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Abstract

Metastatic cancer remains almost inevitably a lethal disease. A better understanding of disease
progression and response to therapies therefore remains of utmost importance. Here, we characterize
the genomic differences between early-stage untreated primary tumors and late-stage treated metastatic
tumors using a harmonized pan-cancer (re-)analysis of 7,152 whole-genome-sequenced tumors. In
general, our analysis shows that metastatic tumors have a low intra-tumor heterogeneity, high genomic
instability and increased frequency of structural variants with comparatively a modest increase in the
number of small genetic variants. However, these differences are cancer type specific and are heavily
impacted by the exposure to cancer therapies. Five cancer types, namely breast, prostate, thyroid, kidney
clear carcinoma and pancreatic neuroendocrine, are a clear exception to the rule, displaying an extensive
transformation of their genomic landscape in advanced stages. These changes were supported by
increased genomic instability and involved substantial differences in tumor mutation burden, clock-based
molecular signatures and the landscape of driver alterations as well as a pervasive increase in structural
variant burden. The majority of cancer types had either moderate genomic differences (e.g., cervical and
colorectal cancers) or highly consistent genomic portraits (e.g., ovarian cancer and skin melanoma) when
comparing early- and late-stage disease. Exposure to treatment further scars the tumor genome and
introduces an evolutionary bottleneck that selects for known therapy-resistant drivers in approximately
half of treated patients. Our data showcases the potential of whole-genome analysis to understand tumor
evolution and provides a valuable resource to further investigate the biological basis of cancer and
resistance to cancer therapies.
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Introduction

Metastatic spread involves tumor cells detachment from a primary tumor, colonization of a secondary
tissue, and growth in a hostile environment!?. Advanced metastatic tumors are frequently able to resist
aggressive treatment regimes>. Despite the many efforts to understand these phenomena®®, we still have
limited knowledge of the contribution of genomic changes that equip tumors with these extraordinary
capacities. Thus, it is essential to characterize genomic differences between primary and metastatic
cancers and quantify their impact on therapy resistance to be able to understand and harness therapeutic
interventions that establish more effective and more personalized therapies®.

Multiple large-scale genome-sequencing efforts have been devoted to profiling the genomic landscape of
primary tumorigenesis by relying on clinical panels® or on whole-exome sequencing!! or whole-genome
sequencing'*®3 strategies. Similarly, recent efforts have characterized large cohorts of patients with
metastatic tumors'*!®, Several cancer type specific projects have also reported analysis of primary and
metastatic matched biopsies in urothelial carcinomas®®, breast cancer'’, kidney clear cell carcinoma'® and

1920 among others?!. However, the ethical and logistical challenges associated with

prostate carcinoma
the collection of paired biopsy data hampers the extrapolation to thousands of patients with multiple

cancer types.

To circumvent this issue, most large-scale comparisons between primary and metastatic tumors have
relied on unmatched whole-exome data or have adopted more targeted approaches with a specific focus
on driver gene landscapes??*. These efforts have frequently involved separated processing pipelines for
primary and metastatic cohorts, complicating the analysis of genomic features that are highly sensitive to
the selected data-processing strategy®>?®. An impressive recent study that uniformly analyzed more than
25,000 tumors?’ has provided a comprehensive overview of the genomic differences, driver alteration
patterns and organotropism using clinical gene-panel sequencing as a base. However, this genomic
analysis approach, which is limited to several hundreds of genes, prevented the exploration of the full
spectrum of genomic alterations that play a role in tumorigenesis, such as structural variation and
mutational scarring caused by intrinsic and extrinsic forces.

Here, we present a large-scale unified analysis of more than 7,000 whole-genome sequenced (WGS)
paired tumor-normal samples (re-)analyzed by the same data-processing pipeline. This dataset enabled
cancer type specific comparisons of whole-genome features in 22 cancer types with high representation
in both primary and metastatic patients. We investigated differences in tumor clonality, genomic
instability markers, whole-genome-duplication (WGD) rates, tumor mutation and structural variant (SV)
burden and clock-based molecular signatures and assessed the contribution of cancer treatments to the
observed differences. We also explored disparities in the driver gene landscape and their implications for
therapeutic actionability. Finally, we identified known and new associations between certain driver
alterations and exposure to various treatments. The harmonized genomic dataset used in our study
constitutes the largest repository of uniformly analyzed cancer WGS data and is publicly available to the
scientific community to better understand the full spectrum of DNA alterations as well as to study their
role in tumor evolution and response to therapy.
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Results

7,152 uniformly processed whole-genome-sequenced paired tumor-normal samples
from patients with primary and metastatic tumors

To characterize the genomic differences between primary and metastatic tumors, we created a uniformly
analyzed dataset of matched tumor and normal genomes from patients with primary and metastatic
cancer. We first collated the Hartwig Medical Foundation (Hartwig) dataset, which includes 4,784 samples
from 4,375 metastatic patients (from which 2,520 samples were previously described'?). Then, we re-
processed 2,835 primary tumor samples from the Pan-Cancer Analysis of Whole Genomes (PCAWG)
consortium using the open-source Hartwig analytical pipeline’*?® to harmonize somatic calling,
standardize broad functional annotations of events and eliminate biases caused by processing pipelines
and filter conditions (Supp. Fig. 1, Supp. Table 1). Reassuringly, per-sample comparison of the number of
single base substitutions (SBSs), double base substitutions (DBSs), indels (IDs), and SVs revealed a strong
agreement between our results and the consensus calls originally generated by the PCAWG consortium
(see Supp. Note 1). Additionally, our processing pipeline strategy was minimally affected by differences in
sequencing coverage, enabling a reasonable comparison of WGS samples from heterogeneous sources
(decreased sensitivity at 60x and 38x coverage, typical for PCAWG samples, compared with 109x
coverage, typical for Hartwig samples between 0% and 5% for simple mutations and between 8% and 14%
for SVs respectively) (Supp. Note 1). A total of 7,152 tumor samples from 58 cancer types met the
processing pipeline quality standards (see methods and Supp. Fig. 1a) and constitutes one of the largest
publicly available datasets of WGS primary and metastatic tumors. The flexible nature of the processing
pipeline, which does not require extensive parameter fine-tuning, enables its application to other whole-
genome-sequencing projects, thereby providing an excellent opportunity for future integrative analyses
that incorporate this dataset.

To explore genomic differences between primary and metastatic tumors, we focused on 22 cancer types
from 14 tissues with sufficient sample representation (i.e., at least 15 unique patients in both the primary
and metastatic cohorts), which totaled 5,751 tumor samples (1,916 primary and 3,835 metastatic) (Fig.
1a, Supp Fig 1a). Within this dataset, patients with metastatic tumors were slightly older at biopsy than
patients with primary tumors (mean of 2.09 years older across all cancer types). In particular, the mean
age at biopsy in primary and metastatic cohorts, respectively, was 59.9 and 67.9 years in patients with
prostate carcinoma, 52.8 and 63.6 years in patients with thyroid carcinoma, and 49.6 and 70.3 years in
patients with diffuse B cell lymphoma. Consistent gender proportions were observed across all cancer
types except for thyroid adenocarcinomas, which had higher male representation in the metastatic cohort
(metastatic: 72% male, 28% female; primary: 25% male, 75% female). Treatment information was
available for 53% metastatic patients. This information is essential to gauge the contribution of this
evolutionary bottleneck to the genomic differences between primary and metastatic tumors (Fig. 1a).
Finally, biopsy location was explicitly annotated in 82.4% of metastatic patients, including 12.6% biopsies
from metastatic lesions in the primary tissue (local), 16% in lymph nodes and 53.8% in distant locations.
Biopsy locations were highly tumor type specific and likely reflected both the dissemination patterns of
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the tumors and the challenges associated with collection of clinical samples. In summary, we generated a
harmonized dataset of 7,152 primary and metastatic WGS tumor samples from 58 cancer types including
22 cancer types with sufficient representation in both early and late clinical stages to allow for a systematic
comparison (Supp. Table 1).

Global genomic characteristics of primary and metastatic tumors

We first explored global genomic differences between primary and metastatic tumors across the
aforementioned 22 cancer types. Metastatic tumors showed an overall increase in clonality compared
with their primary tumor counterparts (Fig. 1b). Particularly, 12 cancer types had a significantly higher
metastatic average clonality ratio, ranging from 3.2% increased mean clonality in skin melanoma to 37%
increased mean clonality in thyroid carcinoma. Interestingly, within the group of patients with metastatic
breast cancer, distant and lymph node tumor biopsies showed significantly higher clonality ratios
compared with local metastatic lesions (Fig. 1c). This increase in clonality was also observed in distant
tumor biopsies of esophagus cancer and colorectal carcinomas (Fig. 1c). Nevertheless, the biopsy location
did not influence tumor clonality in other cancer types such as non-small cell cancer and skin melanoma
(Supp. Fig 1b), suggesting that patterns of tumor dissemination are highly tumor type specific®. Thus, our
results thus support the notion that metastatic lesions generally have lower intra-tumor heterogeneity?,
which may be explained by a single major subclone seeding event from the primary cancer and/or by
severe evolutionary constraints imposed by anti-cancer therapies.

Karyotype comparison revealed a generally conserved portrait, which was strongly shaped by the tissue
of origin?®, and where only two cancer types showed substantial karyotypic changes (kidney clear cell and
prostate carcinomas, >10 chromosome arm gains/losses) and three additional cancer types displayed
moderate changes (breast, uterus, and thyroid carcinomas, >5 chromosome arm gain/losses) in the
metastatic cohort compared with the primary cohort (Fig. 1d, Supp. Table 2). The majority (63 of 84) of
significant discrepancies were associated with an increased frequency of chromosomal arm gains in the
metastatic dataset, while only 21 discrepancies were caused by an increased frequency of chromosome
arm losses. Chromosome arms 7p, 12p, 5p and 17q, which are relatively enriched in oncogenes®®, were
the most recurrent chromosome arm gains. Conversely, chromosome arms 1p and 18q, highly enriched
in tumor suppressor genes®’, were the most recurrent losses in the metastatic cohort (Fig. 1d).

