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Abstract

Correlation coefficients are widely used to identify patterns in data that may be of particular interest.
In transcriptomics, genes with correlated expression often share functions or are part of disease-
relevant biological processes. Here we introduce the Clustermatch Correlation Coefficient (CCC), an
efficient, easy-to-use and not-only-linear coefficient based on machine learning models. CCC reveals
biologically meaningful linear and nonlinear patterns missed by standard, linear-only correlation
coefficients. CCC captures general patterns in data by comparing clustering solutions while being
much faster than state-of-the-art coefficients such as the Maximal Information Coefficient. When
applied to human gene expression data, CCC identifies robust linear relationships while detecting
nonlinear patterns associated, for example, with sex differences that are not captured by linear-only
coefficients. Gene pairs highly ranked by CCC were enriched for interactions in integrated networks
built from protein-protein interaction, transcription factor regulation, and chemical and genetic
perturbations, suggesting that CCC could detect functional relationships that linear-only methods
missed. CCC is a highly-efficient, next-generation not-only-linear correlation coefficient that can
readily be applied to genome-scale data and other domains across different data types.

Introduction

New technologies have vastly improved data collection, generating a deluge of information across
different disciplines. This large amount of data provides new opportunities to address unanswered
scientific questions, provided we have efficient tools capable of identifying multiple types of
underlying patterns. Correlation analysis is an essential statistical technique for discovering
relationships between variables [1]. Correlation coefficients are often used in exploratory data mining
techniques, such as clustering or community detection algorithms, to compute a similarity value
between a pair of objects of interest such as genes [2] or disease-relevant lifestyle factors [3].
Correlation methods are also used in supervised tasks, for example, for feature selection to improve
prediction accuracy [4,5]. The Pearson correlation coefficient is ubiquitously deployed across
application domains and diverse scientific areas. Thus, even minor and significant improvements in
these techniques could have enormous consequences in industry and research.

In transcriptomics, many analyses start with estimating the correlation between genes. More
sophisticated approaches built on correlation analysis can suggest gene function [€], aid in
discovering common and cell lineage-specific regulatory networks [7], and capture important
interactions in a living organism that can uncover molecular mechanisms in other species [8,9]. The
analysis of large RNA-seq datasets [10,11] can also reveal complex transcriptional mechanisms

traits [16,17], gene-gene relationships are playing an increasingly important role in genetic studies of
human diseases [18,19,20,21], even in specific fields such as polygenic risk scores [22]. In this context,
recent approaches combine disease-associated genes from genome-wide association studies (GWAS)
with gene co-expression networks to prioritize “core” genes directly affecting diseases [19,20,23].
These core genes are not captured by standard statistical methods but are believed to be part of
highly-interconnected, disease-relevant regulatory networks. Therefore, advanced correlation
coefficients could immediately find wide applications across many areas of biology, including the
prioritization of candidate drug targets in the precision medicine field.

The Pearson and Spearman correlation coefficients are widely used because they reveal intuitive
relationships and can be computed quickly. However, they are designed to capture linear or
monotonic patterns (referred to as linear-only) and may miss complex yet critical relationships. Novel
coefficients have been proposed as metrics that capture nonlinear patterns such as the Maximal
Information Coefficient (MIC) [24] and the Distance Correlation (DC) [25]. MIC, in particular, is one of
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the most commonly used statistics to capture more complex relationships, with successful
applications across several domains [4,26,27]. However, the computational complexity makes them
impractical for even moderately sized datasets [26,28]. Recent implementations of MIC, for example,
take several seconds to compute on a single variable pair across a few thousand objects or conditions
[26]. We previously developed a clustering method for highly diverse datasets that significantly
outperformed approaches based on Pearson, Spearman, DC and MIC in detecting clusters of
simulated linear and nonlinear relationships with varying noise levels [29]. Here we introduce the
Clustermatch Correlation Coefficient (CCC), an efficient not-only-linear coefficient that works across
quantitative and qualitative variables. CCC has a single parameter that limits the maximum complexity
of relationships found (from linear to more general patterns) and computation time. CCC provides a
high level of flexibility to detect specific types of patterns that are more important for the user, while
providing safe defaults to capture general relationships. We also provide an efficient CCC
implementation that is highly parallelizable, allowing to speed up computation across variable pairs
with millions of objects or conditions. To assess its performance, we applied our method to gene
expression data from the Genotype-Tissue Expression v8 (GTEx) project across different tissues [30].
CCC captured both strong linear relationships and novel nonlinear patterns, which were entirely
missed by standard coefficients. For example, some of these nonlinear patterns were associated with
sex differences in gene expression, suggesting that CCC can capture strong relationships present only
in a subset of samples. We also found that the CCC behaves similarly to MIC in several cases, although
it is much faster to compute. Gene pairs detected in expression data by CCC had higher interaction
probabilities in tissue-specific gene networks from the Genome-wide Analysis of gene Networks in
Tissues (GIANT) [31]. Furthermore, its ability to efficiently handle diverse data types (including
numerical and categorical features) reduces preprocessing steps and makes it appealing to analyze
large and heterogeneous repositories.

