersen et al. 

Cancer Discovery 

2013 

22783 murine NRAS mut/BRAF KD under 

Tyrosinase CreERT with TAM  

Cutaneous melanoma Pedersen et al. PCMR 

2014 

4434 (KB) murine BRAF mut/p16-/- Cutaneous melanoma Dhomen et al. Cancer 

Cell 2009 

17864 murine NRAS mut/UV Cutaneous melanoma Pedersen 

unpublished 

17864A murine NRAS mut/UV Cutaneous melanoma Pedersen 

unpublished 

21917 murine NRAS mut/UV Cutaneous melanoma Pedersen 

unpublished 

21015 murine BRAF mut/PTEN null Cutaneous melanoma Pedersen 

unpublished 

24038 murine NRAS mut/BRAF KD Cutaneous melanoma Pedersen et al. PCMR 

2014 

B14341 murine NRAS mut/BRAF KD Cutaneous melanoma Pedersen et al. PCMR 

2014 

C876 murine NRAS mut/Tyrosinase CreA  Brain melanoma Pedersen et al. 

Cancer Discovery 

2013 

C790 murine NRAS mut/Tyrosinase CreA  Brain melanoma Pedersen et al. 

Cancer Discovery 

2013 

17568 murine NRAS mut/Tyrosinase CreA  Brain melanoma Pedersen et al. 

Cancer Discovery 

2013 

5555 murine BRAF mut/p16-/- Cutaneous melanoma Dhomen et al. Cancer 

Cell 2009 

NRASQ61 murine NRAS Q61A Cutaneous melanoma Pedersen 

unpublished 

 149 

Table 1: Cell Line Details 150 

151 
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Table 2: Model Parameter Values 152 

Cell Line Alpha (P per 

um^2) 

Beta (um^2 per 

sec) 

4434 3.49E-06 0.16 

17864 3.67E-06 0.22 

17864A 4.71E-06 0.43 

21917 1.82E-06 0.35 

21015 1.73E-06 0.55 

24038 6.38E-07 0.98 

B14341 1.35E-06 0.52 

C876 6.38E-07 0.60 

C790 2.46E-06 0.25 

17568 3.32E-06 0.19 

5555 2.59E-06 0.20 

  153 

  154 
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Supplemental Information: 155 

Analysis of gene and theme overlap of size-scaling factors between datasets: 156 

We investigated which ontological themes were enriched in both analyses finding 157 

that peptides pertaining to cell cycle, DNA repair, and division processes remained 158 

enriched in smaller cell lines (eg; ‘DNA repair’, ‘Cell cycle process’, ‘Cytokinesis’, 159 

80% A1-A2, 16 % A2-A1 indicating 80% of themes enriched in the first analysis 160 

match the second and 16% detected in the second match the first) whilst lipid and 161 

carbohydrate metabolic peptides (eg; ‘Lipid metabolic process’, ’Carbohydrate 162 

derivative metabolic process’, ‘Sterol metabolic process’, 30% A1-A2, 21% A2-A1 ) 163 

are consistently enriched in larger cell lines. Due to the lack of agreement, the 164 

enrichment of ECM components in larger cell lines detected in the prior analysis may 165 

reflect an upregulation or overexpression rather than a scaling relationship.  Enacting 166 

the same analysis for the phosphorylation data, we note excellent agreement 167 

between analyses (63% A1 -A2, 60% A2-A1) for small cell lines, with both enriching 168 

for cell cycle and biosynthetic processes (eg; regulation of cellular biosynthetic 169 

process, mitotic cell cycle, DNA replication). Larger cell lines exhibited much weaker 170 

agreement (9% A1-A2, 30% A2-A1) but both analyses revealed enrichment of 171 

cytoskeletal and GTPase regulatory phosphorylations (eg; Regulation of GTPase 172 

activity, ‘Cell junction assembly’, ’Actin filament based process’) (SF4). 173 

Investigating the overlap of individual genes, we note a particularly strong overlap 174 

between analyses for phosphopeptides enriched in smaller cell lines (36% A1-A2, 175 

30% A2-A1). Phosphopeptides enriched in larger cell lines show a more modest 176 

overlap (16% A1-A2, 14% A2-A1) like that observed in peptide expressions for 177 

smaller cell lines (15% A1-A2, 27% A2-A1). Peptide expressions in larger cell lines 178 

exhibit the weakest overlap (5% A1-A2, 8% A2-A1) (SF3). Screening for interactions 179 

between overlapping genes we observe a set of 21 physically interacting genes 180 

centred on BRCA1 enriched in smaller cell lines. As a ‘hit’ in two separate scaling 181 

analyses, these data indicate that the BRCA1 complex scales with cell size (SF4). 182 

These data corroborate our previous analysis, strengthening the claim that G2/M and 183 

