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Significance

Plants and microorganisms release metabolites that mediate rhizosphere host-microbe
interactions and modulate plant adaptation to environmental stresses. However, the molecular
mechanisms that underpin rhizosphere metabolite-microbiome dynamics, their functional
relationships, and the biological role of plant- or microbial-produced soil metabolites remain
largely unknown. Here, we found the abundances of specific classes of rhizosphere soil
metabolites were responsive to abiotic stressors, and also connected to specific shifts in the
rhizosphere microbial community and plant phenotypes. We propose a suite of understudied
rhizosphere compounds as keystone metabolites that may structure the rhizosphere
microbiome and influence plant metabolism in response to nutrient availability. These links
between rhizosphere metabolites and microbial communities point to research avenues where
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we might leverage plant-microbe interactions to engineer enhanced rhizosphere microbiome
function, plant and ecosystem health.

Abstract

Plants exude large quantities of rhizosphere metabolites that can modulate composition and
activity of microbial communities in response to environmental stress. While rhizodeposition
dynamics have been associated with rhizosphere microbiome succession, and may be
particularly impactful in stressful conditions, specific evidence of these connections has rarely
been documented. Here, we grew the bioenergy crop switchgrass (Panicum virgatum) in a
marginal soil, under nutrient limited, moisture limited, +nitrogen (N), and +phosphorus (P)
conditions, to identify links between rhizosphere chemistry, microbiome dynamics, and abiotic
stressors. To characterize links between rhizosphere microbial communities and metabolites,
we used 16S rRNA amplicon sequencing and LC-MS/MS-based metabolomics. We measured
significant changes in rhizosphere metabolite profiles in response to abiotic stress and linked
them to changes in microbial communities using network analysis. N-limitation amplified the
abundance of aromatic acids, pentoses, and their derivatives in the rhizosphere, and their
enhanced availability was linked to the abundance of diverse bacterial lineages from
Acidobacteria, Verrucomicrobia, Planctomycetes, and Alphaproteobacteria. Conversely, N-
amended conditions enhanced the availability of N-rich rhizosphere compounds, which
coincided with proliferation of Actinobacteria. Treatments with contrasting N availability
differed greatly in the abundance of potential keystone metabolites; serotonin, ectoine, and
acetylcholine were particularly abundant in N-replete soils, while chlorogenic, cinnamic, and
glucuronic acids were found in N-limited soils. Serotonin, the keystone metabolite we identified
with the largest number of links to microbial taxa, significantly affected root architecture and
growth of rhizosphere microorganisms, highlighting its potential to shape microbial community
and mediate rhizosphere plant-microbe interactions.

Introduction

It is well-established that plants modify the chemistry and microbial communities in the
rhizosphere - the soil adjacent to their roots (1-3). Rhizosphere microbial communities have
increased biomass (1, 4, 5), are often less diverse than those in surrounding bulk soil (2, 3, 6, 7)
and are frequently dominated by microbial taxa from specific lineages (8, 9). In addition, specific
traits are enhanced in rhizosphere microbial communities, including motility (10), cell-to-cell
communication or sensing (11), and nutrient uptake (12). While this indicates strong selection
for specific rhizosphere competence traits, the mechanisms of rhizosphere microbial community
assembly remain ill-defined. Laboratory incubations, hydroponic systems, and greenhouse
studies suggest that the chemical signatures of plant exudates and mucilage - collectively
termed “rhizodeposits” - are key drivers of rhizosphere microbial community structure and
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function. For example, as plants develop, their exudation rates and exudate chemistry change
in a consistent manner (13-15) as do their rhizosphere microbial communities (1, 16). Studies
conducted in hydroponic systems or with additions of exudate solutions, have observed shifts
in gene expression of rhizosphere communities (17) and provide evidence that specific bacterial
taxa are recruited or repelled by specific exudate compounds (18, 19). While these results
support the hypothesis that root-derived chemical compounds can directly structure
rhizosphere microbial communities, there have been notably few attempts to link the full
diversity of the rhizosphere exometabolome to shifts in microbial community structure in
complex living soils.

The rhizosphere exometabolome is a diverse chemical milieu of primary and secondary
metabolites released by the plant host and rhizosphere microorganisms into the soil
surrounding plant roots (12, 20). The exometabolome interacts with the soil environment (i.e.,
mineralogy, pH, water) and provides a varied “playground” for the cross-talk between plants
and microorganisms living in soil (21-25). Plant-derived metabolites reflect plant responses to
its changing environment and enable plants to modulate their metabolic interactions with
microorganisms (20, 26-28), thus potentially enabling them to recruit a beneficial microbiome.
At the same time, and in response, microorganisms attracted by plant-derived molecules
produce rhizosphere metabolites that can alter the plant host’s phenotype and enhance its
capacity to withstand environmental stresses (27, 28). Many studies characterized plant
exudates in a sterile environment and demonstrate the effect of signaling metabolites on plant-
microbe interactions (29-31). However, it remains unclear how the collective exometabolite
chemistry of plants and microbes combines with the soil environment of the rhizosphere to
impact microbiome assembly and plant adaptation to the environment.

In rhizosphere soil, diverse pools of metabolites and microbial taxa change sequentially in
response to environmental drivers. This ongoing call-and-response makes it challenging to
derive linear cause and effect, or the directionality of interactions. This complicates the direct
assessment of functional associations between metabolites and microorganisms under different
abiotic conditions. However, if changes of functionally associated metabolites and rhizosphere
microbial taxa are causal, the alteration of one pool in response to changing abiotic conditions
should be reflected in changes of the other. Tandem analysis of microbial communities and
rhizosphere metabolite abundances should therefore be a useful approach to explore the
relationships between diverse metabolites and microorganisms in soil —and a means to identify
metabolite-microbiome pairs that are worthy of further experimental validation. A limited
number of studies have used this approach—notably in human gut, lung, urinary tract,
wastewater, and biological soil crust systems (22, 32-36) —but it has not been applied within
rhizosphere soils. Linking exometabolite chemistry, microbiome assembly and plant phenotypes
under abiotic stress is needed to identify functional links between specific metabolites and
microbial lineages (37). These metabolite-driven changes in plant microbiomes will enable us to
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manipulate microbial communities and optimize plant-microbe interactions in the rhizosphere
for better crop health and productivity, particularly in resource limited environments such as
marginal soils.

Switchgrass (Panicum virgatum) is a broadly distributed tallgrass native to prairies in the
Eastern and Midwestern USA (38). Drought-tolerant (39) and capable of growing in nutrient
poor marginal soils (40), switchgrass is a deep-rooted perennial with significant potential to
promote long-term soil carbon sequestration (41-43). These traits also make switchgrass a key
candidate for cellulosic biofuel production on marginal soils that are not suitable for intensive
cultivation (44). Switchgrass seedlings are susceptible to a number of biotic and abiotic stresses
during the establishment phase (45), a period when mutualistic plant-microbial relationships
that enhance nutrient availability, reduce moisture stress or protect against pathogens (46-49)
could be critical to plant stress resilience and future yields. Switchgrass has a core microbiome
of bacterial taxa that are consistently found in its rhizosphere across diverse soil and sampling
environments (50-52). However, it is unclear how the switchgrass microbiome is recruited
during establishment, and how abiotic stress affects these recruitment mechanisms.

