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Abstract 

A major challenge in single-cell biology is identifying cell-type-specific gene functions, which 

may substantially improve precision medicine. Differential expression analysis of genes is a 

popular, yet insufficient approach, and complementary methods that associate function with cell 

type are required. Here, we describe scHumanNet (https://github.com/netbiolab/scHumanNet), a 

single-cell network analysis platform for resolving cellular heterogeneity across gene functions in 

humans. Based on cell-type-specific networks (CSNs) constructed under the guidance of the 

HumanNet reference interactome, scHumanNet displayed higher functional relevance to the 

cellular context than CSNs built by other methods on single-cell transcriptome data. Cellular 

deconvolution of gene signatures based on network compactness across cell types revealed breast 

cancer prognostic markers associated with T cells. scHumanNet could also prioritize genes 

associated with particular cell types using CSN centrality and identified the differential hubness 

of CSNs between disease and healthy conditions. We demonstrated the usefulness of scHumanNet 

by uncovering T-cell-specific functional effects of GITR, a prognostic gene for breast cancer, and 

functional defects in autism spectrum disorder genes specific for inhibitory neurons. These results 

suggest that scHumanNet will advance our understanding of cell-type specificity across human 

disease genes.  
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Introduction 

Genes do not act in isolation, because the proteins they encode interact with each other and with 

other molecules. From the perspective of network biology, molecular interactions determine the 

function of each cell type (1). However, cell-type-specific molecular interactions are difficult to 

identify and interpret due to context dependency. The advent of single-cell RNA sequencing 

(scRNA-seq) has enabled the characterization of distinct cell types from complex tissues, as well 

as the determination of their interactions within mixed-cell populations (2).  

A major difficulty in cell-type-specific network (CSN) inference from single-cell transcriptome 

data is the lack of a gold standard for cell-type-specific gene interactions. Accordingly, researchers 

often use simulated synthetic networks (3). An evaluation using reference protein-protein 

interactions showed that most methods for network inference, including those developed for bulk 

RNA-seq data and scRNA-seq, were not capable of reconstructing accurate networks of gene 

interactions from scRNA-seq data (4). This poor performance is likely due to elevated sparsity (5) 

and spurious technical variation (6) among scRNA-seq data. To overcome this problem, an 

accurate network modeling method that uses scRNA-seq data to study cell-type-specific gene 

functions should be developed. 

Two approaches to network construction using single-cell transcriptome data exist: reference-free 

and reference-guided inference. The former, which is more popular, enables the discovery of gene 

interactions directly from single-cell transcriptome data, but it suffers from a generally high false-

positive rate (4,7). In contrast, the reference-guided approach builds a network by filtering the 

reference interactome for a given transcriptome of context-associated single cells. Filtered 

interactions are highly likely to exist in a given cell type. 

Here, we describe scHumanNet, a computational platform for the reference-guided construction 

of CSNs using single-cell transcriptome data. As the reference interactome, we used HumanNet 

(8), one of the best-performing human gene networks for disease gene predictions. We utilized a 

modified version of the SCINET algorithm (9). Along with CSN construction, scHumanNet 

provides several analytical tools to aid the study of cell-type-specific effects of disease genes. 

Through network centrality analysis, we found that scHumanNet outperformed other single-cell 

network inference methods in retrieving cell-type-specific genes, suggesting it was suitable for the 
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study of gene cell-type specificity. We demonstrated that genes relevant to the same cell type 

showed higher within-group connectivity (i.e., compactness) within the network. Utilizing 

network compactness across CSNs, we deconvolved breast cancer prognostic signatures into cell 

types and identified those associated with immune cells rather than cancer cells. We also found 

that the prognostic value of a known signature gene, GITR, was linked to T cells owing to its T-

cell-specific centrality. Furthermore, we developed a statistical framework for differential 

centrality analysis that revealed cell-type-specific functional defects in disease genes. Applying 

this analytical framework to brain scRNA-seq data from autism studies, we found elevated 

dysregulation of the interaction networks in inhibitory and excitatory neurons of disease condition. 

 

Materials and Methods  

Single-cell transcriptome data for network construction 

To construct CSNs, we used scRNA-seq data generated from biopsy samples of breast, lung, 

colorectal, and ovarian cancers with cell type annotations obtained from Qian et al. (10). For pan-

cancer comparative network analysis, we focused on five major cell types in the tumor 

microenvironment: T cells, B cells, myeloid cells, cancer-associated fibroblasts (CAFs), and 

endothelial cells (ECs). For the study of autism spectrum disorder (ASD), we constructed CSNs 

for cell types found in the brain using scRNA-seq data obtained from Velmeshev et al. (11). The 

pre-annotated cell types were merged with more granular representations to include ECs, 

oligodendrocytes, astrocytes (AST-FB and AST-PP), microglia, inhibitory cells (IN-PV, IN-SST, 

IN-SV2C, and IN-VIP), excitatory cells (L2/3, L4, L5/6, and L5/6-CC), and others (Neu-mat, Neu-

NRGN-I, and Neu-NRGN-II). 

 

Reference-free CSN construction with single-cell transcriptome data 

For network construction, we only considered protein-coding genes defined by the consensus 

coding sequence (CCDS) database. We built four variants of the co-expression networks, each of 

them based on each scRNA-seq dataset. In the first co-expression network, we calculated Pearson 

correlation coefficients (PCC) between gene pairs using a count matrix of single-cell transcriptome 

data, which was log-normalized by the NormalizeData() function of the Seurat package. Only links 
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with PCC > 0.8 were retained for the rawPCC network. The second type of co-expression network 

was based on the de-noised count matrix from MetaCell (12). To calculate the PCC between gene 

pairs, we used metacells generated with unified threshold and parameters. We discarded cells with 

fewer than 500 UMIs and used the parameters K = 30 and alpha = 2 for 

mcell_mc_from_coclust_balanced(). The third type of co-expression network was based on a 

count matrix with imputation of dropouts by SAVER (13) and exclusion of genes with >99% zero 

values. The last type of co-expression network was based on data transformation using bigSCale2 

(14). The recursive method was used for the clustering parameter of compute.network(), and the 

PCC was calculated using the transformed Z-score matrix. 

The accuracy of co-expression networks based on metacells, SAVER, and bigSCale2 was 

evaluated using a Bayesian statistical framework and log likelihood score (LLS) (15). In this 

scheme, gold standard gene pairs were used to evaluate the likelihood of data-driven gene pairs 

such as co-expression links. In brief, for the prioritized gene pairs inferred from the given data (D), 

we calculated LLS for every 1,000 links sorted by the data intrinsic score using the following 

equation: 

𝐿𝐿𝐿𝐿𝐿𝐿 =  �
𝑃𝑃(𝐿𝐿|𝐷𝐷)/𝑃𝑃(¬𝐿𝐿|𝐷𝐷
𝑃𝑃(𝐿𝐿)/𝑃𝑃(¬𝐿𝐿)

� 

where P(L|D) and P(¬L|D) account for the probability of positive and negative gold standard gene 

pairs in a given dataset, respectively, and P(L) and P(¬L) represent the probability of gold standard 

positive and negative gene pairs, respectively. We used a set of 260,962 gold standard positive 

gene pairs obtained from HumanNet (8). A set of gold standard negative gene pairs was inferred 

as being composed of all links not included among gold standard positives.  

