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Abstract

A major challenge in single-cell biology is identifying cell-type-specific gene functions, which
may substantially improve precision medicine. Differential expression analysis of genes is a
popular, yet insufficient approach, and complementary methods that associate function with cell

type are required. Here, we describe scHumanNet (https://github.com/netbiolab/scHumanNet), a

single-cell network analysis platform for resolving cellular heterogeneity across gene functions in
humans. Based on cell-type-specific networks (CSNs) constructed under the guidance of the
HumanNet reference interactome, scHumanNet displayed higher functional relevance to the
cellular context than CSNs built by other methods on single-cell transcriptome data. Cellular
deconvolution of gene signatures based on network compactness across cell types revealed breast
cancer prognostic markers associated with T cells. scHumanNet could also prioritize genes
associated with particular cell types using CSN centrality and identified the differential hubness
of CSNs between disease and healthy conditions. We demonstrated the usefulness of scHumanNet
by uncovering T-cell-specific functional effects of GITR, a prognostic gene for breast cancer, and
functional defects in autism spectrum disorder genes specific for inhibitory neurons. These results
suggest that scHumanNet will advance our understanding of cell-type specificity across human

disease genes.
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Introduction

Genes do not act in isolation, because the proteins they encode interact with each other and with
other molecules. From the perspective of network biology, molecular interactions determine the
function of each cell type (1). However, cell-type-specific molecular interactions are difficult to
identify and interpret due to context dependency. The advent of single-cell RNA sequencing
(scRNA-seq) has enabled the characterization of distinct cell types from complex tissues, as well

as the determination of their interactions within mixed-cell populations (2).

A major difficulty in cell-type-specific network (CSN) inference from single-cell transcriptome
data is the lack of a gold standard for cell-type-specific gene interactions. Accordingly, researchers
often use simulated synthetic networks (3). An evaluation using reference protein-protein
interactions showed that most methods for network inference, including those developed for bulk
RNA-seq data and scRNA-seq, were not capable of reconstructing accurate networks of gene
interactions from scRNA-seq data (4). This poor performance is likely due to elevated sparsity (5)
and spurious technical variation (6) among scRNA-seq data. To overcome this problem, an
accurate network modeling method that uses scRNA-seq data to study cell-type-specific gene

functions should be developed.

Two approaches to network construction using single-cell transcriptome data exist: reference-free
and reference-guided inference. The former, which is more popular, enables the discovery of gene
interactions directly from single-cell transcriptome data, but it suffers from a generally high false-
positive rate (4,7). In contrast, the reference-guided approach builds a network by filtering the
reference interactome for a given transcriptome of context-associated single cells. Filtered

interactions are highly likely to exist in a given cell type.

Here, we describe scHumanNet, a computational platform for the reference-guided construction
of CSNs using single-cell transcriptome data. As the reference interactome, we used HumanNet
(8), one of the best-performing human gene networks for disease gene predictions. We utilized a
modified version of the SCINET algorithm (9). Along with CSN construction, scHumanNet
provides several analytical tools to aid the study of cell-type-specific effects of disease genes.
Through network centrality analysis, we found that scHumanNet outperformed other single-cell

network inference methods in retrieving cell-type-specific genes, suggesting it was suitable for the


https://doi.org/10.1101/2022.06.20.496836
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.20.496836; this version posted June 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

study of gene cell-type specificity. We demonstrated that genes relevant to the same cell type
showed higher within-group connectivity (i.e., compactness) within the network. Utilizing
network compactness across CSNs, we deconvolved breast cancer prognostic signatures into cell
types and identified those associated with immune cells rather than cancer cells. We also found
that the prognostic value of a known signature gene, GITR, was linked to T cells owing to its T-
cell-specific centrality. Furthermore, we developed a statistical framework for differential
centrality analysis that revealed cell-type-specific functional defects in disease genes. Applying
this analytical framework to brain scRNA-seq data from autism studies, we found elevated

dysregulation of the interaction networks in inhibitory and excitatory neurons of disease condition.

Materials and Methods

Single-cell transcriptome data for network construction

To construct CSNs, we used scRNA-seq data generated from biopsy samples of breast, lung,
colorectal, and ovarian cancers with cell type annotations obtained from Qian ef al. (10). For pan-
cancer comparative network analysis, we focused on five major cell types in the tumor
microenvironment: T cells, B cells, myeloid cells, cancer-associated fibroblasts (CAFs), and
endothelial cells (ECs). For the study of autism spectrum disorder (ASD), we constructed CSNs
for cell types found in the brain using scRNA-seq data obtained from Velmeshev et al. (11). The
pre-annotated cell types were merged with more granular representations to include ECs,
oligodendrocytes, astrocytes (AST-FB and AST-PP), microglia, inhibitory cells (IN-PV, IN-SST,
IN-SV2C, and IN-VIP), excitatory cells (L2/3, L4, L5/6, and L5/6-CC), and others (Neu-mat, Neu-
NRGN-I, and Neu-NRGN-II).

Reference-free CSN construction with single-cell transcriptome data

For network construction, we only considered protein-coding genes defined by the consensus
coding sequence (CCDS) database. We built four variants of the co-expression networks, each of
them based on each scRNA-seq dataset. In the first co-expression network, we calculated Pearson
correlation coefficients (PCC) between gene pairs using a count matrix of single-cell transcriptome

data, which was log-normalized by the NormalizeData() function of the Seurat package. Only links
4
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with PCC > 0.8 were retained for the rawPCC network. The second type of co-expression network
was based on the de-noised count matrix from MetaCell (12). To calculate the PCC between gene
pairs, we used metacells generated with unified threshold and parameters. We discarded cells with
fewer than 500 UMIs and used the parameters K = 30 and alpha = 2 for
mcell mc_from_coclust _balanced(). The third type of co-expression network was based on a
count matrix with imputation of dropouts by SAVER (13) and exclusion of genes with >99% zero
values. The last type of co-expression network was based on data transformation using bigSCale2
(14). The recursive method was used for the clustering parameter of compute.network(), and the

PCC was calculated using the transformed Z-score matrix.

