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Abstract

Phase-type distributions are a general class of models that are traditionally used in
actuarial sciences and queuing theory, and more recently in population genetics. A phase-
type distributed random variable is the time to absorption in a discrete or continuous
time Markov chain on a finite state space with an absorbing state. The R package
PhaseTypeR contains all the key functions—mean, (co)variance, probability density func-
tion, cumulative distribution function, quantile function, random sampling and reward
transformations—for both continuous (PH) and discrete (DPH) phase-type distributions.
Additionally, we have also implemented the multivariate continuous case (MPH) and the
multivariate discrete case (MDPH). We illustrate the usage of PhaseTypeR in simple ex-
amples from population genetics (e.g. the time until the most recent common ancestor
or the total number of mutations in an alignment of homologous DNA sequences), and
we demonstrate the power of PhaseTypeR in more involved applications from population
genetics, such as the coalescent with recombination and the structured coalescent. The
multivariate distributions and ability to reward-transform are particularly important in
population genetics, and a unique feature of PhaseTypeR.

Keywords: Ancestral process, coalescent theory, phase-type distributions, population genetics,
PhaseTypeR.

1. Introduction

Phase-type distributions describe the time until absorption of a continuous or discrete-time
Markov chain (Bladt and Nielsen 2017). The probabilistic properties of phase-type distribu-
tions (i.e. the probability density function, cumulative distribution function, quantile function,
moments and generating functions) are well-described and analytically tractable using matrix
manipulations.

Here we present PhaseTypeR, an R (R Core Team 2021) package that provides general-use
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2 Package PhaseTypeR

core functions for continuous and discrete phase-type distributions, both for the univariate
and the multivariate cases. PhaseTypeR can also be used to simulate from the underlying
Markov chain of the phase-type objects. Additionally, the package allows for the reward trans-
formation of phase-type distributions. The functions and objects in the package are intuitive
and of general use, which enables the users to easily adapt them to their needs. PhaseTypeR
is available on CRAN (https://CRAN.R-project.org/package=PhaseTypeR), and its docu-
mentation can be accessed through https://rivasiker.github.io/PhaseTypeR/.

The R packages already available for phase-type distributions are mainly tailored to appli-
cations in actuarial sciences and risk theory. In these cases, failure times or lifetimes are
measured, and the corresponding phase-type distribution is estimated. We briefly summarize
the software tools for phase-type distributions, their status and their main purpose:

• Christophe Dutang, Vincent Goulet and Mathieu Pigeon have contributed the R package
actuar for the actuarial sciences (Dutang, Goulet, and Pigeon 2008), and the package
is still under active development. The univariate continuous phase-type distribution is
covered in terms of the density, cumulative distribution, moments and moment gener-
ating function (see https://CRAN.R-project.org/package=actuar).

• Louis Aslett has released an R package called PhaseType (Aslett and Wilson 2011;
Aslett 2012), which is tailored to the problem of estimating a continuous phase-type
distribution from failure times, and is an extension of a Markov Chain Monte Carlo
algorithm developed by Bladt, Gonzalez, and Lauritzen (2003). However, the package
is not maintained anymore, and it has been removed from CRAN (https://CRAN.
R-project.org/package=PhaseType).

• Hiroyuki Okamura’s mapfit R package is concerned with fitting phase-type distributions
of failure times in reliability systems (https://CRAN.R-project.org/package=mapfit,
Okamura 2015; Okamura and Dohi 2015, 2016). Here, the parameters in a phase-type
distribution are fitted using maximum likelihood estimation. The package can also fit
a phase-type distribution from a probability density function.

• Martin Bladt and Jorge Yslas’s recent R package matrixdist (https://CRAN.R-project.
org/package=matrixdist, Bladt and Yslas 2021) fits inhomogeneous phase-type (IPH)
distributions (Albrecher and Bladt 2019). The EM-algorithm is used to estimate the
parameters in the model. In Albrecher, Bladt, and Yslas (2020, advance online pub-
lication), an IPH distribution is fitted to the lifetimes of the Danish population that
died in the year 2000 at ages 50 to 100. In the special homogeneous case of the IPH
distributions, the package also provides the density, cumulative distribution function,
quantile function, moments and opportunity of simulating from the distribution. Our
package has the same features for the PH distribution, and additionally we consider
reward transformations and the multivariate phase-type (MPH) extension. Further-
more, we provide the same functionality for the class of discrete phase-type (DPH) and
multivariate discrete phase-type (MDPH) distributions.

Our implementation of phase-type functions in PhaseTypeR is of general use and not re-
stricted to actuarial sciences and risk theory. Moreover, unlike the packages described above,
PhaseTypeR includes reward transformations, the multivariate extensions of phase-type dis-
tributions, and both the discrete and continuous versions.
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In this paper we exemplify the applications of the PhaseTypeR functions using several quan-
tities in population genetics and, in particular, coalescent theory. More specifically, the time
to the most recent common ancestor TMRCA, the total tree length Ttotal and the total branch
lengths that give rise to e.g. singletons or doubletons are examples of continuous phase-type
distributed variables, and viewed together they are continuous multivariate phase-type dis-
tributed (Hobolth, Siri-Jegousse, and Bladt 2019). Additionally, the individual elements of
the site frequency spectrum are examples of discrete phase-type distributed variables, and the
full site frequency spectrum is multivariate discrete phase-type distributed (Hobolth, Bladt,
and Andersen 2021). These statements hold for the standard coalescent process, but also for
more general time-homogeneous coalescent models such as the structured coalescent (Wakeley
2009, Section 5), the multiple merger coalescent (Tellier and Lemaire 2014), and the coalescent
with recombination (Wakeley 2009, Section 7.2).