For the construction of CSNs using GRNboost2 (16), 2,416 transcription factors (TFs) gathered 

from previous publications (17,18) were used as input, and the top 0.1% of links were retained for 

the final networks.  

 

Reference-guided CSN construction with single-cell transcriptome data 

scHumanNet was developed by modifying the SCINET framework (9) which utilizes imputation, 

transformation, and normalization of scRNA-seq data. Single-cell gene expression data were pre-
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processed using the ACTIONet package (19). By identifying the archetypes within the scRNA-

seq dataset, ACTIONet learns the dominant transcriptional patterns representative of cell types 

and states. This approach produces a transformed gene activity score matrix, which is the basis for 

inferring gene-pair interactions. For each gene pair from the gene score activity matrix, a minimum 

activity score threshold is applied to assess the strength of the interactions in a group of cells. If 

each gene in the examined interaction passes the threshold determined by the transformed cell type 

activity score and a link exists in the reference interactome, it is deemed cell-type-specific and 

retained in the resultant CSN. Although the SCINET package provides edge weights based on the 

aggregated p-value of a likelihood score, we used the LLS from our reference interactome, 

HumanNet, as the edge weight. We measured the network centrality of each gene based on the 

sum of LLSs to all its neighbors. Because the human interactome is biased towards the ribosome 

complex (20), we excluded ribosomal proteins from the final candidate hub genes.  

 

Significance test for network hubness 

The statistical significance of hub genes was calculated using the FindAllHub() function in the 

scHumanNet package. For each network, random networks were generated by swapping edges 

with equal probability, and the centrality scores of all genes were collected. This process was 

iterated until at least 10,000 centrality scores were gathered, which were then used to generate a 

null distribution. By default, Benjamini–Hochberg correction was applied for each p-value, and 

hub genes with false discovery rate (FDR) < 0.05 were selected for each CSN. 

 

Predicting cell-type-specific genes for B and T cells 

To test the cell-type relevance of genes, we compiled T- and B-cell-associated genes from the 

Gene Ontology (GO) database. We used reliable annotations by considering only evidence based 

on traceable author statement (TAS), inferred from direct assay (IDA), inferred from mutant 

phenotype (IMP), or inferred from genetic interaction (IGI). By selecting GO term descriptions 

that contained either ‘T cell’ or ‘B cell’, we obtained 289 genes associated with T cells and 89 with 

B cells. We conducted a similar compilation for other cell types but could not obtain enough 

associated genes for statistical testing. We identified differentially expressed genes (DEGs) using 
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the function FindAllMarkers() from the Seurat v3.2.3 package with default parameters ‘wilcox’ 

for test.use, ‘0.25’ for logfc.threshold, and ‘0.1’ for min.pct. We selected protein-coding DEGs 

with positive log-fold changes for B or T cells (q-value < 0.05) as cell-type-specific genes. Finally, 

we measured the weighted degree centrality of genes using the sum of edge scores for other 

network construction methods: PCC (rawPCC, MetaCell, SAVER, and bigSCale2), importance 

score (GRNboost2), and weighted score (SCINET). Only significant DEGs and hub genes were 

used to compare cell-type relevance. 

 

Predicting cell-type-specific TFs 

TFs specific for B and T cells were obtained from the TF-Marker database (21) and subsequently 

filtered using the TRRUST database (22), resulting in 42 T-cell-associated TFs and 14 B-cell-

associated TFs. The top 100 hub genes identified by scHumanNet were extracted from each cell 

type and filtered using the 2,416 TFs collated from previous publications (17,18). The top 100 

DEGs based on log-fold change values were selected and filtered using the same TF gene list. 

Hypergeometric tests were performed with all genes in HumanNet (18,593) as the gene space.  

 

Compactness analysis of gene sets to identify relevant cell types 

We implemented the Connectivity() function in scHumanNet to evaluate network compactness of 

a group of genes. Briefly, 10,000 random gene sets with the same number of genes as the test gene 

set were selected to generate a null model. To preserve the network topological properties for the 

random gene sets, we used rejection sampling, whereby we selected a gene with ±20% degree of 

connectivity for each real gene when permuting. Significance was measured using the rank of 

observed within-group connectivity in the null distribution. Genes that exert their function in a 

specific cell type tend to be connected to each other in a network specific to the cell type. The 

degree of compactness was measured using the significance of within-group connectivity. We 

performed compactness analysis for a set of immune checkpoint molecule (ICM) genes (23) and 

33 breast cancer prognostic signature gene sets collected from Huang et al. (24). For the GGI97 

signature, only 76 out of 97 genes were evaluated in this study because the others had been either 

discontinued or deprecated in the NCBI gene database (Supplemental Table 1). Their relevance 
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to the cell cycle was assessed using manual curation and accepted databases. Genes that were 

included in ‘Cell Cycle’ of KEGG 2021, ‘G2-M Checkpoint’ of MSigDB 2020, and ‘Cell Cycle 

Homo sapiens’ of Reactome DB 2016 were considered cell cycle-related. Other genes were 

curated manually, and those that included ‘DNA replication’ and ‘mitotic spindle’ were also 

included. Of the 76 signature genes, 24 were detected in the breast cancer T-cell network, and their 

functional connectivity was assessed through Connectivity() with default parameters.  

 

Survival analysis on The Cancer Genome Atlas (TCGA) breast cancer samples 

Only direct neighbors of the GITR gene in the T-cell network for breast cancer were considered 

connected to GGI97 signatures. TCGA data were downloaded through the GDC portal using the 

TCGAbiolinks R package. HTseq counts were preprocessed using TCGAanlayze_Preprocessing(), 

with ‘0.6’ as the cor.cut parameter. The data were subsequently normalized using 

TCGAanalyze_Normalization(). The preprocessed count data were normalized with sample-

specific size factors calculated using DESeq2. To identify genes indicative of good patient 

outcomes, we considered 23,192 genes from TCGA-derived expression matrix, of which 1,078 

BRCA samples were separated based on the top 30th and bottom 30th percentile of test gene 

expression. P-values from the Kaplan–Meier log test were corrected using the Benjamini–

Hochberg method, yielding 236 genes with FDR < 0.05, which were regarded as predictive of 

good prognosis. For survival analysis, samples were separated into high and low groups based on 

median GITR expression. The correlation between GITR expression for each bulk sample and the 

composition of T cells was calculated using the geometric mean of CD3D, CD3E, and CD3G. The 

survival group was divided into high and low groups based on the median of either single gene 

expression or geometric mean expression of the gene set. Network visualization of the breast 

cancer T-cell scHumanNet was performed using the igraph R package. 