In this study, we linked dynamics of switchgrass rhizosphere metabolites and microbiomes
in response to abiotic stress by growing a single switchgrass genotype in a nutrient-poor
marginal soil for 18 weeks under five treatments: a control, soils amended with phosphorus (+P),
nitrogen (+N), both nitrogen and phosphorus (+NP), and water-limited (-W) (Fig. 1A). We
hypothesized that non-random co-variations in the abundances of microorganisms and
switchgrass rhizosphere metabolites would emerge in response to varying abiotic stressors.
Using this analysis, we identified potential ‘keystone metabolites’ - compounds that may have
functional links to specific microbial lineages or abiotic stressors that significantly alter the
structure of rhizosphere microbiomes. We found that N availability was the most significant
determinant of both metabolite and microbial community composition, and resulted in the co-
enrichment of select microbial lineages and metabolites. Keystone metabolites included
compounds such as organic and aromatic acids previously linked to changes in microbiome
community structure (12, 18, 19), but also N-rich compounds such as serotonin and
acetylcholine that have not been investigated in the rhizosphere but are known to be strong
signaling molecules in other settings (53, 54). Further, we used simplified lab experiments to
show that one of the keystone metabolites identified in soil, serotonin, significantly impacts
both plant phenotype and the growth of specific rhizosphere microorganisms. This study
identifies keystone metabolites with unexplored potential to mediate rhizosphere communities
and impact plant phenotypes under nutrient stress. In addition, our study demonstrates an
approach to discovering the relationships between rhizosphere metabolites, microbial
communities, plant phenotypes and abiotic stressors in complex living soils.
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Methods
Experimental Design

Soils were collected from remnant Dust Bowl fields in Oklahoma, consisting of a nutrient-
deplete Pond Creek fine sandy loam (< 0.5% total carbon, < 1 ppm total nitrogen, < 6 ppm total
phosphorus) classified as a superactive, thermic Pachic Arguistoll (55). One meter deep soil
mesocosms were constructed in 19.7 cm diameter impact-resistance polycarbonate tubes with
the “A”, “B”, and “C” horizon soils to recreate the marginal soil environment. Six replicate
mesocosms were created per treatment, for a total of 30 mesocosms. Prior to packing the
mesocosms to field bulk density (1.41 + 0.04, 1.53 + 0.18, 1.64 + 0.07 g dry soil cm™ for the “A,”
“B,” and “C” horizons, respectively), we added slow-release coated urea (ESN Smart Nitrogen,
44-0-0, Agrium) to the top horizon of the +N treatment mesocosms (0.13 g kg soil), and rock
phosphate (0-3-0, Espoma) to the +P treatment mesocosms (0.48 g kg™ soil). Coated urea and
rock phosphate were both added (at concentrations as above) to a third set for the +NP
treatment. Two further sets of mesocosms were created - a control treatment with no nutrient
amendments, and a low water (-W) treatment which received half the water of all the other
treatments once plants became established (Fig. 1A). Mesocosms were watered with 50% (-W)
or 100% (control, +N, +P, +NP) of the mean monthly rainfall (2012-2017, NOAA) at the field site
in Oklahoma in the summer months (roughly 100 mL each day). Soil moisture sensors (EC-20;
METER Group, Pullman, WA) were installed in the “A” horizon of the control and -W treatment
to confirm differences in soil moisture. Individual clonal ramets of the Alamo switchgrass
genotype, NFSG 18-01, from the Nested Association Mapping population generated at the Nobel
Research Institute were planted in each mesocosm in May 2017 and grown at the University of
California, Berkeley, Oxford Tract greenhouse, under a natural light regime and a 32 °C daytime
and 21°C nighttime temperature cycle. After 18 weeks, each mesocosm was destructively
harvested by cutting open the polycarbonate tube longitudinally, and processing the soil by
horizon.

Sample Collection and Processing

We focused our analysis of microbial communities to just the A horizon because that is the
zone where the majority of root biomass and soil nutrients were found (43), and where biotic
activity and nutrient exchange is presumably the greatest. Roots and associated rhizosphere soil
(<2 mm from root) from the top A horizon were immediately collected for DNA extractions in
15 mL tubes containing 5 mL Lifeguard Soil Preservation Solution (QIAGEN) using chilled soil-
processing trays. For metabolite extractions, roots and rhizosphere soil from all three horizons
were collected and immediately placed on dry ice and then stored at -80 °C. Bulk soils (>4 mm
from roots) from the A horizon were collected and stored at 4 °C for gravimetric soil moisture
measurements and all remaining roots were collected, dried and weighed. For full details on
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sample processing and assessments of root biomass and bulk soil pH water potential, and
phospholipid fatty acid analysis (PLFA) microbial biomass, see Sher, Baker et al. 2020 (43).

DNA Extraction and Sequencing

Additional details for the rhizosphere soil DNA extraction, metabolite extraction and
analysis, sequencing, bioinformatics, and statistical methods are provided in the Supplemental
Materials and Methods. Briefly, rhizosphere soil in Lifeguard solution was centrifuged to pellet
and DNA was extracted from single 0.5 g aliquots using a modified RNA/DNA phenol chloroform
co-extraction protocol via bead-beating (56, 57). Notably, the 5% hexadecyl-
trimethyammonium bromide/0.7 M NaCl/240 mM K-PO, buffer (pH 8) was modified to include
1% B-mercaptoethanol, PEG 8000 was used in place of PEG 6000, and GlycoBlue was used to
stain nucleic acid pellets. Microbial community composition was characterized with a
sequencing library prepared at the University of Oklahoma via a phasing amplification technique
targeting the V4 region of the 16s ribosomal RNA gene with the 515F and 806R primer set (58,
59). Samples were sequenced on the Illumina MiSeq platform with 2x250 bp format.

Bioinformatics

All initial bioinformatics processing and production of amplicon sequence variants (ASVs) by
DADA2 (60) were conducted within Qiime2 (61), with taxonomy assigned via the SILVA database
(release 132) (62). 10,516,421 raw reads were processed into 7856 denoised ASVs that
accounted for 3,942,210 reads. Subsequent processing, visualization, and statistical tests of
sequence data were performed in R version 3.6.0 (R Core Team, 2020), primarily within the
phyloseq package (63). Chloroplast, mitochondrial, and bacterial or archaeal sequences that
lacked designation at the phylum level were discarded, leaving 7481 ASVs accounting for
3,792,761 reads. Singletons and doubletons were removed for all analyses other than a-
diversity, resulting in 7093 ASVs accounting for 3,792,087 reads (104,776-194,526 per sample).
Differentially abundant ASVs between each of the individual treatments and the control samples
in the top horizon were determined with the DESeq2 package (64), and differentially abundant
ASVs whose responses to a treatment were driven by only one sample were removed from
subsequent analyses. Analyses of B-diversity were performed via permutational analysis of
variance (PERMANOVA) on rarefied sets of 100,000 reads per sample using Unifrac distance
matrices.

