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Abstract 

 

BACKGROUND: Colorectal cancer (CRC) primary tumours are molecularly classified into four 

consensus molecular subtypes (CMS1-4). Genetically engineered mouse models aim to faithfully 

mimic the complexity of human cancers and, when appropriately aligned, represent ideal pre-clinical 

systems to test new drug treatments. Despite its importance, dual-species classification has been 

limited by the lack of a reliable approach. Here we utilise, develop and test a set of options for human-

to-mouse CMS classifications of CRC tissue. 

 

METHODS: Using transcriptional data from established collections of CRC tumours, including 

human (TCGA cohort; n=577) and mouse (n=57 across n=8 genotypes) tumours with combinations 

of random forest and nearest template prediction algorithms, alongside gene ontology collections, 

we comprehensively assess the performance of a suite of new dual-species classifiers. 

 

RESULTS: We developed three approaches: MmCMS-A; a gene-level classifier, MmCMS-B; an 

ontology-level approach and MmCMS-C; a combined pathway system encompassing multiple 

biological and histological signalling cascades. Although all options could identify tumours 

associated with stromal-rich CMS4-like biology, MmCMS-A was unable to accurately classify the 

biology underpinning epithelial-like subtypes (CMS2/3) in mouse tumours.  

 

CONCLUSIONS: When applying human-based transcriptional classifiers to mouse tumour data, a 

pathway-level classifier, rather than an individual gene-level system, is optimal. Our R package with 

three options helps researchers select suitable mouse models of human CRC subtype for their 

experimental testing. 
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INTRODUCTION 

Colorectal cancer (CRC) primary tumours can be molecularly classified into four consensus 

molecular subtype (CMS1-4) (1). According to this classification, CMS1 (14% of patients) is enriched 

for tumours with microsatellite instability (MSI) and immune activation. CMS2 (37% of patients) 

epithelial-rich tumours represent the canonical subtype and are associated with activation of the 

WNT/MYC pathways and chromosome instability. CMS3 (13% of patients) tumours display signalling 

indicative of increased metabolic activity and KRAS-mutations. Finally, CMS4 (23% of patients) 

tumours display stromal-rich and mesenchymal features, alongside activation of TGF-β and VEGFR 

pathways (1). While CMS classification provides valuable prognostic information, its ability to identify 

subtype-specific responses to therapies remains an area of active research, with several reverse-

translation studies using human pre-clinical models, such as cell lines, organoids and patient-derived 

xenografts (PDX) (2,3). While CMS classification in these models is possible, the reliance of CMS 

classification on gene expression signals from tumour microenvironment compartments can 

undermine attempts to identify the mesenchymal subtype of CRC (CMS4) in cell lines, patient-

derived organoids and PDXs (4,5). To address this, Eide and colleagues developed a CMS classifier 

specifically designed for human pre-clinical models, named CMScaller, which used a filtered set of 

cancer cell-intrinsic, subtype-enriched gene expression markers, giving a surrogate measurement 

of alignment with CMS subtypes in in vitro and in vivo models (6). 

 

Although translation of human CMS subtypes to human-based pre-clinical models has been 

addressed, there remains a need to develop and test a classifier that can be used with mouse-based 

tumour data from genetically engineered mouse models (GEMMs). GEMMs, alongside the 

armament of human pre-clinical models, represent the most appropriate models to mimic the 

complexity of the human CRC biology. GEMMs in particular provide an ideal system to improve pre-

clinical drug testing within a native immunocompetent host (7,8). Identifying murine models that 

recapitulate each CRC subtype features can therefore de-risk clinical translation of therapeutics, 

while also providing an excellent opportunity to improve our understanding of the nuanced and 

complex interactions between cancer epithelial cells and their microenvironment. Currently, there is 

no reliable and standardised approach for CMS classification using data from mouse tissues. In the 

absence of such a system, users have relied on converting the human CMS template to mouse 

orthologues, followed by sample classification using the nearest template prediction (NTP) method 

(as with the CMScaller), or conversely converting mouse genes to human orthologues and applying 

the random forest (RF) method used in the original CMSclassifier algorithm (1,6). Both approaches 

rely on overlapping nomenclature for individual genes; as mouse genes with different names to the 

ones in the human classifier template will be ignored/removed during CMS assignment, or vice 

versa. In addition, both systems are also fully reliant on the assumption that genes within the 

classifier will perform the same biological function in both mouse and human tumours and ignore 

interspecies variability. Recent studies have shown that pathway-based classifications are more 
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robust as they are composed of tens to hundreds of co-ordinately expressed genes, and therefore 

are protected to some degree from the loss of individual genes or variations in functions, both of 

which are known to undermine gene-level classifiers (9,10). As such, pathway-based approaches 

consider the collective impact of genes on pathway-level activity rather than being influenced by a 

single differentially expressed gene. Furthermore, broad biological knowledge-based approaches 

have previously been shown to be less influenced by non-biological factors (11,12). 

 

To improve on the current state-of-the-art approach of classifying GEMM tumours, we developed 

three options for CMS classification in mouse tissue. The first, hereafter named as MmCMS-A, uses 

mouse orthologues of the human CMS gene template from CMScaller (6), thus it has sole emphasis 

on individual genes.  Given the benefits of pathway-level approaches for classification, over gene-

level, we proposed two further options (MmCMS-B and MmCMS-C) that use biological knowledge-

based information from either gene ontology (MmCMS-B) or a compendium of signatures from 

biological signalling collections and microenvironment populations (MmCMS-C). Most importantly, 

to ensure the field can utilise these mouse CMS classification approaches, we developed an R 

package, namely MmCMS, which provides a publicly-available tool to classify samples according to 

all three options, enabling users to assess the alignment of GEMM tumours to human CMS subtype.  
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METHODS 

Human CRC cohort 

The processed TCGA COREAD RNA-Seq dataset (n = 577) was downloaded directly from the 

Guinney et al., CMSclassifier study via Synapse (ID: syn2023932), where it has been described 

previously (1). Gene symbols and entrez IDs were matched using org.Hs.eg.db R package (v3.8.2) 

thereafter CMS classification was performed via ‘random forest’ (RF) method using CMSclassifier R 

package (version 1.0.0). 

