

1

2

3

4 Identification of genetic interactions with *priB* links the PriA/PriB DNA replication restart
5 pathway to double-strand DNA break repair in *Escherichia coli*

6

7 Short Title: DSB repair is tightly linked to the PriA/PriB restart pathway

8

9 Aidan M. McKenzie¹, Camille Henry², Kevin S. Myers³, Michael M. Place³, James L.
10 Keck^{1*}

11

12 ¹Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and
13 Public Health, Madison, Wisconsin, United States of America

14 ²Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin,
15 United States of America

16 ³Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison,
17 Wisconsin, United States of America

18

19

20 *Corresponding author

21 Email: jlkeck@wisc.edu (JLK)

22

23

24 Abstract

25 Collisions between DNA replication complexes (replisomes) and impediments such as
26 damaged DNA or proteins tightly bound to the chromosome lead to premature
27 dissociation of replisomes at least once per cell cycle in *Escherichia coli*. Left unrepaired,
28 these events produce incompletely replicated chromosomes that cannot be properly
29 partitioned into daughter cells. DNA replication restart, the process that reloads
30 replisomes at prematurely terminated sites, is therefore essential in *E. coli* and other
31 bacteria. Three replication restart pathways have been identified in *E. coli*: PriA/PriB,
32 PriA/PriC, and PriC/Rep. A limited number of genetic interactions between replication
33 restart and other genome maintenance pathways have been defined, but a systematic
34 study placing replication restart reactions in a broader cellular context has not been
35 performed. We have utilized transposon insertion sequencing to identify new genetic
36 interactions between DNA replication restart pathways and other cellular systems. Known
37 genetic interactors with the *priB* replication restart gene (uniquely involved in the PriA/PriB
38 pathway) were confirmed and several novel *priB* interactions were discovered. Far fewer
39 connections were found with the PriA/PriC or PriC/Rep pathways, suggesting a primacy
40 role for the PriA/PriB pathway in *E. coli*. Targeted genetic and imaging-based experiments
41 with *priB* and its genetic partners revealed significant double-strand DNA break (DSB)
42 accumulation in strains with mutations in *dam*, *rep*, *rdgC*, *lexA*, or *polA*. Modulating the
43 activity of the RecA recombinase partially suppressed the detrimental effects of *rdgC* or
44 *lexA* mutations in Δp *priB* cells. Taken together, our results highlight roles for several genes
45 in DSB homeostasis and define a genetic network that facilitates DNA repair/processing
46 upstream of PriA/PriB-mediated DNA replication restart in *E. coli*.

47

48 **Author Summary**

49 All organisms rely on DNA replication to grow, develop, and reproduce. In bacteria, the
50 cellular machinery that carries out DNA replication is estimated to fail and prematurely
51 dissociate from the genome at least once per cell cycle. As a result, bacteria have evolved
52 “DNA replication restart” mechanisms that resuscitate failed replication reactions. To
53 probe the function and context of DNA replication restart in the bacterium *Escherichia*
54 *coli*, we employed a genetic screen to identify genes that were conditionally important in
55 mutant *E. coli* strains compromised in their ability to perform DNA replication restart.
56 Identification of genes with previously known relationships with DNA replication restart
57 confirmed the robustness of our screen, while additional findings implicated novel genetic
58 relationships. Targeted experiments validated the importance of these genes and
59 provided an explanation for their significance in preventing double-strand DNA breaks in
60 cells, a severe form of DNA damage. Our results help to define specific roles for the genes
61 identified by our screen and elucidate the contextual environment of DNA repair upstream
62 of DNA replication restart in *E. coli*.

63

64 **Introduction**

65 Cell propagation relies on high-fidelity genome duplication. To accomplish this task, DNA
66 replication complexes (replisomes) loaded onto origins of replication traverse the
67 genome, utilizing parental DNA as templates as they synthesize new DNA strands. During
68 this process, replisomes frequently collide with obstacles such as DNA damage or nucleo-

69 protein complexes [1]. In the most severe instances, these encounters cause replisomes
70 to dissociate from the genome. In *Escherichia coli*, it is estimated that at least once per
71 cell cycle a replisome prematurely dissociates from the chromosome [1, 2]. Bacteria have
72 therefore evolved mechanisms to reload replisomes at premature replication termination
73 sites so that cells can complete genome duplication processes [3, 4].

74 Genetic and biochemical studies have defined three pathways of DNA replication
75 restart in *E. coli*: PriA/PriB, PriA/PriC, and PriC/Rep (Fig 1) [5, 6]. Null mutations in *priA*
76 or *dnaT* cause similar severe phenotypes, therefore both genes have been placed in the
77 PriA/PriB and PriA/PriC pathways [7-10]. Conversely, minor phenotypes associated with
78 mutations in *priC* or *rep* have placed them in the less frequently utilized PriC/Rep
79 pathway, independent of PriA. The synthetic lethal relationship between *priB* and *priC*
80 aligns with the current three-pathway model as one viable PriA-dependent pathway is
81 maintained with deactivation of either gene (but not both). Additionally, a mutation
82 encoding an ATPase- and helicase-deficient variant of PriA (*priA300*) elicits severe
83 defects when paired with a *priB* deletion, but not a *priC* deletion [11]. Therefore, PriA's
84 helicase activity is likely required to facilitate the PriA/PriC pathway, but not the PriA/PriB
85 pathway (Fig 1). Each restart pathway recognizes abandoned DNA replication forks,
86 remodels the forks to allow replisome loading, and reloads the replicative helicase (DnaB)
87 with the help of its helicase loader (DnaC). After DnaB is reloaded, it recruits the
88 remaining members of the replisome via protein-protein interactions [12-15].

89

90 **Fig 1. Pathways of DNA replication restart in *E. coli*.** PriA/PriC (left) and PriA/PriB
91 (center) pathways efficiently recognize abandoned fork substrates with nascent leading

92 strands, while the PriC/Rep (right) pathway prefers fork substrates with a leading strand
93 gap. All three pathways recognize an abandoned fork, remodel the substrate (if needed)
94 and recruit other replication restart proteins, and load the replicative helicase (DnaB) with
95 the help of the helicase loader (DnaC) to restart DNA replication. The PriA/PriB pathway
96 (center) is inactivated in $\Delta priB$ cells, the PriA/PriC (left) and PriC/Rep (right) pathways are
97 inactivated in *priC::kan* cells, and the PriA/PriC (left) pathway is inactivated in *priA300*
98 mutants.

99

100 Evidence suggests that certain replication restart pathways can be preferentially
101 utilized and/or that each operates on distinct substrates. For example, the PriA/PriB
102 restart pathway appears to be favored following DNA recombination [16]. Mutations in
103 *priB* are also more detrimental than *priC* when paired with a *holD* mutation, which
104 increases instances of fork stalling and collapse [17]. These results could indicate a
105 heavier reliance on PriA/PriB than other pathways for replication restart. Additionally, a
106 *priB* deletion is synthetically lethal with mutations in *dam*, which encodes a DNA methyl
107 transferase whose absence is linked to increased double-strand DNA breaks (DSBs) [18-
108 20]. This observation suggests that PriA/PriB replication restart could be important
109 following DSB repair. Although *priC* disruption alone results in negligible phenotypic
110 effects, *in vitro* evidence suggests that abandoned replication forks with long single-
111 stranded (ss) DNA gaps between the nascent leading strand and parental duplex DNA
112 may be recognized and remodeled efficiently by the PriC/Rep pathway, which could
113 indicate its preference for specific abandoned DNA replication fork structures (Fig 1) [21].

114 Candidate-based genetic studies have uncovered a limited number of genes linked
115 to DNA replication restart, but a systematic study examining the potential importance of
116 all genes as they relate to this process is lacking. We employed transposon insertion
117 sequencing (*Tn*-seq) in *ΔpriB*, *priC::kan*, and *priA300* *E. coli* strains to uncover novel
118 genetic relationships with the DNA replication restart pathways [22-25]. The *ΔpriB* *Tn*-seq
119 screen yielded particularly informative results. The screen and additional genetic
120 experiments corroborated prior genetic results in which *priC*, *rep*, and *dam* are
121 conditionally essential or important in *ΔpriB* cells. Strikingly, the screen also identified
122 many new interactions between *priB* and genes involved in genome maintenance (*lexA*,
123 *rdgC*, *uup*, *rdgB*, and *polA*) and other processes (*nagC*). Mutations in many of these
124 genes produced strong growth defects in *ΔpriB* cells, evidenced by plasmid retention,
125 growth competition, and spot plating assays. Furthermore, we found that *rep*, *lexA*, *polA*,
126 and *dam* mutants were hypersensitive to ciprofloxacin, which induces DSBs. These
127 mutant strains also accumulated DSBs *in vivo* and displayed significant cell filamentation,
128 a common indicator of poor genomic maintenance. Lastly, some of the toxicity to *ΔpriB*
129 cells caused by mutations in *lexA* or *rdgC* appears to result from inappropriate and/or
130 excessive RecA recombinase activity. These results highlight the importance of several
131 genes in *ΔpriB* *E. coli*, define a primary role for the PriA/PriB restart pathway following
132 DSB repair, and help elucidate the interplay between DNA repair and DNA replication
133 restart processes.

134

135 **Results**

136 **Tn-seq identifies genetic interactions in $\Delta priB$, $priC::kan$, and**
137 **$priA300$ strains.**

138 DNA replication restart functionally integrates with other processes in *E. coli*. However,
139 experiments to probe this integration have been limited to candidate genetic and
140 biochemical studies. To systematically map connections between DNA replication restart
141 and other processes, we performed *Tn*-seq screens that assessed the tolerance of gene
142 disruption in mutant strains restricted to specific pathways of DNA replication restart.
143 Current models predict that deleting *priB* inactivates the PriA/PriB pathway, the *priA300*
144 allele (which produces an ATPase- and helicase-deficient PriA variant) disables the
145 PriA/PriC pathway, and a *priC*-null mutation (*priC::kan*) inactivates the PriA/PriC and
146 PriC/Rep pathways (Fig 1) [3, 5, 6, 11]. We therefore carried out screens in each of these
147 backgrounds to independently identify genetic connections with each pathway.

148 Isogenic wild-type (*wt*), $\Delta priB$, *priA300*, or *priC::kan* *E. coli* strains were constructed
149 with the *sulB103* mutation, which encodes an FtsZ variant resistant to SulA-mediated cell
150 division inhibition and bolsters the viability of DNA replication restart mutants [26, 27].
151 Three biological replicate *Tn*5 transposon libraries with ~165,000 transposon-insertion
152 mutants were generated for each strain to yield ~500,000 total insertion mutants in each
153 genetic background. Viable transposon-insertion mutants were selected by plating on
154 Super Optimal Broth (SOB) solid medium supplemented with trimethoprim (ensuring *Tn*5
155 insertion). After pooling to assemble each individual replicate, the libraries were subjected
156 to overnight growth in Luria Broth (LB) liquid medium forcing direct competition among
157 transposon-insertion mutants. Successive replication initiation events launch prior to cell
158 division in cells grown in rich media, resulting in more than two replication forks on each

159 chromosome [28-30]. As a result, the sensitivity of the *Tn*-seq screen was likely increased
160 since transposon-insertion mutants were required to facilitate DNA repair and replication
161 restart processes efficiently to prevent collisions between replisomes and unrepaired
162 DNA damage. Following growth in LB, genomic DNA was isolated from each replicate
163 and prepared for next-generation sequencing. The resulting sequencing data revealed
164 the location of transposon insertions as well as relative transposon-insertion mutant
165 abundance. Each gene in our analysis was assigned a normalized weighted read ratio
166 based on insertion tolerance in the mutant strain compared to the *wt* strain [31]. Positive
167 or negative weighted read ratios reflect gene disruptions that were tolerated better or
168 worse, respectively, in the *wt* strain compared to the mutant strain. Genes with few or no
169 insertions were considered important for growth, and such profiles within the *wt* control
170 strain implicated genes as being essential under the tested growth conditions. By
171 comparing insertion profiles of the *wt* and mutant strains, several genes that were
172 conditionally important in replication restart mutant strains were identified.

173 *Tn*-seq data identified conditional importance for several genes in *E. coli* cells
174 lacking the PriA/PriB restart pathway ($\Delta priB$). Genes with the strongest *priB* genetic
175 interactions evidenced by weighted read ratios (Fig 2) and unique insertions (S1A Fig)
176 were selected for subsequent study, except for *rplI* because of its inclusion in the *priB*
177 operon. Corroborating previous studies, the screen implicated *rep* (\log_{10} weighted read
178 ratio = 4.11) and *dam* (2.35) as genetic interactors with *priB*. Unexpectedly, *priC* (1.25)
179 was not a prominent hit. Nonetheless, the *priC* gene tolerated no transposon insertions
180 in the $\Delta priB$ strain and, as described below, the expected lethality of a $\Delta priB \Delta priC$ double
181 deletion strain was later confirmed. In addition to known genetic interactions, bioinformatic

182 analysis and manual curation of the *Tn*-seq data implicated a variety of novel genes as
183 genetic interactors with *priB*: *rdgC* (4.06), *nagC* (3.29), *uup* (3.98), *rdgB* (1.86), *polA*
184 (2.80), and *lexA* (2.58) (Fig 2). These top hits (apart from *nagC*) have noted roles in
185 genome maintenance but have not been genetically linked to *priB* prior to this study [32-
186 39]. The abundance of conditionally important genes in Δ *priB* cells is consistent with
187 PriA/PriB serving as the preferred DNA replication restart pathway [17].

188

189 **Fig 2. *Tn*-seq results in Δ *priB* *E. coli*.** (A) Circos plot depicting the results of the *Tn*-seq
190 screen in Δ *priB* cells. The effect of single gene disruption via transposon-insertion was
191 determined by comparing *Tn*-seq read profiles in *wt* vs Δ *priB* conditions, yielding a
192 weighted read ratio. Each bar in the Circos plot represents the weighted read ratio (\log_{10})
193 of a single gene where extension into the blue or orange region corresponds to a
194 detrimental or beneficial, respectively, effect of gene disruption. Genes with fewer than
195 three unique transposon-insertions per replicate in the *wt* condition are omitted. The
196 individual disruption of many genes involved in genome maintenance produced some of
197 the most prominent defects and were the focus of the study. Bars for notable genes (*rdgC*,
198 *priC*, *nagC*, *uup*, *rdgB*, *dam*, *rep*, *polA*, and *lexA*) are highlighted in red. (B) MochiView
199 plots for genes highlighted in (A) comparing transposon insertion locations and read
200 abundance. The corresponding weighted read ratio for each gene is included in
201 parentheses. The maximum read height displayed is 100.

202

203 Disparities in the transposon-insertion profiles between the *wt* control and
204 *priC::kan* or *priA300* mutant strains were relatively modest, resulting in smaller overall

205 weighted read ratios for genes (S1B,C Fig). This likely was caused by additional
206 mutational stress being tolerated in both mutant strains since each retained the PriA/PriB
207 pathway [3, 5, 6, 11]. One exception was the clear underrepresentation of transposon
208 insertions in *rep* (4.11) within the *priA300* strain (S1C Fig). This result is consistent with
209 the previously described conditional importance of *rep* in *priA300* cells [4, 5, 40]. No other
210 genes were identified with significantly different insertion profiles with respect to weighted
211 read ratios in either the *priC::kan* or *priA300* strains relative to the *wt* control (S1B,C Fig).
212 Interestingly, disruption of the *priB* gene was not significantly less tolerated in the
213 *priC::kan* strain compared to the *wt* strain, but this was due to a very small number of
214 transposon insertions within *priB* for all strains. This is consistent with a prior observation
215 that the *E. coli* *priB* gene receives fewer insertions in transposition screens than would be
216 predicted for a gene of its size [41].

217

218 **Mutations in *priC*, *rep*, *lexA*, *dam*, *rdgC*, *uup*, *nagC*, or *rdgB*
219 confer a dependence on *priB***

220 Given the importance of the PriA/PriB pathway as reflected by the Δ *priB* *Tn*-seq screen
221 results, the remainder of our study interrogated the relationship between *priB* and its
222 genetic interactors. A plasmid retention assay was first used to measure the impact of
223 mutations in genes identified in our *Tn*-seq screen on cell viability with or without
224 chromosomal *priB* [42, 43]. The assay followed retention of an unstable, low-copy plasmid
225 (*priB*-pRC7, which contained *priB* and the *lac* operon) in *priB*⁺ or Δ *priB* strains with
226 chromosomal deletions of the *lac* operon and genes identified as conditionally important

227 in the *ΔpriB* *Tn*-seq screen. Plasmid retention or loss was marked by colony color (blue
228 or white, respectively) when plated on SOB-agar containing X-gal and IPTG (Fig 3).

