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Abstract

Methylation of cytosines is the prototypic epigenetic modification of the DNA. It has been implicated in vari-
ous regulatory mechanisms throughout the animal kingdom and particularly in vertebrates. We mapped DNA
methylation in 580 animal species (535 vertebrates, 45 invertebrates), resulting in 2443 genome-scale, base-
resolution DNA methylation profiles of primary tissue samples from various organs. Reference-genome inde-
pendent analysis of this comprehensive dataset quantified the association of DNA methylation with the under-
lying genomic DNA sequence throughout vertebrate evolution. We observed a broadly conserved link with
two major transitions — once in the first vertebrates and again with the emergence of reptiles. Cross-species
comparisons focusing on individual organs supported a deeply conserved association of DNA methylation
with tissue type, and cross-mapping analysis of DNA methylation at gene promoters revealed evolutionary
changes for orthologous genes with conserved DNA methylation patterns. In summary, this study establishes
a large resource of vertebrate and invertebrate DNA methylomes, it showcases the power of reference-free
epigenome analysis in species for which no reference genomes are available, and it contributes an epigenetic
perspective to the study of vertebrate evolution.
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Introduction

DNA methylation at the fifth carbon position of cytosines (5-methyl-cytosine) provides an epigenetic layer of
genome regulation that does not involve changes in the DNA sequence. In vertebrates, DNA methylation oc-
curs preferentially at palindromic CpG dinucleotides, where it marks both strands symmetrically. It is essential
for genome integrity and contributes to the silencing of transposable elements!. Moreover, it is involved in the
regulation of many biological processes associated with multicellular life?, including development?, differen-
tiation*, and maintenance of cellular identity>®. DNA methylation has been studied extensively in the context
of diseases such as cancer’®, metabolic diseases’, autoimmune disorders'®!!, and in aging'?. From an evolu-
tionary perspective, DNA methylation and its associated enzymes (most notably the DNA methyltransferases
that “write” DNA methylation) are present throughout the animal kingdom, although it has been lost in certain
species including the model organism Caenorhabditis elegans'>. Supporting evolutionary roles of DNA meth-
ylation, it has been implicated in speciation'* and in the response to environmental influences!>!®.

Genome-wide DNA methylation patterns vary widely across species. Pioneering research in the early 1980s
compared global levels of DNA methylation across several animal species'”!'®, which revealed major differ-
ences between vertebrates and invertebrates!®. Moreover, considerable variability was observed among verte-
brates’® 3. While these initial studies relied on methylation-specific restriction enzymes or on chromatog-
raphy-based methods, more recent investigations used next-generation sequencing to determine DNA methyl-
ation patterns in 17 eukaryotic species (which included two vertebrates)?, in 13 animal species (five inverte-
brate and seven vertebrate species)®, in seven vertebrate species?, and in eight mammalian species®’. High-
resolution DNA methylation maps enabled initial analyses of the evolutionary relationship between DNA
methylation and the underlying DNA sequence®® . These previous studies were however limited to a small
number of species, while an ideal study would cover many species across all branches of vertebrate evolution,

such that each species becomes a complex data point in a truly integrative analysis of DNA methylation.

In human, where DNA methylation has been studied in most detail, a strong correlation exists between the
genomic DNA sequence and local DNA methylation patterns®!*2, CpG-rich genomic regions (including many
promoters and enhancers) tend to be unmethylated, except where they overlap with evolutionarily recent trans-
posable elements®® or are subject to mechanisms of regulatory repression that involve DNA methylation®*. In
contrast, CpG-poor genomic regions tend to be highly methylated, except where they overlap with active tran-
scription factor binding sites* or underwent large-scale DNA methylation erosion, which is commonly ob-
served in cancer cells and in ageing*®*” The genome-wide correlation between DNA methylation and DNA
sequence has enabled the prediction of locus-specific DNA methylation levels based on the underlying DNA
sequence, focusing on CpG islands and gene promoters®®*® and on individual CpG dinucleotides***!. Con-
sistent with this genetic basis of DNA methylation, differences in the genomic DNA sequence between indi-
viduals have been linked to differences in DNA methylation*?. Nevertheless, human primary samples tend to
cluster according to tissue type rather than according to the sample donor*, indicating that DNA methylation
differences between human individuals are generally less pronounced than tissue-specific differences.

To investigate DNA methylation beyond the human genome and in the broad context of vertebrate evolution,
we established genome-scale DNA methylation profiles at single-base resolution across a wide range of ver-
tebrate and invertebrate species, covering all vertebrate classes and several proximal invertebrate classes. Pri-
mary tissue samples were obtained from biobanks and other sources comprising mainly wild animals and zoo
animals. We included heart and liver wherever possible, to allow for tissue-matched comparisons across spe-
cies. In addition, other tissues such as lung, gills, fin, spleen, brain, lymph node, muscle, kidney, and skin were
covered in a species-specific manner. Individuals were selected to prioritize healthy adults and to balance the
male-to-female ratio, aiming at two to four biological replicates per species. This sampling strategy allowed
us to cover a large number of species, consistent with our study’s focus on analyzing trends that hold across

multiple species, rather than on the in-depth investigation of DNA methylation regulation in individual species.
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DNA methylation profiling was performed using an optimized version of the reduced representation bisulfite
sequencing (RRBS) assay* . Our assay enriches for CpG-rich regulatory regions but also covers many other
parts of the genome, including exons, introns, intergenic regions, and repetitive elements; and it can be used
to measure DNA methylation both at CpG sites and non-CpG sites in the genome. We analyzed our RRBS
dataset using reference-genome independent bioinformatic methods*, allowing us to include many species
that do not currently have a reference genome and to avoid biases due to the very different quality of available
reference genomes. We previously validated this approach in a head-to-head comparison of reference-free and
reference-based analysis in three species**. Moreover, as part of this study we confirmed by in vitro simulations
of RRBS coverage based on existing reference genomes, comparison with whole genome bisulfite sequencing
(WGBS) data, and careful analysis of potential biases, that RRBS is indeed suitable for cross-species analysis.

Our full dataset comprises 2443 DNA methylation profiles covering 580 animal species (535 vertebrates and
45 invertebrates). Based on this dataset, we identified a quantitative, predictive association of DNA methyla-
tion and the underlying genomic DNA sequence that was shared between vertebrate and invertebrate species,
yet we observed two major transitions along the evolutionary axis: one between vertebrates and invertebrates
and one between amphibians and reptiles. We also investigated tissue-specific and inter-individual differences
in DNA methylation, and we found that tissue specificity was more pronounced in fish, birds, and mammals,
while differences between individuals and between tissues had similar effects on DNA methylation variability
in invertebrates, reptiles, and amphibians. By analyzing transcription factor binding sites in differentially meth-
ylated regions between heart and liver tissue throughout vertebrate evolution, we identified a deeply conserved
association of DNA methylation with tissue type and cellular identity; and cross-mapping analysis identified
characteristic evolutionary trends in DNA methylation at gene promoters.

In summary, this study contributes an epigenetic perspective to the investigation of vertebrate evolution, and
it establishes a major resource for dissecting the role of DNA methylation in vertebrates and invertebrates.
Moreover, our results underline the feasibility and value of including epigenome profiling in ongoing initia-
tives to map all vertebrate genomes*’, and they provide a starting point for untangling how the complex inter-
play of DNA sequence patterns and DNA methylation has contributed to the evolution of vertebrate genomes.

Results
An atlas of DNA methylation across 580 animal species

To investigate the evolutionary dynamics of DNA methylation in vertebrates, we performed genome-scale
DNA methylation profiling for 580 species and a total of 2443 primary samples (Figure 1a-c, Supplementary
Figure 1a-f). Our sample collection included all vertebrate classes, and several classes of marine invertebrates,
many of them closely related to vertebrates (used here as an outgroup). Specifically, we analyzed 156 samples
of invertebrates (invertebrata), one sample of a jawless vertebrate (Japanese lamprey, Lethenteron camtschati-
cum), 32 samples of cartilaginous fish (chondrichthyes), 565 samples of bony fish (actinopteri), 74 samples of
amphibians (amphibia), 280 samples of reptiles (reptilia), 607 samples of birds (aves), 70 samples of metathe-
rian mammals / marsupials (marsupialia), and 658 samples of eutherian mammals (mammalia). Wherever
possible, we included multiple tissues (most notably heart and liver for comparison across species) and multi-
ple individuals, with a balanced sex ratio and a focus on young adult animals.

DNA methylation profiling was performed by reduced representation bisulfite sequencing (RRBS). The RRBS
assay provides single-nucleotide, single-allele resolution for a defined subset of the genome, in a deterministic
way that facilitates reference-free DNA methylation analysis and makes us independent of reference genomes
(which are unavailable or of inconsistent quality for most analyzed species). RRBS leverages the concept of
reduced representation sequencing (also known as RADseq or GBS), which is widely and successfully used
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for studies of evolution and ecology in species that lack a high-quality reference genome*. RRBS utilizes
DNA methylation agnostic frequent-cutter enzymes that cut at CCGG (Mspl) and TCGA (Taq]) sites, thereby
enriching DNA fragments that contain at least one CpG in a species-agnostic manner and making them ame-
nable to quantitative bisulfite-based DNA methylation analysis. RRBS covers around four out of 28 million
CpGs in the human genome and two out of 20 million CpGs in the mouse genome; this includes not only CpG-

rich promoter and enhancer regions, but also a broad sampling of regions with modest CpG density**-!,

Given extensive prior experiences with reduced representation sequencing in evolutionary studies*, and given
the short, generic target sites of Mspl and Taq], it is unlikely that systematic differences in genome sequence
composition unduly confound our RRBS profiling. To provide additional support for the validity of using
RRBS for cross-species analysis, we simulated RRBS coverage across a wide range of species and analyzed
the expected RRBS coverage for genomic elements such as CpG islands, transcripts, promoters, and repetitive
elements. Across 76 species for which reference genomes were available (five invertebrates, one jawless ver-
tebrate, one cartilaginous fish, eight bony fish, three amphibian, four reptiles, seven birds, three marsupial, and
44 eutherian mammals), we simulated the restriction digest and size selection in RRBS*?, and we determined
the expected coverage for each of these genomic elements (Supplementary Figure 1b). As expected, this
analysis showed that the RRBS-specific enrichment for CpG islands was shared and consistent across all spe-
cies, while systematic differences in genomic coverage between species were generally small and gradual.

Because RRBS fragments start and end at defined restriction sites, we do not depend on a reference genome
or de novo assembly of sequencing reads; instead, we can group and overlay sequencing reads obtained from
the same genomic position to construct “consensus reference fragments”. We have previously developed and
extensively validated the RefFreeDMA method for RRBS-based, reference-genome independent analysis of
DNA methylation**. Using RefFreeDMA, we combine all RRBS reads for each species into locus-specific
consensus sequences with reconstructed genomic cytosines as the sites of potential DNA methylation. The
resulting “consensus reference fragments” were used as the genomic reference for subsequent RRBS read
alignment and DNA methylation calling, which was done separately for each sample. To be able to detect
constitutively unmethylated cytosines (which appear as thymines in the RRBS reads), we also sequenced one
RRBS library without bisulfite conversion for each species and included these data in the identification of
genomic cytosines. RRBS quality metrics (such as the number of covered CpGs, mapping efficiency, DNA
pre-fragmentation, contamination rate, conversion rate) indicated high data quality for most samples; and it
allowed us to identify and flag low-quality samples (Supplementary Figure 1g-h; Supplementary Table 1).

As an additional validation, we assessed potential effects of repetitive elements, PCR amplification, and inter-
individual genetic variation on our reference-free analysis (Supplementary Figure 2a). For each species, we
empirically flagged consensus reference fragments with consistently high coverage (fourfold above average in
more than 80% of samples) as likely derived from repetitive regions (“repeat”); those with sporadically high
coverage (fourfold above average in less than 20% of samples) as likely subject to PCR amplification biases
(“amplified”); and fragments with adequate coverage (at least half of the average) in samples from one indi-
vidual but not the other individuals as likely results of genetic variation affecting the RRBS coverage (“pri-
vate”). We found that the frequency of “repeat” and “amplified” fragments was generally low (below 2%) and
similar across taxonomic groups, with a trend toward a lower fraction of “repeat” fragments in birds, marsu-
pials, and mammals (Supplementary Figure 2b-c). We did not observe systematic effects of different PCR
cycles across samples, confirming that range of cycles used (6-18) did not induce strong PCR amplification
biases (Supplementary Figure 2d). Inter-individual genetic variation affected around 10% of the consensus
reference fragments, which emphasize the importance of investigating several individuals per species.

Finally, for a subset of the species we can exploit existing reference genomes of the same or related species by
cross-mapping of the consensus reference fragments (Supplementary Figure 3a). We pursued a data-driven
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approach by mapping the consensus fragments of all species to all reference genomes of animals within the
same class and selected the genome with the highest mapping rate (Supplementary Figure 3b,c). This cross-
mapping analysis was able to detect the expected association of DNA methylation with gene annotations across
all taxonomic groups, including the characteristic “dip” of DNA methylation levels at the promoter region
(Supplementary Figure 3d-e), even in extreme outliers such as the Mexican axolotl with its huge genome
comprising 32 gigabases (Supplementary Figure 3f). We further observed that the strength of the “dip” in-
creased with higher cross-mapping efficiency up to a rate of 25%, after which this effect leveled off (Supple-
mentary Figure 3g). In aggregate, these results establish the validity of our reference-free and cross-mapping
analysis of RRBS data throughout vertebrate evolution, without any concerning technical or biological biases.

Patterns of genome-wide DNA methylation in vertebrate evolution

Having established the validity of our dataset and analysis method, we proceeded with a systematic analysis
of factors that predict genome-wide DNA methylation across the analyzed species. We calculated genome-
wide DNA methylation levels for each species by averaging across consensus reference fragments, tissues,
and individuals, and we overlaid these species-specific aggregates with the taxonomic tree (Figure 1c¢). These
values provide an assessment of DNA methylation in those areas of the genome that RRBS enriches for; they
are different from the global DNA methylation levels obtained by high performance liquid chromatography
measuring total 5-methyl-cytosine levels, which tend to be dominated by repetitive genomic regions™.

Our analysis identified lower DNA methylation levels in invertebrates compared to vertebrates, lower DNA
methylation levels in birds and marsupials compared to other vertebrates, and higher DNA methylation levels
in fish and amphibia compared to the other taxonomic groups (Figure 1d). These observations were robust
across all investigated tissue types (Supplementary Figure 4a) and across a wide range of technical stringency
thresholds (Supplementary Figure 4b). Moreover, we validated the identified trends on independent WGBS
data for 13 species curated from the literature?>>>*% with a correlation of 0.84 for genome-wide DNA meth-
ylation based on RRBS versus WGBS (Supplementary Figure 4c¢). The trends were driven by differences in
the fraction of highly (greater than 80%) versus lowly (less than 20%) methylated fragments, while fragments
with intermediate DNA methylation were similarly common across vertebrate classes (Figure 1e).

