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Abstract

BACKGROUND: Colorectal cancer (CRC) primary tumours are molecularly classified into four
consensus molecular subtypes (CMS1-4). Genetically engineered mouse models aim to faithfully
mimic the complexity of human cancers and, when appropriately aligned, represent ideal pre-clinical
systems to test new drug treatments. Despite its importance, dual-species classification has been
limited by the lack of a reliable approach. Here we utilise, develop and test a set of options for human-

to-mouse CMS classifications of CRC tissue.

METHODS: Using transcriptional data from established collections of CRC tumours, including
human (TCGA cohort; n=577) and mouse (n=57 across n=8 genotypes) tumours with combinations
of random forest and nearest template prediction algorithms, alongside gene ontology collections,

we comprehensively assess the performance of a suite of new dual-species classifiers.

RESULTS: We developed three approaches: MmMCMS-A; a gene-level classifier, MmMCMS-B; an
ontology-level approach and MmCMS-C; a combined pathway system encompassing multiple
biological and histological signalling cascades. Although all options could identify tumours
associated with stromal-rich CMS4-like biology, MmMCMS-A was unable to accurately classify the

biology underpinning epithelial-like subtypes (CMS2/3) in mouse tumours.

CONCLUSIONS: When applying human-based transcriptional classifiers to mouse tumour data, a
pathway-level classifier, rather than an individual gene-level system, is optimal. Our R package with
three options helps researchers select suitable mouse models of human CRC subtype for their

experimental testing.
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INTRODUCTION

Colorectal cancer (CRC) primary tumours can be molecularly classified into four consensus
molecular subtype (CMS1-4) (1). According to this classification, CMS1 (14% of patients) is enriched
for tumours with microsatellite instability (MSI) and immune activation. CMS2 (37% of patients)
epithelial-rich tumours represent the canonical subtype and are associated with activation of the
WNT/MYC pathways and chromosome instability. CMS3 (13% of patients) tumours display signalling
indicative of increased metabolic activity and KRAS-mutations. Finally, CMS4 (23% of patients)
tumours display stromal-rich and mesenchymal features, alongside activation of TGF- and VEGFR
pathways (1). While CMS classification provides valuable prognostic information, its ability to identify
subtype-specific responses to therapies remains an area of active research, with several reverse-
translation studies using human pre-clinical models, such as cell lines, organoids and patient-derived
xenografts (PDX) (2,3). While CMS classification in these models is possible, the reliance of CMS
classification on gene expression signals from tumour microenvironment compartments can
undermine attempts to identify the mesenchymal subtype of CRC (CMS4) in cell lines, patient-
derived organoids and PDXs (4,5). To address this, Eide and colleagues developed a CMS classifier
specifically designed for human pre-clinical models, named CMScaller, which used a filtered set of
cancer cell-intrinsic, subtype-enriched gene expression markers, giving a surrogate measurement

of alignment with CMS subtypes in in vitro and in vivo models (6).

Although translation of human CMS subtypes to human-based pre-clinical models has been
addressed, there remains a need to develop and test a classifier that can be used with mouse-based
tumour data from genetically engineered mouse models (GEMMs). GEMMSs, alongside the
armament of human pre-clinical models, represent the most appropriate models to mimic the
complexity of the human CRC biology. GEMMs in particular provide an ideal system to improve pre-
clinical drug testing within a native immunocompetent host (7,8). Identifying murine models that
recapitulate each CRC subtype features can therefore de-risk clinical translation of therapeutics,
while also providing an excellent opportunity to improve our understanding of the nuanced and
complex interactions between cancer epithelial cells and their microenvironment. Currently, there is
no reliable and standardised approach for CMS classification using data from mouse tissues. In the
absence of such a system, users have relied on converting the human CMS template to mouse
orthologues, followed by sample classification using the nearest template prediction (NTP) method
(as with the CMScaller), or conversely converting mouse genes to human orthologues and applying
the random forest (RF) method used in the original CMSclassifier algorithm (1,6). Both approaches
rely on overlapping nomenclature for individual genes; as mouse genes with different names to the
ones in the human classifier template will be ignored/removed during CMS assignment, or vice
versa. In addition, both systems are also fully reliant on the assumption that genes within the
classifier will perform the same biological function in both mouse and human tumours and ignore

interspecies variability. Recent studies have shown that pathway-based classifications are more
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robust as they are composed of tens to hundreds of co-ordinately expressed genes, and therefore
are protected to some degree from the loss of individual genes or variations in functions, both of
which are known to undermine gene-level classifiers (9,10). As such, pathway-based approaches
consider the collective impact of genes on pathway-level activity rather than being influenced by a
single differentially expressed gene. Furthermore, broad biological knowledge-based approaches

have previously been shown to be less influenced by non-biological factors (11,12).