 

Differential centrality analysis for ASD genes 

For each CSN, the degree of centrality was assessed based on the sum of edge weights (LLS). 

Because network size affects the degree of centrality score, we used percentile ranks, whereby the 

most central gene had a value of 1 and the least central one had a value of 0. We assigned a value 
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of 0 to genes that were not included in at least one of the networks. For each gene, we calculated 

the differential percentile rank of centrality (diffPR) by subtracting the percentile rank in the 

control network from the percentile rank in the disease network.  

𝑃𝑃𝑃𝑃𝑥𝑥,𝑁𝑁 = {𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑁𝑁𝑥𝑥(𝑥𝑥 ∈ 𝑁𝑁) 0 (𝑥𝑥 ∉ 𝑁𝑁) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥 =  𝑃𝑃𝑃𝑃𝑥𝑥,𝐴𝐴𝐴𝐴𝐴𝐴 −  𝑃𝑃𝑃𝑃𝑥𝑥,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

where x represents a gene and N represents a disease or control network for a given cell type.  

The percentile rank was calculated using the dplyr package percent_rank(). The diffPR for each 

gene ranged from -1 to 1, with positive values indicating higher connectivity in the disease network.  

For a significance test of differential centrality, we used the FindDiffHub() and TopDiffHub() 

functions in scHumanNet. Briefly, FindDiffHub() finds a distribution of null diffPR values for 

every gene by random permutation of the control network to measure the significance of the 

observed differential centrality. Random sampling of diffPR values continues until one million 

random values accumulate. Benjamini–Hochberg correction was applied to calculate the FDR. For 

TopDiffHub(), the diffPR of the genes was assessed and filtered for non-zero values. By default, 

genes within the top 5% of diffPR values were selected as differential hub genes. To define lost 

and gained hub genes in the disease network, 0.7 was set as the threshold. Accordingly, control 

hub genes with a percentile rank > 0.7 were assessed for their diffPR distribution. We observed a 

clear bimodal pattern dividing the genes around a specific diffPR value. Genes with diffPR of the 

same threshold or above (absolute value) were considered as hub genes and were characterized by 

large changes between healthy controls and disease CSNs. Functional enrichment analysis was 

performed using the enrichR package (25) with pathway terms derived from five pathway 

databases: Elsevier Pathway Collection (as of March 2022), BioPlanet v.1.0, Reactome 2016, GO 

Biological Process (GOBP) (as of March 2022), and GO Molecular Function (GOMF) (as of 

March 2022).  

 

Results 

scHumanNet effectively retrieves genes specific for each intratumoral cell type 
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To evaluate whether CSNs obtained by scHumanNet (Figure 1A) were more suitable than those 

generated by other inference methods for the study of cell-type-specific gene functions, we 

compared various reference-free and reference-guided approaches. Using published breast cancer 

scRNA-seq data (10), we constructed networks for T cells, B cells, myeloid cells, ECs, CAFs, and 

cancer cells using five reference-free methods, including rawPCC, MetaCell (12), SAVER (13), 

GRNboost2 (16), and bigSCale2 (14), as well as one reference-guided method, SCINET (9) based 

on PCNet (26). Network size across cell types and network inference methods varied widely 

(Supplemental Table 2). 

The functional importance of network nodes is measured by their centrality. Cell-type-specific 

genes presumably play important roles in the corresponding cell types. Therefore, we expected 

that genes with high centrality values in each CSN were enriched for cell-type-specific genes. 

Using weighted degree centrality based on the edge scores of each network, we compared the top 

100 genes from each network. In this way, we could disregard differences in network size. 

Interestingly, no overlap was observed between any of the six network construction methods when 

assessing the top 100 hub genes for each cell type (Figure 1B, Supplemental Figure 1). To 

determine if the hub genes were prioritized for cell-type-specific functions, we assessed the area 

under the receiver operating characteristic curve (AUROC) score for each cell-type-specific entry. 

Using the Azimuth celltype database (27), which contains signature marker genes extracted from 

large scRNA-seq datasets, we observed a higher retrieval rate of cell-type signature genes by 

centrality in reference-guided CSNs than in reference-free CSNs (Figure 1C). Similarly, the 

association between the top 100 hub genes and each of the Azimuth cell-type signature genes 

tended to be stronger in CSNs generated via reference-guided methods than in those that relied on 

reference-free methods (Supplemental Figure 2). Among reference-guided CSNs, scHumanNet 

prioritized cell-type-specific genes better than SCINET, especially among B and T cells. These 

results suggest that scHumanNet is superior to other CSN construction methods in retrieving cell-

type-specific functions of human genes. 

 

scHumanNet reveals commonality and differences among CSNs across cancer types 

The function of tumor-infiltrating cells in cancer is often investigated using cell-type-specific gene 

expression. Here, we show that network biology can complement expression-based functional 
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studies. To this end, we used scHumanNet to construct CSNs for T cells, B cells, myeloid cells, 

ECs, CAFs, and cancer cells from breast, colorectal, lung, and ovarian cancers. Next, we examined 

whether these CSNs could provide functional insights linked to cell type or disease status. Statistics 

for CSNs relative to each cancer type are summarized in Supplemental Table 3. Network 

comparisons across different types of non-cancerous cells revealed that only a minor portion of 

nodes and edges was shared across cell types in all cancers (Figure 2A, B); whereas a large portion 

was shared across cancer types (Figure 2C, D; Supplemental Figures 3, 4). These results indicate 

that CSNs generated by scHumanNet are shaped primarily by the cellular context rather than the 

disease or tissue context. Notably, the ratio of unique edges to shared edges across cancer was 

larger than that of unique nodes to shared nodes in all cell types, indicating that networks for the 

same cell type are rewired in different tissue and disease contexts. 

 

scHumanNet centrality and compactness predict cell-type specificity of gene functions 

Rewiring gene interactions in different cell types might change the network centrality of genes 

with differential functional importance across cellular contexts. Given that hub genes with a high 

degree of centrality interact with many other genes in a given cellular context, we hypothesized 

that they were more likely to play important roles in maintaining functions specific to the given 

cell type. Therefore, we investigated whether scHumanNet hub genes for each type of tumor-

infiltrating cell could reflect cell context-dependent functional importance across cancer types. To 

evaluate cell-type specificity, we utilized the GO database to collate genes reliably associated with 

either B or T cells (Methods). Next, we assessed the power of scHumanNet to predict genes 

specific for each cell type based on overlap with genes known to function in B or T cells. Notably, 

the network-based and expression-based candidate genes specific for each cell type showed low 

concordance (0.05 to 0.13 Jaccard similarity index), indicating complementarity of the two 

predictions (Figure 3A, Supplemental Figure 5). Moreover, the intersection between the two 

predictions showed strong overlap with known cell-type-specific genes. Interestingly, for the most 

part, network-based predictions showed a similar or higher overlap with known cell-type-specific 

genes than expression-based predictions, further confirming that scHumanNet hub genes could 

effectively identify cell-type-specific genes. 
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We anticipated that ICMs would be enriched among genes specific for tumor-infiltrating cells. 