The accuracy of co-expression networks based on metacells, SAVER, and bigSCale2 was
evaluated using a Bayesian statistical framework and log likelihood score (LLS) (15). In this
scheme, gold standard gene pairs were used to evaluate the likelihood of data-driven gene pairs
such as co-expression links. In brief, for the prioritized gene pairs inferred from the given data (D),
we calculated LLS for every 1,000 links sorted by the data intrinsic score using the following

equation:

P(L|D)/P(=L|D
us= (“men )
where P(L|D) and P(—L|D) account for the probability of positive and negative gold standard gene
pairs in a given dataset, respectively, and P(L) and P(—L) represent the probability of gold standard
positive and negative gene pairs, respectively. We used a set of 260,962 gold standard positive
gene pairs obtained from HumanNet (8). A set of gold standard negative gene pairs was inferred

as being composed of all links not included among gold standard positives.

For the construction of CSNs using GRNboost2 (16), 2,416 transcription factors (TFs) gathered
from previous publications (17,18) were used as input, and the top 0.1% of links were retained for

the final networks.

Reference-guided CSN construction with single-cell transcriptome data

scHumanNet was developed by modifying the SCINET framework (9) which utilizes imputation,

transformation, and normalization of scRNA-seq data. Single-cell gene expression data were pre-
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processed using the ACTIONet package (19). By identifying the archetypes within the sScRNA-
seq dataset, ACTIONet learns the dominant transcriptional patterns representative of cell types
and states. This approach produces a transformed gene activity score matrix, which is the basis for
inferring gene-pair interactions. For each gene pair from the gene score activity matrix, a minimum
activity score threshold is applied to assess the strength of the interactions in a group of cells. If
each gene in the examined interaction passes the threshold determined by the transformed cell type
activity score and a link exists in the reference interactome, it is deemed cell-type-specific and
retained in the resultant CSN. Although the SCINET package provides edge weights based on the
aggregated p-value of a likelihood score, we used the LLS from our reference interactome,
HumanNet, as the edge weight. We measured the network centrality of each gene based on the
sum of LLSs to all its neighbors. Because the human interactome is biased towards the ribosome

complex (20), we excluded ribosomal proteins from the final candidate hub genes.

Significance test for network hubness

The statistical significance of hub genes was calculated using the FindA/I[Hub() function in the
scHumanNet package. For each network, random networks were generated by swapping edges
with equal probability, and the centrality scores of all genes were collected. This process was
iterated until at least 10,000 centrality scores were gathered, which were then used to generate a
null distribution. By default, Benjamini—Hochberg correction was applied for each p-value, and

hub genes with false discovery rate (FDR) < 0.05 were selected for each CSN.

Predicting cell-type-specific genes for B and T cells

To test the cell-type relevance of genes, we compiled T- and B-cell-associated genes from the
Gene Ontology (GO) database. We used reliable annotations by considering only evidence based
on traceable author statement (TAS), inferred from direct assay (IDA), inferred from mutant
phenotype (IMP), or inferred from genetic interaction (IGI). By selecting GO term descriptions
that contained either ‘T cell’ or ‘B cell’, we obtained 289 genes associated with T cells and 89 with
B cells. We conducted a similar compilation for other cell types but could not obtain enough

associated genes for statistical testing. We identified differentially expressed genes (DEGs) using
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the function FindAlIMarkers() from the Seurat v3.2.3 package with default parameters ‘wilcox’
for test.use, ‘0.25’ for logfc.threshold, and ‘0.1’ for min.pct. We selected protein-coding DEGs
with positive log-fold changes for B or T cells (¢g-value < 0.05) as cell-type-specific genes. Finally,
we measured the weighted degree centrality of genes using the sum of edge scores for other
network construction methods: PCC (rawPCC, MetaCell, SAVER, and bigSCale2), importance
score (GRNboost2), and weighted score (SCINET). Only significant DEGs and hub genes were

used to compare cell-type relevance.

Predicting cell-type-specific TFs

TFs specific for B and T cells were obtained from the TF-Marker database (21) and subsequently
filtered using the TRRUST database (22), resulting in 42 T-cell-associated TFs and 14 B-cell-
associated TFs. The top 100 hub genes identified by scHumanNet were extracted from each cell
type and filtered using the 2,416 TFs collated from previous publications (17,18). The top 100
DEGs based on log-fold change values were selected and filtered using the same TF gene list.

Hypergeometric tests were performed with all genes in HumanNet (18,593) as the gene space.

Compactness analysis of gene sets to identify relevant cell types

We implemented the Connectivity() function in scHumanNet to evaluate network compactness of
a group of genes. Briefly, 10,000 random gene sets with the same number of genes as the test gene
set were selected to generate a null model. To preserve the network topological properties for the
random gene sets, we used rejection sampling, whereby we selected a gene with +20% degree of
connectivity for each real gene when permuting. Significance was measured using the rank of
observed within-group connectivity in the null distribution. Genes that exert their function in a
specific cell type tend to be connected to each other in a network specific to the cell type. The
degree of compactness was measured using the significance of within-group connectivity. We
performed compactness analysis for a set of immune checkpoint molecule (ICM) genes (23) and
33 breast cancer prognostic signature gene sets collected from Huang et al. (24). For the GGI97
signature, only 76 out of 97 genes were evaluated in this study because the others had been either

discontinued or deprecated in the NCBI gene database (Supplemental Table 1). Their relevance
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to the cell cycle was assessed using manual curation and accepted databases. Genes that were
included in ‘Cell Cycle’ of KEGG 2021, ‘G2-M Checkpoint’ of MSigDB 2020, and ‘Cell Cycle
Homo sapiens’ of Reactome DB 2016 were considered cell cycle-related. Other genes were
curated manually, and those that included ‘DNA replication’ and ‘mitotic spindle’ were also
included. Of the 76 signature genes, 24 were detected in the breast cancer T-cell network, and their

functional connectivity was assessed through Connectivity() with default parameters.

Survival analysis on The Cancer Genome Atlas (TCGA) breast cancer samples

Only direct neighbors of the GITR gene in the T-cell network for breast cancer were considered
connected to GGI97 signatures. TCGA data were downloaded through the GDC portal using the
TCGAbiolinks R package. HTseq counts were preprocessed using 7CGAanlayze Preprocessing(),
with ‘0.6’ as the cor.cut parameter. The data were subsequently normalized using
TCGAanalyze Normalization(). The preprocessed count data were normalized with sample-
specific size factors calculated using DESeq2. To identify genes indicative of good patient
outcomes, we considered 23,192 genes from TCGA-derived expression matrix, of which 1,078
BRCA samples were separated based on the top 30th and bottom 30th percentile of test gene
expression. P-values from the Kaplan—Meier log test were corrected using the Benjamini—
Hochberg method, yielding 236 genes with FDR < 0.05, which were regarded as predictive of
good prognosis. For survival analysis, samples were separated into high and low groups based on
median GITR expression. The correlation between GITR expression for each bulk sample and the
composition of T cells was calculated using the geometric mean of CD3D, CD3E, and CD3G. The
survival group was divided into high and low groups based on the median of either single gene
expression or geometric mean expression of the gene set. Network visualization of the breast

cancer T-cell scHumanNet was performed using the igraph R package.