To improve on the current state-of-the-art approach of classifying GEMM tumours, we developed
three options for CMS classification in mouse tissue. The first, hereafter named as MMCMS-A, uses
mouse orthologues of the human CMS gene template from CMScaller (6), thus it has sole emphasis
on individual genes. Given the benefits of pathway-level approaches for classification, over gene-
level, we proposed two further options (MMCMS-B and MmCMS-C) that use biological knowledge-
based information from either gene ontology (MMCMS-B) or a compendium of signatures from
biological signalling collections and microenvironment populations (MmCMS-C). Most importantly,
to ensure the field can utilise these mouse CMS classification approaches, we developed an R
package, namely MmCMS, which provides a publicly-available tool to classify samples according to

all three options, enabling users to assess the alignment of GEMM tumours to human CMS subtype.
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METHODS

Human CRC cohort

The processed TCGA COREAD RNA-Seq dataset (n = 577) was downloaded directly from the
Guinney et al., CMSclassifier study via Synapse (ID: syn2023932), where it has been described
previously (1). Gene symbols and entrez IDs were matched using org.Hs.eg.db R package (v3.8.2)
thereafter CMS classification was performed via ‘random forest’ (RF) method using CMSclassifier R

package (version 1.0.0).

Biological Process subset of Gene Ontology (GO) gene sets were extracted from the Molecular
Signature Database (MSigDB) using msigdbr R package (v7.0.1). Subsequently, ontology scores
were generated for the TCGA dataset using single sample GSEA (ssGSEA) method from GSVA R
package (v1.26.0). To determine the CMS-specific GO terms, these ssGSEA scores were averaged
for each gene set across samples within each CMS subtype and scaled to Z-scores where the GO
with ssGSEA scaled scores above 0 in a CMS, but below 0 on the others, were selected as the
enriched GO term for that CMS. The CMS-specific GO BP gene sets for mouse species were then
extracted from the msigdbr R package and used to develop an ontology-based CMS classification

for mouse.

Mouse models

All animal experiments were performed in accordance with a UK Home Office licence (Project
License 70/8646), and were subject to review by the animal welfare and ethical review board of the
University of Glasgow. Mice of both sexes were induced with a single injection of 2 mg tamoxifen
(Sigma-Aldrich, T5648) by intraperitoneal injection at an age of 6 to 12 weeks, all experiments were
performed on a C57BL/6 background. Mice were sampled at clinical endpoint, which was defined as

weight loss and/or hunching and/or cachexia.

Mouse RNA sequencing and analysis

RNA was isolated using either an RNeasy mini kit (Qiagen) or TRIzol reagent (Thermo Fisher
Scientific). RNA concentrations were determined using a NanoDrop 200c spectrophotometer
(ThermoScientific), and quality was assessed using an Agilent 220 Tapestation using RNA
screentape. RNA sequencing was performed using an lllumina TruSeq RNA sample prep kit, then
run on an lllumina NextSeq using the High Output 75 cycles kit (2 x 36 cycles, paired end reads,
single index). Raw sequence quality was assessed using the FastQC algorithm version 0.11.8.
Sequences were trimmed to remove adaptor sequences and low-quality base calls, defined as those
with a Phred score of <20, using the Trim Galore tool version 0.6.4. The trimmed sequences were
aligned to the mouse genome build GRCm38.98 using HISAT2 version 2.1.0, then raw counts per
gene were determined using FeatureCounts version 1.6.4. Raw read counts of the small cohort

(n=18) which is publicly available at ArrayExpress: E-MTAB-6363 were normalized using vst function
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in DESeq2 R package (v1.32.0). The models where the batch they were sequenced in was deeply
confounded by genotype were removed and data from 51 GEMMs remained. ComBat_seq function
in sva R package (v3.40.0) was used to correct read counts for batch, thereafter vst function in

DESeq2 same as before was used to normalize the data.

Databases

CMS curated gene sets signatures (n=79) were obtained from Synapse (ID: syn2321865). Cancer
hallmarks (n=50) and Gene Ontology (GO) Biological Process gene set (C5 BP) was extracted from
MSigDB using ‘msigdbr’ R package (v7.4.1).

Ten signatures to estimate the proportion of the eight immune (NK cells, Cytotoxic lymphocyte, T
cells, CD8 T cells, B lineage, Monocytic lineage, Neutrophils, Myeloid dendritic cells) and two stromal
(Fibroblasts and Endothelial) cell populations in each human sample across CMS subtypes were
obtained using the MCPcounter R package (v1.2.0); the mouse version of signatures were retrieved
from the mMCPcounter R package (v0.1.0). Immune-related genes for human and mouse were

downloaded from the NanoString panel (https://canopybiosciences.com/product/immunology/).

Statistical analysis

All the statistical analyses were performed in R (v4.1.2) using the stats R package, including cor()
function with method = ‘pearson’ for Pearson’s correlation. The Student t-test method embedded in
the geom_signif() function of ggsignif package (v0.6.3) was used to do statistical analysis in violin
plots. Boxplots were generated using ggplot2 (v3.3.5) R package. The ComplexHeatmap (v2.8.0)
and circlize (v0.4.13) packages were used to display heatmaps. We used gimnet (v4.1-3) R package
to do LASSO regression model analysis. The A or tuning parameter in the LASSO model was
selected through the 10-fold cross-validation. Transcriptome-based stromal and immune scores
were generated using the MCPcounter.estimate() function in MCPcounter R package (v1.2.0).
Single sample gene set enrichment analysis (ssGSEA) was performed using an R package called
GSVA (v1.40.1). Alluvial plot to display concordance result was drawn using riverplot (v0.10).

