

Breathlessness in a virtual world: An experimental paradigm testing how discrepancy between VR visual gradients and pedal resistance during stationary cycling affects breathlessness perception.

Short title: Virtual reality and breathlessness

*Sarah L. Finnegan¹ (sarah.finnegan@ndcn.ox.ac.uk)

*David J. Dearlove² (david.dearlove@ocdem.ox.ac.uk)

13 Peter Morris¹ (peter.morris@oriel.ox.ac.uk)

14 Daniel Freeman³ (daniel.freeman@psych.ox.ac.uk)

15 Martin Sergeant⁴ (martin.sergeant@ndcls.ox.ac.uk)

16 Stephen Taylor⁴ (stephen.taylor@imm.ox.ac.uk)

17 Kyle T S Pattinson¹ (kyle.pattinson@ndu.ox.ac.uk)

10

19 * Joint first authorship

²⁰ 1. Wellcome Centre for Integrative Neuroimaging and Nuffield Division of Anaesthetics,

21 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

22 ² Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford,
23 UK.

²⁴ ³ Department of Psychiatry, University of Oxford, Oxford, UK.

25 4. MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.

26

27 Corresponding author: Kyle Pattinson kyle.pattinson@nda.ox.ac.uk

28 6th Floor, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU; 01865 234 544

29

30 Author contributions

31 **S.L.F** – Study design, acquisition of data, analysis, interpretation, drafting, editing and
32 approving manuscript

33 D.J.D - Analysis, interpretation, drafting, editing and approving manuscript

34 **P.M.** – Acquisition of data, analysis, interpretation, and approving manuscript
35 **DF** – interpretation, editing and approving manuscript
36 **M.S.** – VR design, code development and approving manuscript
37 **S.T.** – VR design and advice, editing and approving manuscript
38 **K.T.S.P** - Study design, interpretation, editing and approving manuscript
39

40 **Funding**

41 This work was supported by the National Institute for Health Research Biomedical Research
42 Centre based at Oxford University Hospitals NHS Foundation Trust and The University of
43 Oxford. The Wellcome Centre for Integrative Neuroimaging is funded by the Wellcome Trust
44 203139/Z/16/Z. For the purpose of Open Access, the author has applied a CC BY
45 public copyright licence to any Author Accepted Manuscript version arising from
46 this submission.

47 KTSP is supported by the National Institute for Health Research Biomedical Research Centre
48 based at Oxford University Hospitals NHS Foundation Trust and the University of Oxford. DF
49 is an NIHR Senior Investigator.

50 D.D. is funded by a British Heart Foundation project grant.

51 S.T. and M.S. are funded by the Medical Research Council [MC_UU_12025].

52

53 **Disclosures**

54 Dr. Pattinson is named as co-inventor on a provisional U.K. patent application titled "Use of
55 cerebral nitric oxide donors in the assessment of the extent of brain dysfunction following
56 injury. The remaining authors have no biomedical financial interests or potential conflicts of
57 interest. Drs Pattinson and Finnegan are named as co-inventors on a provisional U.K.
58 patent titled "Discordant sensory stimulus in VR based exercise" UK Patent office
59 application: 2204698.1 filing date 31/3/2022

60

61

62 **Abstract**

63 **Introduction:** The sensation of breathlessness is often attributed to perturbations in cardio-
64 pulmonary physiology, leading to changes in afferent signals. New evidence suggests that
65 these signals are interpreted in the light of prior "expectations". A misalignment between
66 afferent signals and expectations may underly unexplained breathlessness. Using a novel
67 immersive virtual reality (VR) exercise paradigm, we investigated whether manipulating an
68 individual's expectation of effort (determined by a virtual hill gradient) may alter their
69 perception of breathlessness, independent from actual effort (the physical effort of cycling).

70 **Methods:** Nineteen healthy volunteers completed a single experimental session where they
71 exercised on a cycle ergometer while wearing a VR headset. We created an immersive virtual
72 cycle ride where participants climbed up 100 m hills with virtual gradients of 4%, 6%, 8%, 10%
73 and 12%. Each virtual hill gradient was completed twice: once with a 4% cycling ergometer
74 resistance and once with a 6% resistance, allowing us to dissociate expected effort (virtual hill
75 gradient) from actual effort (physical effort of pedalling). At the end of each hill, participants
76 reported their perceived breathlessness. Linear mixed effects models were used to examine
77 the independent contribution of actual effort and expected effort to ratings of breathlessness
78 (0-10 scale).

79 **Results:** Expectation of effort (effect estimate \pm std. error, 0.63 ± 0.11 , $p<0.001$) and actual
80 effort (0.81 ± 0.21 , $p<0.001$) independently explained subjective ratings of breathlessness,
81 with comparable contributions of 19% and 18%, respectively. Additionally, we found that effort
82 expectation accounted for 6% of participants' physical effort of pedalling and was a significant,
83 independent predictor (0.09 ± 0.03 ; $p=0.001$).

84 **Conclusions:** An individuals' expectation of effort is equally important for forming
85 perceptions of breathlessness as the actual effort required to cycle. A new VR paradigm
86 enables this to be experimentally studied and could be used to re-align breathlessness and
87 enhance training programmes.

