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Spatial heterogeneity in the tumor microenvironment (TME)
plays a critical role in gaining insights into tumor development
and progression. Conventional metrics typically capture the
spatial differential between TME cellular architectures by ei-
ther exploring the cell distributions in a pairwise fashion or
aggregating the heterogeneity across multiple cell distributions
without considering for the spatial contribution. As such, none
of the existing approaches has fully accounted for the hetero-
geneity caused by both cellular diversity and spatial configura-
tions of multiple cell categories. In this article, we propose an
approach to leverage the spatial entropy measures at multiple
distance ranges to account for the spatial heterogeneity across
different cellular architectures. Then, functional principal com-
ponent analysis (FPCA) targeting sparse data is applied to es-
timate FPC scores which are then predictors in a Cox regres-
sion model to investigate the impact of spatial heterogeneity in
the TME on survival outcome, holding other clinical variables
constant. Using an ovarian cancer dataset (n = 114) as a case
study, we found that the spatial heterogeneity in the TME im-
mune compositions of CD19+ B cells, CD4+ T cells, CD8+ T
cells, and CD68+ macrophages, had a significant non-zero ef-
fect on the overall survival (p = 0.027). In the simulations stud-
ies under different spatial configurations, the proposed method
demonstrated a high predictive power by accounting for both
clinical effect and the impact of spatial heterogeneity.
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Introduction

The emergence of tumor microenvironment (TME) studies
has revealed a critical role of spatial heterogeneity for gaining
insights into tumor initiation, development, progression, in-
vasion, metastasis, and response to therapies (1, 2, 3, 4). The
TME is known to be complex and heterogeneous due to con-
tinuous cellular and molecular adaptions in the primary tu-
mor and its surroundings, which then allow for tumor growth
and proliferation. Increasing evidence suggests that in addi-
tion to quantities and types, the spatial architectures of cells
within the TME influences survival and response to treatment
therapy in numerous cancer types (1). For instance, Wang et
al. (3) discovered a high level of heterogeneity in the TME of
patients with human lung adenocarcinoma (LUAD) by com-
paring different tumor sites. Particularly, the authors identi-
fied the immunological differences in cell subpopulations be-
tween the core, middle, and edge of tumors, such that CD4+
naive T cells located at the core of the tumor had higher

activation levels in angiogenesis and expressed more im-
mune checkpoint molecules than those at the tumor edge. In
another study about human papillomavirus (HPV)-negative
head and neck squamous cell carcinoma (HNSCC) tumors,
Blise et al. (1) demonstrated that neoplastic tumor-immune
cell spatial compartmentalization, rather than mixing, was as-
sociated with longer progression free survival (PFS).

Great progress has been made in studying spatial architec-
ture of cells in the TME owing to advances in single-cell
multiplex imaging modalities which provide simultaneous
quantification and visualization of individual cells in tis-
sue sections (5, 6, 7, 8, 9, 10). More specifically, mul-
tiplex tissue imaging (MTI) (11) methods such as cyclic
immunoflourescence (CyCIF) (12), CO-Dectection by in-
dEXing (CODEX) (13), multiplex immunohistochemistry
(mIHC) (10, 14), imaging mass cytometry (IMC) (15), and
multiplex ion beam imaging (MIBI) (16) are capable of mea-
suring the expression of tens of markers at single-cell resolu-
tion while preserving the spatial distribution of cells. As an
example, multiplex immunohistochemistry (mIHC) detects
and visualizes specific antigens in cells of a tissue section by
utilizing antibody-antigen reactions coupled to a flourescent
dye or an enzyme (17, 18). Another instance includes mul-
tiplexed ion beam imaging (MIBI) (16), which utilizes sec-
ondary ion mass spectrometry to image metal-conjugated an-
tibodies. As a result, MIBI enables single-cell analysis of up
to 100 parameters without spectral overlap between channels.
Altogether, imaging provides an additional dimension of spa-
tial resolution to the single cell signature profiles, which in
turn allows researchers not only to study cellular composi-
tion but also to make inferences about specific cell-cell inter-
actions.