Comparing taxonomic groups, we observed strikingly lower DNA methylation for the two marsupial orders
(diprotodontia and dasyuromorpha) compared to other eutherian mammals (Supplementary Figure 4d). The
different groups of reptiles, namely lizards, snakes, turtles, and crocodiles, showed similar levels of DNA
methylation — with the exception of Henophidia (a suborder of snakes including pythons and boas), which had
consistently lower DNA methylation levels (Supplementary Figure 4e). Among the invertebrates, which are
by far the most heterogeneous group in our analysis, we observed a wide range of DNA methylation levels
from 2% in Penaeus (prawns) to 80% in Alitta succinea (clam worm). The majority of assessed invertebrates
had DNA methylation levels between 20% and 40%, similar to those observed in birds and marsupials. Finally,
Lethenteron camtschaticum (Japanese lamprey), which is a jawless vertebrate, showed high DNA methylation
levels at 60%, which is similar to the levels observed in reptiles and mammals (Supplementary Figure 4f-g).

To assess the relationship between genome-wide DNA methylation levels and the underlying genome across
species, we constructed linear models based on features that describe each species” DNA sequence composi-
tion (e.g., k-mer frequencies, CG composition, CpG island frequency). Strikingly, 3-mer frequencies explained
more than 80% of the observed variance in mean DNA methylation levels across vertebrate evolution (Figure
1f). Four of the five most predictive 3-mers contained a CpG dinucleotide (ACG, CGT, CGA, TCG), while
the fifth (GAA) has been implicated in mammalian-specific repeat expansions®. In contrast, CpG island fre-
quency alone explained only ~23% of the observed variance, and CG composition (which included separate
variables for C, G, and CpG frequency, as well as the CpG observed vs. expected ratio) explained around 50%.
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These results show that CpG density is a key contributor but clearly not the only factor explaining the close
association between genome-wide DNA methylation and genome sequence composition across species.

We found that similarities in 3-mer frequencies within the genomic DNA sequence between species closely
reflect their phylogenetic distance; and the same was true k-mers of greater length as illustrated by 6-mers
(Figure 1g). This prompted the question whether 3-mer frequencies predict genome-wide DNA methylation
levels directly or through their association with phylogenetic distance. We thus compared the predictive power
of 3-mer frequencies with that of phylogenetic distance, which we modeled by a representation of the taxo-
nomic tree and by assigning each species to its corresponding taxonomic group (Supplementary Figure 4h).
In this analysis, the prediction performance of 3-mer frequencies alone (86.4%, AIC=3819) exceeded that of
both the taxonomic tree (81.0%, AIC=3622) and the taxonomic groups (74.1%, AIC=4154) alone. Neverthe-
less, the combination of 3-mer frequencies with phylogenetic information led to a modest further increase in
overall prediction performance (87.8%, AIC=3371 for the taxonomic tree and 92.0%, AIC=3514 for taxo-
nomic groups). We further validated these results by analyzing the links between 3-mer frequencies and ge-
nome-wide DNA methylation levels using generalized linear models that explicitly control for phylogenetic
relatedness; a third of the 3-mers (22 out of 64) showed a significant association with DNA methylation beyond
the effects of phylogeny (Figure 1h). These results support that 3-mer frequencies are directly predictive of
genome-wide DNA methylation levels, beyond the strong link between phylogeny and 3-mer frequencies.

We also used our dataset to investigate DNA methylation stability and erosion in a wide range of species,
motivated by recent studies that linked DNA methylation erosion to human cancers and ageing®”%®. We can
quantify DNA methylation erosion based on our RRBS data using the “proportion of discordant reads” (PDR)
metric®’. This metric exploits that most genomic loci exhibit a bimodal distribution of DNA methylation (i.e.,
a locus is either fully methylated or fully unmethylated), and it interprets deviations from this pattern as evi-
dence of DNA methylation erosion. The PDR metric was first established for cancer, where it was associated
with clinical features including tumor aggressiveness®”®~7!. We calculated species-specific PDR values in
analogy with the species-specific DNA methylation levels by averaging across consensus reference fragments,
tissues, and individuals (Supplementary Figure 5a). We plotted the resulting values over the corresponding
species” DNA methylation level (Figure 1i-j), expecting high PDR values at DNA methylation levels around
50% and lower PDR values toward high and low DNA methylation levels, given the mathematical properties
of the PDR metric. However, we found that DNA methylation levels of around 75% corresponded to the high-
est PDR values (Figure 1i) and that this shift was mainly driven by the taxonomic groups with high DNA
methylation levels (amphibians and bony fish), as well as reptiles (Figure 1j). We speculate that these taxo-
nomic groups evolved to endure higher levels of DNA methylation erosion, possibly as a consequence of high
genome-wide DNA methylation levels being harder to maintain. In contrast, mammals, birds, marsupials, and
cartilaginous fish showed a tendency toward lower than expected levels of DNA methylation erosion (Figure
1j), indicative of molecular mechanisms that foster DNA methylation stability in these groups.

We also investigated non-CpG methylation, which we can detect with RRBS as shown previously’. We found
that non-CpG methylation was expectedly low (less than 2%) but detectable in most samples. We did not
observe strong differences in non-CpG methylation across taxonomic groups — with one exception: Brain sam-
ples of birds and mammals had elevated levels of non-CpG methylation (Supplementary Figure 5b), which
were on average 59% higher in birds and 72% higher in mammals compared to other organs (Figure 1k); in
contrast, the difference was much weaker for the other taxonomic groups (3% higher in brain). Widespread
non-CpG methylation in brain samples has been reported previously for human and mouse” and has been
explained by incomplete CpG specificity of mammalian DNA methyltransferases’. Our results suggest that
this phenomenon generalizes to other mammals and birds, but is not shared by all vertebrates, which may point
to differences in the DNA methylation machinery across taxonomic groups®.
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Vertebrates have high DNA methylation levels throughout the genome, except for regions of open chromatin;
in contrast, invertebrates are thought to carry a mosaic of high methylation (often at genes) and low methylation
(the bulk of the genome)’, although some highly methylated invertebrate genomes have been described”. In
our dataset, we observed strong differences between vertebrates and invertebrates — for genome-wide DNA
methylation levels at CpGs, for DNA methylation erosion, and to a lesser degree also for non-CpG methylation
(Supplementary Figure 4a, 5a-b). However, these differences were gradual, with overlapping distributions
between vertebrate and invertebrate species, where the Japanese lamprey as a jawless vertebrate clearly sided
with the vertebrates (Supplementary Figure 5c¢).

Finally, we investigated potential associations between DNA methylation and cancer risk, as it had been sug-
gested previously that DNA methylation could be one of many factors that contribute to cancer suppression in
large, long-lived species’® — for example by suppressing repetitive DNA elements that threaten genome integ-
rity or by constraining developmental plasticity in differentiated cells. We observed a positive correlation be-
tween genome-wide DNA methylation levels and theoretical, unmitigated cancer risk of the investigated spe-
cies (which we estimated based on each species’ body weight and longevity’”). This positive association was
most pronounced in birds (r=0.53) and remained statistically significant after correcting for phylogeny
(p=0.01) (Supplementary Figure 5d). We observed similar but weaker associations also for DNA methylation
erosion (likely due to positive correlation between DNA methylation and PDR) but not for non-CpG methyl-
ation. While these observations do not imply a specific causal role of DNA methylation on cancer risk, they
contribute to accumulating evidence of associations between DNA methylation and cancer risk across species.

A genomic code for DNA methylation in vertebrates and invertebrates

While the previous section focused on genome-wide measures of DNA methylation across species, our dataset
also allows us to investigate locus-specific DNA methylation levels within each analyzed species, pursuing
the hypothesis that there is a predictive relationship (or “genomic code”) between the DNA sequence of a
given genomic region and its DNA methylation level. Previous studies in human and mouse have uncovered
associations between DNA methylation and the underlying DNA sequence for genomic regions such as CpG
islands and gene promoters®®* and for single CpG dinucleotides throughout the genome***!. Importantly, we
use the term “code” as a shorthand for a predictive relationship between DNA sequence and DNA methylation,
without implying causality or postulating a molecular mechanism that would read this code. Nevertheless, the
genomic DNA sequence may encode a default epigenetic state for each genomic region, which could provide
the ground state to which DNA methylation is reset in pluripotent cells and in early embryonic development’.

To decipher the relationship between DNA methylation and the underlying DNA sequence throughout verte-
brate evolution, we trained machine learning classifiers that predict locus-specific DNA methylation levels
based on the DNA sequence of the corresponding genomic regions (Figure 2a). Specifically, we used support
vector machines with a spectrum kernel to predict the discretized DNA methylation status (highly vs. lowly
methylated) of consensus reference fragments based on their genomic DNA sequence (represented by k-mer
frequencies), separately for each species. The prediction performance was quantified using receiver operating
characteristic (ROC) curves and area under curve (AUC) values calculated on independent test sets. The ro-
bustness of these predictions was confirmed using two alternative definitions of methylated and unmethylated
regions with different stringency, resulting in highly similar ROC-AUC values (Supplementary Figure 6a).

We consistently observed better-than-random prediction performance across all taxonomic groups (Figure 2b,

¢), with higher ROC-AUC values in reptiles, birds, and mammals (0.78, 0.80, and 0.78) than in cartilaginous

and bony fish (0.68 and 0.67) and amphibians (0.70). The prediction performance was markedly higher in

marsupials (0.86) compared to eutherian mammals (0.78), indicating that DNA methylation may have a par-

ticularly pronounced genetic basis in marsupials. In contrast, the prediction performance for invertebrates
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(0.65) was surprisingly similar to that of fish; and the lamprey (0.67), a “primitive” jawless vertebrate, fell in
between vertebrates and invertebrates (Figure 2d), which provides further evidence against a fundamental,
qualitative difference in DNA methylation between vertebrates and invertebrates (as it exists between plants
and animals)”. In aggregate, our results support the existence of a “genomic code” that links locus-specific
DNA methylation levels to the underlying DNA sequence in vertebrate and invertebrate species.

To dissect this predictive relationship, we compared the cross-validated prediction performance of classifiers
trained on 1-mer frequencies (A, C, T, G), 2-mer frequencies, etc. up to 10-mer frequencies. In this systematic
analysis, 3-mer frequencies were generally the most informative, followed by 2-mer and 4-mer frequencies
(Supplementary Figure 6b-c). In contrast, the inclusion of longer DNA sequence patterns did not result in
greater predictive power, suggesting that complex sequence patterns (which may capture conserved transcrip-
tion factor binding motifs) are much less relevant for the association between DNA methylation and DNA
sequence than short sequence motifs. We independently validated our trained models by testing them on DNA
methylation data obtained by reference-based analysis of public WGBS data for eight species. For complete-
ness, we also performed the inverse analysis — training on WGBS data and testing in RRBS data. We observed
highly consistent results, which adds further support to the validity of our RRBS-based reference-free analysis
(Supplementary Figure 6d). We also obtained highly similar ROC-AUC values as well as preferred k-mer
lengths between purely RRBS-based and purely WGBS-based predictions (Supplementary Figure 6e).

Finally, we inferred the predictive power of individual 3-mer frequencies for each species, and we compared
the corresponding weights across all taxonomic groups (Figure 2e-f; Supplementary Figure 6f). 3-mers as-
sociated with low DNA methylation levels preferentially ended in CpG dinucleotides and started with either a
C or G nucleotide. This pattern was conserved across all taxonomic groups, including invertebrates, but it was
more pronounced in reptiles, birds, marsupials, and eutherian mammals compared to invertebrates, fish, and
amphibians. In contrast, 3-mers associated with high DNA methylation levels followed a more balanced DNA
sequence composition, and the enrichment for specific DNA sequence patterns differed between taxonomic
groups. Most notably, invertebrates showed an enrichment of CpG dinucleotides also among highly methylated
regions, which distinguished them from vertebrates; and mammals showed an enrichment of CpA dinucleo-
tides, which tend to arise from the mutation of methylated CpG dinucleotides®.

Conservation and divergence of the genomic code for DNA methylation

Our results support the existence of a “genomic code” or predictive relationship between DNA sequence and
DNA methylation that is reflected in characteristic 3-mer frequencies of methylated and unmethylated loci and
that is generally consistent across all investigated taxonomic groups. Nevertheless, we also observed charac-
teristic differences, both between taxonomic groups and between individual species within a group. To inves-
tigate these evolutionary differences more systematically, we trained machine learning models in one species
and applied them (without retraining) to predict DNA methylation levels in another species. For each pair of
species, we then determined the ROC-AUC values as measures of cross-species predictability, with high values
indicating good transferability of the trained model between the pair of species (Figure 3a-b).

The prediction performance was generally high between related species and even across taxonomy groups
(Figure 3c¢), often reaching similarly high values as for the prediction within a species or within a taxonomy
group. However, we also observed pronounced differences in cross-species predictability, notably between
invertebrates, fish, and amphibians on the one hand (where the predictability was lower) and the evolutionarily
younger groups of reptiles, birds, and mammals on the other hand (where the predictability was higher).

We found that models trained in species with lower prediction performance generally performed well in spe-
cies with higher prediction performance, but not vice versa (Figure 3a-c). Even prediction models trained in
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invertebrates retained some predictive power in vertebrates, despite fundamental differences in the genomic
distribution of DNA methylation between vertebrate and invertebrate genomes®!. These observations suggest
that the predictive relationship between locus-specific 3-mer frequencies and their associated DNA methyla-
tion levels (i.e., the “genomic code” of DNA methylation) is deeply conserved across all taxonomic groups.
However, the fact that predictability of DNA methylation differed widely across target species suggests that
some species deviate much more strongly from the genetically encoded “default” DNA methylation profile
than other species (e.g., due to tissue-specific regulation, environmental influences, and/or stochastic effects).

Curiously, a few species of invertebrates, fish, amphibians, and reptiles showed an apparent inversion of the
genomic code for DNA methylation, such that DNA sequence patterns normally associated with low DNA
methylation levels were instead linked to high DNA methylation levels and vice versa. The existence of such
inverted species in our dataset was evident from cross-species ROC-AUC values in the target species that were
substantially worse than expected by random chance (blue horizontal/vertical stripes in Figure 3b). In other
words, prediction models trained in non-inverted species and applied in inverted species misclassified meth-
ylated regions as unmethylated, and unmethylated regions as methylated, with frequencies that could not be
explained by random chance. We observed the same pattern of significantly worse-than-random prediction
performance when models were trained in inverted species and applied in non-inverted species. In contrast,
cross-species prediction between two different inverted species were generally more coherent with each other
than with non-inverted species (Supplementary Figure 7a), suggesting a shared underlying mechanism.

To investigate the biological basis of the apparent inversion of the genomic code for DNA methylation, we
focused on the white hake (Urophycis tenuis), which is one of the bony fish (actinopteri) species with a pro-
nounced inversion (Figure 3d) that was consistently detected across tissues and individuals (Supplementary
Figure 7b-f). Comparing the feature weights of the machine learning classifiers, we identified four 3-mers
(AGC, GCG, ACG, CGC) that were strongly predictive of high DNA methylation levels in the white hake
sample but predictive of low DNA methylation levels in other bony fish (Figure 3e). These 3-mers were as-
sociated with repetitive elements in the white hake and to a lesser degree also in other inverted fish species,
but not in most of the non-inverted fish species (Figure 3f). We thus conclude that the observed inversion may
be explained by introgression of evolutionarily recent, CpG-rich, repetitive elements, which tend to acquire
high DNA methylation levels as part of the cells’ machinery for suppressing their instability and expansion'.