 

Biological Process subset of Gene Ontology (GO) gene sets were extracted from the Molecular 

Signature Database (MSigDB) using msigdbr R package (v7.0.1). Subsequently, ontology scores 

were generated for the TCGA dataset using single sample GSEA (ssGSEA) method from GSVA R 

package (v1.26.0). To determine the CMS-specific GO terms, these ssGSEA scores were averaged 

for each gene set across samples within each CMS subtype and scaled to Z-scores where the GO 

with ssGSEA scaled scores above 0 in a CMS, but below 0 on the others, were selected as the 

enriched GO term for that CMS. The CMS-specific GO BP gene sets for mouse species were then 

extracted from the msigdbr R package and used to develop an ontology-based CMS classification 

for mouse. 

 

Mouse models 

All animal experiments were performed in accordance with a UK Home Office licence (Project 

License 70/8646), and were subject to review by the animal welfare and ethical review board of the 

University of Glasgow. Mice of both sexes were induced with a single injection of 2 mg tamoxifen 

(Sigma-Aldrich, T5648) by intraperitoneal injection at an age of 6 to 12 weeks, all experiments were 

performed on a C57BL/6 background. Mice were sampled at clinical endpoint, which was defined as 

weight loss and/or hunching and/or cachexia.  

 

Mouse RNA sequencing and analysis 

RNA was isolated using either an RNeasy mini kit (Qiagen) or TRIzol reagent (Thermo Fisher 

Scientific). RNA concentrations were determined using a NanoDrop 200c spectrophotometer 

(ThermoScientific), and quality was assessed using an Agilent 220 Tapestation using RNA 

screentape. RNA sequencing was performed using an Illumina TruSeq RNA sample prep kit, then 

run on an Illumina NextSeq using the High Output 75 cycles kit (2 x 36 cycles, paired end reads, 

single index). Raw sequence quality was assessed using the FastQC algorithm version 0.11.8. 

Sequences were trimmed to remove adaptor sequences and low-quality base calls, defined as those 

with a Phred score of <20, using the Trim Galore tool version 0.6.4. The trimmed sequences were 

aligned to the mouse genome build GRCm38.98 using HISAT2 version 2.1.0, then raw counts per 

gene were determined using FeatureCounts version 1.6.4. Raw read counts of the small cohort 

(n=18) which is publicly available at ArrayExpress: E-MTAB-6363 were normalized using vst function 
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in DESeq2 R package (v1.32.0). The models where the batch they were sequenced in was deeply 

confounded by genotype were removed and data from 51 GEMMs remained. ComBat_seq function 

in sva R package (v3.40.0) was used to correct read counts for batch, thereafter vst function in 

DESeq2 same as before was used to normalize the data.  

 

Databases 

CMS curated gene sets signatures (n=79) were obtained from Synapse (ID: syn2321865). Cancer 

hallmarks (n=50) and Gene Ontology (GO) Biological Process gene set (C5 BP) was extracted from 

MSigDB using ‘msigdbr’ R package (v7.4.1).  

Ten signatures to estimate the proportion of the eight immune (NK cells, Cytotoxic lymphocyte, T 

cells, CD8 T cells, B lineage, Monocytic lineage, Neutrophils, Myeloid dendritic cells) and two stromal 

(Fibroblasts and Endothelial) cell populations in each human sample across CMS subtypes were 

obtained using the MCPcounter R package (v1.2.0); the mouse version of signatures were retrieved 

from the mMCPcounter R package (v0.1.0). Immune-related genes for human and mouse were 

downloaded from the NanoString panel (https://canopybiosciences.com/product/immunology/). 

 

Statistical analysis 

All the statistical analyses were performed in R (v4.1.2) using the stats R package, including cor() 

function with method = ‘pearson’ for Pearson’s correlation. The Student t-test method embedded in 

the geom_signif() function of ggsignif package (v0.6.3) was used to do statistical analysis in violin 

plots. Boxplots were generated using ggplot2 (v3.3.5) R package. The ComplexHeatmap (v2.8.0) 

and circlize (v0.4.13) packages were used to display heatmaps. We used glmnet (v4.1-3) R package 

to do LASSO regression model analysis. The λ or tuning parameter in the LASSO model was 

selected through the 10-fold cross-validation. Transcriptome-based stromal and immune scores 

were generated using the MCPcounter.estimate() function in MCPcounter R package (v1.2.0). 

Single sample gene set enrichment analysis (ssGSEA) was performed using an R package called 

GSVA (v1.40.1). Alluvial plot to display concordance result was drawn using riverplot (v0.10). 

The Nearest Template Prediction (NTP) algorithm, with cosine correlation distances, was employed 

to predict the proximity of each GEM model’s expression profile to the four CMS subtypes, using 

each of the three templates individually (A, B and C), with an FDR <0.05 used as a cut off for 

statistical significance. 
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Results: 

Development and testing of CMS classifier templates for use in mouse tumours 

To confirm the concordance between the CMScaller/pre-clinical CMS classifier (NTP method) and 

the CMSclassifier/original CMS classifier (RF method) in human data, we applied CMScaller on 

COREAD TCGA RNA-seq transcriptional data (n=577) retrieved from the original CMS article (1). 