Metabolite Extraction and Analysis

Soil metabolites were extracted from the “A”, “B”, and “C” soil horizons using a method
described in Swenson et al. (2015) (65). Briefly, rhizosphere soil samples were shaken in ice-cold
liquid chromatography-mass spectrometry (LC-MS)-grade water at 200 rpm for 1 h at 4 °C and
centrifuged at 3220 g for 15 min at 4 °C. The supernatant was filtered through 0.45 pum syringe
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filters (Pall Acrodisc Supor membrane) and lyophilized. Lyophilized extracts were resuspended
in 100% methanol with internal standards, filtered using 0.22 um microcentrifuge PVDF filters
(Merck Millipore), and aliquots of 150 pl of methanol extracts were analyzed using normal-
phase LC-MS with a HILIC-Z column and an Agilent 1290 LC stack. MS and MS/MS data were
collected using a Q Exactive Orbitrap MS (Thermo Scientific) (see Supplemental Materials and
Methods for additional details).

Metabolomics data were analyzed using Metabolite Atlas software to obtain extracted ion
chromatograms and peak heights for each metabolite (66). Metabolite identifications were
verified with authentic chemical standards based on matching m/z better than 5 ppm for
positive mode, 15 ppm for negative mode, retention time difference < 0.5 min, and/or MS/MS
fragment matching score of > 0.6 as calculated by the Stein and Scott ‘composite’ algorithm with
modifications (67) (Table S4). As defined by the Metabolomics Standards Initiative (68), any two
of these orthogonal measures supports a level 1 identification for the identified metabolites
(provided that the third measure did not invalidate the identification). A total of 100 level 1
unique metabolites were identified, and seven metabolites were classified as ‘unresolvable”
metabolites’ due to structural isomers (Table S4). All identified metabolites were detected in at
least four out of six replicates from at least one treatment.

Significant differences in switchgrass rhizosphere metabolite profiles in response to the five
nutrient and water stress treatments and between the three soil horizons were determined with
PERMANOVA. The magnitude of change (A of metabolite abundance) for all significantly
changed metabolites (P < 0.05) was calculated by scaling metabolite peak heights from 0-1,
where “1” is the highest peak height of each metabolite across all samples, and then subtracting
the scaled metabolite abundances observed in nutrient-depleted marginal soil (C) from the
treatments where N (+N; +NP) or P (+P) had been added or where water was limited (-W). A
positive A indicates an increase in metabolite abundance in a specific treatment (Fig. 2A,C,E).

Rhizosphere Metabolite - Microbiome Associations

To determine covariance between metabolites and microbial ASVs, we constructed a
correlation network based on the relative abundances of metabolites and relative abundances
of ASVs across all treatments. To prevent false positives, we only included ASVs with non-zero
abundances in at least 15 of the 25 samples. Spearman correlations were calculated for each of
the metabolite-metabolite, ASV-ASV and metabolite-ASV pairs. A Random Matrix Theory (RMT)-
based approach determined 0.710 as the correlation coefficient cutoff that controls false
discovery in our network by separating noise vs. non-random correlations (69). This RMT-based
approach has been previously used to construct correlation-based networks of complex
microbial systems (6, 70), and is available through the Molecular Ecological Network Analysis
(MENA) pipeline (http://ieg4.rccc.ou.edu/MENA/). To construct the networks, we included only

metabolite-ASV pairs with an abundance correlation coefficient above the threshold of 0.710,
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and discarded links within metabolite species or within 16S ASVs to construct the network.
Discarding non-metabolite-ASV links partly alleviates the potential bias caused by compositional
data, as the abundances of ASVs and metabolites were independently derived; also,
compositional data bias should be a minor problem in high-diversity communities (71). Positive
and negative correlations correspond to positive and negative links, respectively.

Based on previously developed criteria (70, 72, 73), we defined putative ‘keystone
metabolites’ or ‘keystone ASVs’ from an individual node’s role in network topology as follows:
the network was separated into modules using a fast greedy algorithm, and the within-module
connectivity (zi) and among-module connectivity (pi) were calculated for each node (72). Nodes
with zi >2.5 are designated as module hubs, while nodes with pi >0.62 were designated as
connectors among different modules. Nodes with both zi >2.5 and pi > 0.62 stretch among the
whole network were designated as network hubs (73). These module hubs and network hubs
were defined as keystone metabolites or keystone ASVs based on the node’s identity.
Correlation calculations, network construction, and network topology analysis were conducted
with the igraph package (74). The network was visualized using Cytoscape (75). In addition, to
identify associations between metabolites, microbial communities, and treatments, we
performed hierarchical clustering analysis using the vegan package (76). For the analysis we
selected differentially abundant ASVs determined with the DESeq2, that had more than three
significant positive or negative Spearman’s rank correlations with metabolites (r > 0.7, P < 0.05)
and metabolites with more than one significant positive or negative correlation with ASVs (r >
0.7, P<0.05).

Plant phenotype response to serotonin

To test the effect of serotonin on plant growth, surface-sterilized Alamo switchgrass seeds
were sown on % Murashige and Skoog (MS) basal salt mixture M524 (Phyto Technology
Laboratories) (0.87 g/L MS salts, pH 7.3, and 8 g/L agar). Nine biological replicates (n = 9) of
seven-day-old seedlings were transferred to % MS agar plates supplemented with 0.1 mM
serotonin (Sigma-Aldrich) or with purified H,0. Plates with seedlings were incubated at 24 °C on
a 16 h/8 h day/night cycle, with humidity maintained at 70% and irradiance at 250 uE m=2 s™%.
After twenty-five days, switchgrass plants were harvested, and root and shoot biomass were
measured. Root length and root number were quantified using the SmartRoot plugin (version
4.21) in Imagel) (version 2.0.0) (77). Significant differences between treatments were
determined using an ANOVA test (P < 0.05).

Microbial response to serotonin

To test the effect of serotonin on microbial growth responses, we selected eight bacterial
isolates from a suite previously cultured from Oklahoma marginal soils planted with switchgrass.
We mapped 16S rRNA gene sequences from these isolates to the 16S amplicon sequences from
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the switchgrass rhizosphere in this study to ensure selected isolates were closely related to
those observed in the rhizosphere. Isolates and observed ASVs were determined to have closely
related V4 regions of their 16S rRNA genes (extracted using BLASTN) if their E values were <1 x
107%% and matched >97% of gene sequence homology. These isolates were then assigned the
serotonin response pattern (positively- or negatively-correlated) corresponding to the ASV they
were closely related to in this study. Eight isolates (four with putative positive correlations with
serotonin and four with negative) were selected to analyze their growth response to serotonin-
spiked growth medium. These isolates represent common rhizosphere genera: Bradyrhizobium,
Reyranella, Mucilaginibacter, Methylobacterium, Shinella, Paenarthrobacter, Burkholderia, and
Mesorhizobium. Growth curves were performed in 1/10 R2A medium with either 0, 0.1, or 0.5
mM serotonin. Four replicates of each isolate were inoculated in a 96-well plate and grown at
30 °C, shaking once per hour at 200 rpm before optical density measurement at 600 nm (ODgoo).
After 130 hours of isolate growth with 0.1 or 0.5 mM serotonin, the culture ODgoo Wwas compared
to that of a control treatment without serotonin (0 mM). Optical density responses were
analyzed using a Kruskal-Wallis test after the ODeoo of uninoculated blanks was subtracted from
the inoculated samples.