DNA repair processes define smaller melanoma cell lines, (with associated peptides 184 

sub-scaling with cell size), whilst cytoskeletal organisation and the rewiring of lipid 185 

metabolism define larger cell lines (peptides super-scaling with size). Interestingly 186 
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we recover a large, BRCA1 complex in both analyses, implicating the complex in 187 

size-dependent phenomena. 188 

Derivation of the proliferation time and size gain distributions: 189 

We are interested in the waiting time distribution before the first successful event. 190 

The probability to fail a division is: 191 

𝑃𝑓𝑎𝑖𝑙 =  1 − 𝑃𝑑𝑖𝑣     𝑒𝑞𝑢. 𝑆1 192 

For a cell to have not divided by a given time point, it must have failed to divide at 193 

every prior time point. The probability of successive failures occurring at a given time 194 

is equal to: 195 

𝐹(𝑡) =  (𝑃𝑓𝑎𝑖𝑙)
𝑡

= (1 −  𝛼𝐴𝑑𝑖𝑣)𝑡   𝑒𝑞𝑢. 𝑆2 196 

Where ‘t’ is time since the last division. The probability of having divided by a given ‘t’ 197 

is the probability that the cell has not failed at every prior step: 198 

𝐶(𝑡) = 1 − (1 −  𝛼𝐴𝑑𝑖𝑣)𝑡      𝑒𝑞𝑢. 𝑆3 199 

The probability distribution follows as:  200 

𝑃(𝑡) =
𝑑

𝑑𝑡
[1 − (1 −  𝛼𝐴𝑑𝑖𝑣)𝑡] = −(1 −  𝛼𝐴𝑑𝑖𝑣)𝑡 ln(1 −  𝛼𝐴𝑑𝑖𝑣)     𝑒𝑞𝑢. 𝑆4 201 

𝑃(𝑡) =  𝜆𝑒−𝜆𝑡    ,    𝜆 =  − ln(1 −  𝛼𝐴𝑑𝑖𝑣)   𝑒𝑞𝑢. 𝑆5    202 

We may extract the expected gained mass by scaling the time by ln(2)/(dt/dA). The 203 

ln(2) factor accounts for a division event having happened any time in the interval 0-204 

t.  205 

𝐶(𝐴(𝑡)) = 1 − (1 − 𝛼𝐴𝑑𝑖𝑣)
𝑡

ln(2)𝐴𝑑𝑖𝑣𝑘     𝑒𝑞𝑢. 𝑆6 206 

𝑃(𝐴(𝑡)) =  −(1 − 𝛼𝐴𝑑𝑖𝑣)
𝑡

ln(2)𝐴𝑑𝑖𝑣𝑘 [(
1

ln(2) 𝑘𝐴𝑑𝑖𝑣
) ln(1 − 𝛼𝐴𝑑𝑖𝑣)]      𝑒𝑞𝑢. 𝑆7 207 

𝑃(𝑡) =  𝜆𝑒−𝜆𝑡    ,    𝜆 =  −
1

ln(2) 𝐴𝑑𝑖𝑣𝑘
ln(1 −  𝜑𝐴𝑑𝑖𝑣)      𝑒𝑞𝑢. 𝑆8 208 

With a mean of known form given as 1/ 𝜆 : 209 

〈𝑃(𝑡)〉 =
−ln (2)𝑘𝐴𝑑𝑖𝑣

ln(1 −  𝛼𝐴𝑑𝑖𝑣)
    𝑒𝑞𝑢. 𝑆9 210 
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We can see that this result constitutes an adder –type system when expressing the 211 

expected area gain as a Laurent series about 𝛼 = 0 (fitted values never exceed 212 

1X10^-5) (F6B/C, table 2): 213 

−ln (2)𝑘𝐴𝑑𝑖𝑣

𝑙𝑛 (1 −  𝛼𝐴𝑑𝑖𝑣) 
=

ln (2)𝑘

𝛼
−

𝑘𝐴𝑑𝑖𝑣

2
−

1

12
𝐴𝑑𝑖𝑣

2𝛼𝑘 −  
1

24
𝐴𝑑𝑖𝑣

3𝛼2𝑘 …       𝑒𝑞𝑢. 𝑆10 214 

 215 

The mean area gain is approximately constant, as the first term dominates the 216 

expression by virtue of alpha ≈ 0. Thus, a constant average mass is added each 217 

cycle, despite the area gain distribution itself being dependent on division size.  218 

Deriving the moments of the cell size distribution: 219 

Starting with an initial size distribution, F(A), and size gain distribution, G(A), we may 220 

define the expected size distribution up to the first division, H(A) as: 221 

𝐹(𝐴) ∗ 𝐺(𝐴) = 𝐻(𝐴)     𝑒𝑞𝑢. 𝑆11 222 

On division, the value of cell size is considered to halve. Thus, the birth size 223 

distribution is given as: 224 

𝐹(2𝐴) ∗ 𝐺(2𝐴) = 𝐻(2𝐴) = 𝐵(𝐴)     𝑒𝑞𝑢. 𝑆12 225 

Where the inclusion of 2A has mapped the probability of A to half its value, thereby 226 

simulating a division event. This is then convolved with G(A) again for the next 227 