This paper presents the basic theory for phase-type distributions and demonstrates how to
apply the distributions using PhaseTypeR. The paper is organized as follows. Section 2 is con-
cerned with the univariate and multivariate continuous phase-type distributions. The basic
phase-type object contains a subintensity matrix and an initial probability vector (potentially
with a defect), and the four commonly associated functions dPH (probability density function),
pPH (cumulative distribution function), qPH (quantile function) and rPH (random sampling).
The function rFullPH provides a simulation of the full sample path from a continuous phase-
type distribution. We then introduce the reward transformations and the multivariate contin-
uous phase-type distribution. Section 3 follows the same structure and introduces the same
type of functions (called dDPH, pDPH, qDPH, rDPH, rFullDPH) for the univariate and multivari-
ate discrete phase-type distributions. In Section 4 we apply phase-type theory to understand
the ancestral recombination graph for two loci and two samples, and in Section 5 we demon-
strate how phase-type theory can be used to learn about a structured population. The paper
ends with a conclusion and a discussion of future extensions and applications of our package.

2. Continuous phase-type distributions

2.1. Theory for the phase-type distribution

A continuous phase-type distribution is a sum of exponential distributions that occur sequen-
tially until absorption. More specifically, a phase-type distribution is the time to absorption
of a Markov jump process.

Following the notation in Bladt and Nielsen (2017), let {Xt}t≥0 be a Markov jump process
with p transient states and a single absorbing state. The time until absorption τ of such
a process then follows a continuous phase-type distribution, where the rate matrix of the
underlying Markov jump process Λ is given as

Λ =

(
T t
0 0

)
. (1)

The p × p matrix T is the subintensity matrix, and the elements are the transition rates
between the transient states. Because of the properties of rate matrices, all the rows of
Λ sum to 0 (i.e. Λe = 0, where e is a vector of ones), which means that the phase-type
distribution can be defined by the subintensity matrix T , while the exit rate column vector t
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4 Package PhaseTypeR

Quantity Formula

Mean E(τ) = π(−T )−1e
Moments E(τn) = n!π(−T )−ne
Variance V(τ) = E(τ2)− E(τ)2

Density f(x) = π exp(Tx)(−Te), x ≥ 0
Cumulative distribution F (x) = 1− π exp(Tx)e, x ≥ 0

Table 1: Formulas for the mean, moments, variance, probability density function and cumu-
lative distribution function of the continuous phase-type distribution. Here, π is the vector
of initial probabilities, T is the subintensity matrix and e is a vector of ones.

is given by t = −Te. Additionally, we have a vector of size p corresponding to the initial
probabilities π, such that τ ∼ PH(π,T ) (i.e. P (X0 = i) = πi, i = 1, . . . , p). The sum of the
initial probabilities (πe) might sum to less than 1. If this is the case, then we can define
the defect as 1− πe, which corresponds to the probability of starting in the absorbing state
without passing through any of the transient states (i.e. P (X0 = p+ 1) = 1− πe).

The properties of phase-type distributions can easily be calculated due to their matrix-form
representation. The mean, variance, probability density function and cumulative distribution
function for the continuous phase-type distribution are summarized in Table 1. For the
mathematical derivations of these formulas we refer to Bladt and Nielsen (2017).

Continuous phase-type distributions can be linearly transformed via rewards (Bladt and
Nielsen 2017). This is achieved by assigning a non-negative reward to each of the transient
states 1, . . . , p. The resulting distribution is also a phase-type distribution. Let the rewards
be given by the function r(i), i = 1, . . . , p, and summarized in the vector r = (r1, . . . , rp),
where r(i) = ri. Consider the reward-transformed random variable

τ∗ =

∫ τ

0
r(Xt)dt,

where {Xt}t≥0 is the underlying jump Markov process for the original phase-type distribution
τ ∼ PH(π,T ). We have that τ∗ is phase-type distributed with π∗ and T ∗ denoting the initial
distribution and subintensity matrix of this distribution, respectively. If all the elements in
the reward vector r are strictly positive, then T ∗ = diag(1/r)T , where diag(1/r) is the p×p
diagonal matrix with 1/ri on the diagonal, while the initial probability vector stays the same
(π∗ = π). If r contains zero-valued rewards, then the states should with a reward of zero
can be excluded. As a result, the transient states should be re-defined and the resulting π∗

and T ∗ are lower-dimensional; we refer to Theorem 3.1.33 in Bladt and Nielsen (2017) for the
mathematical details.

If several univariate continuous phase-type distributions are defined by the same subintensity
matrix but different reward vectors (r1, r2, . . . , rm), then we represent the system as a mul-
tivariate continuous phase-type distribution MPH(π,T ,R), where π is the initial probability
vector, T is the subintensity matrix, and R = (r1, r2, . . . , rm) is the p×m reward matrix.

2.2. Defining the phase-type object

To exemplify the usage of PhaseTypeR, we will use phase-type representations of common
summary statistics in population genetics. Perhaps the most prominent example is the time
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until the most recent common ancestor TMRCA, which can be defined as a convolution of
exponential distributions following the standard coalescent process (see Figure 1). This means
that the TMRCA follows a univariate continuous phase-type distribution TMRCA ∼ PH(π,T ),
with initial probabilities π and subintensity matrix T (Hobolth et al. 2019). For the standard
coalescent model (Kingman 1982) and a sample size of four chromosomes, the subintensity
matrix for the TMRCA is given by

T =

−6 6 0
0 −3 3
0 0 −1

 , (2)

with initial probability vector π = (1, 0, 0).