Hence, we compiled 43 previously identified ICMs (Supplemental Table 4) (23) and compared 

their overlap with scHumanNet hubs and DEGs across cell types. For all cell types, we observed 

higher retrieval of ICMs by scHumanNet hub genes than by DEGs (Figure 3B). Notably, in all 

cancer types and cell types, the ICMs retrieved by DEGs were subsets of those retrieved by 

scHumanNet (Supplemental Data 1). 

We prioritized genes using weighted degree of centrality in the CSNs constructed by scHumanNet 

and found that it was highly predictive of cell-type-specific hallmark genes (Supplemental Data 

2). Based on this observation, we chose to more closely investigate TFs, which are key 

determinants for the differentiation and maintenance of particular cell identities. Cell-type-specific 

differential expression analysis is often insufficient to detect TFs for a given cell type because of 

a generally low basal level of expression. Instead, a network-based approach has been widely used 

to infer TF-target interactions (28,29). We hypothesized that network centrality in CSNs could 

effectively prioritize TFs specific for a certain cell type. To evaluate the prediction of TFs specific 

for cell types by DEGs and scHumanNet centrality, we retrieved cell-type-specific TFs from TF-

Marker (21), a manually curated cell-type-specific TF database. Because of the limited number of 

entries, we could analyze only TFs specific for B and T cells. By comparing the enrichment of 

known cell-type-specific TFs among the top 100 prioritized genes by scHumanNet centrality with 

those identified by differential expression, we found that the network-based approach was 

consistently better at prioritizing TFs in both B and T cells across cancer types (Methods, 

Supplemental Data 3).  

We also found that scHumanNet centrality could predict cell-type-specific disease-associated 

genes. For example, the top 15 hub genes in T cells from all types of cancers included those 

involved in cell-mediated immunity (GZMB, PRF1, and IFNG) and immune checkpoint signaling 

pathways (TIGIT and CTLA4) (Figure 3C, Supplemental Figure 6, Supplemental Data 2). 

Notably, four of the five hallmark genes for T-cell immunity (PFR1, IFNG, TIGIT, and CTLA4) 

were not found among the top 50 DEGs (Supplemental Data 4). In B cells, TLR7 and TLR9 were 

found to be pan-cancer central genes but were not detected as DEGs. In myeloid cells, the top 50 

pan-cancer central genes included seven genes involved in myeloid cell differentiation (CD4, 

FCER1G, IRF8, TYROBP, TLR2, TREM2, and ITGAM), but only two of them (FCER1G and 
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TYROBP) were found among the top 50 DEGs. In CAFs from ovarian cancer, but not from other 

cancer types, 11 aldehyde dehydrogenase genes (ALDH1L1, ALDH1L2, ALDH3A2, ALDH1A3, 

ALDH1A1, ALDH1A2, ALDH2, ALDH1B1, ALDH4A1, ALDH9A1, and ALDH6A1) were 

prioritized in the top 100 hub genes by scHumanNet. Aldehyde dehydrogenase has been associated 

with poor survival as it promotes tumor growth in ovarian cancer (30). Notably, none of the 11 

aldehyde dehydrogenase genes were among the top 100 DEGs in CAFs from ovarian cancer. The 

NOTCH1 gene is expressed in ECs, where it promotes metastasis (31). We found NOTCH1 among 

the top 20 hub genes in endothelial CSNs for all four cancer types (7th for breast, 13th for 

colorectal, 11th for lung, and 19th for ovarian cancers), but not among the top 200 DEGs in all 

cancer types. These results suggest that network centrality using scHumanNet can be more 

effective than differential expression analysis in identifying genes that play important roles in a 

given cellular context. These results also suggest that FindAllHubs() in scHumanNet can identify 

hub genes with cell-type-specific functions in both healthy and disease contexts.  

Rewiring molecular networks across different cell types may result in differential within-group 

connectivity (or compactness), which can also be used to estimate functional relevance. As a proof-

of-concept, we utilized ICM genes and genes specific to B and T cells. The Connectivity() function 

in scHumanNet tests the significance of within-group connectivity against a nonparametric null 

model using restricted random sampling that does not require the identification of optimal 

parameters (Methods). As expected, ICM genes and those specific for B and T cells were 

associated with T-, B-, and T-cell types, respectively, in all cancer types (Figure 3D). This 

suggests that the network-based approach provides a complementary and intuitive method for 

assigning gene sets to functionally relevant cell types based on compactness.  

 

Cell type deconvolution of cancer prognostic signatures using scHumanNet 

ICMs showed the highest compactness in the T-cell network, which is consistent with their cellular 

role. We hypothesized that we might deconvolve disease-associated gene signatures obtained from 

bulk tissues into individual cell types using their network compactness across CSNs by 

scHumanNet. For example, cancer prognostic signatures are presumably associated with cancer 

cells because they are typically identified in tumor tissues. However, tumor tissues often contain 

also non-cancerous cells, such as stromal and immune cells, and some prognostic genes may exert 
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their functions in non-cancerous cells of the tumor microenvironment. To test this hypothesis, we 

examined 33 prognostic signatures reported in breast cancer (24). We measured the normalized 

within-group-connectivity of each prognostic signature across the CSNs using scHumanNet 

(Figure 4A). As expected, we observed strong network compactness for many prognostic 

signatures from non-cancerous cells, particularly from T cells for the ‘T-cell metagene signature’ 

(Tcell) (32), ‘97-gene genomic grade index’ (GGI97) (33), ‘127-gene classifier’ (Robust) (34), 

and ‘64-gene expression signature’ (Pawitan) (35). These results indicate that T-cell function may 

in part account for the clinical outcomes of breast cancer. 

Next, we focused on the GGI97 signature (Supplemental Figure 7A), which has been extensively 

studied and clinically validated to have an inverse correlation with survival and a positive 

association with chemotherapy response (36). GGI97 genes were mostly associated with the cell 

cycle and G2/M checkpoint pathways (47/76 genes) (Supplemental Data 5). Additionally, the 24 

GGI97 genes detected in the T-cell network were closely connected to each other (p = 0.0001) 

(Supplemental Figure 7B-C) and significantly enriched in cell cycle-related functions (p = 0.0075 

by hypergeometric test) (Supplemental Table 1), suggesting a role for T cell cycle control in 

antitumor activity. We also found that many GGI97 genes were connected to genes with a high 

degree of centrality and important for T cell antitumor activity (GZMB, PDCD1, KLRC1, TNF, 

and ICOS) (Supplemental Figure 7D). In particular, genes directly connected to GGI97 signature 

genes were enriched in the T cell receptor signaling pathway (Figure 4B), indicating that a high 

GGI97 score primed the immune system for a better response to chemotherapy (37).  