Results
Plant and soil responses to nutrient and water treatments in the “A” horizon

Switchgrass root biomass in the “A” horizon varied significantly by treatment (P < 0.001, Fig.
1B) and was highest in the +NP treatment (4.80 + 1.04 g; mean * SD) and lowest in the -W
treatment (2.45 + 0.24 g). The soil water potential at harvest also varied significantly by
treatment (P < 0.001, Fig. 1C); the control soils were the wettest (-527 + 352 kPa), treatments
with higher root biomass (+N, +NP) had generally drier soils, and the -W treatment had the driest
soils (-12,100 + 5700 kPa). Soil microbial biomass, measured by PLFA, did not vary significantly
by treatment (Fig. 1D), with an average 9.81 + 1.25 pmol PLFA / g dry soil observed across all
treatments.

Microbial diversity in rhizosphere soil

To evaluate how nutrient availability and moisture stress affected microbial diversity in the
rhizosphere of switchgrass, we analyzed 7841 amplicon sequence variants (ASVs) from the
uppermost soil horizon. Microbial a-diversity varied significantly by treatment according to a
suite of metrics including Fisher’s a (P = 0.01, Fig. 1E), the Chaol index (P = 0.009), the Shannon
index (P < 0.001), and the Simpson index (P = 0.002) (Fig. S1). Phylogenetic diversity also varied
significantly by treatment (P = 0.01), but mean pairwise distance between ASVs did not. In
general, a-diversity metrics were significantly higher in controls and in the +P treatment relative
to soils where N was added, while reduced watering did not have a significant effect relative to
controls (Fig. S1).
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At the phylum level, rhizosphere communities were dominated by Actinobacteria and
Proteobacteria; together, these phyla made up 46.4 £ 8.2 % and 26.5 + 2.3 % of the sequences
observed in each sample, respectively (Table S1). Acidobacteria and Verrucomicrobia were the
only other phyla that comprised >4 % of the community in each sample, on average. Other
phyla that comprised >1 % of the average community were (in order of abundance) Firmicutes,
Chloroflexi, Gemmatimonadetes, Bacteroidetes, and Planctomycetes (Fig S2A). The phyla
Actinobacteria and Acidobacteria were the only dominant phyla (>4% relative abundance) that
varied significantly between treatments (P < 0.05).

Community B-diversity varied significantly by treatment (P < 0.001) according to Unifrac
distances, with the strongest differences resulting from N-addition (Fig. $2B). Communities
from the +N and +NP treatments were significantly different (P < 0.05) from those in the
control and +P treatment, and communities from the -W treatment were significantly different
from those in the control and +NP treatment (Table S2).

Impact of nutrient and moisture limitation on rhizosphere ASVs

To assess the effects of abiotic stressors on specific ASVs and determine which ASVs were
driving community-level differences between treatments, we used DESeq?2 to identify lineages
that were differentially abundant in the +N, +P, +NP, and -W treatments relative to the control
(Fig. 2A). N addition (+N, +NP) caused the strongest shifts in community composition (Fig. 2A),
with the abundance of 247 ASVs significantly affected by treatment: 184 by the +NP treatment,
139 by +N, 17 by +P, and 6 by -W. While there was some overlap in the effect of treatments on
ASVs (Fig. 2B), many ASVs were solely affected by the +NP and +N treatments (95 and 47,
respectively). Notably, 83 ASVs were uniquely affected in both the +N and +NP treatment soils,
evidence of a strong N addition effect. Relatively few ASVs were solely affected by the +P and -
W treatments (11 and 1, respectively). DESeq responsive ASVs and their taxonomy are listed in
Table S3.

We defined ASVs that were more likely to be found (or not found) in a given treatment as
‘positive’ (or ‘negative’) responders. The taxonomic identity of ASVs that responded to the +N
or +NP treatments depended on whether they were positive- (increased in abundance) or
negative-responders (decreased in abundance). Positive-responders to N-application (+N or
+NP) were dominated (>50%) by ASVs from the phyla Actinobacteria (e.g., Kribella,
Streptomyces, Marmoricola, Conexibacter) (Fig. 2C). ASVs with negative-responses to N were
more taxonomically diverse as a group. Negative-responders came from >17 classes, with the
majority belonging to the Acidobacteria (e.g., Bryobacter, Acidobacteriales, Acidobacteria
SG17), classes Alphaproteobacteria (e.g., Elsterales, Xanthobacteraceae, Methylobacterium),
Deltaproteobacteria (e.g., Pajaroellobacter, other Myxococcales), Gammaproteobacteria (e.g.,
Burkholderiaceae, Nitrosomonadaceae), the Planctomycetes (e.g., Gemmataceae), and the
Verrucomicrobia (e.g., Pedosphaeraceae)(Fig. 2C).
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Far fewer ASVs responded to the +P and -W treatments (Fig. S3A,B respectively) and there
were few taxonomic patterns. Of 17 responders to the +P treatment, only 5 ASVs increased in
abundance in response to P amendment, all from different phyla. A majority of the ASVs (n=5)
that decreased in response to P addition belonged to Actinobacteria. The -W treatment had the
fewest ASVs change in abundance relative to the control soil, but 6 ASVs responded positively
to water limitation, with the response driven by five ASVs from Actinobacteria.

Treatment-induced changes in rhizosphere metabolite chemistry

LC-MS-based metabolomics was used to identify rhizosphere metabolites under different
nutrient additions and water limitation. 100 metabolites were identified across five treatments
and three soil horizons (Table S4). Analysis of rhizosphere metabolites revealed compositional
changes in all treatments, with the +N and +NP treatments exhibiting the greatest differences
compared to the nutrient-poor control soil (Fig. 3). Across all soil horizons seventeen
metabolites were significantly more abundant (PERMANOVA: P < 0.05) in the rhizosphere of the
marginal control soils when compared to nitrogen (+N and/or +NP) supplemented treatments
(Fig. 3A,B, Fig. S4), and declined in abundance when nitrogen was added. The majority of these
17 metabolites were organic acids (n=12) and about half contained an aromatic ring (n=9); the
remaining metabolites included pentoses and pentose alcohols (n=3), vitamin B and a lactone.
Conversely, addition of N (+N and/or +NP) significantly increased the abundance of 35 N-
containing rhizosphere metabolites and one sugar for all three soil horizons. This included amino
acids, nucleosides, and quaternary amines, as well as N-containing azoles such as allantoin and
N-containing indoles such as serotonin (Fig. 3C,D, Fig. S4). Moisture stress also had a significant
effect on an array of rhizosphere metabolites; 17 metabolites increased in abundance in
response to the -W treatment, including a number that are known osmolytes (amino acids,
quaternary amines, sugars) (Fig. 3E,F, Fig. S4). P amendment had a much smaller effect on
rhizosphere metabolite chemistry than the other treatments; in the +P treatment, only seven
metabolites significantly changed in abundance relative to the control (Fig. S4).