We next investigated differences in four well-studied genomic instability markers: chromosomal
aneuploidy score®!, loss of heterozygosity (LOH) genome fraction in diploid tumors, WGD*?, and TP53
alterations®22® (Fig. 1e, Supp. Table 2). Four cancer types (i.e., colorectal, kidney clear cell, prostate, and
thyroid) showed persistent increases in the four genomic instability markers in the metastatic cohort,
whereas four additional cancer types (i.e., breast, stomach, pancreas neuroendocrine and diffuse B cell
lymphoma) had some form of increased genomic instability in the metastatic cohort. Our results thus
confirmed that genomic instability is a hallmark of advanced tumors*9?7293435 gnd revealed that the
majority of cancer types have already acquired variable degrees of this genomic feature early in tumor
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evolution. However, certain cancer types, such as prostate, kidney, and thyroid, significantly increased
the level of genomic instability in later evolutionary stages, which were, in turn, associated with
substantial karyotypic changes.

Tumor mutation burden

The unified processing of both primary and metastatic tumor samples enables quantitative and qualitative
comparison of SBSs, DBSs and ID burden, which we refer to collectively as tumor mutation burden (TMB).
We found that the TMB in metastatic tumors was only moderately increased compared with primary
tumors across the 22 cancer types tested (fold-change increases of 1.22 + 0.48 for SBS, 1.52 + 0.85 for DBS
and 1.43 + 0.55 for IDs; mean + standard deviation [SD]). In fact, more than 60% of the cancer types (13
of 22) had no significant increase in mutation burden for any mutation type. Only five cancer types (breast,
cervical, thyroid, prostate carcinoma, and pancreas neuroendocrine) had a consistent increase for the
three mutation types at the metastatic stage, although the mutation profiles lacked systematic differences
between primary and metastatic tumors (Fig. 2b, Supp Fig. 2a). These results show that TMB is not
necessarily indicative of tumor progression status and that the mutational spectra are tightly shaped by
the mutational processes that were already active before and during primary tumor development.

Mutational processes in primary and metastatic tumors

To assess whether the TMB differences may be attributed to differential activity of environmental or
endogenous mutational processes, we conducted a tissue type specific mutational signature de novo
extraction that resulted in representative mutational signatures of 69 SBSs, 12 DBSs, and 19 IDs (Supp.
Table 3). Most of these (50 of 69 SBSs, 8 of 12 DBSs, and 12 of 19 IDs) mapped onto the well-described
mutational signatures in human cancer®. Moreover, we inferred the suspected etiology for two novel DBS
mutational signatures associated with mismatch repair deficiency (MMRd) (DBS_denovo_2) and
MMRd/POLE hypermutation (DBS_denovo_1) (Supp. Table 3).

By comparing the activities of all mutational processes, we found that mutations caused by cytotoxic
treatments were enriched in 11 cancer types (Fig. 2c-e). Platinum-based chemotherapies (SBS31/SBS35
and DBS5) showed the strongest mutagenic effect with 429 + 266 (mean £ SD) SBS mutations and 23 + 15
(mean £SD) DBS mutations on average per sample. In fact, the excess in DBS mutation burden observed
in six cancer types (stomach, esophagus, cervix, upper respiratory tract, non-small cell lung, and urothelial
cancer) could be fully attributed to platinum treatment (Fig. 2d top bars). Likewise, the radiotherapy ID
signature®’ (ID8) was systematically enriched in multiple cancer types as a response to widespread
exposure to radiation-based treatment, whereas the 5-fluorouracil*®3° (SBS17a/b), duocarmycin“® (SBS90)
and polycyclic aromatic hydrocarbon (PAH) metabolites from chemotreatments*! (DBS2) occasionally led
to a greater mutation burden in metastatic tumors in a tumor type specific manner (Fig. 2c-e).
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The systematic enrichment of SBS2/13 mutations in metastatic cancers suggests enhanced activity of
APOBEC mutagenesis during the progression of advanced tumors. Specifically, our results revealed an
increase in APOBEC mutation burden of 316 + 173 (mean + SD) mutations per sample in six metastatic
tumors (breast, colorectal, stomach, kidney, prostate, and pancreas neuroendocrine) that reached
statistical significance, being breast and stomach cancers the ones with the strongest increase (>500
APOBEC mutations per sample in both cancer types). Other cancer types, such as cervical and urothelial
cancers, also showed enhanced APOBEC activity (>1800 mutations per sample), but they did not reach
significance owing to high intrinsic APOBEC activity in the primary tumors. The metastatic breast cancer
samples also had a higher percentage of APOBEC hypermutation than primary tumors (14% vs 5%, Supp.
Fig. 2c, Supp. Table 3).

Five metastatic cancer types also displayed more mutations from the clock-like mutational processes,
including four cancer types (breast, prostate, diffuse B-cell lymphoma and kidney clear cell carcinoma)
that exhibited an increased SBS1 contribution and two cancer types (prostate and thyroid) that had an
increased SBS5/SBS40 mutation burden. The increase in clock-like mutations in thyroid and prostate
cancers, as well as diffuse B-cell ymphomas to a lesser extent, may be explained by the greater proportion
of older patients with metastatic disease compared with primary disease. However, the SBS1 enrichment
was also present in cancer types in the primary and metastatic cohorts with highly similar age population
distributions (see Fig. 1a). Thus, our results revealed an increase in SBS1 mutations in advanced tumor
stages that cannot be explained by older patients’ ages at the time of biopsy.

Additional more-focused analyses may achieve a better understanding of the observed mutational
signatures with differing activity in a small subset of cancer types (such as oxidative stress-induced and
DNA repair related mutations) and those lacking mechanistic etiology warrants additional more focused
analyses. All contributions can be found in Supp. Table 3.

Differential SBS1 mutation rates in primary and metastatic cancers

To investigate the apparent contradiction of increased SBS1 mutation burden in the metastatic cohort,
despite primary and metastatic cohorts having a similar age at biopsy, we assessed their SBS1 mutation
burden by the age of biopsy separately for both cohorts (see methods). As expected, rates of SBS1

mutation acquisition were highly tissue specific*>*3

, and SBS1 mutation burden increased linearly with age
in the majority of cancer types in both primary and metastatic cohorts (Pearson’s R > 0.1, 17 of 22 tumor
types, Supp. Fig. 3a, Supp. Table 4). However, four cancer types (i.e., breast, prostate, kidney clear cell,
and thyroid) showed an age-independent and significant enrichment of SBS1 mutations at the metastatic
stage (Fig. 3a, Supp. Fig. 3a). For instance, metastatic breast cancer had a nearly uniform fold increase of
1.46 (189 * 17 SBS1 mutations, mean * SD) across the ages of biopsies that was independent of tumor
genome ploidy and HER2 status (Supp. Fig. 3b-c). Importantly, this pattern was highly cancer type specific

and was not observed for most cancer types, including those with similar intra-tumor heterogeneity in
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the primary cohort (e.g., colorectal, ovarian cancer, pancreas, and stomach cancers) (Fig. 3b, Supp. Fig.
3a). Moreover, other mutational processes that operate over the evolution of the somatic tissues (e.g.,
clock-like mutations attributed to SBS5/SBS40 that accumulate with age in a cell-cycle independent
manner*4%) were not enriched (Supp. Fig. 3d).

SBS1 mutation burden has been extensively correlated with estimated stem cell division rates®.
Therefore, an increase in age and tumor type specific SBS1 mutation burden in treated metastatic tumors
may indicate that these tumors have undergone a higher number of cell divisions. However, the estimated
number of years to explain the SBS1 mutation burden shift (23 and 67 years for breast and prostate cancer
respectively, see Supp. Table 4) shows that this cannot be the main cause. Hence, a more plausible

explanation, which also supports previous observations*™8

, is that these metastatic tumors display
accelerated cell division rates compared with their primary tumor counterparts (Fig. 3c). Supporting this
hypothesis, metastatic tumors also had a lower normalized fraction of clonal SBS1 mutations as well as a
greater fraction of SBS1 clonal late mutations (Fig. 3d, Supp. Fig. 3e). Of note, this pattern was not
observed in cancer types with consistently high SBS1 mutagenic dynamics (Fig. 3e) and was

indistinguishable for SBS5/SBS40 mutations (Supp. Fig. 3f).

To understand the underlying factors that lead to the increased proliferation rates in some cancer types
and not in others, we explored the relationship between the yearly rate of SBS1 mutation accumulation
in primary tumors (a proxy of stem cell division rates*) and the estimated fold change of the SBS1
mutation rate in the metastatic cohort. Remarkably, we observed a strong negative association between
these two factors (Spearman Rs= -0.64, p-value = 0.01, Fig. 3f), which was consistent when relying on
independent measurements of primary tumor turnover rates (Supp. Fig. 3h, Supp. Table 4). This indicates
that tumors with an intrinsically active turnover rate (e.g., colorectal and ovarian cancers) preserve their
high proliferation rates, while others with low cell division rates (e.g., breast, prostate, kidney, and thyroid
cancers), may acquire higher proliferation rates during the course of cancer progression and treatment
exposure.

Structural variant burden

The total number of SVs per tumor revealed an extensive increase in SV burden in the metastatic tumors
(fold change 1.9 £ 1.2, mean * SD). In fact, 14 of 22 (64%) cancer types showed a significant median
increase in total SV burden in the metastatic tumors (Fig. 4a, Supp. Table 5), which cannot be explained
by differences in sequencing coverage or tumor clonality (Supp. Note 1). Importantly, these cancer types
not only included the eight cancer types with increased genomic instability markers, but also six additional
cancer types (i.e., esophagus, hepatocellular, pancreas carcinoma, cervix, non-small cell lung cancer, and
urothelial cancer) (Fig. 4a).

Breaking down the comparison into specific SV types revealed that small (<10kb) deletions, which also
contributed most to the global SV burden, showed a strong metastatic enrichment (2.15 + 1.3 fold change
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in 16 of 22 cancer types with significant enrichment, mean + SD, Fig. 4a, Supp. Fig. 4a). Moreover, larger
(210kb) deletions and duplications had a similar pan-cancer enrichment, although with slightly lower fold
changes that varied from 1.5 up to 1.9. Moreover, complex SVs with 220 breakpoints, encompassing
events such as chromothripsis and chromoplexy, were particularly enriched in esophagus cancer (1.5-fold)
and prostate cancer (3-fold). Finally, a strong cancer type specific metastatic enrichment was also noted
for the long interspersed nuclear element (LINE) insertions, with an increased fold change of 12.2 and 8.5
in stomach and urothelial cancer, respectively.

Compared with TMB, the SV analyses revealed a much more widespread effect, with larger increases per
metastatic cancer type that affected almost every cancer type studied, indicating that metastatic tumors
appear to evolve primarily by genomic changes at the structural level.