The Nearest Template Prediction (NTP) algorithm, with cosine correlation distances, was employed
to predict the proximity of each GEM model’s expression profile to the four CMS subtypes, using
each of the three templates individually (A, B and C), with an FDR <0.05 used as a cut off for

statistical significance.
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Results:

Development and testing of CMS classifier templates for use in mouse tumours

To confirm the concordance between the CMScaller/pre-clinical CMS classifier (NTP method) and
the CMSclassifier/original CMS classifier (RF method) in human data, we applied CMScaller on
COREAD TCGA RNA-seq transcriptional data (n=577) retrieved from the original CMS article (1).
After removing samples that were unclassified by either RF or CMScaller, we found 91.19%
(321/352) concordance between RF and NTP calls (Supplementary Fig. 1a). PCA analysis on the
whole transcriptome of these 352 samples demonstrated that samples that gave conflicting calls
(indicated as swapped in Supplementary Fig. 1a) between RF and CMScaller were in the boundary
of CMS subtypes assigned by the RF method (Supplementary Fig. 1a). To confirm that the
discrepancies in classification call were confined to samples with lower CMS probability scores,
when we set a more stringent CMS classification probability cut off (>0.8) for the RF method, the
classifications for the two methods increased to 100% concordance, n=93 (Supplementary Excel
File 1, Sheet 1), demonstrating that CMScaller provides excellent CMS classification concordance
for samples that display the strongest CMS transcriptional traits, as indicated by high subtype RF

classification scores.

While these data confirm the suitability of using either the RF CMSclassifier or NTP CMScaller
methods for CMS classification of human tumour data, to assess the performance of these methods
on mouse tumour model classification, we next assembled transcriptional data from two independent
GEMM tumour cohorts (Table 1). Tamoxifen-regulated Cre-loxP system was used to generate all
models and introduced via an intraperitoneal injection. The small cohort has been previously
described by Jackstadt et al. and composed of 18 intestinal primary tumours across 4 genotypes
that represent both the serrated (KPN: Kras®'?P* Trp53"1 Notch19*; KP: Kras®'??* Trp531M) and
tubular (APN: Apc* Trp53"" Notch179*; AP: Apc"* Trp53"™) tumour histologies (13). The large
independent cohort (n=39) contained a set of independent KP and KPN tumours alongside 4
additional genotypes including Apc®* (A); Apc* Kras®'?* (AK); Braf'60%8* Trp5311 (BP) and Braf/6008/+
Trp53"" Notch179* (BPN). Median latency age of A, AK AP, APN, KP, KPN, BP and BPN models is
215, 67, 185, 161, 171, 184, 190 and 174 days respectively, developing small intestine (SI) tumours
primarily, with the exception of seven mice (AK=5, A=2) which formed tumours in colon. For more

characterisation of the samples see Supplementary Excel File 2.
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Table 1. Summary of mouse models used in this study

Model Genotype of mouse model
name
Small AP v?ll?nCreER Apc?* Trp53™ (n=3)
ol APN v!ll!nCreER Apc? Trp53"1 Notch1T9* (n=3)
(n=18) KP villinCrefR Kras®12P* Trp53MM (n=3)
KPN villinCreER Kras®?P* Trp53" Notch179* (n=9)
A villinCreER Apc™* (n=6)
Levae AK V!II?nCreER Apc* Kras®'?P'* (n=6)
cohort BP v!ll!nCreER BrafV60%&* Trp531M (n=4)
(n=39) BPN villinCreER BrafV6%%&"* Trp531M Notch1T9* (n=7)
KP villinCrefR Kras®?P* Trp531 (n=6)
KPN villinCrefR Kras®1?P* Trp53"f Notch1T9* (n=10)

In this study, we investigated the presence of CMS subtypes in two panels of 18 and 39 GEMMs with 4 and 6
different genotypes, respectively (Table 1).

The RF method in the CMSclassifier package was designed for human samples and uses 273 genes
to assign CMS subtypes. To enable the use of this method with mouse data, we converted the entire
mouse gene matrix to human orthologues using biomaRt (14). During the conversion of the mouse
matrix, 16 genes of the 273 gene used to predict CMS calls in human were mismatched in both
cohorts (Supplementary Table S1). Applying the RF method to our n=18 and n=39 mouse model
matrices produced 56% unknown samples in both datasets (Supplementary Fig. 1b, c). Of note, to
test the functionality of CMScaller in the same mouse cohorts, we next converted the human
CMScaller template genes (n= 529; CMS1=126, CMS2=82, CMS3=84, CMS4=237) to mouse
orthologues (n=533; CMS1=128, CMS2=80, CMS3=90, CMS4=235), which as anticipated resulted
in a small number of dropouts (n=26 missing genes, Supplementary Table S2) due to lack of
recognised orthologues, though overall the number of genes in mouse CMS template increased due
to the existence of multiple mapping mouse genes for the individual human genes (Fig. 1a,
Supplementary Excel File 3). Using this CMScaller method in our mouse data, we found fewer
unknown samples, 17% and 36%, respectively (Supplementary Fig. 1b, c) and therefore selected

this NTP-based approach as our initial dual-species classifier, termed MmCMS-A.
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Figure 1
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Fig. 1: Three different approaches for mouse CMS subtyping. a The schematic shows the approach of
converting the human CMS template to mouse orthologues (MMCMS-A option). b Schematic of developing a
gene ontology-based classifier to call CMS subtypes in mouse tissues. ¢ Heatmap of ssGSEA for selected
GO-BP terms based on z-score > 0 in a CMS subtype and z-score < 0 for other subtypes in human data. d
Schematic of developing MmMCMS-C classifier based on four biologically-informed signature collections (Figure
2a heatmap shown as an exemplar).