We also analyzed metabolite changes in response to the treatments for each soil horizon.
The top-soil horizon responded the most to nutrient limitation, with 13 metabolites increased
in abundance when N was limited out of the 17 metabolites that changed across all horizons
(Fig. 3A). Nitrogen addition resulted in the most significant changes in metabolite abundances
of any treatment in the middle and bottom horizons (Fig. 3B), where nearly any metabolite with
a significant response to N addition was found to increase in abundance, and very few were
observed to decrease. Notably, the bottom and middle soil horizons revealed more profound
metabolite responses to water limitation than the top horizon, where only two out of 17
metabolites increased (Fig. 3E).
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Associations between metabolites, microbial ASVs and abiotic stresses

To identify relationships between microbes and metabolites, we used Spearman's rank
correlations and hierarchical clustering of differentially abundant rhizosphere ASVs defined by
the DESeq analysis and metabolites observed in the “A” soil horizon. This analysis groups
treatment-responsive rhizosphere metabolites and ASVs by their degree of correlation, to
identify clusters with similar behavior. Hierarchical clustering of the most responsive ASVs and
differentially abundant metabolites revealed two large microbial-metabolite clusters. Cluster #1
(Fig. 4) contains microbial ASVs (n=8) and rhizosphere metabolites (n=17) that increased in
abundance in the N-amended treatments (+N, +NP), including ASVs from the Actinobacteria
(Paenarthrobacter, Solirubrobacter), Alphaproteobacteria (Sphingomonas, Pseudolabrys),
Gammaproteobacteria (Nitrosomonadaceae) and metabolites with N-rich compounds (amino
acids, azoles, quaternary amines). Cluster #2 (Fig. 4) includes metabolites (n=8) and microbial
ASVs (n=29) with higher relative abundance in the unamended control soils. ASVs in this cluster
were distinct from the ASVs identified in the Cluster #1 and include diverse microbial classes
from the Alphaproteobacteria (Rhodoplanes, Acetobacteraceae), Deltaproteobacteria
(Desulfarculaceae, Myxococcales), Verrucomicrobia (Pedosphaeraceae, Chthoniobacter),
Acidobacteria (Bryobacter, Unclassified Acidobacteria), as well as ASVs from Planctomycetes,
Nitrospirae, Armatimonadetes, Gemmatimonadetes, Bacteroidetes and Actinobacteria. The
majority (75%) of rhizosphere metabolites that co-varied with the ASVs from the Cluster #2 were
organic acids, particularly aromatic acids (chlorogenic, cinnamic, caffeic, 4-pyridoxic, 2,3-
dihydroxybenzoic acid).

Metabolite-microbial rhizosphere community network

In our bipartite co-occurrence network of rhizosphere ASVs and metabolites (Fig. 5A), 117
ASVs connect to 31 metabolites via 368 links, including 153 positive and 215 negative links, with
an average of 5 links per node (Table S5). We identified five module hubs and one network hub
as putative “keystone metabolites” (Table S5, Fig. 5B). Three metabolites reflect modules
dominated by negative correlations, including serotonin, acetylcholine, and ectoine (modules 2,
3, and 4, respectively), with serotonin exhibiting negative links (83%) with a wide range of
bacteria, and positive links primarily with Actinobacteria ASVs. Module 1, the largest, was driven
by positive interactions with chlorogenic acid, glucuronic acid, and cinnamic acid, and included
78% positive links with bacterial ASVs from a diverse range of lineages and negative links
primarily with ASVs from Actinobacteria. There was no module hub observed for Module 5,
which was dominated by metabolite nodes instead of ASVs.

The six connector ASVs behaved similarly to one another (Fig. 5C), forming most of their
positive links (4/5) with organic acids - including the three aforementioned module hubs and
2,3-dihydroxybenzoic acid in Module 4 - and forming most of their negative links (10/12) with
non-organic acid metabolites. Approximately half of the ASVs in the network were also
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identified as differentially abundant by DESeq (Table S3), and nearly all of these were responsive
to the +N or +NP treatment but not the -W or +P treatments.

Serotonin impacts on plant biomass and rhizosphere isolates

Serotonin was identified as a key hub metabolite in the reconstructed network (Fig. 5); it
formed the largest number of ASV links and had the largest number of significant ASV
correlations (Fig. 4 and Fig. 5). Given serotonin’s known role in gut bacterial-host interactions
(54) and phenotypic effects on Arabidopsis (78) we conducted a follow-up study to examine its
effect in the switchgrass rhizosphere. Switchgrass seedlings grown with 0.1 mM serotonin had
increased root and shoot biomass (Fig. S5), promoted the number of secondary roots (Fig. 6A),
and increased secondary root length (Fig. 6B) (P < 0.05, n=9).

We also tested serotonin’s effects on eight microbial isolates purified from the switchgrass
rhizosphere in marginal soils from Oklahoma (Fig. 6C), and are closely related to the ASVs
identified in the switchgrass rhizosphere in this study (297% of 16S gene sequence homology).
Four of the isolates are closely related to ASVs where we found negative serotonin correlations
('-SER') and four are related to ASVs with positive serotonin correlations (‘+SER’) (Fig. 6C).
Increased serotonin concentrations (0.5 mM) in the isolate growth medium suppressed growth
of the -SER isolates based on the ODsoo readings of this treatment compared to the control (Fig.
6C, Fig. S6). In contrast, growth of +SER isolates was less sensitive to serotonin additions. Their
response varied from slight delays in the lag phase at 0.5 mM of serotonin (Burkholderia and
Paenarthrobacter) to growth stimulation (Shinella and Mesorhizobium).

Discussion
Exometabolites reflect rhizosphere abiotic stress conditions

Plant exudates and microbial metabolites present in the rhizosphere play a significant role
in shaping plant-microbe and microbe-microbe relationships under different environmental
conditions, including various abiotic stresses (79-82). These rhizosphere metabolites likely
consist of a large fraction of the plant exudates, microbial products, and background C
compounds present in the bulk soil. A number of studies have analyzed metabolites present in
rhizosphere soil of maize, Arabidopsis, wheat, rice, wild oat (13, 83-86). However few studies
have identified changes of rhizosphere metabolites in soil in response to abiotic stressors. For
example, Caddell et al. 2021 investigated the dynamics of sorghum rhizosphere metabolites
during drought (87), and Mavrodi et al. (2012) established that phenazines accumulate in the
rhizosphere of dryland cereals (88), but responses to nutrient limitation, in particular, have been
understudied in rhizosphere soil. Here, we demonstrate that metabolites recovered from the
rhizosphere soil of switchgrass shifted in response to nutrient (N, P) and water-limited
conditions. We observed three major patterns in switchgrass rhizosphere metabolite shifts: (i)
enhanced abundances of aromatic acids when switchgrass was grown in N-limited soil (Fig. 3A);
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(ii) enhanced abundances of N-containing compounds when N was added (Fig. 3C); and (iii)
enhanced abundances of osmolytes in water-limited conditions (Fig. 3E).