After removing samples that were unclassified by either RF or CMScaller, we found 91.19% 

(321/352) concordance between RF and NTP calls (Supplementary Fig. 1a). PCA analysis on the 

whole transcriptome of these 352 samples demonstrated that samples that gave conflicting calls 

(indicated as swapped in Supplementary Fig. 1a) between RF and CMScaller were in the boundary 

of CMS subtypes assigned by the RF method (Supplementary Fig. 1a). To confirm that the 

discrepancies in classification call were confined to samples with lower CMS probability scores, 

when we set a more stringent CMS classification probability cut off (>0.8) for the RF method, the 

classifications for the two methods increased to 100% concordance, n=93 (Supplementary Excel 

File 1, Sheet 1), demonstrating that CMScaller provides excellent CMS classification concordance 

for samples that display the strongest CMS transcriptional traits, as indicated by high subtype RF 

classification scores. 

 

While these data confirm the suitability of using either the RF CMSclassifier or NTP CMScaller 

methods for CMS classification of human tumour data, to assess the performance of these methods 

on mouse tumour model classification, we next assembled transcriptional data from two independent 

GEMM tumour cohorts (Table 1). Tamoxifen-regulated Cre-loxP system was used to generate all 

models and introduced via an intraperitoneal injection. The small cohort has been previously 

described by Jackstadt et al. and composed of 18 intestinal primary tumours across 4 genotypes 

that represent both the serrated (KPN: KrasG12D/+ Trp53fl/fl Notch1Tg/+; KP: KrasG12D/+ Trp53fl/fl) and 

tubular (APN: Apcfl/+ Trp53fl/fl Notch1Tg/+; AP: Apcfl/+ Trp53fl/fl) tumour histologies (13). The large 

independent cohort (n=39) contained a set of independent KP and KPN tumours alongside 4 

additional genotypes including Apcfl/+ (A); Apcfl/+ KrasG12/+ (AK); BrafV600E/+ Trp53fl/fl (BP) and BrafV600E/+ 

Trp53fl/fl Notch1Tg/+ (BPN). Median latency age of A, AK AP, APN, KP, KPN, BP and BPN models is 

215, 67, 185, 161, 171, 184, 190 and 174 days respectively, developing small intestine (SI) tumours 

primarily, with the exception of seven mice (AK=5, A=2) which formed tumours in colon. For more 

characterisation of the samples see Supplementary Excel File 2. 
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Table 1. Summary of mouse models used in this study 

 
Model 
name 

Genotype of mouse model 

Small 
cohort 
(n=18) 

AP villinCreER Apcfl/+ Trp53fl/fl (n=3) 

APN villinCreER Apcfl/+ Trp53fl/fl Notch1Tg/+ (n=3) 

KP villinCreER KrasG12D/+ Trp53fl/fl (n=3) 

KPN villinCreER KrasG12D/+ Trp53fl/fl Notch1Tg/+ (n=9) 

Large 
cohort 
(n=39) 

A villinCreER Apcfl/+ (n=6) 

AK villinCreER Apcfl/+ KrasG12D/+ (n=6) 

BP villinCreER BrafV600E/+ Trp53fl/fl (n=4) 

BPN villinCreER BrafV600E/+ Trp53fl/fl Notch1Tg/+ (n=7) 

KP villinCreER KrasG12D/+ Trp53fl/fl (n=6) 

KPN villinCreER KrasG12D/+ Trp53fl/fl Notch1Tg/+ (n=10) 

 

In this study, we investigated the presence of CMS subtypes in two panels of 18 and 39 GEMMs with 4 and 6 

different genotypes, respectively (Table 1).  

 

 

The RF method in the CMSclassifier package was designed for human samples and uses 273 genes 

to assign CMS subtypes. To enable the use of this method with mouse data, we converted the entire 

mouse gene matrix to human orthologues using biomaRt (14). During the conversion of the mouse 

matrix, 16 genes of the 273 gene used to predict CMS calls in human were mismatched in both 

cohorts (Supplementary Table S1). Applying the RF method to our n=18 and n=39 mouse model 

matrices produced 56% unknown samples in both datasets (Supplementary Fig. 1b, c). Of note, to 

test the functionality of CMScaller in the same mouse cohorts, we next converted the human 

CMScaller template genes (n= 529; CMS1=126, CMS2=82, CMS3=84, CMS4=237) to mouse 

orthologues (n=533; CMS1=128, CMS2=80, CMS3=90, CMS4=235), which as anticipated resulted 

in a small number of dropouts (n=26 missing genes, Supplementary Table S2) due to lack of 

recognised orthologues, though overall the number of genes in mouse CMS template increased due 

to the existence of multiple mapping mouse genes for the individual human genes (Fig. 1a, 

Supplementary Excel File 3). Using this CMScaller method in our mouse data, we found fewer 

unknown samples, 17% and 36%, respectively (Supplementary Fig. 1b, c) and therefore selected 

this NTP-based approach as our initial dual-species classifier, termed MmCMS-A.  
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Fig. 1: Three different approaches for mouse CMS subtyping. a The schematic shows the approach of 

converting the human CMS template to mouse orthologues (MmCMS-A option). b Schematic of developing a 

gene ontology-based classifier to call CMS subtypes in mouse tissues. c Heatmap of ssGSEA for selected 

GO-BP terms based on z-score > 0 in a CMS subtype and z-score < 0 for other subtypes in human data. d 

Schematic of developing MmCMS-C classifier based on four biologically-informed signature collections (Figure 

2a heatmap shown as an exemplar). 