Results

A robust and efficient not-only-linear dependence coefficient
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Figure 1: Different types of relationships in data. Each panel contains a set of simulated data points described by
two generic variables:  and y. The first row shows Anscombe’s quartet with four different datasets (from Anscombe | to
IV) and 11 data points each. The second row contains a set of general patterns with 100 data points each. Each panel
shows the correlation value using Pearson (p), Spearman (s) and CCC (c). Vertical and horizontal red lines show how CCC
clustered data points using £ and y.
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The CCC provides a similarity measure between any pair of variables, either with numerical or
categorical values. The method assumes that if there is a relationship between two variables/features
describing n data points/objects, then the clusterings of those objects using each variable should
match. In the case of numerical values, CCC uses quantiles to efficiently separate data points into
different clusters (e.g., the median separates numerical data into two clusters). Once all clusterings
are generated according to each variable, we define the CCC as the maximum adjusted Rand index
(ARI) [32] between them, ranging between 0 and 1. Details of the CCC algorithm can be found in
Methods.

We examined how the Pearson (p), Spearman (s) and CCC (c) correlation coefficients behaved on
different simulated data patterns. In the first row of Figure 1, we examine the classic Anscombe’s
quartet [33], which comprises four synthetic datasets with different patterns but the same data
statistics (mean, standard deviation and Pearson’s correlation). This kind of simulated data, recently
revisited with the “Datasaurus” [34,35,36], is used as a reminder of the importance of going beyond
simple statistics, where either undesirable patterns (such as outliers) or desirable ones (such as
biologically meaningful nonlinear relationships) can be masked by summary statistics alone.

Anscombe | contains a noisy but clear linear pattern, similar to Anscombe Il where the linearity is
perfect besides one outlier. In these two examples, CCC separates data points using two clusters (one
red line for each variable x and y), yielding 1.0 and thus indicating a strong relationship. Anscombe I
seems to follow a partially quadratic relationship interpreted as linear by Pearson and Spearman. In
contrast, for this potentially undersampled quadratic pattern, CCC yields a lower yet non-zero value of
0.34, reflecting a more complex relationship than a linear pattern. Anscombe IV shows a vertical line
of data points where x values are almost constant except for one outlier. This outlier does not
influence CCC as it does for Pearson or Spearman. Thus ¢ = 0.00 (the minimum value) correctly
indicates no association for this variable pair because, besides the outlier, for a single value of x there
are ten different values for y. This pair of variables does not fit the CCC assumption: the two clusters
formed with x (approximately separated by = 13) do not match the three clusters formed with y.
The Pearson’s correlation coefficient is the same across all these Anscombe’s examples (p = 0.82),
whereas Spearman is 0.50 or greater. These simulated datasets show that both Pearson and
Spearman are powerful in detecting linear patterns. However, any deviation in this assumption (like
nonlinear relationships or outliers) affects their robustness.

We simulated additional types of relationships (Figure 1, second row), including some previously
described from gene expression data [37,38,39]. For the random/independent pair of variables, all
coefficients correctly agree with a value close to zero. The non-coexistence pattern, captured by all
coefficients, represents a case where one gene () might be expressed while the other one (y) is
inhibited, highlighting a potentially strong biological relationship (such as a microRNA negatively
regulating another gene). For the other two examples (quadratic and two-lines), Pearson and
Spearman do not capture the nonlinear pattern between variables x and y. These patterns also show
how CCC uses different degrees of complexity to capture the relationships. For the quadratic pattern,
for example, CCC separates x into more clusters (four in this case) to reach the maximum ARI. The
two-lines example shows two embedded linear relationships with different slopes, which neither
Pearson nor Spearman detect (p = —0.12 and s = 0.05, respectively). Here, CCC increases the
complexity of the model by using eight clusters for & and six for y, resulting in ¢ = 0.31.

The CCC reveals linear and nonlinear patterns in human
transcriptomic data

We next examined the characteristics of these correlation coefficients in gene expression data from
GTEx v8 across different tissues. We selected the top 5,000 genes with the largest variance for our
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initial analyses on whole blood and then computed the correlation matrix between genes using
Pearson, Spearman and CCC (see Methods).