229

230 **Fig 3. Importance of specific genes in *ΔpriB* *E. coli*.** Genes implicated as conditionally
231 important or essential in the *ΔpriB* *Tn*-seq screen were tested with a plasmid retention
232 assay. (A) Percentages of colonies that retained *priB*-pRC7 plasmid are shown. Mean
233 values are depicted with error bars representing standard error of the mean. Statistical
234 significance (unpaired student t-test) for each strain pair is displayed: P < 0.05 (*), P <
235 0.01 (**), P < 0.001 (***), and P < 0.0001 (****). Representative images from *priB*-pRC7
236 assay plates are shown as follows: (B) *wt* (C) *ΔpriC*, (D) *Δrep*, (E) *lexA::kan*, (F) *Δdam*,
237 (G) *ΔrdgC*, (H) *Δuup*, (I) *ΔnagC*, and (J) *ΔrdgB*. Each plate image includes raw colony
238 counts for each condition (# of blue colonies / # of total colonies). To better visualize small
239 white colonies, 2.25x magnified insets are included in the upper right-hand corner for each
240 plate image. Each plate was incubated at 37 °C for 16 hr.

241

242 In line with previous genetic results, deletion of *priC* or *rep* in *ΔpriB* cells resulted
243 in persistent retention of *priB*-pRC7, strongly supporting their known synthetic lethal
244 relationships with *priB* (Fig 3C,D) [5]. Screening of a newly identified genetic interaction
245 revealed that *lexA* and *priB* also form a synthetic lethal pair in our genetic background
246 (Fig 3E). LexA is a transcriptional repressor that undergoes auto-proteolysis to induce the
247 SOS DNA-damage response genes [39, 44]. As a result, disruption of *lexA* causes
248 constitutive SOS expression, and it follows that induction of one or more SOS genes is

249 toxic to $\Delta priB$ cells [27]. For mutations in *priC*, *rep*, or *lexA*, the extent of plasmid loss was
250 equivalent to control levels in *priB⁺* cells (Fig 3A-E).

251 In contrast to the robust and consistent *priB*-pRC7 retention characteristics of the
252 mutant strains described above, mutations in *dam*, *rdgC*, *uup*, *nagC*, or *rdgB* did not
253 prevent plasmid loss when paired with a *priB* deletion (Fig 3F-J). However, white colonies
254 (lacking *priB*-pRC7) formed by these double mutants exhibit reduced growth rates,
255 evidenced by their small size compared to plasmid-containing blue colonies. For $\Delta rdgB$
256 $\Delta priB$, the disparity in size between blue and white colonies was modest (Fig 3J).
257 However, when other gene deletions (Δdam , $\Delta rdgC$, Δuup , or $\Delta nagC$) were paired with
258 $\Delta priB$, the resulting plasmid-less white colonies were particularly small and difficult to
259 quantify (Fig 3F-I). As a result, disparities in colony size for many of these strains is likely
260 a better proxy of cellular health than a plasmid retention percentage (Fig 3A).

261 Previous studies have noted a synthetic lethal relationship between *dam* and *priB*,
262 suggesting that DSBs accumulating in Δdam cells are preferentially funneled into the
263 PriA/PriB pathway for restart following their repair [18]. While our data do not confirm a
264 synthetic lethal relationship between *dam* and *priB*, our *priB*-pRC7 retention results
265 strongly support the conditional importance of *dam* in $\Delta priB$ cells based on a disparity in
266 colony size (Fig 3F). The decreased growth rate of white colonies evident in the assay
267 also confirmed the conditional importance of *rdgC*, *uup*, *nagC*, and *rdgB* in $\Delta priB$ cells
268 (Fig 3G-J). While RdgC (an inhibitor of RecA recombinase activity), Uup (a branched DNA
269 intermediate binding protein), and RdgB (a noncanonical purine pyrophosphatase) have
270 been implicated in genome maintenance processes, these results now map the genes'
271 interactions with the PriA/PriB restart pathway [32, 35-37, 43, 45]. Surprisingly,

272 conditional importance in $\Delta priB$ cells extended to *nagC*, which encodes a transcriptional
273 repressor that coordinates *N*-acetylglucosamine biosynthesis but has no known role in
274 DNA metabolism [33, 34]. These data support the notion of conditional importance for
275 *dam*, *rdgC*, *uup*, *nagC*, or *rdgB* in $\Delta priB$ cells (Fig 3F-J).

276

277 **Disruption of *rdgB* in a $\Delta priB$ strain confers a fitness defect**

278 The disparity of colony sizes in the *priB*-pRC7 retention assay provided only moderate
279 evidence that *rdgB* is conditionally important in $\Delta priB$ cells. To examine the *rdgB priB*
280 genetic relationship more confidently, the fitness of strains combining *rdgB* and *priB*
281 mutations was tested in a growth competition assay. In this assay, the effect of a *rdgB*
282 deletion was examined within a *priB*⁺ competition (*priB*⁺ vs $\Delta rdgB$ *priB*⁺) and within a $\Delta priB$
283 competition ($\Delta priB$ vs $\Delta rdgB$ $\Delta priB$). A synthetic fitness defect would result in selective
284 loss of $\Delta rdgB$ $\Delta priB$ in the latter competition. A reporter mutation ($\Delta araBAD$) in one strain
285 of each competition was utilized to quantify the relative $\Delta rdgB$ abundance throughout
286 each competition. As expected for a synthetic *rdgB priB* relationship, simultaneous
287 deletion of both genes caused a pronounced fitness defect within 24 hours when grown
288 in competition with *rdgB*⁺ $\Delta priB$ cells (Fig 4A, red). In contrast, $\Delta rdgB$ *priB*⁺ cells exhibited
289 no detectable fitness defect when grown in competition with *wt* cells, as evidenced by
290 steady relative abundance within the *priB*⁺ competition (Fig 4A, black). These results
291 confirm that *rdgB* is not essential in a $\Delta priB$ strain, but that it is conditionally important.
292 The mild defect in growth rate of $\Delta rdgB$ $\Delta priB$ colonies (Fig 3J) but clear fitness defect
293 (Fig 4A) align well with *rdgB* as a relatively weak hit from our $\Delta priB$ *Tn*-seq screen (Figs

294 2 and S1A), which subjected transposon-insertion mutants to periods of independent and
295 competitive growth.

296

297 **Fig 4. Importance of *rdgB* and Pol I polymerase activity in $\Delta priB$ *E. coli*.** (A) Growth
298 competition examining the effect of a *rdgB* mutation on fitness for *priB*⁺ or $\Delta priB$ strains.
299 Trendlines for each series intersect the mean, and biological triplicate data points are
300 presented for competitions done in duplicate. (B) Effect of the *polA12(ts)* allele on *priB*⁺
301 or $\Delta priB$ strains. Strains were spot plated on minimal (M9, left) or rich (LB, right) media
302 and incubated at 30, 37, or 42 °C. Dilutions (from left to right) are 10x serial dilutions from
303 normalized overnight cultures.

304

305 **Pol I polymerase activity is conditionally important for $\Delta priB$
306 cells**

307 The *Tn*-seq screen suggested a genetic relationship between *priB* and *polA* (Fig 2).
308 However, the essential nature of *polA* ruled out simple gene deletion experiments to
309 further examine this link [46, 47]. Inspection of the transposon-insertion profiles (Fig 2B)
310 suggests that only certain regions of *polA* are conditionally important for survival in $\Delta priB$
311 cells. Specifically, regions of the gene that encode the C-terminal 3'-5' exonuclease and
312 polymerase domains of DNA polymerase I (Pol I) poorly tolerated transposon insertions
313 in the $\Delta priB$ strain compared to the *wt* strain. These two domains comprise the Klenow
314 fragment of Pol I [48]. Conversely, the portion of *polA* encoding the 5'-3' exonuclease
315 domain poorly tolerated insertions in both the $\Delta priB$ and *wt* strains, consistent with this
316 domain encoding the essential function of *polA* in rich media [46].

317 To test the importance of the polymerase activity of Pol I in $\Delta priB$ cells, we utilized
318 the $polA12(ts)$ mutant allele. This mutation encodes a Pol I variant with severely inhibited
319 polymerase activity at high temperatures [49-51]. Additionally, $polA12(ts)$ is synthetically
320 lethal with a $priA$ mutation under non-permissive conditions [7, 52]. Spot plate assays
321 examined the viability of $polA12(ts) \Delta priB$ and control strains at increasing temperatures
322 on LB (rich) or M9 (minimal) media to determine the conditional importance of Pol I
323 polymerase activity (Fig 4B). In agreement with the *Tn*-seq screen results, $polA12(ts)$
324 $\Delta priB$ cells displayed temperature-sensitive synthetic defects on LB media. At 37 °C, the
325 double mutant was at least 100-fold less viable than the $polA12(ts) priB^+$ strain, and this
326 effect was exacerbated to ~1000-fold at 42 °C. The $polA12(ts)$ mutation appeared to
327 cause a reduced growth rate of $\Delta priB$ cells even at 30 °C, evidenced by the smaller colony
328 sizes in the double mutant. Based on previous studies, this detrimental effect is likely
329 driven by reduced polymerase activity [49-51]. Interestingly, $polA12(ts) \Delta priB$ strain
330 viability was significantly restored by plating on M9 (minimal) media. This partial
331 suppression likely stems from tighter control over DNA replication initiation in minimal
332 media, and it underpins the importance of efficient genome maintenance in nutrient-rich
333 environments [28-30].

334

335 **Mutations in *rep*, *lexA*, *polA*, or *dam* cause sensitivity to**
336 **exogenous DSBs**

337 A prior study demonstrated a synthetic lethal relationship between $priB$ and dam , and
338 suggested that this relationship may result from DSBs formed in dam mutants being
339 funneled into the PriA/PriB restart pathway following their repair [18]. Therefore, we

340 examined whether other genes identified by our $\Delta priB$ *Tn*-seq screen could be driving
341 toxicity through enhanced DSB accumulation. Mutant strains were spot plated onto LB
342 medium supplemented with sublethal concentrations of the DSB-inducing antibiotic
343 ciprofloxacin (Fig 5) [53, 54]. A *recA* deletion strain was utilized as a positive control for
344 hypersensitivity [55] and was inviable at 5 ng/mL ciprofloxacin. Notably, a $\Delta priB$ strain
345 also exhibited extreme hypersensitivity and was inviable at 10 ng/mL ciprofloxacin.
346 Mutations in *rep* and *lexA* led to viability defects at 10 ng/mL ciprofloxacin but were
347 significantly more resistant than $\Delta priB$ or $\Delta recA$ strains. At 15 ng/mL ciprofloxacin, the
348 Δdam and *polA12(ts)* mutants began to display defects as well. Other mutants identified
349 in the $\Delta priB$ *Tn*-seq screen were not sensitized to ciprofloxacin (S2 Fig). These results
350 suggest cellular roles for *priB*, *recA*, *dam*, *rep*, *lexA*, and *polA* in prevention and/or repair
351 of DSBs *in vivo*.

352

353 **Fig 5. Effects of *priB*, *rep*, *lexA*, *polA*, or *dam* mutations on DNA damage sensitivity**
354 **in *E. coli*.** Sensitivity of mutants to DSBs was examined by spot plating on LB-agar with
355 0-25 ng/mL ciprofloxacin. A *recA* deletion strain was utilized as a positive control of
356 ciprofloxacin hypersensitivity. Dilutions (from left to right) are 10x serial dilutions from
357 normalized overnight culture. Displayed spot plate data are representative of three
358 replicates.

359

360 **Visualizing DSBs *in vivo* with MuGam-GFP**

361 Sensitization of *rep*, *lexA*, *polA*, and *dam* mutants to ciprofloxacin suggests that these
362 mutant strains may also have enhanced levels of endogenous DSBs. To test this

363 hypothesis, mutations were transduced into an *E. coli* strain (SMR14334) encoding
364 inducible MuGam-GFP, a DSB sensor protein, and the extent of DSB accumulation was
365 determined *in vivo* with fluorescence microscopy (S3A,B,D Fig) [56].

366 MuGam-GFP foci were more abundant in a *dam* deletion strain than in the *wt* strain
367 (Fig 6A,B) [20]. These mutant cells were also severely filamented which is a hallmark of
368 genome instability in *E. coli* (Fig 6A,C) [57]. Consistent with their sensitivity to
369 ciprofloxacin (Fig 5), mutations in *rep*, *lexA*, or *polA* also resulted in increased MuGam-
370 GFP focus formation (Fig 6B) and cell length (Fig 6C). Notably, a *rdgC* mutant displayed
371 significant accumulation of DSBs (S3A,B,D Fig) while exhibiting only a moderate increase
372 in cell length (S3C Fig) and no observable sensitization to ciprofloxacin (S2 Fig). It is
373 worth noting that MuGam helps repair DSBs via non-homologous end-joining, therefore,
374 the extent of DSB formation may be more dramatic in these strains than the results
375 presented here [58].

376

377 **Fig 6. Enhanced DSB formation in mutant *E. coli* strains.** (A) Representative images
378 depicting MuGam-GFP (green) foci and FM 4-64-stained membranes (gray) for *wt* (left)
379 and Δ *dam* (right) strains. The abundance of MuGam-GFP foci per cell (B) and measured
380 cell lengths (C) are displayed for *wt*, Δ *rep*, *lexA::kan*, *polA12(ts)*, and Δ *dam* strains. (B,C)
381 Mean values are depicted with error bars representing standard error of the mean.
382 Statistical significance (U-Mann-Whitney) for each strain compared to the *wt* control is
383 displayed: P < 0.05 (*), P < 0.01 (**), P < 0.001 (***), and P < 0.0001 (****).

384

385 The evidence of DSB accumulation and cell filamentation in other mutants tested
386 is less compelling. Mutations in *priC*, *uup*, or *rdgB* produce only mild filamentation
387 phenotypes, and there was limited evidence that disrupting *priC* enhances DSB levels
388 (S3A-D Fig). In fact, *nagC* and *rdgB* mutant strains exhibited significantly lower
389 abundance of MuGam-GFP foci compared to the *wt* control and GFP focus levels in the
390 *nagC* mutant approached the lower limit of detection. For the *nagC* mutant, this may have
391 been caused by a significantly lower level of mean fluorescence (S3E Fig).

392

393 **Modulating RecA function partially suppresses *lexA* or *rdgC*
394 mutational effects on *ΔpriB* cells**

395 Mutations in *dam*, *rep*, *lexA*, *polA*, or *rdgC* increase DSB formation *in vivo* (Figs 6A,B and
396 S3A,B,D). In most cases, this effect is accompanied by sensitization to ciprofloxacin (Figs
397 5 and S2) and cell filamentation (Figs 6C and S3A,C). Deleting *dam* or hindering Pol I
398 polymerase activity can cause persistent ssDNA gaps that form DSBs when subsequent
399 replisomes collide [59-61]. Similarly, a loss of Rep accessory helicase activity correlates
400 with more stalled replication forks that can create DSBs when they are encountered by
401 subsequent replisomes [62, 63]. Our data strongly suggest an increase in DSB formation
402 in *lexA* or *rdgC* mutants, which likely accounts for their genetic relationships with *priB*, but
403 their mode of DSB formation is less clear.

404 Previous work has shown that loss of PriA or Rep helicase activity at stalled
405 replication forks can cause inappropriate RecA recombinase loading mediated by the
406 ssDNA gap repair proteins RecFOR [40]. After it is loaded by RecFOR, RecA is
407 hypothesized to reverse a stalled replication fork to form a Holliday junction, also known

408 as a “chicken-foot” structure [64, 65]. Because LexA or RdgC inhibit the activity of cellular
409 RecA (via transcriptional repression [39] or physical inhibition [32], respectively), we
410 hypothesized that more stalled forks were reversed in *lexA* or *rdgC* mutants. The DSBs
411 observed *in vivo* (Figs 6B and S3A,B) could form in these mutants when the “chicken-
412 foot” structures were encountered by additional replisomes (from multi-fork replication
413 conditions in rich media) or upon processing by RuvABC, the Holliday junction resolvase
414 [28, 63, 66].

415 To test this hypothesis, we examined the effect of RecA modulation on *lexA* or
416 *rdgC* mutants in the *priB*-pRC7 plasmid retention assay (Fig 7). Previously, our results
417 identified a conditional essentiality of *lexA* in Δ *priB* cells based on robust retention of the
418 *priB*-pRC7 plasmid (Figs 3E and 7A,B). After deleting *recR* in this strain (inactivating the
419 RecFOR pathway), we observed viable *lexA::kan* Δ *priB* white colonies (Fig 7C). The
420 resulting colonies display considerable growth defects, but these results strongly support
421 a partial suppression of *lexA::kan* Δ *priB* via *recR* deletion. Likewise, the conditional
422 importance of *rdgC* in Δ *priB* cells (Fig 3G) was partially suppressed with a *recR* deletion,
423 evidenced by significantly larger plasmid-less white colonies (Fig 7C).

