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Abstract
One of the primary tasks in vaccine design and development of immunotherapeutic drugs is to predict conformational B-cell
epitopes corresponding to primary antibody binding sites within the antigen tertiary structure. To date, multiple approaches
have been developed to address this issue. However, for a wide range of antigens their accuracy is limited. In this paper, we
applied the transfer learning approach using pretrained deep learning models to develop a model that predicts conformational
B-cell epitopes based on the primary antigen sequence and tertiary structure. A pretrained protein language model, ESM-1b,
and an inverse folding model, ESM-IF1, were fine-tuned to quantitatively predict antibody-antigen interaction features and
distinguish between epitope and non-epitope residues. The resulting model called SEMA demonstrated the best performance on
an independent test set with ROC AUC of 0.76 compared to peer-reviewed tools. We show that SEMA can quantitatively rank the
immunodominant regions within the RBD domain of SARS-CoV-2. SEMA is available at https://github.com/AIRI-Institute/SEMAi
and the web-interface http://sema.airi.net.

1 Introduction
Selection of B-cell antibodies specifically targeting the external antigen
proteins is a natural immune response in vivo. Corresponding antibody
binding sites are called conformational B-cell epitopes, and their
knowledge is important for the effective design of peptide- and protein-
based vaccines and development of immunotherapeutic drugs (Gershoni
et al., 2007). To date, multiple methods have been developed using machine
learning and other approaches to predict conformational B-cell epitopes
within an antigen sequence. For example, widely used tools include
SEPPA3, Bepipred2.0, PEPITO, Epitopa, DiscoTope (Zhou et al., 2019;
Jespersen et al., 2017; Sweredoski and Baldi, 2008; Rubinstein et al., 2009;
Kringelum et al., 2012). However, improving the accuracy of prediction
of conformational B-cell epitopes is still of great importance.

Deep learning approaches are applied increasingly often for the protein
analysis and design. In particular, pretrained protein language models
make it possible to address a wide range of protein classification tasks. The
ESM-1v model is one of the largest transformers-based protein language
models trained in a self-supervised fashion (Rives et al., 2021). Recently,
the ESM-IF1 model has been developed based on a sequence-to-sequence
transformer architecture with invariant geometric input features to predict
the sequence of a protein based on its tertiary fold (Hsu et al., 2022). ESM-
IF1 is based on GVP-GNN (Jing et al., 2020) and generic autoregressive
encoder-decoder Transformer architectures (Vaswani et al., 2017) that
make it possible to solve a variety of tasks, including inverse protein folding
and predicting the effect of mutations. Protein residue representation
from both ESM-1v and ESM-IF1 provides a large amount of contextual
information that potentially can be used to predict conformational epitopes.

In the current work, we show that prediction of B-cell conformational
epitopes can be significantly improved by applying transfer learning
approaches using pretrained ESM-1v and ESM-IF1 models. We fine-
tuned ESM-1v and ESM-IF1 models to predict residues comprising
B-cell epitopes by providing an interpretable score corresponding to the
expected number of contacts of an amino acid residue with the target
antibody. The best performing model was called SEMA (Spatial Epitope
Modelling with Artificial Intelligence). We evaluated SEMA against an

independent retrospective benchmark composed of antigen residues with
no prior information on antibody binding sites before the 2020 release
date. SEMA was compared with Bepipred2.0 (Jespersen et al., 2017),
SEPPA3.0 (Zhou et al., 2019), PEPITO (Sweredoski and Baldi, 2008),
ElliPro (Ponomarenko et al., 2008) and DiscoTope2.0 (Kringelum et al.,
2012) and outperformed these tools, demonstrating the highest ROC AUC
value of 0.76. The SEMA prediction score was shown to correlate with
the estimated immunogenicity of epitope residues according to statistical
analysis of interaction the RBD domain of SARS-CoV-2 with target
antibodies. SEMA is available as an online-tool and could be used for
predicting B-cell conformational epitopes.