division cycle, and so on: 228 

[[𝐹(2𝑛𝐴) ∗ 𝐺(2𝑛𝐴)] ∗ 𝐺(2𝑛−1𝐴)] … ∗ 𝐺(𝐴)   = 𝐻(𝐴)     𝑒𝑞𝑢. 𝑆13 229 

Where n denotes the number of divisions. Note that as n increases, the influence of 230 

the initial size distribution on the total convolution decreases as 𝐹(2𝑛𝐴) has non-231 

zeros values only at extremely low sizes as n increases. Indeed, we can 232 

approximate the above as: 233 

𝑃𝐷𝑖𝑣(𝐴) =  [[𝐹(2𝑛𝐴) ∗ 𝐺(2𝑛𝐴)] ∗ 𝐺(2𝑛−1𝐴)] … ∗ 𝐺(𝐴) 234 

≈ 𝐺(𝐴) ∗ 𝐺(2𝐴) ∗ … 𝐺(2𝑛𝐴)    𝑒𝑞𝑢. 𝑆14 235 

G(A) has been shown to be an exponential distribution. Convolution of n exponential 236 

functions with different scale parameters results in a hypo-exponential function with 237 

mean equal to the sum of the means of all participating distributions: 238 
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〈𝑃𝐷𝑖𝑣(𝐴)〉 =  
1

𝜆
+

1

2𝜆
+

1

4𝜆
+ ⋯

1

2𝑛𝜆
    𝑒𝑞𝑢. 𝑆15 239 

The sum can be written as: 240 

1

𝜆
+

1

2𝜆
+

1

4𝜆
+ ⋯

1

2𝑛𝜆
=  

1

𝜆
(1 +

1

2
+

1

4
+ ⋯

1

2𝑛
) =  

2

𝜆
    𝑒𝑞𝑢. 𝑆16 241 

Indicating that the distribution tends toward a constant mean. The corresponding 242 

variance is similarly given as:  243 

〈〈𝑃𝐷𝑖𝑣(𝐴)〉〉 =   
1

(𝜆)2
+

1

(2𝜆)2
+

1

(4𝜆)2
… 

1

(2𝑛𝜆)2
=  

1

(𝜆)2
(1 +

1

4
+

1

16
+ ⋯

1

22𝑛
) =

4

3(𝜆)2
 𝑒𝑞𝑢. 𝑆17 244 

Yielding a constant coefficient of variation: 245 

𝐶𝑉 =  
√

4
3(𝜆)2

2
𝜆

=
1

√3
≈ 0.5774   𝑒𝑞𝑢. 𝑆18 246 

These results may be trivially adjusted to account for ‘x’ identical events governing 247 

division. Indeed, G(A) is merely transformed from a constant exponential distribution 248 

to a constant Erlang distribution of shape factor ‘x’ and rate parameter 1/x k/a. This 249 

stems from G(A) being generated from the convolution of ‘x’ exponentially distributed 250 

gain variables corresponding to the area gain in each cycle stage each with mean 251 

1/(x) k/a. As is the case for the hypoexponential, Erlang distributions have means 252 

and variance equal to the sum of those of the participating distributions allowing us 253 

to easily modify equ.S16/17: 254 

〈𝑃𝐷𝑖𝑣(𝐴, 𝑥)〉 =  
𝑥

𝜆
+

𝑥

2𝜆
+

𝑥

4𝜆
+ ⋯

𝑥

𝜆2𝑛
=  

𝑥

𝜆
(1 +

1

2
+

1

4
+ ⋯

1

2𝑛
) =  

2𝑥

𝜆
    255 

〈〈𝑃𝐷𝑖𝑣(𝐴, 𝑥)〉〉 =   
𝑥

(𝜆)2
+

𝑥

(2𝜆)2
+

𝑥

(4𝜆)2
… 

𝑥

(2𝑛𝜆)2
=  

𝑥

(𝜆)2
(1 +

1

4
+

1

16
… ) =

4𝑥

3(𝜆)2
 256 

𝐶𝑉(𝑥) =  

√
4𝑥

3(𝜆)2

2𝑥
𝜆

=
√𝑥

𝑥√3
=  

1

√3𝑥
   𝑒𝑞𝑢. 𝑆19 257 

Equ.S19 tells us that from the coefficient of variation, we may estimate the number of 258 

stages needed to effectively model the cell size distributions. This relationship is 259 

similar to that obtained recently (Nieto et al., 2020) where (CV)^2 was found to be 260 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2022. ; https://doi.org/10.1101/2022.06.21.496989doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.496989
http://creativecommons.org/licenses/by-nd/4.0/


xii 
 

proportional to one over the number of modelled cell cycle stages. Importantly, given 261 

a single value of the ′𝛼′ or ‘k’ parameters, this is entirely independent of ′𝛼′ or ‘k’ 262 

facilitating simple calculation of the required ‘x’: 263 

 𝑥 =  
1

3(𝐶𝑉)2
    𝑒𝑞𝑢. 𝑆20    264 

 265 

 266 

 267 

  268 
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