424

425 **Fig 7. Modulating RecA activity partially suppresses mutational effects on Δ *priB* *E. coli*.** (A) Plasmid (*priB*-pRC7) retention in Δ *priB* strains is shown along with strains also
426 carrying a *recR* deletion or *recA* promoter mutation. Mean values are depicted with error
427 bars representing standard error of the mean. Statistical significance (unpaired student t-
428 test) for each strain pair is displayed: P < 0.05 (*), P < 0.01 (**), P < 0.001 (***), and P <
429 0.0001 (****). (B) Representative images of *priB*-pRC7 assay plates are presented for *wt*,

431 *lexA::kan*, $\Delta rdgC$, and $\Delta nagC$ strains with or without chromosomal *priB*. This experiment
432 was extended to strains with (C) a *recR* deletion or (D) a mutation in *recA*'s promoter. (B-
433 D) Each image includes raw colony counts for each condition (# of blue colonies / # of
434 total colonies). To better visualize small white colonies, 2.25x magnified insets are
435 included in the upper right-hand corner. Each plate was incubated at 37 °C for 22 hr.

436

437 In addition to restricting the scope of RecA activity *in vivo* with a *recR* deletion, we
438 hypothesized that reducing the cellular levels of RecA would also produce a suppressive
439 effect. To accomplish this, we utilized a *recA* promoter mutation, $P_{recA}(AtoG)$, which
440 decreases *recA* expression [43, 67, 68]. This mutation also suppressed the effects of *lexA*
441 or *rdgC* mutations in $\Delta priB$ cells, and the degree of suppression was strikingly similar to
442 that of a *recR* deletion (Fig 7D). To rule out general suppression ability of these RecA
443 modulations, we tested their effect on other mutants identified in our *Tn*-seq screen. We
444 only observed modest evidence of suppression by RecA modulation in $\Delta nagC \Delta priB$
445 strains when comparing the relative sizes of white and blue colonies (Fig 7B-D). Taken
446 together, these results suggest that *lexA* or *rdgC* deletions promote inappropriate and/or
447 excessive RecA activity causing stalled replication forks to physically reverse and
448 eventually devolve to DSBs upon replisome collision or Holliday junction processing.

449

450 **Discussion**

451 DNA replication restart reactivates prematurely abandoned DNA replication sites that
452 have failed due to replisome encounters with damaged DNA or proteins tightly bound to
453 chromosomes. Our knowledge of the coordination between DNA replication restart and

454 other genome maintenance pathways has been limited by a lack of systematic genetic
455 studies assessing the importance of genes to each replication restart pathway in *E. coli*.
456 To determine links between replication restart and other cellular processes, we have
457 identified genes that are conditionally essential or important in *E. coli* strains with
458 inactivated replication restart pathways. High-density transposon mutant libraries in
459 strains lacking *priB*, *priC*, or with the *priA300* mutation were analyzed after growth on rich
460 media. These mutations inactivate the PriA/PriB, PriC/Rep and PriA/PriC, or PriA/PriC
461 pathways, respectively (Fig 1) [5]. Comparison of transposon insertion profiles to a *wt*
462 control strain revealed genetic interactions with specific replication restart pathways.

463 Several genes were found to be conditionally essential or important in $\Delta p r i B$ *E.*
464 *coli*, which specifically lacks the PriA/PriB pathway (Figs 2 and S1A). In contrast, only one
465 gene (*rep*) displayed significant importance in *priA300 E. coli* and no genes were
466 significantly conditionally important in *priC::kan E. coli* (S1B,C Fig). These results point to
467 PriA/PriB serving as the major replication restart pathway integrated within the larger
468 genome maintenance program in *E. coli*, consistent with prior data [17]. It is possible that
469 the PriA/PriC and PriC/Rep pathways operate on DNA replication fork substrates that are
470 rarely generated under the conditions tested in our experiments.

471 Deletion of *rep* was found to be detrimental in both $\Delta p r i B$ and *priA300* strains,
472 consistent with a general importance of the Rep helicase in genome maintenance (Figs
473 2 and S1C). Rep can be recruited to stalled replication forks via interaction with PriC
474 where it helps facilitate DNA replication restart in the PriC/Rep pathway (Fig 1) [69, 70].
475 PriC interaction with Rep also stimulates its helicase activity [71]. It may be that $\Delta p r i B$
476 and *priA300 E. coli* strains rely more heavily on the PriC/Rep pathway or that deletion of

477 *rep* places a larger burden on the PriA/PriB or PriA/PriC DNA replication pathways. In
478 accordance with the latter possibility, Rep also interacts with the replicative helicase,
479 DnaB, which localizes Rep helicase activity to sites of DNA replication and is thought to
480 enhance its ability to remove tightly associated protein barriers ahead of the replication
481 fork [70]. The absence of Rep results in increased fork stalling, replisome dissociation,
482 and DSBs if left unrepaired, which could also feed into the PriA/PriB pathway (Fig 8) [62,
483 63].

484

485 **Fig 8. DSBs accumulate from a variety of sources and are funneled into the**
486 **PriA/PriB replication restart pathway following their repair.** An active replication fork
487 facilitates continuous DNA synthesis on the leading strand, while lagging strand synthesis
488 is discontinuous and downstream processing is required by other enzymes. These
489 productive processes are contained within the black box. Several damaging paths are
490 also shown. Loss of Rep causes an increase in replication fork collisions with nucleo-
491 protein complexes (orange star). The most severe collisions cause lethal replisome
492 dissociation unless DNA replication restart is carried out, which is primarily facilitated by
493 the PriA/PriB pathway. Increased mismatch repair (without Dam methylation) or loss of
494 Pol I polymerase activity following DNA repair or during Okazaki fragment maturation
495 cause persistent ssDNA gaps. RecA (blue) loading at stalled replication forks mediated
496 by RecFOR can drive fork reversal, which is inhibited by LexA or RdgC. Stalled/reversed
497 replication forks and ssDNA gaps are DSB-prone substrates; if they are not efficiently
498 repaired, they lead to DSBs (green arrows) when they are encountered by subsequent
499 replisomes. When DSBs form, they are recognized and repaired with homologous

500 recombination (RecA is loaded via RecBCD pathway). The resulting D-loop substrate is
501 shuttled into the PriA/PriB pathway to reinitiate DNA replication and maintain cell viability.
502 The genes/proteins examined in this study are highlighted in yellow.

503

504 In addition to the known importance of *rep* in $\Delta priB$ cells, our results corroborated
505 the importance of *dam* and *priC* in $\Delta priB$ cells (Fig 3C,F) [5, 18]. In cells lacking Dam
506 methyltransferase, both DNA strands are nicked and excised at equal frequency by
507 methyl-directed mismatch repair enzymes, causing persistent ssDNA gaps that can lead
508 to DSBs (Fig 8) [59]. Interestingly, Δdam cells are also associated with chromosomal
509 over-replication, likely stemming from DSB repair feeding into DNA replication restart [72].
510 Over-replication could exacerbate DSB accumulation in Δdam cells and it may elicit a
511 similar effect in other DSB-causing mutants described in this study. The synthetic lethality
512 of the $\Delta priB$ $\Delta priC$ combination was also confirmed (Fig 3C), although the genetic
513 relationship was not detected in either the $\Delta priB$ or *priC::kan* *Tn*-seq screens due to a
514 small number of transpositions insertions mapped for *priB* or *priC* in the *wt* reference
515 strain (Figs 2 and S1B). This may be due to a transposition recalcitrance for *priC* as has
516 been noted for *priB* [41]. Thus, it is possible that additional *priB*, *priC*, or *priA300* genetic
517 interactions beyond those described here may exist and that limitations of the *Tn*-seq
518 approach could mask their identification.

519 The *Tn*-seq results in the $\Delta priB$ strain and targeted genetic experiments identified
520 a host of novel *priB* genetic interactors: *lexA*, *polA*, *rdgC*, *uup*, *nagC*, and *rdgB* (Figs 2
521 and 3). In addition to mutant strains expected to exhibit DSB accumulation (*rep* and *dam*),
522 *in vivo* measurements detected significant DSB accumulation for *lexA*, *polA*, and *rdgC*

523 mutants (Figs 6A,B and S3A,B). Formation of DSBs in these mutant strains was
524 correlated with longer cell lengths (Figs 6C and S3C) and sensitization to the DSB-
525 inducing antibiotic ciprofloxacin (Figs 5 and S2), except for the *rdgC* deletion.

526 Pol I is known to utilize its polymerase activity to fill ssDNA gaps during Okazaki
527 fragment synthesis and following DNA repair [49, 51, 60, 61]. The results shown here
528 suggest this activity is especially important in Δ *priB* cells (Figs 2B and 4B). We
529 hypothesize that persistent ssDNA gaps are formed in *polA12(ts)* mutant strains at
530 elevated temperatures, which could lead to DSBs if left unrepaired (Fig 8). This notion is
531 supported by *polA12(ts)* Δ *priB* phenotype suppression on minimal media (Fig 4B) when
532 multi-fork DNA replication is less likely to occur and cause DSBs from collisions with
533 ssDNA gaps [28-30].

534 The formation of DSBs in *lexA* or *rdgC* deletion strains is less straightforward.
535 Previous work has shown that the absence of PriA or Rep helicase activity can allow the
536 RecFOR mediator proteins to inappropriately load RecA at stalled replication forks [40,
537 45]. Upon binding, RecA can physically reverse the stalled fork forming a “chicken-foot”
538 structure (Fig 8). DSBs will form from these structures when they are encountered by
539 subsequent replication forks or when they are processed by RuvABC (Fig 8) [28, 63, 66].
540 Therefore, we hypothesized that the higher levels of DSBs formed in *lexA* or *rdgC* mutants
541 (Figs 6B and S3A,B,D) was caused by excessive RecA activity: either by disrupting its
542 transcriptional repressor (LexA) or by removing a RecA inhibitor (RdgC). Increasing the
543 activity of RecA by disrupting *lexA* or *rdgC* would in turn promote unwarranted RecA
544 activity (Fig 8). Consistent with this notion, we were able to suppress the effects of *lexA*
545 or *rdgC* mutations on Δ *priB* cells by disabling the RecFOR pathway (with a *recR* deletion)

546 or by inhibiting cellular RecA activity by decreasing its expression with a promoter
547 mutation ($P_{recA}(AtoG)$) (Fig 7). Notably, these suppression attempts significantly restored
548 the growth rates of $\Delta rdgC \Delta priB$ colonies, while permitting (albeit limited) viability of
549 $lexA::kan \Delta priB$ cells. Therefore, it is likely that the SOS DNA-damage response induces
550 the expression of one or more genes (other than *recA*) that are harmful to $\Delta priB$ cells.

551 DSBs can form in a variety of different ways in the cell. Disrupting genes identified
552 in the $\Delta priB$ *Tn*-seq screen likely increased DSB levels by promoting the formation of
553 DSB-prone substrates (stalled/reversed replication forks and ssDNA gaps), which are
554 encountered by subsequent replication complexes in rich media (Fig 8) [28-30]. While
555 DSBs are problematic, cells can survive if they are readily recognized and repaired. In *E.*
556 *coli*, DSB repair is usually carried out by RecBCD, which processes DSBs before loading
557 RecA to catalyze strand invasion and create a D-loop site for DNA replication restart (Fig
558 8) [73]. The DSBs formed in *rep*, *lexA*, *polA*, *dam*, and *rdgC* mutants can still be
559 recognized and repaired by the RecBCD pathway to form D-loops, which subsequently
560 undergo DNA replication restart via the PriA/PriB pathway. We hypothesize that these
561 mutations are synergistic with a *priB* deletion because DSBs are committed to a
562 nonproductive pathway (when *priB* is absent) and stagnant D-loops may ultimately lead
563 to cell death (Fig 8). Furthermore, while most DSB-causing mutants showed some
564 sensitization to ciprofloxacin, *priB* and *recA* deletion strains exhibited extreme
565 sensitization (Fig 5). Taken together, our data support a fundamental link between DSB
566 repair and the PriA/PriB pathway of DNA replication restart.

567 The results presented here highlight a variety of new questions and exciting
568 opportunities of study. While *uup*, *nagC*, and *rdgB* are conditionally important in $\Delta priB$

569 cells, their disruption does not appear to cause DSBs in the conditions tested (S3A,B,D
570 Fig). Most puzzling is the genetic relationship between *priB* and *nagC*, a transcriptional
571 repressor that coordinates the biosynthesis of *N*-acetylglucosamine, a component of the
572 bacterial cell wall [33, 34]. Deletion of *nagC* led to an aberrant cell morphology (S3A Fig),
573 which may have caused the mutant's extremely low level of mean fluorescence in our
574 experiments (S3E Fig). It is possible the perturbed cell membrane morphology is linked
575 to DNA damage, similar to observations made with perturbed nuclear envelopes upon
576 loss of lamin proteins in cancer cells [74]. Future studies will be required to further probe
577 this possibility. Taken together, our findings have defined a primary role for the PriA/PriB
578 replication restart pathway following DSB repair in *E. coli* and have established important
579 links that integrate replication restart processes into a larger genome maintenance
580 program in bacteria.

581

582 **Materials and Methods**

583 **Strain construction**

584 All strains used in this study are derivatives of *E. coli* MG1655 (S1 Table). To enhance
585 the viability and ease of cloning, all strains (unless otherwise stated in S1 Table) carry the
586 *sulB103* allele, encoding a FtsZ variant that resists SulA-mediated cell division inhibition
587 [26, 27]. All plasmids and oligonucleotides used in this study are listed in S2 Table. To
588 construct derivative *polA12(ts)* and MuGam-GFP strains, the method developed by
589 Datsenko and Wanner [75] was employed with some modifications, as described
590 previously [43]. All strains constructed with P1 transduction utilized kanamycin selection,

591 many of which relied on Keio collection strains as donors [76]. All chromosomal mutations
592 were confirmed with PCR amplification flanking the locus of interest, and if necessary,
593 verified with Sanger sequencing.

594

595 **Transposome preparation**

596 Transposon mutagenesis was performed using the EZ-Tn5 <DHFR-1> transposon kit
597 (Epicentre) and EK54/MA56/LP372 Tn5 transposase, a hyperactive variant [77]. The Tn5
598 transposon was PCR amplified with oAM054 and Phusion polymerase (New England
599 Biolabs). Tn5 transposase was purified as described previously [78, 79]. Transposomes
600 were prepared by incubating 2.5 pmol of Tn5 DNA with 0.5 nmol of Tn5 transposase in
601 20 μ L for 3 hr at room temperature before dialyzing into 1x-TE for 3 hr to remove salt prior
602 to electroporation.

603

604 **Generation of electrocompetent cells and *in vivo* transposition**

605 *E. coli* strains were prepared for transposition as previously described [79]. Briefly, cells
606 in mid-log phase were washed three times with ice-cold 10% glycerol. In the final wash,
607 cells were either resuspended in 10% glycerol or glycerol-yeast extract medium, flash
608 frozen with liquid nitrogen, and stored at -80 °C. Dialyzed transposome (5 μ L) was mixed
609 with 100 μ L of electrocompetent cells, electroporated, and immediately recovered in 1 mL
610 of SOC medium for 1 hr. After recovery, dilutions of the cells were plated on SOB-agar
611 containing 10 μ g/mL trimethoprim to select for transposon-insertion mutants. Colony
612 counts for each library were estimated by counting one-third of ~10% of plates. To pool
613 the mutants and construct libraries of ~500,000 insertion mutants, 2 mL of LB was added

614 to each plate to scrape the colonies into a thick slurry. Care was taken to sufficiently mix
615 each slurry before archiving each in technical triplicate (in 50% glycerol) at -80 °C.