T4 ∼ Exp(6)

T3 ∼ Exp(3)

T2 ∼ Exp(1) TMRCA = T4 + T3 + T2

Ttotal = 4T4 + 3T3 + 2T2

=
∫ TMRCA

0 r(Xt) dt,

where the reward vector is

r = (4, 3, 2)State 1

State 2

State 3

Figure 1: Coalescent process for n = 4 samples. The underlying Markov jump process
{Xt} is in state Xt = 1 for 0 ≤ t < T4, Xt = 2 for T4 ≤ t < T4 + T3, and Xt = 3 for
T4 + T3 ≤ t < T4 + T3 + T2. The process is in the absorbing state for t ≥ T4 + T3 + T2.
The rewards in the states correspond to the number of lineages and the reward-transformed
variable Ttotal correspond to the total tree length.

We can specify the initial probabilities and the subintensity matrix for this univariate contin-
uous phase-type distribution using the PH() function:

R> subintensity_matrix <- matrix(c(-6, 6, 0,

+ 0, -3, 3,

+ 0, 0, -1),

+ ncol = 3, byrow = T)

R> initial_probabilities <- c(1, 0, 0)

R> T_MRCA <- PH(subintensity_matrix, initial_probabilities)

R> T_MRCA

$subint_mat

[,1] [,2] [,3]

[1,] -6 6 0

[2,] 0 -3 3

[3,] 0 0 -1

$init_probs
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6 Package PhaseTypeR

[,1] [,2] [,3]

[1,] 1 0 0

$defect

[1] 0

attr(,"class")

[1] "cont_phase_type"

2.3. The mean and the variance of a phase-type distribution

The mean and variance of a phase-type object can be accessed by mean() and var(), re-
spectively. For the phase-type representation of TMRCA defined above, mean(T_MRCA) yields
1.5 and mean(T_MRCA) yields 1.138889, which match the well-known results from classical
population genetics formulas (Wakeley 2009, Section 3.3).

2.4. Distribution functions and random sampling for a phase-type distribution

PhaseTypeR uses standard R suffixes for the probability density function (dPH), the cumula-
tive distribution function (pPH), the quantile function (qPH) and the random sampling function
(rPH) for univariate continuous phase-type distributions:

R> dPH(c(0.1, 0.5, 0.8), T_MRCA)

[1] 0.06482665 0.48210919 0.54651397

R> pPH(c(0.1, 0.5, 0.8), T_MRCA)

[1] 0.002348541 0.121417559 0.280279868

R> qPH(c(0.05, 0.5, 0.95), T_MRCA)

[1] 0.3302855 1.2328314 3.5830871

R> set.seed(3)

R> rPH(3, T_MRCA)

[1] 0.6459884 0.1019513 1.0577725

Sometimes, it is of interest to retrieve the full sample path of the Markov jump process. The
user can achieve so using the rFullPH function, which returns a data frame containing all the
visited states and the time spent in each:

R> set.seed(3)

R> rFullPH(T_MRCA)
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state time

1 1 0.1025055

2 2 0.3346948

3 3 0.2087881

2.5. Reward transformation

The TMRCA is tightly related to the total tree length, or Ttotal (Hobolth et al. 2019). More
specifically, Ttotal is a linear transformation of TMRCA, so its phase-type representation can
be obtained by a reward transformation. The reward vector needed is r = (n, n − 1, ..., 2),
where n is the sample size (recall Figure 1).

Reward transformation in PhaseTypeR can be done using the reward_phase_type() func-
tion. For the case of n = 4 the reward vector is r = (4, 3, 2), and a phase-type representation
of Ttotal can be obtained by reward-transforming TMRCA:

R> reward <- c(4, 3, 2)

R> T_total <- reward_phase_type(T_MRCA, reward)

R> T_total

$subint_mat

[,1] [,2] [,3]

[1,] -1.5 1.5 0.0

[2,] 0.0 -1.0 1.0

[3,] 0.0 0.0 -0.5

$init_probs

[,1] [,2] [,3]

[1,] 1 0 0

$defect

[1] 0

attr(,"class")

[1] "cont_phase_type"

The mean and variance of the total branch length are given by

R> c(mean(T_total), var(T_total))

[1] 3.666667 5.444444

We note once again that these results match the ones derived from classical population genetic
formulas (e.g. Wakeley 2009, Section 3.3).

2.6. The multivariate continuous phase-type distribution

Similar to the construction of Ttotal, we can reward-transform the phase-type representation
of TMRCA to get the distribution of the total branch length leading to each of the elements of
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8 Package PhaseTypeR

the site frequency spectrum (ξ1, . . . , ξn−1), i.e. singletons (ξ1), doubletons (ξ2), etc. In order
to do so for n = 4, we first need to extend the subintensity matrix T by sub-dividing state 3
into two. The reason for this is that 1/3 of the times the second coalescent will lead to the
creation of two doubleton branches, while 2/3 of the times it will lead to one singleton branch
and one tripleton branch (see Figure 2). The resulting subintensity matrix is given by

T ′ =


−6 6 0 0
0 −3 1 2
0 0 −1 0
0 0 0 −1

 . (3)

Note that this is a less efficient but equal phase-type representation of TMRCA if the initial
probability vector is π′ = (1, 0, 0, 0).

State	1	(4	𝜉!)

State	2	(1	𝜉", 2	𝜉!)

State	1	(4	𝜉!)