Conservation of DNA methylation patterns underlying tissue type

The hypermethylation of repetitive elements in the inverted species (as described in the previous section) ap-
pears to occur on top of a broadly conserved “genomic code” of DNA methylation; and we would expect that
the same applies to tissue-specific as well as inter-individual differences in DNA methylation. To investigate
the relative contributions of the tissue and the individual to the DNA methylation variation in our dataset, we
focused on those species for which we have multiple tissues and individuals (n=360), and for each species we
inferred the percentage of variance explained by the tissue and by the individual (Figure 4a).

In human and mouse, it is well established that DNA methylation patterns are more similar among samples of
the same tissue from different individuals than among samples of different tissue from the same individ-
ual®8#28 We observed this pattern for selected species across all taxonomic groups except cartilaginous fish
(Supplementary Figure 8a). However, when quantifying this phenomenon across all species, we found that
tissue-specific differences clearly exceeded inter-individual differences only in mammals, birds, and bony fish,
whereas we observed equal or higher variability explained by individual than by tissue for many invertebrates,
amphibians, and reptiles (Figure 4a). This observation was not due to differences in technical data quality, as
measured by PCR enrichment cycles in the RRBS protocol (Supplementary Figure 8b) and DNA pre-frag-
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mentation as a proxy for low DNA quality (Supplementary Figure 8d), although we observed a slight nega-
tive association between DNA pre-fragmentation and the overall variance explained. We also investigated
potential confounding effects of genetic variation within each species, which we estimated based on the mean
overlap in covered CpGs between samples from the same species. We did not observe particularly low con-
cordance levels in invertebrates, amphibs, or reptiles (Supplementary Figure 8c), arguing against genetic
variation as a major confounder in our analysis. Finally, we observed a negative correlation between DNA
methylation erosion and total variance explained in reptiles, birds, and mammals (Supplementary Figure 8e).

Next, we sought to establish an initial concept of DNA methylation in its relation to tissue identity — not in one
specific species but across vertebrate evolution, with each species contributing a data point. We focused on
heart and liver, including 207 species with samples from at least two individuals for both tissues. For each
species, we identified differentially methylated consensus reference fragments between heart and liver (Figure
4b) and compared the enrichment for transcription factor binding motifs between fragments with lower DNA
methylation levels in heart vs. liver, and vice versa (Figure 4c, Supplementary Figure 9a). This analysis
exploits that many transcription factors and their binding motifs are conserved across vast evolutionary dis-
tances®!. We indeed detected many transcription factor binding motifs at similar frequencies in fragments from
all taxonomic groups, with no obvious preference for mammals (Supplementary Figure 9b).

For further biological interpretation, we determined the transcription factors that are expressed in human heart
or liver tissues and whose binding sites were enriched in differentially methylated fragments, and we annotated
them with GO terms related to heart and liver biology, physiology, and gene regulation (Figure 4d). We found
that transcription factors associated with fragments characterized by lower DNA methylation levels in heart
were preferentially annotated with heart-specific biological functions (e.g., ZBTB14 has a role in cardiac sep-
tum development; KLF4, KLF2 as well as ETS1 are involved in the response to laminar fluid shear stress).
Conversely, fragments with lower DNA methylation levels in liver were annotated with liver-specific functions
(e.g., ONECUTI1 and HNF1A contribute to liver development; FOXP1, FOXA1l, FOXK2, FOXA3, and
FOXO4 are involved in glucose homeostasis). Moreover, the binding sites of several transcription factors with
a role in the response to hypoxia and to toxic substances had lower DNA methylation levels in heart than in
liver, which may be linked to the liver’s greater tolerance to such exposures. While these results are consistent
with the traditional concept that low DNA methylation levels are associated with high regulatory activity®, we
also found one striking example in which higher DNA methylation levels appear to coincide with higher reg-
ulatory activity: Fragments enriched for the binding sites of FOXC2, FOXC1, and FOXL1 — three FOX family
transcription factors with an established role in heart development — showed lower DNA methylation levels in
liver than in heart, indicating more diverse relationships between DNA methylation and regulatory activity®.

Finally, we inferred the evolutionary conserved “tissue of activity” for individual transcription factors by tran-
scription factor binding site enrichment, while taking into account preferential binding to unmethylated or
methylated DNA® (Figure 4¢). From the identified transcription factors we derived a gene-regulatory network
using regulator interactions obtained from the TRRUST v2 database®® (Figure 4e). This network constitutes a
first exploratory attempt at reconstructing a deeply conserved basis of the epigenetic cell identity for heart and
liver tissue across vertebrates. This analysis suggests that FOXA1 (also known as hepatocyte nuclear factor 3-
alpha) is active in liver, possibly inducing APOB, a crucial component of low density lipoprotein (LDL) pro-
duced in the liver and small intestine®’. E2F6, a repressive transcription factor involved in cell cycle regula-
tion®, showed higher inferred activity in heart compared to liver, potentially reflecting the very different re-
generative potential of these two organs. HIF1A (Hypoxia-inducible factor 1-alpha) may be repressed by high
activity of FOXO4 in liver, while being activated by KLF5 and EGR1 in heart, which might contribute to the
higher tolerance toward hypoxic conditions in the liver®®. These observations were in line with our GO analysis
(Figure 4d) and suggest that DNA methylation may help stabilize the fundamental regulatory processes un-
derlying vertebrate tissue identity in ways that are conserved across large evolutionary distances.
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Gene-centric patterns of DNA methylation in vertebrate evolution

The reference-free DNA methylation analysis of DNA methylation (as described in the previous sections)
allowed us to include all 580 species, unconstrained by the availability of reference genomes. However, this
approach makes it difficult to link DNA methylation to the genes and promoters that it may regulate. We
therefore complemented our reference-free analysis of tissue-specific DNA methylation with a reference-based
analysis in which we cross-mapped the samples to annotated reference genomes of the same or related species,
with data-driven selection of the most fitting reference genome (Supplementary Figure 3, 10a). We calcu-
lated mean DNA methylation levels of individual gene promoters for each sample, based on the gene annota-
tions of the corresponding reference genome. We then linked these annotations to their human ortholog, to
analyze gene promoter methylation from all species in one shared gene space (Supplementary Figure 10a).
We thus derived a gene-centric DNA methylation landscape comprising 382 species, 1524 cross-mapped sam-
ples, and 14,339 genes. We projected the samples into two dimensions using the UMAP method (Figure Sa).

This cross-species landscape of DNA methylation at gene promoters reflects phylogenetic relationships at the
level of taxonomic groups and reference genomes, together with more fine-grained patterns determined by
species, tissues, and individuals (Figure 5a, Supplementary Figure 10b). The highest resolution was obtained
for mammals, given the large number of available reference genomes and high conservation of human genes
ensuring an accurate mapping. Samples mapped to reference genomes of old world monkeys (rhesus, baboon,
snub-nosed monkey, green monkey) and apes (orangutang) formed a concise cluster, while samples mapped
to the reference genomes of new-world monkeys (marmoset, squirrel monkey) formed a separate group, sup-
porting that our method captures genetic and epigenetic similarity without undue bias due to certain reference
genomes. Among the birds, the golden eagle genome (genome assembly: aquChr2) and the chicken genome
(genome assembly: galGal6) enabled gene-centric analyses for multiple other species including owls and
ducks, respectively. Fish, amphibians, and reptiles were not as well represented as mammals and birds but still
detectable in this gene-centric analysis, exploiting high conservation of certain genes across long evolutionary
timescales. The observed patterns were clearly non-random and not seen in scrambled data (Figure 5a, inset).

We exploited this cross-species landscape to define groups of genes that exhibit similar patterns of DNA meth-
ylation at their promoters throughout vertebrate evolution. To this end, we projected all adequately covered
genes into two dimensions using the UMAP method, and we identified five distinct gene sets using the Leiden
clustering method (Supplementary Figure 10c). Cluster 1 was characterized by high promoter methylation
in mammals, and specifically in samples from the lymph node (a tissue that is largely restricted to mammals);
Cluster 2 showed consistently low promoter methylation across taxonomic groups and tissues, and was en-
riched for GO terms related to organ morphogenesis; Cluster 3 exhibited high levels of promoter methylation
in birds, and in brain and several internal organs, and it was enriched for GO terms relating to organism devel-
opment; Cluster 4 was associated with high promoter methylation in reptiles and bony fish but low promoter
methylation in cartilaginous fish; Cluster 5 was characterized by low promoter methylation in various internal
organs but high promoter methylation in blood, skin, fins, and gonads (Supplementary Figure 10d-e).

To assess evolutionary conservation as well as divergence of tissue-specific DNA methylation for individual
gene promoters, we employed random forest classification for robust identification of differentially methylated
genes across species (Figure 5b-e). We focused on the two best represented tissues (heart, liver) and the two
best represented taxonomic groups (mammals, birds) and devised four classification tasks: Heart versus liver
tissues in each of the two taxonomic groups, and mammals versus birds for each of the two tissues. In these
analyses, we ensured that all models were tested only on species that had not been used during training, in
order to focus these analyses on patterns that are conserved across species. We found good prediction perfor-
mance for all four tasks: ROC-AUC in the heart versus liver classification were 0.751 for mammals and 0.716
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for birds, while the corresponding values for the classification of mammals versus birds were 0.851 for heart
and 0.845 for liver (Figure 5b-c).

We investigated which gene promoters enable these predications and found that the most discriminatory genes
between heart and liver (Figure Sc¢) were transcription factors. In birds, this included GATA4 and GATAS,
both with well-known roles in heart differentiation. In mammals, in addition to three transcription factors
(MAB21L1, HANDI1, EMX?2), we identified the EMILIN1 gene, which codes for a protein that anchors smooth
muscle cells to elastic fibers potentially relevant for heart function. This gene showed increasing promoter
methylation from mammals to reptiles, possibly relating to the marked anatomical and function changes during
the evolution of vertebrate circulatory systems. Moreover, MAB21L1, a cell fate regulator with similarity to
the cGAS innate immune sensor’ showed higher promoter methylation in heart tissues of both mammals and
birds. The most discriminatory genes between birds and mammals (Figure 5e) were similar between heart and
liver tissue, for example the homeobox genes ALX1 and LHX2 or the cell cycle promoting cyclin CCND1,
which showed significantly higher promoter methylation levels in birds compared to reptiles and mammals.

Finally, we performed gene-centric analyses of promoter methylation across all eight taxonomic groups (Sup-
plementary Figure 10f), and we identified 48 genes that had a conserved promoter methylation signal across
most of the assessed taxonomic groups. Only one gene retained an unmethylated promoter throughout verte-
brate evolution: CHCHD?7, a putative housekeeping gene that is ubiquitously expressed in human tissues. In
contrast, the promoter of SPON2, which codes for a cell adhesion protein involved in innate immunity, was
highly methylated in all classes expect marsupials. Genes with high promoter methylation across taxonomic
groups (such as SPON2, LMF1, NRDE2, SLC38A10, VASN, NUDT7, GNL2, NETO1, APRT, FAM163B,
ALOX5) had a tendency toward higher methylation levels in mammals, while most other genes had low DNA
methylation levels in mammals. A similar pattern was observed also for reptiles, while birds and marsupials
often showed low promoter methylation values even for genes with highly methylated promoters in other tax-
onomic groups. Fish and amphibia showed high promoter methylation in most of the 48 broadly conserved
genes, consistent with their generally high DNA methylation levels. Lamprey, as a jawless vertebrate, showed
promoter methylation patterns similar to those of cartilaginous fish. In contrast, invertebrates generally showed
low promoter methylation levels even for genes with high promoter methylation across all other taxonomic
groups, supporting diverging gene-regulatory roles of DNA methylation between vertebrates and invertebrates.

Given the breadth of the presented dataset and analysis, detailed follow-up studies in selected species will be
needed to corroborate and extend these observations; and we provide our dataset as a comprehensive resource
and starting point for such investigations (http://cross-species-methylation.computational-epigenetics.org/).

Discussion

DNA methylation has important roles for genome integrity, regulation of gene expression, and cellular identity.
Previous reports indicated that the genomic distribution and biological functions of DNA methylation system-
atically differ between vertebrate and invertebrate model organisms (a view that has recently been chal-
lenged’>°!). However, a systematic analysis of DNA methylation patterns throughout vertebrate evolution has
been lacking. We thus established a large dataset of genome-scale, single-nucleotide DNA methylation profiles
for 2445 primary tissue samples covering 580 animal species (535 vertebrates and 45 invertebrates). The size
and resolution of this dataset allowed us to address fundamental biological questions with adequate resolution
and statistical power, including the predictive relationship of DNA methylation and DNA sequence, prevalence
of DNA methylation erosion, role of tissue versus individual as sources of DNA methylation variation, and
conservation of gene-regulatory DNA methylation signatures throughout vertebrate evolution.
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This study was enabled by a highly scalable method for DNA methylation profiling and data analysis that is
applicable to essentially any species and tissue, allowing us to capitalize on large zoological biobanks and
sample collections of wild, pet, and zoo animals. The RRBS assay proved robust across variable DNA quan-
tities and qualities, consistent with our previous experience with challenging formalin-fixed paraffin-embed-
ded patient samples®’; this facilitated the inclusion of primary tissue samples obtained from deceased animals
(65% of analyzed samples were collected as part of routine animal pathology). Using our RefFreeDMA soft-
ware, we were able to analyze and compare DNA methylation between tissues, individuals, and species, inde-
pendent of whether a reference genome has been established for these species. We extensively validated the
RRBS assay and the reference-free analysis pipeline with coverage simulations across 76 reference genomes
and validation of key results by a meta-analysis of WGBS data for 13 species. In addition, we cross-mapped
the results of our reference-free analysis to gene-annotated reference genomes, which provided additional val-
idation and gene-centric insights, while also illustrating the future value of our dataset for reference-based
analysis as many more high-quality reference genomes will become available over the next decade.

At the core of our study, we used machine learning to associate DNA methylation with the underlying DNA
sequence, thereby linking aspects of genomes and epigenomes throughout vertebrate evolution. We refer to
the predictive relationship between DNA methylation and the underlying DNA sequence as a “genomic code”
that links methylated as well as unmethylated states to preferred sequence motifs, without implying any spe-
cific mechanism or direct causation. We found that this “genomic code” was highly conserved across all ana-
lyzed taxonomic groups. Both for genome-wide and locus-specific DNA methylation levels, this relationship
was best described by 3-mer frequencies. As expected, high frequency of CpG dinucleotides was associated
with low DNA methylation levels, but CpGs were by no means the only contributing factor. Machine learning
models trained to predict the locus-specific DNA methylation level from the underlying DNA sequence in one
species generally performed well also in other species, even across taxonomic groups, and the prediction per-
formance appeared to be more a feature of the target species than of the species in which the model was trained.

Surprisingly, the “genomic code” was detectable even among invertebrate species, to the point that models
trained on DNA methylation data for invertebrate species retained some predictive power in vertebrate species.
More generally, our dataset uncovered an unexpected degree of conservation in the characteristics of DNA
methylation between vertebrates and invertebrates. First, while invertebrates on average showed lower ge-
nome-wide DNA methylation levels than vertebrates, many invertebrate species exhibited genome-wide DNA
methylation levels well within the distribution of vertebrates (Supplementary Figure 4f, S¢). Second, certain
invertebrate species including sea urchins (Strongylocentrotus) showed the typical DNA methylation profiles
of vertebrates, with a prominent dip at gene promoters and high gene-body methylation (Supplementary Fig-
ure 3d-e). Third, the lamprey fell between vertebrates and invertebrates in terms of the predictiveness of the
“genomic code” of DNA methylation, consistent with its intermediate position as a jawless vertebrate.