88 **(300 words)**

89
90

91 **Introduction**
92
93

94 Breathlessness is a complex perception, in which the brain is now recognised as an active
95 contributor. Rather than passively transmitting sets of afferent signals, new evidence suggests
96 that the brain interprets incoming signals based on a set of held “expectations” [1-3]. Because
97 perceptions, including those of breathlessness are generated in the brain, a disconnect
98 between the lungs and perception can be explained as a mismatch between the senses [1, 4,
99 5]. Such a disconnect may explain why breathlessness is often difficult to treat, with many
100 people, such as those living with chronic lung or cardiac disease remaining symptomatic
101 despite maximal medical therapy [6-8]. For these people, the sensation of breathlessness may
102 not match the physical status of the cardiorespiratory system. Indeed, sensory mismatches
103 resulting in breathlessness can be generated experimentally via engendered expectations to
104 placebo and nocebo cues [9]. Conversely, treatments drawing on exposure based cognitive
105 therapies, which focus on changing sensory and emotional expectations, appear to be most
106 successful in providing symptomatic relief from chronic breathlessness [10, 11].

107

108 Current evidence highlights that an individual’s expectations about breathlessness and
109 exercise may influence their subjective experiences. For example, an individual who realises
110 they have forgotten their inhaler may suddenly experience feelings of shortness of breath.
111 However, given that breathing contains both conscious and unconscious elements, is
112 emotionally complex and difficult to articulate, quantifying this relationship is challenging.

113

114 Recent work has built on well-established embodiment illusions, such as the rubber-hand
115 illusion [12], in which participants “feel” the rubber hand as their own to show how visual and
116 somatosensory cues can be used to “trick” perceptions of bodily status. Using virtual avatars,
117 manipulating the avatar’s respiratory phase directly altered feelings of participant self-location,
118 breathing agency and tidal volume [13]. The affective impact of breathlessness was also
119 attenuated by the presence of a virtual avatars breathing, particularly when asynchronous with

120 a participants own breathing [14]. Manipulating this sense of agency is not restricted to passive
121 situations or to external cues. While exercising under hypnosis, ratings of perceived exertion
122 have been shown to reflect the suggested, rather than actual work effort [15]. Similarly, during
123 imagined hand-grip exercises, individuals with high hypnotizability perceived their rates of
124 exertion as higher than those with low hypnotizability [16].

125

126 One key aspect that drives expectation is sensory immersion, which now, rather than relying
127 on hypnosis or carefully contrived illusions, is immediately available under full control via
128 Virtual Reality (VR) technology. As a result, VR technology is emerging as a powerful tool
129 within healthcare and research settings, allowing therapeutically relevant situations to be
130 created, repeated and manipulated with a consistency impossible to create in real life [17, 18].
131 The situations created by VR are immediately available (and readily ended if participants
132 become uncomfortable), facilitating patient access and engagement in a safe space.
133 Meanwhile, researchers can create “real-world” environments whilst maintaining carefully
134 controlled experimental parameters. Thus, VR has the potential to disentangle how prior
135 expectations contribute to breathlessness.

136

137 Virtual reality has already been used therapeutically to reduce complex regional pain [17],
138 improve the acceptance and embodiment of prosthetic limbs [18] and facilitate recovery post-
139 stroke [19]. However, VR interventions for chronic breathlessness are in their infancy.
140 Gamification of physical exercise has been positively received [19-21], with participants
141 reporting higher enjoyment and self-efficacy compared to traditional static cycling. A recent
142 systematic review which found moderate effects of VR-exercise (including full body work out,
143 jogging and balance training) on breathlessness, and weak effects on heart rate and oxygen
144 saturation over traditional exercise, highlighted the limited number of studies and lack of
145 standardization of methodology. Furthermore, none of the virtual gaming interventions were
146 immersive, i.e. using a reality headset. Therefore, it remains unknown whether perceptions of
147 breathlessness can be independently manipulated via a VR exercise paradigm.

148

149 Here we used a novel immersive VR exercise paradigm to determine whether breathlessness
150 could be manipulated independently of physical effort by modulating an individual's
151 expectation of effort.

152

153 **Methods and Materials**

154

155 **Participants**

156 Nineteen healthy adult participants (10 female, median age 20 years; range 19-41 years) were
157 recruited to the study. Written informed consent was obtained from all participants prior to
158 enrolment. The study was granted approval by University of Oxford, Medical Sciences
159 Interdivisional Research Ethics Committee (Ref: R68447/RE001). Study inclusion criteria
160 were: adults aged 18-65, a willingness and ability to provide informed consent, and a
161 willingness and ability to ride a bicycle. Exclusion criteria were: inadequate understanding of
162 verbal and written English; significant cardiac, neurological, psychiatric (including depression
163 under tertiary care) or metabolic disease (including insulin-controlled diabetes); history of
164 cardiac tachyarrhythmia or of prescription/non-prescription drug dependency (including
165 alcoholism).

166

167 **Study visit protocol**

168 Following telephone screening, participants were invited to attend a single one-hour session
169 at the Department of Physiology, Anatomy and Genetics, University of Oxford.

170

171 **Self-report questionnaires:**

172 To assess whether baseline measures of anxiety influenced either perceived breathlessness
173 or modulated the interaction between VR hill gradient and physical effort, participants
174 completed the state component of the State-Trait Anxiety Inventory (STAI) [20] prior to
175 commencing exercise. To assess levels of immersion within the virtual environment we
176 collected scores on the Presence Questionnaire [21]. Questionnaires were scored according
177 to their respective manuals.

178

179 **Anthropometric measurements:**

180 Participant height and weight were recorded upon arrival to the laboratory.

181

182 **Cycling protocol:**

183 Exercise was performed on a bicycle attached to a Tacx Flow Smart turbo trainer (Garmin
184 Ltd., US) that recorded power output and communicated directly with the VR software (Figure
185 1A). The turbo trainer was calibrated prior to each exercise session and tyre pressure was
186 maintained at 90 Psi. Participants adjusted the bicycle saddle height according to personal
187 preference and ambient conditions were controlled.