We examined the distribution of each coefficient's absolute values in GTEx (Figure 2). CCC (mean=0.14,
median=0.08, sd=0.15) has a much more skewed distribution than Pearson (mean=0.31, median=0.24,
sd=0.24) and Spearman (mean=0.39, median=0.37, sd=0.26). The coefficients reach a cumulative set
containing 70% of gene pairs at different values (Figure 2 b), c = 0.18, p = 0.44 and s = 0.56,
suggesting that for this type of data, the coefficients are not directly comparable by magnitude, so we
used ranks for further comparisons. In GTEx v8, CCC values were closer to Spearman and vice versa
than either was to Pearson (Figure 2 c). We also compared the Maximal Information Coefficient (MIC)
in this data (see Supplementary Note 1). We found that CCC behaved very similarly to MIC, although
CCC was up to two orders of magnitude faster to run (see Supplementary Note 2). MIC, an advanced
correlation coefficient able to capture general patterns beyond linear relationships, represented a
significant step forward in correlation analysis research and has been successfully used in various
application domains [4,26,27]. These results suggest that our findings for CCC generalize to MIC,
therefore, in the subsequent analyses we focus on CCC and linear-only coefficients.
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Figure 2: Distribution of coefficient values on gene expression (GTEx v8, whole blood). a) Histogram of coefficient
values. b) Corresponding cumulative histogram. The dotted line maps the coefficient value that accumulates 70% of
gene pairs. ) 2D histogram plot with hexagonal bins between all coefficients, where a logarithmic scale was used to
color each hexagon.

A closer inspection of gene pairs that were either prioritized or disregarded by these coefficients
revealed that they captured different patterns. We analyzed the agreements and disagreements by
obtaining, for each coefficient, the top 30% of gene pairs with the largest correlation values (“high” set)
and the bottom 30% (“low” set), resulting in six potentially overlapping categories. For most cases
(76.4%), an UpSet analysis [40] (Figure 3 a) showed that the three coefficients agreed on whether
there is a strong correlation (42.1%) or there is no relationship (34.3%). Since Pearson and Spearman
are linear-only, and CCC can also capture these patterns, we expect that these concordant gene pairs
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represent clear linear patterns. CCC and Spearman agree more on either highly or poorly correlated
pairs (4.0% in “high”, and 7.0% in “low") than any of these with Pearson (all between 0.3%-3.5% for
“high”, and 2.8%-5.5% for “low”). In summary, CCC agrees with either Pearson or Spearman in 90.5% of
gene pairs by assigning a high or a low correlation value.
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Figure 3: Intersection of gene pairs with high and low correlation coefficient values (GTEx v8, whole blood). a)
UpSet plot with six categories (rows) grouping the 30% of the highest (green triangle) and lowest (red triangle) values for
each coefficient. Columns show different intersections of categories grouped by agreements and disagreements. b)
Hexagonal binning plots with examples of gene pairs where CCC (c) disagrees with Pearson (p) and Spearman (s). For
each method, colors in the triangles indicate if the gene pair is among the top (green) or bottom (red) 30% of coefficient
values. No triangle means that the correlation value for the gene pair is between the 30th and 70th percentiles (neither
low nor high). A logarithmic scale was used to color each hexagon.

While there was broad agreement, more than 20,000 gene pairs with a high CCC value were not highly
ranked by the other coefficients (right part of Figure 3 a). There were also gene pairs with a high
Pearson value and either low CCC (1,075), low Spearman (87) or both low CCC and low Spearman
values (531). However, our examination suggests that many of these cases appear to be driven by
potential outliers (Figure 3 b, and analyzed later). We analyzed gene pairs among the top five of each
intersection in the “Disagreements” group (Figure 3 a, right) where CCC disagrees with Pearson,
Spearman or both.
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Figure 4: The expression levels of KDM6A and UTY display sex-specific associations across GTEx tissues. CCC
captures this nonlinear relationship in all GTEx tissues (nine examples are shown in the first three rows), except in

female-specific organs (last row).
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The first three gene pairs at the top (/FNG - SDS, JUN - APOCT1, and ZDHHC12 - CCL18), with high CCC
and low Pearson values, appear to follow a non-coexistence relationship: in samples where one of the
genes is highly (slightly) expressed, the other is slightly (highly) activated, suggesting a potentially
inhibiting effect. The following three gene pairs (UTY - KDM6A, RASSF2 - CYTIP, and AC068580.6 -
KLHL21) follow patterns combining either two linear or one linear and one independent relationships.
In particular, genes UTY and KDM6A (paralogs) show a nonlinear relationship where a subset of
samples follows a robust linear pattern and another subset has a constant (independent) expression
of one gene. This relationship is explained by the fact that UTYis in chromosome Y (Yq11) whereas
KDMG6A is in chromosome X (Xp11), and samples with a linear pattern are males, whereas those with
no expression for UTY are females. This combination of linear and independent patterns is captured
by CCC (c = 0.29, above the 80th percentile) but not by Pearson (p = 0.24, below the 55th
percentile) or Spearman (s = 0.10, below the 15th percentile). Furthermore, the same gene pair
pattern is highly ranked by CCC in all other tissues in GTEx, except for female-specific organs (Figure
4).