State	2	(1	𝜉", 2	𝜉!)

State	3	(2	𝜉") State	4	(1	𝜉#, 1	𝜉!)

𝐏𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲	𝐨𝐟	𝐭𝐫𝐞𝐞	𝟏/𝟑 𝐏𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲	𝐨𝐟	𝐭𝐫𝐞𝐞	𝟐/𝟑

Figure 2: Coalescent process for n = 4 samples. State 1 contains 4 singleton branches
(mutations in singleton branches are only present in one sample, represented in red), state 2
contains 2 singleton branches and 1 doubleton branch (mutations in doubleton branches are
present in two samples, represented in blue), state 3 contains 2 doubleton branches, and state 4
contains 1 singleton and 1 tripleton branch (mutations in tripleton branches are present in
three samples, represented in green).

Following Hobolth et al. (2019), if we transform TMRCA with a reward of r1 = (4, 2, 0, 1), we
get a phase-type representation of the total branch length leading to singletons, denoted L1.
Knowing that the reward vectors for doubletons and tripletons are r2 = (0, 1, 2, 0) and
r3 = (0, 0, 0, 1), instead of reward-transforming each element of the site frequency spectrum
separately, we can define a multivariate continuous phase-type distribution L = (L1, L2, L3) ∼
MPH(π′,T ′,R) with initial distribution π′ = (1, 0, 0, 0), subintensity matrix T ′ and reward
matrix R = (r1, r2, r3).

Multivariate continuous phase-type distributions are implemented in PhaseTypeR as follows:

R> subintensity_matrix <- matrix(c(-6, 6, 0, 0,

+ 0, -3, 1, 2,

+ 0, 0, -1, 0,

+ 0, 0, 0, -1),

+ ncol = 4, byrow = T)

R> initial_probabilities <- c(1, 0, 0, 0)

R> reward_matrix <- matrix(

+ c(4,2,0,1,

+ 0,1,2,0,
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+ 0,0,0,1),

+ nrow = 4)

R> L <- MPH(subintensity_matrix, initial_probabilities, reward_matrix)

R> L

$subint_mat

[,1] [,2] [,3] [,4]

[1,] -6 6 0 0

[2,] 0 -3 1 2

[3,] 0 0 -1 0

[4,] 0 0 0 -1

$init_probs

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

$reward_mat

[,1] [,2] [,3]

[1,] 4 0 0

[2,] 2 1 0

[3,] 0 2 0

[4,] 1 0 1

$defect

[1] 0

attr(,"class")

[1] "mult_cont_phase_type"

This type of multivariate representation is useful to calculate the variance-covariance matrix
of the variables. For the multivariate case, this can be accessed using var():

R> var(L)

[,1] [,2] [,3]

[1,] 1.7777778 -0.2222222 0.8888889

[2,] -0.2222222 2.3333333 -0.4444444

[3,] 0.8888889 -0.4444444 0.8888889

Here, the diagonal is the variance of each of the elements (total branch length leading to
singletons, doubletons and tripletons in this case), and the off-diagonal values are the covari-
ances between the different elements. The analytical formula for calculating the covariance
can be found in Theorem 8.1.5 in Bladt and Nielsen (2017).

Moreover, PhaseTypeR also computes univariate quantities related to the marginal distribu-
tions of the MPH, i.e. the probability density function (dMPH), the cumulative distribution
function (pMPH) and the quantile function (qMPH). Random draws (rMPH) and random draws
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10 Package PhaseTypeR

with full path (rFullMPH) for the multivariate case use the same underlying sample path for
the Markov jump process.

3. Discrete phase-type distributions

3.1. Theory for the discrete phase-type distribution

A discrete phase-type distribution describes a process of geometric distributions that occur
sequentially until absorption. It is similar to the continuous case, but the underlying process
is a discrete time absorbing Markov chain instead of a Markov jump process.

If we define the Markov chain as {Xn}n∈N, which has p transient states and one absorbing
state, the discrete time until absorption τ follows a discrete phase-type distribution. The
transition probability matrix P of the Markov chain is then defined as

P =

(
T t
0 1

)
. (4)

The transition probabilities among the transient states are therefore contained in the p × p
subtransition matrix T . Similar to the continuous case, the discrete phase-type distribution
can be described solely by T . Since all the rows in P sum to 1 we have Pe = e and the exit
probability vector is given by t = e− Te = (I − T )e, where I is a p× p identity matrix. If
we let π be the vector of initial probabilities, then τ ∼ DPH(π,T ).

Similar to the continuous case, the mean, variance, probability density function and cumula-
tive distribution function for the discrete phase-type distribution can be defined using matrix
manipulation (Bladt and Nielsen 2017), and they are summarized in Table 2.

Quantity Formula

Mean E(τ) = π(I − T )−1e
Moments E(τn) = n!π(I − T )−ne
Variance V(τ) = E(τ2)− E(τ)2

Density f(x) = πT x−1t, x ≥ 1
Cumulative distribution F (x) = 1− πT xe, x ≥ 1

Table 2: Formulas for the mean, moments, variance, probability density and cumulative
distribution function of the discrete phase-type distribution. Here, π is the vector of initial
probability, T is the subtransition matrix, t is the exit probability vector, e is a vector of
ones, and I is an identity matrix.

Additionally, discrete phase-type distributions can also be transformed with non-negative
integer rewards. If a reward for a certain state is set to 0, then that state is removed from
the subtransition matrix. If instead it is set to a positive integer larger than 1, then the
subtransition matrix is extended to ”force” the Markov chain to pass through a state several
times. The full mathematical construction of reward transformations for the discrete case is
presented in Theorem 5.2 in Campillo Navarro (2018).