Genomic and clinical features associated with structural variant burden

We next sought to unravel the underlying features associated with the observed increase in SV burden in
metastatic tumors using linear regression models (Fig. 4b-f, Supp. Fig. 4b-f, Supp. Table 5). Our approach
confirmed previously described cancer type specific driver-induced SV phenotypes, including HRd
(BRCA1/2)%*°, CDK12°!, and MDM?2%, which are more frequently mutated in metastatic pancreatic,
prostate, and breast carcinomas, respectively. Reciprocal duplications induced by CDK12 and CCNE1
alterations® likely explain the enrichment of complex rearrangements in prostate and esophagus cancer,
respectively. We also found potential novel associations, such as large deletions linked to the chromatin
regulators SETD2 and CHD1. Finally, the cell cycle checkpoint CDKN2A showed a pervasive association
with deletions in breast and kidney clear cell carcinomas (Fig. 4b-d, Supp. Fig. 4b). However, this may not
necessarily imply causation, because the tumor suppressor CDKN2A is frequently inactivated in tumors in
which deletion sighatures are common®.

We also found that genomic instability features (i.e., genome ploidy and TP53 alterations) showed a strong
pan-cancer association with deletions and, to a lesser extent, with duplications (Fig. 4b-f, Supp. Fig. 4b-f),
supporting the established role of WGD3?? and TP533! |oss in the ubiquitous generation of large genomic
alterations. As mentioned earlier (see Fig. 1e), these features were generally more prevalent in patients
with metastatic tumors and thus very likely contributed to the observed SV increase in metastatic tumors.

Finally, prior exposure to radiotherapy treatment was strongly associated with small deletions in breast
and prostate cancers (in agreement with radiotherapy-treated secondary malignancies®, gliomas®’, and
healthy tissue®®). This suggests that, among common anti-cancer therapies, radiotherapy in particular
significantly contributes to the SV landscape in treatment-surviving cancer cells.
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Cancer driver gene alterations in primary and metastatic tumors

Comparison of the total number of driver gene alterations per tumor sample revealed a moderate
increase in the metastatic cohort (a mean of 4.5 and 5.2 driver alterations per sample in primary and
metastatic tumors, respectively), including 11 (50%) tumor types with a significant increase (Fig. 5a).
Prostate adenocarcinoma (3.02 driver alterations per sample), pancreas neuroendocrine (2.16), thyroid
carcinoma (1.7), and kidney clear cell carcinoma (1.63) showed the strongest increases (>1.5 driver
alterations per patient), whereas the majority of cancer types showed a mean increase below 1.5 driver
alterations per sample. All mutation types (amplifications, deletions, and mutations) tended to show
consistent biases toward increases in metastatic tumors (Fig. 5a), with small variant mutations
contributing the most (2.3 and 2.6 driver mutations per sample in primary and metastatic tumors,
respectively).

Comparison of gene- and cancer-type frequencies revealed that only 18 genes had a significant frequency
bias in at least one cancer type (29 gene and cancer-type pairs in total, Fig. 5b, Supp. Fig. 5a-b, Supp. Table
6). The majority (21 of 29, 72%) of the significant pairs had enrichment toward higher metastatic
frequency, including four driver genes that were exclusively mutated in metastatic tumors (PTPRD in
kidney clear cell carcinoma, CREBBP in pancreas neuroendocrine, and RET and TP53 alterations in thyroid
carcinoma). Moreover, most metastatic-enriched cancer drivers had a cancer type specific enrichment
that included well-established resistance gene drivers associated with anti-cancer therapies, such as AR
and ESR1 alterations in patients with prostate and breast cancer treated with hormone deprivation
therapies®”*®, and EGFR mutations in patients with metastatic non-small cell lung cancer often treated
with anti-EGFR inhibitors. Nevertheless, three driver genes (i.e., TP53, CDKN2A, and TERT) showed a
metastatic enrichment across multiple cancer types (Fig. 5b), indicating that alterations of these genes
may enhance aggressiveness by disturbing pan-cancer hallmarks of tumorigenesis. In fact, TP53
alterations have been extensively linked to genomic instability®**3, while CDK2NA and TERT are key
regulators of cell proliferation, two pathways that are often perturbed in metastatic tumors® (see earlier).
Finally, some driver genes were strongly enriched in primary tumors, such as KMT2D mutations in non-
small cell lung cancer (primary 13.7%, and metastatic 2.1%) and POLE mutations in primary colorectal
carcinomas (primary 13%, metastatic 0.5%). Of note, the higher prevalence of POLE mutations in primary
tumors supports the increased SBS10a/b exposure (i.e., POLE hypermutation) in primary colorectal cancer
(see Fig. 2d). Whether these alterations are indicators of better prognosis or drivers of subclonal
expansion warrants further investigation.

We next investigated whether the reported driver differences may impact on potential clinical
actionability. Cancer type specific comparison of therapeutically actionable variants revealed an overall
greater fraction of patients with therapeutically actionable variants in the metastatic cohort, with high
variability across cancer types (Supp. Fig. 6a, Supp. Table 7). Subsetting by A-on label variants (i.e.,
approved biomarkers in the specific cancer type) revealed a consistent pattern in which only breast cancer
(driven by higher PIK3CA mutation frequency) and non-small cell lung cancer (EGFR and KRAS®'%

alterations) showed a significant proportional increase in the metastatic cohort (Supp. Fig. 6a-b). Evidence
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levels representing biomarkers in experimental clinical stages (A-off label, B-on label, and B-off label)
showed a modest and tumor type dependent metastatic increase, which was mainly linked to the
increased alteration frequency of KRAS®'?, EGFR secondary mutations, and CDKN2A loss in advanced
tumor stages (Supp. Fig. 6b).

In conclusion, the cancer driver gene landscape is generally conserved and the observed differences are
associated with hallmarks of tumor aggressiveness and resistance to anti-cancer therapies. Consequently,
therapeutic options are mainly dictated by the primary tumor®’, although advanced experimental drugs
may provide relevant therapeutic opportunities for metastatic tumors in the near future.

Treatment associated driver gene alterations

The high prevalence of resistance driver genes in late-stage tumors prompted us to devise a test that
aimed to identify treatment enriched drivers (TEDs) that were either significantly enriched (i.e., treatment
enriched) or exclusively found (i.e., treatment exclusive) in a cancer type and treatment specific manner
(Fig. 6a and methods). Our analytical framework provided 56 TEDs associated with 24 treatment groups
from eight cancer types (Fig. 6b bottom pie chart, Fig. 6¢, Supp. Table 8). Of the identified TEDs, 28 of 56
(50%) were coding mutation drivers, 18 (30%) copy number amplifications, 8 (15%) non-coding drivers
and 3 (5%) recurrent homozygous deletions (Fig. 6¢, Supp. Fig. 7a-b). Reassuringly, the majority of the top
hits were widely known treatment-resistance drivers, including EGFR™°°™ mutations (Fig. 6d) and EGFR
6162 (Supp. Fig.
7¢), AR-activating mutations and gene amplifications in prostate cancer patients treated with androgen-

copy number gains in patients with non-small cell lung cancer treated with EGFR inhibitors

deprivation therapy>® (Supp. Fig. 7d-e), and ESR1°%¢7°38 mutations in breast cancer patients treated with
aromatase inhibitors®’ (Supp. Fig. 7f), among others. Moreover, we also found that TP53, KRAS and PIK3CA
alterations were recurrently associated with resistance to multiple treatments, which may indicate that
these alterations are prognostic markers for enhanced tumor aggressiveness and plasticity rather than
being a cancer type specific mechanism of drug resistance.

Our results also provided a long tail of candidate drivers of resistance, some of them with orthogonal
evidence by independent reports (Fig. 6¢, Supp. Fig. 7a-b). Examples of the latter group include TYMS
amplification in breast cancer patients treated with pyrimidine antagonists®® (Fig. 6e), PRNC1 and MYC co-
amplifications in prostate cancer patients treated with androgen-deprivation® (Supp. Fig. 7g), SMAD4
mutations in non-small cell lung cancer treated with immunotherapy®®, and FGFR2 promoter mutations
in breast cancer patients treated with CDK4/6 inhibitors®. The full TEDs catalog is provided in Supp. Table
8 and constitutes a valuable resource for investigating resistance mechanisms to common cancer
therapies.

Overall, almost 50% of patients with metastatic disease with annotated treatment information harbored
TEDs, including 30% with annotations of known resistance drivers and an additional 20% of patients with
candidate resistance drivers derived from our analysis (Fig. 6f). We identified 0.70 £ 0.53 (mean + SD) TEDs
per metastatic sample across the eight cancer types that had reported TEDs (Fig. 6g), with prostate and
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breast cancers displaying the greatest prevalence of TEDs (i.e., 1.74 and 1.12 drivers per patient with
prostate and breast cancer, respectively). Therefore, after excluding TEDs, primary and metastatic tumors
had an approximately 40% reduction of their original differences in number of drivers per sample (from
5.2to 4.9 mean drivers per sample in the metastatic cohort after excluding TEDs, compared with 4.5 mean
drivers per sample in the primary cohort) (Fig. 6g, Supp. Table 8), indicating that an important proportion
of the metastatic-enriched drivers are likely associated with resistance to anti-cancer therapies.
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Discussion

In this study we describe a cohort of >7,000 uniformly (re-)processed WGS samples from patients with
primary untreated and metastatic treated tumors. Our robust analytical pipeline enabled the processing
of large sets of paired tumor-normal WGS samples from diverse sequencing platforms with high efficiency
and minimal human intervention. We leveraged this dataset to perform an in-depth comparison of
genomic features across 22 cancer types with high representation from patients with primary and
metastatic tumors.