2 Method

2.1 Benchmark generation

We generated a non-redundant conformational epitopes dataset based on
the available data on antigen-antibody interacting complexes in the PDB
database. The pipeline used to generate the conformational epitopes dataset
included the following steps:

(1) The ANARCI tools was used to screen sequences of protein
structures published in the PDB database that comprise heavy and light
chains of Fabs (Dunbar and Deane, 2016).

(2) Heavy/light Fab pairings were identified by calculating the
distances between subunit residues corresponding to heavy and light
chains, and only heavy and light chains with direct contacts of non CDR
regions within distance of 4.5 Å were considered as the heavy/light pair.
CDR loops were defined using Clothia numbering based on annotation by
the ANARCI tool. Identified fab pairs were manually inspected to filter
out artefacts.

(3) Protein subunits that were not annotated as an antibody and had at
least 5 residues interacting with antibody residues within a radius of 4.5
Å with L1/L2/L3 or H1/H2/H3 CDR loops of antibodies were considered
as an antigens.

(4) The contact number was calculated as the number of interactions
of antigen residue atoms with antibody atoms within the distance radius
of R. For each antigen residue, we considered two options for estimating
the contact number based on the selected radius R: in the first case we
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calculated number of atoms of antibody residues in contact with any atom
of antigen residuei within the distance radius R (cn atom). In the second
case, we calculated the number of antibody residues in contact with any
atom of antigen residuei within the distance radius R (cn aa).

(5) The calculated contact numbers were mapped on the full primary
sequence of the antigen. The full sequence was extracted from PDBSeqres
records. All residues missing in the protein tertiary structure but present in
the primary sequence were labelled as "unknown". "Unknown" residues
were excluded during model training.

(6) To avoid redundancy, antigen sequences were clustered according
to the degree of sequence identity (> 95%) using MMseqs2
software (Mirdita et al., 2019). MMseqs2 enables sensitive protein
sequence searching for the analysis of massive data sets. Sequences from
the same cluster were aligned using MAFFT (Katoh and Standley, 2013)
and consensus epitope labels were assigned for the center of the cluster.
For each residue in the reference sequence, the consensus contact number
value was assigned as the maximum contact number observed among
antigen-antibody complexes in the PDB dataset within an identity cluster.

(7) Each antigen residue was assigned one of the following three labels.
The "epitope" label was assigned according to the distance radius R1 within
which at least one Fab pair residue was observed. The following values of
R1 were considered: 4.5, 6.0 and 8.0 Å. The "close" label was assigned
when the antigen residue was located outside R1 but within the radius
R2 (R2 > R1) of the closest antibody residue. The following values of
R2 were considered: 12.0, 14.0 and 16.0 Å or infinite. Remaining antigen
residues were labeled "distant". Both "close" and "distant" residues were
considered as non-epitope residues.

(8) To fairly compare the precision of the SEMA with other tools,
we generated a retrospective data set. The data set was split into training
and test sets according to the structure release date. The test set included
structures that were first released in the PDB database after January 1,
2020 with no available homologous with a degree of sequence identity of
70% before this date. The remaining antigens were divided into training
and validation sets in a ratio of 9:1.

2.2 ESM-1v and ESM-IF1 fine-tuning

ESM-1v and ESM-IF1 were fine-tuned independently by adding fully-
connected liner layer after the last layer of pretrained models having an
embeddings size of 1280 and 512 respectively. Outputs of the linear layer
were used to predict the log-scaled contact number values for each antigen
residue with the corresponding position.

Log-scaled contact number vectors were used as a target for the model.
We used the Adam optimizer and the masked mean squared error loss
defined as a mean squared error loss function ignoring masked residues
labeled as "distant" and "unknown" residues class.

The ESM-1v model was trained for two epochs with a starting learning
rate of 1e−5 and linear learning rate decay. The ESM-IF1 model was
trained for two epochs with a starting learning rate of 1e−4 and linear
learning rate decay.