616

617 **Preparation of transposon-insertion DNA for sequencing**

618 For sufficient sampling, 100 mL of LB (with 10 µg/mL trimethoprim) was inoculated to
619 OD₆₀₀ ~0.02 with each respective transposon-insertion mutant library and grown
620 overnight at 37 °C. Genomic DNA was purified using a Wizard Genomic DNA Purification
621 Kit (Promega) and quantified using the QuantiFluor ONE dsDNA System (Promega).
622 Genomic DNA was sheared to ~200 bp fragments with sonication. The resulting gDNA
623 fragments were prepared for sequencing using NEBNext Ultra II DNA Library Prep Kit for
624 Illumina (New England Biolabs). Bead-based size selection was used to enrich for 200
625 bp fragments prior to a 21-cycle splinkerette PCR utilizing a custom Tn5-enriching forward
626 primer (oAM055) and custom indexed reverse primers for multiplexing (oAMrev) [25]. To
627 ensure the quality and length of amplified DNA, a final bead-based size selection was
628 employed. DNA was then sequenced with a NextSeq platform (Illumina) at the University
629 of Michigan Advanced Genomics Core using a custom read primer (oAM058) to read the
630 last 10 nt of the transposon before entering chromosomal DNA (to ensure reads
631 corresponded to Tn5-insertions). To maintain sufficient sequence diversity on the flow-
632 cell, a phiX174 DNA spike (20%) was also included in the run. A custom index read primer
633 (oAM059) and standard Illumina primer (oAM112) were employed for sequencing the
634 read indexes and PhiX DNA, respectively.

635

636 **Tn-seq data analysis**

637 *Tn*-seq sequencing files were trimmed with *fastx_trimmer.pl* version 0.0.13.2
638 (http://hannonlab.cshl.edu/fastx_toolkit) using default parameters except the first base to
639 keep (-f flag) was set to 10 to remove transposon sequence. Individual samples were
640 then split with *fastx_barcode_splitter.pl*, version 0.0.13.2
641 (http://hannonlab.cshl.edu/fastx_toolkit) using a file containing the sample ID and the
642 individual barcode sequence used to split each sample into an individual FASTQ file. The
643 barcode sequence was then removed from each read within each FASTQ file using
644 *Cutadapt*, version 1.13 [80]. The trimmed FASTQ files were then aligned to the *E. coli* K-
645 12 MG1655 genome (NC_000913.3) using *Bowtie2*, version 1.2 using default parameters
646 [81]. Conditionally important or essential genes were determined using *TSAS*, version
647 0.3.0 using *Analysis_type2* for two-sample analysis to compare transposon insertion
648 profiles of each mutant strain to the *wt* [31]. Weighted read ratios were calculated as
649 described previously [31]. All other parameters were kept at the default settings.

650

651 **Plasmid (*priB*-pRC7) retention assay**

652 The *priB*-pRC7 plasmid is a *lac⁺* mini-F (low copy) derivative of pFZY1 [42] containing the
653 *priB* gene. PCR amplification of *priB* with oAM170 and oAM171 conferred Apal restriction
654 sites flanking the gene. The resulting PCR product and the empty pRC7 plasmid were
655 digested with Apal and ligated, yielding *priB*-pRC7. Gene deletions via P1 transduction
656 were carried out after the cells had been transformed with the *priB*-pRC7 plasmid to help
657 ensure the viability of each mutant tested. Once constructed, cultures were grown
658 overnight in LB supplemented with 50 µg/mL ampicillin. The following day, cells were
659 diluted 100x in LB and grown to ~0.2 OD₆₀₀ shaking at 37 °C. The cultures were then

660 placed at 4 °C, serially diluted, and plated on SOB-agar containing X-gal (80 µg/mL) and
661 IPTG (1 mM) to yield 50-500 colonies per plate. Most colonies were counted and imaged
662 after 16 hr incubations at 37 °C, but plates used in Fig 7 were incubated for 22 hr to better
663 visualize the small white colonies.

664

665 **Growth competitions**

666 A growth competition experiment was used to determine if deleting *rdgB* conferred a
667 measurable fitness defect in $\Delta priB$ cells. Pairwise competitions were constructed where
668 the fitness effect of a $\Delta rdgB$ mutation was examined in a *priB*⁺ or $\Delta priB$ strain. To quantify
669 the abundance of the $\Delta rdgB$ mutant, one strain within each competition was modified to
670 carry a neutral $\Delta araBAD$ mutation. When *ara*⁻ or *ara*⁺ strains are plated on medium
671 containing tetrazolium and arabinose, they form red or white colonies, respectively. The
672 individual strains of each competition were grown in isolation overnight at 37 °C in LB,
673 then equivalent volumes of each were mixed and diluted 100x in fresh LB. The cultures
674 (now with competing strains) resumed growth at 37 °C, and incubations were temporarily
675 paused every 24 hr to re-dilute (100x) in fresh LB and quantify the $\Delta rdgB$ mutant
676 abundance by plating on LB-agar with tetrazolium (0.005% w/v) and arabinose (1% w/v).
677 The competitions were performed in biological triplicate and with pairwise alternation of
678 the $\Delta araBAD$ mutation (to ensure it did not produce a fitness effect).

679

680 **Spot plating experiments**

681 Serial dilution spot plating was used to examine mutant sensitivities to ciprofloxacin and
682 the effect of temperature and media on *polA12(ts)* strains. For ciprofloxacin sensitivity

683 experiments, biological triplicate LB cultures were inoculated and grown overnight at 37
684 °C, whereas strains used in the *poA12(ts)* experiment were grown at 30 °C. The following
685 day, the cultures were diluted to OD₆₀₀ of 1.0 and 10x serial dilutions were prepared with
686 the corresponding plating media (LB or M9). Serial dilutions (10 µL) ranging from 10⁻¹ to
687 10⁻⁶ were spot plated and incubated at 37 °C, unless stated otherwise. LB-agar plates
688 were incubated for 16 hr, and M9-agar plates were incubated for 40 hr before imaging.

689

690 **Fluorescence and brightfield microscopy**

691 An *E. coli* strain carrying MuGam-GFP (SMR14334 [56]) was derivatized to carry the
692 *sulB103* allele (*wt*) before P1 transduction deleted other genes of interest. Saturated
693 cultures were diluted 100x and grown in LB for 30 min at 37 °C to enter early exponential
694 phase. MuGam-GFP expression was then induced at 100 ng/mL doxycycline and growth
695 continued for an additional 2.5 hr at 37 °C. Cells were pelleted and resuspended in 1x
696 PBS buffer (to OD₆₀₀ of 1.0) and placed on ice. About 15 min prior to imaging, cell
697 membrane stain FM 4-64 (5 mM) was added and 2-3 µL of cells were sandwiched
698 between a 24x50 mM, No. 1.5 coverslip (Azer Scientific) and a 1.5% agarose pad. All
699 cells were imaged at room temperature with a motorized inverted Nikon Ti-eclipse N-
700 STORM microscope equipped with a 100x objective and ORCA Flash 4.0 digital CMOS
701 C13440 (Hamatsu). Imaging was performed using NIS-Elements software with the
702 microscope in epifluorescence mode. Cells were first imaged in the brightfield (4.5 V, 100
703 ms exposure). Visualization of the cell membranes was performed in the DsRed channel
704 to ensure the focusing (4.5 V, 50 ms exposure) and then MuGam-GFP was imaged in the

705 GFP channel (4.5 V, 50 ms exposure). Growth, preparation, and imaging was performed
706 for each strain in biological triplicate.

707 Analysis of cell features was performed with Fiji software (ImageJ) equipped with
708 plugins as described previously: Single Molecule Biophysics
709 (<https://github.com/SingleMolecule/smb-plugins>) and MicrobeJ [82]. Briefly, the nd2 raw
710 images for each strain (4 to 8 per replicate with a maximum difference of 2 images within
711 triplicate) were concatenated together by channels. The image processing of each
712 channel was carried out the same way and uniformly throughout the field of view. The
713 scale of all images was corrected to fit the Hamamatsu camera scale. The brightfield and
714 DsRed image stacks were auto-scaled while the GFP images were processed with
715 discoidal averaging of 1-5 and intensity scale set at 0-300. Both brightfield and DsRed
716 channels were cleaned by running a Bandpass filter 10_2 with autoscale 5, a rolling
717 sliding stack of 10, and an enhance contrast of 0.1. Channel stacks were converted to 8
718 bits before analysis in MicrobeJ. For the analysis, hyperstacks combining only the FM 4-
719 64 and GFP channels were generated in MicrobeJ. From these hyperstacks, cell outlines
720 were detected in the DsRed channel using the default method with a threshold of +25.
721 Within identified cells, GFP foci were detected using the maxima features as foci with a
722 Gaussian fit constraint. The exact setup used to identify bacteria and MuGam-GFP foci
723 in MicrobeJ is available (Final Bacteria setup 1_5 foci 90) as a .xml file. After automatic
724 detection, cells were manually sorted to remove poorly fitting outlines or outlines fitting to
725 cells out of focus. Cell features analysis acquired with MicrobeJ (cell ID, cell length,
726 number of foci per cell, foci intensity and size) were exported as .csv files. Plots and

727 statistical analysis were generated and performed with GraphPad Prism software. At
728 least 650 single cells were analyzed for each condition.

729

730 **Acknowledgements**

731 The authors thank Elizabeth Wood, Michael Cox, Steven Sandler, and Susan Rosenberg
732 for generous donations of strains used in this study. We thank Steven Sandler, Jade
733 Wang, Melissa Harrison, and members of the Keck laboratory for critical reading of the
734 manuscript. This study made use of UW-Madison's Biochemistry Optical Core, and the
735 authors thank Peter Favreau for technical support. This study also made use of UW-
736 Madison's Biotechnology Center and University of Michigan's Advanced Genomics Core.

737

738 **References**

- 739 1. Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ. The
740 importance of repairing stalled replication forks. *Nature*. 2000;404(6773):37-41.
- 741 2. Mangiameli SM, Merrikh CN, Wiggins PA, Merrikh H. Transcription leads to
742 pervasive replisome instability in bacteria. *eLife*. 2017;6.
- 743 3. Windgassen TA, Wessel SR, Bhattacharyya B, Keck JL. Mechanisms of bacterial
744 DNA replication restart. *Nucleic acids research*. 2018;46(2):504-19.
- 745 4. Michel B, Sandler SJ. Replication Restart in Bacteria. *Journal of bacteriology*.
746 2017;199(13).
- 747 5. Sandler SJ. Multiple genetic pathways for restarting DNA replication forks in
748 *Escherichia coli* K-12. *Genetics*. 2000;155(2):487-97.
- 749 6. Sandler SJ, Leroux M, Windgassen TA, Keck JL. *Escherichia coli* K-12 has two
750 distinguishable PriA-PriB replication restart pathways. *Molecular microbiology*.
751 2021;116(4):1140-50.
- 752 7. Lee EH, Kornberg A. Replication deficiencies in priA mutants of *Escherichia coli*
753 lacking the primosomal replication n' protein. *Proceedings of the National Academy of
754 Sciences of the United States of America*. 1991;88(8):3029-32.
- 755 8. Nurse P, Zavitz KH, Marians KJ. Inactivation of the *Escherichia coli* priA DNA
756 replication protein induces the SOS response. *Journal of bacteriology*.
757 1991;173(21):6686-93.
- 758 9. Masai H, Asai T, Kubota Y, Arai K, Kogoma T. *Escherichia coli* PriA protein is
759 essential for inducible and constitutive stable DNA replication. *The EMBO journal*.
760 1994;13(22):5338-45.

761 10. McCool JD, Ford CC, Sandler SJ. A dnaT mutant with phenotypes similar to
762 those of a priA2::kan mutant in *Escherichia coli* K-12. *Genetics*. 2004;167(2):569-78.

763 11. Sandler SJ, McCool JD, Do TT, Johansen RU. PriA mutations that affect PriA-
764 PriC function during replication restart. *Molecular microbiology*. 2001;41(3):697-704.

765 12. Tougu K, Peng H, Marians KJ. Identification of a domain of *Escherichia coli*
766 primase required for functional interaction with the DnaB helicase at the replication fork.
767 *The Journal of biological chemistry*. 1994;269(6):4675-82.

768 13. Kim S, Dallmann HG, McHenry CS, Marians KJ. Coupling of a replicative
769 polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork
770 movement. *Cell*. 1996;84(4):643-50.

771 14. Kim S, Dallmann HG, McHenry CS, Marians KJ. Tau protects beta in the leading-
772 strand polymerase complex at the replication fork. *The Journal of biological chemistry*.
773 1996;271(8):4315-8.

774 15. Costa A, Hood IV, Berger JM. Mechanisms for initiating cellular DNA replication.
775 *Annual review of biochemistry*. 2013;82:25-54.

776 16. Sandler SJ, Marians KJ, Zavitz KH, Couto J, Parent MA, Clark AJ. dnaC
777 mutations suppress defects in DNA replication- and recombination-associated functions
778 in priB and priC double mutants in *Escherichia coli* K-12. *Molecular microbiology*.
779 1999;34(1):91-101.

780 17. Flores MJ, Ehrlich SD, Michel B. Primosome assembly requirement for
781 replication restart in the *Escherichia coli* holoD10 replication mutant. *Molecular
782 microbiology*. 2002;44(3):783-92.

783 18. Boonsombat R, Yeh SP, Milne A, Sandler SJ. A novel dnaC mutation that
784 suppresses priB rep mutant phenotypes in *Escherichia coli* K-12. *Molecular
785 microbiology*. 2006;60(4):973-83.

786 19. Marinus MG. Recombination is essential for viability of an *Escherichia coli* dam
787 (DNA adenine methyltransferase) mutant. *Journal of bacteriology*. 2000;182(2):463-8.

788 20. Nowosielska A, Marinus MG. Cisplatin induces DNA double-strand break
789 formation in *Escherichia coli* dam mutants. *DNA repair*. 2005;4(7):773-81.

790 21. Heller RC, Marians KJ. The disposition of nascent strands at stalled replication
791 forks dictates the pathway of replisome loading during restart. *Molecular cell*.
792 2005;17(5):733-43.

793 22. Langridge GC, Phan MD, Turner DJ, Perkins TT, Parts L, Haase J, et al.
794 Simultaneous assay of every *Salmonella* Typhi gene using one million transposon
795 mutants. *Genome research*. 2009;19(12):2308-16.

796 23. van Opijnen T, Bodi KL, Camilli A. Tn-seq: high-throughput parallel sequencing
797 for fitness and genetic interaction studies in microorganisms. *Nature methods*.
798 2009;6(10):767-72.

799 24. van Opijnen T, Camilli A. Transposon insertion sequencing: a new tool for
800 systems-level analysis of microorganisms. *Nature reviews Microbiology*.
801 2013;11(7):435-42.

802 25. Barquist L, Mayho M, Cummins C, Cain AK, Boinett CJ, Page AJ, et al. The
803 TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries.
804 *Bioinformatics (Oxford, England)*. 2016;32(7):1109-11.

805 26. Bi E, Lutkenhaus J. Analysis of ftsZ mutations that confer resistance to the cell
806 division inhibitor SulA (SfiA). *Journal of bacteriology*. 1990;172(10):5602-9.

807 27. McCool JD, Long E, Petrosino JF, Sandler HA, Rosenberg SM, Sandler SJ.
808 Measurement of SOS expression in individual *Escherichia coli* K-12 cells using
809 fluorescence microscopy. *Molecular microbiology*. 2004;53(5):1343-57.

810 28. Withers HL, Bernander R. Characterization of dnaC2 and dnaC28 mutants by
811 flow cytometry. *Journal of bacteriology*. 1998;180(7):1624-31.

812 29. Fossum S, Crooke E, Skarstad K. Organization of sister origins and replisomes
813 during multifork DNA replication in *Escherichia coli*. *The EMBO journal*.
814 2007;26(21):4514-22.

815 30. Hill NS, Kadoya R, Chatteraj DK, Levin PA. Cell size and the initiation of DNA
816 replication in bacteria. *PLoS genetics*. 2012;8(3):e1002549.

817 31. Burger BT, Imam S, Scarborough MJ, Noguera DR, Donohue TJ. Combining
818 Genome-Scale Experimental and Computational Methods To Identify Essential Genes
819 in *Rhodobacter sphaeroides*. *mSystems*. 2017;2(3).

820 32. Drees JC, Chitteti-Pattu S, McCaslin DR, Inman RB, Cox MM. Inhibition of RecA
821 protein function by the RdgC protein from *Escherichia coli*. *The Journal of biological
822 chemistry*. 2006;281(8):4708-17.

823 33. Pennetier C, Domínguez-Ramírez L, Plumbridge J. Different regions of Mlc and
824 NagC, homologous transcriptional repressors controlling expression of the glucose and
825 N-acetylglucosamine phosphotransferase systems in *Escherichia coli*, are required for
826 inducer signal recognition. *Molecular microbiology*. 2008;67(2):364-77.

827 34. Plumbridge J. DNA binding sites for the Mlc and NagC proteins: regulation of
828 nagE, encoding the N-acetylglucosamine-specific transporter in *Escherichia coli*.
829 *Nucleic acids research*. 2001;29(2):506-14.