188

189 Participants completed two bouts of cycling in a virtual world with a rolling terrain (Figure 1b),
190 where the physical effort of pedalling (slope resistance value between 0 to 100, with 0
191 representing a flat surface and 100 representing a 6% gradient - the maximum gradient
192 simulation on the Tacx Flow Smart turbo trainer) was independently manipulated from the
193 observed VR hill gradient. The software was written in Unity (version 2019.2.17), using the
194 Unity packages VRTK (version 3.3.0) for integration with VR and Advanced ANT+ (version
195 1.041) for communication with the turbo trainer (or any fitness equipment using the ANT+
196 protocol). In addition, an Arduino UNO microcontroller was integrated into the system, to allow
197 analog/digital inputs. The code is available on request at <https://github.com/Taylor-CCB-Group/BreathlessVR>. The virtual world was viewed on an Oculus Rift headset.

198

199

200 **Figure 1. A. Image of the bicycle ergometer set-up and B. (top) the VR environment**
201 **(bottom) virtual hands and speedometer.**

202

203 The first exercise bout was a familiarisation session and served to 'anchor' participants
204 perceptions of breathlessness. Participants rested for an average of 4 minutes 40 seconds
205 before starting the second exercise bout. Only data from the second exercise bout were
206 included in the final analyses. In each exercise bout, participants warmed-up for 300 m before
207 completing an undulating course containing 12, 100 m long hills with observed gradients of
208 4%, 6%, 8%, 10% or 12% (Figure 2 and Supplemental Table 1). Participants completed each

209 hill gradient twice, once with a slope resistance of 4% and once with a slope resistance of 6%.
210 In so doing, we sought to dissociate actual effort (i.e., the physical effort of pedalling) from
211 participants' expectation of effort (i.e., the virtual hill gradient). In between each work block,
212 participants completed a 30 m recovery ride on a flat surface (0% gradient) with a slope
213 resistance value of 1%. After each 100 m hill, a virtual prompt appeared asking participants to
214 report how breathless they felt on a scale of 1-10 (1 being not at all breathless and 10 being
215 maximum breathlessness). Participants' verbal report was recorded automatically by the
216 computer, and this was verified by a study investigator. The block order for the second
217 exercise bout. Participants were counter-balanced in receiving block order one or two first.
218 Participants cycled at a self-selected pace.

219

220 ***Figure 2. Illustration of exercise protocol where slope resistance (cycling ergometer***
221 ***resistance) was dissociated from the observed VR hill gradient.***

222

223 **Analysis**

224 All variables were centred and scaled prior to analysis. To assess whether slope resistance
225 (4% and 6%) affected participants' physical effort (W), a 2-way repeated-measures ANOVA
226 was performed. To determine the effect of actual effort and effort expectations on
227 breathlessness, and to determine the effect of effort expectation on actual effort, linear mixed-
228 effects models were created in RStudio (Version 1.3.1093) using the lme4 package [22]. For
229 both models, a random intercept was fitted for each participant. Final models (combinations
230 of predictor variables) were selected by Akaike Information Criterion (AIC) by backwards
231 elimination using the stats package [23]. Full model summaries and terms are presented in
232 Supplementary materials.

233

234 **Results**

235

236 *Participant characteristics:* Nineteen participants completed the trial and were included in final
237 analyses (see Table 1 for participant characteristics). Participants were on average below
238 clinical thresholds for anxiety, typically defined as a score of 40 or more [24] (Table 1).

239

240 **Table 1. Demographic and questionnaire data collected for 19 participants. BMI –**
241 **body mass index, STAIT – state anxiety questionnaire.**

N=19	Score
Age (median years/rage)	20 (19-41)
BMI (kg.m⁻² ± SD)	22 ± 2
Gender – Female	11
STAIT (IQR)	25 (10)

242

243

244 *Exercise time to completion:* The time taken to complete exercise blocks 1 and 2 was
245 comparable ($p>0.05$; Table 2).

246

247 **Table 2. Average cycling and rest durations across 19 participants**

Block 1 (std)	Rest (std)	Block 2 (std)	Average Exercise (std)
7 minutes 12 seconds	4 minutes and 40 seconds	6 minutes 39 seconds	6 minutes 55 seconds
±	±	±	±
1 minute	1 minute 48 seconds	1 minute 10 seconds	1 minute 7 seconds

248

249 *Association between slope resistance and power:* To test the hypothesis that participants
250 worked harder during the 6% vs. 4% slope resistance intervals, a 2-way ANOVA was
251 performed where power (W) was explained as a function of slope resistance, VR hill gradient
252 and their interaction (see Supplementary Table 2 for full ANOVA results). There was a

253 significant main effect of slope resistance ($p<0.001$; Figure 3), demonstrating that participants
254 produced more power in the 6% vs. 4% intervals. This relationship was consistent across all
255 levels of VR hill gradient, as evidenced by a non-significant interaction effect ($p>0.05$).
256

257 **Figure 3. Slope resistance is a significant predictor of power. Mean power (W) was**
258 **greater across all levels of VR hill gradient in the 6% vs. 4% slope resistance**
259 **intervals. Shaded areas represent 95% CIs.**

260
261 *Virtual reality effort is an independent predictor of breathlessness:* To determine whether an
262 individual's expectation of effort was independently associated with breathlessness, a mixed
263 effects regression model was created. Here, subjective breathlessness rating (1-10 Likert
264 scale) was explained as a function of the physical effort of pedalling (W), VR hill gradient, state
265 anxiety level before undertaking exercise (STAI questionnaire), age, sex, and BMI, with a
266 random participant effect included. Following model optimisation through backwards
267 elimination of non-significant model terms (see Supplementary Table 3 for the full and
268 optimised models), physical effort of pedalling (W) (0.81 ± 0.21 , 95% CI [0.39, 1.22], $p<0.001$,
269 $R^2 = 0.175$) and virtual hill gradient (0.63 ± 0.11 , 95% CI [0.43, 0.84], $p<0.001$, $R^2 = 0.192$)
270 were positively associated with subjective breathlessness ratings, whilst BMI was significantly
271 negatively associated (-0.72 ± 0.28 , 95% CI [-1.28, -0.17], $p=0.02$, $R^2 = 0.198$) (Figure 4).
272 Variance inflation was low (<1.2) for all model terms, suggesting minimal collinearity.
273