Similar to the continuous case, multivariate discrete phase-type distributions can be con-
structed by combining univariate distributions that share the same subtransition matrix but
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have different rewards (r1, r2, . . . , rm). The resulting joint distribution MDPH(π,T ,R) con-
tains an initial probability vector π, a subtransition matrix T and a p × m reward matrix
R = (r1, r2, . . . , rm).

3.2. Defining the discrete phase-type object

Another summary statistic in population genetics that can be represented using phase-type
theory is the number of segregating sites Stotal (Hobolth et al. 2019). Consider the coalescent
process with a sample size of n = 3, i.e. we have a state 1 with three singleton branches and
state 2 with one singleton branch and one doubleton branch (Kingman 1982). The coalescent
rate in state 1 is

(
3
2

)
= 3 and the mutation rate is θ/2 on each of the three branches (so

3θ/2 in total). The probability that the first event in the ancestral process is a mutation
before a coalescent is given by the mutation rate relative to the total rate, a situation which
corresponds to two competing exponential distributions (see e.g. Wakeley 2009, equations
(2.60) and (4.5)). Therefore, the number of mutations when three branches are present is
geometrically distributed with probability of mutation

p1 =
3θ/2

3 + 3θ/2
=

θ

2 + θ
. (5)

Similarly, when two branches are present, the coalescent rate is
(
2
2

)
= 1 and the total mutation

rate is 2θ/2. Thus, the number of mutations in this case is geometrically distributed with
probability of mutation

p2 =
2θ/2

1 + 2θ/2
=

θ

1 + θ
. (6)

We may describe the situation using a discrete phase-type distribution with subtransition
probability matrix

T =

(
p1 p12
0 p2

)
=

(
p1 (1− p1) p2
0 p2

)
=

( θ
2+θ

2
2+θ

θ
1+θ

0 θ
1+θ

)
, (7)

Here, a jump into state 1 corresponds to a mutation on the level of the tree with three
branches, and a jump into state 2 corresponds to a mutation on the level of the tree with two
branches. We can also start in a situation with no mutation, which corresponds to directly
jumping to the absorbing state. In order to model this, we can work with a defective initial
distribution given by π = (p1, p12). The probability of zero jumps (mutations) is then

1− p1 − p12 =
2

2 + θ

1

1 + θ
,

which corresponds to the defect. The total number of mutations, thus, follows a univariate
discrete phase-type distribution Stotal ∼ DPH(π,T ). We remark that this same distribu-
tion arises from adding Poisson mutations on the phase-type distributed total tree length
(Theorem 3.5, eq. (19) in Hobolth et al. (2019)).

In PhaseTypeR, it is straightforward to specify a univariate discrete phase-type distributions
with DPH(). For the case of Stotal when n = 3 and θ = 3:

R> tht <- 3

R> p_1 <- tht/(2+tht)
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R> p_12 <- ( 2/(2+tht) )*( tht/(1+tht) )

R> p_2 <- tht/(1+tht)

R> T_mat <- matrix(c(p_1, p_12,

+ 0, p_2),

+ ncol = 2, byrow = T)

R> init_probs <- c(p_1, p_12)

R> S_total <- DPH(T_mat, init_probs)

R> S_total

$subint_mat

[,1] [,2]

[1,] 0.6 0.30

[2,] 0.0 0.75

$init_probs

[,1] [,2]

[1,] 0.6 0.3

$defect

[1] 0.1

attr(,"class")

[1] "disc_phase_type"

3.3. The mean and the variance of a discrete phase-type distribution

Similar to the continuous case, the mean and variance of the discrete phase-type object can
be computed by mean() and var(), respectively. For the phase-type representation of Stotal
defined above, mean(S_total) yields 4.5 and var(S_total) yields 15.75. These results match
the ones derived from classical population genetic formulas (e.g. Wakeley 2009, Section 4.1.1).

3.4. Distribution functions and sampling for a discrete phase-type distribution

PhaseTypeR also contains functions for the probability density function (dDPH), the cumula-
tive distribution function (pDPH), the quantile function (qDPH) and random sampling (rDPH)
of univariate discrete phase-type distributions:

R> dDPH(c(0, 1, 2, 10), S_total)

[1] 0.10000000 0.13500000 0.13725000 0.02573811

R> pDPH(c(0, 1, 2, 10), S_total)

[1] 0.1000000 0.2350000 0.3722500 0.9191577

R> qDPH(c(0.05, 0.5, 0.95), S_total)
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[1] 0 4 12

R> set.seed(3)

R> rDPH(5, S_total)

[1] 14 3 8 8 12

We can also simulate a sample path from the Markov chain by using the rFullDPH() function.
This returns a data frame with the visited states and the time spent in each of them:

R> set.seed(45)

R> rFullDPH(S_total)

state time

1 1 1

2 2 13

3.5. Reward transformation

While Stotal does not distinguish the different types of segregating sites, sometimes we are
interested in knowing the type of mutations based on the site frequency spectrum. When
n = 3, there are two types of segregating sites, namely singletons (ξ1) and doubletons (ξ2).
Mutations in state 1 are always singletons, but mutations in state 2 are singletons with
probability 1/2 and doubletons with probability 1/2. We therefore extend the subtransition
probability matrix to

Mξ =

p1 1
2p12

1
2p12

0 1
2p2

1
2p2

0 1
2p2

1
2p2

 , (8)

where the new state 2 corresponds to singletons in the old state 2 and the new state 3
corresponds to doubletons in the old state 2. If we define an initial probability vector of
πξ = (p1,

1
2p12,

1
2p12), we can define a discrete phase-type distribution Stotal ∼ DPH(πξ,Mξ).