Differential centrality analysis for ASD genes

For each CSN, the degree of centrality was assessed based on the sum of edge weights (LLS).
Because network size affects the degree of centrality score, we used percentile ranks, whereby the

most central gene had a value of 1 and the least central one had a value of 0. We assigned a value
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of 0 to genes that were not included in at least one of the networks. For each gene, we calculated
the differential percentile rank of centrality (diffPR) by subtracting the percentile rank in the

control network from the percentile rank in the disease network.

PR, x = {percentile rank by degree centrality in N,(x € N) 0 (x & N)

dif fPR, = PRx,ASD - PRx,Control

where x represents a gene and N represents a disease or control network for a given cell type.

The percentile rank was calculated using the dplyr package percent rank(). The diffPR for each

gene ranged from -1 to 1, with positive values indicating higher connectivity in the disease network.

For a significance test of differential centrality, we used the FindDiffHub() and TopDiffHub()
functions in scHumanNet. Briefly, FindDiffHub() finds a distribution of null diffPR values for
every gene by random permutation of the control network to measure the significance of the
observed differential centrality. Random sampling of diffPR values continues until one million
random values accumulate. Benjamini—Hochberg correction was applied to calculate the FDR. For
TopDiffHub(), the diffPR of the genes was assessed and filtered for non-zero values. By default,
genes within the top 5% of diffPR values were selected as differential hub genes. To define lost
and gained hub genes in the disease network, 0.7 was set as the threshold. Accordingly, control
hub genes with a percentile rank > 0.7 were assessed for their diffPR distribution. We observed a
clear bimodal pattern dividing the genes around a specific diffPR value. Genes with diffPR of the
same threshold or above (absolute value) were considered as hub genes and were characterized by
large changes between healthy controls and disease CSNs. Functional enrichment analysis was
performed using the enrichR package (25) with pathway terms derived from five pathway
databases: Elsevier Pathway Collection (as of March 2022), BioPlanet v.1.0, Reactome 2016, GO
Biological Process (GOBP) (as of March 2022), and GO Molecular Function (GOMF) (as of
March 2022).

Results

scHumanNet effectively retrieves genes specific for each intratumoral cell type
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To evaluate whether CSNs obtained by scHumanNet (Figure 1A) were more suitable than those
generated by other inference methods for the study of cell-type-specific gene functions, we
compared various reference-free and reference-guided approaches. Using published breast cancer
scRNA-seq data (10), we constructed networks for T cells, B cells, myeloid cells, ECs, CAFs, and
cancer cells using five reference-free methods, including rawPCC, MetaCell (12), SAVER (13),
GRNboost2 (16), and bigSCale2 (14), as well as one reference-guided method, SCINET (9) based
on PCNet (26). Network size across cell types and network inference methods varied widely

(Supplemental Table 2).

The functional importance of network nodes is measured by their centrality. Cell-type-specific
genes presumably play important roles in the corresponding cell types. Therefore, we expected
that genes with high centrality values in each CSN were enriched for cell-type-specific genes.
Using weighted degree centrality based on the edge scores of each network, we compared the top
100 genes from each network. In this way, we could disregard differences in network size.
Interestingly, no overlap was observed between any of the six network construction methods when
assessing the top 100 hub genes for each cell type (Figure 1B, Supplemental Figure 1). To
determine if the hub genes were prioritized for cell-type-specific functions, we assessed the area
under the receiver operating characteristic curve (AUROC) score for each cell-type-specific entry.
Using the Azimuth celltype database (27), which contains signature marker genes extracted from
large scRNA-seq datasets, we observed a higher retrieval rate of cell-type signature genes by
centrality in reference-guided CSNs than in reference-free CSNs (Figure 1C). Similarly, the
association between the top 100 hub genes and each of the Azimuth cell-type signature genes
tended to be stronger in CSNs generated via reference-guided methods than in those that relied on
reference-free methods (Supplemental Figure 2). Among reference-guided CSNs, scHumanNet
prioritized cell-type-specific genes better than SCINET, especially among B and T cells. These
results suggest that scHumanNet is superior to other CSN construction methods in retrieving cell-

type-specific functions of human genes.

scHumanNet reveals commonality and differences among CSNs across cancer types

The function of tumor-infiltrating cells in cancer is often investigated using cell-type-specific gene

expression. Here, we show that network biology can complement expression-based functional
10
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studies. To this end, we used scHumanNet to construct CSNs for T cells, B cells, myeloid cells,
ECs, CAFs, and cancer cells from breast, colorectal, lung, and ovarian cancers. Next, we examined
whether these CSNs could provide functional insights linked to cell type or disease status. Statistics
for CSNs relative to each cancer type are summarized in Supplemental Table 3. Network
comparisons across different types of non-cancerous cells revealed that only a minor portion of
nodes and edges was shared across cell types in all cancers (Figure 2A, B); whereas a large portion
was shared across cancer types (Figure 2C, D; Supplemental Figures 3, 4). These results indicate
that CSNs generated by scHumanNet are shaped primarily by the cellular context rather than the
disease or tissue context. Notably, the ratio of unique edges to shared edges across cancer was
larger than that of unique nodes to shared nodes in all cell types, indicating that networks for the

same cell type are rewired in different tissue and disease contexts.

scHumanNet centrality and compactness predict cell-type specificity of gene functions

Rewiring gene interactions in different cell types might change the network centrality of genes
with differential functional importance across cellular contexts. Given that hub genes with a high
degree of centrality interact with many other genes in a given cellular context, we hypothesized
that they were more likely to play important roles in maintaining functions specific to the given
cell type. Therefore, we investigated whether scHumanNet hub genes for each type of tumor-
infiltrating cell could reflect cell context-dependent functional importance across cancer types. To
evaluate cell-type specificity, we utilized the GO database to collate genes reliably associated with
either B or T cells (Methods). Next, we assessed the power of scHumanNet to predict genes
specific for each cell type based on overlap with genes known to function in B or T cells. Notably,
the network-based and expression-based candidate genes specific for each cell type showed low
concordance (0.05 to 0.13 Jaccard similarity index), indicating complementarity of the two
predictions (Figure 3A, Supplemental Figure 5). Moreover, the intersection between the two
predictions showed strong overlap with known cell-type-specific genes. Interestingly, for the most
part, network-based predictions showed a similar or higher overlap with known cell-type-specific
genes than expression-based predictions, further confirming that scHumanNet hub genes could

effectively identify cell-type-specific genes.
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We anticipated that ICMs would be enriched among genes specific for tumor-infiltrating cells.
Hence, we compiled 43 previously identified ICMs (Supplemental Table 4) (23) and compared
their overlap with scHumanNet hubs and DEGs across cell types. For all cell types, we observed
higher retrieval of ICMs by scHumanNet hub genes than by DEGs (Figure 3B). Notably, in all
cancer types and cell types, the ICMs retrieved by DEGs were subsets of those retrieved by
scHumanNet (Supplemental Data 1).