Aromatic acids we identified in the rhizosphere of N-limited switchgrass have previously
been observed in both plant exudates and rhizosphere soils (12, 89). It has been proposed that
the release of this class of metabolites to the environment plays an important role in plant
allelopathy and soil phytotoxicity (90), structuring rhizosphere microbiomes (91), suppressing
bacterial and fungal pathogens (28, 92) and solubilizing soil P (93). Aromatic acids also contribute
to the alleviation of salt stress damage in plants (94) and are involved in quorum sensing and
guorum quenching (95). The literature on changes in the abundance and chemical composition
of plant root exuded metabolites, particularly aromatic acids, indicate that exudation of these
compounds is sensitive to plant developmental stages (12, 13). Recently we found that wild oat
exudes the largest quantities of aromatic acids during active growth and that this increase was
associated with changes in its rhizosphere microbiome, potentially by attracting beneficial
microorganisms (12). These results indicate that plant exudation shifts as the plant’s demands
change, for example in response to abiotic stresses. Indeed, multiple studies showed that plants
exude compounds that aid in nutrient acquisition when nutrients such as Fe (79, 80), P (79, 81),
and N (82) are limited. We observed greater abundances of aromatic acids in our N-limited
control soils, consistent with studies that have shown that plants produce more phenolic
compounds such as aromatic acids when they are more stressed (93, 95-97) (Fig. 3A). When we
alleviated N stress in our system, we observed that metabolites in the switchgrass rhizosphere
consisted of fewer aromatic acids and more N-rich compounds, instead (Fig. 3C). Greater
exudation of amino acids, nucleosides and other N containing molecules by plants in response
to N-amendment has been shown previously (79), and suggests that a higher availability of N
enables switchgrass to exude more amino acids, nucleosides, azoles, diazines, and quaternary
amines. Furthermore, the increase of N-containing metabolites in the rhizosphere appears to be
an indicator of the alleviation of N-stress experienced by switchgrass, given the enhanced root
biomass (Fig. 1B) and C availability (43) that resulted from N-addition. Our results indicate that
rhizosphere metabolites respond to changes in abiotic stress in a manner consistent with plants
and microbes attempting to alleviate abiotic stresses in the rhizosphere.

Consistent with this expectation, we also observed greater production of ectoine, choline,
betaine, raffinose and a number of amino acids in water-limited conditions (Fig. 3E). These are
widely-known osmolytes - compounds produced by plants and microorganisms to alleviate
osmotic stress (98-102). Previous studies have demonstrated these metabolites are more
abundant in water-limited soils (99, 103). Notably, some of the same osmolytes were produced
in the rhizosphere when water was limiting as when we added N (Fig. 3C). The crossover
between the responses to reduced watering and enhanced N availability makes sense given that
increased root biomass in the +N and +NP treatments resulted in drier soils relative to controls
(Fig. 1B,C) (43). As such, the response of metabolite osmolytes in our system are consistent with
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osmolytes increasing in abundance when plant and/or microbial cells are experiencing moisture
stress in the soil matrix.

Abiotic stress structures rhizosphere microbiomes

The composition of metabolites in the rhizosphere is defined by a complex mix of plant
rhizodeposits, simple molecules from decomposed plant litter, products of microbial catabolism
of root exudates and plant polymers, signaling molecules, antibiotics, plant hormones and other
active molecules (3, 5, 104-106). Plants are primary contributors to soil C stock and the richest
sources of small organic molecules in the soil, releasing 11-40% of photosynthesis-derived
carbon into the rhizosphere (4, 31, 104). The metabolites we identified in our study, including
sugars, amino acids, organic acids, and nucleosides represent common plant metabolites and
have been reported before in exudates of different plants, including grasses and food crops
(107). Plants produce and secrete metabolites to modulate the soil environment, and these
plant-exuded metabolites are key factors shaping the structure of microbial communities in soil.

The overall community composition that we observed in the switchgrass rhizosphere was
consistent with the literature on the taxa found in the rhizosphere of many other grasses and
switchgrass-associated soil bacteria (2, 50, 52, 108). We observed that Actinobacteria was the
dominant switchgrass rhizosphere phylum and Proteobacteria (particularly class
Alphaproteobacteria), Acidobacteria and Verrucomicrobia were the next-most dominant phyla
(Fig S2A). This is in-line with previous research showing that lowland switchgrass genotypes such
as the Alamo we employed in this study often have increased relative abundances of
Actinobacteria and Acidobacteria (52, 108, 109). Although Verrucomicrobia are not generally
considered to be “rhizosphere” taxa, Hestrin et al. (2020) reviewed switchgrass microbiome
literature and observed that Acidobacteria, Actinobacteria, Proteobacteria, and
Verrucomicrobia were consistently associated with switchgrass roots and rhizosphere soil (110).

Stress-induced changes in metabolite profiles, dominated by the common plant-derived
metabolites, lead to the enrichment of specific microbial taxa in the rhizosphere of plants,
presumably to assist the plant in counteracting stressors (111). We suggest that switchgrass
exudates drive shifts in the rhizosphere metabolome in response to nutrient and water
availability, and these changes mediate the assembly of the rhizosphere microbiome. The shifts
in rhizosphere bacterial community structure that we observed in response to changes in abiotic
stress and in tandem with associated changes in metabolite profiles demonstrate close linkages
between these factors and generally support this hypothesis.

The a-diversity of the community was reduced when N was added to the system, which is
consistent with numerous prior studies (112, 113). It is hypothesized that alleviating N-limitation
can result in the proliferation of bacteria that are adapted for environments with plentiful soil
resources at the expense of more diverse taxa better adapted for nutrient-limited environments
(114). In terms of taxonomic shifts, we observed the same trend consistently seen by Ramirez
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et al. (2012) whereby bacterial communities under N-addition have greater abundances of
Actinobacteria (115). In the same study authors reported a decline in microbial activity (i.e.,
lower activities of extracellular enzymes) in N-amended soils, suggesting a shift to the
preferential utilization of more labile C pools.

In contrast to the lineages that positively responded to N addition, we observed that
members of Verrucomicrobia and Acidobacteria decreased in abundance under N-addition.
These slow-growing, oligotrophic lineages have been linked to nutrient deficiencies, in general,
and N-limitation, in particular (115), and decreased in abundance in response to more readily
available nutrients. These findings corroborate previous field studies, where comparable
community changes were observed in the same bacterial groups (115-117). A number of ASVs
from Proteobacteria also declined in abundance in response to N-addition, including from
families such as Xanthobacteraceae (ASVs 295, 412, 1189), Beijerinckiaceae (ASV 602), and
Burkholderiaceae (ASV 231, 436, 467, 685) that have been shown to be capable of freely fixing
N and making it more available in soil (118, 119). The decline of potential N-fixers in response
to N-addition follows from the resource-based economics that govern microbial life history
strategies (120). It has also been previously shown that cultivation of perennial grasses increases
the abundances of NifH gene in the rhizosphere (121), while N-fertilization reduces NifH gene
abundance in soil from switchgrass stands - though the taxa responsible for the observed decline
were likely diverse and not limited to just Proteobacteria (122).