This way of defining Stotal is a more inefficient though equivalent representation compared
to the definition in the previous section. However, we can now transform the phase-type
distribution via rewards to get discrete phase-type representations of the different elements
of the site frequency spectrum. For example, ξ1 ∼ DPH(π1,M1), which can be derived
by reward-transforming Stotal with a reward vector of r1 = (1, 1, 0). This can be done in
PhaseTypeR using the reward_phase_type() function:

R> T_mat <- matrix(c(p_1, p_12/2, p_12/2,

+ 0, p_2/2, p_2/2,

+ 0, p_2/2, p_2/2),

+ ncol = 3, byrow = T)

R> init_probs <- c(p_1, p_12/2, p_12/2)

R> S_total <- DPH(T_mat, init_probs)

R> singletons <- reward_phase_type(S_total, c(1, 1, 0))

R> singletons
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$subint_mat

[,1] [,2]

[1,] 0.6 0.30

[2,] 0.0 0.75

$init_probs

[,1] [,2]

[1,] 0.6 0.3

$defect

[1] 0.1

attr(,"class")

[1] "disc_phase_type"

And similarly, for doubletons with a reward vector of r2 = (0, 0, 1):

R> doubletons <- reward_phase_type(S_total, c(0, 0, 1))

R> doubletons

$subint_mat

[,1]

[1,] 0.6

$init_probs

[,1]

[1,] 0.6

$defect

[1] 0.4

attr(,"class")

[1] "disc_phase_type"

Note that when θ = 3

R> c(mean(singletons), mean(doubletons))

[1] 3.0 1.5

This matches the famous result from coalescent theory (e.g. Wakeley 2009, Section 4.1.3),
which states that the mean of the elements in the site frequency spectrum is E[ξi] = θ/i,
i = 1, . . . , n− 1.

3.6. The multivariate discrete phase-type distribution

Naturally, the joint site frequency spectrum (ξ1, ξ2) is multivariate discrete phase-type dis-
tributed with initial distribution π = (p1, p12), subtransition matrix Mξ, and reward vectors
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r1 = (1, 1, 0) and r2 = (0, 0, 1), i.e.

(ξ1, ξ2) ∼ MDPH(π,Mξ,Rξ),

with Rξ = (r1, r2).

Using PhaseTypeR:

R> SFS <- MDPH(T_mat, init_probs, matrix(c(1, 1, 0, 0, 0, 1), nrow = 3))

R> SFS

$subint_mat

[,1] [,2] [,3]

[1,] 0.6 0.150 0.150

[2,] 0.0 0.375 0.375

[3,] 0.0 0.375 0.375

$init_probs

[,1] [,2] [,3]

[1,] 0.6 0.15 0.15

$reward_mat

[,1] [,2]

[1,] 1 0

[2,] 1 0

[3,] 0 1

$defect

[1] 0.1

attr(,"class")

[1] "mult_disc_phase_type"

This construction can be extended to any sample size n with site frequency spectrum (SFS)
(ξ1, . . . , ξn−1). The general situation is described in Hobolth et al. (2021), and the special
case n = 4 is illustrated in detail in Section 4 in that paper.

PhaseTypeR can be used to calculate the variance-covariance matrix of a multivariate discrete
phase-type distribution:

R> var(SFS)

[,1] [,2]

[1,] 7.50 2.25

[2,] 2.25 3.75

Here, the diagonal corresponds to the variance in the number of singletons and doubletons,
respectively. The covariance is provided in the off-diagonal values, whose formula can be
consulted in Campillo Navarro (2018).
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Figure 3: State space and transition rates for the two-locus ancestral recombination graph
(ARG). Coalescent events are represented with blue arrows, while recombination events are
marked in red. The corresponding coalescent or recombination rates are labeled next to each
arrow.

Similar to the continuous case, PhaseTypeR also contains functions for calculating univariate
quantities of the marginal distributions of MDPH. These include the probability density
function (dMDPH), the cumulative distribution function (pMDPH) and the quantile function
(qMDPH). Moreover, random draws (rMDPH) and random draws with full path (rFullMDPH) for
the multivariate discrete case use the same underlying sample path for the Markov chain.

4. The coalescent with recombination

The traditional procedure for deriving the correlation between the branch lengths in two loci
for a sample of size two is by a first-step analysis (e.g. Wakeley 2009, Section 7). In this
section we demonstrate how to use phase-type theory to obtain the result.

The state space and transition rates for the two-locus ancestral recombination graph is shown
in Figure 3. The filled circles represent material ancestral to the sample, and the crosses
indicate that the most common ancestor has been found. The lines between the circles or
crosses indicate if the ancestral material is present on the same chromosome. The starting
state is state 1 at present day with two samples from the same chromosome.