Metrics that quantify the spatial differences between TME
cellular architectures can range from simple density ratios
of immune cells to tumor cells within specific tumor regions
(e.g., tumor center vs. invasive margin) such as Immunoscore
(19), to more complex measures utilizing spatial proximity
of specific cell types relative to others in the TME such as
mixing scores (8) and cellular neighborhood measures (9).
Alternatively, the Ripley’s K-function and its variants could
also be employed to characterize any single - cell spatial pat-
terns deviated from the complete randomness at any given
distance. However, for a given point pattern of multiple cell
types, such spatial summary functions typically operate in a
pairwise fashion, which involves all possible comparisons of
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one cell type to another, but not all types simultaneously.

Shannon entropy (20) initially proposed in Information The-
ory to measure the heterogeneity in observations, has gained
popularity in a wide range of applied sciences such as ecol-
ogy and geography (21, 22, 23), evolutionary biology (24),
landscapes (21, 25), and recently in cancer research (26, 27).
For instance, Heindl et al. (26) investigated the microenvi-
ronmental diversity of ovary tumors and the corresponding
local metastasis sites including omentum, peritoneum, lymph
node, and appendix by accounting for the collective charac-
teristics of all cell types simultaneously via Shannon diversity
index. Particularly, based on the cell type frequency distri-
bution, a high Shannon score indicates similar proportion of
each type while a low value suggests dominance of one cell
type. In a different manner, (27) associated the diversity of
cell compositions in the tumor ecosystem with patients over-
all survival on a more granular level. Specifically, after cell
phenotyping and classification, the authors divided each im-
age into smaller regions such that Shannon entropy can be
calculated for each region based on the frequency distribution
of each cell type. Accordingly, a high value of the entropy in-
dicate a heterogeneous environment while the reverse holds
for alow entropy value. The distribution of Shannon diversity
scores was then used as input for Gaussian mixture model to
determine the number of clusters, which was referred to as an
ecosystem diversity index (EDI).

While the direct application of Shannon entropy in (26)
showed some promising results in ovarian cancer, it does not
consider the spatial distribution of cell types. In other words,
regardless of how cells of different types are distributed on
a given image, the Shannon entropy is the same as long as
the proportion of each cell type stays the same. The EDI ap-
proach, on the other hand, tries to overcome such challenge
by considering small neighborhoods of cells through image
tessellation. However, this approach relies heavily on how
each image is tessellated (e.g., shape and size) and the chosen
number of clusters from fitting the model to obtain the EDI
score. Herein, by considering a collection of cells on each
image as a marked point pattern, we propose an approach that
leverages spatial entropy measures (28) to account for spatial
heterogeneity across subjects at certain distance ranges and
how such variability impacts a clinical outcome of interest.
More precisely, if cells of different types are randomly scat-
tered on an image, the spatial entropy at any given distance
would be around zero. On the other hand, the spatial entropy
would deviate from zero if spatial patterns of cell types in a
given local neighborhood are different from the global pat-
tern. The number of distance ranges is rather limited to en-
sure entropy can be reasonably calculated for each range. As
a result, we utilize functional principal component analysis
(FPCA) targeting sparse data to obtain subject-specific FPC
scores which capture the spatial heterogeneity of the TME
compositions. The FPC scores are then served as predictors
in a Cox regression model to investigate the association be-
tween spatial heterogeneity in the TME compositions with
survival outcome. Using the ovarian cancer dataset (n = 114)
as a case study, we found that the spatial heterogeneity in
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the TME immune compositions of CD19+ B cells, CD4+ T
cells, CD8+ T cells, and CD68+ macrophages, had a signifi-
cant non-zero effect on the overall survival (p =0.027). In the
simulations studies under different spatial configurations, the
proposed method demonstrated a high predictive power by
accounting for both clinical effect and the impact of spatial
heterogeneity.