830 35. Murat D, Bance P, Callebaut I, Dassa E. ATP hydrolysis is essential for the
831 function of the Uup ATP-binding cassette ATPase in precise excision of transposons.
832 *The Journal of biological chemistry*. 2006;281(10):6850-9.

833 36. Romero ZJ, Armstrong TJ, Henrikus SS, Chen SH, Glass DJ, Ferrazzoli AE, et
834 al. Frequent template switching in postreplication gaps: suppression of deleterious
835 consequences by the *Escherichia coli* Uup and RadD proteins. *Nucleic acids research*.
836 2020;48(1):212-30.

837 37. Bradshaw JS, Kuzminov A. RdgB acts to avoid chromosome fragmentation in
838 *Escherichia coli*. *Molecular microbiology*. 2003;48(6):1711-25.

839 38. Savic DJ, Jankovic M, Kostic T. Cellular role of DNA polymerase I. *Journal of
840 basic microbiology*. 1990;30(10):769-84.

841 39. d'Ari R. The SOS system. *Biochimie*. 1985;67(3-4):343-7.

842 40. Mahdi AA, Buckman C, Harris L, Lloyd RG. Rep and PriA helicase activities
843 prevent RecA from provoking unnecessary recombination during replication fork repair.
844 *Genes & development*. 2006;20(15):2135-47.

845 41. Goodall ECA, Robinson A, Johnston IG, Jabbari S, Turner KA, Cunningham AF,
846 et al. The Essential Genome of *Escherichia coli* K-12. *mBio*. 2018;9(1).

847 42. Bernhardt TG, de Boer PA. Screening for synthetic lethal mutants in *Escherichia
848 coli* and identification of EnvC (YibP) as a periplasmic septal ring factor with murein
849 hydrolase activity. *Molecular microbiology*. 2004;52(5):1255-69.

850 43. Romero ZJ, Chen SH, Armstrong T, Wood EA, van Oijen A, Robinson A, et al.
851 Resolving Toxic DNA repair intermediates in every *E. coli* replication cycle: critical roles
852 for RecG, Uup and RadD. *Nucleic acids research*. 2020;48(15):8445-60.

853 44. Giese KC, Michalowski CB, Little JW. RecA-dependent cleavage of LexA dimers.
854 *Journal of molecular biology*. 2008;377(1):148-61.

855 45. Moore T, McGlynn P, Ngo HP, Sharples GJ, Lloyd RG. The RdgC protein of
856 *Escherichia coli* binds DNA and counters a toxic effect of RecFOR in strains lacking the
857 replication restart protein PriA. *The EMBO journal*. 2003;22(3):735-45.

858 46. Joyce CM, Grindley ND. Method for determining whether a gene of *Escherichia*
859 *coli* is essential: application to the *polA* gene. *Journal of bacteriology*. 1984;158(2):636-
860 43.

861 47. Joyce CM, Fujii DM, Laks HS, Hughes CM, Grindley ND. Genetic mapping and
862 DNA sequence analysis of mutations in the *polA* gene of *Escherichia coli*. *Journal of*
863 *molecular biology*. 1985;186(2):283-93.

864 48. Klenow H, Henningsen I. Selective elimination of the exonuclease activity of the
865 deoxyribonucleic acid polymerase from *Escherichia coli* B by limited proteolysis.
866 *Proceedings of the National Academy of Sciences of the United States of America*.
867 1970;65(1):168-75.

868 49. Lehman IR, Chien JR. Persistence of deoxyribonucleic acid polymerase I and its
869 5'-3' exonuclease activity in PolA mutants of *Escherichia coli* K12. *The Journal of*
870 *biological chemistry*. 1973;248(22):7717-23.

871 50. Camps M, Loeb LA. Critical role of R-loops in processing replication blocks.
872 *Frontiers in bioscience : a journal and virtual library*. 2005;10:689-98.

873 51. Uyemura D, Lehman IR. Biochemical characterization of mutant forms of DNA
874 polymerase I from *Escherichia coli*. I. The *polA12* mutation. *The Journal of biological*
875 *chemistry*. 1976;251(13):4078-84.

876 52. Kogoma T. Stable DNA replication: interplay between DNA replication,
877 homologous recombination, and transcription. *Microbiology and molecular biology*
878 *reviews : MMBR*. 1997;61(2):212-38.

879 53. Willmott CJ, Maxwell A. A single point mutation in the DNA gyrase A protein
880 greatly reduces binding of fluoroquinolones to the gyrase-DNA complex. *Antimicrobial*
881 *agents and chemotherapy*. 1993;37(1):126-7.

882 54. Tamayo M, Santiso R, Gosalvez J, Bou G, Fernández JL. Rapid assessment of
883 the effect of ciprofloxacin on chromosomal DNA from *Escherichia coli* using an *in situ*
884 DNA fragmentation assay. *BMC microbiology*. 2009;9:69.

885 55. Klitgaard RN, Jana B, Guardabassi L, Nielsen KL, Løbner-Olesen A. DNA
886 Damage Repair and Drug Efflux as Potential Targets for Reversing Low or Intermediate
887 Ciprofloxacin Resistance in *E. coli* K-12. *Frontiers in microbiology*. 2018;9:1438.

888 56. Shee C, Cox BD, Gu F, Luengas EM, Joshi MC, Chiu LY, et al. Engineered
889 proteins detect spontaneous DNA breakage in human and bacterial cells. *eLife*.
890 2013;2:e01222.

891 57. Huisman O, D'Ari R. An inducible DNA replication-cell division coupling
892 mechanism in *E. coli*. *Nature*. 1981;290(5809):797-9.

893 58. Bhattacharyya S, Soniat MM, Walker D, Jang S, Finkelstein IJ, Harshey RM.
894 Phage Mu Gam protein promotes NHEJ in concert with *Escherichia coli* ligase.
895 *Proceedings of the National Academy of Sciences of the United States of America*.
896 2018;115(50):E11614-e22.

897 59. Mojas N, Lopes M, Jiricny J. Mismatch repair-dependent processing of
898 methylation damage gives rise to persistent single-stranded gaps in newly replicated
899 DNA. *Genes & development*. 2007;21(24):3342-55.

900 60. Cao Y, Kogoma T. The mechanism of recA polA lethality: suppression by RecA-
901 independent recombination repair activated by the *lexA*(Def) mutation in *Escherichia*
902 *coli*. *Genetics*. 1995;139(4):1483-94.

903 61. Glickman BW. The role of DNA polymerase I in excision-repair. *Basic life*
904 *sciences*. 1975;5a:213-8.

905 62. Michel B, Ehrlich SD, Uzest M. DNA double-strand breaks caused by replication
906 arrest. *The EMBO journal*. 1997;16(2):430-8.

907 63. Seigneur M, Bidnenko V, Ehrlich SD, Michel B. RuvAB acts at arrested
908 replication forks. *Cell*. 1998;95(3):419-30.

909 64. Robu ME, Inman RB, Cox MM. RecA protein promotes the regression of stalled
910 replication forks *in vitro*. *Proceedings of the National Academy of Sciences of the United*
911 *States of America*. 2001;98(15):8211-8.

912 65. Courcelle J, Donaldson JR, Chow KH, Courcelle CT. DNA damage-induced
913 replication fork regression and processing in *Escherichia coli*. *Science (New York, NY)*.
914 2003;299(5609):1064-7.

915 66. Seigneur M, Ehrlich SD, Michel B. RuvABC-dependent double-strand breaks in
916 *dnaBts* mutants require *recA*. *Molecular microbiology*. 2000;38(3):565-74.

917 67. Weisemann JM, Weinstock GM. Direct selection of mutations reducing
918 transcription or translation of the *recA* gene of *Escherichia coli* with a *recA-lacZ* protein
919 fusion. *Journal of bacteriology*. 1985;163(2):748-55.

920 68. Weisemann JM, Weinstock GM. The promoter of the *recA* gene of *Escherichia*
921 *coli*. *Biochimie*. 1991;73(4):457-70.

922 69. Nguyen B, Shinn MK, Weiland E, Lohman TM. Regulation of *E. coli* Rep helicase
923 activity by PriC. *Journal of molecular biology*. 2021;433(15):167072.

924 70. Syeda AH, Wollman AJM, Hargreaves AL, Howard JAL, Brüning JG, McGlynn P,
925 et al. Single-molecule live cell imaging of Rep reveals the dynamic interplay between an
926 accessory replicative helicase and the replisome. *Nucleic acids research*.
927 2019;47(12):6287-98.

928 71. Heller RC, Marians KJ. Unwinding of the nascent lagging strand by Rep and PriA
929 enables the direct restart of stalled replication forks. *The Journal of biological chemistry*.
930 2005;280(40):34143-51.

931 72. Raghunathan N, Goswami S, Leela JK, Pandiyan A, Gowrishankar J. A new role
932 for *Escherichia coli* Dam DNA methylase in prevention of aberrant chromosomal
933 replication. *Nucleic acids research*. 2019;47(11):5698-711.

934 73. Dillingham MS, Kowalczykowski SC. RecBCD enzyme and the repair of double-
935 stranded DNA breaks. *Microbiology and molecular biology reviews : MMBR*.
936 2008;72(4):642-71, Table of Contents.

937 74. Denais CM, Gilbert RM, Isermann P, McGregor AL, te Lindert M, Weigelin B, et
938 al. Nuclear envelope rupture and repair during cancer cell migration. *Science (New*
939 *York, NY)*. 2016;352(6283):353-8.

940 75. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in
941 *Escherichia coli* K-12 using PCR products. *Proceedings of the National Academy of*
942 *Sciences of the United States of America*. 2000;97(12):6640-5.

943 76. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of
944 Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
945 Molecular systems biology. 2006;2:2006.0008.

946 77. Goryshin IY, Reznikoff WS. Tn5 in vitro transposition. The Journal of biological
947 chemistry. 1998;273(13):7367-74.

948 78. Bhasin A, Goryshin IY, Reznikoff WS. Hairpin formation in Tn5 transposition. The
949 Journal of biological chemistry. 1999;274(52):37021-9.

950 79. Byrne RT, Chen SH, Wood EA, Cabot EL, Cox MM. Escherichia coli genes and
951 pathways involved in surviving extreme exposure to ionizing radiation. Journal of
952 bacteriology. 2014;196(20):3534-45.

953 80. Martin M. Cutadapt removes adapter sequences from high-throughput
954 sequencing reads. EMBnetjournal. 2011;17(1):3.

955 81. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature
956 methods. 2012;9(4):357-9.

957 82. Ducret A, Quardokus EM, Brun YV. MicrobeJ, a tool for high throughput bacterial
958 cell detection and quantitative analysis. Nature microbiology. 2016;1(7):16077.

959

960 **Supporting Information Captions**

961 **S1 Fig. Tn-seq performed in *ΔpriB*, *priC::kan*, and *priA300* *E. coli* strains.** (A)
962 Volcano plot (generated with VolcaNoseR) for *Tn*-seq results in *ΔpriB* cells. The fold-
963 change (\log_2) in unique insertions within each gene (in *wt* vs *ΔpriB* strains) is plotted
964 against the probability of essentiality p-value adjusted for multiple comparisons ($-\log_{10}$)
965 [31]. Genes exceeding the fold-change (>4) and significance (>4) thresholds are colored
966 blue and labeled. The *rdgB* gene is also labeled. Circos plots depicting the results of the
967 *Tn*-seq screens in (B) *priC::kan* and (C) *priA300* cells. Each bar in the Circos plots
968 represents the weighted read (\log_{10}) ratio of a single gene where extension into the blue
969 or orange region corresponds to a detrimental or beneficial, respectively, effect of gene
970 disruption. The *priA300* strain very poorly tolerated transposon insertions within *rep*.
971 Genes with less than three average unique transposon-insertions per replicate in the *wt*
972 condition were omitted.

973

974 **S2 Fig. Effects of mutations on DNA damage sensitivity in *E. coli*.** The results
975 contained in Fig 4 are expanded to reflect the viabilities of *priC*, *rdgC*, *rdgB*, *uup*, and
976 *nagC* mutants plated on LB-agar with 0-30 ng/mL ciprofloxacin. A *recA* deletion strain
977 was utilized as a positive control of ciprofloxacin hypersensitivity. Dilutions (from left to
978 right) are 10x serial dilutions from normalized overnight culture. Displayed spot plate data
979 are representative of three replicates.

980

981 **S3 Fig. DSB formation in mutant *E. coli* strains.** (A) Representative images depicting
982 MuGam-GFP (green) foci and FM 4-64-stained membranes (red) for SMR14334, *wt*,
983 Δ *rep*, *lexA::kan*, *polA12(ts)*, Δ *dam*, Δ *priC*, Δ *rdgC*, Δ *uup*, Δ *nagC*, and Δ *rdgB* strains. The
984 brightness of FM 4-64 and GFP images was uniformly exaggerated to highlight
985 differences between strains more clearly. Scale bars are 10 μ m. The abundance of
986 MuGam-GFP foci per cell (B), measured cell lengths (C), distribution of the number of foci
987 per cell in cells with MuGam-GFP foci (D), and mean fluorescence per cell (E) are shown
988 for all strains included in A. (B-D) Mean values are depicted with error bars representing
989 standard error of the mean. (E) Median values are depicted as gray or black bars. (B-C)
990 Statistical significance (U-Mann-Whitney) for each strain compared to the *wt* control is
991 displayed: P < 0.05 (*), P < 0.01 (**), P < 0.001 (***), and P < 0.0001 (****).

992

993 **S4 Fig. Importance of Pol I polymerase activity in Δ *priB* *E. coli*.** Biological replicates
994 (A,B) of spot plating experiments pertaining to Fig 4B.

995

996 **S5 Fig. Mutant sensitivities to ciprofloxacin.** Biological replicates (A,B) of spot plating
997 experiments pertaining to Figs 5 and S2.

998

999 **S1 Table. Strains used in this study.**

1000

1001 **S2 Table. Oligonucleotides and plasmids used in this study.** The “*” indicates
1002 phosphorothioate bonds. The underlined bases in oAMrev reflect twelve distinct indexes
1003 (and primers) employed for multiplexing during sequencing. Italicized bases in
1004 oAM192/oAM193 and oAM215/oAM216 directed FRTkanFRT chromosomal insertion
1005 location to construct AM354 and AM395 strains, respectively.