These results support that the changing characteristics of DNA methylation throughout vertebrate evolution
are more gradual and diverse than they appeared based on previous analyses of much fewer model organisms.
Nevertheless, two major transitions in the “genomic code” of DNA methylation are supported by our dataset:
With the emergence of vertebrates and the emergence of reptiles. These transitions manifested themselves not
only through increased predictability of DNA methylation from DNA sequence (prediction accuracies were
generally higher for reptiles, birds, marsupials, and mammals than for fish and amphibians), but also in the
similarity of predictive sequences across species within taxonomic groups and in a shift toward higher predic-
tive power of CpG-rich 3-mers for lowly methylated loci (Figure 2). We speculate that this “genomic code”
may play a role in restoring default DNA methylation patterns not only in embryogenesis’, but also following
artificial DNA methylation depletion®*°*. This DNA sequence encoded default epigenetic state could provide
a basis that is modulated by other effects (e.g., tissue, environment, and random chance) over the course of an
animal’s development and life. While this study was not designed to elucidate a potential mechanistic basis of
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the described “genomic code”, it will be interesting to combine our cross-species data with an investigation of
the biochemical machinery that controls DNA methylation — including DNA methyltransferases'® and deme-
thylases®, but also histone-modifying enzymes® and transcription factors that modulate DNA methylation.

A side note of our study is the cross-species analysis of DNA methylation erosion, which uncovered high
levels of DNA methylation erosion in the taxonomic groups with the highest genome-wide DNA methylation
levels (amphibians and fish), rather than in the species with intermediate DNA methylation levels (mammals
and reptiles) as we would mathematically expect®’. This observation may be due to higher DNA methylation
levels being intrinsically harder to maintain, given the limited fidelity of maintenance DNA methylation®. The
affected species would therefore be able to tolerate lower stability of DNA methylation, with the potential
upside of creating more room for accommodating environmental influences on DNA methylation.

Erosion of DNA methylation patterns has been observed in human cancers®”**~"!| and loss of epigenetic control

appears to causally contribute to cancer development®””8, In this context, the observed variability in DNA
methylation erosion between taxonomic groups raises interesting questions regarding a potential role of DNA
methylation in the protection against cancer risk, especially in large and long-lived vertebrates. While our
dataset cannot conclusively address such questions, we observed intriguing associations such as low levels of
DNA methylation erosion and a negative correlation between theoretical cancer risk and DNA methylation
levels in birds, which have a low incidence of tumors®. We envision that our optimized RRBS assay and
reference-free analysis will facilitate DNA methylation profiling of tumors of wild and captive animals for a
wide range of vertebrate species encountered in veterinary pathology. This will in time contribute to a better
understanding of the potential roles of DNA methylation in solving the lack of correlation between body size
and cancer risk (Peto’s paradox)'%%!%!| which stands out as a remarkable feat of vertebrate evolution.

Potential limitations of this study arise from the experimental choices that allowed us to process 2443 primary
tissue samples from 580 species. First, RRBS uses restriction enzymes to pre-enrich a “reduced representation”
of the genome prior to bisulfite conversion and sequencing. Compared to WGBS, RRBS covers fewer CpGs
(mean: 2.5 million CpGs per sample), is cheaper and more scalable; and it provides consistent starting points
for the DNA fragments (i.e., the restriction sites), which facilitates the comparison between tissues and indi-
viduals (mean: 1.7 million shared CpGs across samples). Second, analyzing any subset of CpGs in the genome
bears the risk of introducing species-specific biases; while we perform extensive validations and designed our
analyses to ameliorate this risk, it is a relevant consideration for all analyses of the presented dataset. Third,
we focused our initial analysis of this large dataset primarily on DNA methylation at CpG dinucleotides, given
its well-established biological roles. Nevertheless, the RRBS assay also covers DNA methylation at non-CpG
sites (i.e., CpA, CpC, CpT), and we observed expectedly low levels of non-CpG methylation in our dataset
(species medians ranging from 0.99% to 2.43% across all analyzed vertebrate species). We also detected sig-
nificantly higher non-CpG methylation levels in brain compared to other tissues in mammals as well as birds,
consistent with a recent report focusing on much fewer species®. Fourth, this study relies on our reference-
free analysis method (RefFreeDMA)*, which enables us to work without reference genomes but lacks the
regional context that is provided by a high-quality reference genome. We addressed this limitation by focusing
on transcription factor binding sites, whose DNA methylation levels tend to reflect the activity of the corre-
sponding transcription factors. Moreover, we devised a cross-mapping strategy that leverages gene annotations
from existing reference genomes and combines different species in a human ortholog gene space. Fifth, despite
the large number of samples and species in our study, many interesting clades (especially among amphibians
and reptiles) remain underrepresented or are covered with few samples. Finally, the different species do not
provide fully independent data points but are connected through evolution, which we accounted for by statis-
tical methods that correct for phylogenetic relationships or within-species modeling. Accounting for phyloge-
netic relationships will be an important consideration for future analyses building on our dataset, and the de-
velopment of phylogenetically aware machine learning methods could refine and enhance the inferred “code”.
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In conclusion, this study provides an initial account of the DNA methylation dynamics associated with verte-
brate evolution, not only by creating a dataset of unprecedented scale and scope, but also by providing insights
into the conserved and divergent role of DNA sequence composition, tissue types, and inter-individual varia-
tion on DNA methylation. Most notably, we found that DNA sequence and DNA methylation maintained
complex associations throughout vertebrate evolution, which likely contribute to the diversity of epigenetic
regulatory processes observed in vertebrate species, human populations, and complex diseases.
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Guinea pig: Plath81 (https://en.wikipedia.org/wiki/Guinea_pig#/media/File:George the amaz-
ing_guinea_pig.jpg)
Cat: Alvesgaspar (https://commons.wikimedia.org/wiki/File:Cat August 2010-4.jpg)

Thirteen-lined ground squirrel: Phil Myers, Museum of Zoology, University of Michigan (http://www.ge-
nome.gov/pressDisplay.cfim?photolD=4)

Squirrel monkey: Luc Viatour (https://en.wikipedia.org/wiki/Squirrel monkey#/media/File:Saimiri_sciu-
reus-1_Luc_Viatour.jpg)

Marmoset: Carmem A. Busko (https://en.wikipedia.org/wiki/Marmoset#/media/File:Marmoset_copy.jpg)
Chicken: Andrei Niemimaki (https://en.wikipedia.org/wiki/Chicken#/media/File:Male _and female chi-
cken_sitting_together.jpg)

Silkie: Benjamint444 (https://en.wikipedia.org/wiki/Silkie#/media/File:Silky bantam.jpg)

Crested partridge: Brian Gratwicke

15


https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://www.fisheries.noaa.gov/species/witch-flounder
https://animalia-bio.us-east-1.linodeobjects.com/animals/photos/full/original/banded-bullfrog-28kaloula-pulchra292c-angkor-wat2c-cambobia.webp
https://animalia-bio.us-east-1.linodeobjects.com/animals/photos/full/original/banded-bullfrog-28kaloula-pulchra292c-angkor-wat2c-cambobia.webp
https://commons.wikimedia.org/wiki/File:RhinoIguanaMay07Pedernales.jpg
https://flickr.com/photos/19731486@N07/5110329309
https://commons.wikimedia.org/wiki/File:Red_necked_wallaby444.jpg
https://commons.wikimedia.org/wiki/File:Saimiri_sciureus-1_Luc_Viatour.jpg
https://commons.wikimedia.org/wiki/File:Saimiri_sciureus-1_Luc_Viatour.jpg
http://www.ars.usda.gov/is/graphics/photos/apr12/k4166-5.htm
https://en.wikipedia.org/wiki/Guinea_pig#/media/File:George_the_amazing_guinea_pig.jpg
https://en.wikipedia.org/wiki/Guinea_pig#/media/File:George_the_amazing_guinea_pig.jpg
https://commons.wikimedia.org/wiki/File:Cat_August_2010-4.jpg
http://www.genome.gov/pressDisplay.cfm?photoID=4
http://www.genome.gov/pressDisplay.cfm?photoID=4
https://en.wikipedia.org/wiki/Squirrel_monkey#/media/File:Saimiri_sciureus-1_Luc_Viatour.jpg
https://en.wikipedia.org/wiki/Squirrel_monkey#/media/File:Saimiri_sciureus-1_Luc_Viatour.jpg
https://en.wikipedia.org/wiki/Marmoset#/media/File:Marmoset_copy.jpg
https://en.wikipedia.org/wiki/Chicken#/media/File:Male_and_female_chicken_sitting_together.jpg
https://en.wikipedia.org/wiki/Chicken#/media/File:Male_and_female_chicken_sitting_together.jpg
https://en.wikipedia.org/wiki/Silkie#/media/File:Silky_bantam.jpg
https://doi.org/10.1101/2022.06.18.496602
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.18.496602; this version posted June 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Common Quail: KaouroV (https://en.wikipedia.org/wiki/Common_quail#/media/File:A _com-

mon_quail_in_Lebanon.jpg)

Vulturine guineafowl: Sumeet Moghe (https://en.wikipedia.org/wiki/Vulturine guineafowl#/media/File:Vul-
turine Guineafowl at Samburu.jpg)

Black-necked Swan: Sanjay Acharya (https://en.wikipedia.org/wiki/Black-necked swan#/media/File:Black-
necked Swan.jpg)

Garganey: Dick Daniels (http://theworldbirds.org/)

Mallard: Richard Bartz (https://en.wikipedia.org/wiki/Mallard#/media/File:Anas platyrhynchos male fe-
male quadrat.jpg)

Orangutan: Eleifert (https://en.wikipedia.org/wiki/Orangutan#/media/File:Orang_Utan, Semenggok Fo-
rest Reserve, Sarawak, Borneo, Malaysia.JPG)

Green monkey: tjabeljan (https://en.wikipedia.org/wiki/Green _monkey#/media/File:Gambia06Bi-
jilo0015 (5421078756).jpg)

Snub-nosed monkey: Giovanni Mari (https://en.wikipedia.org/wiki/Golden_snub-nosed monkey#/me-
dia/File:Golden_Snub-nosed Monkeys, Qinling Mountains_-_China.jpg)

Baboon: Muhammad Mahdi Karim (https://en.wikipedia.org/wiki/Baboon#/media/File:Olive ba-
boon_Ngorongoro.jpg)

Macaque: Charles J. Sharp (https://en.wikipedia.org/wiki/Rhesus_macaque#/media/File:Rhesus_ma-

caque (Macaca mulatta mulatta), male, Gokarna.jpg)

Ural owl: Jyrki Salmi(https://en.wikipedia.org/wiki/Ural owl#/media/File:Strix_uralensis, Kotka, Fin-
land 1.jpg)

Tawny owl: Martin Mecnarowski (https://en.wikipedia.org/wiki/Tawny_owl#/me-
dia/File:Strix_aluco 3_(Martin_Mecnarowski).jpg)

Eurasian eagle owl: Martin Mecnarowski (https://en.wikipedia.org/wiki/Eurasian_cagle-owl#/me-
dia/File:Bubo_bubo_ 3 (Martin_Mecnarowski).jpg)

Long-eared owl: Sascha Rosner (https://en.wikipedia.org/wiki/l ong-eared_owl#/media/File:Wal-
dohreule in freier Wildbahn.jpg)

Little owl: Arturo Nikolai (https://en.wikipedia.org/wiki/Little owl#/media/File:Mo-

chuelo Com%C3%BAn_(_Athene_noctua )(1).jpg)

Supplementary Figure 4:

Penaeus monodon: Author unknown (https://commons.wikimedia.org/wiki/File:Penacus_monodon.jpg)

Common Octopus: Author unknown (https://commons.wikimedia.org/wiki/File:Octopus2.jpg)

Lobster: U.S. National Oceanic and Atmospheric Administration (https://www.flickr.com/photos/noaapho-
tolib/5114738480/)

Lancelet: Hans Hillewaert (https://upload.wikimedia.org/wikipedia/commons/4/47/Branchiostoma _lanceola-
tum.jpg)

Acorn worm: NOAA Photo Library (https://en.wikipedia.org/wiki/Acorn_worm#/me-
dia/File:Expn7526_(38827990315).jpg)

Lamprey: Bulletin of the United States Fish Commission (https://en.wikipedia.org/wiki/Arctic_lam-
prey#/media/File:L.ampetra_camtschatica.jpg)

Alitta succinea: Hans Hillewaert (https://commons.wikimedia.org/wiki/File:Alitta succinea (epitoke).jpg).
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Figure 1. An atlas of DNA methylation comprising 583 animal species reveals global links between ge-
nomes and epigenomes throughout vertebrate evolution

(a) Visual summary of the study. The cross-species atlas comprises 2445 genome-scale DNA methylation
profiles covering 583 animal species (538 vertebrates and 45 invertebrates). The animal silhouettes show one
species per taxonomic group: Octopus (invertebrata, invertebrates), shark (chondrichthyes, cartilaginous fish),
carp (actinopteri, bony fish), frog (amphibia, amphibians), turtle (reptilia, reptilians), pigeon (aves, birds),
kangaroo (marsupialia, metatherian mammals / marsupials), elephant (mammalia, eutherian mammals). Organ
silhouettes denote the main tissues included: Skin, fin, brain (ectoderm); lymph node, spleen, muscle, heart
(mesoderm); gut, kidney, gills, lung, liver (endoderm). Heart and liver are highlighted in color to indicate their
status as prioritized tissues in this study. Animal silhouettes were obtained from the PhyloPic database.

(b) Bubble plot showing the number of analyzed primary tissues samples by taxonomic group and tissue.

(c) Bar plot showing genome-wide DNA methylation levels for each species (black bars outside of the circle),
averaged across all tissues and individuals, mapped onto an annotated taxonomic tree. An interactive diagram
is available on the Supplementary Website (http://cross-species-methylation.computational-epigenetics.org/).

(d) Boxplot showing genome-wide DNA methylation levels for all species, aggregated by taxonomic group.

(e) Boxplot showing the percentage of consensus fragments in each species’ consensus reference that fall into
three bins based on their DNA methylation levels, aggregated by taxonomic group.

(f) Left: Bar plot showing the percentage of variance among species-specific mean DNA methylation levels
that is explained by features sets reflecting genomic sequence composition (CG composition, CpG island fre-
quency, k-mer frequencies). All values were adjusted for model complexity (i.e., number of variables), and the
colors indicate the mean Akaike information criterion (AIC). Error bars represent standard deviations based
on bootstrapping (100 iterations). Right: Bar plot showing the stability with which individual 3-mers were
selected into the final model using stepwise selection. Stars indicate that the respective 3-mers show a statisti-
cally significant association based on the phylogenetic generalized linear model depicted in panel h.

(g) Hierarchical clustering of species based on the similarity of their 3-mer and 6-mer frequencies among the
consensus reference fragments. K-mer lengths of four and five yielded very similar results. The dendrogram
is annotated with each species’ taxonomic group (color-coded).

(h) Scatterplot comparing the statistical significance of the associations between 3-mer frequencies and global
DNA methylation levels based on generalized linear models with (x-axis) and without (y-axis) correction for
phylogenetic relationships. The 3-mers from panel f are shown in bold. Dashed lines correspond to an adjusted
p-value of 0.05.