Our analyses revealed that metastatic tumors share common genomic traits, such as high genomic
instability, low intra-tumor heterogeneity, and stronger enrichment of SVs, but fewer short mutations
than primary tumors. However, the magnitude of genomic differences between primary and metastatic
tumors is highly cancer type specific and is strongly influenced by exposure to cancer treatments. Overall,
five cancer types (prostate, thyroid, kidney clear cell, breast, and pancreas neuroendocrine cancers)
showed an intense transformation of the genomic landscape in advanced tumorigenic stages. Fueled by
increased genomic instability, these cancer types displayed substantial differences in TMB, clock-based
molecular signatures and driver gene landscape as well as the pervasive increase in SV burden (Fig. 7a,
labeled as Strong). Importantly, metastatic prostate and breast cancers regularly harbored metastatic-
exclusive therapy-resistant driver gene mutations, suggesting that an important proportion of the
genomic differences in metastatic tumors compared with primary tumors may be associated with clonal
(re-)expansion following therapy exposure (see ref?! supporting this notion). However, the genomic
differences in kidney, thyroid, and pancreas neuroendocrine carcinomas could not be linked to genomic
markers of therapy resistance, which may indicate alternative evolutionary dynamics independent of
cancer treatment. Another nine cancer types (e.g., cervix and colorectal, among others) displayed
moderate genomic differences, although the global genomic portrait was conserved. Finally, the genomic
landscape of the eight remaining cancer types (e.g., glioblastoma, sarcoma, and ovarian cancer, among
others) was highly consistent between primary and metastatic stages, and the minimal differences were
mainly attributed to exposure to cancer therapies.

This study has several limitations. First, it was performed using unpaired primary and metastatic tumor
biopsies. Ideally, matched biopsies from the same patient, as already implemented in cancer type specific
studies'®®”%8 would be needed to more specifically address the evolutionary dynamics of treated
metastatic tumors. Moreover, the sequencing depths and tumor purity ranges used in this study are
suboptimal to comprehensively profile the heterogeneous landscape of subclonal alterations, which may
lead to underestimation of the extent of late-active mutational processes (e.g., treatment-induced
processes). Single cell-based sequencing approaches will be instrumental to further dissect mutational
landscapes independent of their clonality. In addition, the sequencing depth of the primary tumor cohort
was lower and more variable than that of the metastatic tumor cohort. Although we demonstrated that
this does not severely impact on the overall detectability of clonal somatic variants, individual drivers may
have been occasionally missed, which may negatively impact statistical accuracy. Finally, genomic changes
cannot entirely explain how tumor cells are able to colonize other organs while avoiding the strong
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bottlenecks imposed by the immune system® or by aggressive treatment regimes. Therefore, additional

7071 and from the tumor microenvironment’%72 will

information from complementary tumor omics studies
be needed to further dissect and better understand tumor evolution and resistance to cancer therapy and

eventually contribute to improved management of this deadly disease.

To conclude, our dataset constitutes a valuable resource that can be leveraged to further study other
aspects of tumor evolution (as illustrated by the accompanying publication® focusing on geneticimmune
escape alterations) as well for the development of machine learning tools to foster cancer diagnostics’.
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Figures and figure legends
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Figure 1. Overview and global genomic features of primary and metastatic tumors. a) Anatomic
location of the 22 cancer types included in this study. Cancer types are ordered according to their tissue
of origin. For each cancer type the following information is represented, from left to right: cancer type
acronym, number of samples in primary and metastatic dataset (top and bottom, respectively), age at
biopsy (in years), gender, type of treatment of metastatic patients and biopsy site from metastatic
tumors. Partially created with BioRender.com. b) Mean percentage of clonal mutation in primary (x-axis)
and metastatic (y-axis) tumors. Dots are coloured according to Log, of the clonality ratio (metastatic
divided by primary). Size of dots are proportional to the total number of samples (primary and
metastatic). Red edge lines represent a Mann-Whitney p-value < 0.05. ¢) Tumor clonality according to
the metastatic biopsy location in breast, colorectal and esophagus cancer (from left to right). N,
number of samples in the group. p, Mann-Whitney p-value if p-value < 0.05. ns, not significant. Box-
plots: center line, median; box limits, first and third quartiles; whiskers, lowest/highest data points at
first quartile minus/plus 1.5x IQR. d) Tumor karyotype. Heatmap representing the mean chromosome
arm ploidy gain and losses relative to the mean genome ploidy in primary (top) and metastatic (bottom)
tumors. Asterisks represent significantly different mean distributions between primary and metastatic
tumors (Mann-Whitney adjusted p-value <0.05). Top bars represent the cumulative number of
significant gain/losses in the metastatic cohort compared to the primary. e) Comparison of four genomic
features between primary (top) and metastatic tumors (bottom). From left to right, aneuploidy score
from ref®!, proportion of genome undergoing LOH in diploid samples, fraction of samples bearing whole
genome duplication (WGD) and TP53 alterations. Black dots represent the median values. Asterisks
represent Fisher’s exact test p-value < 0.01 for discrete features (WGD and TP53) and Mann-Whitney p-
value < 0.01 for the continuous features.
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Figure 2. Tumor mutation burden and mutational processes. a) Cumulative distribution function plot
(samples were ranked independently for each variant type) of tumor mutation burden for each cancer
type for SBS (blue), IDs (green) and DBS (red). Horizontal lines represent median values. Fold change labels
are included only when Mann-Whitney comparison rendered a significant p-value < 0.01. b) SBS
Mutational spectra of metastatic (top) and primary (bottom) patients. Patients are ordered according to
their TMB burden. ¢) Main panel, moon plot representing the mutational burden differences attributed
to each mutational signature in metastatic (left) and primary (right). Edge thickness and colors represent
significant differences (9<0.05, +1.4x fold change) and the direction of the enrichment, respectively. The
size of circles are proportionate to the mutation burden difference. Right bars, number of metastatic
cancer types with a mutational signature significant enrichment. Top stacked bars represent the
cumulative signature exposure difference. Thicker bar edge lines represent significance. Bars are coloured
according to the annotated etiology. Only mutational signatures with known etiology or with at least one
cancer type with significant metastatic enrichment are included. d) and e) equivalent for DBS and IDs,
respectively. Diff., difference. Muts. mutations. Sig., mutational signature. Mut. mutational. Susp.,
suspected.
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Figure 3. Cell cycle division rates in primary and metastatic tumors. a) Linear regression of the SBS1
mutation burden (y-axis) and patient’s age at biopsy (x-axis) in primary and metastatic breast (left) and
prostate cancers (right) and b) colorectal and ovarian cancer. The mean fold change, mean SBS1 increase
per year and p-value are included in cancer types with an age-independent significantly different primary
and metastatic distribution. The median trendline and 99% confidence intervals of the linear regression
are represented as a solid line and the adjacent shaded area, respectively. c) Depiction illustrating
increased cell division rate in metastatic breast cancer compared to primary and its expected impact on
the SBS1 variant allele frequency (VAF) distribution. Partially created BioRender.com. d) Comparison of
global SBS1 clonality ratio and clonal late ratio between primary and metastatic in breast (left) and
prostate cancers (right). e) Similar for colorectal and ovarian cancers. Boxplots are defined as in Fig. 1. f)
Spearman correlation analysis of the mean SBS1 year burden of primary tumors (y-axis) and the mean
metastatic SBS1 fold change (x-axis) across the 17 cancer types with linear association between age and
SBS1 accumulation. Vertical error bars represent the 25th and 75th percentile, respectively. Horizontal
error bars the fold change standard deviation. Cancer types with a significantly different SBS1 mutation
rate are marked by thicker marker borders. Muts, mutations.
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Figure 4. Structural variant burden and associated genomic features. a) Top rectangles represent the
four genomic instability features defined in Fig. 1e. A red background represents significant enrichment
in the metastatic cohort. S-plots, cumulative distribution function plot (samples ranked independently for
each SV type) of tumor mutation burden for each cancer type for (from top to the bottom) the aggregated
structural variant (SV) burden, small deletions (<10kb), large deletions (>=10kb), small duplications
(<10kb), large duplications (>=10kb), complex events (<20 breakpoints), complex events (>=20
breakpoints) and LINEs insertions. Horizontal lines represent median values. Backgrounds are coloured
according to the relative enrichment, defined as: logio(median SV type burden in metastatic tumors + 1)
- logio(median SV type burden in primary tumors + 1). Fold change labels and coloured backgrounds are
displayed when Mann-Whitney comparison renders a significant p-value < 0.01. Fold change labels are
displayed with >" when the SV burden for primary tumors is 0 (see methods for more details). For each
cancer type, bottom bar plots represent the relative fraction of each SV type in the metastatic (left) and
primary (right) datasets. b) Volcano plot representing the cancer type specific regression coefficients (x-
axis) and significance (y-axis) of clinical and genomic features against the number of small deletions. Each
dot represents one feature in one cancer type. Labels are coloured according to the feature category. Dots
are coloured by the frequency enrichment in metastatic (purple) or primary (orange) patients. LM, linear
model. Coef, coefficient. c) Lollipop plots representing the regression coefficients (left, relative to panel
b. x-axis) and metastatic enrichment (right, relative to dots color from panel b.) of features associated
with small deletions. Only significant features (LM>0.0, p-value < 0.01 and with independent significance
in primary or metastatic tumors) enriched in metastatic patients (enrichment > 0.0) are displayed. d), e)
and f) are identical but referring to large deletions, small duplications and large duplications, respectively.


https://doi.org/10.1101/2022.06.17.496528
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 5

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.17.496528; this version posted June 17, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

a

Breast cancer (201 vs. 787)
Glioblastoma multiforme (39 vs. 64)
Colorectum carcinoma (51 vs. 628)

Esophagus cancer (85 vs. 140)

Stomach cancer (55 vs. 43)

Cholangiocarcinoma (26 vs. 66)
Hepatocellular carcinoma (288 vs. 53)
Pancreas carcinoma (218 vs. 99)
Pancreas neuroendocrine (81 vs. 38)
Cervix carcinoma (18 vs. 40)

Ovarian cancer (110 vs. 168)

Uterus carcinoma (42 vs. 33)

Upper respiratory tract cancer (50 vs. 39)
Kidney clear cell carcinoma (109 vs. 129)
Non small cell lung cancer (83 vs. 511)
Diffuse large B-cell lymphoma (104 vs. 20)
Prostate carcinoma (153 vs. 404)

Skin melanoma (104 vs. 303)
Leiomyosarcoma (15 vs. 48)
Liposarcoma (17 vs. 25)

Thyroid cancer (44 vs. 22)

Urothelial cancer (23 vs. 175)

All drivers

+1.17

+1.11
+15
+1.14
+15

+2.16

+0.83

+1.63
+04

+3.02

-143
+17

available under aCC-BY-NC-ND 4.0 International license.