The final models were obtained as an ensemble of five models fine-
tuned independently from the same pretrained checkpoint.

As a limitation, the original ESM-1v model was pretrained with a
maximum sequence length of 1022. Accordingly, sequences longer than
1022 residues were trimmed for C-terminal to the length of 1022.

2.3 Prediction using peer methods

Protein sequences of the tested antigen were submitted to the Bepipred2.0
server (https://services.healthtech.dtu.dk/service.
php?BepiPred-2.0), and the results were downloaded in csv format
(50 per run). Discotope has a stand-alone implementation on Python and
was run on our own server (Kringelum et al., 2012). ElliPro has stand-alone
implementation on java and was run on our own server (Ponomarenko
et al., 2008). Antigen structures were submitted to the BePro server,
also known as PEPITO (http://pepito.proteomics.ics.uci.
edu/). The same PDB identifiers and chains were selected for submission
to the SEPPA3.0 prediction server (http://lifecenter.sgst.
cn/seppa/index.php) and score files were retrieved and used for
metrics evaluation. All tools were run with default options.

Fig. 1. Epitopes data set generation. For each residue, the contact number interaction feature
was calculated, which corresponds to log-scaled number of contacts of antigen residues with
antibody residues within a radius R1. Antigen residues within R1 and R2 distance of the
antibody were classified as non-epitope (brown color). Residues located further than R2

were either considered as non-epitope ( the "unmasked" data set) or ignored in the model
training and and calculation of the relevant metrics (the "masked" data set, highlighted
in gray). The color gradient indicates the contact number value ranked from low to high.
The color map is shown in the top right-hand corner of the figure. Epitopes obtained from
distinct antigen-antibody complexes from the PDB database were merged to provide the
final antigen epitopes data set.

3 Results

3.1 Benchmark for predicting epitope features

Crystallographic data on antigen-antibody structures are commonly used
to identify conformational B-cell epitopes. In this paper, we screened
the PDB database to select the antigen epitope residues interacting with
the antibody. For each antigen residue, we calculated the contact number
feature, which indicates the number of contacts of the antigen residue with
antibody residues within distance radius R1. The resulting benchmark
generated using the pipeline (see Methods) contained a total of 4,739
records, with 884 antigen sequences clustered based on the degree of
identity of 95%. The test set included 101 antigen sequences.

Antigen residues were considered as epitope if the distance to the
interacting antibody was lower than specified cut-off value (R1). R1 was
selected in the range 4.5, 6.0 and 8.0 Å. The cut-off value of 4.5 Å reflects
the presence of direct interaction with antibody residues. Radius values
of 6.0 Å and 8.0 Å additionally include residues involved in long-range
interaction. It is well known that epitopes can be spatially distributed on
the antigen structure and for some cases such experimental information
might be missing. To consider this, we split non-epitope residues based on
the distance from the interacting antibody (R2) into “close” (R < R2)
and “distant” (R > R2) (Figure 1). We selected R2 equal to either 12.0,
14.0 or 16.0 Å to analyze the effect of epitope boundary region information
on model accuracy.

In addition to conventional classification of epitope residues, for each
antigen residue we calculated the contact number interaction feature. The
contact number is a measure of the number of contacts of an antigen
residue with atoms of antibody residues. Contact numbers may provide
an additional interpretive score reflecting how deeply the residue is buried
on the antigen/antibody interface. This might improve training efficiency
by providing additional spatial information to the model. Finally, we
combined information of different antibody for the same antigen into
consensus mask. The summary of the generated consensus mask is shown
in Figure 1.