T cell proliferation is important in the immunotherapy response. Out of 24 GGI97 signature genes 

in the T-cell network, 18 were direct neighbors of Ki67 (Figure 4C), a known marker of cell 

proliferation. The GGI97 signature is associated with poor survival, which was confirmed by the 

median expression of GGI97 genes in TCGA-BRCA samples (Figure 4D). To understand the role 

of GGI97 genes in T cells, we examined the top 10 hub genes directly connected to GGI97 genes 

in the T-cell network. Notably, GITR (TNSFR18), a hub gene directly connected to Ki67, was 

prognostic of positive clinical outcomes (Figure 4E, Methods). Importantly, the expression of 

GITR did not correlate with the abundance of T cells (Methods), ensuring that we observed the 

cellular effect of GITR regardless of T-cell composition in each tumor sample (Supplemental 

Figure 7E). GITR has a co-stimulatory role (38) which is essential for CD8+ T cells to mount an 
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antitumor immune response. When T cells bind to the ligand GITRL, GITR promotes the 

proliferation of effector T cells and dampens the suppressive activity of regulatory T cells (39). 

The GGI97 signature is predictive of chemotherapy responses. Chemotherapy can promote the 

cancer-immunity cycle by releasing neoantigens from dead cancer cells. Thus, the beneficial effect 

of GITR can be explained in terms of antitumor immunity. Moreover, we believe that the 

prognostic effect of the GGI97 signature in chemotherapy is tied to T-cell function via 

GITR. Consistent with our results, GITRL combined with anti-PD1 immunotherapy was shown to 

be effective against breast cancer, resulting in enhanced T-cell activation, proliferation, and 

memory differentiation (40). Taken together, our findings demonstrate that scHumanNet can 

deconvolve cancer prognostic signatures into cell types and identify key targets for therapeutic 

approaches in specific cell types. 

 

Identification of disease-associated cell types using differential hubness analysis in 

scHumanNet 

Another application of scHumanNet is the identification of differential hubs, that is, genes whose 

centrality changes significantly between two biological contexts, such as disease and healthy 

conditions. The FindDiffHub() function in scHumanNet assigns ranks to the genes based on the 

degree of centrality in each context-specific network, and then identifies those genes whose 

percentile rank has changed significantly compared to a null model. In addition, the TopDiffHub() 

function allows users to extract the top n differentially ranked genes (Methods). Using differential 

hubness analysis with scHumanNet, we investigated ASD, a neurodevelopmental disorder with 

strong heritability (41). ASD is characterized by difficult social interaction and communication, 

repetitive behavior, and/or sensory susceptibility, and is likely to have many different genetic and 

environmental causes. A large cohort study by the SFARI consortium identified 1,231 genes (42). 

However, the mechanisms of action of most genes remain poorly understood. We hypothesized 

that, in the disease condition, perturbation of SFARI genes could result in cell-type-specific loss 

of wild-type molecular interactions. Thus, a decrease in network centrality could point to disease-

associated cell types. Using a published dataset containing 104,559 cells from 15 donors diagnosed 

with ASD and 16 matching controls (11), we constructed seven CSNs for both healthy and disease 

conditions (Figure 5A, Supplemental Table 5, Methods). We found that the scHumanNet hub 
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genes for each cell type were relevant to cell-type-specific functions (Figure 5B). For example, 

the NMDA receptor subunit GRIN2B is a hub gene in both excitatory and inhibitory neurons, and 

the TF SOX9 is a hub gene in astrocytes (43). We also observed CD163, FCER1G, and CD14 as 

hub genes in microglia (44). Interestingly, unlike the immune cell dataset, whereby a few hub 

genes were also detected as marker genes via DEGs, most hub genes of the brain scHumanNets 

were not prioritized via differential expression analysis (Supplemental Data 6) and, indeed, 

showed minimal overlap with cell-type-specific DEGs (Supplemental Figure 8). 

Our analysis also revealed that many genes differed significantly in terms of network centrality 

between the control and disease conditions, despite modest fold changes (Supplemental Figure 

9A). By assessing genes with the highest differences in centrality rank via FindDiffHub() with 

default parameters (Methods), we found that differential hubs from excitatory and inhibitory 

neurons were significantly enriched with SFARI genes, which contrasted with DEGs being found 

mostly in ECs and astrocytes (Supplemental Data 7, 8). In particular, the highest overlap between 

differential hub genes and SFARI genes was observed in excitatory neurons (Supplemental Data 

8), although several key ASD genes, including GRIN2B and MECP2 (45,46), were found as 

differential hubs in inhibitory neurons. Even though GRIN2B and MECP2 are expressed in both 

excitatory and inhibitory neurons, they were found to be differential hubs only in the latter 

(Supplemental Figure 9B), implying that they may be functionally more important in inhibitory 

neurons. This finding has been experimentally validated in a mouse model (47) and suggested by 

a human study (48), in which inhibitory neurons were enriched for overexpressed SFARI genes. 

Similarly, for CACNA1A, we found that although it was not differentially expressed in inhibitory 

neurons (Figure 5C), there was a significant difference in terms of network centrality (Figure 5D), 

and many of the functional interactions were lost in the ASD inhibitory neuron network. The 

interacting genes were mostly associated with ion channels (Figure 5E), suggesting that the 

function of neural regulation, especially in inhibitory neurons, might be impaired byCACNA1A 

loss-of-function mutations (49). These results demonstrated that differential hubness analysis 

using scHumanNet could reveal disease-associated cell types.  

Finally, we investigated whether genes with high centrality in healthy conditions but low centrality 

in disease conditions might provide insights regarding cell-type-specific disease mechanisms 

(Methods). We found that excitatory neurons, inhibitory neurons, and oligodendrocyte progenitor 
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cells had the highest frequency of loss-of-function genes compared to other cell types (Figure 5F). 

Notably, genes with high centrality in disease but low centrality in healthy controls were less 

frequent across all cell types (Supplemental Figure 10A). Gene set enrichment analysis of hubs 

lost in neurons revealed that their function was primarily associated with neuronal activity (Figure 

5G). For inhibitory neurons, the hub genes lost under healthy conditions were enriched in 

‘increased anxiety-related response’ (MGI Phenotype), ‘anterograde trans-synaptic signaling’ 

(GOBP), and ‘ligand-gated cation channel activity’ (GOMF). In excitatory neurons, the genes that 

lost centrality were enriched in ‘chemical synaptic transmission’ (GOBP), ‘dopamine receptors 

signaling’ (Elsevier Pathway Collection), and ‘protein secretion’ (MSigDB Hallmark). These 

results imply that, in disease conditions, these hub genes lost most of their interactions with other 

genes, resulting in the dysregulation of neuronal function in ASD. In contrast, genes that became 

more central in ASD networks were not enriched in pathways related to neuronal function 

(Supplemental Figure 10B).  

 

Discussion 

The main goal of single-cell biology is resolving the cellular heterogeneity of human diseases. 