Real application results

Ovarian cancer data. Motivated by recent studies on the
immune responses in the ovarian TME (29, 30), we explored
the spatial heterogeneity in various immune cell subsets such
as T and B cells, tumor-associated macrophages. Fig. 1 (A)
illustrates distribution of four different immune cell types in-
cluding CD19+ B cells, CD4+ T cells, CD8+ T cells, and
CD68+ macrophages, in four representative individuals. Uti-
lizing the entropy measures introduced in Section for these
four categories, i.e. I = 4, the heterogeneity in spatial distri-
butions of these cell types was captured for each individual
image. Fig. 1 (B) shows such spatial entropy measures for
all 114 subjects in the dataset as a function of inter-cell dis-
tances. In particular, there was a high level of variation in
spatial entropy values at distances less than 250 pm at which
some individuals expressed high entropy values while others
had values close to zero.

The resulting SPI curves were used as input for the FPC anal-
ysis to obtained the estimated FPC scores. Fig. S1 shows the
estimated mean function (A) and the first three eigenfunc-
tions (B). The estimated mean function reflected the overall
trend starting at relatively high entropy values at short dis-
tances (< 250 pum), then dropping off close to zero for in-
termediate distances (around 300 — 1000 um). Towards the
end of the distance range, the spatial entropy values became
larger. The first eigenfunction showed similar trend to the
mean function while the second one expressed a contrast in
spatial entropy values between the shortest and farthest dis-
tances. The third eigenfunction, on the other hand, illus-
trated a clearer contrast in entropy values between distances
of < 250 pm vs. > 250 pum. The first three eigenfunctions
accounted for 95.6% of the total variation.

By fitting the three selected FPC scores directly into
model [4], we investigated the relationship between spatial
heterogeneity in distributions of immune cells in the TME
and survival outcome, in addition to subject age. Full and
restricted models were fit to test the hypothesis [6] . We
obtained the p-value of 0.027, indicating the significant non-
zero effect of spatial heterogeneity in TME immune compo-
sitions on the overall survival.

TNBC. In this analysis, we focused on exploring the dif-
ference in the spatial distributions of endothelial, immune,
mesenchymal-like, and tumor cells in the TME. Fig. S2 (A)
displays such spatial distributions in four representative im-
ages. With the number of categories I = 4, the SPI curves
were computed for 38 subjects as shown in Fig. S2 (B).
For short inter-cell distances (< 200 pm), the spatial en-
tropy values were relatively high compared to those between
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Fig. 1. Ovarian cancer dataset: (A) Representative images with distribution of immune cells including CD19+ B cells, CD4+ T cells, CD8+ T cells, and CD68+ macrophages.

(B) Spatial entropy of the four immune cell types as a function of inter-cell distances.

300 pm and 600 pm. Specifically, high values of spatial
entropy at short distances were due to some individuals hav-
ing small clusters of immune and tumor cells. As the dis-
tances increased, cells of different types started scattering
more evenly, leading to the spatial entropy dropping close
to zero. Similar to the previous case, we used FPC analysis
on the estimated SPI curves to obtain the corresponding FPC
scores. Panels (A) and (B) of Fig. S3 display the estimated
mean function and first two eigenfunctions, respectively. An
overall trend of high entropy values at short distances then
dropping off close to zero was reflected in the mean function
and the first eigenfunction. In addition, the second eigenfunc-
tion depicted a contrast in the spatial entropy values between
short distances (< 300 pm) and distances beyond 600 pm.
Utilizing model [4], we also tested the relationship between
spatial heterogeneity in the distributions of the four cell types
in the TME of breast tumor samples and mortality risk. In
particular, we fit a full model with the first two FPC scores as
predictors in addition to age. A restricted model, on the other
hand, only included age as predictor. With limited sample
size (n = 38), the LRT of the two models resulted in a p-
value of 0.31 indicating no significant association.