This data set was used to train and evaluate the models to solve
following tasks: (1) the conventional task of binary classification of antigen
residues into epitope/non-epitope residues (with both “close” and “distant”
residues classed as “non-epitope”); (2) prediction of epitope residues on
the "masked" data set, that includes only "epitope" residues and residues
localized "close" to epitope, excluding "distant" residues from model
training and metrics calculation; (3) quantitative prediction of contact
number features of antigen residues. We suggest that evaluation of the
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Fig. 2. Model performance metrics estimated for the "masked" and "unmasked" test and
training sets. (A) ROC AUC for SEMA-1D. (B) ROC AUC for SEMA-3D.

model on the different data sets generated using a wide range of R1 and
R2 radii allow to evaluate the robustness of the model in terms of predicting
epitope residues independent of the ambiguities in the epitope definition.

3.2 Fine-tuning the models and internal validation of SEMA

The generated conformational epitopes data set was used to fine-tune
pretrained ESM-1v and ESM-IF1 models to predict the contact number
antigen-antibody interaction features together with binary classification
into epitope/non-epitope residues. ROC AUC metric was taken to estimate
model performance. We analyzed models performance for two groups
of test sets: (1) “unmasked” test sets, where all antigen residues were
classified as epitope or non-epitope according to selected radii R1 (4.5,
6.0 and 8.0 Å), (2) “masked” test sets, where all antigen residues located
further than R2 (12.0, 14.0, 16.0 and infinity Å) from the antibody were
“masked” and ignored in ROC AUC calculations.

Thus, we evaluated a different set ofR1 andR2 radii values for training
set generation to select the model that performed best on both “masked”
and “unmasked” test sets independent of selected radii. Additionally, we
evaluated two approaches to calculating the contact number: in the first
case, we counted number of antibody atoms contacting antigen within the
radiusR1 (cn atom), whereas in the second case, we calculated the number
of residues with at least one contact within the radius R1, which resulted
in a lower value (cn aa).

For a most variants of radii the models were able to achieve a better
performance when trained to predict cn atom compared to cn aa; this was
further used for the selection of final models (Supplementary Figure S1,
S2). In the case of both ESM-IF1 and ESM-1v, the highest ROC AUC
values (0.77 and 0.72, respectively) were obtained for “unmasked” test
sets with R1=4.5 Å (Figure 2, Supplementary Figure S1, S2). However,
the same models results in poorer performance for “masked” test set. This
might be due to the fact that classification of antigen residues located close
to epitope is a more challenging task.

The models trained on R1 = 8.0 Å and R2 = 16.0 Å achieved a
robust performance on all test sets independent of selected radii. Finally,
ROC AUC values obtained by fine-tuned ESM-1v model was 0.7 and
0.67 for “masked” and “unmasked” test sets correspondingly (Figure 2A).
ROC AUC values for ESM-IF1 fine-tuned models were 0.75 and 0.73 for
“masked” and “unmasked” test set, correspondingly (Figure 2B).

The final fine-tuned models were called SEMA. SEMA involves
the use of sequence-based (SEMA-1D) and structure-based (SEMA-3D)
approaches to predict the conformational B-cell epitopes and provide an
interpretable score indicating the log-scaled expected number of contacts
with antibody residues (Figure 3).

We found that calculating an ensemble of models obtained with
different initialization parameters resulted in a noticeable improvement of
epitope residues prediction. Thus final model was obtained as an ensemble
of five fine-tuned ESM-1v models averaging their results. Fine-tuned
ESM-1v models achieved best ROC AUC of 0.76/0.71 on "unmasked"
and "masked" test sets respectively, whereas fine-tuned ESM-IF1 models
achieved achieved best ROC AUC of 0.76/0.73 (Figure 4).

Fig. 3. Scheme of SEMA model. SEMA comprises fine-tuned ESM-1v (SEMA-1D) for
sequence-based and fine-tuned ESM-IF1 (SEMA-3D) for structure-based prediction of
epitopes.
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Fig. 4. ROC AUC metrics for peer methods, SEMA-1D and SEMA-3D for two reference
test sets: "masked" (R1 = 4.5 Å; R2 = 16.0 Å) and "unmasked" (R1 = 4.5 Å;
R2 = Infinite).