Amplifications
+0.6

+0.88

+0.61

+0.99
-043

Deletions Mutations
+0.66
+0.00 NN
+ .03 N

0 5 10 15 20|25
Drivers per sample

Mean difference (met - primary)

0o 5 10
Drivers per sample

if p-value < 0.01

15 0 5 10 15

200 5 10 15 20
Drivers per sample Drivers per sample

Primary @ Metastatic

® Mean drivers per sample

AR
CCND1
CDKN2A
CREBBP
EGFR
ESR1
KMT2D
KRAS
MAP3K13
PIK3CA
POLE
PTEN
PTPRD
RET
RSF1
TERT
TPS3
TSC2

Amplification Deletions Mutations
] o
¢}
o o0 o
A
o
@)
O
o
@]
o
o
(@]
A
A
e}
o o o
o o o0 ©o o
o
s © ®© 0 5 © 9 © 95 @© £ © © L © Y ® @© X
8 E g £ 8 £ e 8 &g 8 e £ & e 8 g g &
c O o GCOO :OED‘GEOEOOC
§ £ 5 8 8 £ £ § £ § £ 3 § £ 8§ £ 58
583 g Zelegivlegd
=t =
s 3 gs88 3 98383 g 3 Ep
58§ 3888 5558388358 ¢8¢8
8 3 » 2 0 2 3 8 32 ¢S 0 28 5 vk
= 9 @ g @ ] 2 g = @
g o 3 s o S s 3 s g o
e 2 ) 8 g 2 3 o
5 © c o 5 2 c
2 a T T o s 2
X X

Effect size
(Cramer's V)
5
0.4} | Metastatic
03
02
0111 |Enrichment

Primary

Enrichment type

O Both
A Wetastatic only
7 Primary only

Samples

50 250 500 1000


https://doi.org/10.1101/2022.06.17.496528
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.17.496528; this version posted June 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 5. Driver alterations in primary and metastatic tumors. a) Cancer type specific distribution of
number of driver alterations, amplifications, deletions and mutations per patient in primary (top) and
metastatic (bottom). Black dots represent the mean values. Labels display mean differences (metastatic -
primary) in cancer types with a significant difference. b) Heatmap representing the cancer genes
displaying significant mutation frequency differences between primary and metastatic tumors. Circles
denote mutation frequency enrichment in both cohorts while triangles facing upwards and downwards
represent drivers that are exclusively enriched in metastatic and primary cohorts, respectively. Marker
size is relative to the total number of mutated samples. Colors represent the direction of the enrichment.
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Figure 6. Treatment enriched drivers. a) Visual depiction of the analytical framework to identify
treatment enriched drivers (TEDs). The example illustrates the identification of TEDs in the 355 breast
cancer patients treated with aromatase inhibitors. First step, identification of cancer driver genes from
coding mutations (green), non-coding mutations (soft green), copy number amplifications (red) and
biallelic deletions (blue). Second, for each identified cancer driver, comparison of the mutation/copy
number alteration frequency in treated and untreated patients. Third, annotation of TEDs with
orthogonal evidence and type of enrichment. b) Left, workflow representing the number of treatment
groups in each step of the analysis. Pie charts, the external layers represent the number of treatment
groups analyzed (top) or with identified TEDs (bottom) coloured by cancer type. The internal layers
represent the category of the corresponding treatment. The group of breast cancer patients treated
with aromatase inhibitors highlighted in both charts. N, number of patients in each treatment group.
c) Volcano plots displaying the identified TEDs. Each dot represents one cancer gene alteration type
in one treatment group. X-axis displays the effect size (as log,[odds ratio]) and the y-axis the
significance (-logio[qg-value])). Circle markers represent TEDs exclusively mutated in the treatment
group (squared makers otherwise). Markers are coloured according to the type of alteration. Known
resistance drivers are denoted by thicker edgelines. d) Distribution of mutations along the EGFR
protein sequence in non-small cell lung cancer patients treated with EGFR inhibitors (top) and
untreated (bottom). Pfam domains are represented as rectangles. Mutations are coloured according
to the consequence type. e) Distribution of highly-focal copy number gains in chromosome
chri8p:1Mb-8Mb in breast cancer untreated patients (bottom) and treated with pyrimidine
antagonists (top). TYMS genomic location is highlighted. f) Global proportion of metastatic treated
patients with known and candidate TEDs. g) Mean number of driver alterations per metastatic patient
before (purple circle) and after excluding TEDs (purple square) compared to primary patients (orange
square). Vertical lines, standard deviation range and labels the mean number of driver alterations.
BRCA, Breast cancer. CESC, Cervix carcinoma. CHOL, Cholangiocarcinoma. COREAD, Colorectal
carcinoma. ESCA, Esophagus cancer. GBM, Glioblastoma multiforme. KIRC, Kidney clear cell
carcinoma. LMS, Leiomyosarcoma. NSCLC, Non small cell lung cancer. OV, Ovarian cancer. PAAD,
Pancreas carcinoma. PRAD, Prostate carcinoma. SKCM, Skin melanoma. STAD, Stomach cancer. THCA,
Thyroid cancer. HNSC, Upper respiratory tract cancer. BLCA, Urothelial cancer. UCEC, Uterus
carcinoma. MB, Megabase.
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Figure 7. Pan-cancer differences between primary and metastatic tumors. a) Stacked plot
representing the qualitative differences of the eight studied genomic features across the 22 cancer
types included in this study. Cancer types are sorted in ascending order according to the cumulative
number of diverging genomic features between primary and metastatic tumors. Each horizontal track
represents a genomic feature. The presence (and height) of each feature for a specific cancer type
correlates with the magnitude of the observed differences.
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Supplementary Figure 1. Cohort overview and global genomic features. a) Workflow of the unified
processing pipeline used in this study for Hartwig (left) and PCAWG (right) WGS samples. First, PCAWG
tumor and matched normal raw sequencing files were gathered and re-processed using the Hartwig tumor
analytical pipeline. Next, the output of tumor samples that were correctly processed by the pipeline were
further subjected to a strict quality control filtering. As a result, a total of 7,152 samples from 58 cancer
types compose the harmonized dataset. 5,751 patient tumor samples from 22 cancer types with sufficient
representation in both primary and metastatic datasets were selected for this study. b) Tumor clonality
according to the metastatic biopsy location in kidney clear cell carcinoma, non-small cell lung cancer,
prostate carcinomas and skin melanoma. N, number of samples in the group. p, Mann-Whitney p-value if
p-value < 0.05. ns, not significant. Box-plots: center line, median; box limits, first and third quartiles;
whiskers, lowest/highest data points at first quartile minus/plus 1.5x IQR.
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Supplementary Figure 2. Mutation burden and mutational signatures. a) DBS (top) and ID (bottom)
mutational spectra of metastatic and primary tumors. Patients are ordered according to their TMB
burden. b) From top to bottom, moon plot representing the SBS, DBS and ID burden differences attributed
to each mutational signature. Top stacked bars represent the cumulative signature exposure difference,
including mutational signatures enriched in primary tumors (negative values). Thicker bar edge lines
represent significance. Bars are coloured according to the annotated etiology. All mutational signatures,
independent of their annotated etiology, are included. Diff., difference. Muts. mutations. Sig., mutational
signature. Mut. mutational. Susp., suspected. c) Volcano plot representing the mutational signature
hypermutation (>10,000 mutations for SBS, >500 for DBS, and >1000 for ID) prevalence comparison
between primary and metastatic patients. Y-axis, logio(adjusted p-value). X-axis, effect size as Cramer’s V.
Each dot represents a mutational signature in a cancer type. Dots are coloured according to the mutation
type.
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Supplementary Figure 3. SBS1 mutation rates in primary and metastatic tumors. a) Linear regression of
the SBS1 mutation burden (y-axis) and patient’s age at biopsy (x-axis) in primary and metastatic cancer
across the 22 cancer types. The mean fold change, mean SBS1 increase per year and p-value are only
represented in cancer types with an age-independent significantly different primary and metastatic
distribution. b) Relative to a) for ploidy corrected SBS1 in the tumor types of interest. c) Independent
linear regressions for HER2+ (left) and HER2 (right) breast cancer samples. ERBB2 amplification status was
used to annotate cancer subtypes. d) Relative to a) for ploidy corrected SBS5/40 counts in the tumor types
of interest. e) Equivalent to Fig. 3d for primary and metastatic in kidney clear carcinoma (left) and thyroid
cancers (right). f) Relative to Fig. 3d, but using ploidy corrected SBS5/40 clonality ratio and clonal late ratio
in the cancer types of interest. Boxplots are defined as in Fig. 1. h) Relative to Fig. 3f but using SBS1 year

f45

mutation rate from ref*. Muts, mutations.
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Supplementary Figure 4. Structural variant burden. a) SV length frequency distribution of deletions (left
panel) and duplications (middle panel). Right panel shows the frequency distribution of the number of
linked breakpoints for complex SVs. Dashed vertical lines represent the chosen threshold to separate
between short and large deletions, duplications and complex SVs, respectively. b) Volcano plot
representing the cancer type specific regression coefficients (x-axis) and significance (y-axis) of clinical and
genomic features against the number of large deletions. Each dot represents one feature in one cancer
type. Labels are coloured according to the feature category. Dots are coloured by the frequency
enrichment in metastatic (purple) or primary (orange) patients. LM, linear model. Coef, coefficient. Similar
panels are displayed for c) short duplications, d) large duplications, e) short complex SVs, large complex
SVs and f) LINEs.
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Supplementary Figure 5. Driver landscape and drivers per patient. a) Volcano plots representing the
cancer type specific enrichment (x-axis) and significance (y-axis) of driver genes between primary and
metastatic cohorts. From left to right, amplification drivers, biallelically deleted drivers and mutated driver
genes. BRCA, Breast cancer. CESC, Cervix carcinoma. CHOL, Cholangiocarcinoma. COREAD, Colorectal
carcinoma. ESCA, Esophagus cancer. GBM, Glioblastoma multiforme. KIRC, Kidney clear cell carcinoma.
LMS, Leiomyosarcoma. NSCLC, Non small cell lung cancer. OV, Ovarian cancer. PAAD, Pancreas carcinoma.
PRAD, Prostate carcinoma. SKCM, Skin melanoma. STAD, Stomach cancer. THCA, Thyroid cancer. HNSC,
Upper respiratory tract cancer. BLCA, Urothelial cancer. UCEC, Uterus carcinoma. b) Comparison fraction
of mutated patients for the top 20 most frequently mutated (including all types of alterations) oncogenes