We did not observe a strong microbial community response to P addition or watering
reduction in our study. The ASVs that were enhanced in prevalence in response to our +P
treatment came from a diverse array of lineages with no readily discernible pattern, while those
that were decreased in prevalence came primarily from Actinobacteria. However, the low
number of responsive ASVs (17) makes it difficult to draw inferences. Notably, rhizosphere
metabolites in +P treatment were also the lowest compared to other treatments. This could be
a result of P dynamics taking longer to affect soil ecosystem dynamics than the single growing
season captured in our study, or it could be an indication that P availability is not near as limiting
in our system as C or N limitations are. The fewest number of ASVs (6) responded to our -W
treatment, with the majority of these also from Actinobacteria, though it is notable that no ASVs
decreased in prevalence in response to the -W treatment. This may indicate that the dry
conditions in these mesocosms made the soil environment more conducive to the growth of
certain Actinobacteria, these “monoderm” lineages have previously been shown to be drought-
tolerant (123).

Metabolite chemistry associated with suite changes in abundance of specific ASVs
Taxon-specific responses to individual rhizosphere metabolites could be an important driver

of rhizosphere bacterial community assembly. Although we emphasize that rhizosphere

metabolites are not direct measures of plant exudation, we hypothesized that non-random
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covariations in the abundances of microorganisms and rhizosphere metabolites across the
broad range of abiotic stresses in our treatments could indicate potential functional links
between certain metabolites and certain microbial lineages. Our results support this hypothesis,
with rhizosphere metabolites shifting with microbial community composition in a similar
manner to that observed in the literature for soil microbial communities exposed to changing
exudate chemistry.

It has been previously established that plants can exude organic acids in nutrient-limited
conditions, at least in part to directly liberate carbon and nutrients into the soil matrix (109).
However, it has also been shown that organic acids, and in particular aromatic acids, are exuded
by plants as they develop, and that greater abundances of such acids correspond to large-scale
shifts in soil microbial community composition (18, 19, 91). Several potential mechanisms of
how aromatic acids may modulate rhizomicrobiomes have been proposed, including shifts in
soil pH, antimicrobial effects or preferential utilization of these metabolites as a nutrient source
by specific microbial taxa geared to decompose their recalcitrant structure (12, 18, 91).

In our association network, we found that half of the six module hubs were organic acids,
with chlorogenic acid, an aromatic compound, possessing the most links to microbial ASVs of
the three (Fig. 5). In addition, we observed that aromatics such as chlorogenic acid, caffeic acid
and 4-pyridoxic acid (among others) were most abundant in our control, N-limited marginal
soils. These soils also possessed the most diverse microbial communities (Fig. 1E). Reduced
concentration of these aromatic acids in our N-amended treatments also corresponded to
significantly less diverse rhizosphere bacterial communities, with consistent reductions in
similar ASVs (Figs. 2B,C). The ability to metabolize organic acids, in particular, has been linked to
the proliferation of taxa in the rhizosphere of a variety of plant hosts (12, 18, 124), which is
notable given that organic acids are among the dominant classes of exudate compounds and
many plants are known to exude them (along with other rhizodeposits) from their roots during
active growth and development (12, 15, 106, 125). Thus, aromatic acids such as chlorogenic acid
are likely strong drivers of switchgrass rhizomicrobiome structure.

Two of the three remaining rhizosphere module hub metabolites, serotonin and
acetylcholine, have not been extensively studied in the context of soil. Both are produced by
plants and microorganisms and are involved in amino acid metabolism. In soil, serotonin can
result from the degradation of tryptophan (126), itself a precursor for many essential plant
metabolites including plant hormone auxin (53). Changes in the abundances of both
acetylcholine and serotonin were also shown to be primarily associated with changes in the N-
status of the soil environment (Fig. 4).

Interestingly, serotonin was the largest module hub that we observed in our network. In
plants serotonin plays important roles in growth, development and response to environmental
stresses (53). However, the mechanism of action of this signaling metabolite and its role in the
rhizosphere, particularly in plant-microbe interactions, are not well understood. We
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demonstrated for the first time that serotonin is not only correlated with a large number of ASVs
but also impacts plant phenotype and growth of rhizosphere microorganisms. We found that
growing switchgrass in microcosms with applications of serotonin increased plant aboveground
biomass and significantly enhanced root biomass, the number of secondary roots, and total root
length (Fig. S5 and Fig. 6A,B). We found that serotonin can either suppress or stimulate
rhizosphere microorganisms and therefore it allows the plant to shape its community to respond
to environmental conditions. The established ability to alter root phenotypes combined with the
observation of major shifts in abundance of many rhizosphere ASVs in conjunction with the
abundance of serotonin and strong impact on microbial growth hint at the possibility that
serotonin is a keystone metabolite mediating plant-microbe interactions in the rhizosphere.
Recent studies demonstrated that gut microorganisms co-evolved to induce serotonin
production by the host and can sense this host-derived serotonin to increase their colonization
and fitness in the intestine (54). However, it is also known that many phenylamides, such as
serotonin have antibiotic properties (127) which is consistent with our observed suppression of
microbial growth and negative correlations between selected microbes and serotonin. In
contrast, microbes that have been stimulated by serotonin and corresponded to the ASVs
positively correlating with this molecule, possibly could co-metabolize serotonin as a nutrient
source or developed a mechanism to detoxify this molecule.

The final module hub metabolite we observed is ectoine, one of the most abundant
osmolytes in nature and commonly produced by aerobic heterotrophic bacteria (128). As such,
it may be indicative of moisture stress experienced by microbial communities in the rhizosphere.
Notably, ectoine abundance was positively associated with Actinobacteria, a lineage often
thought to be drought-tolerant (129), and associated with ectoine in arid environments (130).
While we caution that the mechanisms behind links in a correlation network are difficult to
assess, in the context of the broad range of abiotic conditions experienced by the plant and soil
in our study, strong correlations between metabolites and microbial ASVs could well imply that
they respond similarly (positive links) or differentially (negative links) to these conditions. We
note that the organic acids that were identified as module hubs in our association network had
mostly positive associations with a diverse array of ASVs, which is supported by the treatment
responses we observed for rhizosphere metabolites and microbiome community composition.
In contrast, serotonin had negative associations with a diverse array of ASVs, but its few positive
associations were almost entirely with Actinobacteria lineages, which is supported by the
taxonomic responses to N-rich rhizosphere metabolites that we observed. Thus, rhizosphere
microbial assembly mediated by metabolites could be important drivers of these covariations -
especially when the potential relevance of the chemistry of these compounds to plant-microbial
metabolism follows expectations from literature and can be demonstrated in lab settings, as we
could for serotonin. State-of-the-art techniques such as stable isotope probing (131), a
reductionist approach and experiments in highly controlled environments (132, 133) and
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improved methods for collection and identification of exudates and plant metabolites from soil
systems (131) will provide aid in disentangling links between metabolite chemistry, dynamics or
microbial community and plant response to environmental stressors.