274 **Figure 4. The physical effort of pedalling (actual effort), virtual hill gradient (expected**
275 **effort), and BMI are independent predictors of an individual's breathlessness.**

276
277 *Effort expectation in VR modulates actual physical effort:* Finally, we sought to determine
278 whether effort expectation would influence participants' actual effort. We created a second
279 mixed effects model where the physical effort of pedalling (W) was explained as a function of
280 virtual hill gradient, BMI, age, and sex, with a random participant effect included. Following

281 model optimisation through backwards elimination of non-significant model terms (see
282 Supplementary Table 4 for the full and optimised models), virtual hill gradient (0.09 ± 0.03 ,
283 95% CI [0.04, 0.15], $p=0.001$, $R^2=0.060$), BMI (0.38 ± 0.11 , 95% CI [0.15, 0.60], $p=0.004$, R^2
284 = 0.518), and sex (male) (0.61 ± 0.23 , 95% CI [0.16, 1.06], $p=0.02$, $R^2=0.411$) were positively
285 associated with the physical effort of pedalling. Variance inflation was low (1.0) for all model
286 terms, suggesting minimal collinearity.

287

288 ***Figure 5. Virtual reality hill gradient, BMI, sex (male) are independent predictors of***
289 ***physical effort (i.e., the physical effort of pedalling)***

290

291 *Immersion in the VR cycling world:* Each question on the presence questionnaire is scored
292 out of a maximum of 7 points on a Likert scale, with one being “not at all” and seven being
293 “very much”. Participants reported an average of 5.25 (IQR 1). Highest item scores were
294 recorded for rapid adjustment to the virtual world and for the quality of display. Lowest scores
295 were recorded for the item examining how consistent participants felt their experiences in the
296 virtual world were compared to the real-world (Table 3).

297

298 ***Table 3. Item and total scores for the presence questionnaire (PQ).***

Question	Median score out of 7 (IQR)
How natural was the mechanism that controlled movement through the environment	4.5 (1.5)
How compelling was your sense of objects moving through space?	5 (2)
How much did your experiences in the virtual environment seem consistent with your real-world experiences?	4 (1)
How involved were you in the virtual environment experience	5.5 (1)

How quickly did you adjust to the virtual environment experience	7 (1.5)
How much did the visual display quality interfere or distract you from performing assigned tasks of required activities? (reverse scored)	6 (2.5)
Total average score	5.25 (1)

299

300

301

302 **Discussion**

303 **Key findings**

304 To form subjective sensations of breathlessness, the brain interprets afferent signals based
305 on a set of held “expectations” [1-3]. In this study, we used a novel VR cycling paradigm to
306 dissociate actual effort (the power required to pedal) from an individual’s effort expectation
307 (observed VR hill gradients) and in doing so, determined the contribution of effort expectation
308 to the sensation of breathlessness. We found that approximately 19% of the breathlessness
309 experienced was explained by the VR hill gradient observed by participants, whereas
310 approximately 18% was explained by the power required by participants to pedal.

311 Additionally, we showed that participants worked harder when they observed a steeper virtual
312 slope, despite ergometer resistance being kept constant, with the observed VR hill gradient
313 accounting for 6% of the power produced by participants. These findings demonstrate that an
314 individual’s expectations of effort can independently modulate subjective perceptions,
315 including breathlessness, and influence physical effort.

316

317 **Examining the contribution of expectations in chronic breathlessness**

318 A growing body of evidence [1-3, 5, 9, 11, 25-28] now suggests that breathlessness, far from
319 simply arising as a product of peripheral inputs, includes steps of active interpretation and
320 comparison with previously held expectations. In this study we demonstrated that as the
321 observed VR hill gradient increased, participants’ reported breathlessness was also
322 increased, independent of the physical effort applied to pedalling the bike. This highlights that
323 an individual’s prior expectations may influence their subjective experiences of exertion,
324 including how breathless they feel in response to a given exercise intensity. This may help
325 explain instances of unexplained breathlessness such as that observed in asthma or panic
326 disorder, where breathlessness fails to match physiological assessments of cardiopulmonary
327 health. This work is in line with previous studies showing, in cases of chronic breathlessness,
328 that improvements in breathlessness are associated with a reappraisal of the sensory

329 experience, i.e., changes to expectations [10] rather than increased fitness. However,
330 determining the contribution of 'expectation' to the subjective human exercise experience is
331 problematic, particularly where beliefs or expectations are difficult to articulate. Our paradigm
332 may now provide a tool with which to unpick this relationship.

333

334 **Physical effort is influenced by virtual slope**

335 In the real world, road inclinations are met with proportional increases in resistance due to
336 gravitational force and because of learning about our physical environment, our expectation
337 is that we must apply greater power to maintain our speed. In this experiment we observed a
338 positive association between the virtual slope gradient and the pedalling power applied by
339 participants, independent of ergometer resistance. To the authors knowledge, this is the first
340 study to demonstrate that manipulating effort perception within a virtual environment
341 influences an individual's physical effort. There is a longstanding interest in whether hypnotic
342 suggestion (perception manipulation) can modulate exercise capacity; however, results are
343 equivocal [29]. While, our study did not investigate exercise performance, this finding
344 nevertheless suggests that manipulating sensory or environmental cues could be used to
345 increase physical capacity. Moreover, it is plausible that manipulation of sensory cues, as
346 demonstrated here, could be used to increase physical effort in rehabilitation settings (e.g.,
347 cardiac recovery) and more broadly, training of the general population.