(left) and tumor suppressor genes (right) in the metastatic cohort. Top numbers represent primary
frequency, bottom metastatic.
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Supplementary Figure 6. Therapeutic actionability of variants. a) Cancer type specific fraction of primary
(top) and metastatic (bottom) patients with reported therapeutically actionable variants. For each patient
the variant with the greatest level of evidence was considered. Bars are coloured according to the variant
actionability tiers. Fold change labels are displayed in cancer types with a significant proportional increase
(Fisher’s exact test p-value <0.01). Purple edgelines highlight significant increase in metastatic A-on label
fraction patients. b) Primary (left) and metastatic (right) alteration frequency of actionable variants with
a high discrepancy (>5% frequency difference) from cancer types with a global significant increase of
actionable variants in metastatic patients from panel a). Asterisk, Fisher’s exact test p-value <0.01. Text
boxes include the associated treatments for alterations with a significant mutation frequency increase in
metastatic patients.
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Supplementary Figure 7. Treatment enriched drivers. a) Side by side alteration frequency comparison
between treated (right bar) and untreated (left bar) patients for all treatment-exclusive and b)
treatment enriched TEDs. c) Distribution of highly-focal copy number gains in chromosome 7 in non-
small cell lung cancer untreated patients (bottom) and treated with anti-EGFR (top). EGFR, MET and
CDK6 genomic locations are highlighted. Each bin represents 100Kbs. d) Distribution of mutations
along the AR protein sequence in prostate cancer patients treated with androgen deprivation (top)
and untreated (bottom). Pfam domains are represented as rectangles. Mutations are coloured
according to the consequence type. e) Distribution of highly-focal copy number gains in chromosome
X in prostate untreated patients (bottom) and treated with androgen deprivation(top). AR coding
region and the promoter region are highlighted. Each bin represents 100Kbs. f) Distribution of
mutations along the ESR1 protein sequence in breast cancer patients treated with aromatase
inhibitors (top) and untreated (bottom). g) Similar to e) but representing MYC and PRNCR1 co-
amplifications in chromosome 8q.
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Methods

Cohort gathering and processing

We have matched tumor-normal whole genome sequencing data from cancer patients from two cohorts:
the Hartwig Medical Foundation (Hartwig) and the Pan-Cancer Analysis of Whole Genomes (PCAWG)
cohort. A detailed description of the Hartwig and PCAWG cohort gathering and processing as well as
comprehensive documentation of the PCAWG sample reanalysis with the Hartwig somatic pipeline is
described in the Supp. Note 1.

Tumor clonality analysis

Each mutation in the .vcf files is given a subclonal likelihood by PURPLE. Following PURPLE guidelines, we
considered mutations with subclonal scores of 0.8 or higher to be subclonal and mutations below the 0.8
threshold to be clonal. For each sample we then computed the average proportion of clonal mutations by
dividing the number of clonal mutations by the total mutation burden (including SBS, MNVs and indels).
Finally, for each cancer type we used Mann-Whitney test to assess the significance of the clonality
difference between the primary and metastatic tumors. A p-value lower than 0.05 was deemed as
significant.

In addition, we leveraged biopsy site data in patient reports to further investigate differences in metastatic
tumor clonality according to the metastatic biopsy site. If the metastatic biopsy site was in the same
organ/tissue as the primary tumor, we considered them as “Local”, while if the metastatic biopsy site was
reported in the lymphoid system or other organs/tissues they were dubbed as “Lymph” and “Distant”,
respectively. Cancer types for which there was a minimum of 5 samples available for each of the biopsy
groups were selected and Mann-Whitney test was used to compare the clonality between the biopsy
groups.

Karyotype

Arm-level and genome copy number (CN) was estimated as described in Taylor et al. 20183, Briefly, CN
of segments determined by PURPLE were rounded to the nearest integer, then the arm coverage per CN
was calculated. Arm-level CN was determined to be either the CN with coverage >50%, the most common
arm CN if coverage <50%, or the genome CN if coverage <50% and the most common arm CN does match
the genome CN. The most common arm CN across all arms was deemed to be the genome ploidy.
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Estimated genome ploidy per sample was subtracted from the estimated chromosome arm ploidy to
create a matrix of chromosome arm gains and losses relative to the estimated genome ploidy. This matrix
was stratified by cohort (metastatic/primary) and a Mann-Whitney test was performed to assess the
difference of the distributions for each arm in each cancer type. The resulting p-value was FDR adjusted
across all arms per cancer type. A g-value < 0.05 was deemed to be significant. Mean arm gains and losses
relative to genome ploidy were calculated and represented.

Genomic instability markers

To compare the differences in aneuploidy scores and the LOH proportions in each group, a Mann-Whitney
test was performed per cancer type. The aneuploidy score represents the number of arms per tumor
sample that deviate from the estimated genome ploidy as described in Taylor et al. 2018%. To compare
the LOH proportions, only diploid samples were included when calculating the p-value. The LOH
proportion was defined as 1 - (diploid proportion estimated by PURPLE) of the genome.

To compare the fraction of samples with a driver mutation in TP53 as well as the fraction of whole genome
duplicated samples per cohort, a Fisher’s exact test was performed per cancer type. Any TP53 driver
alteration (non-synonymous mutation, biallelic deletion and homozygous disruption) was considered in
the analysis. Whole genome duplication was defined as present if the sample had more than 10
autosomes with an estimated chromosome copy number >1.5. A p-value < 0.01 was deemed to be
significant for all statistical tests.

Mutational signature analysis

Signature extraction

The number of somatic mutations falling into the 96 single nucleotide substitution (SBS), 78 double base
substitutions (DBS) and 83 indel (ID) contexts (as described in the COSMIC catalog’”
https://cancer.sanger.ac.uk/signatures/) was determined using the R package mutSigExtractor
(https://github.com/UMCUGenetics/mutSigExtractor, v1.23).

SigProfilerExtractor (v1.1.1) was then used (with default settings) to extract a maximum of 21 SBS, 8 DBS
and 10 ID de-novo mutational signatures. This was performed separately for each of the 22 tissue types
which had at least 30 patients in the entire dataset (aggregating primary and metastatic samples, see
Supp. Table 3). Tissue types with less than 30 patients as well as metastatic patients with unknown primary
location type were combined into an additional ‘Other’ group, resulting in a total of 23 tissue type groups
for signature extraction. In order to select the optimum rank (i.e. the eventual number of signatures) for
each tissue type and mutation type, we manually inspected the average stability and mean sample cosine
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similarity plots output by SigProfilerExtractor. This resulted in 440 de-novo signature profiles extracted
across the 23 tissue type groups (Supp. Table 3). Least squares fitting was then performed (using the
fitToSignatures() function from mutSigExtractor) to determine the per-sample contributions to each tissue
type specific de-novo signature.

Etiology assignment

The extracted de-novo mutational signatures with high cosine similarity (=0.85) to any reference COSMIC
mutational signatures with known cancer type associations’® were labeled accordingly (256 de-novo
signatures matched to 56 COSMIC reference signatures).

For the remaining 184 unlabeled de novo signatures, we reasoned that there could be one or more
signatures from one cancer type that are highly similar to those found in other tissue types, and that these
likely represent the same underlying mutational process. We therefore performed clustering to group
likely equivalent signatures. Specifically, the following steps were performed:

1. We calculated the pairwise cosine distance between each of the de-novo signature profiles.
We performed hierarchical clustering and used the base R function cutree() to group signature
profiles over the range of all possible cluster sizes (min no. clusters = 2; max no. of clusters =
number of signature profiles for the respective mutation type).

3. We calculated the silhouette score at each cluster size to determine the optimum number of
clusters.

4. Finally, we grouped the signature profiles according to the optimum number of clusters. This
yielded 27 SBS, 7 DBS, and 8 ID de-novo signature clusters (see Supp. Table 3).

For certain de novo signature clusters, we could manually assign the potential etiology based on their
resemblance to signatures with known etiology described in COSMIC’®, Kucab et al. 2019** and Signal ®.
Some clusters were an aggregate of 2 known signatures, such as SBS_denovo_clust_2 which was a
combination of SBS2 and SBS13, both linked to APOBEC mutagenesis. Other clusters had characteristic
peaks of known signatures, such as DBS_denovo_clust_4 which resembled DBS5 based having distinct
CT>AA and CT>AC peaks. Lastly, DBS _denovo_clust_1 was annotated as POLE mutation and MMR
deficiency as samples with high contribution (>150 mutations) of this cluster are frequently MSI or have
POLE mutations. Likewise, DBS_denovo_clust_2 was annotated with MMR deficiency as the etiology as
samples with high contribution (>250 mutations) of this cluster were all MSI. See Supp. Table 3 for a list

of all the manually assigned etiologies.

Comparing the prevalence of mutational processes between primary and metastatic cancer

We then compared the activity (i.e. number of mutations contributing to) of each mutational process
between primary and metastatic tumors. For each sample, we first summed the contributions of
signatures of the same mutation type (i.e. SBS, DBS or ID) with the same etiology, henceforth referred to
as ‘etiology contribution’. Per cancer type and per etiology, we performed two-sided Mann-Whitney tests
to determine whether there was a significant difference in etiology contribution of primary and metastatic
tumors. Per cancer type and per mutation type, we used the p.adjust() base R function to perform multiple
testing correction using Holm’s method. Next, we added a pseudocount of 1 to the contributions (to avoid
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dividing by zero) and calculated the median contribution log2 fold change, i.e. log2[ (median contribution
in metastatic tumors + 1) / (median contribution in primary tumors + 1) ]. We considered the etiology
contribution between primary and metastatic tumors to be significantly different when the g-value was
<0.05, and log; fold change was 20.4 or £ -0.4 (= +x1.4).

We also determined whether there was an increase in the number of samples with high etiology
contribution (i.e., hypermutators) in metastatic versus primary cohorts. For each signature, a sample was
considered a hypermutator if the etiology contribution was 210,000 for SBS signatures, 2500 for DBS
signatures, or 21,000 for ID signatures. For each cancer type, for each etiology, we performed pairwise
testing only for cases where there were 25 hypermutator samples for either metastatic or primary tumors.
Each pairwise test involved calculating p-values using two-sided Fisher’s exact tests, and effect sizes by
multiplying Cramer’s V by the sign of the log2(odds ratio) to calculate a signed Cramer’s V value that
ranges from -1 to +1 (indicating enrichment in primary or metastatic respectively). We then used the
p.adjust() base R function to perform multiple testing correction using Bonferroni’s method.