 
 
Identification of CMS-related GO-BP terms in human TCGA data (MmCMS-B) 

To complement the gene-level approach in MmCMS-A, we again utilised the RF classifications used 

in the original CMS classifier development within the human TCGA COREAD data (n=577) to identify 
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the gene ontology (GO)-biological process (BP) that are most significantly associated with individual 

human CMS classes, using gene set enrichment analysis at single sample level (ssGSEA) to derive 

the enrichment score across all samples. For each gene set (GO-BP), the mean enrichment score 

was calculated for each human CMS subtype, with scaled Z-score > 0 in one CMS subtype but < 0 

in the other three CMS subtypes being selected as distinct features for each particular CMS subtype. 

This identified n=172, n=64, n=63 and n=675 specific GO terms associated with CMS1, CMS2, 

CMS3 and CMS4 respectively (Fig. 1b, blue background; Fig. 1c). To test if these CMS class-specific 

GO-terms represent surrogate markers for human samples called with high probability using RF, we 

again used CMS classifications from the stringent RF threshold (probability cut-off > 0.8) as before 

and compared them to CMS classifications using this new NTP ontology-based method, where we 

observe 95% concordance with the RF-based calls (Supplementary Excel File 1, Sheet 2). In line 

with the generation of MmCMS-A, the mouse-equivalent GO-terms of these human gene ontologies 

were identified using the ‘msigdb’ R package and used as the MmCMS-B template for CMS 

classification in mouse data using NTP method (Fig. 1b, yellow background). 

 

Development of mouse CMS template (MmCMS-C) based on combining gene sets/ pathways 

that best characterise each human CMS subtype in a supervised approach 

While MmCMS-B is focussed solely on GO-BP signatures, for MmCMS-C we generated a classifier 

based on four biologically-informed signature collections (Fig. 1d). First, we compiled the n=79 gene 

sets used to characterise biological signalling in the original CMS study from the Synapse database 

(DOI: https://doi.org/10.7303/syn2623706). As with MmCMS-B, we refined these 79 signatures into 

only those with individual CMS class-specific expression (t.test; pvalue < 0.01) and signatures only 

kept if one subtype was significantly higher when compared to each of the other subtypes in turn, 

resulting in 48 of the 79 gene sets being used (Fig. 2a; Supplementary Fig. 2a). Next, using the 50 

MSigDB hallmark gene sets, we identified 21 with significant expression (t.test; pvalue < 0.01) across 

CMS groups (Fig. 2b; Supplementary Fig. 2b). In the third step, we used the microenvironment cell 

population (MCP)-counter signatures, and in line with previous studies, we found cytotoxic 

lymphocyte and NK cells are significantly enriched in CMS1, whereas fibroblast and endothelial cells 

are enriched in CMS4, thus 4 signatures from MCPcounter (15) were included (Supplementary Fig. 

2c; t.test; pvalue < 0.01). Finally, given the importance of inflammatory lineages in development and 

classification, we assessed immune-related genes (n= 557; from a NanoString panel) for their 

associations with each CMS subtype, filtered first using the Least Absolute Shrinkage Selector 

Operator (LASSO) regression model (Fig. 2c). Based on coefficient > 0, overall 44 immune-related 

genes (CMS1=14, CMS2= 8, CMS3= 9, CMS4= 13) were found as the best predictors of individual 

CMS classes. As with Options B, these co-ordinately expressed immune genes for each CMS 

subtype were then grouped for ssGSEA, and enrichment scores were assessed across subtypes 

which were significantly enriched (t-test; pvalue <0.01) (Fig. 2c). Overall, this four-step MmCMS-C 

approach identified 77 CMS class-specific gene sets (CMS1=28; CMS2=5; CMS3=10; CMS4=34). 
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When tested in the same way as MmCMS-A and B, using the NTP method on TCGA data, MmCMS-

C was found to have 98% concordance with the RF-based high probability calls, threshold = 0.8 

(Supplementary Excel File 1, Sheet 3).  To enable mouse classification, the biomaRt (14) and msigdb 

(16) R packages were used to obtain the mouse version of 48 gene sets and 21 hallmark pathways, 

respectively, with mouse MCP signatures retrieved from the mouse-specific mMCP-counter package 

(17). Individual orthologues of immune-related genes were obtained from the mouse NanoString 

panel (Supplementary Table S3), with 39 mouse genes aligned to the 44 human immune genes 

identified using regression analysis, and then grouped into signature scores as before. 
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Fig. 2: Identification of pathways and biology that are best characteristic of each human CMS subtype 

for Option C. a ssGSEA scores heatmap of 48 CMS-related signatures (CMS1=14, CMS2=3, CMS3=8, 

CMS4=23), from original the CMS article(1), that are significantly different (pairwise t-test; see Supplementary 

Fig. 2b) across CMS subtypes in human dataset. Scores are converted to Z scores.  * 

PENTOSE_GLUC_METAB_KEGG and GLUTAMINE_GO_BP are defined with different names in the CMS 

curated gene sets signatures (n=79) from Synapse (ID: syn2321865) but the genes are the same. b ssGSEA 

scores heatmap of 21 selected hallmark pathways that are significantly different (pairwise t-test; see 

Supplementary Fig. 2b) across CMS subtypes in the human dataset. Scores are converted to Z scores. c 

Selection of the λ parameter in the LASSO model by 10-fold cross-validation based on minimum criteria. Red 

dots show the average deviance values for each model with a given λ. The vertical black lines define the 

optimal values of λ, where the model provides the best fit to the data. A λ value of 0.01682636 (lambda.1se), 

was chosen. Violin plot and pairwise t-test used to display enrichment of selected immune gene set across 

CMS subtypes (CMS1 n=14, CMS2= 8, CMS3= 9, CMS4= 13). *** p ≤ 0.001 

 

 

CMS classification of GEM models using 3 options 

To assess the performance of our 3 options for classifying mouse tumours, two different cohorts of 

GEMMs as described above were used (Table 1, Fig. 3a). As there is no CMS "ground truth" or 

reference for mouse tumour data, we utilised tumours from n=18 mouse models across four 

genotypes (KPN, KP, APN, AP; Table 1), which we have previously shown to correlate with signalling 

associated with stromal CMS4 tumours (KPN and KP) or epithelial-rich CMS2/3 tumours (AP and 

APN). PCA on the dataset revealed distinct groups according to genotype (Supplementary Fig. 3a). 