348

349

350 **Limitations**

351 The purpose of this study was to demonstrate that subjective breathlessness ratings could be
352 manipulated independently from physical work effect. Given the novelty of the design and lack
353 of established evidence within the field to draw upon we have identified a number of key
354 limitations that future studies will work to address.

355

356 In terms of hardware, while VR headsets provide a fully immersive experience, the headset
357 generates a noticeable amount of heat, which paired with physical exertion can quickly
358 become uncomfortable for the participant. To overcome this, future studies may investigate
359 other display options such a wide screen monitors or enlist newer headsets with built in cooling
360 systems. In this single session we assessed the extent to which the illusion was maintained
361 across a wide range of virtual slopes. However, the Tacx turbo trainer was only capable of
362 simulating gradients of 0% to 6%. Consequently, the range of physical slopes did not align
363 with the range of virtual slopes. Future studies would improve statistical power by limiting the
364 range of virtual slopes under comparison and extend either the number of sessions or time
365 over which data was collected. Additional psychological and physiological characterisation
366 would also help to answer some outstanding questions. Further physiological measures,
367 quantified by cardiopulmonary exercise testing would help to answer questions regarding
368 whether the virtual environment simply changed perceptions of work effort on a cognitive level
369 or whether an individual's physiology was also affected. Previous work using hypnosis has
370 demonstrated that manipulating effort perception activates cortical structures involved in the
371 cardiopulmonary response to exercise, resulting in increased blood pressure and heart rate
372 [15]. While in terms of psychological characterisation the presence questionnaire is somewhat
373 limited by a lack of validated thresholds. Further assessment of anxiety and interoceptive
374 sensitivity and its relationship with manipulability of expectation may also be of interest.
375 Studying more highly anxious individuals would be worthwhile as we might predict that the
376 effects of VR manipulation may be even greater. Finally, this study has provided initial
377 evidence for the manipulation of breathlessness expectations within a healthy population.
378 Further work would extend this paradigm to assess utility in clinical populations.

379

380 **Future directions**

381 **Realigning expectations in chronic breathlessness**

382 Realigning expectations with sensory inputs and challenging aberrant thought processes is a
383 key foundation of many cognitive behavioural therapies. Compelling evidence highlights how

384 pulmonary rehabilitation, the current most effective treatment for chronic breathlessness in
385 COPD, has little effect on lung function but significantly improves feelings of breathlessness
386 via changes in brain processes [10]. While a number of brain-targeted therapeutic
387 approaches, including pharmacological [30, 31], direct brain stimulation [32] and cognitive [33]
388 have been explored with varying degrees of success, VR offers another approach in which
389 sensory input may be realigned with expectation in an example of “fool the brain, treat the
390 lungs” [11]. The high entertainment value of immersive VR and increasing affordability also
391 has clear potential within a framework of pulmonary rehabilitation to promote exercise
392 engagement and expose patients to “real-life” environments in which to overcome fearful
393 breathlessness safely.

394
395

396 **Conclusions**

397 Using a multi-sensory, fully immersive, VR cycling environment we have shown that perceived
398 breathlessness can be driven independently from physical work effort. This finding highlights
399 the importance of expectation in breathlessness perception which have potential implications
400 for training and rehabilitation programmes.

401

402 **Acknowledgements**

403 The authors would like to thank Silvia Pan for her valuable input into the manuscript.

404

405 **References**

- 406 1. Faull, O.K., A. Hayen, and K.T.S. Pattinson, *Breathlessness and the body: Neuroimaging clues for the inferential leap*. Cortex; a journal devoted to the study of the nervous system and behavior, 2017. **95**: p. 211-221.
- 407 2. Faull, O.K., et al., *Chronic breathlessness: re-thinking the symptom*. Eur Respir J, 2018. **51**(1).
- 408 3. Marlow, L.L., et al., *Breathlessness and the brain: the role of expectation*. Current opinion in supportive and palliative care, 2019. **13**(3): p. 200-210.
- 409 4. Marlow, L.L., et al., *Breathlessness and the brain: the role of expectation*. Current Opinion in Supportive and Palliative Care, 2019. **13**(3).
- 410 5. Van den Bergh, O., et al., *Symptoms and the body: Taking the inferential leap*. Neurosci Biobehav Rev, 2017. **74**(Pt A): p. 185-203.
- 411 6. Parshall, M.B., et al., *An official American Thoracic Society statement: update on the mechanisms, assessment, and management of dyspnea*. American journal of respiratory and critical care medicine, 2012. **185**(4): p. 435-452.
- 412 7. Scano, G., et al., *Dyspnea and emotional states in health and disease*. Respir Med, 2013. **107**(5): p. 649-55.
- 413 8. Johnson, M.J., et al., *Towards an expert consensus to delineate a clinical syndrome of chronic breathlessness*. European Respiratory Journal, 2017. **49**(5): p. 1602277.
- 414 9. Vlemincx, E., C. Sprenger, and C. Büchel, *Expectation and dyspnea: The neurobiological basis of respiratory nocebo effects*. European Respiratory Journal, 2021: p. 2003008.
- 415 10. Herigstad, M., et al., *Treating breathlessness via the brain: changes in brain activity over a course of pulmonary rehabilitation*. European Respiratory Journal, 2017. **50**(3): p. 1701029.
- 416 11. Similowski, T., *Treat the lungs, fool the brain and appease the mind: towards holistic care of patients who suffer from chronic respiratory diseases*. European Respiratory Journal, 2018. **51**(2): p. 1800316.
- 417 12. Botvinick, M. and J. Cohen, *Rubber hands 'feel' touch that eyes see*. Nature, 1998. **391**(6669): p. 756-756.
- 418 13. Betka, S., et al., *Mechanisms of the breathing contribution to bodily self-consciousness in healthy humans: Lessons from machine-assisted breathing?* Psychophysiology, 2020. **57**(8): p. e13564.
- 419 14. Allard, E., et al., *Interferences between breathing, experimental dyspnoea and bodily self-consciousness*. Scientific Reports, 2017. **7**(1): p. 9990.
- 420 15. Williamson, J.W., et al., *Hypnotic manipulation of effort sense during dynamic exercise: cardiovascular responses and brain activation*. Journal of Applied Physiology, 2001. **90**(4): p. 1392-1399.
- 421 16. Williamson, J.W., et al., *Brain activation by central command during actual and imagined handgrip under hypnosis*. Journal of Applied Physiology, 2002. **92**(3): p. 1317-1324.
- 422 17. Freeman, D., et al., *Virtual reality in the assessment, understanding, and treatment of mental health disorders*. Psychological Medicine, 2017. **47**(14): p. 2393-2400.
- 423 18. Riva, G., *Virtual Reality in Psychotherapy: Review*. CyberPsychology & Behavior, 2005. **8**(3): p. 220-230.
- 424 19. McEwen, D., et al., *Virtual reality exercise improves mobility after stroke: an inpatient randomized controlled trial*. Stroke, 2014. **45**(6): p. 1853-5.