Single-cell gene expression analysis may enable the identification of disease-associated cell types 

based on the differential expression of disease-associated genes in specific cell types. In the present 

study, we described scHumanNet, a computational platform for network-based analysis of cell-

type specificity, which can complement expression-based approaches. The core component of this 

platform is the reconstruction of CSNs, gene network specific to distinct cell types. Single-cell 

transcriptome data have been utilized to construct CSNs with either reference-guided or reference-

free network inference methods. The evaluation of inferred CSNs is not a trivial task because of 

the lack of high-quality and experimentally validated gene-gene interactions for particular cell 

types. In fact, because of the high false positive rate of inferred gene-gene interactions from single-

cell transcriptome data, functional hypotheses from these networks are generally based on a group 

of edges rather than individual ones. Here, we validated the quality of CSNs by the retrieval of 

cell-type-specific genes among hub genes and network compactness of functional genes in the 

corresponding cell types. In the present study, we compared various approaches for CSN inference 

from single-cell transcriptome data and found that reference-guided methods outperformed 
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reference-free methods. These results can be explained by the noisy and sparse nature of single-

cell transcriptome data, which generate many false-positive gene-gene interactions (4). 

Furthermore, among the two reference-guided CSN analysis platforms, scHumanNet was superior 

to SCINET. Although they utilized the same network inference algorithm, they employed different 

reference interactomes. Previously, we demonstrated that HumanNet, the reference interactome of 

scHumanNet, performed significantly better than other human gene networks, including the 

reference interactome of SCINET, in predicting disease genes (8). This indicates that the quality 

of the reference interactome is key to the performance of reference-guided CSNs, and future 

improvement of the former will further ameliorate CSNs. 

In this study, we have demonstrated two applications of CSNs in the investigation of cell-type 

specificity of human disease genes. First, the effects of disease genes can be deconvolved into cell 

types based on the network compactness of a group of disease genes across CSNs. For example, 

cell-type deconvolution of breast cancer prognostic signatures showed high compactness not only 

in cancer cells but also in other tumor-infiltrating cells such as immune cells. The importance of T 

cells in antitumor activity may account for the large functional bias of prognostic genes towards T 

cells. Indeed, one of the identified hub genes was GITR, a T-cell-specific regulator that plays an 

important role in the survival of patients with breast cancer. We believe that our network-based 

approach for associating gene sets with cell types can complement expression-based methods, such 

as GSVA (50) and scfind (51). In the future, we may expand the scHumanNet platform to 

systematic cell type deconvolution of disease gene sets for all cell types of each tissue and thus 

generate CSNs for human cell atlas data. Second, we utilized CSNs to identify disease-associated 

cell types based on differential hubness between disease and healthy conditions across cell types. 

Therefore, the scHumanNet platform allows the analysis of differential hub genes. Using the 

scHumanNet pipeline, we identified inhibitory neurons as a major cell type associated with ASD. 

These results suggest that a network-based approach can complement an expression-based 

approach to identify disease-associated cell types using single-cell transcriptome data. 

There are some limitations to scHumanNet. Although our results suggest that the reference-guided 

method yields more biologically relevant CSNs, it comes at the expense of being unable to discover 

novel interactions specific for the cell type. In addition, cell type deconvolution may be unreliable 

with a small group of genes (e.g., a set of three genes) because a statistical test for network 
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compactness requires a relatively large number of genes to ensure a sufficient degree of confidence. 

Further studies are required to address these shortcomings.  

In conclusion, we present scHumanNet, a computational platform for single-cell network biology, 

capable of resolving the cellular heterogeneity of disease-related gene functions. We demonstrate 

that scHumanNet can deconvolve the functional effect of disease gene sets into cell types and 

identify disease-associated cell types via topological analysis of CSNs. These results suggest that 

scHumanNet will boost our understanding of cell-type specificity of human disease genes and thus 

advance precision medicine. 

 

Code availability 

The code for scHumanNet and the codes used to generate the figures in this manuscript can be 

downloaded from https://github.com/netbiolab/scHumanNet. 
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Figure 1. Comparison of cell-type-specific networks generated by scHumanNet and other methods.  
A. Overview of the scHumanNet platform and downstream analysis scheme used in this study B. Upset 
plots of the top 100 hub genes in breast cancer networks specific for T cells, B cells, and myeloid cells 
constructed using seven different network inference methods. C. Area under the receiver operating 
characteristic curve (AUROC) used to assess retrieval of cell-type-specific genes derived from the Azimuth 
cell type database by centrality in T, B, and myeloid cell-specific networks of breast cancer. *p < 0.05, **p 
< 0.01, ***p < 0.001.   
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Figure 2. Commonality and differences between CSNs generated by scHumanNet across 
cancer types. 
A, B. Upset plots for five CSNs (T cells, B cells, myeloid cells, CAFs, and ECs) show overlap 
with respect to nodes (A) and edges (B) across cancer types. C, D. Node (C) and edge (D) overlap 
of T-cell networks among four cancer types (OvC, ovarian cancer; CRC, colorectal cancer; BC, 
breast cancer; LC, lung cancer). 
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Figure 3. Prediction of cell-type-associated genes via differential expression analysis and network 
centrality by scHumanNet. 
A. Overlap of significant DEGs and significant hub genes for B- and T-cell networks in breast cancer (q-
value < 0.05). The numbers in square brackets correspond to Jaccard indices. Overlap of genes specific for 
B- and T-cell functions was assessed for prediction by hub genes and DEGs (set A and set C) and their 
intersection (set B). B. Number of ICMs retrieved via FindAllMarkers() (DEG) and FindDiffHubs() 
(scHumanNet) in different cancer types. C. Heat map showing the percentile rank of top 15 hub genes 
(nodes) and interactions (edges) of each breast cancer network. Values were scaled per row. Results for 
other cancer types are reported in Supplemental Figure 6. Genes highlighted in red were not among the 
top 50 DEGs retrieved by the FindAllMarkers() function in the Seurat package. D. Within-group 
connectivity between ICMs, T-cell GO genes, and B-cell GO genes for all annotated cell types in 
scHumanNet and for each cancer type (OvC, ovarian cancer; CRC, colorectal cancer; BC, breast 
cancer; LC, lung cancer). *p < 0.05, **p < 0.01, ***p < 0.001.   
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Figure 4. Deconvolution of breast cancer signatures to cell types with scHumanNet.  
A. Normalized within-group connectivity of each breast cancer signature in six cell-type-specific networks 
by scHumanNet. Within-group edge counts were normalized to the number of genes for each cell-type-
specific network. Cancer signatures with at least 10 genes are presented. B. Gene set enrichment analysis 
with the KEGG pathway for the top 30 direct neighbor genes of GGI97 signature genes. The red vertical 
line corresponds to a q-value of 0.05 corrected with the Benjamini–Hochberg method.  C. Network of genes 
neighboring MKI67 and GITR (TNFRSF18) in the context of breast cancer T cells by scHumanNet. Green 
nodes denote GGI97 genes. D, E. Kaplan–Meyer plot for TCGA-BRCA cohort based on the average 
expression of 76 signature genes (D) or the expression of GITR (TNFRSF18) (E). Clinical samples were 
divided into high and low groups by median value. 
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Figure 5. Differential hubness analysis between ASD and healthy control samples across CSNs by 
scHumanNet. 
A. Overview of differential hubness analysis by scHumanNet. Seven cell types were grouped and CSNs in 
normal and ASD conditions were constructed. B. Top 15 hub genes in the combined (control and ASD) 
networks for seven cell types. Genes highlighted in red were not among the top 50 DEGs identified by the 
FindMarkers() function in the Seurat package. C. Violin plot showing the normalized expression of 
CACNA1A for each cell type in ASD and healthy conditions. The statistical significance of differences 
between cell types was not evaluated. D. Network visualization of CACNA1A and neighboring genes in 
healthy (left) and ASD (right) inhibitory neurons by scHumanNet. SFARI genes are in red (20 genes out of 
72 neighbors in the healthy control, none in ASD). E. Direct neighbors of CACNA1A from normal inhibitory 
neurons by scHumanNet were assessed for enrichment using the GOBP database. The red vertical line 
corresponds to a q-value of 0.05 corrected with the Benjamini–Hochberg method. F. Distribution of diffPR 
values for genes with hubness (PR) > 0.7 in control cell types. G. Hallmark pathways of genes in ASD 
derived from five pathway databases (Reactome, BioPlanet, Elsevier Pathway Collection, GO Biological 
Process, GO Molecular Function) and identified in inhibitory neurons (left) and excitatory neurons (right).  
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Supplemental Figure 1. Upset plots for node and edge overlap between cell-type-specific networks 
(CSNs) by different methods. 
A. Upset plots for node overlap. B. Upset plots for edge overlap. Five cell types, including B cells, T cells, 
myeloid cells, cancer-associated fibroblasts (CAFs), and endothelial cells (ECs), were assessed. 
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Supplemental Figure 2. Identification of cell-type-specific genes by centrality in CSNs using 
scHumanNet and five other single-cell network inference methods. A–C. The top 100 hub genes in the 
networks specific for T cells (A), B cells (B), and myeloid cells (C) were tested for enrichment of cell-type-
specific genes derived from the Azimuth celltype database. The results for networks obtained with SAVER 
imputation are not shown, as hub genes produced no cell-type-specific terms enriched for any cell type. 
The red vertical line corresponds to a q-value of 0.05 corrected with the Benjamini–Hochberg method. 
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Supplemental Figure 3. Overlap of CSN nodes by scHumanNet among cancer types. 