The NTP-based algorithm was employed to predict CMS classification of GEMM tumours, using 

each of the three templates individually (MmCMS-A, B and C), with an FDR <0.05 used as a cut off 

for significant calls. Within the small cohort, both MmCMS-A and MmCMS-C returned 3 unknown 

calls, however MmCMS-B classified all mouse tumours (Fig. 3b). Although some intra-genotype 

variation in CMS classifications were identified, indicating heterogeneity within tumours with the 

same genotype, these findings were all in line with previously published subtype associations for 

these models (Fig. 3b and Supplementary Table S4).  

 

There was broad consensus across all three options for samples classified as CMS4, indicating how 

distinct this subtype is compared to the others, however samples classified as CMS3 using MmCMS-

C were classified as either CMS2 or unclassified using MmCMS-B and MmCMS-A (Fig 3b). 

Characterisation of these GEMM tumours, using ssGSEA, shows that as with human tumours, all 

samples assigned as CMS4, most prominently by MmCMS-C, display the highest levels of 

enrichment for TGF  signalling, EMT, angiogenesis, Notch and Hedgehog signalling. In line with 

human CMS biology, samples classified as CMS3 using MmCMS-C display high expression of 

metabolic pathways, such as bile acid, xenobiotic, fatty acid, heme metabolism and glycolysis. 

Samples classified as CMS2 have high expression of MYC and E2F targets which are well-identified 
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signalling molecules in the CMS2 subtype. One sample was consistently classified as CMS1, which 

displayed high expression of interferon-gamma response and interferon-alpha response (Fig. 3c and 

Supplementary Fig. 3b).  

 

Following assessment in this initial cohort of histologically distinct tumours, with tubular/epithelial-

rich (AP, APN) and serrated/stroma-rich (KP, KPN) genotypes, we next tested each of the individual 

classifier options in an independent and more heterogeneous cohort of 39 mouse tumours across 6 

genotypes. When applied using the same method as above, MmCMS-A, B and C returned n=14, 

n=2 and n=6 unknown samples respectively (Fig. 3d). MmCMS-A returned unknown calls for all 

Apcfl/+ samples, however when using MmCMS-B and C all samples with Apcfl/+ genotype were 

assigned as CMS2, with biological characterisation using GSEA indicating that these samples have 

enriched signalling hallmarks related to proliferation including G2M checkpoint, E2F targets and 

MYC targets (Fig. 3d). The only Apcfl/+ genotype sample (A2) that remained unclassified by MmCMS-

C appeared as an outlier when assessed by PCA, as it did not cluster with other Apcfl/+ samples 

(Supplementary Fig. 3c).  
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Fig. 3: Molecular characterization of GEM models. a Left part of schematic shows all the GEMMs used in 

this study. The border colour indicates the genotypes that are included in each cohort, blue for small cohort 

and pink for large cohort. The squares with both border colours show the presence of that particular genotypes 

in both cohorts, but the samples are different.  The squares with peach background are representative of the 

tubular tumour models and green background show the serrated tumour models. Right part of schematic 

shows the input file for each three options. MmCMS-A option use normalized expression values to call CMS 

for mouse tissues, but MmCMS-B and -C work on ssgsea score matrix. All the analysis process to convert 

gene expression values to ssgsea score matrix will be automatically done in the R package. Users just need 

to provide the package with normalized expression values as input file while genes are row names and samples 

are in columns. b Comparison of CMS classification results using our three options (MmCMS-A, MmCMS-B 

and MmCMS-C) in small GEMM cohort (n=18). Grey colour indicates unclassified samples. The CMS calls are 

aligned by genotype, location, sex and duration of tamoxifen induction.  c Heatmap of Hallmark ssGSEA score 

across samples from the small cohort of GEMMs (scores are z-score scaled). d CMS classification of 39 GEM 

models using our three options. Grey colour indicates unclassified samples. The CMS calls are aligned by 

genotype, tumour location, sex and duration of tamoxifen induction. e ssGSEA scores heatmap of immune 

response, colon epithelial differentiation, goblet cell–like, and stroma related gene sets across GEMMs that 

are aligned by genotype and CMS classification result from the 3 options in the large cohort (n=39).  

 

GSEA reveals that samples classified as CMS2 by MmCMS-A display features inconsistent with 

human CMS2 tumours, and are more aligned with human CMS3 classification, including high 

expression of metabolic pathway and low expression of proliferation-related hallmarks, indicating 

limited ability of the gene-level approach to identifying CMS2 tumours (Fig. 3d, Supplementary Fig. 

3b). Furthermore, genes associated with immune response, colon epithelial differentiation, goblet 

cell–like, and stroma, which represent CMS1, CMS2, CMS3, and CMS4, respectively, were obtained 

from (18), converted to mouse orthologues using biomart and examined in the GEMMs to determine 

if they support the CMS calls assigned by the classifiers (Fig. 3e and Supplementary Fig. 3d). 