SBS1-age correlations in primary and metastatic tumors

To count the SBS1 mutations we relied on the definition from ref”’ that is based on the characteristic
peaks of COSMIC SBS1 signature profile: single base CpG > TpG mutations in NpCpG context. To ensure
that these counts and the downstream analyses are not affected by differential APOBEC exposure in
primary and metastatic cohorts, we excluded CpG > TpG in TpCpG which is also a characteristic peak in
COSMIC SBS2 signature profile. Also, for skin melanoma CpG > TpG in [C/T]pCpG which overlaps with
SBS7a was excluded. To obtain the SBS5 and SBS40 counts we relied on their exposures derived from the
mutational signature analyses performed in this study (explained above).

To assess the correlation between SBS1 burden and patient’s age at biopsy we performed a cancer type
and cohort specific linear regression (i.e., separate regression for primary and metastatic tumor samples).
To avoid spurious effects caused by hypermutated tumors, samples with TMB greater than 30,000 as well
as those with SBS1 burden greater than 5,000 were excluded.

For each cancer type and cohort we then computed 100 independent linear regressions by randomly
selecting 75% of the available samples. We selected the median linear regression (based on the regression
slope) as representative regression for further analyses. Similarly, confidence intervals were derived from
the 1st and 99th percentile of the computed regressions.

To evaluate the significance of the differences between primary and metastatic representative linear
regressions (hereafter referred to as linear regression for simplicity) we first filtered out cancer types that
failed to show a positive correlation trend between SBS1 burden and age at biopsy in both primary and
metastatic tumors (i.e., Pearson’s correlation coefficient of primary and metastatic regression >0.1). Next,
for each selected cancer type, we computed the regression residuals of primary and metastatic SBS1
mutation counts using, in both cases, the primary linear regression as baseline. The primary and
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metastatic residual distributions were then compared using a Mann-Whitney test to evaluate significance.
Cancer types with a Mann-Whitney p-value < 0.01 were deemed as significant. Finally, to ensure that the
differences were uniform across different age ranges (i.e., not driven by a small subset of patients) we
only considered significant cancer types where the metastatic linear regression intercept is higher than
the primary intercept.

SBS5/SBS40 correlations were computed following the same procedure and using the sum of SBS5 and
SBS40 exposures for each tumor sample. If none of the mutations were attributed to SBS5/SBS40
mutational signatures, the aggregated value was set to zero. In the ploidy corrected analyses we divided
the SBS1 mutation counts (and SBS5/SBS40 mutation counts for the SBS5/40 ploidy corrected regression,
respectively) by the PURPLE estimated tumor genome ploidy.

MPredi
PPredi
PPred; are the estimated number of SBS1 mutations for a given age i-th according to the metastatic and

For each cancer type the mean fold-change (fc) was defined as fc = %Z?&w where MPred; and

primary linear regressions, respectively. Similarly, the mean estimated SBS1 burden difference (SBS14i)
was defined as: SBS1diff = % 89,0 MPredi — PPredi .

Clonality and timing of clock-like mutations

SBS1 individual mutations were identified as described in the previous section. For SBS5 and SBS40
mutations, we used a maximum likelihood approach to assign individual mutations to the SBS5 and SBS40
mutational signatures in a cancer type specific manner.

For every SBS1 (and SBS5/SBS40 mutation) we then assign the clonality according to the PURPLE subclonal
likelihood estimation, where only mutations with SUBCL likelihood >= 0.8 were considered as such (see
above). Likewise, the molecular timing of individual mutations (i.e., clonal early and clonal late) was
computed using the MutationTimeR”” package.

For each tumor sample the SBS1 clonality ratio (or respectively SBS5/SBS40 clonality ratio) was defined as

SBS1 clonal mutati .
cona” mr2 wns) divided by the total

the ratio between the proportion of clonal SBS1 mutations ( -
SBS1 mutations

Total clonal mutations

proportion of clonal alterations in the sample ( ). Similarly, the SBS1 clonal late ratio

)

), where

Total mutations
SBS1 clonal late mutations

was defined as the ratio between the proportion of clonal late SBS1 mutations ( -
SBS1 clonal mutations

Total clonal late mutations

divided by the total proportion of clonal late alterations in the sample ( -
Total clonal mutations

the total of clonal SBS1/total mutations was computed as the sum of clonal late, clonal early and
unassigned clonal from MutationTimerR.
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Primary cell division rate and accelerated SBS1 mutagenesis in metastasis

To assess the relationship of cell division rate of primary tumors with the accelerated SBS1 mutagenesis
in the metastatic setting we relied on the SBS1 burden per year as a proxy of stem-cell division rates as
was previously described in ref*. We thus computed for each primary cancer type the average number of
SBS1 per year as the number of SBS1 mutations divided by the patient’s age at biopsy (only considering
primary samples and excluding hypermutated samples as described above). We then used a Spearman’s
correlation to assess its association with the estimated mean SBS1 mutation rate fold change in metastatic
tumors (see above). Additionally, to exclude potential biases in our primary cohort, we repeated the same
analysis relying on an independent measurement of primary cancer SBS1 yearly accumulation.
Specifically, we used the best estimated accumulation of SBS1 per year from ref* Supplementary Data
Set 6 and regressed it to the fold change estimates for the matching cancer types present in both datasets.

Structural variant (SV) analysis

SV type definitions

LINX>3 chains one or more SVs and classifies these SV clusters into various event types (‘ResolvedType’).
We defined deletions and duplications as clusters with a ResolvedType of ‘DEL’ or ‘DUP’ whose start and
end breakpoints are on the same chromosome (i.e. intrachromosomal). Deletions and duplications were
split into those <10kb and 210kb in length (small and large, respectively), based on observing bimodal
distributions in these lengths across cancer types (Supp. Fig. 4a). We defined complex SVs as clusters with
a ‘COMPLEX’ ResolvedType, an inversion ResolvedType (including: INV, FB_INV_PAIR, RECIP_INV,
RECIP_INV_DEL_DUP, RECIP_INV_DUPS), or a translocation ResolvedType (including: RECIP_TRANS,
RECIP_TRANS_DEL_DUP, RECIP_TRANS_DUPS, UNBAL_TRANS, UNBAL_TRANS_TI). Complex SVs were
split into those with <20 and 220 SVs (small and large, respectively), based on observing similar unimodal
distributions in the number SVs across cancer types whose tail begins at ~20 breakpoints (Supp. Fig. 4a).
Lastly, we defined LINEs (long interspersed nuclear element insertions) as clusters with a ResolvedType of
‘LINE’. For each sample, we counted the occurrence (i.e. SV burden) of each of the 7 SV types described
above. Additionally, we determined the total SV burden by summing counts of the SV types.

Comparing SV burden between primary vs. metastatic cancer

We then compared the SV type burden between primary versus metastatic tumors as shown in Fig. 4a.
Firstly, we performed Mann-Whitney tests per SV type and per cancer type to determine whether there
was a significant difference in SV type burden between primary versus metastatic, and used p<0.01 as the
significance threshold. Next, we calculated relative enrichment as follows: logio(median SV type burden
in metastatic tumors + 1) — logio(median SV type burden in primary tumors + 1); and calculated fold change
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as follows: (median SV type burden in metastatic tumors + 1) / (median SV type burden in primary tumors
+1). When calculating relative enrichment and fold change, the pseudocount of 1 was added to avoid the
log(0) and divide by zero errors, respectively. Fold changes are displayed with a ‘>’ in Fig. 4a when the SV
burden for primary tumors is 0 (i.e. when a divide by zero would occur without the pseudocount).

Identifying features associated with SV burden increase in metastatic cancer

To identify the features that could explain increased SV burden, we correlated SV burden with various
tumor genomic features. This included: i) genome ploidy (determined by PURPLE); ii) HRd status
(determined by CHORD*®) and MSI status (determined by PURPLE); iii) the presence of mutations in 345
cancer associated genes (excluding fragile site genes that are often affected by CNVs!%), henceforth
referred to as ‘gene status’; and iv) treatment history, including the presence of radiotherapy, the
presence of one of the 79 different cancer therapies as well as the total number of treatments received.
All primary samples as well as all metastatic samples without treatment information were considered to
have no treatment. Genome ploidy and total number of treatments received were numeric features,
whereas all of the remaining were boolean (i.e. true/false) features. In total there were 429 features.

SV type burden was transformed to logio(SV type burden + 1) and was correlated with the 429 features
using multivariate linear regression models (LM). This was performed separately for each of the 22 cancer
types, and for each of the 7 SV types, resulting in a total of 154 (=22 cancer types x 7 SV types) LM models.

Each LM model (i.e. per SV type and cancer type) involved training of three independent LMs with i) both
metastatic and primary samples (primary+metastatic), ii) only Hartwig samples (metastatic-only), and iii)
only primary samples (primary-only). This was done to filter out correlations between features and
increased SV type burden solely due to differences in feature values between primary and metastatic
tumors. We then required features that positively correlated with SV type burden in the
primary+metastatic LM to independently show the same association in the metastatic-only or primary-
only LMs. Only genomic features that independently showed positive correlation with the SV burden were
further considered as significant (i.e., represented in the lollipots).

Each of the 3 LMs was trained as follows:

1. Remove boolean features with too few ‘true’ samples:
a. For the primary+metastatic LM, remove gene status features with <15 ‘true’ samples.
b. For the metastatic-only and primary-only LMs, remove gene status features with <10
‘true’ samples.
c. Forthe remaining boolean features, remove features with <5% ‘true’ samples.
2. Fita LM using the Im() base R function to correlate logio(SV type burden + 1) versus all features.

For each LM analysis, we used the following filtering criteria to identify the features that were correlated
with increased SV type burden:

1. Only keep LM analyses where there was significant increase in SV type burden for the respective
cancer type (p<0.01 as described in the previous section “Comparing SV burden between primary
vs. metastatic cancer”)
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2. For primary+metastatic LM
a. Regression p-value <0.01
b. Coefficient p-value <0.01
c. Coefficient >0
3. For metastatic-only LM or primary-only LM:
a. Coefficient p-value <0.01
b. Coefficient >0

Finally, to determine which features (of those correlated with increased SV type burden) were enriched
in metastatic tumors compared to primary tumors (and vice versa), we calculated Cliff’s delta for numeric
features and Cramer’s V for boolean features. Cliff's delta ranges from -1 to +1, with -1 representing
complete enrichment in primary tumors, whereas +1 represents complete enrichment in metastatic
tumors. Cramer’s V only ranges from 0 to 1 (with 1 representing enrichment in either primary or
metastatic tumors), the sign of the log(odds ratio) was assigned as the sign of the Cramer’s V value so that
it ranges from -1 to +1. Features with an effect size >0 were considered as those that could explain the SV
burden increase in metastatic cancer when compared to primary cancer.