Identification of CMS-related GO-BP terms in human TCGA data (MmCMS-B)
To complement the gene-level approach in MmMCMS-A, we again utilised the RF classifications used
in the original CMS classifier development within the human TCGA COREAD data (n=577) to identify
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the gene ontology (GO)-biological process (BP) that are most significantly associated with individual
human CMS classes, using gene set enrichment analysis at single sample level (ssGSEA) to derive
the enrichment score across all samples. For each gene set (GO-BP), the mean enrichment score
was calculated for each human CMS subtype, with scaled Z-score > 0 in one CMS subtype but < 0
in the other three CMS subtypes being selected as distinct features for each particular CMS subtype.
This identified n=172, n=64, n=63 and n=675 specific GO terms associated with CMS1, CMS2,
CMS3 and CMS4 respectively (Fig. 1b, blue background; Fig. 1¢). To test if these CMS class-specific
GO-terms represent surrogate markers for human samples called with high probability using RF, we
again used CMS classifications from the stringent RF threshold (probability cut-off > 0.8) as before
and compared them to CMS classifications using this new NTP ontology-based method, where we
observe 95% concordance with the RF-based calls (Supplementary Excel File 1, Sheet 2). In line
with the generation of MMCMS-A, the mouse-equivalent GO-terms of these human gene ontologies
were identified using the ‘msigdb’ R package and used as the MMCMS-B template for CMS

classification in mouse data using NTP method (Fig. 1b, yellow background).

Development of mouse CMS template (MmCMS-C) based on combining gene sets/ pathways
that best characterise each human CMS subtype in a supervised approach

While MmCMS-B is focussed solely on GO-BP signatures, for MmCMS-C we generated a classifier
based on four biologically-informed signature collections (Fig. 1d). First, we compiled the n=79 gene
sets used to characterise biological signalling in the original CMS study from the Synapse database
(DOI: https://doi.org/10.7303/syn2623706). As with MmCMS-B, we refined these 79 signatures into
only those with individual CMS class-specific expression (t.test; pvalue < 0.01) and signatures only
kept if one subtype was significantly higher when compared to each of the other subtypes in turn,
resulting in 48 of the 79 gene sets being used (Fig. 2a; Supplementary Fig. 2a). Next, using the 50
MSigDB hallmark gene sets, we identified 21 with significant expression (t.test; pvalue < 0.01) across
CMS groups (Fig. 2b; Supplementary Fig. 2b). In the third step, we used the microenvironment cell
population (MCP)-counter signatures, and in line with previous studies, we found cytotoxic
lymphocyte and NK cells are significantly enriched in CMS1, whereas fibroblast and endothelial cells
are enriched in CMS4, thus 4 signatures from MCPcounter (15) were included (Supplementary Fig.
2c; t.test; pvalue < 0.01). Finally, given the importance of inflammatory lineages in development and
classification, we assessed immune-related genes (n= 557; from a NanoString panel) for their
associations with each CMS subtype, filtered first using the Least Absolute Shrinkage Selector
Operator (LASSO) regression model (Fig. 2c). Based on coefficient > 0, overall 44 immune-related
genes (CMS1=14, CMS2= 8, CMS3= 9, CMS4= 13) were found as the best predictors of individual
CMS classes. As with Options B, these co-ordinately expressed immune genes for each CMS
subtype were then grouped for ssGSEA, and enrichment scores were assessed across subtypes
which were significantly enriched (t-test; pvalue <0.01) (Fig. 2c). Overall, this four-step MMCMS-C
approach identified 77 CMS class-specific gene sets (CMS1=28; CMS2=5; CMS3=10; CMS4=34).
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When tested in the same way as MmCMS-A and B, using the NTP method on TCGA data, MmCMS-
C was found to have 98% concordance with the RF-based high probability calls, threshold = 0.8
(Supplementary Excel File 1, Sheet 3). To enable mouse classification, the biomaRt (14) and msigdb
(16) R packages were used to obtain the mouse version of 48 gene sets and 21 hallmark pathways,
respectively, with mouse MCP signatures retrieved from the mouse-specific mMMCP-counter package
(17). Individual orthologues of immune-related genes were obtained from the mouse NanoString
panel (Supplementary Table S3), with 39 mouse genes aligned to the 44 human immune genes

identified using regression analysis, and then grouped into signature scores as before.
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Fig. 2: Identification of pathways and biology that are best characteristic of each human CMS subtype
for Option C. a ssGSEA scores heatmap of 48 CMS-related signatures (CMS1=14, CMS2=3, CMS3=8,
CMS4=23), from original the CMS article(1), that are significantly different (pairwise t-test; see Supplementary
Fig. 2b) across CMS subtypes in human dataset. Scores are converted to Z scores. *
PENTOSE_GLUC_METAB_KEGG and GLUTAMINE_GO_BP are defined with different names in the CMS
curated gene sets signatures (n=79) from Synapse (ID: syn2321865) but the genes are the same. b SSGSEA
scores heatmap of 21 selected hallmark pathways that are significantly different (pairwise t-test; see
Supplementary Fig. 2b) across CMS subtypes in the human dataset. Scores are converted to Z scores. ¢
Selection of the A parameter in the LASSO model by 10-fold cross-validation based on minimum criteria. Red
dots show the average deviance values for each model with a given A. The vertical black lines define the
optimal values of A, where the model provides the best fit to the data. A A value of 0.01682636 (lambda.1se),
was chosen. Violin plot and pairwise t-test used to display enrichment of selected immune gene set across
CMS subtypes (CMS1 n=14, CMS2= 8, CMS3= 9, CMS4= 13). *** p < 0.001