We prioritized genes using weighted degree of centrality in the CSNs constructed by scHumanNet
and found that it was highly predictive of cell-type-specific hallmark genes (Supplemental Data
2). Based on this observation, we chose to more closely investigate TFs, which are key
determinants for the differentiation and maintenance of particular cell identities. Cell-type-specific
differential expression analysis is often insufficient to detect TFs for a given cell type because of
a generally low basal level of expression. Instead, a network-based approach has been widely used
to infer TF-target interactions (28,29). We hypothesized that network centrality in CSNs could
effectively prioritize TFs specific for a certain cell type. To evaluate the prediction of TFs specific
for cell types by DEGs and scHumanNet centrality, we retrieved cell-type-specific TFs from TF-
Marker (21), a manually curated cell-type-specific TF database. Because of the limited number of
entries, we could analyze only TFs specific for B and T cells. By comparing the enrichment of
known cell-type-specific TFs among the top 100 prioritized genes by scHumanNet centrality with
those identified by differential expression, we found that the network-based approach was
consistently better at prioritizing TFs in both B and T cells across cancer types (Methods,

Supplemental Data 3).

We also found that scHumanNet centrality could predict cell-type-specific disease-associated
genes. For example, the top 15 hub genes in T cells from all types of cancers included those
involved in cell-mediated immunity (GZMB, PRF 1, and IFNG) and immune checkpoint signaling
pathways (TIGIT and CTLA4) (Figure 3C, Supplemental Figure 6, Supplemental Data 2).
Notably, four of the five hallmark genes for T-cell immunity (PFRI, IFNG, TIGIT, and CTLA4)
were not found among the top 50 DEGs (Supplemental Data 4). In B cells, TLR7 and TLR9 were
found to be pan-cancer central genes but were not detected as DEGs. In myeloid cells, the top 50
pan-cancer central genes included seven genes involved in myeloid cell differentiation (CD4,

FCERIG, IRF8, TYROBP, TLR2, TREM?2, and ITGAM), but only two of them (FCERIG and
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TYROBP) were found among the top 50 DEGs. In CAFs from ovarian cancer, but not from other
cancer types, 11 aldehyde dehydrogenase genes (ALDHILI, ALDHIL2, ALDH3A2, ALDHIA3,
ALDHIAI, ALDHIA2, ALDH2, ALDHIBI, ALDH4Al, ALDH9A1, and ALDHG6AI) were
prioritized in the top 100 hub genes by scHumanNet. Aldehyde dehydrogenase has been associated
with poor survival as it promotes tumor growth in ovarian cancer (30). Notably, none of the 11
aldehyde dehydrogenase genes were among the top 100 DEGs in CAFs from ovarian cancer. The
NOTCH] gene is expressed in ECs, where it promotes metastasis (31). We found NOTCHI among
the top 20 hub genes in endothelial CSNs for all four cancer types (7th for breast, 13th for
colorectal, 11th for lung, and 19th for ovarian cancers), but not among the top 200 DEGs in all
cancer types. These results suggest that network centrality using scHumanNet can be more
effective than differential expression analysis in identifying genes that play important roles in a
given cellular context. These results also suggest that FindA//Hubs() in scHumanNet can identify

hub genes with cell-type-specific functions in both healthy and disease contexts.

Rewiring molecular networks across different cell types may result in differential within-group
connectivity (or compactness), which can also be used to estimate functional relevance. As a proof-
of-concept, we utilized ICM genes and genes specific to B and T cells. The Connectivity() function
in scHumanNet tests the significance of within-group connectivity against a nonparametric null
model using restricted random sampling that does not require the identification of optimal
parameters (Methods). As expected, ICM genes and those specific for B and T cells were
associated with T-, B-, and T-cell types, respectively, in all cancer types (Figure 3D). This
suggests that the network-based approach provides a complementary and intuitive method for

assigning gene sets to functionally relevant cell types based on compactness.

Cell type deconvolution of cancer prognostic signatures using scHumanNet

ICMs showed the highest compactness in the T-cell network, which is consistent with their cellular
role. We hypothesized that we might deconvolve disease-associated gene signatures obtained from
bulk tissues into individual cell types using their network compactness across CSNs by
scHumanNet. For example, cancer prognostic signatures are presumably associated with cancer
cells because they are typically identified in tumor tissues. However, tumor tissues often contain

also non-cancerous cells, such as stromal and immune cells, and some prognostic genes may exert
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their functions in non-cancerous cells of the tumor microenvironment. To test this hypothesis, we
examined 33 prognostic signatures reported in breast cancer (24). We measured the normalized
within-group-connectivity of each prognostic signature across the CSNs using scHumanNet
(Figure 4A). As expected, we observed strong network compactness for many prognostic
signatures from non-cancerous cells, particularly from T cells for the ‘T-cell metagene signature’
(Tcell) (32), ‘97-gene genomic grade index’ (GGI97) (33), ‘127-gene classifier’ (Robust) (34),
and ‘64-gene expression signature’ (Pawitan) (35). These results indicate that T-cell function may

in part account for the clinical outcomes of breast cancer.

Next, we focused on the GGI97 signature (Supplemental Figure 7A), which has been extensively
studied and clinically validated to have an inverse correlation with survival and a positive
association with chemotherapy response (36). GGI97 genes were mostly associated with the cell
cycle and G2/M checkpoint pathways (47/76 genes) (Supplemental Data 5). Additionally, the 24
GGI97 genes detected in the T-cell network were closely connected to each other (p = 0.0001)
(Supplemental Figure 7B-C) and significantly enriched in cell cycle-related functions (p =0.0075
by hypergeometric test) (Supplemental Table 1), suggesting a role for T cell cycle control in
antitumor activity. We also found that many GGI97 genes were connected to genes with a high
degree of centrality and important for T cell antitumor activity (GZMB, PDCDI, KLRCI, TNF,
and /COS) (Supplemental Figure 7D). In particular, genes directly connected to GGI97 signature
genes were enriched in the T cell receptor signaling pathway (Figure 4B), indicating that a high

GGI97 score primed the immune system for a better response to chemotherapy (37).