3.3 Comparison with peer methods

The list of peer methods included Bepipred2.0 (Jespersen et al., 2017),
Discotope (Kringelum et al., 2012), PEPITO (Sweredoski and Baldi,
2008), Epitopia (Rubinstein et al., 2009) and SEPPA 3.0 (Zhou et al.,
2019). Model performance was evaluated against collected benchmarks
(see Methods). Benchmarks included antigens with no prior information in
the PDB database before January 1, 2020. These cases were not included
in any training set, which enabled a fair comparison of tools with each
other.

We compared the AUC metrics both for "masked" and "unmasked" test
sets (Figure 4). For the test set classification into epitope and non-epitope
residues, R1 was set equal to 4.5 Å, which was also used in the training
set for other tools. In the masked test set, R2 was 16.0 Å.

The results shows that sequence-based methods, as well as SEPPA
3.0 and SEMA-3D better perform in conventional epitope prediction task
on "unmasked" test set compared to "masked" test set. This indicates
poorer performance in classification of non-epitope residues located close
to epitope and predicting epitope borders. In contrast, PEPITO, ElliPro
and Discotope 2.0 tools demonstrated the highest ROC AUC value on
the "masked" test set. Compared to other methods, both SEMA-1D and
SEMA-3D models have the highest AUC metric in all benchmark tasks.
The results of models prediction for other sets of R1 and R2 radii show
a similar trend and are shown in Supplementary table (see Supplementary
Table S1, S2). As expected in line with SEMA, all tools had lower AUC
values for higher R1 radii values, while selecting finite R2 (R2 < Inf )
radius doesn’t significantly affect results.
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Fig. 5. Prediction of RBD immunodominant epitopes with SEMA. ((A)) RBD domain of
SARS-CoV-2 (PDB ID 7KS9, chain B) colored according to the SEMA predicted score
(left), immunogenicity score (center), contact number values (right). Residues colored
from brown (low value) to cyan (high value). Immunogenicity was estimated as the ratio of
RBD/antibody complexes in the PDB database in which RBD residue was in contact with
antibody within 8.0 Å. (B) Correlation between the SEMA score and log-scaled antigen
contact number feature. Pearson correlation coefficient is shown. (C) Correlation between
the SEMA score and the immunogenicity score. Pearson correlation coefficient is shown.
(D) ROC AUC values calculated for different epitope/non-epitope residue classification
based on the immunogenicity score threshold. ROC AUC values and threshold values for
classification are denoted.)

3.4 Case study: Prediction of immunodominant regions of
the SARS-CoV-2 RBD domain

The RBD domain of the S-protein of SARS-CoV-2 is one of the most
well characterized antigens to date in terms of structure. We analyzed on
the RBD domain instead of full-length S-protein to exclude the putative
effect of glycosylation that is currently not considered in the SEMA (Reis
et al., 2021). To evaluate the performance of SEMA, during model training
we excluded all homologous sequences of the S-protein (with a degree of
identity of > 70%), in particular the S-proteins of MERS and SARS-CoV.
SEMA-3D was evaluated to addressed three issue: (1) correctly assigning
epitope and non-epitope residues; (2) correctly predicting the contact
number features; (3) predicting the immunodominant epitope residues.
The immunodominant residues of RBD were estimated according to the
ratio of RBD/antibody complexes in the PDB database in which RBD
residue was in direct contact with antibody. We hypothesize that the
calculated ratio allow to estimate the immunogenicity of RBD residues,
with a high ratio corresponding to immunodominant residues.

As shown in the Figure 5, SEMA-3D provides high correlation
coefficients for both contact number values and estimated immunogenicity
score. Additionally, we calculated the ROC AUC metrics of the model to
differentiate immunodominant residues (high ratio) from other residues
(low ratio), based on the ratio threshold. This provides a more reliable
estimation of model performance since most of the solvent-exposed
residues of the RBD domain are labeled as epitope due to the presence
of at least one structure where corresponding residues interact with the
antibody. As can be seen from the score cut-off values, SEMA-3D achieves
average ROC AUC metric of 0.75 on this task.