454 20. Spielberger, C.D., *State-Trait Anxiety Inventory*, in *The Corsini Encyclopedia*
455 of *Psychology*. 2010.

456 21. Witmer, B.G., C.J. Jerome, and M.J. Singer, *The Factor Structure of the*
457 *Presence Questionnaire*. Presence: Teleoperators and Virtual Environments,
458 2005. **14**(3): p. 298-312.

459 22. Bates, D., et al., *Fitting Linear Mixed-Effects Models Using lme4*. Journal of
460 Statistical Software, 2015. **67**(1): p. 1 - 48.

461 23. Team, R.C., *R: A language and environment for statistical computing*. . R
462 Foundation for Statistical Computing, Vienna, Austria. , (2013). **ISBN 3-**
463 **900051-07-0**, **URL**
464 <http://www.R-project.org/>.

465 24. Emons, W.H., M. Habibović, and S.S. Pedersen, *Prevalence of anxiety in*
466 *patients with an implantable cardioverter defibrillator: measurement*
467 *equivalence of the HADS-A and the STAI-S*. Quality of life research : an
468 international journal of quality of life aspects of treatment, care and
469 rehabilitation, 2019. **28**(11): p. 3107-3116.

470 25. Finnegan, S.L., et al., *Breathlessness in COPD: linking symptom clusters with*
471 *brain activity*. European Respiratory Journal, 2021. **58**(5): p. 2004099.

472 26. De Peuter, S., et al., *Dyspnea: the role of psychological processes*. Clin
473 Psychol Rev, 2004. **24**(5): p. 557-81.

474 27. Petersen, S. and O. Van den Bergh, *Breathlessness and social cognition: The*
475 *effect of social comparison on perceived breathlessness in asthma and*
476 *COPD*. European Respiratory Journal, 2011. **38**(Suppl 55): p. p1252.

477 28. Tan, Y., et al., *The Impact of Unpredictability on Dyspnea Perception, Anxiety*
478 *and Interoceptive Error Processing*. Frontiers in Physiology, 2019. **10**.

479 29. Dittrich, N., et al., *Effect of hypnotic suggestion on knee extensor*
480 *neuromuscular properties in resting and fatigued states*. PLOS ONE, 2018.
481 **13**(4): p. e0195437.

482 30. Finnegan, S.L., et al., *D-cycloserine modulates breathlessness related brain*
483 *activity over pulmonary rehabilitation*. medRxiv, 2021: p.
484 2021.06.24.21259306.

485 31. Abdallah, S.J., et al., *Opioids for breathlessness: psychological and neural*
486 *factors influencing response variability*. European Respiratory Journal, 2019.
487 **54**(3): p. 1900275.

488 32. Nierat, M.-C., et al., *Repetitive transcranial magnetic stimulation over the*
489 *supplementary motor area modifies breathing pattern in response to*
490 *inspiratory loading in normal humans*. Frontiers in Physiology, 2015. **6**(273).

491 33. Tan, S.-B., et al., *The Effect of 20-Minute Mindful Breathing on the Rapid*
492 *Reduction of Dyspnea at Rest in Patients With Lung Diseases: A Randomized*
493 *Controlled Trial*. Journal of Pain and Symptom Management, 2019. **57**(4): p.
494 802-808.