(1) Scatterplot showing the relationship between genome-wide DNA methylation levels and DNA methylation
erosion as measured by the “proportion of discordant reads” (PDR) for individual samples. The dashed line
represents their mathematically expected relationship. The solid line represents a generalized additive model
fitted to the data using the R function geom_smooth.

(j) Scatterplot showing the relationship between genome-wide DNA methylation levels and DNA methylation
erosion for taxonomic groups, taking the median across samples. The dashed line represents their mathemati-
cally expected relationship (as in panel i). The solid line represents a linear regression model fitted to the data.
The Pearson correlation and its significance are indicated.

(k) Boxplot showing log-ratios of non-CpG methylation levels in brain compared to other tissues in the same
species. Boxplots are overlayed with individual data points using the species abbreviations (Supplementary
Table 2). Increased non-CpG methylation levels in brain were assessed with a one-sided paired Wilcoxon test.
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Figure 2. Machine learning analysis identifies a genomic code for locus-specific DNA methylation

(a) Schematic illustration of the machine learning based approach for predicting locus-specific DNA methyl-
ation from the underlying genomic DNA sequence.

(b) Boxplot showing the test-set performance (operating characteristic area under curve values, ROC-AUC)
of support vector machines (SVMs) predicting the DNA methylation status (high vs. low) of individual ge-
nomic regions based on the k-mer frequencies of the corresponding genomic DNA sequence.

(c) Representative ROC curves for each taxonomic group, selected such that the displayed species’ ROC-AUC
value closely reflects the mean ROC-AUC value of the corresponding taxonomic group. As negative controls,
ROC curves trained and evaluated on data with randomly shuffled labels fall close to the diagonal (in grey).

(d) Histograms of ROC-AUC values for vertebrate and invertebrate species, with the lamprey (a “primitive”
jawless vertebrate) shown as a green dot between the two distributions.

(e) Heatmap displaying the feature weights of 3-mers based on SVMs trained to predict locus-specific DNA
methylation from the underlying DNA sequence, separately for each species (ordered by the taxonomic tree).

(f) Sequence logos illustrating averaged feature weights of 3-mers across species for each taxonomic group.
Sequence logos are displayed separately for positive and negative weighted features (3-mers associated with
high and low DNA methylation levels, respectively).
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Figure 3. The genomic code for DNA methylation is conserved across vertebrates and invertebrates

(a) Heatmap showing ROC-AUC values for the prediction of locus-specific DNA methylation from the under-
lying DNA sequence between all pairs of species. SVMs were trained using data from one species (rows) and
evaluated on data from another species (columns). Species were ordered by the taxonomic tree and annotated
with their taxonomic group (rows and columns). The comparisons of panel b are highlighted in the heatmap.

(b) ROC curves illustrating four characteristic outcomes of the cross-species predictions. SVMs were trained
in one species (fat dormouse, abbreviated as FD) and tested in different targeted species (left to right: Parma
wallaby, PK; macaque, MAC; little skate, LSK; white hake, WHH), resulting in: (i) high prediction perfor-
mance in the target species, exceeding that observed in the training species; (ii) high prediction performance
in the target species but not reaching the same level as in the training species; (iii) poor prediction performance
in the target species close to the negative controls (data with randomly shuffled labels); (iv) inverted prediction
performance with poorer-than-random prediction performance in the target species (“inverted species”).

(c) Boxplots summarizing the cross-species prediction performance (ROC-AUC values from panel a) aggre-
gated by taxonomic group of the training species (individual plots) and test species (x-axis).

(d) Histograms of cross-species prediction performance (ROC-AUC values from panel a) for all inverted fish
species (top) in comparison to the same number of phylogenetically related non-inverted species (bottom). The
following inverted species are shown: Atlantic cod, ACO; walleye pollock, WEP; white hake WHH; Atlantic
salmon, ATS; Atlantic herring, ATH. And the following phylogenetically related species are shown: Pollock,
POL; silver arowana, SAA; Pacific grenadier, PAG; onefin flashlightfish, FLF; trout TRO. Models trained in
an inverted species obtained ROC-AUC values below 0.5 in most other species, while models trained in a non-
inverted species obtained ROC-AUC values above 0.5 in most other species.

(e) Left: Heatmap showing SVM feature weights for the most differential 3-mers between an inverted species
(white hake, WHH) and all other bony fish (actinopteri) species, sorted based on the taxonomic tree. Right:
Bar plots for the weights of the same 3-mers in white hake compared to their average across all other bony fish
(actinopteri) species (error bars indicate standard deviations).

(f) Scatterplots for the association between the cross-species prediction performance (y-axis) of SVMs trained
in an inverted species (white hake, WHH) and the difference in frequency of four 9-mer repeats (x-axis) con-
structed by the repetition of the differentially weighted 3-mers from panel d. Values greater than 0 indicate
higher frequency in highly methylated sequences and vice versa. The following inverted species are shown:
Atlantic cod, ACO; walleye pollock, WEP; white hake WHH; Atlantic salmon, ATS; Atlantic herring, ATH.
Dashed lines indicate a frequency difference of 0 (vertical line) and a ROC-AUC value of 0.5 (horizontal line).

26


https://doi.org/10.1101/2022.06.18.496602
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.18.496602; this version posted June 20, 2022. Thecopyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to displ&y the preprint in perpetuity. It is

Q

made a3\ O International licence
1 2 — madeayailaple 16 tnternationaHicense— wanee

_ 1 Invertebrata , *||Chondrichthyes Spimblader , Amphibia , Species essss
[ uscle:! Fewer =More
> Fin 6% V4 k. V4 l¢] 00000
2 o e © p=0219 % » 100
— *
= / o’/ —
‘© 1 p=00488 0 & £ 15
< Ve Freg. of tissues o) Freq. of tissues 5

o i =
2 /’ Il{lgﬂhsmcle 3l ) Hemart =
o | % "Rl : p=2216-09 ’ iver: £ 5 :
o /7 e fect 52|, S %en S|| 7 . Al 2 EngBluodé 2
5 01 Gillg="= eart= Actinopteri g elocd 5 ]
@ - 225
c 14 Reptilia 7| [Freq. of tissues 7 Freq. of tissues 7] Freq. of tissues 7 b
‘© [ - i Lymphnode
g 7 oHeart 7 & Spleen 7 ||Héart ’ F
q>§ > Eﬂﬁen Lu skin san, Lo V4 E 0
@ = BE.;*Q 2',3"!&%!:'[ L|\ier 0 25 50 75 100
2 gLymngggle v DNA methylation in heart (%)
< . .
= ‘/ Top-500 fragments with lower DNA meth. in:
S 6 /%, p=0563 "
- o) /7 .‘ Heart Liver
3 - 2766-09 7/ 7/ p=3.7e-14 Transcription factor binding site (TFBS)
s /7 p=2.766- /7 o /7 ) enrichment analysis

Aves Marsupialia Mammalia
5 ip o i i cTaMch 00k W
Mean variance explained (R?) by the tissue

C
| | p—
S N e e (T = e

I T Expression heart

Lower DNA meth. in:

FOX04 EGR1

Witch flounder (i)
Asian bullfrog (ii)
Rhinoceros iguana (iii)
Asian fairy-bluebird
Crested partridge (iv)
Western capercaillie
Vulturine guineafowl
Little owl

Wallaby (v)
Waterbuck

Fallow deer

Java mouse-deer
Pot-bellied pig
Brown bear
Southern sea lion
Megabat

Mara

Desmarest's hutia
Old World porcupine
European hare
Emperor tamarin
Squirrel monkey (vi)
White-faced saki
Guenon

Mantled guereza

Other TFs

——p Activation =====f |nhibition

‘ TFBS lower methylated in heart
TFBS lower methylated in liver

Target gen

shear stress

cardiac septum
development

coronary vasculatul rep
development _
heart valve development negative regulation of cell
- cycle

Liver associated GO term

es Non-discriminatory GO term

FOXC2
FOXC1
FOXL1

TF-GO term connection

[T Binding preference Heart
CITTTTT [T T T T 7 WM TF class
o Not significant
— TF binding preference Liver
E ety
—_ nmethylat -
U e. ylated Normalized
— Undefined expression:
- Liver Heart
TF class
| C2H2 zinc finger factors
Fork head / winged helix factors
Homeo domain factors
—
—_— Nuclear receptors with C4 zinc fingers
E % 1'7_: % E E § (;3 § § § § (;3 c:) % % §3 %c % % % e % E SMAD/NF-1 DNA-binding domain factors
m
»g;g%t E3EZB250%58 m39§85N Tryptophan cluster factors
= &
liver development
.Q. D ONECUT1
hepatocyte differentiation
e — HNF1B
.,, cell differentiation - pRRX1 bile acid binding
IGEBP1 FOXP3 N bile acid receptor activity
VDR bile acid signal h
regeneration ile acid signaling pathway
HNF1A cEfR FOXP1
lation of t ipti secretion
MY.C " response to hypoxid FOXK2
FOXA3 glucose homeostasis
ZB‘;?A EETETER (Dl NR2C1 EOXO4 thyroid hormone mediated
FOXA1 o« < signaling pathway
resgﬁg:«teat:cteoxlc FOXAL regulation of heart
E2F1 ’ reSPoTEaE Iami‘n/ar flui cellular nitrogen compound NR2F2 CONUABNON
P metabolic process THRB  Ventricular cardiac muscle

tissue morphogenesis
cardiac muscle cell
proliferation
regulation of heart
morphogenesis
embryonic heart tube
development

heart development

TFBS lower methylated in liver
Heart associated GO term e—e TFBS lower methylated in heart

Figure 4


https://doi.org/10.1101/2022.06.18.496602
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.18.496602; this version posted June 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Figure 4. Tissue-specific DNA methylation analysis indicates deeply conserved associations of DNA
methylation with transcription regulation and cellular identity

(a) Scatterplots showing the percentage of locus-specific DNA methylation variance that is explained by the
tissue (x-axis) and by the individual (y-axis), separately for each taxonomic group. Arrows and p-values indi-
cate the direction and statistical significance of the difference in the variance explained by tissue and individ-
ual, calculated using a two-sided pairwise Wilcoxon test. Dashed lines indicate non-significant differences.
Word clouds summarize the frequency of tissue types that contributed to the analysis in each taxonomic group.

(b) Schematic illustration of the enrichment analysis for transcription factor binding site (TFBS) motifs among
the differentially methylated regions identified between heart and liver (within a given species).

(¢) Clustered heatmap showing TFBS motif enrichments for differentially methylated fragments between heart
and liver. For each transcription factor (columns), colors indicate whether it was enriched in fragments that
were hypomethylated in heart (blue) or liver (yellow) in the corresponding species (rows). Only transcription
factors and species with a minimum of ten significant enrichments per species and normalized RNA expression
values greater than one in either heart or liver tissues in the Human Protein Atlas®® are shown.

(d) Visualization of the Gene Ontology annotations of the transcription factors identified in panel c.

(e) Gene-regulatory network constructed based on the transcription factors identified in panel ¢ with known
binding preference (methylated/unmethylated) and their direct target genes with known regulatory effect (ac-
tivation: green; repression: red). Transcription factors that were preferentially hypomethylated in one tissue
type were colored in yellow (heart) or blue (liver), while those that did not show such an enrichment as well
as the transcription factor target genes were colored in grey. The inset shows the specific enrichments for
FOXO04 and EGRI1 in heart and liver, which have opposing effects on HIF1A (FOXO4: activation; EGR1:
repression). The pictures at the bottom show one species for each taxonomic group that contributed to this
cross-species analysis of DNA methylation differences in heart and liver.
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Figure 5. Cross-species analysis of DNA methylation in the human-ortholog gene space identifies both
phylogenetic conservation and divergence of gene promoter methylation

(a) UMAP representation of DNA methylation at gene promoters based on cross-mapping of reference-free
consensus reference fragments to annotated reference genomes. Samples are colored by taxonomic group, and
the matched reference genomes are overlayed in black. Each sample is labeled by its sample identifier (Sup-
plementary Table 1), searchable and readable when zooming into the PDF of the figure. Inset: UMAP repre-
sentation of the same data but with non-missing values randomly re-assigned to non-missing positions in the
data matrix to exclude potentially predictive features arising from the patterns of missing values.

(b) ROC curves for random forest classifiers using the cross-mapped dataset to distinguish between heart and
liver based on promoter methylation data for birds and mammals. The solid lines are based on the actual data,
while the dashed lines are based on randomized data as in the inset in panel a.

(c) Boxplots showing DNA methylation levels at gene promoters for the four most predictive (i.e. differential)
genes in the classification of heart versus liver, aggregated by taxonomic groups and overlayed with individual
data points using the species abbreviations (Supplementary Table 2). Gene names and corresponding classi-
fication importance are indicated. P-values were calculated using a two-sided Wilcoxon test.

(d) ROC curves for random forest classifiers using the cross-mapped dataset to distinguish between birds and
mammals based on promoter methylation data for heart and liver samples. The solid lines are based on the
actual data, while the dashed lines are based on randomized data as in the inset in panel a.

(e) Boxplots showing DNA methylation levels at gene promoters for the four most predictive (i.e. differential)
genes in the classification of mammals versus birds, aggregated by taxonomic groups and overlayed with in-
dividual data points using the species abbreviations (Supplementary Table 2). Gene names and corresponding
classification importance are indicated. P-values were calculated using a two-sided Wilcoxon test.
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Materials and Methods

Sample collection

Samples were selected to represent all vertebrate classes and proximal marine invertebrates. To obtain this
breadth of coverage, tissue samples were obtained from several sources (Supplementary Table 1-4):

1.

10.

Research Institute of Wildlife Ecology of the University of Veterinary Medicine Vienna (1619 samples):
Tissue samples were collected and frozen during routine pathological examination of deceased wild, pet,
and zoo animals. Samples were stored at -80 °C. Pathological conditions and sample preservation (1: well
preserved, 2: intermediate, 3: rotten) were recorded (Supplementary Table 3). Well-preserved samples
were preferentially selected. Species names were obtained from the notes of the pathological examination.
Peripheral blood of Bactrian camel (Camelus bactrianus) and llama (Lama glama) was collected as part
of routine veterinary examinations. Blood cell types were isolated using forward/side scatter FACS*,
Ocean Genome Legacy Center (OGL) at the Northeastern University Marine Science Center (602 sam-
ples): Specimens were collected and deposited to the OGL collections by numerous collaborating research-
ers and were stored at -80°C prior to dissection. DNA was isolated using the Qiagen DNeasy Blood &
Tissue kits according to the manufacturer’s protocol and stored at -80°C prior to shipment on dry ice.
Commercial fish farm (Biofisch Wien) (73 samples): Innards of fish killed for food were immediately
dissected, transported on dry ice, and stored at -80 °C until DNA extraction using the Qiagen kit.
Commercial fish retailer (Naschmarkt Wien) (67 samples): Whole specimens of sea food were purchased,
transported on ice, dissected, and stored at -80 °C until DNA extraction using the Qiagen kit.
Department of Medical Biochemistry of the Medical University of Vienna (21 samples): Tissue samples of
chickens (Gallus gallus) were collected and stored at -80 °C until DNA extraction using the Qiagen kit.
Max Planck Institute for Evolutionary Biology (16 samples): Tissue samples of Eurasian blackcaps (Sylvia
atricapilla). The birds were caught at the Pape Ornithological Station, Latvia (56°9'48"'N, 21°1'35"E) be-
tween the end of August and the beginning of September 2011, then transported to the University of Fer-
rara, Ferrara, Italy, where they were held in aviaries till sample collection. Experimental procedures unre-
lated to this work were carried out during the autumn migratory season 2011, and birds were stored at -
80 °C until organs were dissected in 2016 at the MPI for Evolutionary Biology. DNA was isolated using
a standard phenol-chloroform extraction protocol and stored in ddH2O at -80°C.