T cell proliferation is important in the immunotherapy response. Out of 24 GGI97 signature genes
in the T-cell network, 18 were direct neighbors of Ki67 (Figure 4C), a known marker of cell
proliferation. The GGI97 signature is associated with poor survival, which was confirmed by the
median expression of GGI97 genes in TCGA-BRCA samples (Figure 4D). To understand the role
of GGI97 genes in T cells, we examined the top 10 hub genes directly connected to GGI97 genes
in the T-cell network. Notably, GITR (TNSFR18), a hub gene directly connected to Ki67, was
prognostic of positive clinical outcomes (Figure 4E, Methods). Importantly, the expression of
GITR did not correlate with the abundance of T cells (Methods), ensuring that we observed the
cellular effect of GITR regardless of T-cell composition in each tumor sample (Supplemental

Figure 7E). GITR has a co-stimulatory role (38) which is essential for CD8" T cells to mount an
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antitumor immune response. When T cells bind to the ligand GITRL, GITR promotes the
proliferation of effector T cells and dampens the suppressive activity of regulatory T cells (39).
The GGI97 signature is predictive of chemotherapy responses. Chemotherapy can promote the
cancer-immunity cycle by releasing neoantigens from dead cancer cells. Thus, the beneficial effect
of GITR can be explained in terms of antitumor immunity. Moreover, we believe that the
prognostic effect of the GGI97 signature in chemotherapy is tied to T-cell function via
GITR. Consistent with our results, GITRL combined with anti-PD1 immunotherapy was shown to
be effective against breast cancer, resulting in enhanced T-cell activation, proliferation, and
memory differentiation (40). Taken together, our findings demonstrate that scHumanNet can
deconvolve cancer prognostic signatures into cell types and identify key targets for therapeutic

approaches in specific cell types.

Identification of disease-associated cell types using differential hubness analysis in

scHumanNet

Another application of scHumanNet is the identification of differential hubs, that is, genes whose
centrality changes significantly between two biological contexts, such as disease and healthy
conditions. The FindDiffHub() function in scHumanNet assigns ranks to the genes based on the
degree of centrality in each context-specific network, and then identifies those genes whose
percentile rank has changed significantly compared to a null model. In addition, the TopDiffHub()
function allows users to extract the top n differentially ranked genes (Methods). Using differential
hubness analysis with scHumanNet, we investigated ASD, a neurodevelopmental disorder with
strong heritability (41). ASD is characterized by difficult social interaction and communication,
repetitive behavior, and/or sensory susceptibility, and is likely to have many different genetic and
environmental causes. A large cohort study by the SFARI consortium identified 1,231 genes (42).
However, the mechanisms of action of most genes remain poorly understood. We hypothesized
that, in the disease condition, perturbation of SFARI genes could result in cell-type-specific loss
of wild-type molecular interactions. Thus, a decrease in network centrality could point to disease-
associated cell types. Using a published dataset containing 104,559 cells from 15 donors diagnosed
with ASD and 16 matching controls (11), we constructed seven CSNs for both healthy and disease
conditions (Figure SA, Supplemental Table 5, Methods). We found that the scHumanNet hub
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genes for each cell type were relevant to cell-type-specific functions (Figure SB). For example,
the NMDA receptor subunit GRIN2B is a hub gene in both excitatory and inhibitory neurons, and
the TF SOX9 is a hub gene in astrocytes (43). We also observed CD163, FCERIG, and CD14 as
hub genes in microglia (44). Interestingly, unlike the immune cell dataset, whereby a few hub
genes were also detected as marker genes via DEGs, most hub genes of the brain scHumanNets
were not prioritized via differential expression analysis (Supplemental Data 6) and, indeed,

showed minimal overlap with cell-type-specific DEGs (Supplemental Figure 8).

Our analysis also revealed that many genes differed significantly in terms of network centrality
between the control and disease conditions, despite modest fold changes (Supplemental Figure
9A). By assessing genes with the highest differences in centrality rank via FindDiffHub() with
default parameters (Methods), we found that differential hubs from excitatory and inhibitory
neurons were significantly enriched with SFARI genes, which contrasted with DEGs being found
mostly in ECs and astrocytes (Supplemental Data 7, 8). In particular, the highest overlap between
differential hub genes and SFARI genes was observed in excitatory neurons (Supplemental Data
8), although several key ASD genes, including GRIN2B and MECP2 (45,46), were found as
differential hubs in inhibitory neurons. Even though GRIN2B and MECP?2 are expressed in both
excitatory and inhibitory neurons, they were found to be differential hubs only in the latter
(Supplemental Figure 9B), implying that they may be functionally more important in inhibitory
neurons. This finding has been experimentally validated in a mouse model (47) and suggested by
a human study (48), in which inhibitory neurons were enriched for overexpressed SFARI genes.
Similarly, for CACNA 1A, we found that although it was not differentially expressed in inhibitory
neurons (Figure 5C), there was a significant difference in terms of network centrality (Figure SD),
and many of the functional interactions were lost in the ASD inhibitory neuron network. The
interacting genes were mostly associated with ion channels (Figure SE), suggesting that the
function of neural regulation, especially in inhibitory neurons, might be impaired byCACNA 1A
loss-of-function mutations (49). These results demonstrated that differential hubness analysis

using scHumanNet could reveal disease-associated cell types.

Finally, we investigated whether genes with high centrality in healthy conditions but low centrality
in disease conditions might provide insights regarding cell-type-specific disease mechanisms

(Methods). We found that excitatory neurons, inhibitory neurons, and oligodendrocyte progenitor

16


https://doi.org/10.1101/2022.06.20.496836
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.20.496836; this version posted June 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

cells had the highest frequency of loss-of-function genes compared to other cell types (Figure 5F).
Notably, genes with high centrality in disease but low centrality in healthy controls were less
frequent across all cell types (Supplemental Figure 10A). Gene set enrichment analysis of hubs
lost in neurons revealed that their function was primarily associated with neuronal activity (Figure
5G). For inhibitory neurons, the hub genes lost under healthy conditions were enriched in
‘increased anxiety-related response’ (MGI Phenotype), ‘anterograde trans-synaptic signaling’
(GOBP), and ‘ligand-gated cation channel activity’ (GOMF). In excitatory neurons, the genes that
lost centrality were enriched in ‘chemical synaptic transmission’ (GOBP), ‘dopamine receptors
signaling’ (Elsevier Pathway Collection), and ‘protein secretion’ (MSigDB Hallmark). These
results imply that, in disease conditions, these hub genes lost most of their interactions with other
genes, resulting in the dysregulation of neuronal function in ASD. In contrast, genes that became
more central in ASD networks were not enriched in pathways related to neuronal function

(Supplemental Figure 10B).