495

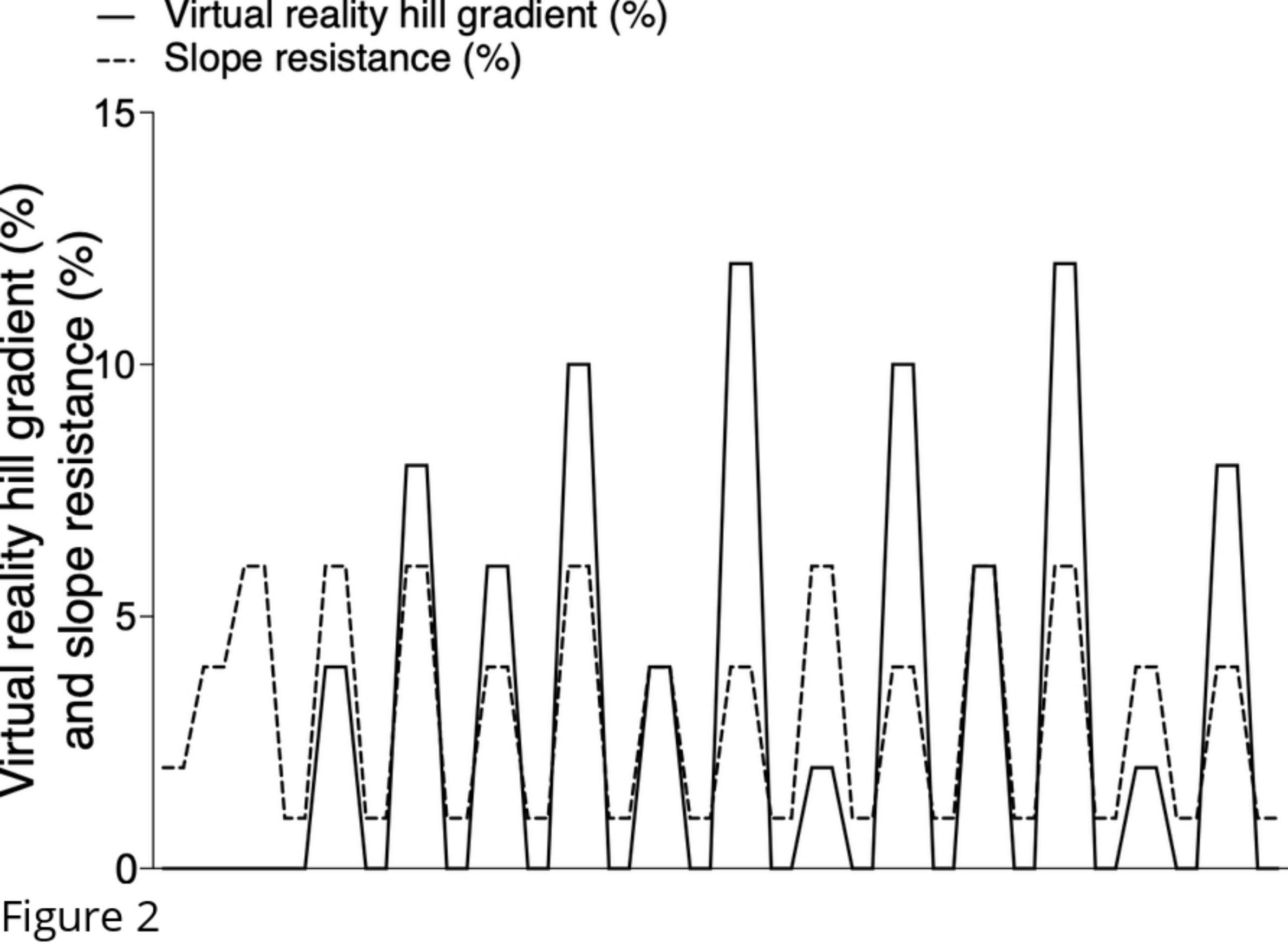
496

497

498

499

500


A

B

Figure 1

Slope resistance (% gradient simulation) — 4 ⋯ 6

bioRxiv preprint doi: <https://doi.org/10.1101/2022.06.16.496494>; this version posted June 22, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Power (W)

180

160

140

Virtual reality hill gradient (%)