The time τ when both loci have found their common ancestor is PH(α,S) distributed with
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α = (1, 0, 0, 0, 0) and

S =


−(1 + 2ρ/2) 2ρ/2 0 0 0

1 −(3 + ρ/2) ρ/2 1 1
0 4 −6 1 1
0 0 0 −1 0
0 0 0 0 −1

 . (9)

The tree height Tleft in the left locus is the first time the ancestral process {X(t) : t ≥ 0}
enters state 4 or state 6 or, equivalently, the time spent in state 1, 2, 3 and 5 before absorption
in state 6. We therefore have

Tleft = min
{
t ≥ 0 : X(t) ∈ {4, 6}

}
=

∫ τ

0
rleft(Xt)dt

with the reward vector rleft = (1, 1, 1, 0, 1). Similarly, the tree height Tright in the right locus
is the first time the ancestral process enters state 5 or state 6 or, equivalently, the time spent
in state 1, 2, 3 and 4 before absorption in state 6. We therefore have

Tright = min
{
t ≥ 0 : X(t) ∈ {5, 6}

}
=

∫ τ

0
rright(Xt)dt

with the reward vector rright = (1, 1, 1, 1, 0). A classical result in population genetics gives
the covariance between the two tree heights

Cov(Tleft, Tright) =
ρ+ 18

ρ2 + 13ρ+ 18
,

and we note that for large recombination rates Cov(Tleft, Tright) is close to zero, and for small
recombination rates it is close to one. Note that Tleft and Tright are both exponentially dis-
tributed with a rate of 1, so Var(Tleft) = Var(Tright) = 1, and, consequently, Cor(Tleft, Tright) =
Cov(Tleft, Tright) (see also Wakeley 2009, equation (3.10)). Moreover, as shown by a simple
proof in Wilton, Carmi, and Hobolth (2015), we have that P (Tleft = Tright) = Cov(Tleft, Tright).

An implementation using PhaseTypeR simply consists of specifying the initial distribution,
rate matrix for the ancestral process, rewards for the two tree heights, and calling the variance
function for the multivariate phase-type distribution.

R> recomb_rate <- 0.3

R> ARG_subint_mat <- function(recomb_rate) {

+ matrix(

+ c(-(1+2*recomb_rate/2), 2*recomb_rate/2, 0, 0, 0,

+ 1, -(3+recomb_rate/2), recomb_rate/2, 1, 1,

+ 0, 4, -6, 1, 1,

+ 0, 0, 0, -1, 0,

+ 0, 0, 0, 0, -1),

+ nrow=5, byrow=TRUE)

+ }

R> subintensity_matrix <- ARG_subint_mat(recomb_rate)

R> initial_probabilities <- c(1, 0, 0, 0, 0)

R> reward_left <- c(1, 1, 1, 0, 1)
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R> reward_right <- c(1, 1, 1, 1, 0)

R> T_joint <- MPH(subintensity_matrix,

+ initial_probabilities,

+ matrix(c(reward_left, reward_right), nrow = 5))

R> c(var(T_joint)[1, 2],

+ (recomb_rate + 18) / (recomb_rate ^ 2 + 13 * recomb_rate + 18))

[1] 0.8321965 0.8321965

We can see that the phase-type result is equal to the classical formula provided above.

From this multivariate phase-type representation of the ARG, we can simulate, for exam-
ple, 1,000 draws from the joint distribution of (Tleft, Tright) using rMPH(1000, T_joint) in
PhaseTypeR. If the recombination rate ρ is set to a small value, then most of the draws will
result in Tleft = Tright, and the joint density will concentrate along the diagonal, as shown in
Figure 4, left (Simonsen and Churchill 1997). If instead ρ is large, then most of the draws
will result in Tleft 6= Tright (Figure 4, right).
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Figure 4: Scatter plot of a simulation of 1,000 draws from the joint distribution of the coales-
cent times (Tleft, Tright) in the two-loci, two-sample ARG. The recombination rate ρ was set
to 0.166 and 11.316 in the left and right plots, respectively, such that P (Tleft = Tright) equals
0.9 or 0.1. The red diagonal identity line is plotted as a reference.

5. The structured coalescent

We now consider the structured coalescent, and use the notation and set-up described in
Section 5.2 in Wakeley (2009). The number of demes (or sub-populations) is D ≥ 2, and
we assume that the rate of migration for a lineage is the same between any two demes and
is given by M/(2(D − 1)). We also assume that the coalescent rate for two lineages within
any deme is one. We focus on moments and distributions of coalescent times for samples of
size 2. Since this model is completely symmetric we only need three states: a ’within’ state
where the two lineages are in the same deme, a ’between’ state where the lineages are in two
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Figure 5: Mean (left) and variance (right) of the coalescent time across varying migration
rates, with ten demes (D = 10) and two samples. The initial state was set to either within
the same deme (blue, state 1) or between demes (red, state 2).

different demes, and a ’common ancestry’ state where the two lineages have coalesced. The
last state is an absorbing state.

The ancestral process transitions from the ’within’ state to the ’between’ state with rate M
because we have two lineages and each lineage can migrate to (D − 1) demes. The rate of
coalescent is one in the ’within’ state. The transition rate from the ’between’ state to the
’within’ state is M/(D− 1) because one of the two lineages has to move to exactly that deme
where the other lineage is located. It is impossible to coalesce in the ’between’ state because
the lineages are in different demes. The subintensity matrix is thus given by

S =

(
−(M + 1) M
M/(D − 1) −M/(D − 1)

)
, (10)

where the order of states is first ’within’ and second ’between’.

It is straight-forward to use PhaseTypeR to determine the mean and variance for a given
number of demes and varying migration rate.