Department of Biology of the University of Kentucky (16 samples): Tissue samples of Mexican axolotls
(Ambystoma mexicanum) were collected and stored at -80 °C until DNA using a standard phenol-chloro-
form extraction protocol.

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (12 tissue samples):
Tissue samples of Tasmanian devils (Sarcophilus harrisii) (healthy controls) were collected and processed
as part of a previously published study that investigated Tasmanian devil transmissible tumors'%2,

St. Anna Children’s Cancer Research Institute (12 samples): Leukocytes and erythrocytes of zebrafish
(Danio rerio) were collected from kidneys and blood of adult animals. Cells were dispersed in PBS sup-
plemented with 3% FCS and 2 mM EDTA and sorted by FACS following an established protocol for blood
cell populations in zebrafish!®. Sorted cells were lysed and DNA was isolated using the Qiagen kit.
Department for Pathobiology of the University of Veterinary Medicine Vienna (7 samples): Tissue samples
of flying snakes (Chrysopelea) were collected during routine pathological examination of deceased ani-
mals and stored at -20 °C until DNA extraction using the Qiagen kit.

Taxonomic annotation

All samples were annotated with a scientific (Latin) name and a common (English) name based on the infor-
mation provided by the sample source. Occasionally, the available information did not support the assignment
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of the exact species; these samples were assigned genus names rather than individual species names. Moreover,
the sequencing data for each species were compared with public reference databases (as described in more
detail below), and potential errors or ambiguities were flagged or corrected based on manual inspection. De-
tailed taxonomic annotations for all included species were obtained from the NCBI database using the function
classification in the R package taxize and manually reviewed for accuracy. In all analyses, marsupials were
placed in their own group (although they are mammals), given their unique evolutionary history. We used the
NCBI Taxonomy Browser (https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi) to create a
taxonomic tree for all species, and we visualized the resulting phylogenetic relationships and associated infor-
mation using the iTOL software!%. The resulting annotated species tree is provided for interactive viewing and
browsing under the following URL: https://itol.embl.de/tree/841339292169571630660457.

DNA extraction from tissue samples

DNA from tissue samples was extracted using the Qiagen DNeasy Blood & Tissue kits according to the man-
ufacturer’s protocol. Briefly, small pieces of tissue (~2 mm?®) were placed in collection tubes, covered with
proteinase-K containing digestion buffer, and shaken overnight at 56 °C. When the tissue samples were com-
pletely dissolved, the DNA was bound to spin columns and washed, followed by elution in 50-200ul nuclease
free water, depending on the expected amount of DNA. The DNA concentration was then quantified using a
Qubit fluorometer. DNA from isolated blood cells was isolated as previously described**, using the Allprep
DNA/RNA Mini kit (Qiagen). Between 50,000 and two million cells were lysed in 600 pl Buffer RLT Plus
supplemented with 1% B-Mercaptoethanol and vortexed thoroughly for at least 5 min. The procedure of iso-
lating DNA and RNA was performed according to protocol. DNA was stored at -20 °C.

DNA methylation profiling by RRBS

Reduced representation bisulfite sequencing (RRBS) was performed as described previously***, using 100 ng

of genomic DNA for most samples, while occasionally going down to 1 ng for samples with low DNA amounts
(Supplementary Table 1). To assess the bisulfite conversion efficiency independent of CpG context, methyl-
ated and unmethylated spike-in controls were added at a concentration of 0.1%. For most samples, DNA was
digested using the restriction enzymes Mspl and Taql in combination (as opposed to only Mspl in the original
protocol) in order to increase genome-wide coverage. For certain older samples, only Mspl was used (Supple-
mentary Table 1). Restriction enzyme digestion was followed by fragment end repair, A-tailing, and adapter
ligation. Finally, the libraries were size selected by performing a 0.75% cleanup with AMPure XP beads (Beck-
man Coulter, A63881) retaining fragments of about 100 bp to 1000 bp length. The amount of effective library
was determined by qPCR, and samples were multiplexed in pools of 10 with similar gPCR C; values. The
pools were then subjected to bisulfite conversion, followed by library enrichment with PCR. Enrichment cycles
were determined using qPCR and ranged from 6 to 18 (median: 11). After confirming adequate fragment size
distributions on Bioanalyzer High Sensitivity DNA chips (Agilent), libraries were sequenced on Illumina
HiSeq 3000/4000 machines using the 50 or 60 bp single-read setup.

Sequencing of unconverted RRBS libraries

To distinguish with confidence between genomic thymines und constitutively unmethylated cytosines (which
are read as thymines using bisulfite sequencing), we sequenced one RRBS library for each species omitting
the bisulfite conversion. Libraries were multiplexed in pools of up to 20 samples, and the pools were subjected
to size selection with a 0.6x reverse bead clean up and eluted in 20 pl EB. The amount of effective library in
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the size-selected pools was determined by qPCR using 1 pl size selected library as input. Based on gPCR C;
values for each pool, the number of PCR enrichment cycles was determined as the C; minus two, which ranged
from 5 to 11 cycles. PCR and qPCR cycler programs were the same as in the RRBS protocol. The enriched
libraries were subjected to a 1.0x bead clean up. Library size distributions were assessed on Bioanalyzer High
Sensitivity DNA chips (Agilent) and ranged from 260 to 300 bp (mostly 280 bp). Libraries were sequenced on
Illumina HiSeq 3000/4000 machines using the 50 or 60 bp single-read setup.

RRBS data processing

The RRBS data were processed using an updated version of the RefFreeDMA software*, which is available
on Github (https://github.com/jklughammer/RefFreeDMA). For each species, we used RefFreeDMA to cluster
the sequencing data into read stacks corresponding to specific positions in the genome, to infer the genomic
DNA sequence as a weighted consensus for each read stack (including both converted and unconverted RRBS
libraries), and to perform DNA methylation calling for each sample against these consensus reference frag-
ments. Two improvements were introduced in the process of generating the consensus references: (i) Detection
and removal of contaminating microbial sequences by mapping all reads to a “decoy” genome consisting of
the NCBI BLAST dataset of representative bacterial/archeal genomes and keeping only unmapped reads; (ii)
incorporation of unconverted RRBS libraries to enhance detection of consistently unmethylated genomic cy-
tosines. For analyses that focused on the genomic sequence (e.g., k-mer frequencies, sequence-based prediction
of DNA methylation), only those consensus reference fragments that were covered by the corresponding un-
covered RRBS library were considered, in order to minimize bias. Finally, summary statistics and quality
metrics (including mapping rate, number of covered CpGs, conversion efficiency, DNA methylation level,
contamination level, pre-fragmentation) were calculated for each sample (Supplementary Table 1).

RRBS coverage simulation

To assess the genomic coverage of RRBS across a wide range of species, we simulated the restriction digest
and size selection in RRBS for all annotated vertebrate genomes that were available from the UCSC Genome
Browser, and we determined the expected RRBS coverage for relevant genomic elements (CpG islands, tran-
scripts, promoters, and repeats) in each species. To create in silico RRBS libraries, we first mapped all Mspl
and Tagql restriction sites in the corresponding genomes using the matchPattern function from the R package
Biostrings'®. The resulting restriction fragments were then filtered to mirror the RRBS size selection step,
retaining fragments with a length between 50 bp and 1000 bp. Of these fragments, the first and last 50 bp were
registered as simulated RRBS reads. We next identified all CpGs within the genomes using the matchPattern
function and intersected these coordinates with the regions covered by the in silico RRBS libraries, and with
the relevant genomic elements (CpG islands, transcripts, promoters, and repeats) using the findOverlaps func-
tion of the R package GenomicRanges'*. Finally, we calculated the fraction of CpGs within each of the as-
sessed genomic elements that are covered by the in silico RRBS libraries. For each genome, the coordinates
of the genomic elements were downloaded from the UCSC Genome Browser website (goldenpath/<ge-
nome>/biZips) using the rtracklayer'®’ package. Promoters were defined as the regions 1000 bp upstream and
500 bp downstream of the transcription start sites. The genome sequences were obtained from the correspond-
ing genome assemblies provided by the UCSC Genome.

The following species and genome assemblies were included in the analysis: C. intestinalis (ci3), African
clawed frog (xenLae2), Armadillo (dasNov3), Elephant shark (calMill), Tibetan frog (nanParl), Lizard
(anoCar2), Medaka (oryLat2), Fugu (fr3), Tetraodon (tetNig2), Nile tilapia (oreNil2), Kangaroo rat (dipOrd1),
Stickleback (gasAcul), Atlantic cod (gadMorl), Sloth (choHof1), Zebrafish (danRer11), Manatee (triManl),

31


https://github.com/jklughammer/RefFreeDMA
https://doi.org/10.1101/2022.06.18.496602
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.18.496602; this version posted June 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Microbat (myoLuc2), Mouse (mm39), Garter snake (thaSirl), Naked molerat (hetGla2), Squirrel (speTri2),
Zebra finch (taeGut2), Golden eagle (aquChr2), Chinese hamster (criGril), Guinea pig (cavPor3), S. purpu-
ratus (strPur2), Brown kiwi (aptManl), Mouse lemur (micMur2), Hawaiian monk seal (neoSchl), Chicken
(galGal6), Budgerigar (melUnd1), American alligator (allMis1), Elephant (loxAfr3), Lamprey (petMar3), Tur-
key (melGal5), Painted turtle (chrPicl), Cow (bosTau9), Ferret (musFurl), Rabbit (oryCun2), Tree shrew
(tupBell), Hedgehog (eriEur2), White rhinoceros (cerSim1), Wallaby (macEug2), Marmoset (calJac4), Sheep
(oviAri4), Megabat (pteVam1), Squirrel monkey (saiBoll), Cat (felCat9), Tasmanian devil (sarHarl), Golden
snub—nosed monkey (rhiRox1), Pig (susScrll), Rhesus (rheMac10), Baboon (papAnu4), Orangutan
(ponAbe3), Alpaca (vicPac2), Horse (equCab3), Green Monkey (chlSab2), Dog (canFam5), Rat (rn7).

Because many reference genomes had an incomplete assembly status and comprised many individual scaffold
sequences (often 10,000s or 100,000s thousands instead of a few dozen chromosomes), we concatenated indi-
vidual sequences into 20 artificial chromosomes, separating the sequences by stretches of 100 Ns. This im-
proved runtimes and avoided out-of-memory issues. After processing, genomic coordinates based on the arti-
ficial chromosomes were ported back to the original coordinate space to match the genome annotations.

Read coverage analysis

To assess biological and technical effects on our RRBS libraries and on the derived consensus references, each
consensus reference fragment was evaluated based on its read coverage across all samples for a given species
(Supplementary Figure 2a). The following classification was applied for each sample: If a fragment had a
read coverage of more than half the average coverage in that sample it was considered reliably covered. If a
fragment had a coverage of more than four times the average coverage across that sample it was considered
highly covered. Next, fragments that were highly covered in more than 80% of the samples were labeled as
“Repeat” to indicate that they were likely derived from repetitive genomic regions; fragments that were highly
covered in less than 20% of the samples were labeled as “Amplified”, given that this pattern is characteristic
of PCR amplification artefacts; and fragments that were reliably covered in more than 80% of the samples of
one individual but in less than 20% of the samples of other individuals were labeled “Private”, as such patterns
can arise from inter-individual genetic variability. For each sample, the relative proportion of these three cat-
egories (“Repeat”, “Amplified”, “Private”) was calculated and averaged across all samples for a given species.
For downstream analysis, only species with at least four samples and at least two individuals were considered.

Cross-mapping analysis

To validate our consensus references and to perform gene-centric analyses, we devised a cross-mapping work-
flow that connects the RefFreeDMA-derived consensus reference fragments to the most fitting reference ge-
nomes. We pursued an empirical “best fit” approach by aligning all consensus reference fragments for a given
species to all reference genomes available in the UCSC Genome Browser within the same class (as determined
by the lowest common function of the R package taxize). For each species, the reference genome with the
highest mapping rate was determined and used for further analysis. Mapping was performed using the cross-
mapping function of RefFreeDMA with an allowed mismatch rate of up to 0.2 (this value was empirically
determined). The genomes used for cross-mapping and their preparation are described in the RRBS coverage
simulation section. DNA methylation profiles across transcripts were created by averaging DNA methylation
calls within five kilobases upstream or downstream of the gene body in bins of 100 base pairs, and in bins of
200 base pairs within the gene body itself. For sample-wise analyses the samples were kept separate, whereas
all samples of a given species were combined for species-wise analyses.
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Integration of publicly available WGBS data

To validate our RRBS-based, reference-free DNA methylation analysis with publicly available WGBS data,
we identified those species in our dataset for which WGBS data were available from GEO, which included:
Phascolarctos cinereus®’ (GSE149600), Bos taurus®® (GSE147087), Mus musculus® (GSE42836), Gallus gal-
Ilus® (GSE146620), Parus major®* (SRR2070790), Chelydra serpentina® (data provided by the authors),
Xenopus laevis®** (GSE76247, GSE90898), Danio rerio™®® (GSE149416, GSE134055), Callorhinchus
milii*> (GSE141609), Branchiostoma lanceolatum®-® (GSE102144, GSE141609), Crassostrea gigas>*
(GSE40302), and Octopus bimaculoides® (GSE141609). For all species except Danio rerio and Parus major,
supplementary files containing CpG-wise coverage and methylation information were available on GEO and
obtained using the GEOquery package!'®. All files were converted into a common format containing CpG-
wise read coverage and DNA methylation ratio. Data for Danio rerio (GSE149416, GSE134055) and Parus
major (SRR2070790) were processed starting from the raw sequencing data using the gemBS pipeline'* with
the danRerl1and the Parus_majorl.1 assembly, respectively.

Validation of species annotations

We used the DNA sequencing data to verify species annotations. First, we created a bisulfite converted version
of the NCBI BLAST nucleotide database (Nucleotide collection nr/nt), and we mapped 1000 randomly selected
reads per sample with the NCBI BLAST command line tool, using the following parameters: -max_target seqs
100 -num_threads 4 -word_size 15 -evalue 0.00000001 -outfmt “6 gseqid sseqid sscinames scomnames glen
slen sstart send pident length evalue bitscore gseq” (https://github.com/jklughammer/bisulfiteBlast). Where
both of the two best matching species differed by more than the level of “class” from the annotated species
(this was assessed using the lowest common function of the R package taxize), samples were manually in-
spected and flagged as “unreliable” if the discrepancies could not be explained (e.g., by the absence of related
species in the NCBI database). In total, 30 samples were flagged as unreliable (Supplementary Table 1).