Discussion

The main goal of single-cell biology is resolving the cellular heterogeneity of human diseases.
Single-cell gene expression analysis may enable the identification of disease-associated cell types
based on the differential expression of disease-associated genes in specific cell types. In the present
study, we described scHumanNet, a computational platform for network-based analysis of cell-
type specificity, which can complement expression-based approaches. The core component of this
platform is the reconstruction of CSNs, gene network specific to distinct cell types. Single-cell
transcriptome data have been utilized to construct CSNs with either reference-guided or reference-
free network inference methods. The evaluation of inferred CSNs is not a trivial task because of
the lack of high-quality and experimentally validated gene-gene interactions for particular cell
types. In fact, because of the high false positive rate of inferred gene-gene interactions from single-
cell transcriptome data, functional hypotheses from these networks are generally based on a group
of edges rather than individual ones. Here, we validated the quality of CSNs by the retrieval of
cell-type-specific genes among hub genes and network compactness of functional genes in the
corresponding cell types. In the present study, we compared various approaches for CSN inference

from single-cell transcriptome data and found that reference-guided methods outperformed
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reference-free methods. These results can be explained by the noisy and sparse nature of single-
cell transcriptome data, which generate many false-positive gene-gene interactions (4).
Furthermore, among the two reference-guided CSN analysis platforms, scHumanNet was superior
to SCINET. Although they utilized the same network inference algorithm, they employed different
reference interactomes. Previously, we demonstrated that HumanNet, the reference interactome of
scHumanNet, performed significantly better than other human gene networks, including the
reference interactome of SCINET, in predicting disease genes (8). This indicates that the quality
of the reference interactome is key to the performance of reference-guided CSNs, and future

improvement of the former will further ameliorate CSNss.

In this study, we have demonstrated two applications of CSNs in the investigation of cell-type
specificity of human disease genes. First, the effects of disease genes can be deconvolved into cell
types based on the network compactness of a group of disease genes across CSNs. For example,
cell-type deconvolution of breast cancer prognostic signatures showed high compactness not only
in cancer cells but also in other tumor-infiltrating cells such as immune cells. The importance of T
cells in antitumor activity may account for the large functional bias of prognostic genes towards T
cells. Indeed, one of the identified hub genes was GITR, a T-cell-specific regulator that plays an
important role in the survival of patients with breast cancer. We believe that our network-based
approach for associating gene sets with cell types can complement expression-based methods, such
as GSVA (50) and scfind (51). In the future, we may expand the scHumanNet platform to
systematic cell type deconvolution of disease gene sets for all cell types of each tissue and thus
generate CSNs for human cell atlas data. Second, we utilized CSNs to identify disease-associated
cell types based on differential hubness between disease and healthy conditions across cell types.
Therefore, the scHumanNet platform allows the analysis of differential hub genes. Using the
scHumanNet pipeline, we identified inhibitory neurons as a major cell type associated with ASD.
These results suggest that a network-based approach can complement an expression-based

approach to identify disease-associated cell types using single-cell transcriptome data.

There are some limitations to scHumanNet. Although our results suggest that the reference-guided
method yields more biologically relevant CSNs, it comes at the expense of being unable to discover
novel interactions specific for the cell type. In addition, cell type deconvolution may be unreliable

with a small group of genes (e.g., a set of three genes) because a statistical test for network

18


https://doi.org/10.1101/2022.06.20.496836
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.20.496836; this version posted June 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

compactness requires a relatively large number of genes to ensure a sufficient degree of confidence.

Further studies are required to address these shortcomings.

In conclusion, we present scHumanNet, a computational platform for single-cell network biology,
capable of resolving the cellular heterogeneity of disease-related gene functions. We demonstrate
that scHumanNet can deconvolve the functional effect of disease gene sets into cell types and
identify disease-associated cell types via topological analysis of CSNs. These results suggest that
scHumanNet will boost our understanding of cell-type specificity of human disease genes and thus

advance precision medicine.

Code availability

The code for scHumanNet and the codes used to generate the figures in this manuscript can be

downloaded from https://github.com/netbiolab/scHumanNet.
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Figure 1. Comparison of cell-type-specific networks generated by scHumanNet and other methods.
A. Overview of the scHumanNet platform and downstream analysis scheme used in this study B. Upset
plots of the top 100 hub genes in breast cancer networks specific for T cells, B cells, and myeloid cells
constructed using seven different network inference methods. C. Area under the receiver operating
characteristic curve (AUROC) used to assess retrieval of cell-type-specific genes derived from the Azimuth
cell type database by centrality in T, B, and myeloid cell-specific networks of breast cancer. *p < 0.05, **p
<0.01, ***p < 0.001.
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Figure 2. Commonality and differences between CSNs generated by scHumanNet across
cancer types.

A, B. Upset plots for five CSNs (T cells, B cells, myeloid cells, CAFs, and ECs) show overlap
with respect to nodes (A) and edges (B) across cancer types. C, D. Node (C) and edge (D) overlap
of T-cell networks among four cancer types (OvC, ovarian cancer; CRC, colorectal cancer; BC,
breast cancer; LC, lung cancer).
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Figure 3. Prediction of cell-type-associated genes via differential expression analysis and network
centrality by scHumanNet.

A. Overlap of significant DEGs and significant hub genes for B- and T-cell networks in breast cancer (g-
value < 0.05). The numbers in square brackets correspond to Jaccard indices. Overlap of genes specific for
B- and T-cell functions was assessed for prediction by hub genes and DEGs (set A and set C) and their
intersection (set B). B. Number of ICMs retrieved via FindAllMarkers() (DEG) and FindDiffHubs()
(scHumanNet) in different cancer types. C. Heat map showing the percentile rank of top 15 hub genes
(nodes) and interactions (edges) of each breast cancer network. Values were scaled per row. Results for
other cancer types are reported in Supplemental Figure 6. Genes highlighted in red were not among the
top 50 DEGs retrieved by the FindAlIMarkers() function in the Seurat package. D. Within-group
connectivity between ICMs, T-cell GO genes, and B-cell GO genes for all annotated cell types in
scHumanNet and for each cancer type (OvC, ovarian cancer; CRC, colorectal cancer; BC, breast
cancer; LC, lung cancer). *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 4. Deconvolution of breast cancer signatures to cell types with scHumanNet.