Conclusion

Metabolic changes belowground play a vital role in plant stress resilience and microbial
adaptations to environmental change. However, the relationships between rhizosphere
metabolite chemistry and the dynamics of microorganisms in soil have been largely overlooked.
Our results show that rhizosphere metabolites are sensitive indicators of abiotic conditions in
the soil environment that can be linked to the shifts of specific bacterial lineages in response to
such changes. Here we show that aromatic acids were enriched in the rhizosphere of N-limited
switchgrass and identified microbial lineages associated with this N-limiting condition that were
enriched in the presence of these organic acids. In contrast, N-rich metabolites were plentiful in
the rhizosphere of N-replete switchgrass, as were fast-growing microbial lineages capable of
responding to increased nutrient availability. We contend that the metabolites identified as
module hubs in our association network - chlorogenic acid, cinnamic acid, glucuronic acid,
serotonin, ectoine, and acetylcholine - merit further study as ‘keystone metabolites’ by
structuring soil microbial communities in response to abiotic stress. In conclusion, the
rhizosphere metabolite response to nutrient and moisture availability and associated changes
in microbiota suggest a putative mechanism of metabolite-driven microbial community
assembly under abiotic stress and highlight potential keystone metabolites in the rhizosphere
of switchgrass.
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Fig. 1. Greenhouse experiment investigating the effect of nutrient or moisture stress on switchgrass biomass,
rhizosphere chemistry and microbial communities. Plants were grown in 1 meter deep mesocosms containing a
marginal sandy loam soil from Anadarko OK, with recreated ‘A’, ‘B’ and ‘C’ horizons. (A) Schematic of experimental
design illustrating five treatments: ‘Control’ with nutrient-poor marginal soil, ‘“+P’, “+N’, and ‘“+NP’ mesocosms with
phosphorus and/or nitrogen amendments in the top soil horizon, and “W’ mesocosms which received 50% less
water relative to the other treatments. Box-whisker plots (median and 25-75% quartiles) of (B) switchgrass root
biomass (g dry mass), (C) soil water potential (-kPa), (D) microbial biomass (pmol PLFA/g dry soil), and (E) microbial
a-diversity (Fisher's a) are shown by treatment. Letters represent significantly different post hoc pairwise
comparisons via Tukey’s test (P < 0.05, n=6)
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Fig. 2. Influence of nutrient and water limitation on switchgrass rhizosphere microbial community structure
assessed by DESeq2 analysis (adjusted P < 0.01, see Supplementary Information for details). (A) Number of
positively (+) and negatively (-) responsive amplicon sequence variants (ASVs) in nutrient amended and water-
limited treatments (+N, +NP, +P, -W) as compared to control soils, arranged by phyla (bubble size reflects the
number of responsive ASVs). Empty cells indicate no responsive ASVs from that phylum. (B) Number of unique and
shared amplicon sequence variants (ASVs) that changed in prevalence in response to each treatment relative to
controls. (C) The top-50 ASVs that increased (+ Log2 fold-change) versus decreased in prevalence (- Log2 fold-
change) in response to the +N treatment. ASVs are presented at the highest available taxonomic resolution, and
are colored by class for Proteobacteria and by phylum for all other phyla.
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Fig. 3. Significant changes in switchgrass rhizosphere metabolite profiles in response to five nutrient and water
stress treatments (n replicates=6), assessed by PERMANOVA (P < 0.05, see Supplementary Information for details).
(A) Metabolites significantly enriched (P < 0.05) in a nutrient-depleted marginal soil (control) compared to
treatments where N was added (+N; +NP). (C) Metabolites that increased (P < 0.05) in abundance in response to N
addition (+N, +NP) compared to the control soil. (E) Metabolites that increased in abundance (P < 0.05) in response
to water limitation (-W) compared to the control soil. Y-axis circles next to each metabolite represent the soil
horizons where the metabolite had a significantly different abundance. Unresolvable metabolites are indicated by
parentheses (22, 36). The red diamond inside each box denotes the mean and the horizontal line denotes the
median. (B, D, F) Box-whisker plots of the abundance of example metabolites are shown to illustrate treatment
effects across all three horizons. Points reflect a single metabolite per sample, the outer boxes indicate the first,
second and third data quartiles, and whiskers indicate the range of the points excluding outliers.
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Fig. 4. Heatmap representing the top co-varying microbial taxa and metabolites in the rhizosphere of switchgrass
grown with five soil nutrient and water treatments. Top associations between metabolites (columns) and ASVs
(row) include (i) DESeq2-determined differentially abundant ASVs (n=37) with more than three significant positive
or negative correlations (Spearman’s rank correlation, r>0.7, P < 0.05) with metabolites; and (ii) metabolites (n=25)
with more than one significant positive or negative correlation (Spearman’s rank correlation, r > 0.7, P < 0.05) with
ASVs. Hierarchical clustering shows two clusters of metabolite-ASV correlations. Cluster #1 (blue lines) represents
metabolites and ASVs that were more abundant in the rhizosphere when nitrogen was added (+N, +NP treatments)
and Cluster #2 (brown lines) includes metabolites and ASVs that were more abundant in nitrogen-poor marginal
soil (controls). Purple colors in the heatmap represent positive Spearman correlations, white represents no
correlation, and green colors represent negative correlations between metabolites and ASVs.
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Fig. 5. Co-occurrence network of switchgrass rhizosphere metabolites and microbial ASVs exposed to five soil
treatments in a greenhouse study. (A) An association network between 908 16S ASVs and 100 rhizosphere
metabolites. Nodes with circle symbols represent 16S ASVs, and nodes with square symbols represent metabolites.
Links between nodes are based on Spearman correlations (r > 0.710) of their relative abundances, red for positive
correlation and blue for negative correlation. There are a total of 148 nodes and 368 links in this network. The
network separates into five major modules, or highly connected groups of nodes, shown as the five numbered
circles. Red filled squares highlight rhizosphere metabolites that act as network and module hubs, which are the
nodes with dense connections to other nodes within the entire network (network hub) or a module (module hub).
The six microbial ASV nodes at the center serve as connectors of different modules, or the nodes linking different
modules. (B) Subnetworks of rhizosphere metabolites that formed module hubs and their neighboring microbial
nodes. (C) Subnetworks of microbial nodes that serve as connectors, and their linked rhizosphere metabolite.
Microbial ASVs are colored by class for Proteobacteria and by phylum for all other phyla.
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Fig. 6. Serotonin effects on switchgrass plant phenotype and growth of rhizosphere microorganisms. (A,B) 25 day-
old switchgrass seedlings (n=9) grown with exogenous application of 0.1 mM of serotonin (+SER) or controls (-SER).
Serotonin effects on secondary roots number (A) and total root length (B). Significant differences between added-
serotonin and controls was assessed by ANOVA, asterisks reflect P < 0.05. (C) Optical density (ODgoo) of rhizosphere
bacteria cultures after 130 hours of growth in 1/10 R2A medium with 0, 0.1, or 0.5 mM of serotonin. Values have
been scaled to the highest OD for each isolate across the row. The highest OD of the isolate is 100% (dark purple)
and the lowest OD is 0% (dark green), meaning that isolate growth has been completely inhibited. Orange cells
indicate isolates related to ASVs with significant negative correlations with serotonin (-SER) and brown cells indicate
isolates matched to ASVs with positive correlations (+SER). Positive and negative correlations between specific ASV
(shown in brackets) and serotonin shown inside of each cell. Asterisks indicate significantly different ODgoo between
the 0.1 and 0.5 mM serotonin treatments (n=4) and a control treatment without serotonin (0 mM, n=4) at P < 0.05
by means of Kruskal-Wallis test.
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