Analysis of genome-wide DNA methylation levels

To investigate the association between genome-wide DNA methylation levels and the genomic DNA sequence
composition, we calculated the mean DNA methylation levels across all CpGs and samples for each species,
and we correlated it with three sets of features derived from the corresponding consensus reference: (i) k-mer
frequencies; (ii)) CG composition; (iii) CpG island frequencies. K-mer frequencies for k ranging from 1 to 3
were calculated using the MEME suite’s fasta-get-markov software tool''°. CG composition included the fre-
quency of C and G nucleotides, the frequency of CpG dinucleotides, the ratio between observed and expected
CpG frequencies (where the expected frequency is defined as the calculated combinatory frequency based on
independent C and G frequencies), and the absolute number of covered CpG sites. CpG island frequencies
were calculated by determining the percentage of consensus reference fragments that fulfilled the Gardener-
Garden and Takai-Jones criteria for CpG islands!!""!'2, requiring a GC content (combined C and G frequencies)
of at least 50% (Gardiner-Garden) or 55% (Takai-Jones) and a CpG observed vs. expected ratio of at least 0.6
(Gardiner-Garden) or 0.65 (Takai-Jones), over stretches of 50 bp.

We evaluated the explanatory power of these feature groups for the observed variation in genome-wide DNA
methylation levels across species, using a standard linear model as well as linear models that included the
phylogenetic group annotation or the taxonomy tree as additional prior features. Linear models were imple-
mented using the R package phylolm''® to facilitate integration of taxonomy tree structure. The variance ex-
plained (R?) by each of the models, was calculated using the R2.pred() function from the 2 package''*. The
R? values were further adjusted using the Wherry Formula-1 formula to account for the number of variables in
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each of the models''®. All models were additionally evaluated by the standard Akaike information criterion,
using the A/C function from the stats or phylolm package respectively. To evaluate the predictive importance
of the different 3-mers, we used stepwise feature selection!!é, iteratively adding and removing the features
(individual 3-mers) in the linear model. Models were compared based on the Akaike information criterion
(AIC) using the stepAIC function from the R package MASS. Each 3-mer was assigned a stability score calcu-
lated as the percentage of bootstrap experiments in which the feature was selected for the final model.

Finally, we assessed how well 3-mer frequencies recapitulate phylogenetic distance between the analyzed spe-
cies. To that end, we derived a pairwise distance matrix across species based on the global 3-mer frequencies
in each species (calculated across the consensus references), using the disz function in R stats package''’. We
then performed hierarchical clustering of this distance matrix using the iclust function from the same package
with default parameters, and we visualized the result as a dendrogram using the dendextend package in R!'3,
For the analysis of publicly available WGBS data, genome-wide DNA methylation values were calculated for
each sample by averaging across the DNA methylation levels of all CpGs with coverage exceeding five reads.

Generalized linear models controlling for phylogenetic relationships

To test for association between genome-wide DNA methylation levels and 3-mer frequencies (or other factors
such as theoretical cancer risk), we used generalized linear models that explicitly account and control for phy-
logenetic relationships. Models were built individually for each factor, either with and without taking phylog-
eny into account, and the corresponding coefficients and associated p-values were used for interpretation. The
phylogenetic models were built with the compare.gee function from the ape''® package assuming a gaussian
distributions and using the taxonomic tree as depicted in Figure 1c¢. The standard models (without controlling
for phylogeny) were built using the g/m function from the stats package. For the 3-mer analysis, the p-values

obtained from both models were adjusted for multiple testing using the Bonferroni method.

Analysis of DNA methylation erosion

As a measure of DNA methylation erosion, the proportion of discordant reads (PDR) was calculated as de-
scribed in the original publication®’. A custom Python script (integrated in RefFreeDMA) was used to deter-
mine the number of concordantly or discordantly methylated reads with at least four valid CpG measurements
for each CpG within each sample. For each CpG, the PDR was then calculated as the ratio of discordant reads
compared to all valid reads covering that CpG. CpGs at the end of a read were disregarded as potentially
unreliable. Finally, sample-wise PDR values were calculated by averaging across their CpG-wise values.

Prediction of locus-specific DNA methylation levels

To investigate the association between locus-specific DNA methylation and the underlying DNA sequence,
we trained machine learning classifiers to predict the mean DNA methylation levels of individual genomic
regions (averaged across samples and/or tissues in a given species) based on their genomic DNA sequence.
Specifically, we trained support vector machines (SVMs) with a spectrum kernel from the R package kebabs'*
to predict the discretized DNA methylation states of consensus reference fragments (low: DNA methylation
less than 20% in all samples, high: DNA methylation greater than 80% in all samples, mean coverage greater
than 10 reads) based on the DNA sequence composition of the consensus reference fragment. From the set of
sequences assigned to high and low DNA methylation state, we randomly selected class-balanced training and
test sets comprising 2000 sequences each. In those species where one class contained less than 2000 sequences,
the number of sequences for the other class was reduced accordingly, in order to avoid class imbalance.
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For each species, training and test set sequences were transformed into feature matrices comprising all k-mer
frequencies with a fixed length k. Based on the training set, the optimal regularization value (C) as well as the
optimal k-mer length (k) were selected by grid search across C values of 0.01, 0.1, 1, and 10, and across k
values from 1 to 10, using 10-fold cross-validation (Supplementary Figure 6b). Finally, SVMs were retrained
on the complete training set (without cross-validation) using the optimal parameters and evaluated on the test
set. Generation of feature matrices, grid search, and model fitting was done using the kebabs package in R'%°.

A second set of models was trained and evaluated in each species using only 3-mers. To quantify the predictive
power of individual 3-mers in each taxonomic group, we calculated mean feature weights for each 3-mer across
all species in that group. These mean feature weights were used to generate sequence logos with the ggseqlogo
package in R'?!, separately for positive and negative feature weights. The significance of differences in the
mean feature weights was assessed using the Wilcoxon rank-sum test (wilcox.test function from the stats pack-
age in R). For each taxonomic group, the top-10 k-mers with the most significant differential feature weights
were reported (Supplementary Figure 6e). Finally, to test the robustness of these results, all predictions were
repeated with less stringent thresholds that include sequences with low DNA methylation levels in any sample
as opposed to all samples (low: DNA methylation less than 20% in any sample, high: DNA methylation greater
than 80% in all samples), and the ROC-AUC values were compared (Supplementary Figure 6a).

For validation based on publicly available WGBS data, we selected those species for which a suitable reference
genome and WGBS data with at least two biological replicates were available. The following species and
datasets were included: Bos taurus®® (GSE147087, bosTau9), Mus musculus® (GSE42836, mm9), Gallus gal-
Ilus® (GSE146620, galGal5), Xenopus laevis®-%* (GSE76247, GSE90898, Xla.v91), Chelydra serpentina®
(data provided by the authors, ASM1885937v1), Phascolarctos cinereus®” (GSE149600, phaCin unsw_v4.1),
Danio Rerio®® (GSE134055, danRerl11), and Branchiostoma lanceolatum*-% (GSE102144 and GSE141609,
Bl71nemr). All genome assemblies were processed using the Biostrings'® package and split in 50 basepair
tiles, mimicking the consensus reference fragments. Each tile was annotated with its mean DNA methylation
level calculated as the coverage-weighted mean of DNA methylation values for each CpG in the tile. As in the
RRBS-based analysis, only sequences with a mean coverage of at least 10 reads across all samples were re-
tained. Sequences with DNA methylation levels greater than 80% in all samples were labeled ‘highly methyl-
ated’, whereas those with DNA methylation levels less than 20% in all samples were labeled ‘lowly methyl-
ated’. The support vector machine was optimized, trained, and assessed on a balanced subset of 2000 randomly
chosen sequences, while ensuring that test and training sequences did not belong to the same chromosome.
This procedure was repeated three times in each species, in order to assess the stability of the results.

Cross-species predictions and inverted species

To assess the generalizability of locus-specific prediction across species, models were trained in one species
and tested (without re-training) in a different species. Model performance in each scenario was quantified by
receiver operating characteristic area under curve (ROC-AUC) values in unseen test sets of the target species.

These cross-species predictions unexpectedly resulted in a few cases (13 out of 580 species) in which the
observed cross-species prediction performance was systematically lower than expected by chance. We referred
to those outliers as inverted species, given that the relationship between locus-specific DNA methylation and
the underlying DNA sequence appeared to be inverted compared to most other vertebrate and invertebrate
species. Specifically, species with average ROC-AUC values below 0.45 compared to all other species were
denoted as inverted species, and the taxonomic group with most inverted species (actinopteri) was investigated
further. To that end, we identified those 3-mers whose feature weights deviated most strongly in the inverted
species, as compared to all other species in the same taxonomic group. To test the hypothesis that the observed
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inversion in the relationship between DNA methylation and DNA sequence was likely caused by recent ex-
pansion of heavily methylated repeats in the inverted species, we used the identified 3-mers for repeat identi-
fication, calculating the frequencies of 3-mer derived 9-mer repeats (e.g., ACGACGACG) across all consensus
reference fragments with high (greater than 80%) and low (less than 20%) average DNA methylation levels.

Analysis of tissue-specific DNA methylation

To assess the prevalence of tissue-specific versus inter-individual differences in DNA methylation, we focused
on species with at least two individuals, two tissues, and one common tissue between individuals, after remov-
ing species that had less than 50% average CpG overlap between samples or were flagged in the validation of
species annotations. For each of the selected species, we calculated the variance explained by tissue and by
individual as the average squared Pearson correlation (R?) for the mean DNA methylation levels of the con-
sensus reference fragments across samples. The Pearson correlation was calculated using the cor function of
the package stats in R. The significance of the difference between the variance explained by tissue and by
individual between taxonomic groups was calculated using a two-sided paired Wilcoxon test (wilcox.test in
the package stats). Word clouds representing the relative frequency of tissues contributing to the analysis were
produced using the function wordcloud of the package wordcloud in R.

Differentially methylated consensus reference fragments between tissue types (specifically heart and liver)
were mapped with RefFreeDMA as described previously*. First, differentially methylated CpGs were identi-
fied using the R package limma'*, with multiple-testing correction using the Benjamini-Hochberg method.
Second, the p-values for individual CpGs within the same consensus reference fragment were combined using
an adjusted version of the Fisher’s method!?*. Third, to identify the top-500 most hypermethylated consensus
reference fragments in each tissue compared to the other tissue, we used a combined rank approach based on
p-value, relative difference, and absolute difference in DNA methylation. Fragments were further required to
have a p-value less than 0.05 and an average coverage of at least two reads in both tissues.

Transcription factor binding site analysis

To identify enriched transcription factor binding motifs among the differentially methylated consensus refer-
ence fragments, we tested the binding position-weight matrixes (PWMs) from the 2020 version of the JASPAR
database'?* using the AME tool from the MEME package with default parameters'?. We scored each motif
for enrichment among the top-500 hypermethylated fragments relative to the top-500 hypomethylated frag-
ments, and vice versa. Motifs with multiple-testing adjusted p-values lower that 0.05 were considered signifi-
cantly enriched. Transcription factors were additionally annotated based on their gene expression levels in
human tissues, using the consensus transcript expression levels from the Human Protein Atlas
(https://www.proteinatlas.org/about/download). Only transcription factors that have normalized RNA expres-
sion values greater than one in heart or liver samples were included in the analysis. Moreover, to explore the
tissue specificity of transcription factor binding, we clustered the corresponding transcription factors based on

their motif enrichment in heart and liver using hierarchical clustering within the pheatmap package'*. GO
£127

term annotation of the selected transcription factors was performed using the GOne web-tool
(https://tools.dice-database.org/GOnet/) with a custom set of relevant GO terms (search terms “heart”, “liver”,

EEINT3 EE T4 9 99

“hypoxia”, “detoxification”, “fluid shear stress”, “glucagon”, “secretion”, “differentiation”, “’regeneration”
“cell cycle”, ”glucose homeostasis”, ”thyroid hormone”,” nitrogen compound metabolic process”). The result-
ing network was downloaded as a json file and visualized using Cytoscape'?®. For better visualization, connec-

tions between GO terms were cut and redundant annotations removed. Four transcription factors (ZNF740,
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KLF9, ZNF263, ZNF384) were not part of any “Biological Processes” GO term and one (KLF16) only of the
very broad term “signal transduction”. These factors were excluded from the network.

Transcription factors were annotated by their binding preferences (methylated or non-methylated binding site)
based on HT-SELEX experiments for their human homologs®®. Transcription factors annotated as preferring
binding to non-methylated sites whose binding sites were hypomethylated in liver (compared to heart) were
classified as “active in liver”. Similarly, transcription factors annotated as preferring binding to methylated
sites whose binding sites were hypermethylated in liver (compared to heart) were also classified as “active in
liver”. Transcription factors showing the opposite characteristics were labeled “active in heart”. Using a man-
ually curated database of human gene-regulatory networks®, we identified the potential targets of these tran-
scription factors and visualized the resulting network using Cytoscape'?®,.

Reference-based analysis

Based on cross-mapping as described above, promoter methylation levels for each annotated and covered gene
were calculated as mean DNA methylation levels in the proximal 50 bins of the 5 kilobases upstream regions,
corresponding to 2.5 kilobases upstream of the transcription start site. Gene identifiers across all genomes were
then annotated by the human homolog; first, the original refSeq IDs were converted to NCBI IDs using the
NCBI gene2refseq dictionary; second, NCBI IDs were matched to their human orthologs using the NCBI
gene_orthologs dictionary. Both dictionaries were obtained from https://ftp.ncbi.nlm.nih.gov/gene/DATA/.

Dimensionality reduced representations of genes or samples in human homolog space across all samples and
species were produced by first filtering the gene/sample matrix, only keeping genes that were covered in
greater than 100 samples and samples that covered great than 400 genes (for the sample-wise representation),
and genes that were covered in great than 400 samples and samples that covered greater than 50 genes (for the
gene-wise representation). This filtering strategy was optimized to produce missing-value-free sample-sample
or gene-gene correlation matrices using pairwise complete observations Person’s correlation was calculated
using the cor function of the R package stats. Uniform Manifold Approximation and Projection (UMAP) was
then performed on these correlation matrixed using the umap function of the R package uwot with the follow-
ing relevant parameters: n_neighbors = 20, min_dist=2, spread=1 (for the sample-wise representation) and
n_neighbors = 15, min_dist=0.05, spread=1.5 (for the sample-wise representation). Leiden clustering for the
gene-wise UMAP representation was performed using the cluster leiden function from the R package igraph
with a resolution of 0.06. Gene enrichment analysis on the genes in each Leiden cluster was performed with
the gost function of the R package gprofiler2 using GO Biological Processes, GO Molecular Function, and
GO Cellular Compartment as databases and an FDR-corrected p-value of 0.05 as significance threshold.

To predict sample properties (e.g., tissue type or evolutionary class) based on promoter methylation levels
across species, we exploited the common human ortholog gene-space described above. We used a random
forest classifier that is able to handle missing values, as implemented in the rpart function of the rpart R
package. We required each gene to be covered in at least 60% of the samples and each samples to be covered
by at least 12% of the genes in the assessed subsets of the data. We focused our analysis on mammals and
birds as the most highly represented taxonomic groups, and on liver and heart as the most highly represented
tissue types. We performed prediction of tissue type (heart versus liver) and prediction of evolutionary class
(mammal vs. bird), separately for mammal and bird species or heart and liver tissues, allowing us to compare
predictive performance. 80 (tissue prediction) and 100 (class prediction) species were randomly selected for
training the model, and the remaining species were used for testing the model. We split by species (rather than
by sample) to make sure that training and test data did not contain samples of the same species, thereby focus-
ing the analyses on cross-species prediction. The procedure was repeated in 100 iterations, where each iteration
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recorded classification success as well as feature weights. The performance (ROC-AUC values) for each clas-
sification task was evaluated, and average feature weights were calculated across all 100 iterations. As a control
analysis, the same procedure was applied to scrambled data matrices derived from the actual data matrices by
randomly distributing the non-missing values across the non-missing value positions; this analysis maintained
the missing-value structure to ensure that this did not contribute to the observed predictions.