A–D. Upset plots for four cell types, including B cells (A), myeloid cells (B), CAFs (C), and ECs (D), 
showing overlap between CSN nodes among cancer types. 
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Supplemental Figure 4. Overlap of CSN edges by scHumanNet among cancer types. 

A–D. Upset plots for four cell types, including B cells (A), myeloid cells (B), CAFs (C), and ECs (D) 
showing overlap between CSN edges among cancer types. 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.496836doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.20.496836
http://creativecommons.org/licenses/by-nc-nd/4.0/


T cell GO overlap B cell GO overlap T cell GO overlap B cell GO overlap T cell GO overlap B cell GO overlap 

A B CLung cancer Colorectal cancer Ovarian cancer

scHumanNet DEG

57 11116
[0.09]

0

10

20

30

scHumanNet DEG

46 46054
[0.10]

0

10

20

30

40

Gene Set

O
ve

rla
p 

w
ith

 c
el

lty
pe

 s
pe

ci
fic

 G
O

 g
en

es
 (

%
)

    (A)     (C)
    (B)

A B C

scHumanNet DEG

21 1458
[0.05]

0

5

10

15

20

25

Gene Set

O
ve

rla
p 

w
ith

 c
el

lty
pe

 s
pe

ci
fic

 G
O

 g
en

es
 (

%
)

    (A)     (C)
    (B)

A B C

scHumanNet DEG

41 49162
[0.10]

0

10

20

30

40

Gene Set
O

ve
rla

p 
w

ith
 c

el
lty

pe
 s

pe
ci

fic
 G

O
 g

en
es

 (
%

)

    (A)     (C)
    (B)

A B C

Gene Set

O
ve

rla
p 

w
ith

 c
el

lty
pe

 s
pe

ci
fic

 G
O

 g
en

es
 (

%
)

    (A)     (C)
    (B)

A B C

scHumanNet DEG

48 31947
[0.11]

0

10

20

30

40

Gene Set

O
ve

rla
p 

w
ith

 c
el

lty
pe

 s
pe

ci
fic

 G
O

 g
en

es
 (

%
)

    (A)     (C)
    (B)

A B C

    (A)     (C)
    (B)

scHumanNet DEG

17 11019
[0.13]

0

10

20

30

40

Gene Set

O
ve

rla
p 

w
ith

 c
el

lty
pe

 s
pe

ci
fic

 G
O

 g
en

es
 (

%
)

A B C

    (A)     (C)
    (B)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.496836doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.20.496836
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 

 

Supplemental Figure 5. Overlap of cell-type-specific genes predicted using gene expression and 
network centrality.  

A–C. Venn diagram of T- or B-cell-specific genes predicted by significant DEGs and hubs in CSNs by 
scHumanNet for lung cancer (A), colorectal cancer (B), and ovarian cancer (C). The numbers in square 
brackets correspond to Jaccard indices. Overlap of genes specific for T- and B-cell functions was assessed 
for network and DEG-specific gene sets (set A and set C) and the intersection of both (set B). 
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Supplemental Figure 6. Top 15 hub genes of the CSN generated by scHumanNet for cancers.  

A–C. The top 15 hub genes were calculated as percentile ranks and scaled for lung cancer (A), colorectal 
cancer (B), and ovarian cancer (C). Genes highlighted in red were not included within the top 50 DEGs by 
Seurat’s FindMarkers() function. 
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Supplemental Figure 7. Deconvolution of breast cancer signatures into cell types by scHumanNet.  

A. Functional connectivity of 24 GGI genes detected in the T cell network for breast cancer by 
scHumanNet compared with the connectivity of 24 randomly selected genes. The p-value was calculated 
non-parametrically. B. Positive correlation between the number of signature genes detected in T-cell 
networks by scHumanNet and the number of connectivities. Within-group connectivity for each cell-type-
specific network was normalized to network size (see Figure 4A). GGI97 showed high connectivity, 
despite only a moderate number of genes being detected (highlighted in red). C. Visualization of the 
entire breast cancer T-cell network with 2,611 nodes and 35,210 edges. GGI genes are highlighted in 
green. D. Percentile rank of first degree neighbors for all GGI97 genes. The top 15 genes were labeled. E. 
Correlation between TCGA-BRCA dataset with TNFRSF18 (GITR) and T-cell-related signatures. TCGA-
BRCA dataset was filtered for female samples and normalized using DESeq2. T-cell markers on the far 
right correspond to the mean expression of CD3D, CD3E, and CD3G. Pearson correlation coefficient (R) 
and Spearman correlation coefficient (ρ) were calculated. 
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Supplemental Figure 8. Comparison of genes prioritized by DEGs and CSN hub genes in neuronal 
cell types.  