R> initial_within <- c(1, 0)

R> initial_between <- c(0, 1)

R> structured_subintensity_matrix <- function(deme_number, migration_rate){

+ subintensity_matrix <- matrix(

+ c(-migration_rate-1, migration_rate,

+ migration_rate/(deme_number-1), -migration_rate/(deme_number-1)),

+ nrow=2, ncol=2, byrow=TRUE)

+ subintensity_matrix

+ }

R> n <- 200

R> mig_rate_vec <- seq(0.01, 10, len=n)

R> mean_within <- rep(0, n)

R> mean_between <- rep(0, n)

R> var_within <- rep(0, n)

R> var_between <- rep(0, n)

R> for (i in 1:n){
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+ structured_subint_mat <-

+ structured_subintensity_matrix(deme_number=10, mig_rate_vec[i])

+ withinPH <- PH(structured_subint_mat, initial_within)

+ mean_within[i] <- mean(withinPH)

+ var_within[i] <- var(withinPH)

+ betweenPH <- PH(structured_subint_mat, initial_between)

+ mean_between[i] <- mean(betweenPH)

+ var_between[i] <- var(betweenPH)

+ }

The resulting plots are shown in Figure 5, and they reproduce Figure 5.1 in Wakeley (2009).
We note that the mean coalescent time for two samples from the same deme is independent of
the migration rate: the mean time e1(−S)−1e = D (recall Table 1) is the number of demes D.
We also note that the mean and variance are substantially different for the two starting states
when the migration is low, but converge when the migration rate is high.

Similarly we can find the density functions for the coalescent time.

R> x <- seq(0, 14, length.out = 100)

R> structured_subint_mat_1 <-

+ structured_subintensity_matrix(deme_number=2, migration_rate=1.0)

R> structured_subint_mat_2 <-

+ structured_subintensity_matrix(deme_number=10, migration_rate=1.0)

R> ## Initial state within:

R> withinPH_1 <- PH(structured_subint_mat_1, initial_within)

R> withinPDF_1 <- dPH(x, withinPH_1)

R> withinPH_2 <- PH(structured_subint_mat_2, initial_within)

R> withinPDF_2 <- dPH(x, withinPH_2)

R> ## Initial state between:

R> betweenPH_1 <- PH(structured_subint_mat_1, initial_between)

R> betweenPDF_1 <- dPH(x, betweenPH_1)

R> betweenPH_2 <- PH(structured_subint_mat_2, initial_between)

R> betweenPDF_2 <- dPH(x, betweenPH_2)

In Figure 6 we show the densities of the coalescent times with fixed migration rate M = 1,
deme number D = 2 or D = 10, and initial state either within (left plot) or between (right
plot). Figure 6 in this article reproduces figures 5.2 and 5.3 in Wakeley (2009). Perhaps
the most striking difference between the left and right plot is that the coalescence density is
monotonocially decreasing when the initial sampling is within one deme, whereas the coales-
cence density is unimodal when the initial sampling is between two demes.

6. Conclusion, discussion and perspectives

In PhaseTypeR we have implemented the key characteristics and desired functions for the
DPH, MDPH, PH and MPH distributions, and in this paper we have illustrated the usage
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Figure 6: Density of the coalescent time between two samples, where the migration rate is
fixed to M = 1 and the initial state is set to either within the same deme (left) or between
demes (right). Blue and green indicate a number of demes of D = 2 or D = 10, respectively.

in simple examples (Section 2 and Section 3) and more involved applications (Section 4 and
Section 5) from population genetics. The ability to reward-transform is particularly important
in population genetics, and a unique feature of PhaseTypeR.

We have demonstrated that phase-type theory in general and PhaseTypeR in particular con-
tains the basic foundation and implementation for obtaining insight and understanding a
wide range of population genetic models. In Section 2 we concentrated on the standard King-
man’s coalescent, in Section 3 on the coalescent with mutation, in Section 4 on the ancestral
recombination graph, and in Section 5 on the structured coalescent. All of these models
are homogeneous in time and determined by the instantaneous rate matrix and initial dis-
tribution. Other time-homogeneous population genetic models include the multiple merger
coalescent (Tellier and Lemaire 2014; Freund 2021; Birkner and Blath 2021) and dormancy
(Blath and Kurt 2021).

A major challenge with the coalescent models is the rapid increase in the size of the state
space with the number of samples. Indeed, in the simple standard Kingman’s coalescent, the
size of the state space equals the partition number from number theory (Hobolth et al. 2021),
which increases exponentially fast in the the square root of the sample size. The instantaneous
rate matrices for the coalescent models are often sparse, and with a clear structure (i.e. the
number of ancestral lineages always decreases except when recombination is present). The
current version of PhaseTypeR is not taking advantage of such special structure, but it could
be important for future versions because the size of population genetic data sets are often
very large.

Another extension of PhaseTypeR could be to allow for in-homogeneity in time. For example,
Arredondo, Mourato, Nguyen, Boitard, Rodŕıguez, Noûs, Mazet, and Chikhi (2021) consider
a structured coalescent where the number of demes is constant in time, but the migration rate
has different values in epochs of time in the past. Such a model requires to paste together
the probabilities from the different epochs, and intermediate epochs require the calculation of
the matrix exponential (see e.g. supplementary material in Zeng, Charlesworth, and Hobolth
(2021)). Recent progress for calculating the matrix exponential for large rate matrices is
available in Sherlock (2021).

Applications of phase-type distributions for statistical inference is still in its infancy, but we
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hope that this package will fuel the development. We have demonstrated how to determine the
mean and co-variance matrix for the site frequency spectrum from a coalescent model given
the sample size and a set of parameters. A natural procedure for estimating the parameters
of a coalescent model using phase-type theory is to match the observed and expected site
frequency spectrum. Birkner and Blath (2021) describe inference methods for coalescent
models with highly skewed offspring distributions using the site frequency spectrum and the
methods of moments for parameter estimation.
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