0.0

2.5

5.0

7.5

10.0

Figure 3

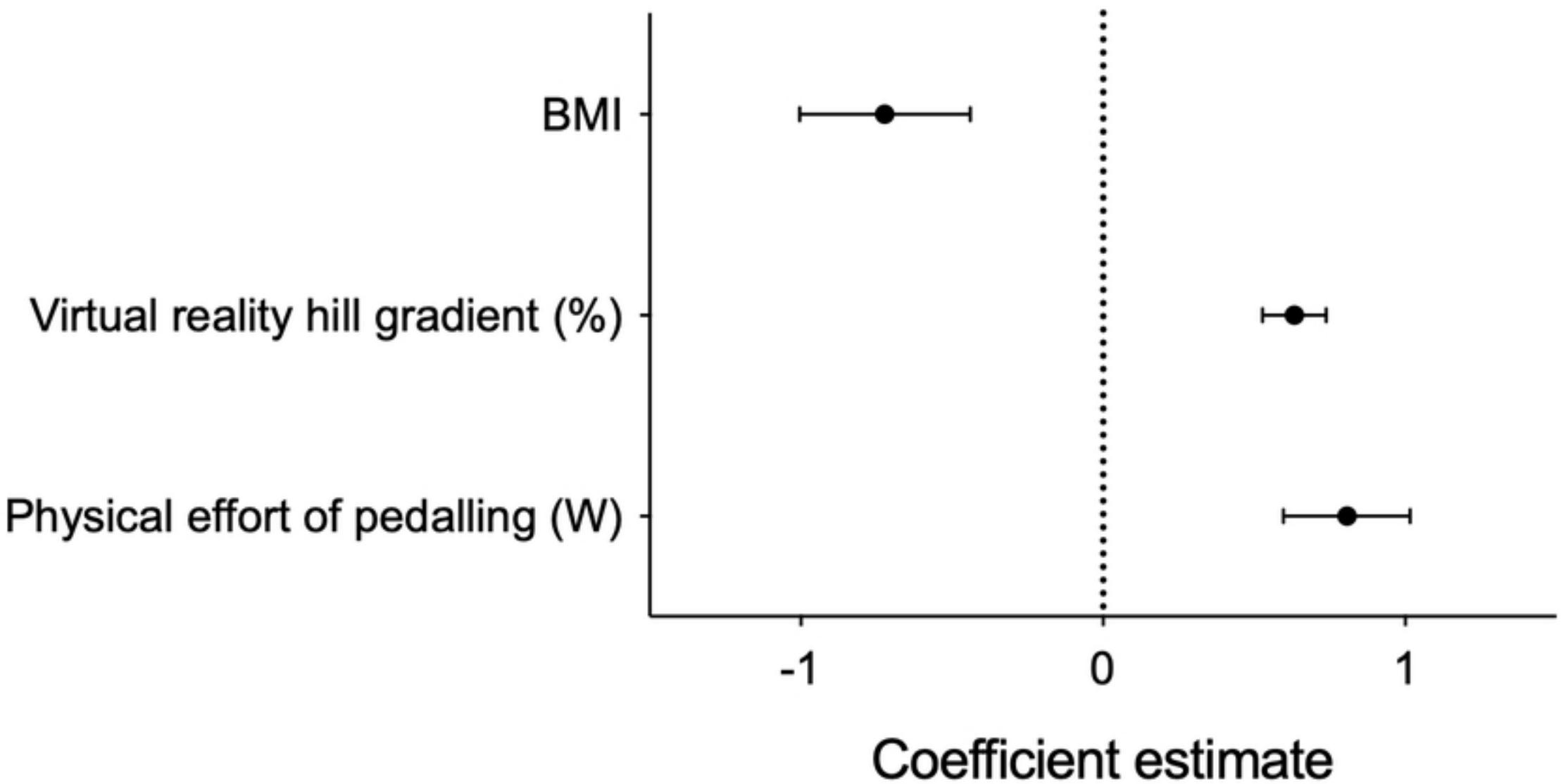


Figure 4

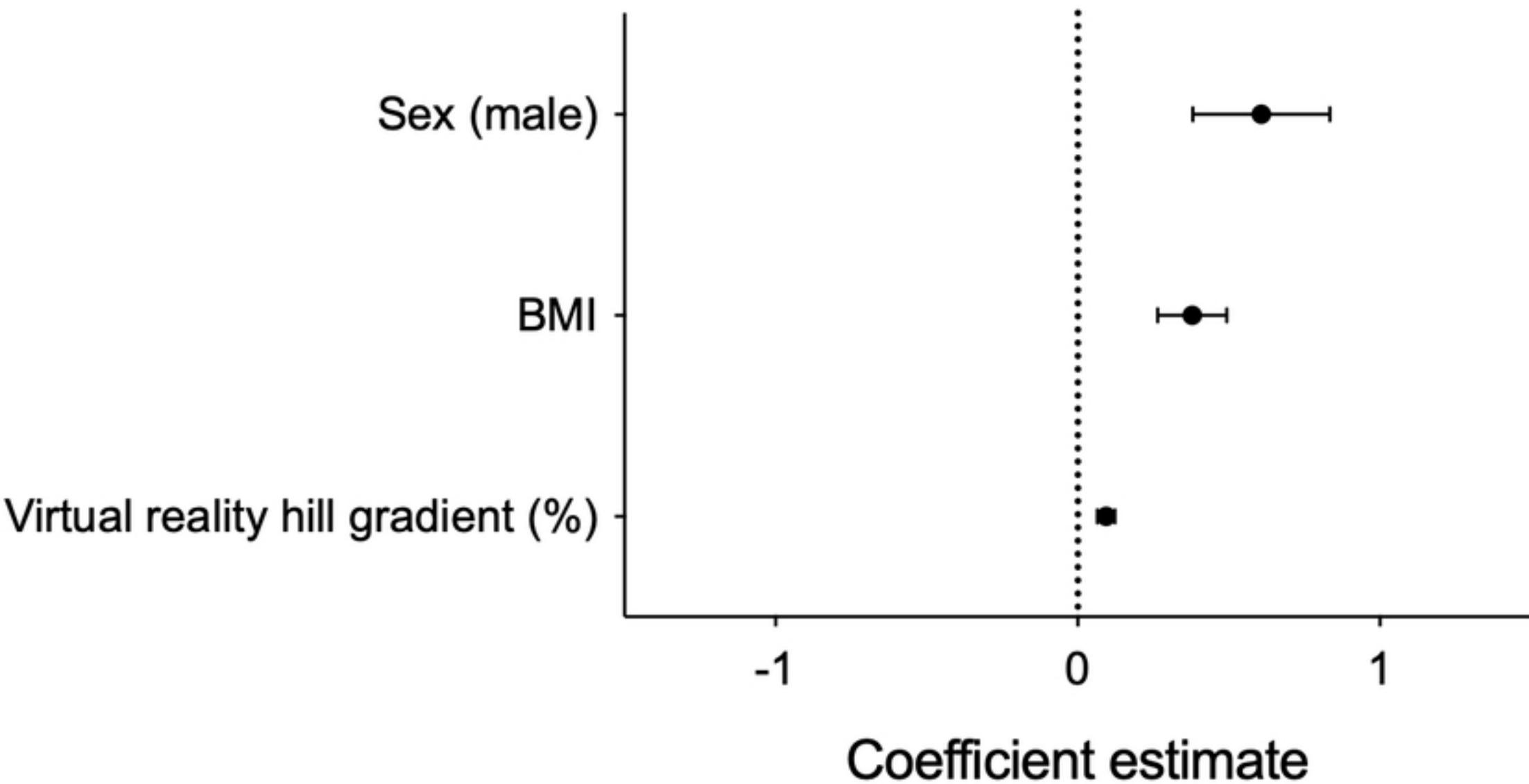


Figure 5