1006

1007 **S1 File. Analysis of Δ priB, priC::kan, and priA300 Tn-seq data.**

1008

1009 **S2 File. Colony counts for priB-pRC7 retention assays and growth competitions.**

1010

1011 **S3 File. Fluorescence and brightfield microscopy data/analysis.**

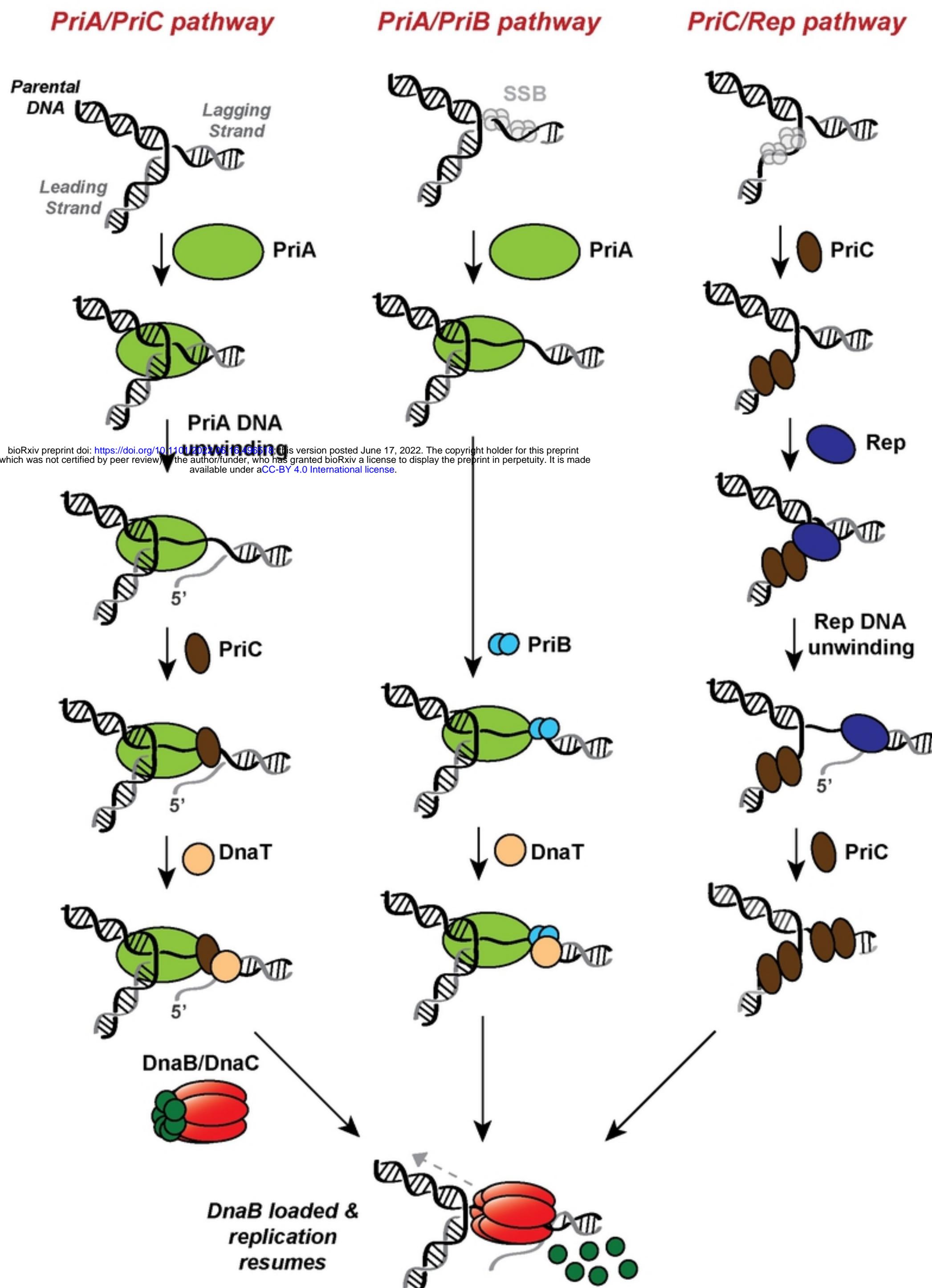


Figure 1

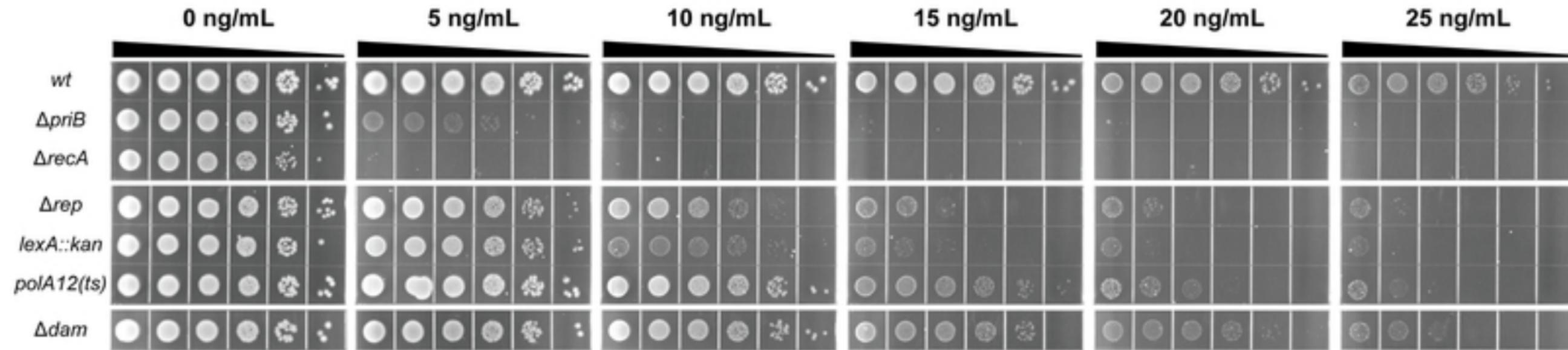
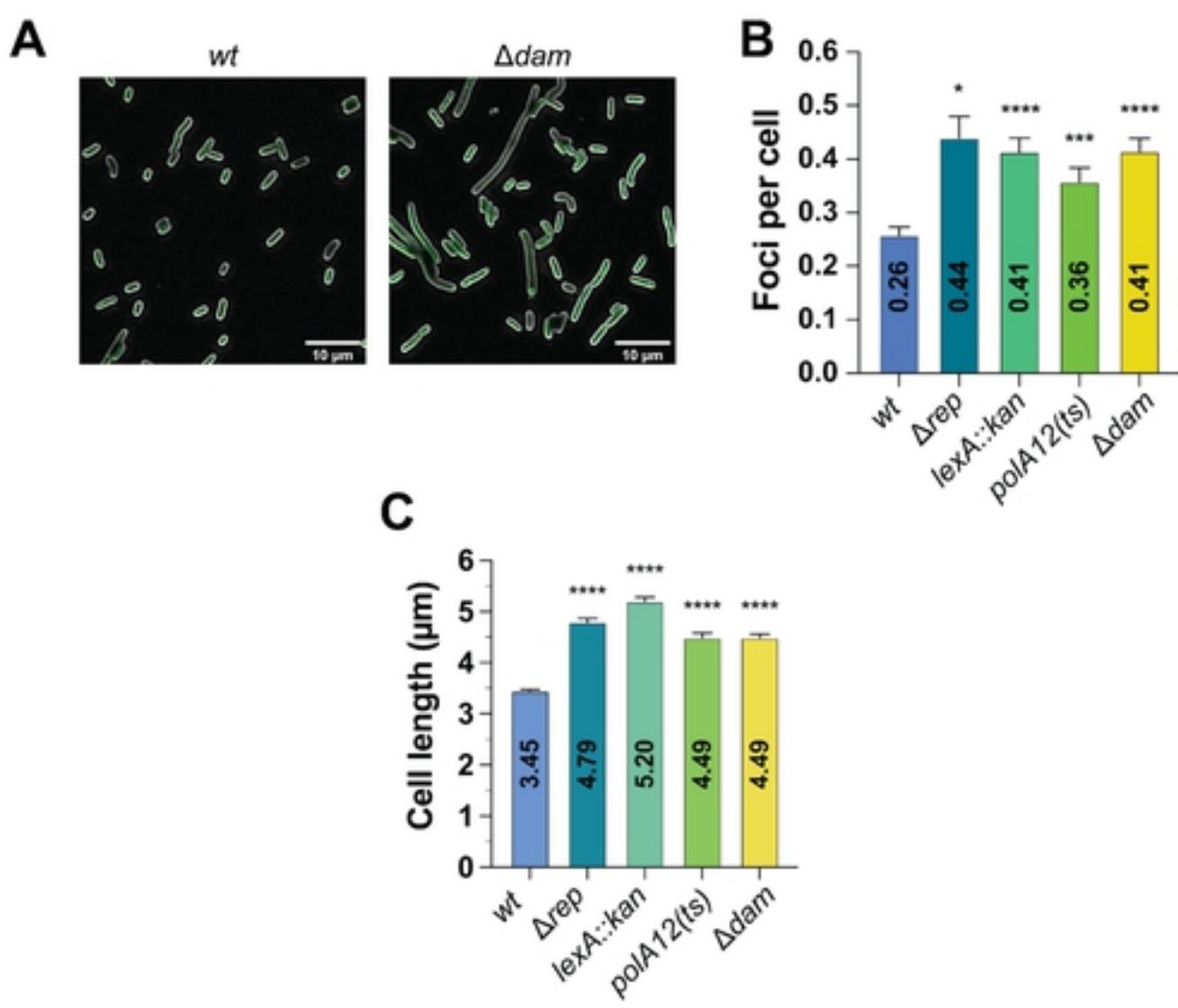



Figure 5

bioRxiv preprint doi: <https://doi.org/10.1101/2022.06.16.496518>; this version posted June 17, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 6

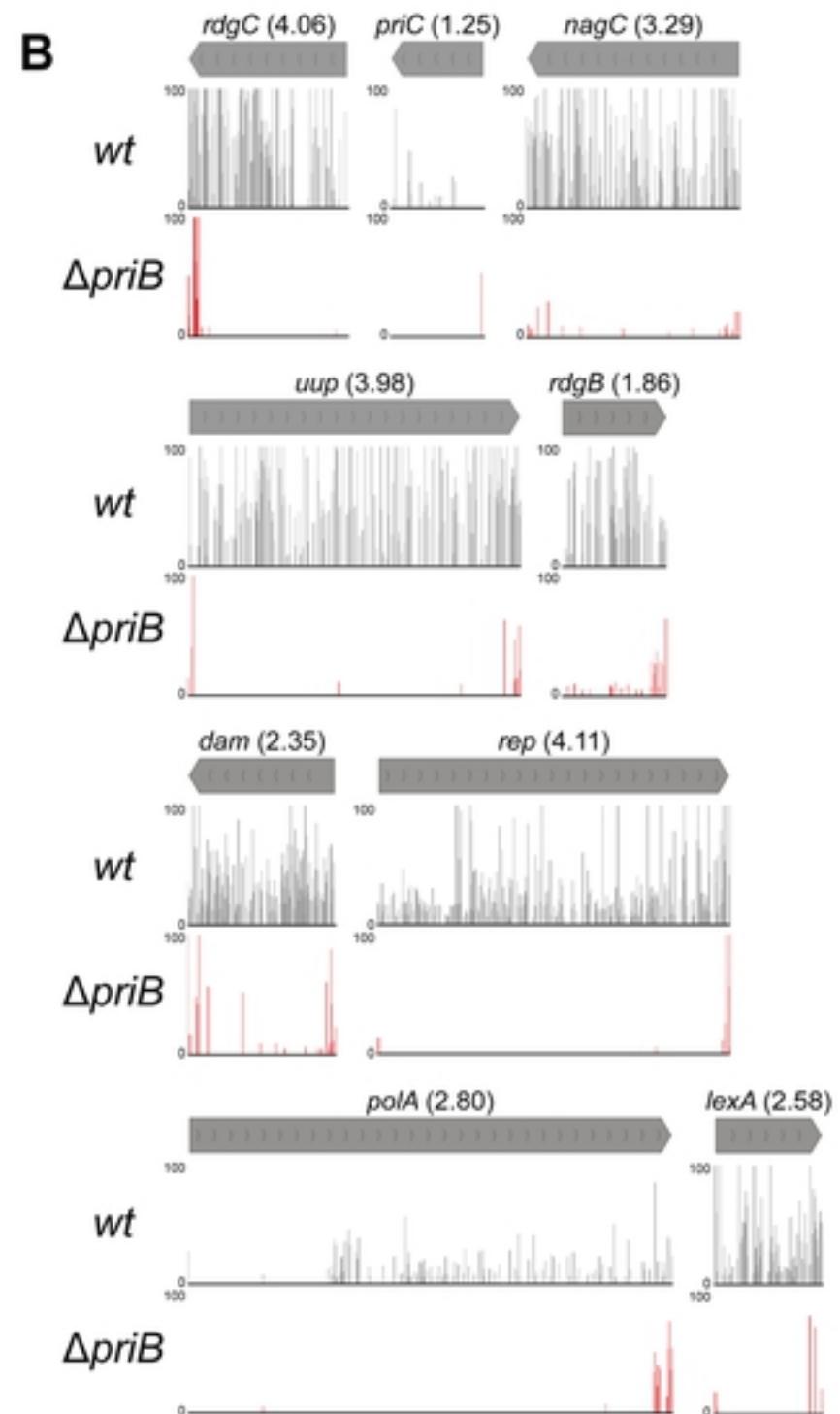
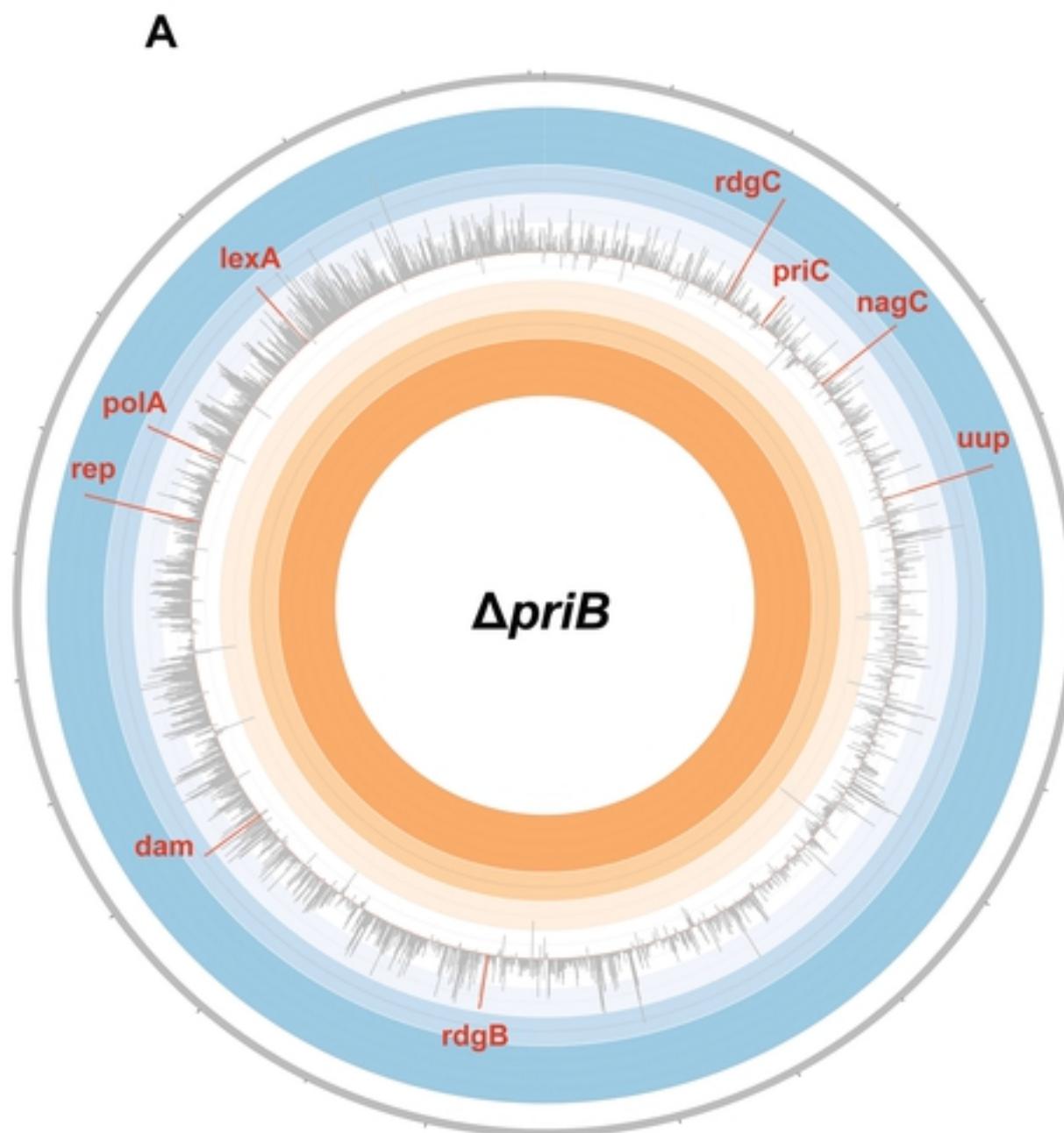