Simulation studies

Setup. We performed simulations studies to evaluate the per-
formance of the proposed approach. We considered a dataset
of 100 images (/N = 100). For simplicity, we considered a to-
tal of five cell types (e.g., CD14+, CD19+, CD4+, CD8+, and
CK+) per image (i.e., I = 5). Total number of cells per type
was equally fixed at 600, leading to the total cells n. = 3000
per image. For each dataset, we assumed that there were two
groups of subjects; number of subjects per group followed
a binomial distribution with a probability prob = 0.5, i.e.
Ny ~ Binom(N, prob = 0.5) for g =1,2. We considered
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two spatial configurations: clustered vs. random (top row
of Fig. 3), which subjects in groups 1 and 2 were generated
from, respectively. In other words, the proportion of each cell
type stayed consistent across subjects, only their spatial dis-
tributions varied. The bottom row of Fig. 3 shows the two
reference spatial entropy curves corresponding to each con-
figuration. If cells of each type were randomly scattered in
a given image, the corresponding spatial entropy values were
approximately zero across all distance ranges. Conversely,
any configuration deviated from the complete randomness
would result in spatial entropy curve above zero.

Next, subject-specific entropy curves were generated by
adding noise to the reference curves. We constructed three
scenarios corresponding to the three levels of additive noise:
small, medium, and large (Fig. S4, Supplementary Informa-
tion). FPCA was performed on the simulated spatial en-
tropy curves to obtain the estimated FPC scores & (Sec-
tion ). Again, the number of FPCs L* was chosen such that
at least 95% of the total variation was accounted for. Addi-
tionally, the scalar covariate Z; was simulated from the nor-
mal distribution with mean and standard deviation obtained
empirically from the distribution of age. After mean cen-
tering and unit scaling Z} and &}, the linear predictor was
simulated as 0] = Z} + Zsz*l &1 From the fitted model in
the real data analysis, we obtained the estimated cumulative
baseline hazard fg ho(z)dx, which was then used to gener-
ate a survival function for each individual, such that S;(t) =
exp{—e’i fg Ao(z)dz}. The estimated survival times 77"
were generated from the survival function; and the censoring
times C; were simulated based on the empirical distribution
of the observed censoring times.

Predicted Performance . At each level additive noise, four
datasets of different sizes (N = 100, 200, 500, and 1000, re-
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Fig. 2. FPCA results from SPI curves in ovarian dataset. (A) Mean function. (B) First three eigenfunctions.
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Fig. 3. Simulated spatial configurations. Top row: Two reference spatial configura-
tions: clustered (left) and random (right) of five different cell types: CD14+, CD19+,
CD4+, CD8+, and CK+. Bottom row: Corresponding spatial entropy at multiple
distance ranges for each configuration.
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spectively) were simulated following the procedure in Sec-
tion . Each dataset was partitioned into training (75%) and
testing (25%) sets. Three models were fit using the training
set: (1) Model accounting for both clinical predictor and spa-
tial heterogeneity (2) Model accounting for only spatial het-
erogeneity, and (3) Model accounting for only clinical pre-
dictor. The estimated linear predictor 7; (W) gy = 1,2,3 was
obtained from the testing set for the uth model. At each
sample size, mean squared errors MSE () was computed
as the average of squared differences between the predicted
ﬁi(“) and the “true" linear predictor n; such that M .SE () =
Nt_lzi\]:tl(n} (w) _ nf)2, with N; denoting the number of
subjects in the testing set.

We repeated the simulation for 100 iterations and recorded
the average MSE for each of the three models across four
sample sizes N = 100, 200, 500, 1000 in Table 1. Fig 4 dis-
plays the distribution of MSEs for the three models at each
noise-added level across the four sample sizes. Note that
when there was a low or medium level of subject-specific
variation, the separation between the two spatial configura-
tions was clear (Fig. S4 (a)). As a result, by accounting for
the impact of such spatial heterogeneity, models (1) and (2)
yielded smaller MSEs, as compared to the model (3) across
all sample sizes. As the additive noise was greatly increased,
the difference in the spatial entropy curves across the two pat-
terns was no longer recognizable. In other words, the spatial
heterogeneity was not as predictive as in the previous two
scenarios. Consequently, the gain in accounting for spatial
impact (i.e., models (1) and (2)) in addition to just clinical
predictor (i.e., model (3)) was not as pronounced.