3.5 Web-interface/Usage

We developed a web-interface (http://sema.airi.net) for convenient usage of
SEMA. A user could either submit a protein sequence to run the fine-tuned
ESM-1v model (SEMA-1D) or a protein structure in the PDB format to run
the fine-tuned ESM-IF1 model (SEMA-3D). The output includes predicted
epitope scores for each residue in the protein sequence. To visualize the
results, the output sequence in the web-interface is colored based on the
predicted contact number, with colors ranging from brown (non-epitope)
to cyan (epitope) (Figure 6). In case of SEMA-3D, output includes 3D
structure of protein colored using the same color scheme as in SEMA-1D
(Figure 6). A user can download the results in JSON and CSV format. We
also provided a code of the model implemented as the Jupyter Notebook on

Fig. 6. Example of SEMA graphical output (PDB ID: 6TXZ D). Residues are colored from
brown (non-epitope) to cyan (epitope).

GitHub and available via link https://github.com/AIRI-Institute/SEMAi.
We recommended using this implementation for comprehensive analysis
including multiple protein sequences.

4 Discussion
Computational prediction of conformational epitopes is of high importance
for vaccine design and therapeutics development. However, the
development of high-accuracy prediction tools is a challenging task, in
particular due to the limited amount of experimental data and uncertainties
in defining epitope residues. Conformational epitope residues are normally
defined by distance cut-off radius between antigen and antibody residues
in the interacting complex. However, arbitrary choice of distance cut-off
radius might lead to ambiguous epitope label assignment.

Conventionally, a residue is classified as non-epitope if it has no
interaction with the antigen. However, if experimental data on the
analyzed antigen are limited, negative labels might be assigned incorrectly.
In particular, for the S-protein of SARS-CoV-2, first epitopes were
crystallographically discovered against the RBD domain (Yuan et al.,
2020), but later immunodominant epitopes within the NTD- domain and
other regions of the S-protein were also identified (Cerutti et al., 2021).

To take this problems into account, we generated a benchmark that
included antigens with classified epitope residues based on two distance
cut-off values. The first distance, R1, defined the positive epitope label
class, while the second distance, R2, defines if the residue is too remote
from the epitope and was ignored in metric calculations. Finite R2 radii
make it possible to evaluate the model’s ability to predict the boundaries
of epitopes. Additionally, for each antigen residue we calculated the
contact number feature corresponding to the number of atoms of the
antibody located within the radius R1 of antigen residue. This feature was
introduced for model training providing additional spatial information on
interaction between the antibody and antigen. Moreover, this feature alone
was demonstrated to be a good predictor of the epitope residue for a wide
range of R1 values.

Transfer learning was proved to be an efficient approach in the case
of a limited set of examples (Howard and Ruder, 2018). In this paper, we
show that a fine-tuned protein language model (ESM-1v) and an inverse
folding model (ESM-IF1) perform well when predicting conformational
epitopes. More specifically, the model was fine-tuned on a non-redundant
set of only 783 antigen records with epitope residues assigned according
to available antigen/antibody structures in the PDB database and selected
R1 and R2 radius values.

To fine-tune the model, we screened the different training sets
generated according for a wide range of R1 and R2 radius values and
selected the model that performed well in all benchmark tasks. The final
model was called SEMA; it comprises SEMA-1D (fine-tuned ESM-1v)
and SEMA-3D (fine-tuned ESM-IF1) models for sequence-based and
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structure-based conformational B-cell epitopes prediction respectively.
SEMA achieved high metrics for all benchmark tasks and was trained
on the masked data set with R1 = 8.0 Å and R2 = 16.0 Å.

Additionally, we show that SEMA can predict immunogenicity of RBD
domain residues. In this case we evaluated immunogenicity of the RBD
domain residues as a ratio of complexes in which corresponding residue
is in direct contact with antibody among all available RBD/antibody
complexes.
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