Driver alterations

We relied on patient specific cancer driver catalogs constructed by PURPLE* and LINX>3. Only drivers with
adriver likelihood > 0.5 were retained. Fusion drivers were filtered for those that were previously reported
in the literature. Similarly, we manually curated the list of drivers and removed SMAD3 HOTSPOT
mutations because of the high burden mutations in low mappability regions. The final driver catalog
contained a total of 443 driver genes.

We then combined fusions with the LINX driver variants to calculate a patient specific number of driver
events. Drivers that concern the same driver gene but a different driver type were deemed to be individual
drivers (e.g. TP53 mutation and TP53 deletion in the same sample were considered as one driver event).
Cancer type specific Mann-Whitney test was performed to assess differences between primary and
metastatic tumors. A p-value < 0.01 was deemed to be significant.

A contingency matrix was constructed from the driver catalog, containing the frequency of driver
mutations per driver type (i.e., deletion, amplification or mutations) and cancer type in each cohort
(metastatic and primary). A second contingency matrix was constructed for the fusions. Partial
amplifications were considered as amplifications while homologous disruptions were considered as
deletions. These contingency matrices were filtered for genes which show a minimum frequency of 4
mutated samples in either the primary or the metastatic cohorts. Then a Fisher’s exact test for each gene,
cancer type and mutation type was performed and the p-value was adjusted for FDR per cancer type.
Cramer’s V and the odds ratio were used as effect size measures. An adjusted p-value < 0.01 was deemed
to be significant.
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Therapeutic actionability of variants

To determine the amount of actionable variants observed in each sample, we compared our variants
annotated by SnpEff’® to those derived from three different databases (OncoKB”®, CIViC® and CGI®!) that
were classified based on a common clinical evidence level
(https://civic.readthedocs.io/en/latest/model/evidence/level.html) as described in Priestley et al. 20194
In our study we only considered A and B levels of evidence which represent variants that have been FDA

approved for treatment and are currently being evaluated in a late stage clinical trial, respectively. A
variant was determined to be “On-label” when the cancer type it was found in matches the cancer type
the treatment was approved for or is being investigated for, and “Off-label” otherwise. Only actionable
variants of the sensitive category were considered (i.e. tumors containing the variant are sensitive to a
certain treatment). Sample-level actionable variants such as TMB high/low or MSI status were not
evaluated, because of their tendency to overshadow the other variants, especially in the Off-label
category. Further, wild-type actionable variants were not considered in this analysis for the same reason.
Variants related to gene expression or methylation were not considered due to lack of available data.
Additionally, we found actionable variants derived from leukemias to be very different from the solid
tumors in our data set which is why we excluded them for this analysis. For the analysis of proportion of
samples bearing therapeutically actionable variants we considered the highest evidence level was
retained for each sample following the order A On/Off-label to B On/Off-label. To assess enrichment of
actionable variants globally and on A On-label level in metastatic tumors, a Fisher’s exact test was
performed pancancer-wide and per cancer type. A p-value < 0.01 was deemed to be significant.
Percentage changes in frequency are only shown for significant cases.

To determine which variants contribute the most to the observed significant frequency differences,
individual actionable variants were tested for enrichment in metastatic tumors using a Fisher’s exact test
per cancer type and tier level. P-values were FDR adjusted per cancer type and a g-value < 0.05 was
deemed to be significant. In Supp. Fig. 6 only actionable variants that were found at a minimum frequency
of 5% in either primary or metastatic cohort and a minimum frequency difference of 5% between them
were shown. However, the differences across all screened variants is available as part of Supp. Table 7.

Treatment enriched drivers

We aimed to pinpoint drivers that are potentially responsible for lack of response to certain cancer
treatments in the metastatic cohort. Hence, we devised a test that identifies driver alterations that are
enriched in groups of patients treated with a particular treatment type compared to the untreated group
of patients from the same cancer type (see Fig. 6a for illustration of the workflow).

Treatments were grouped according to their mechanism of action so that multiple drugs with a shared
mechanism of action were grouped into the mechanistic treatment category (e.g. Cisplatin, Oxaliplatin,
Carboplatin as Platinum). We created 332 treatment and cancer type groups by grouping patients with
treatment annotation according to their treatment record before the biopsy. One patient might be
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involved in multiple groups if they have received multiple lines of therapy or a simultaneous combination
of multiple drugs. Only 62 treatment and cancer type groups with at least 10 patients were further
considered in the analysis.

Hence, for each <cancer and treatment group we performed the following steps:

1. We first performed a driver discovery analysis in treatment and cancer type specific manner. We
explored three types of somatic alterations: coding mutations, non-coding mutations and copy
number variants (see below for detailed description of each driver category). Driver elements
from each alteration category were selected for further analysis.

2. For each driver alteration from 1) we compared the alteration frequency in the treated group to
the untreated group of the same cancer type. Each driver category (coding and non coding
mutations and copy number variants) were evaluated independently. We performed a Fisher’s
exact test to assess the significance of the frequency differences. Similarly, we computed the odds
ratio of the mutation frequencies for each driver alteration. The p-values were adjusted with a
multiple-testing correction using the Benjamini—-Hochberg procedure (alpha=0.05). An adjusted
p-value of 0.05 was used for coding mutations and copy number variants. Adjusted p-value of 0.1
was used for non-coding variants due to the overall low mutation frequency of the elements
included in this category, which hampered the identification of significant differences.

3. We then annotated each driver element with information about the exclusivity in the treatment
group. We labeled drivers as treatment exclusive if the mutation frequency in the untreated group
was lower than 5%, we annotated as treatment enriched otherwise. Additionally, we manually
curated the identified drivers with literature references of their association with each treatment
category.

4. Finally, the overlap of patients in multiple treatment groups (see above) in the same cancer type
prompted us to prioritize the most significant treatment association for each driver gene in a
particular cancer type. In other words, for each driver gene that was deemed as significantly
associated with multiple treatment groups in the same cancer type, we selected the most
significant treatment association, unless a driver-treatment annotation was clearly reported in
the literature.

The full catalog of TEDs and their mutation frequencies can be found in Supp. Table 8.

Coding mutations drivers

We used dNdScv® with default parameters to identify cancer driver genes from coding mutations. A global
g-value <0.1 was used as a threshold for significance. Mutation frequencies for each driver gene were
extracted from the dndscv output. We defined the mutation frequency as the number of samples bearing
non-synonymous mutations.
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Non-coding mutations drivers

We used ActiveDriverWGS®® (v1.1.2, default parameters) to identify non-coding driver elements in five
regulatory regions of the genome including 3’"UTRs, 5’UTRs, IncRNAs, proximal promoters and splice sites.
For each element category we extracted the genomic coordinates from Ensembl v101. Each regulatory
region was independently tested. To select for significant hits, we filtered on adjusted p.values (FDR<0.1)
and minimum of three mutated samples. We defined the mutation frequency as the number of mutated
samples for each significantly mutated element in the treatment group.

Copy number variant drivers

We ran GISTIC2% (v2.0.23) on each of the 62 treatment and cancer type groups using the following
settings:

gistic2 -b <inputPath> -seg <inputSegmentation> -refgene
hgl19.UCSC.add_miR.140312.refgene.mat -genegistic 1 -gcm extreme -maxseg 4000 -
broad 1 -brlen 0.98 -conf 0.95 -rx © -cap 3 -saveseg © -armpeel 1 -smallmem ©
-res 0.01 -ta 0.1 -td 0.1 -savedata © -savegene 1 -qvt 0.1.

The focal GISTIC peaks (g £0.1 and < 1Mbp) were then annotated with functional elements using the
coordinates from Ensembl v101. The frequency differences between treated and untreated cohorts on
every gene was assessed with Fisher exact test as described above. For this, we first calculated the focal
amplification and deep depletion status of every gene within each sample. A gene was amplified when
the ploidy level of the gene was 2.5 ploidy levels higher than its genome-wide mean ploidy level (as
measured by PURPLE), and deleted when the gene ploidy level was lower than 0.3 (i.e. deep deletion).
We observed that the majority of the peaks contained multiple significant gene candidates (after multiple
correction g < 0.05) and therefore we retained the gene most closely positioned to the peak summit,
which is the most significantly enriched region across the treated samples. Next, we also found recurrent
peaks across multiple treatment groups per cancer type that are not, or less, present in the untreated
control group because most of the Hartwig samples have received multiple treatment types. We therefore
merged peaks with overlapping ranges to produce a single peak per genomic region per cancer type. For
each collapsed peak we selected the treatment type showing the lowest g-value for the gene near the
peak summit. Deletion and amplification peaks were processed separately.

Group level aggregation of treatment resistance associated variants

To estimate the contribution of TEDs to the total number of drivers per sample in the metastatic cohort,
we excluded any TED from the catalog of driver mutations (see above Driver alterations section) in a
cancer type, gene and driver type specific manner.
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Data availability

Metastatic WGS data and metadata from the Hartwig Medical Foundation are freely available for
academic use through standardized procedures. Request forms can be found at
https://www.hartwigmedicalfoundation.nl.

Somatic variant calls, gene driver lists, copy number profiles and other core data of the PCAWG cohort
generated by the Hartwig analytical pipeline are available for download at
https://dcc.icgc.org/releases/PCAWG/Hartwig. Researchers will need to apply to the ICGC data access
compliance office (http://icgc.org/daco) for the ICGC portion of the dataset. Authentication of NIH eRA
commons is required to access the TCGA portion of the dataset via https://icgc.bionimbus.org. Additional
information on accessing the data, including raw read filess, can be found at
https://docs.icgc.org/pcawg/data/.

Code availability

The Hartwig analytical processing pipeline is available at (https://github.com/hartwigmedical/pipeline5)

and implemented in Platinum (https://github.com/hartwigmedical/platinum).

The source code to reproduce the analysis of the manuscript will be made public in this repository
https://github.com/UMCUGenetics/PCAWG Hartwig comparison upon manuscript acceptance in a

peer-review journal.
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