Discussion and Conclusions

Spatial architecture of cells in the TME plays a critical role
in gaining insights into tumor development, progression, and
invasion. Recent advances in imaging technology enable in-
vestigators to collect single cell data with an additional di-
mension of spatial resolution. Conventional metrics typically
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Fig. 4. Mean squared errors (MSE) across three different models Distribution of MSEs for each of the three models: model accounting for both clinical predictor and spatial
heterogeneity (red), model accounting for only spatial heterogeneity (green), and model accounting for only clinical predictor (blue). Column from left to right represent four
sample sizes: N = 100, 200, 500, and 1000. Rows from top to bottom display three levels of additive noise: small, medium, and large. he lower the MSE, the better the

predictive performance.

Noise level Model N=100 N=200 N=500 N=1000
(D 57.09 (17.63) 60.49 (10.67) 62.36 (8.25) 63.80 (6.27)
Small 2) 56.99 (19.81) 59.76 (13.54) 63.57 (8.82) 64.91 (6.48)
3) 137.35(18.81) 138.49 (12.80) 139.09 (8.17) 139.58 (5.52)
€))] 84.68 (14.89) 86.41 (10.63) 87.25 (6.46) 87.72 (4.44)
Medium 2) 86.20 (15.77) 87.82 (11.00) 88.83 (6.85) 89.27 (4.62)
3) 128.82 (18.65) 130.79 (12.77) 131.21(7.90) 131.97 (5.46)
) 52.76 (15.35) 57.21 (10.52) 56.19 (6.66) 57.79 (4.53)
Large 2) 56.92 (16.58) 60.85 (11.05) 59.56 (6.95) 61.07 (4.67)
3) 70.92(18.77) 76.53 (13.14) 74.22 (8.04) 76.40 (5.69)

Table 1. Mean squared errors (MSE) across three different models, with four sample sizes (N = 100, 200, 500, 1000), and at three levels of additive noise (small, medium,

and large). Corresponding standard deviations are recorded in parentheses.

capture the spatial differential between TME cellular archi-
tectures by either exploring the cell distributions in a pair-
wise fashion or aggregating the heterogeneity across multi-
ple cell distributions without considering for the spatial at-
tribute. As a result, neither has fully accounted for the het-
erogeneity caused by both cellular diversity and spatial pat-
terns of multiple cell categories. Alternatively, we utilize spa-
tial entropy measures to decompose the conventional Shan-
non entropy into spatial mutual information and residual en-
tropy, which account for the contribution of space and cellu-
lar diversity, respectively, to the overall heterogeneity. Then,
we apply functional principal component (FPC) analysis for
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sparse data to the subject-specific spatial entropy trajectories
to estimate the FPC scores. The scores are served as pre-
dictors in a Cox regression model to investigate the impact
of spatial heterogeneity in the TME on survival outcome, in
addition to other clinical variables.

Using the ovarian cancer dataset as a case study, we study
the spatial patterns of four different immune cell subsets in-
cluding CD19+ B cells, CD4+ T cells, CD8+ T cells, and
CD68+ macrophages across 114 individuals. After fitting the
top three FPC scores into the Cox regression model, we find
that the spatial heterogeneity in TME immune compositions
has a significant non-zero effect on the overall survival (p
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= 0.027). The approach is further validated on the TNBC
dataset to find the association between the diversity in spa-
tial distributions of tumor cells relative to immune and en-
dothelial cells and risk of mortality. Given a relatively small
sample size, such association is not found significant. Ad-
ditionally, through simulation studies under different spatial
configurations, we demonstrate that the proposed method has
a higher predictive power by accounting for both clinical ef-
fect and the impact of spatial heterogeneity.