Referring to MmCMS-C calls particularly, this analysis reveals a strong association between CMS4 

samples and stroma signature. The CMS2 samples in the larger cohort (n=39) are repressed for 

immune response and stroma signatures but have high enrichment for colon epithelial differentiation 

as expected as well as goblet cell-like signatures (Fig. 3e). Although all CMS3 samples have 

universal enrichment for goblet cell-like signatures, some samples with BP, BPN, AK genotype also 

display elevated immune response and colon epithelial differentiation signatures. Moreover, the 

result demonstrates high enrichment of only immune response signature for CMS1 samples in the 

small cohort as expected, however in the larger cohort there is also some level of expression for 

colon epithelial differentiation and goblet cell-like signatures, although these inconsistencies may be 

explained due to limited samples classified as CMS1 using any method (Fig. 3e and Supplementary 

Fig. 3d).  
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MmCMS-C is the best option, particularly in calling CMS2-like mouse tissues 

To test how well our GEMM classifications align to the biological characteristics associated with 

human CMS subtypes, we next measured the biological traits of immune-related, metabolic, 

proliferation and stromal signalling associated with CMS calls in human TCGA data and compared 

them directly to the CMS classification calls according to each of our three MmCMS options in both 

independent GEMM cohorts. Mean ssGSEA scores were calculated across samples of each human 

CMS subtype, using the same TCGA samples used in Figure 1, alongside mean ssGSEA scores for 

MmCMS-A, B and C predictions in the n=18 and n=39 GEMM cohorts (Fig. 4a-b).  

Using the human RF calls as the ground truth, followed by cross-comparison and correlation analysis 

of samples assigned as CMS2 by all three mouse options, we find strong correlation with MmCMS-

B (r=0.79, p=0.0000005) and MmCMS-C (r=0.81, p=0.0000001) and no correlation with MmCMS-A 

in both cohorts (Fig. 4, Supplementary Table S5). Additionally, we found limited associations for 

biological traits in human CMS1 with the CMS1 calls for any of our mouse classifier options, again 

however this may be due to small numbers of CMS1 classifications in mouse tumours. In samples 

classified as CMS3 and CMS4, all 3 MmCMS options show significant positive correlation with 

related human CMS subtypes, although again MmCMS-B and C classification calls display higher 

association to human traits compared to MmCMS-A (Supplementary Table S5). 

 

 

Fig. 4: Pathway-based classification is more reliable, particularly in calling CMS2-like mouse tissues. 

a Comparison of mean ssGSEA scores from the biological characteristics associated with human CMS 

subtypes, applied in mouse CMS calls (n=18 GEMM cohort) using the 3 classification options and human CMS 

calls. b Comparison of mean ssGSEA scores of hallmarks in mouse CMS calls (n=39 GEMM cohort) using the 

3 classification options and human CMS calls.  
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MmCMS-B and C (biological knowledge-based approaches) are less influenced by 

nonbiological factors 

To assess how much non-biological factors, such as normalization methods would affect the CMS 

classification result of 3 options, we generated a larger collection of GEM models by combining both 

cohorts used in this study. APN and AP models were excluded, as the batch they were sequenced 

in was deeply confounded by genotype, resulting in a collection of transcriptomic data from 51 

tumour samples, including 6 genotypes; A, AK, BP, BPN, KP and KPN. After batch correction using 

ComBat_seq, two different methods of normalisation, namely quantile and vst, were applied and 

thereafter CMS classification was performed using the 3 options. The results show 100% 

concordance between both methods for CMS calls assigned by MmCMS-B and MmCMS-C, however 

in line with limitations of gene-level classifiers, concordance with the gene-level MmCMS-A classifier 

was reduced to 92% (Supplementary Fig. 4). This suggests broad biological knowledge-based 

approaches based on overall gene ranking across biological pathways, rather than individual genes,  

are more robust and less likely to be influence by non-biological factors (12).  

 

Mouse CMS subtype specific biomarkers could not classify human samples. 

Our study suggests that individual gene-level classifiers derived from human CRC tumours perform 

poorly when applied to data derived from mouse CRC tumours, therefore we next assessed if CMS-

specific significant genes from mouse tumours classified using our MmCMS-C method can 

distinguish human CMS subtypes. To this end we performed differential gene expression analysis to 

identify the 20 most significant CMS-specific genes for each subtype assigned using MmCMS-C 

(Fig. 5a). These genes were then applied to the human TCGA cohort according to the CMS subtypes, 

which revealed that while genes most associated with CMS4 could identify this subtype regardless 

of species, genes associated with mouse CMS1-3 displayed inconsistent subtype associations (Fig. 

5b). 
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Fig. 5: Mouse CMS subtype specific biomarkers are inconsistent across mouse and human tumour 

samples. a Heatmap of the top 20 significant differentially expressed genes (DEGs) in each CMS subtype 

called by MmCMS-C (Student's t-tests in Partek Flow applied on each CMS subtype versus all other subtypes 

to identify DEGs). b Violin plot shows the median expression of the top 20 genes in human CRC samples 

according to CMS subtypes; DEGs (top 20) from mouse were converted to human orthologues using biomaRt. 

*** p ≤ 0.001; ** p ≤ 0.01; * p ≤ 0.05 
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Discussion: 

Genetically engineered mouse models represent a valuable tool to test novel treatments that may 

benefit specific subtypes of tumours, making it essential to ensure the chosen models accurately 

recapitulate biological signalling and phenotypes underpinning human subtypes (19). Therefore, 

accurate and robust classification of mouse CRCs according to human subtypes is a critical step to 

improve disease-positioning of models and translation of findings from the pre-clinical setting. 

Integrity and robustness in positioning models with human cancer subtypes is critical in the era of 

stratified medicine, where therapeutic approaches are designed for the biology underpinning specific 

tumour subtypes. In order to successfully translate pre-clinical efficacies into clinical benefit, testing 

of therapeutics must be performed in models that are representative of specific patient subtypes. 