CMS classification of GEM models using 3 options

To assess the performance of our 3 options for classifying mouse tumours, two different cohorts of
GEMMs as described above were used (Table 1, Fig. 3a). As there is no CMS "ground truth" or
reference for mouse tumour data, we utilised tumours from n=18 mouse models across four
genotypes (KPN, KP, APN, AP; Table 1), which we have previously shown to correlate with signalling
associated with stromal CMS4 tumours (KPN and KP) or epithelial-rich CMS2/3 tumours (AP and
APN). PCA on the dataset revealed distinct groups according to genotype (Supplementary Fig. 3a).
The NTP-based algorithm was employed to predict CMS classification of GEMM tumours, using
each of the three templates individually (MmCMS-A, B and C), with an FDR <0.05 used as a cut off
for significant calls. Within the small cohort, both MMCMS-A and MMCMS-C returned 3 unknown
calls, however MMCMS-B classified all mouse tumours (Fig. 3b). Although some intra-genotype
variation in CMS classifications were identified, indicating heterogeneity within tumours with the
same genotype, these findings were all in line with previously published subtype associations for

these models (Fig. 3b and Supplementary Table S4).

There was broad consensus across all three options for samples classified as CMS4, indicating how
distinct this subtype is compared to the others, however samples classified as CMS3 using MmMCMS-
C were classified as either CMS2 or unclassified using MmCMS-B and MmCMS-A (Fig 3b).
Characterisation of these GEMM tumours, using ssGSEA, shows that as with human tumours, all
samples assigned as CMS4, most prominently by MmCMS-C, display the highest levels of
enrichment for TGF[ signalling, EMT, angiogenesis, Notch and Hedgehog signalling. In line with
human CMS biology, samples classified as CMS3 using MmCMS-C display high expression of
metabolic pathways, such as bile acid, xenobiotic, fatty acid, heme metabolism and glycolysis.

Samples classified as CMS2 have high expression of MYC and E2F targets which are well-identified
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signalling molecules in the CMS2 subtype. One sample was consistently classified as CMS1, which
displayed high expression of interferon-gamma response and interferon-alpha response (Fig. 3c and
Supplementary Fig. 3b).

Following assessment in this initial cohort of histologically distinct tumours, with tubular/epithelial-
rich (AP, APN) and serrated/stroma-rich (KP, KPN) genotypes, we next tested each of the individual
classifier options in an independent and more heterogeneous cohort of 39 mouse tumours across 6
genotypes. When applied using the same method as above, MMCMS-A, B and C returned n=14,
n=2 and n=6 unknown samples respectively (Fig. 3d). MMCMS-A returned unknown calls for all
Apc™ samples, however when using MMCMS-B and C all samples with Apc®* genotype were
assigned as CMS2, with biological characterisation using GSEA indicating that these samples have
enriched signalling hallmarks related to proliferation including G2M checkpoint, E2F targets and
MYC targets (Fig. 3d). The only Apc™* genotype sample (A2) that remained unclassified by MmCMS-
C appeared as an outlier when assessed by PCA, as it did not cluster with other Apc?* samples
(Supplementary Fig. 3c).
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Fig. 3: Molecular characterization of GEM models. a Left part of schematic shows all the GEMMs used in
this study. The border colour indicates the genotypes that are included in each cohort, blue for small cohort
and pink for large cohort. The squares with both border colours show the presence of that particular genotypes
in both cohorts, but the samples are different. The squares with peach background are representative of the
tubular tumour models and green background show the serrated tumour models. Right part of schematic
shows the input file for each three options. MMCMS-A option use normalized expression values to call CMS
for mouse tissues, but MmMCMS-B and -C work on ssgsea score matrix. All the analysis process to convert
gene expression values to ssgsea score matrix will be automatically done in the R package. Users just need
to provide the package with normalized expression values as input file while genes are row names and samples
are in columns. b Comparison of CMS classification results using our three options (MmCMS-A, MmMCMS-B
and MmCMS-C) in small GEMM cohort (n=18). Grey colour indicates unclassified samples. The CMS calls are
aligned by genotype, location, sex and duration of tamoxifen induction. ¢ Heatmap of Hallmark ssGSEA score
across samples from the small cohort of GEMMs (scores are z-score scaled). d CMS classification of 39 GEM
models using our three options. Grey colour indicates unclassified samples. The CMS calls are aligned by
genotype, tumour location, sex and duration of tamoxifen induction. e ssGSEA scores heatmap of immune
response, colon epithelial differentiation, goblet cell-like, and stroma related gene sets across GEMMs that

are aligned by genotype and CMS classification result from the 3 options in the large cohort (n=39).