For each cell type reported by Velmeshev et al. (2019), DEGs (Wilcoxon, FDR < 0.05, log fold change > 
0.25) and hub genes in the CSN generated by scHumanNets were compared. The numbers in parenthesis 
correspond to Jaccard indices. OPC, oligodendrocyte progenitor cell. 
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Supplemental Figure 9. Differential hubness analysis for CSNs between control and autism spectrum 
disorder (ASD) conditions using scHumanNet.  

A. Evaluation of differential hubness for each gene derived from network analysis and log fold change 
derived from scRNA-seq expression data. B. Expression levels of GRIN2B and MECP2 of ASD and healthy 
control samples are presented for each brain cell type. 
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Supplemental Figure 10. Analysis of differential hubness genes between ASD and healthy controls.  

A. Distribution of genes with > 0.7 centrality and > 0.7 differential hubness in ASD. B. Hallmark pathways 
associated with genes that have high centrality in ASD but low centrality in healthy controls based on five 
pathway databases (Reactome, BioPlanet, Elsevier Pathway Collection, GO Biological Process, GO 
Molecular Function). Pathways detected in inhibitory neurons (left) and excitatory neurons (right) are 
shown. The red vertical line corresponds to a q-value of 0.05 corrected with the Benjamini–Hochberg 
method. 
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Supplemental Table 1. List of genome grade index GGI97 signature genes  

CMC2 TTK NUSAP1 GTSE1 

ASPM MKI67 AURKB RRM2 

SLC7A5 KIF11 CENPE MCM10 

CEP55 CDCA8 NDC80 UBE2N 

SESN1 CCNA2 BUB1B MAD2L1 

CENPA BLM LMNB1 BUB1 

RACGAP1 BIRC5 CCNB1 CCNB2 

CCNE2 CDC2 CDC20 CDC25A 

KPNA2 MCM2 UBE2S MYBL2 

13CDNA73 BBS1 BM039 BRRN1 

C20orf24 CCT5 CDCA3 CDK2 

CDKN3 CENPF CX3CR1 CYBRD1 

DDX39 DKFZp762E1312 DLG7 DONSON 

ESPL1 EXO1 FEN1 FLJ10156 

FLJ20477 FLJ20641 FLJ21062 FLJ21827 

FLJ23554 FOXM1 GMPS H2AFZ 

HMGB3 HMMR HSMPP8 KIF20A 

KIF2C KIF4A KNSL7 LAMB2 

MARS MELK MLF1IP NUDT1 

OIP5 ORMDL2 PLK1 POLQ 

PRC1 RNASEH2A SHMT2 SIRT3 

SPAG5 STARD13 STK6 TIMELESS 

TPX2 TRIP13 TROAP TTC10 

ZWINT MCM4   
Green: detected in Breast cancer T-cell CSN 
Red: either deprecated, replaced or withdrawn from the NCBI database. 
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Supplemental Table 2. Number of nodes and edges in the CSNs used in this study. 

 # Nodes # Edges 

 T cells B cells 
Myeloid 

cells CAFs ECs T cells B cells 
Myeloid 

cells CAFs ECs 
scHumanNet 2,448 2,066 2,738 3,504 2,401 35,120 23,430 47,678 51,851 23,994 

bigSCale2 1,890 1,195 3,928 1,872 1,757 53,000 34,000 56,000 20,000 14,000 
SAVER 1,115 797 2,172 1,009 1,283 32,000 16,000 35,000 22,000 26,000 

GRNboost2 2,332 1,840 2,143 2,795 2,469 5,302 3,946 4,539 6,071 5,354 
MetaCell 2,739 1,819 4,133 1,915 1,103 96,000 24,000 44,000 19,000 8,000 
rawPCC 121 716 530 134 557 221 3,230 1366 167 1313 

CAFs, cancer-associated fibroblasts; ECs, endothelial cells.  
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Supplemental Table 3. Number of genes and edges in CSNs inferred by scHumanNet for four 

cancer types. 

Cancer type Cell type # Genes # Edges 

Colorectal 
cancer 

T cell 2,521  31,768  
B cell 2,421  26,997  

Myeloid 2,568  39,794  
Endothelial  2,821  28,197  
Fibroblast 3,873  56,487  

Enteric glia 1,951  13,164  
Epithelial 3,204  61,057  

Mast 1,539  9,585  
Tumor 4,423  89,859  

Breast 
cancer 

T cell 2,611  35,210  
B cell 2,242  23,430  

Myeloid 2,855  47,678  
Endothelial  2,550  23,994  
Fibroblast 3,665  51,851  

Dendritic cell 1,996  24,236  
Mast 1,522  8,882  

Tumor 4,426  79,920  

Lung 
cancer 

T cell 2,726  35,933  
B cell 2,554  30,365  

Myeloid 3,687  62,810  
Endothelial  2,420  23,740  
Fibroblast 2,669  33,822  
Alveolar 2,839  31,910  
Epithelial 2,482  23,997  

Mast 1,862  13,053  
Tumor 5,075  111,043  

Ovarian 
cancer 

T cell 1,957  24,824  
B cell 1,633  13,806  

Myeloid 2,521  39,375  
Endothelial  2,033  17,204  
Fibroblast 3,238  44,083  

Tumor 3,977  72,159  
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Supplemental Table 4. List of the 43 immune checkpoint molecule genes used in this study. 

ADORA2A BTLA CD200 CD200R1 

CD244 CD27 CD274 CD276 

CD28 CD40 CD40LG CD80 

CD86 CEACAM1 CTLA4 HAVCR1 

HAVCR2 ICOS ICOSLG IDO1 

IL2RB KIR3DL1 LAG3 LAIR1 

LGALS3 NECTIN2 PDCD1 PDCD1LG2 

PVR SLAMF1 TIGIT TNFRSF12A 

TNFRSF14 TNFRSF18 TNFRSF25 TNFRSF4 

TNFRSF9 TNFSF14 TNFSF18 TNFSF4 

TNFSF9 VSIR VTCN1  
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Supplemental Table 5. Number of genes and links in CSNs inferred by scHumanNet for 

autism spectrum disorder and healthy controls.  

Condition Cell type # Genes # Links 

Autism spectrum 
disorder 

Astrocyte 2,505 26,610 
Excitatory 4,488 68,448 
Inhibitory 2,597 23,992 
Microglia 2,387 32,270 

Endothelial 2,394 35,789 
OPC 1,784 14,017 

Oligodendrocyte 1,860 11,629 
Others 2,532 27,807 

Control 

Astrocyte 2,549 27,810 
Excitatory 5,731 117,415 
Inhibitory 3,164 36,348 
Microglia 2,375 31,190 

Endothelial 2,626 40,769 
OPC 2,154 18,613 

Oligodendrocyte 2,203 16,660 
Others 3,234 50,535 

OPC, oligodendrocyte progenitor cell. 
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