Statistical reporting

Boxplots are specified as follows: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x
interquartile range; points, outliers (standard geom_boxplot configuration). Error bars represent the standard
deviation if not specified differently.
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Supplementary Figure 1. Summary statistics for 2445 DNA methylation profiles from 583 animal species

(a) Schematic overview of the steps taken to assemble the presented resource of vertebrate and invertebrate
DNA methylation profiles: Sample collection, DNA isolation, DNA methylation sequencing using the reduced
representation bisulfite sequencing (RRBS) assay, and bioinformatic processing using the RefFreeDMA work-
flow. For each species, an unconverted RRBS library was additionally sequenced to support a more accurate
consensus reference reconstruction. Sample sources: FIWI: Research Institute of Wildlife Ecology of the Uni-
versity of Veterinary Medicine Vienna; OGL: Ocean Genome Legacy Center; Biofisch: Commercial fish farm;
Naschmarkt: Commercial fish retailer; MedUni: Department of Medical Biochemistry of the Medical Univer-
sity of Vienna; MPI Plon: Max Planck Institute for Evolutionary Biology; UK: Department of Biology of the
University of Kentucky; CeMM: CeMM Research Center for Molecular Medicine of the Austrian Academy
of Sciences; CCRI: Children’s Cancer Research Institute; Vetmeduni: University of Veterinary Medicine.

(b) Boxplots overlayed with individual dots corresponding to individual species, showing the percentage of
CpGs in total and within relevant genomic elements (transcripts, promoters, repeats and CpG islands) expected
to be covered by RRBS in the corresponding species based on simulations, aggregated by taxonomic groups.

(c) Bar plots showing the number of analyzed samples, species, and orders across all taxonomic groups.

(d) Bar plot showing the representation of different tissue samples across taxonomic groups. Only tissues with
more than ten samples are shown.

(e) Stacked bar plot showing the distribution of sex across samples across taxonomic groups.
(f) Stacked bar plot showing the distribution of age across samples across taxonomic groups.

(g) Boxplots showing the bisulfite conversion efficiency per sample across taxonomic groups. For each sample
the higher of two measured values (conversion rate at cytosines outside of a genomic CpG context; conversion
rate of unmethylated spike-in controls in the RRBS experiment) is displayed.

(h) Boxplots showing RRBS quality control metrics (number of covered CpGs, mapping efficiency, DNA pre-
fragmentation, microbial contamination rate) per sample across taxonomic groups.
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Supplementary Figure 2. Read coverage analysis for potential technical and biological sources of varia-
bility among the consensus references

9% ¢

(a) Schematic overview for the classification of consensus reference fragments as “repeat”, “amplified”, or
“private”, and for the calculation of these frequencies within each species. Consensus fragments are classified
based on read coverage across all samples in the corresponding species. Sample-wise frequencies of the dif-
ferent classes are calculated, which are then averaged across all samples to generate species-wise measures.

(b) Boxplot showing the fraction of consensus fragments for each of the three coverage classes (“repeat”,
“amplified”, “private”) in each of the consensus references as defined in (a), aggregated by taxonomic group.

(c) Scatterplot showing the relationship between the fraction of consensus fragments classified as “repeat” and
those classified as “amplified” for each of the consensus references, colored by taxonomic group. Species at
the extremes are annotated with their abbreviations (Supplementary Table 2).

(d) Boxplot showing the fraction of consensus reference fragments classified as “amplified” within each sam-
ple, organized by PCR enrichment cycles and aggregated by taxonomic group. Extreme outliers are annotated
with their sample identifiers (Supplementary Table 1).
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Supplementary Figure 3. Cross-mapping of consensus reference fragments to gene-annotated reference
genomes and analysis of gene-linked DNA methylation patterns

(a) Schematic overview of the cross-mapping approach, which uses gene annotations of related reference ge-
nomes to analyze gene-linked DNA methylation patterns including the typical “dip” in promoter regions. Thi
is based on RefFreeDMA-derived consensus reference fragments and their DNA methylation levels, which are
cross-mapped to gene-annotated reference genomes. The “dip” in DNA methylation at the promoter region is
quantified as the log-ratio of DNA methylation levels at gene bodies (G) and at gene promoters (P).

(b) Boxplot overlayed by individual datapoints represented as species abbreviations (Supplementary Table
2), showing the mapping rates of all consensus references to their best-matching reference genomes (x-axis),
colored by taxonomic group.

(c) Boxplot overlayed by individual datapoints represented as species abbreviations, showing mapping rates
for all consensus references, aggregated by approximated lowest common rank between consensus reference
species and reference genome species, colored by taxonomic group.

(d) Aggregated and smoothed (using loess with span 0.3) DNA methylation profiles across gene annotations
including 5 kilobases upstream and downstream flanking regions. Each thin line represents one species and
thick lines represent the average across all species in the respective taxonomic group.

(e) Same as (d), displaying individual samples for selected taxonomic groups with less clear profiles.

(f) Same as (d) but with less smoothing (using loess with span 0.03), displaying individual samples for Mexican
axolotl using an earlier scaffold genome assembly because high-quality gene annotations were not available
for the most recent chromosome-scale genome assembly of the axolotl.

(g) Scatterplot showing the relationship between consensus fragment mapping rate and dip score for species
with at least 4000 gene-associated DNA methylation values, colored by taxonomic group. A loess regression
curve fitted to the shown data points is overlaid.
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Supplementary Figure 4. Comparative analysis of genome-wide DNA methylation levels for each species

(a) Boxplots showing mean DNA methylation levels aggregated by taxonomic group and by tissue, including
the seven most abundant tissues.

(b) Boxplots showing mean DNA methylation levels per sample for different read coverage thresholds, aggre-
gated by taxonomic group. Only CpGs covered by more than the indicated number of reads were included.

(c) Scatterplot comparing mean genome-wide DNA methylation levels estimated based on RRBS and WGBS
data for twelve species. The dot size indicates the number of samples available for WGBS (range: 1 to 42).
Error bars depict minimum and maximum sample-wise values in the respective species and assay. The Pearson
correlation (r) between the mean genome-wide DNA methylation levels for RRBS and WGBS is indicated.

(d) Boxplot showing mean DNA methylation levels across all mammalian orders, including the marsupial
orders diprotodontia (Australian marsupials, mostly herbivores) and dasyuromorphia (Australian carnivorous
marsupials). Overlaid are stacked bar plots of base frequencies for the RRBS libraries as well as the consensus
reference fragments, indicating broadly similar base frequencies across all mammalian orders.

(e) Barplot showing genome-wide DNA methylation levels across all reptilian species ordered by phylogenetic
relationships.

(f) Scatterplot showing genome-wide DNA methylation levels for individual samples across all invertebrate
species as well as Japanese lamprey (Lethenteron camtschaticum). The median of genome-wide DNA meth-
ylation levels for all taxonomic groups are indicated as dashed lines for reference.

(g) Images depicting selected species from panel f.

(h) Bar plots showing the percentage of variance explained by features sets reflecting genomic sequence com-
position (as in panel ), based on linear models that incorporated the taxonomic tree (left) or the taxonomic
groups (right) as additional information / priors. All values were adjusted for model complexity (i.e., number
of variables) and the colors indicate the mean Akaike information criterion (AIC).
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Supplementary Figure 5. Assessment of non-CpG methylation and DNA methylation erosion as meas-
ured by the proportion of discordant reads (PDR)

(a) Boxplot showing mean proportions of discordant reads (PDR) as a measure of DNA methylation erosion,
aggregated by taxonomic groups and tissues. The seven most frequent tissues are shown.

(b) Boxplot showing mean non-CpG methylation levels, aggregated by taxonomic groups and tissues. The
seven most frequent tissues are shown.

(c) Histograms of genome-wide DNA methylation, non-CpG methylation, and DNA methylation erosion
(measured by PDR) for vertebrates and invertebrates to compare to lamprey as a jawless vertebrate (repre-
sented as dot).

(d) Scatterplot relating genome-wide DNA methylation levels, non-CpG methylation levels, and DNA meth-
ylation erosion (measured by PDR) with theoretical cancer risk estimated by the MLTAW metric’’, which is
calculated as log(Maximum longevity (years)™6 * Adult weight (g). Pearson’s correlation coefficient and the
corresponding significance are indicated. A linear regression curve with a 0.95 confidence interval is overlaid.
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Supplementary Figure 6. Prediction of locus-specific DNA methylation based on the underlying genomic
DNA sequence

(a) Scatterplot comparing the effect of two alternative definitions of highly methylated fragments (DNA meth-
ylation levels above 80% in all samples) and lowly methylated fragments (DNA methylation levels below 20%
in any sample, x-axis, or in all samples, y-axis) on prediction accuracy measured by ROC-AUC values. Each
dot corresponds to one species, colored by taxonomic group.

(b) Stacked bar plots displaying the number of species (colored by taxonomic group) for which each k-mer
length or learning cost parameter was identified as the optimal one through a grid search on training data.

(c) Heatmap showing scaled ROC-AUC values for a range of k-mer lengths (1-10) for prediction of locus-
specific DNA methylation across all species, colored by taxonomic group.

(d) Heatmap showing the average and standard deviation for ROC-AUC values for locus-specific DNA meth-
ylation prediction when training models based on RRBS data and testing with WGBS data, and vice versa. For
each taxonomic group, one species with publicly available WGBS was identified and used in this analysis. For
each species, the RRBS data of all available samples were combined.

(e) ROC curves for prediction of DNA methylation based on the underlying genomic DNA sequence using
WGBS data for each of the eight indicated species. Three separate (replicate) ROC curves are shown based on
three non-overlapping sets of sequences (blue). ROC-AUC values (mean + standard deviation) as well as fa-
vored k-mer lengths are indicated, and the corresponding values for RRBS-based DNA methylation data are
shown in brackets. As negative controls, ROC curves trained and evaluated on data with randomly shuftfled
labels fall close to the diagonal (in grey).

(f) Bar plots displaying the average model feature weight for the 10 most differentially weighted 3-mers across
taxonomic groups. Error bars denote standard deviations across all species in the respective taxonomic groups.
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Supplementary Figure 7. Analysis of inverted species for prediction of locus-specific DNA methylation
(a) Heatmap of cross-species prediction performance (ROC-AUC values), displaying only the inverted species.

(b) Bootstrapping stability (ten different selections of training and test data) for the prediction of locus-specific
DNA methylation. The training and testing was performed in white hake (WHH, left), a fish species with the
inverted pattern, as well as in to American plaice (AMP), a fish species with the non-inverted pattern.

(c, d) Histograms of cross-species prediction performance (ROC-AUC values) for an inverted species (white
hake, WHH, red) in comparison to one representative non-inverted species (American plaice, AMP, blue).
Models were trained and tested separately for each individual (c) and for each tissue (d). Models trained in an
inverted species obtained ROC-AUC values below 0.5 in most other species, while models trained in a non-
inverted species obtained ROC-AUC values above 0.5 in most other species.

(e) Boxplots showing cross-species prediction performance (ROC-AUC values) across all species, using mod-
els that were trained on one specific tissue of the inverted species (white hake, WHH). Dashed red lines indicate
the ROC-AUC value using the test set from the same species and tissue.

() Boxplots showing cross-species prediction performance (ROC-AUC values) across all species, using mod-
els that were trained on one specific individual of the inverted species (white hake, WHH). Dashed red lines
indicate the ROC-AUC value using the test set from the same species and individual.
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Supplementary Figure 8. Analysis of DNA methylation profiles across tissues and individuals

(a) Multidimensional scaling (MDS) plots illustrating the similarity of DNA methylation profiles across tissues
and individuals in one selected species for each taxonomic group.

(b) Same as (a) but with individual data points labeled by their PCR enrichment cycles in the RRBS assay.

(c) Boxplots displaying the mean overlap in covered CpGs between samples of the same species, relative to
the total number of covered CpGs in each sample. This is an indicator of genetic variation in the species, in
the sense that more genetically diverse samples tend to have a lower fraction of jointly covered CpGs.

(d) Scatterplots relating the DNA methylation variance explained by the individual and by the tissue to the
amount of DNA pre-fragmentation (as a measure of DNA quality). Each dot corresponds to one species, col-
ored by taxonomic group. Lines indicate linear regressions for each of the taxonomic groups with 0.95 confi-
dence intervals. Pearson’s correlation and the associated significance are indicated.

(e) Scatterplots relating the DNA methylation variance explained by the individual and by the tissue to the
amount of DNA methylation erosion as measured by the proportion of discordant reads (PDR). Each dot cor-
responds to one species, colored by taxonomic group. Lines indicate linear regressions for each of the taxo-
nomic groups with 0.95 confidence intervals. Pearson’s correlation and the associated significance are indicted.
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Enrichment of transcription factor binding site (TFBS) motifs among differentially methylated fragments.
All species and transcription factors with at least one enriched TFBS motif are shown
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Supplementary Figure 9. Analysis of transcription factor binding site (TFBS) motifs among differen-
tially methylated fragments

(a) Sorted heatmap showing TFBS motif enrichments for differentially methylated fragments between heart
and liver. For all species (rows) and all transcription factor (columns), the colors indicate whether the corre-
sponding TFBS motifs were enriched in fragments that were hypomethylated in heart (blue) or in liver (yel-
low). The transcription factors are color-coded by binding preference and transcription factor class (top rows).

(b) Clustered heatmap showing TFBS motif frequencies across all consensus reference fragments in all species
(rows) and all transcription factors (columns).
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Supplementary Figure 10. Analysis of DNA methylation at gene promoters across species in the human-
ortholog gene space.

(a) Stacked bar plot showing the number of species per taxonomic group for specific human gene orthologs
(x-axis). 500 genes were randomly samples to represent the observed spectrum. Inset: Schematic overview of
the transformation of DNA methylation data into the common human-ortholog gene space and further analysis.

(b) UMAP representation of DNA methylation at gene promoters based on cross-mapping of reference-free
consensus reference fragments to annotated reference genomes as in Figure 5. Samples are colored by tissue,
and each sample is labeled by its sample identifier (Supplementary Table 1).

(c) UMAP representation and corresponding Leiden clustering of genes according to their promoter methyla-
tion. Genes are colored by Leiden clusters and clusters are numbered. Each gene is labeled by its name, which
is searchable and readable when zooming into the PDF of the figure.

(d) Heatmap showing GO term enrichments for the gene clusters defined in panel c. The top three GO terms
are displayed for each gene cluster.

(e) Heatmap showing scaled promoter methylation across gene clusters, taxonomic groups, and tissues, filtered
at a minimum of eight samples.

(f) Heatmap showing promoter methylation for genes with measurements in most taxonomic groups. Numbers
correspond to the number of samples across which median promoter methylation levels were calculated.
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Supplementary Tables

Supplementary Table 1. Sample annotations and DNA methylation profiling statistics for all tissue samples
Supplementary Table 2. Overview and annotation of the animal species included in this study
Supplementary Table 3. Overview and annotation of the individual animals included in this study

Supplementary Table 4. Sample annotations and sequencing statistics for the unconverted libraries
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