In this paper, we utilize the spatial entropy measures to char-
acterize the heterogeneity across distributions of multiple cell
types. However, the accuracy of these measures rely heavily
on the upstream procedure of cell segmentation and pheno-
typing. In other words, if cells are not segmented and phe-
notyped correctly, the estimated spatial entropy values would
reflect spurious spatial heterogeneity. One possible solution
would be to randomly permutate the cell labels to obtain the
empirical distribution of the spatial entropy curves. Then,
the mean spatial entropy instead of the observed counterpart
would then be used as input for the FPC analysis. The se-
lected FPC scores would be served as scalar predictors in the
Cox regression model to investigate the association between
spatial heterogeneity of cells and patient overall survival.

Materials and Methods

Spatial entropy measures.Let X be a random variable
denoting a category for each individual cell, with at to-
tal of I possible categories. Shannon entropy (20) is
the expected value of an information function measuring
the uncertainty in observing X = x;,¢ = 1,...,1 with the
corresponding probability mass function (pmf) as px =
(p(x1),p(x2),...p(x1))T. The entropy is defined as:

I
H(X)=> pla;)log (@) 1)

i=1

The entropy H(X) ranges between 0 and log(I); and its
maximum is achieved when X is uniformly distributed. In
our context, the maximum entropy is reached when cells of
different types are scattered evenly on a given image. Note
that the above entropy alone does not account for the role of
space. As a result, datasets with identical pmf px but differ-
ent spatial configurations (e.g., strong spatial association vs.
complete spatial randomness) yield the same H(X).

Following (28), we define a new variable Z to identify co-
occurrences of different pairs of realizations of X over space,
ie. (x;,2)), with ¢, = 1,...1. An assumption is that the
order within co-occurrences is neglected. This is reason-
able since the interest is to understand the spatial hetero-
geneity of data over a space, which is usually not assumed
to have direction. The number of categories of Z, denoted
by R, where R = (“3'). The corresponding pmf is px =
(p(21),p(22),...p(zr))T, where p(z,) for r =1,..., R, is
the probability of observing the rth co-occurrence of cells
on a given image. In other words, Z transforms the infor-
mation in X while introducing a venue for incorporating the
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Fig. 5. Representative images and corresponding spatial entropy. Top row: two
representative images with individual cells of five different types: CD14+, CD19+,
CD4+, CD8+, and CK+. Bottom row: corresponding spatial entropy curves at multi-
ple distance ranges.

idea of spatial neighborhood. The entropy using the newly
introduced variable Z is defined as:

& 1
H(Z)= zi)lo 2
(2) ;p( i) g(p(z,-)) @
Here, the entropy H(Z) ranges between 0 and log(R).
Though the values of H(X) and H(Z) might not be exactly
the same due to different categories being considered, both
capture equivalent information.

In order to properly account for space in an entropy measure,
an additional random variable W is defined to cover all pos-
sible distances at which co-occurrences take place. Denote
wy = (di_1,dg], with k =1,..., K and dj, is a fixed set of
distance breaks which are a function of inter-point distances,
with dp = 0 and dx being the distance between the two far-
thest points on a given observation window. These distance
breaks dj, can be flexibly chosen depending on the specific
applications. The corresponding pmf is denoted by p(W) =
(p(wy),...,p(wg))T, with p(wy,) being the probability of
observing pairs of cells whose corresponding distances fall
within the kth distance range. At each distance category wy,
the probability of observing specific co-occurrences is repre-
sented as p(Z|wg) = (p(21|wk), ..., p(zr|wi)) "

By utilizing the two newly defined variables, Z and W, we
are able to decompose the global entropy H(Z) in Eq. 2 into
two components: entropy due space (i.e., spatial informa-
tion) and the remaining heterogeneity after space has been
taken into account (residual entropy), respectively denoted
by SPI(Z) and HW (Z), as follows.