Figure 2

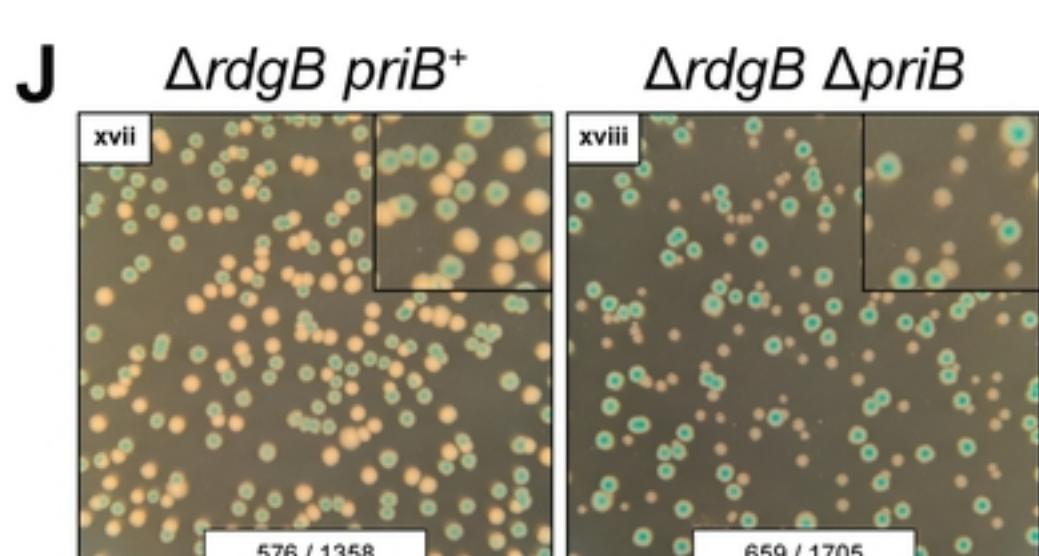
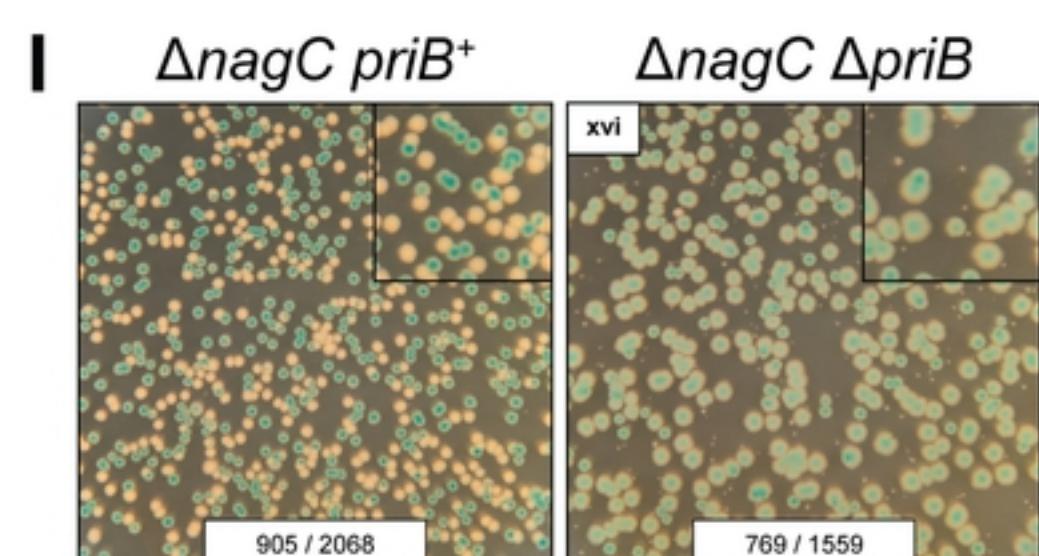
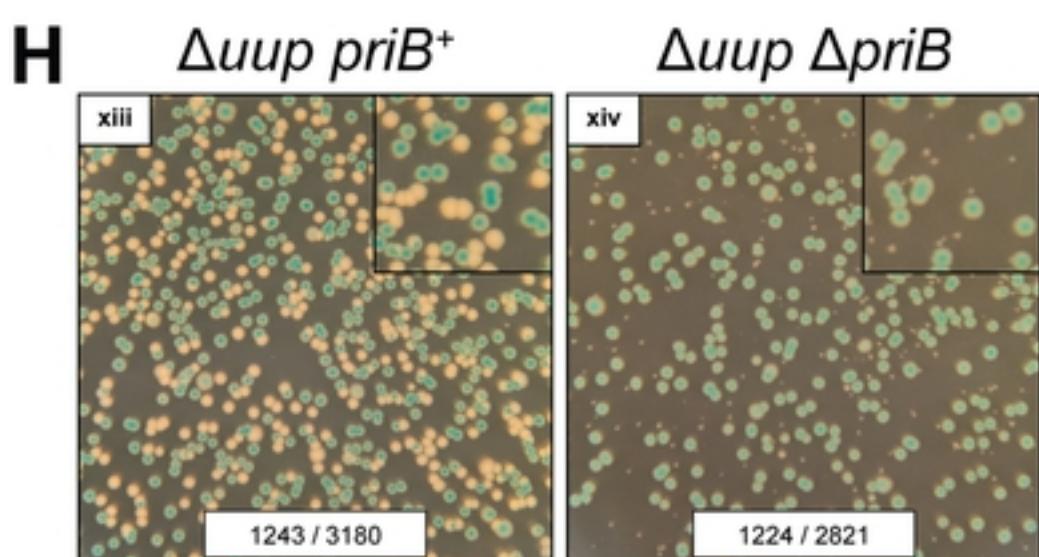
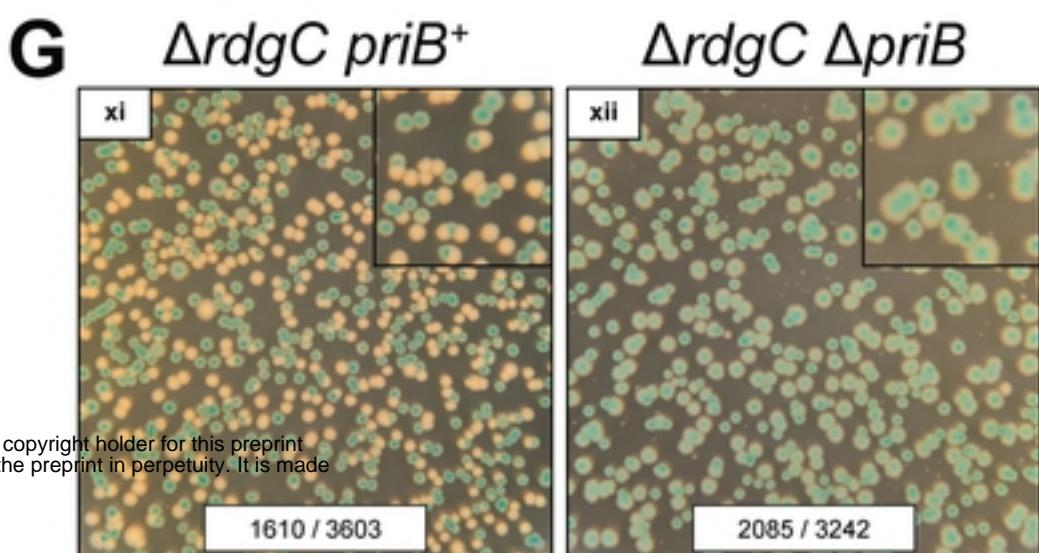
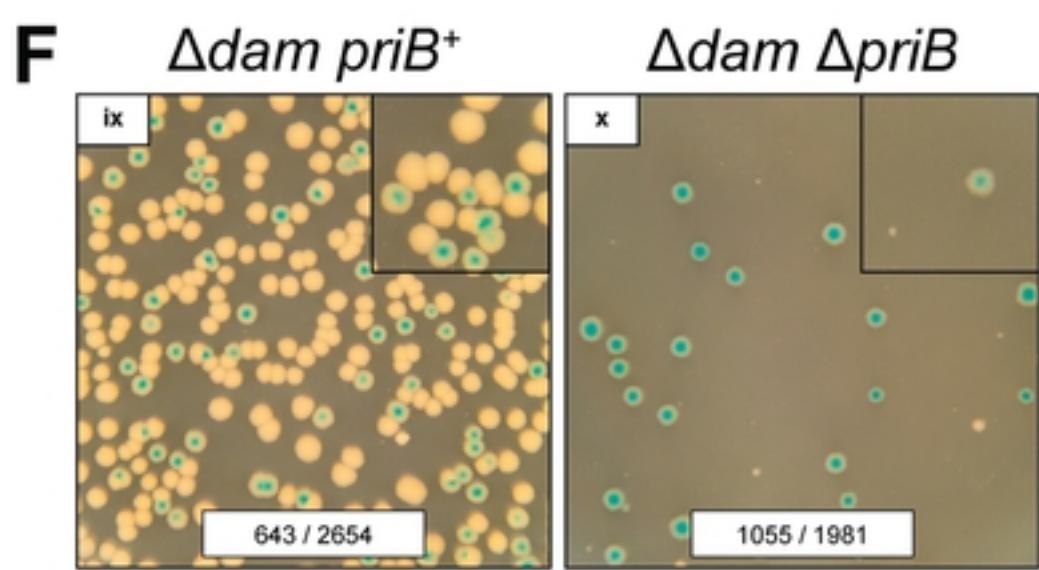
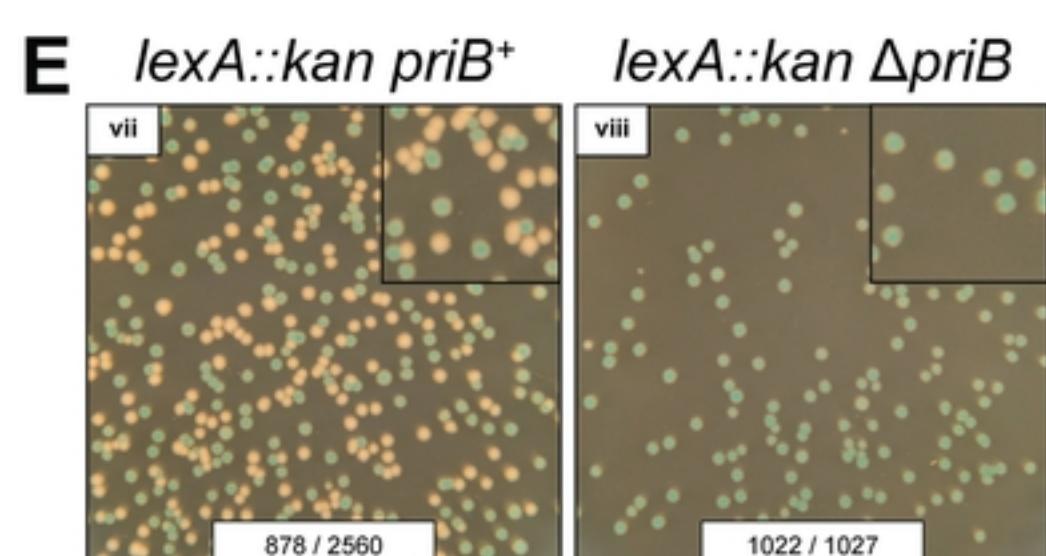
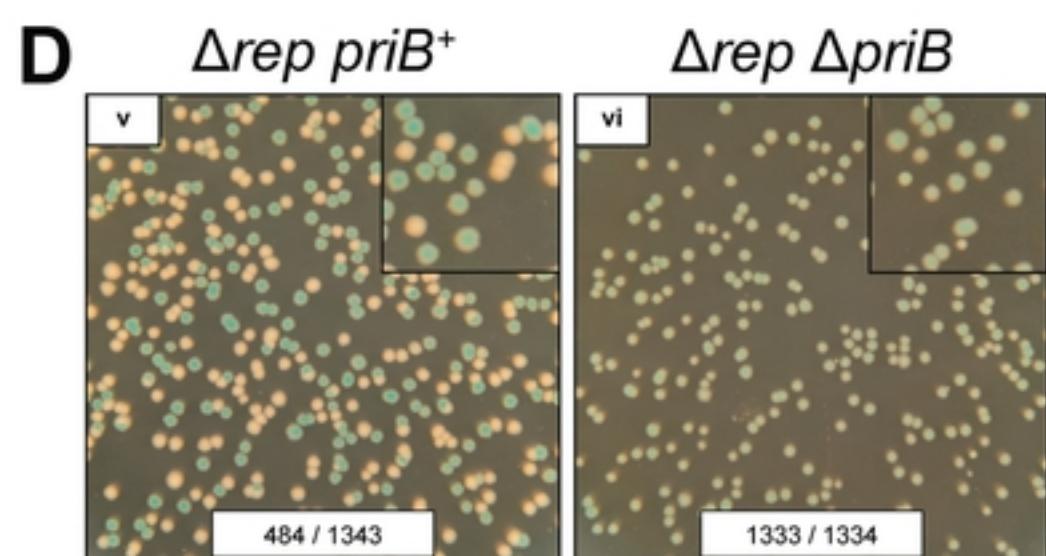
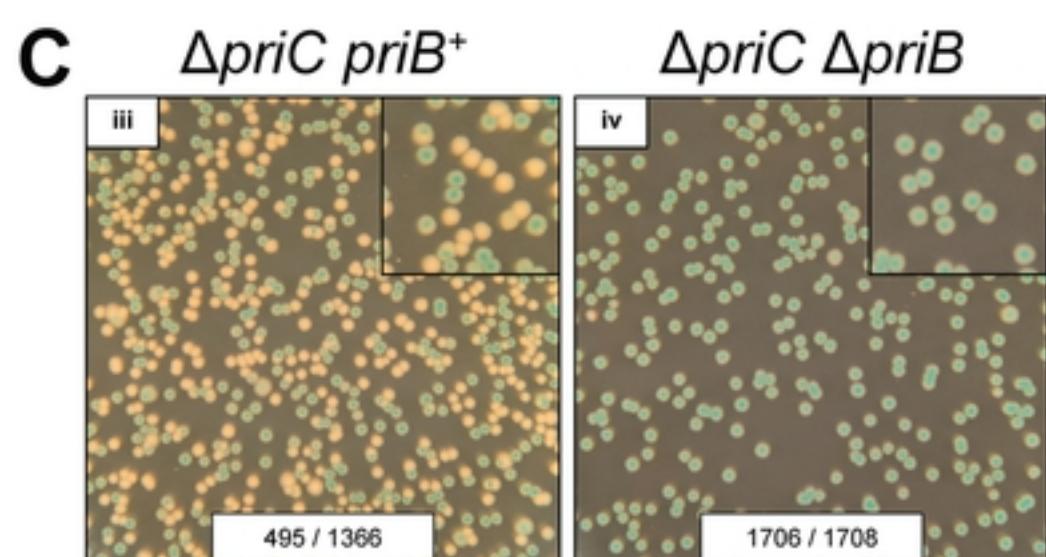
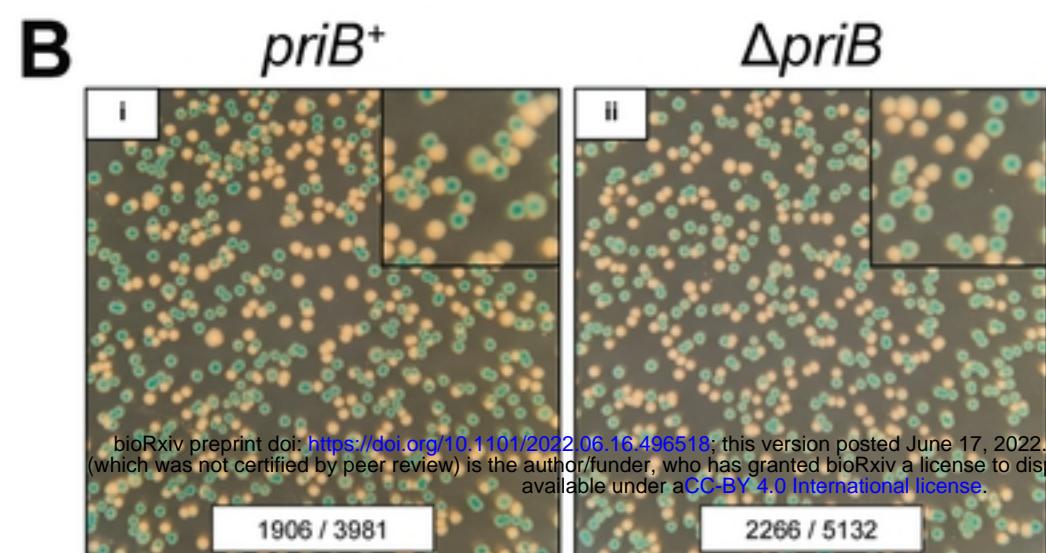
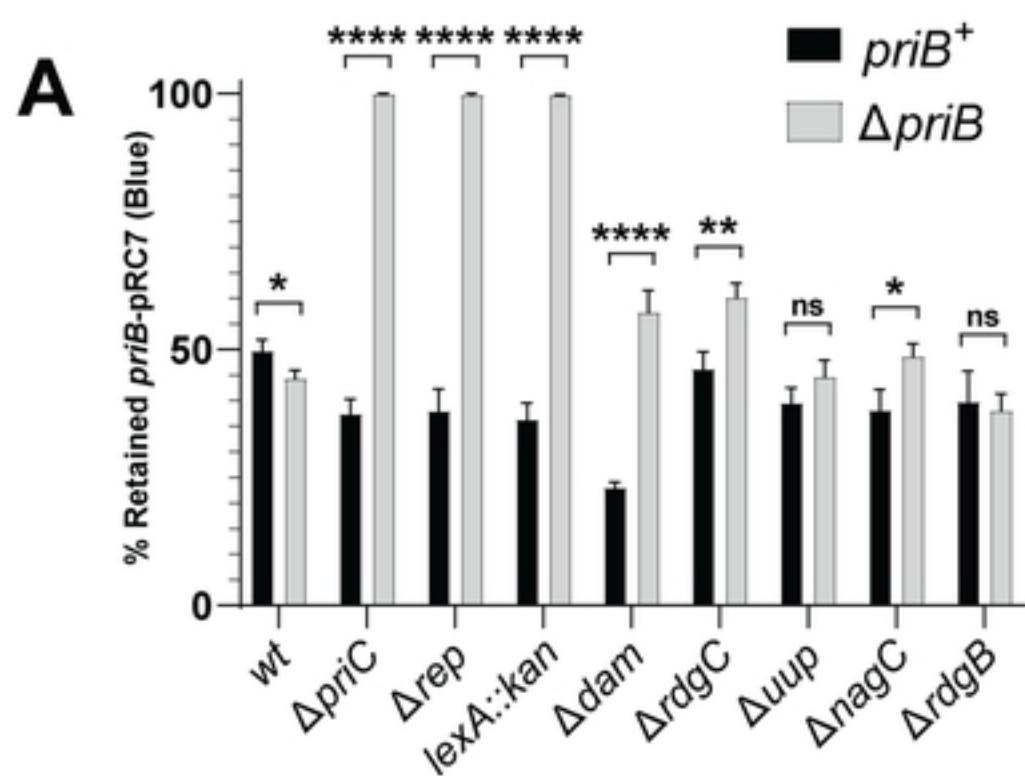