Despite its importance, dual-species classification has been limited by the lack of a reliable and 

standardised approach, limiting researchers’ ability to ensure faithful alignment between human 

tumours and preclinical models. Therefore, to address this, we developed a series of dual-species 

CMS classification models, named MmCMS, and an accompanying R package, which allows users 

to rapidly perform CMS classification of mouse tissue using three different options (A-C) of increasing 

complexity, from gene-level to biological pathways. To ensure that these new classifier options 

benefit the field, we developed a publicly available R package for MmCMS, which can be 

downloaded from https://github.com/MolecularPathologyLab/MmCMS. Although we have focussed 

on CMS in this study, data presented here provide an ideal template for the development and testing 

of other dual-species classifications, for subtypes such as CRC intrinsic subtypes (CRIS) (5), Braf 

mutant subtypes (BM) (20) and many others. 

 

Our gene-level classifier, MmCMS-A, converts the human CMS template, embedded in CMScaller 

R package, to mouse orthologs and then use the NTP algorithm to carry out mouse CMS 

classification. The CMScaller package has been developed to enable exploration of the CMS 

subtypes in human pre-clinical models, particularly in cell lines, organoids and PDX tumours, to 

overcome the limitation of CMSclassifier’s strong dependence on gene expression derived from the 

tumour microenvironment (1,6). As this approach is based on individual genes, any genes lost during 

the process of obtaining mouse orthologues (21,22) can affect classification performance, resulting 

in a higher number of inaccurate or unknown calls, compared to biological knowledge-based 

approaches. In addition to biological differences between mouse and human, the representation and 

coverage of individual genes required for robust CMS classification may not be equivalent across 

different transcriptome profiling platforms (11), which again can lead to poor classifier performance.  

Recent studies have shown that classifiers based on biological pathways, rather than individual 

genes, have the potential to provide a more robust classification, as by using hundreds of co-

ordinately expressed genes they become far less sensitive to bias that is associated with missing 

individual genes (9,10). This is based on the understanding that ontology/pathway-level approaches 

for transcriptional analyses have the advantage of identifying biologically meaningful information 
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associated with a particular subgroup, rather than individual genes which can be confounded by 

issues such as intratumoural heterogeneity or technical variations associated with molecular profiling 

(9,11,12). In our MmCMS R package, MmCMS-B and C were developed to overcome the limitations 

of individual gene-based approaches and are based on ssGSEA scores from broad biological 

knowledge-based approaches, less influenced by nonbiological factors such as normalization 

methods. Correlation analysis between each CMS-related pathway in human samples shows that 

MmCMS-B and C are more similar to human CMS classification, using the original RF classifier, and 

have higher discriminatory power and classification rates, particularly for CMS2 and CMS3. Our 

results suggest the presence of intra-genotype CMS subtype heterogeneity, indicating that the same 

mutations driver events can result in variable downstream transcriptional signalling, emphasising 

that faithful mouse model alignment with human tumour signalling should not be based on mutation 

alone.  

 

Coupled with advances in our understanding of the biology underpinning tumour development and 

progression, the versatility and accessibility of transcriptional signatures has seen them become a 

fundamental tool in the alignment of clinical phenotypes and biological signalling across human 

tumours and preclinical models. As therapeutics are being tested in a variety of mouse-based in vivo 

models, it is now even more important to ensure faithful alignment between models and human 

tumours and that the models we use represent the same biology during forward and reverse 

translation studies. Our study provides an important standardised approach for researchers to 

enable more reproducible and comparable classification of CRC mouse models, aligned to the 

biology underpinning human CRC subtypes. The identification of mouse tumours that truly mimic 

each human CRC subtype is essential for the proper interpretation of results, and their translation 

into effective human clinical trials.   

 

 

Data Availability  

The dataset of 18 GEM models is available via Jackstadt et al. article (13) at ArrayExpress: E-MTAB-

6363. The dataset of 39 GEM models is available from the corresponding author on reasonable 

request. 
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Supplementary Figure 1 

91.19% concordance (321/352)a

Conserved

b
Small cohort of GEMM (n=18)

Large cohort of GEMM (n=39)

c

Swapped

Supplementary Fig. 1: NTP method performs better than RF in CMS classification of mouse tissues. a

Alluvial plot (top left) shows concordance between the CMS classification results of CMSclassifier (RF

method) and CMScaller (NTP method) on human TCGA dataset (n=577). PCA plot depicting the clustering

of TCGA data based on their CMS subtypes assigned by the RF method (top right). The PCA plot (bottom

left) shows samples with the same CMS subtype called by either RF or CMScaller. The PCA plot (bottom

right) shows conflicting (swapped) calls between RF and CMScaller. b Comparing the performance of RF

and NTP methods on a small cohort of GEMMs. c Performance of RF and NTP methods on a large

independent cohort of GEMMs. Grey colour indicates unclassified samples.
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Supplementary Figure 2

Signatures selected from MCP-counter to be included in MmCMS-C 

option. 

c

Supplementary Fig. 2: Signatures that are significantly enriched in each CMS subtypes. a CMS curated

gene sets signatures that are significantly enriched in each CMS subtype (CMS1 samples=67, CMS2=135,

CMS3=88, CMS4=155). b CMS-related hallmarks that are significantly enriched in each CMS subtype. c Four

signatures from MCP-counter package were chosen to be included in the MmCMS-C option. Student t.test

method embedded in the geom_signif() function of ggsignif package (v0.6.3) was used to do statistical

analysis in boxplots. Horizontal line represents median values, boxes indicate the inter-quartile range and

bars denote the maximum and minimum values. *** p ≤ 0.001; ** p ≤ 0.01; * p ≤ 0.05
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Supplementary Figure 3