A. Normalized within-group connectivity of each breast cancer signature in six cell-type-specific networks
by scHumanNet. Within-group edge counts were normalized to the number of genes for each cell-type-
specific network. Cancer signatures with at least 10 genes are presented. B. Gene set enrichment analysis
with the KEGG pathway for the top 30 direct neighbor genes of GGI97 signature genes. The red vertical
line corresponds to a g-value of 0.05 corrected with the Benjamini—-Hochberg method. C. Network of genes
neighboring MKI67 and GITR (TNFRSF18) in the context of breast cancer T cells by scHumanNet. Green
nodes denote GGI97 genes. D, E. Kaplan—Meyer plot for TCGA-BRCA cohort based on the average
expression of 76 signature genes (D) or the expression of GITR (TNFRSF'18) (E). Clinical samples were
divided into high and low groups by median value.
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Figure 5. Differential hubness analysis between ASD and healthy control samples across CSNs by
scHumanNet.

A. Overview of differential hubness analysis by scHumanNet. Seven cell types were grouped and CSNs in
normal and ASD conditions were constructed. B. Top 15 hub genes in the combined (control and ASD)
networks for seven cell types. Genes highlighted in red were not among the top 50 DEGs identified by the
FindMarkers() function in the Seurat package. C. Violin plot showing the normalized expression of
CACNAIA for each cell type in ASD and healthy conditions. The statistical significance of differences
between cell types was not evaluated. D. Network visualization of CACNAIA and neighboring genes in
healthy (left) and ASD (right) inhibitory neurons by scHumanNet. SFARI genes are in red (20 genes out of
72 neighbors in the healthy control, none in ASD). E. Direct neighbors of C4ACNA I A from normal inhibitory
neurons by scHumanNet were assessed for enrichment using the GOBP database. The red vertical line
corresponds to a g-value of 0.05 corrected with the Benjamini-Hochberg method. F. Distribution of diffPR
values for genes with hubness (PR) > 0.7 in control cell types. G. Hallmark pathways of genes in ASD
derived from five pathway databases (Reactome, BioPlanet, Elsevier Pathway Collection, GO Biological
Process, GO Molecular Function) and identified in inhibitory neurons (left) and excitatory neurons (right).
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Supplemental Figure 1. Upset plots for node and edge overlap between cell-type-specific networks
(CSNs) by different methods.

A. Upset plots for node overlap. B. Upset plots for edge overlap. Five cell types, including B cells, T cells,
myeloid cells, cancer-associated fibroblasts (CAFs), and endothelial cells (ECs), were assessed.
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Supplemental Figure 2. Identification of cell-type-specific genes by centrality in CSNs using
scHumanNet and five other single-cell network inference methods. A—C. The top 100 hub genes in the
networks specific for T cells (A), B cells (B), and myeloid cells (C) were tested for enrichment of cell-type-
specific genes derived from the Azimuth celltype database. The results for networks obtained with SAVER
imputation are not shown, as hub genes produced no cell-type-specific terms enriched for any cell type.
The red vertical line corresponds to a g-value of 0.05 corrected with the Benjamini—-Hochberg method.
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Supplemental Figure 3. Overlap of CSN nodes by scHumanNet among cancer types.

A-D. Upset plots for four cell types, including B cells (A), myeloid cells (B), CAFs (C), and ECs (D),
showing overlap between CSN nodes among cancer types.
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Supplemental Figure 4. Overlap of CSN edges by scHumanNet among cancer types.

A-D. Upset plots for four cell types, including B cells (A), myeloid cells (B), CAFs (C), and ECs (D)
showing overlap between CSN edges among cancer types.
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Supplemental Figure 5. Overlap of cell-type-specific genes predicted using gene expression and
network centrality.

A—C. Venn diagram of T- or B-cell-specific genes predicted by significant DEGs and hubs in CSNs by
scHumanNet for lung cancer (A), colorectal cancer (B), and ovarian cancer (C). The numbers in square
brackets correspond to Jaccard indices. Overlap of genes specific for T- and B-cell functions was assessed
for network and DEG-specific gene sets (set A and set C) and the intersection of both (set B).
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Supplemental Figure 6. Top 15 hub genes of the CSN generated by scHumanNet for cancers.

A—C. The top 15 hub genes were calculated as percentile ranks and scaled for lung cancer (A), colorectal
cancer (B), and ovarian cancer (C). Genes highlighted in red were not included within the top 50 DEGs by
Seurat’s FindMarkers() function.
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Supplemental Figure 7. Deconvolution of breast cancer signatures into cell types by scHumanNet.

A. Functional connectivity of 24 GGI genes detected in the T cell network for breast cancer by
scHumanNet compared with the connectivity of 24 randomly selected genes. The p-value was calculated
non-parametrically. B. Positive correlation between the number of signature genes detected in T-cell
networks by scHumanNet and the number of connectivities. Within-group connectivity for each cell-type-
specific network was normalized to network size (see Figure 4A). GGI97 showed high connectivity,
despite only a moderate number of genes being detected (highlighted in red). C. Visualization of the
entire breast cancer T-cell network with 2,611 nodes and 35,210 edges. GGI genes are highlighted in
green. D. Percentile rank of first degree neighbors for all GGI97 genes. The top 15 genes were labeled. E.
Correlation between TCGA-BRCA dataset with TNFRSF18 (GITR) and T-cell-related signatures. TCGA-
BRCA dataset was filtered for female samples and normalized using DESeq2. T-cell markers on the far
right correspond to the mean expression of CD3D, CD3E, and CD3G. Pearson correlation coefficient (R)
and Spearman correlation coefficient (p) were calculated.
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Supplemental Figure 8. Comparison of genes prioritized by DEGs and CSN hub genes in neuronal
cell types.

For each cell type reported by Velmeshev et al. (2019), DEGs (Wilcoxon, FDR < 0.05, log fold change >
0.25) and hub genes in the CSN generated by scHumanNets were compared. The numbers in parenthesis
correspond to Jaccard indices. OPC, oligodendrocyte progenitor cell.
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Supplemental Figure 9. Differential hubness analysis for CSNs between control and autism spectrum
disorder (ASD) conditions using scHumanNet.