H(Z)=SPI(Z)+HY (2)

Here, both SPI(Z) and HY (Z) can be further partitioned
by distance range wy, such that
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R
SPI, = SPI(Z|wi) =) p(zr|wy)log (W>

r=1

R
HYY (Zwg) = p(zrlwk) log (p<1wk> ) '

r=1

Since our interest lies in investigating the spatial heterogene-
ity across cellular architectures, we will focus on the spa-
tial entropy SPI}, for the rest of the paper. Fig. 5 displays
the distributions of five different cell types including CK+,
CD4+ T cells, CD8+ T cells, CD14+, and CD19+ B cells in
two representative images (top row) and the corresponding
spatial entropy as a function of inter-cell distances (bottom
row). Specifically, in the first spatial configuration (top left),
the influence of space is rather weak as all cell types seem to
scatter evenly across all distance ranges (bottom left). Con-
versely, the spatial entropy values at short distances are rela-
tively larger due to some small clusters of CD4+ and CD19+
cells.

Model.

Functional principal component analysis (FPCA) for sparse
data. To generalize the entropy measures introduced previ-
ously to our context of multiple independent subjects, we
suppose that the distance breaks and the associated distance
ranges can be independently obtained for each ¢-th subject,
denoted as d;j, and wig, = (d;(j,—1),dix] fork=1,..., K; and
i=1,...,N. The spatial entropy for the ¢-th individual are
represented as SPI; = {SPIik}kK:il = {SPIi(Z\wk)}kKil
As the number of distance breaks K; is different across sub-
jects, and typically kept below 20 to ensure the spatial en-
tropy is appropriately computed for each distance range w;.
In other words, if K is too large, i.e., w;; gets close to 0,
leading to no point being observed resulting in indefined en-
tropy. Provided the sparse observed entropies for each indi-
vidual, fitting SPI; directly into a model as functional co-
variates as in (31) is not feasible. Therefore, we utilize the
approach proposed by Yao et al. (32) to address the sparse-
ness in the observed data through functional principal compo-
nents (FPC) analysis targeting sparse and irregularly spaced
data points.

Assume that each observed spatial entropy SPI;; for k =
1,....K;, i = 1,...,N is generated from the underlying,
smooth random function X (s) at a random distance S;,
with known mean function EX (s) = pu(s) and covariance
function Cov(X (s),X(t)) = G(s,t). The domain of X (.)
is bounded and closed on interval S. Suppose there is
an orthogonal expansion of G in terms of eigenfunctions
¢; and nonincreasing eigenvalues )\;, such that G(s,t) =
Yo Ndi(s)di(t) with t,s € S. The i-th random curve can
be expressed as X;(s) = pu(s) + >, &udi(s), s €S, where
&;1 are uncorrelated random variables with mean 0 and vari-
ance E¢Z = )\ with 3, \; < 00, Ay > Ao > .... Then, the
observed S PI;; can be modelled as follows.
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SPIZ‘]C = Xl(Slk)—F&k
B s 3)
= y(Sik)JrZﬁud)z(Sik)JrEm for Sip €8
=1

where, Ee;;. =0, var(e;x) = o’

Utilizing the local linear smoothers (33), Yao et al. (32) es-
timate the mean function /i(.) based on pooled data from all
subjects. The covariance surface G(.) is smoothed using a
local quadratic function. The estimated eigenfunctions &l ()
are then obtained by discretizing the smoothed covariance.
Details about the smoothing steps can be found in (32).
Once the mean function and the eigenfunctions are com-
puted, the FPC scores can be subsequently estimated. Due
to the sparseness of the data in which SPI;; are only ob-
served at discrete random distances S;j, the FPC scores can
not be reasonably estimated using traditional numerical in-
tegration as & = [ (Xi(s) = u(s))du(s)ds = Y23, (Vg —
A(Sik)P1(Sik) (Sik — Sik—1), setting Sip =0 . Alterna-
tively, FPC scores can be estimated through conditional ex-
pectation such that

i = E{&q|SPL} = NouSspr, (SPL; — fi;)
where the (j,0)-th element of f)spji is (isp]i)]"l =
G(X(Sij), X(Si)) + 028 with §;; = 1if j =1, and 0 oth-

erwise.