GSEA reveals that samples classified as CMS2 by MmMCMS-A display features inconsistent with
human CMS2 tumours, and are more aligned with human CMS3 classification, including high
expression of metabolic pathway and low expression of proliferation-related hallmarks, indicating
limited ability of the gene-level approach to identifying CMS2 tumours (Fig. 3d, Supplementary Fig.
3b). Furthermore, genes associated with immune response, colon epithelial differentiation, goblet
cell-like, and stroma, which represent CMS1, CMS2, CMS3, and CMS4, respectively, were obtained
from (18), converted to mouse orthologues using biomart and examined in the GEMMs to determine
if they support the CMS calls assigned by the classifiers (Fig. 3e and Supplementary Fig. 3d).
Referring to MMCMS-C calls particularly, this analysis reveals a strong association between CMS4
samples and stroma signature. The CMS2 samples in the larger cohort (n=39) are repressed for
immune response and stroma signatures but have high enrichment for colon epithelial differentiation
as expected as well as goblet cell-like signatures (Fig. 3e). Although all CMS3 samples have
universal enrichment for goblet cell-like signatures, some samples with BP, BPN, AK genotype also
display elevated immune response and colon epithelial differentiation signatures. Moreover, the
result demonstrates high enrichment of only immune response signature for CMS1 samples in the
small cohort as expected, however in the larger cohort there is also some level of expression for
colon epithelial differentiation and goblet cell-like signatures, although these inconsistencies may be
explained due to limited samples classified as CMSL1 using any method (Fig. 3e and Supplementary
Fig. 3d).
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MmCMS-C is the best option, particularly in calling CMS2-like mouse tissues

To test how well our GEMM classifications align to the biological characteristics associated with
human CMS subtypes, we next measured the biological traits of immune-related, metabolic,
proliferation and stromal signalling associated with CMS calls in human TCGA data and compared
them directly to the CMS classification calls according to each of our three MMCMS options in both
independent GEMM cohorts. Mean ssGSEA scores were calculated across samples of each human
CMS subtype, using the same TCGA samples used in Figure 1, alongside mean ssGSEA scores for
MmCMS-A, B and C predictions in the n=18 and n=39 GEMM cohorts (Fig. 4a-b).

Using the human RF calls as the ground truth, followed by cross-comparison and correlation analysis
of samples assigned as CMS2 by all three mouse options, we find strong correlation with MmMCMS-
B (r=0.79, p=0.0000005) and MmCMS-C (r=0.81, p=0.0000001) and no correlation with MmMCMS-A
in both cohorts (Fig. 4, Supplementary Table S5). Additionally, we found limited associations for
biological traits in human CMS1 with the CMS1 calls for any of our mouse classifier options, again
however this may be due to small numbers of CMS1 classifications in mouse tumours. In samples
classified as CMS3 and CMS4, all 3 MMCMS options show significant positive correlation with
related human CMS subtypes, although again MMCMS-B and C classification calls display higher
association to human traits compared to MmMCMS-A (Supplementary Table S5).
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Fig. 4. Pathway-based classification is more reliable, particularly in calling CMS2-like mouse tissues.
a Comparison of mean ssGSEA scores from the biological characteristics associated with human CMS
subtypes, applied in mouse CMS calls (n=18 GEMM cohort) using the 3 classification options and human CMS
calls. b Comparison of mean ssGSEA scores of hallmarks in mouse CMS calls (n=39 GEMM cohort) using the
3 classification options and human CMS calls.
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MmCMS-B and C (biological knowledge-based approaches) are less influenced by
nonbiological factors

To assess how much non-biological factors, such as normalization methods would affect the CMS
classification result of 3 options, we generated a larger collection of GEM models by combining both
cohorts used in this study. APN and AP models were excluded, as the batch they were sequenced
in was deeply confounded by genotype, resulting in a collection of transcriptomic data from 51
tumour samples, including 6 genotypes; A, AK, BP, BPN, KP and KPN. After batch correction using
ComBat_seq, two different methods of normalisation, namely quantile and vst, were applied and
thereafter CMS classification was performed using the 3 options. The results show 100%
concordance between both methods for CMS calls assigned by MMCMS-B and MmCMS-C, however
in line with limitations of gene-level classifiers, concordance with the gene-level MMCMS-A classifier
was reduced to 92% (Supplementary Fig. 4). This suggests broad biological knowledge-based
approaches based on overall gene ranking across biological pathways, rather than individual genes,

are more robust and less likely to be influence by non-biological factors (12).

Mouse CMS subtype specific biomarkers could not classify human samples.

Our study suggests that individual gene-level classifiers derived from human CRC tumours perform
poorly when applied to data derived from mouse CRC tumours, therefore we next assessed if CMS-
specific significant genes from mouse tumours classified using our MmMCMS-C method can
distinguish human CMS subtypes. To this end we performed differential gene expression analysis to
identify the 20 most significant CMS-specific genes for each subtype assigned using MmCMS-C
(Fig. 5a). These genes were then applied to the human TCGA cohort according to the CMS subtypes,
which revealed that while genes most associated with CMS4 could identify this subtype regardless
of species, genes associated with mouse CMS1-3 displayed inconsistent subtype associations (Fig.
5b).
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Fig. 5: Mouse CMS subtype specific biomarkers are inconsistent across mouse and human tumour
samples. a Heatmap of the top 20 significant differentially expressed genes (DEGS) in each CMS subtype
called by MMCMS-C (Student's t-tests in Partek Flow applied on each CMS subtype versus all other subtypes
to identify DEGs). b Violin plot shows the median expression of the top 20 genes in human CRC samples
according to CMS subtypes; DEGs (top 20) from mouse were converted to human orthologues using biomaRt.
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Discussion:

Genetically engineered mouse models represent a valuable tool to test novel treatments that may
benefit specific subtypes of tumours, making it essential to ensure the chosen models accurately
recapitulate biological signalling and phenotypes underpinning human subtypes (19). Therefore,
accurate and robust classification of mouse CRCs according to human subtypes is a critical step to
improve disease-positioning of models and translation of findings from the pre-clinical setting.
Integrity and robustness in positioning models with human cancer subtypes is critical in the era of
stratified medicine, where therapeutic approaches are designed for the biology underpinning specific
tumour subtypes. In order to successfully translate pre-clinical efficacies into clinical benefit, testing
of therapeutics must be performed in models that are representative of specific patient subtypes.
Despite its importance, dual-species classification has been limited by the lack of a reliable and
standardised approach, limiting researchers’ ability to ensure faithful alignment between human
tumours and preclinical models. Therefore, to address this, we developed a series of dual-species
CMS classification models, named MMCMS, and an accompanying R package, which allows users
to rapidly perform CMS classification of mouse tissue using three different options (A-C) of increasing
complexity, from gene-level to biological pathways. To ensure that these new classifier options
benefit the field, we developed a publicly available R package for MmCMS, which can be
downloaded from https://qgithub.com/MolecularPathologyLab/MmCMS. Although we have focussed

on CMS in this study, data presented here provide an ideal template for the development and testing
of other dual-species classifications, for subtypes such as CRC intrinsic subtypes (CRIS) (5), Braf

mutant subtypes (BM) (20) and many others.

Our gene-level classifier, MMCMS-A, converts the human CMS template, embedded in CMScaller
R package, to mouse orthologs and then use the NTP algorithm to carry out mouse CMS
classification. The CMScaller package has been developed to enable exploration of the CMS
subtypes in human pre-clinical models, particularly in cell lines, organoids and PDX tumours, to
overcome the limitation of CMSclassifier’'s strong dependence on gene expression derived from the
tumour microenvironment (1,6). As this approach is based on individual genes, any genes lost during
the process of obtaining mouse orthologues (21,22) can affect classification performance, resulting
in a higher number of inaccurate or unknown calls, compared to biological knowledge-based
approaches. In addition to biological differences between mouse and human, the representation and
coverage of individual genes required for robust CMS classification may not be equivalent across
different transcriptome profiling platforms (11), which again can lead to poor classifier performance.
Recent studies have shown that classifiers based on biological pathways, rather than individual
genes, have the potential to provide a more robust classification, as by using hundreds of co-
ordinately expressed genes they become far less sensitive to bias that is associated with missing
individual genes (9,10). This is based on the understanding that ontology/pathway-level approaches

for transcriptional analyses have the advantage of identifying biologically meaningful information
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associated with a particular subgroup, rather than individual genes which can be confounded by
issues such as intratumoural heterogeneity or technical variations associated with molecular profiling
(9,11,12). In our MMCMS R package, MMCMS-B and C were developed to overcome the limitations
of individual gene-based approaches and are based on ssGSEA scores from broad biological
knowledge-based approaches, less influenced by nonbiological factors such as normalization
methods. Correlation analysis between each CMS-related pathway in human samples shows that
MmCMS-B and C are more similar to human CMS classification, using the original RF classifier, and
have higher discriminatory power and classification rates, particularly for CMS2 and CMS3. Our
results suggest the presence of intra-genotype CMS subtype heterogeneity, indicating that the same
mutations driver events can result in variable downstream transcriptional signalling, emphasising
that faithful mouse model alignment with human tumour signalling should not be based on mutation

alone.

Coupled with advances in our understanding of the biology underpinning tumour development and
progression, the versatility and accessibility of transcriptional signatures has seen them become a
fundamental tool in the alignment of clinical phenotypes and biological signalling across human
tumours and preclinical models. As therapeutics are being tested in a variety of mouse-based in vivo
models, it is now even more important to ensure faithful alignment between models and human
tumours and that the models we use represent the same biology during forward and reverse
translation studies. Our study provides an important standardised approach for researchers to
enable more reproducible and comparable classification of CRC mouse models, aligned to the
biology underpinning human CRC subtypes. The identification of mouse tumours that truly mimic
each human CRC subtype is essential for the proper interpretation of results, and their translation

into effective human clinical trials.

Data Availability
The dataset of 18 GEM models is available via Jackstadt et al. article (13) at ArrayExpress: E-MTAB-
6363. The dataset of 39 GEM models is available from the corresponding author on reasonable

request.
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Supplementary Fig. 2: Signatures that are significantly enriched in each CMS subtypes. a CMS curated
gene sets signatures that are significantly enriched in each CMS subtype (CMS1 samples=67, CMS2=135,
CMS3=88, CMS4=155). b CMS-related hallmarks that are significantly enriched in each CMS subtype. ¢ Four
signatures from MCP-counter package were chosen to be included in the MMCMS-C option. Student t.test
method embedded in the geom_signif() function of ggsignif package (v0.6.3) was used to do statistical

analysis in boxplots. Horizontal line represents median values, boxes indicate the inter-quartile range and
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scaled). ¢ PCA plot depicting the clustering of mouse models based on their genotype in the large GEMM
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and stroma related gene sets across GEMMs that are aligned by genotype and CMS classification result of