A. Evaluation of differential hubness for each gene derived from network analysis and log fold change
derived from scRNA-seq expression data. B. Expression levels of GRIN2B and MECP2 of ASD and healthy
control samples are presented for each brain cell type.
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Supplemental Figure 10. Analysis of differential hubness genes between ASD and healthy controls.

A. Distribution of genes with > 0.7 centrality and > 0.7 differential hubness in ASD. B. Hallmark pathways
associated with genes that have high centrality in ASD but low centrality in healthy controls based on five
pathway databases (Reactome, BioPlanet, Elsevier Pathway Collection, GO Biological Process, GO
Molecular Function). Pathways detected in inhibitory neurons (left) and excitatory neurons (right) are
shown. The red vertical line corresponds to a g-value of 0.05 corrected with the Benjamini—Hochberg
method.
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Supplemental Table 1. List of genome grade index GGI97 signature genes

CMC2 TTK NUSAP1 GTSE1
ASPM MKI67 AURKB RRM2
SLC7AS KIF11 CENPE MCM10

CEP55 CDCAS8 NDC80 UBE2N
SESNI1 CCNA2 BUBIB MAD2L1
CENPA BLM LMNB1 BUBI
RACGAPI1 BIRCS CCNBI CCNB2
CCNE2 CDC2 CDC20 CDC25A
KPNA2 MCM2 UBE2S MYBL2
13CDNA73 BBS1 BM039 BRRNI1
C20orf24 CCT5 CDCA3 CDK2
CDKN3 CENPF CX3CR1 CYBRDI1
DDX39 DKFZp762E1312 DLG7 DONSON
ESPL1 EXOl1 FEN1 FLJ10156
FLJ20477 FLJ20641 FLJ21062 FLJ21827
FLJ23554 FOXMI1 GMPS H2AFZ
HMGB3 HMMR HSMPP8 KIF20A
KIF2C KIF4A KNSL7 LAMB2
MARS MELK MLEF11P NUDTI
OIP5 ORMDL2 PLK1 POLQ
PRC1 RNASEH2A SHMT2 SIRT3
SPAGS STARDI13 STK6 TIMELESS
TPX2 TRIP13 TROAP TTC10
ZWINT MCM4

Green: detected in Breast cancer T-cell CSN

Red: either deprecated, replaced or withdrawn from the NCBI database.
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Supplemental Table 2. Number of nodes and edges in the CSNs used in this study.

# Nodes # Edges
Myeloid Myeloid
T cells | B cells cells CAFs | ECs | Tcells | Bcells cells CAFs | ECs
scHumanNet | 2,448 | 2,066 2,738 | 3,504 | 2,401 | 35,120 | 23,430 | 47,678 | 51,851 | 23,994
bigSCale2 1,890 | 1,195 3,928 | 1,872 | 1,757 | 53,000 | 34,000 | 56,000 | 20,000 | 14,000
SAVER 1,115 797 2,172 | 1,009 | 1,283 | 32,000 | 16,000 | 35,000 | 22,000 | 26,000
GRNboost2 | 2,332 | 1,840 2,143 | 2,795 | 2,469 | 5,302 | 3,946 4,539 6,071 | 5,354
MetaCell 2,739 | 1,819 4,133 1,915 | 1,103 | 96,000 | 24,000 | 44,000 | 19,000 | 8,000
rawPCC 121 716 530 134 557 221 3,230 1366 167 1313

CAFs, cancer-associated fibroblasts; ECs, endothelial cells.
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Supplemental Table 3. Number of genes and edges in CSNs inferred by scHumanNet for four

cancer types.

Cancer type Cell type # Genes | # Edges
T cell 2,521 31,768
B cell 2,421 26,997
Myeloid 2,568 39,794
Endothelial 2,821 28,197
Colorectal Fibroblast 3,873 | 56,487
cancer
Enteric glia 1,951 13,164
Epithelial 3,204 61,057
Mast 1,539 9,585
Tumor 4423 89,859
T cell 2,611 35,210
B cell 2,242 23,430
Myeloid 2,855 47,678
Breast Endothelial 2,550 23,994
cancer Fibroblast 3,665 51,851
Dendritic cell 1,996 24,236
Mast 1,522 8,882
Tumor 4,426 79,920
T cell 2,726 35,933
B cell 2,554 30,365
Myeloid 3,687 62,810
Endothelial 2,420 23,740
CI;E'c‘egr Fibroblast 2,669 | 33,822
Alveolar 2,839 31,910
Epithelial 2,482 23,997
Mast 1,862 13,053
Tumor 5,075 111,043
T cell 1,957 24,824
B cell 1,633 13,806
Ovarian Myeloid 2,521 39,375
cancer Endothelial 2,033 17,204
Fibroblast 3,238 44,083
Tumor 3,977 72,159
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Supplemental Table 4. List of the 43 immune checkpoint molecule genes used in this study.

ADORA2A BTLA CD200 CD200R1
CD244 CD27 CD274 CD276
CD28 CD40 CD40LG CD&0
CD&86 CEACAMI CTLAA4 HAVCRI1

HAVCR2 ICOS ICOSLG IDO1
IL2RB KIR3DL1 LAG3 LAIRI
LGALS3 NECTIN2 PDCD1 PDCDI1LG2
PVR SLAMF1 TIGIT TNFRSF12A
TNFRSF14 TNFRSF18 TNFRSF25 TNFRSF4
TNFRSF9 TNFSF14 TNFSF18 TNFSF4
TNFSF9 VSIR VTCNI1
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Supplemental Table 5. Number of genes and links in CSNs inferred by scHumanNet for

autism spectrum disorder and healthy controls.

Condition Cell type # Genes | # Links
Astrocyte 2,505 26,610
Excitatory 4,488 68,448
Inhibitory 2,597 23,992
Autism spectrum Microglia 2,387 32,270
disorder Endothelial 2,394 35,789
OPC 1,784 14,017
Oligodendrocyte 1,860 11,629
Others 2,532 27,807
Astrocyte 2,549 27,810
Excitatory 5,731 117,415
Inhibitory 3,164 36,348
Microglia 2,375 31,190
Control -
Endothelial 2,626 40,769
OPC 2,154 18,613
Oligodendrocyte 2,203 16,660
Others 3,234 50,535

OPC, oligodendrocyte progenitor cell.
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