A2

a

c

d

b

Supplementary Fig. 3: Molecular characterization of GEM models. a Principal component analysis (PCA)

plot depicting the clustering of mouse models based on their genotype in the small cohort (Table 1). b

heatmap of Hallmark ssGSEA score across samples in the small cohort of GEMMs (scores are z-score

scaled). c PCA plot depicting the clustering of mouse models based on their genotype in the large GEMM

cohort. d ssGSEA scores heatmap of immune response, colon epithelial differentiation, goblet cell–like,

and stroma related gene sets across GEMMs that are aligned by genotype and CMS classification result of

3 options in the small GEMM cohort (n=18).
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Supplementary Figure 4

VST normalization, n=51

Quantile normalization, n=51

Supplementary Fig. 4: CMS classification results from the combined GEMM cohort (n=51) using the 3

classification options applied to the mouse data after normalisation by two different methods; vst in

DESeq2 and quantile normalisation.
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Supplementary Table S1. 16 genes out of 273 genes in RF CMSclassifier which missed 
during conversion the mouse matrix to human entrez ids 

Entrez.ID Gene.Symbol

1300 COL10A1

8857 FCGBP

5740 PTGIS

116496 FAM129A

3075 CFH

25878 MXRA5

196051 PPAPDC1A

54596 L1TD1

4583 MUC2

26585 GREM1

6347 CCL2

128486 FITM2

4935 GPR143

10578 GNLY

1555 CYP2B6

10335 MRVI1

Supplementary Table S2. 26 genes are missing during converting human CMS to mouse 
orthologs due to lack of recognised orthologues
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Supplementary Table S3. CMS-related immune 
genes selected using the Least Absolute 
Shrinkage Selector Operator (LASSO) regression 
model among 557 immune genes obtained from 
NanoString in human dataset. 

Class Human Mouse

CMS1 BCL6 Bcl6

CMS1 CLEC5A Clec5a

CMS1 CXCR4 Cxcr4

CMS1 DPP4 Dpp4

CMS1 JAK2 Jak2

CMS1 KIR3DL1 Kir3dl1

CMS1 KIR3DL1 Kir3dl2

CMS1 MAPK11 Mapk11

CMS1 MBP Mbp

CMS1 PLA2G2A Pla2g2a

CMS2 BID Bid

CMS2 CD3EAP Cd3eap

CMS2 CXCL2 Cxcl1

CMS2 IL12A Il12a

CMS2 MAPK14 Mapk14

CMS2 NOD2 Nod2

CMS2 TCF7 Tcf7

CMS2 TRAF5 Traf5

CMS3 BCL3 Bcl3

CMS3 GFI1 Gfi1

CMS3 IL1A Il1a

CMS3 IL22 Il22

CMS3 IL23A Il23a

CMS3 ITLN1 Itln1

CMS3 NOS2 Nos2

CMS3 PTGER4 Ptger4

CMS3 TNFRSF11A Tnfrsf11a

CMS4 BST1 Bst1

CMS4 C1S C1s

CMS4 C7 C7

CMS4 CD81 Cd81

CMS4 ENTPD1 Entpd1

CMS4 FCGRT Fcgrt

CMS4 FN1 Fn1

CMS4 MARCO Marco

CMS4 PDGFRB Pdgfrb

CMS4 STAT5B Stat5b

CMS4 THY1 Thy1

CMS4 ZEB1 Zeb1
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Supplementary Table S4. The number of samples per CMS subtypes assigned by 

MmCMS-C in small cohort.

Option_C approach

CMS1 CMS2 CMS3 CMS4 NA

KPN 1 - 2 4 2

KP - - 1 2 -

APN - - 2 - 1

AP - 1 2 - -

Supplementary Table S5. Correlation analysis between human CRC and each mouse 
option in Figure 4 for each CMS subtype

Large cohort (n=39)

Human Mouse estimate p.value

RF_CMS1 A_CMS1 -0.15213 0.439622

RF_CMS1 B_CMS1 0.36814 0.053916

RF_CMS1 C_CMS1 0.2099 0.283699

RF_CMS2 A_CMS2 0.160997 0.413108

RF_CMS2 B_CMS2 0.673605 8.53E-05

RF_CMS2 C_CMS2 0.706416 2.66E-05

RF_CMS3 A_CMS3 0.906198 3.24E-11

RF_CMS3 B_CMS3 0.864359 3.07E-09

RF_CMS3 C_CMS3 0.909069 2.20E-11

RF_CMS4 A_CMS4 0.898072 9.10E-11

RF_CMS4 B_CMS4 0.922993 2.75E-12

RF_CMS4 C_CMS4 0.927934 1.19E-12

Small cohort (n=18)

Human Mouse estimate p.value

RF_CMS1 A_CMS1 0.696878 3.79E-05

RF_CMS1 B_CMS1 0.557433 0.002058

RF_CMS1 C_CMS1 0.696878 3.79E-05

RF_CMS2 A_CMS2 -0.23087 0.237203

RF_CMS2 B_CMS2 0.792418 5.02E-07

RF_CMS2 C_CMS2 0.813795 1.39E-07

RF_CMS3 A_CMS3 0.840478 2.19E-08

RF_CMS3 B_CMS3 0.914454 1.03E-11

RF_CMS3 C_CMS3 0.905587 3.51E-11

RF_CMS4 A_CMS4 0.807208 2.10E-07

RF_CMS4 B_CMS4 0.922386 3.03E-12

RF_CMS4 C_CMS4 0.890457 2.22E-10
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