Functional Linear Cox Regression Model. The relationship
between the survival distribution and the spatial heterogene-
ity embedded in the aforementioned FPC scores, in addition
to scalar clinical predictors U; = (w1, ... ,uip)T can be in-
vestigated using a Cox regression model. Denote T; and C;
as the survival and censoring times for the ¢-th individual, re-
spectively. Assume that T; and C; are independent given U;.
Due to right-censoring, we only observe Y; = min(T;,C;),
and let §; = I(T; < C;) be a censoring indicator. The hazard
function for the Cox regression model has the form

) 0
logh;i(t) = logho(t)+ Zuiﬂj + Zfilﬂl
j=1 =1

Q

P L
logho(t)+ > uiyi+ &b @)
=1 1=1

= logho(t) + U v+ &7 B
= logho(t) + W7o

where W;‘F = (Wi, Uip,&it, - - &) T loghy(t) is the log
hazard at time ¢ given scalar covariates U; and FPC scores
&1, and logho(t) is the log baseline hazard function. The
truncation number L is often chosen such that the resulting
FPC scores cumulatively account for at least 95% of observed
variance.

The approximate partial log-likelihood function of 87 =
(v, BT), denoted by 1(8) is given by
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3.
N
10)=> 6:;{ Wl6—log >  exp(W]0) 5)
i=1 Y;>Y; 4.
The estimated coefficients 87 = (37, 37) are obtained 5.
by maximizing the above partial likelihood using Newton-
Raphson procedure.
A likelihood ratio test (LRT) (34) could then be used to inves- .
tigate the significant association between the spatial informa- '
tion embedded in the FPC scores &;; and mortality risk, using
the following hypothesis. ;
Hy:81=...=8r=0vs. H,:B3; #0 for at least one j, 1§j§L8
(6) '
Data. We used ovarian cancer and triple-negative breast can-
cer (TNBC) datasets collected using multiplex immunohisto- 9.
chemistry (mIHC) and multiplexed ion beam imaging (MIBI)
platforms, respectively, to evaluate the applicability of our
proposed model. 10
Ovarian cancer data. Tissue microarray (TMA) slides of 132
ovarian cancer patients were stained with antibodies specific
for CD3, CD4, CD8, CD19, CD68, cytokeratin, Ki67, pStat, 11
and IER3. The slides were imaged using Vectra 3.0 mi-
croscope (Akoya Biosystems) and then segmented and phe-
notyped using the inForm software. More details can be 12
found in (35). Within the cohort, we excluded 18 patients
from the analysis due to missingness of clinical information.
Fig. 1 (A) visualizes the distribution of immune cells in the 13
TME including CD19+ B-cells, CD4+ T-cells, CD8+ T-cells,
and CD68+ macrophages in four representative images.
14
Triple-negative breast cancer data. TNBC biopsies were
compiled into a tissue microarray (TMA) slides and stained 15
with 36 antibodies targeting regulators of immune activation
such as PD1, PD-L1, etc. The slides were imaged using
the multiplexed ion beam imaging (MIBI) mass spectrome-
ter. Details about nuclear segmentation and cell phenotyping 16
of the 41 images can be found in (8). Within this cohort, two
patients did not have clinical information available regarding
survival outcomes, and one patient’s imaging data was cor- 17
rupted with a high level of noise. As a result, only data of 38
patients were considered in the analysis. 18
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Fig. S 1: Mean function and eigenfunctions from FPC analysis on SPI curves in ovarian cancer

dataset.
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Fig. S 2: Representative images and corresponding spatial entropy measures across four cell types:
endothelial, immune, mesenchymal-like, and tumor. High SPI values indicate clustering patterns

while small values occur when cell of different types are scattered more evenly.
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Fig. S 3: Mean function and eigenfunctions from FPC analysis on SPI curves in TNBC dataset
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Fig. S 4: Simulation scenarios: (a) low additive noise. (b) medium additive noise. (c) large
additive noise. Three levels of noise were added to the reference SPI curves (clustered vs. random)

to generate subject-specific SPI curves.

S.3


https://doi.org/10.1101/2022.06.17.496475
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Vu_FunSpace_Bioinformatics (2)
	Vu_FunSpace_Bioinformatics