3 options in the small GEMM cohort (n=18).
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Supplementary Fig. 4: CMS classification results from the combined GEMM cohort (n=51) using the 3
classification options applied to the mouse data after normalisation by two different methods; vst in

DESeq2 and quantile normalisation.


https://doi.org/10.1101/2022.06.17.496539
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.17.496539; this version posted June 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

d ilabl d - . i li . g . .
Supplementary Table S1. 16m§eer?éas'aoa%noef 3?3%%%2???\“%?? CMiSclassifier which missed
during conversion the mouse matrix to human entrez ids

Entrez.ID [Gene.Symbol
1300 COL10A1
8857 FCGBP
5740 PTGIS
116496 FAM129A
3075 CFH

25878 MXRA5
196051 PPAPDC1A
54596 L1TD1
4583 MUC2
26585 GREM1
6347 CCL2
128486 FITM2
4935 GPR143
10578 GNLY

1555 CYP2B6
10335 MRVI1

Supplementary Table S2. 26 genes are missing during converting human CMS to mouse
orthologs due to lack of recognised orthologues

26 genes
misalignment

CXCL5 CMS2 CADPS SMAD9S
CXCL8 CMS2 COL9A3 |CMS4 ADAMI19
FDXR CMS2 CTSV CMS4 CST1
IFI30 CMS2 CYP2B6 |CMS4 CTSL
IFI6 CMS2 FER1L4 |CMS4 CYP2B6
MT1X CMS2 MEP1A |CMS4 IFIT1
MT2A ANXA13 |CMS4 RTL8C
PI3 CADPS |CMS4 SLC2A3
SAMD9S MUC2
ZBED2 SERPINA1
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SupplefrienhtaryTabile 53eCMEupelgted orinan
genes selected using the Least Absolute
Shrinkage Selector Operator (LASSO) regression
model among 557 immune genes obtained from

NanoString in human dataset.

aCC-BY 4.0 Int

4 1
PratoORarTit

CHSET

Class Human Mouse
CMS1 BCL6 Bclé
CMS1 CLEC5A Clec5a
CMmSs1 CXCR4 Cxcrd
cMmS1 DPP4 Dpp4
CMmSs1 JAK2 Jak2
CMmSs1 KIR3DL1 Kir3dI1
CMmSs1 KIR3DL1 Kir3dI2
CMmSs1 MAPK11 Mapk11
CMmSs1 MBP Mbp
CMmSs1 PLA2G2A Pla2g2a

CMS3 BCL3 Bcl3
CMS3 GFI1 Gfil
CMS3 IL1IA Il1a
CMS3 IL22 1122
CMS3 IL23A 1123a
CMS3 ITLN1 Itin1
CMS3 NOS2 Nos2
CMS3 PTGER4 Ptgerd
CMS3 TNFRSF11A | Tnfrsflla
CMS4 BST1 Bstl
CMS4 C1S Cls
CMS4 c7 c7
CMS4 CD81 Cds1
CMS4 ENTPD1 Entpdl
CMS4 FCGRT Fcgrt
CMS4 FN1 Fnl
cMms4 MARCO Marco
CMS4 PDGFRB Pdgfrb
CMS4 STATSB Stat5b
CMS4 THY1 Thyl
CMS4 ZEB1 Zebl
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Option_C approach

CMS1 | CMS2
KPN 1 -
KP - -
APN - -
AP - 1

Supplementary Table S4. The ntitiPEPUTSEHHIES HEFCNS 'SiBtypes assigned by
MmCMS-C in small cohort.

Supplementary Table S5. Correlation analysis between human CRC and each mouse

option in Figure 4 for each CMS subtype

Small cohort (n=18)
Human |Mouse |estimate |p.value
RF_CMS1 [A_ CMS1 | 0.696878| 3.79E-05
RF_CMS1 [B_CMS1 | 0.557433| 0.002058
RF_CMS1 [C_ CMS1 | 0.696878| 3.79E-05
RF_CMS2 [A_ CMS2 | -0.23087| 0.237203
RF_CMS2 [B_CMS2 | 0.792418| 5.02E-07
RF_CMS2 [C_ CMS2 | 0.813795[ 1.39E-07
RF_CMS3 [A_ CMS3 | 0.840478| 2.19E-08
RF_CMS3 [B_CMS3 | 0.914454{ 1.03E-11
RF_CMS3 [C_ CMS3 | 0.905587| 3.51E-11
0.807208| 2.10E-07
0.922386/ 3.03E-12
0.890457| 2.22E-10

Large cohort (n=39)

Human |Mouse |estimate |p.value
RF_CMS1 [A CMS1 | -0.15213| 0.439622
RF_CMS1 [B_CMS1 0.36814{ 0.053916
RF_CMS1 [C_CMS1 0.2099| 0.283699
RF_CMS2 |A_ CMS2 | 0.160997| 0.413108
RF_CMS2 |B_CMS2 | 0.673605| 8.53E-05
RF_CMS2 |C_CMS2 | 0.706416| 2.66E-05
RF_CMS3 [A_ CMS3 | 0.906198| 3.24E-11
RF_CMS3 [B_CMS3 | 0.864359 3.07E-09
RF_CMS3 [C_ CMS3 | 0.909069| 2.20E-11

0.898072| 9.10E-11

0.922993| 2.75E-12

0.927934] 1.19E-12
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