Figure 3

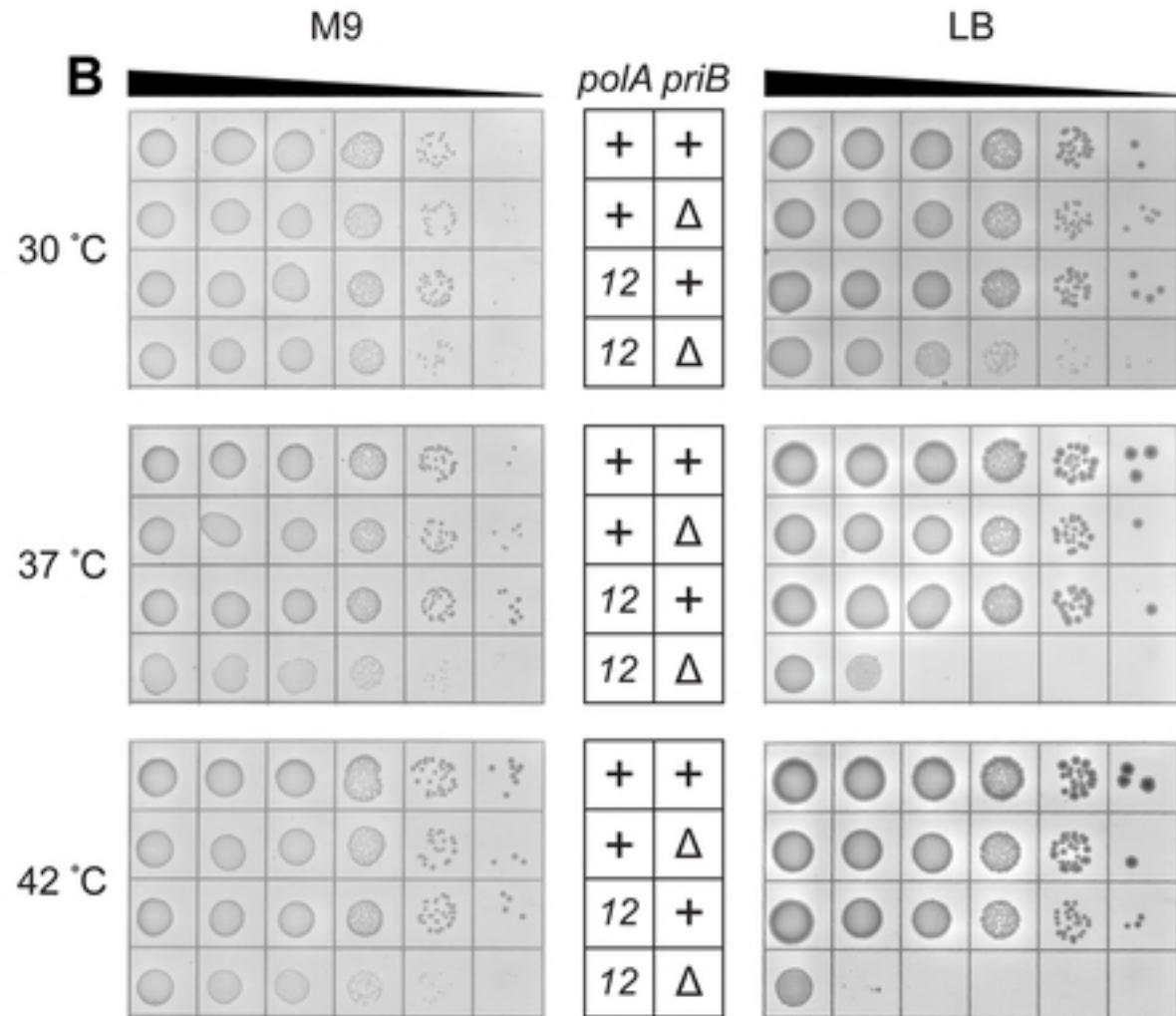
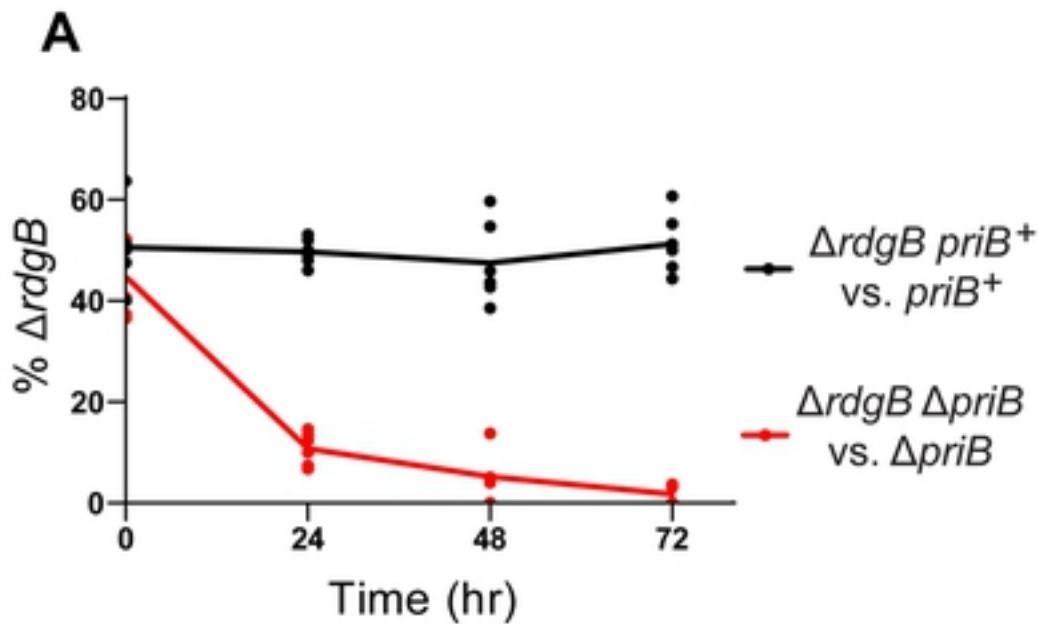



Figure 4

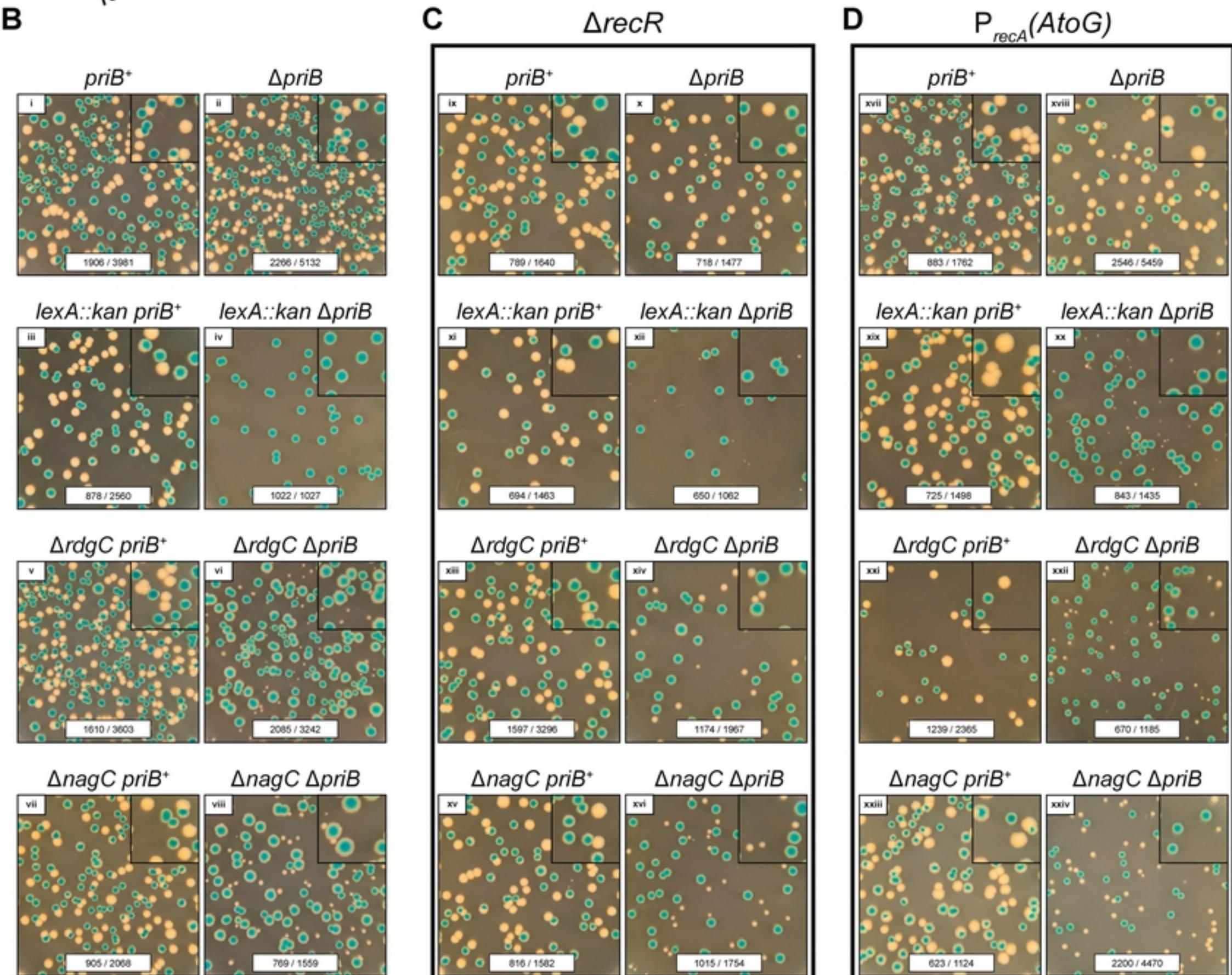
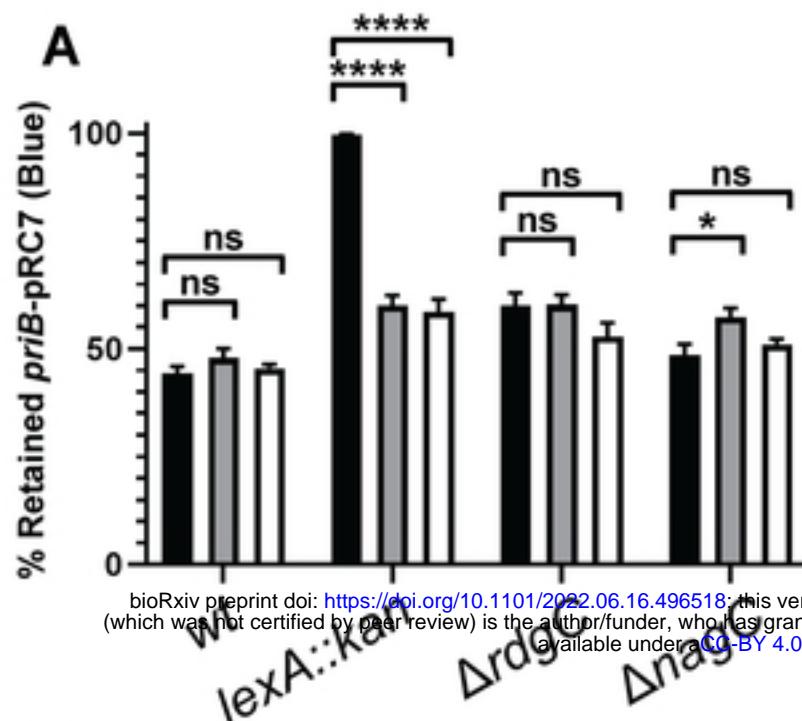



Figure 7

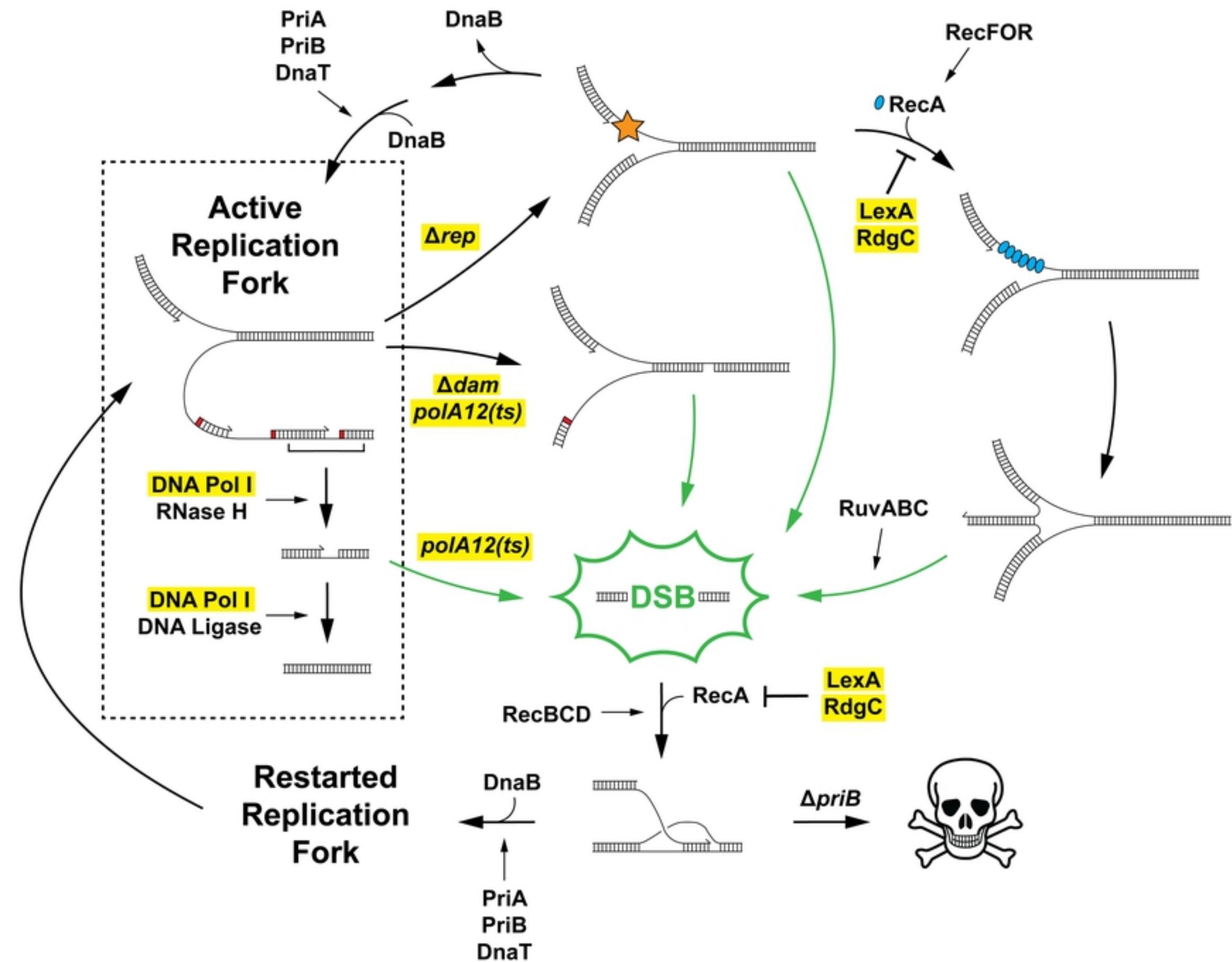


Figure 8