Replication of gene associations using tissue-specific gene networks
from GIANT

We sought to systematically analyze discrepant scores to assess whether associations were replicated
in other datasets besides GTEx. This is challenging and prone to bias because linear-only correlation
coefficients are usually used in gene co-expression analyses. We used 144 tissue-specific gene
networks from the Genome-wide Analysis of gene Networks in Tissues (GIANT) [41,42], where nodes
represent genes and each edge a functional relationship weighted with a probability of interaction
between two genes (see Methods). Importantly, the version of GIANT used in this study did not
include GTEx samples [43], making it an ideal case for replication. These networks were built from
expression and different interaction measurements, including protein-interaction, transcription factor
regulation, chemical/genetic perturbations and microRNA target profiles from the Molecular
Signatures Database (MSigDB [44]). We reasoned that highly-ranked gene pairs using three different
coefficients in a single tissue (whole blood in GTEx, Figure 3) that represented real patterns should
often replicate in a corresponding tissue or related cell lineage using the multi-cell type functional
interaction networks in GIANT. In addition to predicting a network with interactions for a pair of
genes, the GIANT web application can also automatically detect a relevant tissue or cell type where
genes are predicted to be specifically expressed (the approach uses a machine learning method
introduced in [45] and described in Methods). For example, we obtained the networks in blood and
the automatically-predicted cell type for gene pairs RASSF2 - CYTIP (CCC high, Figure 5 a) and MYOZT -
TNNI2 (Pearson high, Figure 5 b). In addition to the gene pair, the networks include other genes
connected according to their probability of interaction (up to 15 additional genes are shown), which
allows estimating whether genes are part of the same tissue-specific biological process. Two large
black nodes in each network’s top-left and bottom-right corners represent our gene pairs. A green
edge means a close-to-zero probability of interaction, whereas a red edge represents a strong
predicted relationship between the two genes. In this example, genes RASSF2 and CYTIP (Figure 5 a),
with a high CCC value (c = 0.20, above the 73th percentile) and low Pearson and Spearman (

p = 0.16 and s = 0.11, below the 38th and 17th percentiles, respectively), were both strongly
connected to the blood network, with interaction scores of at least 0.63 and an average of 0.75 and
0.84, respectively (Supplementary Table 1). The autodetected cell type for this pair was leukocytes,
and interaction scores were similar to the blood network (Supplementary Table 1). However, genes
MYOZ1 and TNNI2, with a very high Pearson value (p = 0.97), moderate Spearman (s = 0.28) and
very low CCC (c = 0.03), were predicted to belong to much less cohesive networks (Figure 5 b), with
average interaction scores of 0.17 and 0.22 with the rest of the genes, respectively. Additionally, the
autodetected cell type (skeletal muscle) is not related to blood or one of its cell lineages. These
preliminary results suggested that CCC might be capturing blood-specific patterns missed by the
other coefficients.
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Figure 5: Analysis of GIANT tissue-specific predicted networks for gene pairs prioritized by correlation
coefficients. a-b) Two gene pairs prioritized by correlation coefficients (from Figure 3 b) with their predicted networks
in blood (left) and an automatically selected tissue/cell type (right) using the method described in [45]. A node
represents a gene and an edge the probability that two genes are part of the same biological process in a specific cell
type. A maximum of 15 genes are shown for each network. The GIANT web application automatically determined a
minimum interaction confidence (edges' weights) to be shown. These networks can be analyzed online using the
following links: RASSF2 - CYTIP[46], MYOZT - TNNIZ2 [47]. €¢) Summary of predicted tissue/cell type networks for gene
pairs exclusively prioritized by CCC and Pearson. The first row combines all gene pairs where CCC is high and Pearson or
Spearman are low. The second row combines all gene pairs where Pearson is high and CCC or Spearman are low. Bar
plots (left) show the number of gene pairs for each predicted tissue/cell type. Box plots (right) show the average
probability of interaction between genes in these predicted tissue-specific networks. Red indicates CCC-only tissues/cell
types, blue are Pearson-only, and purple are shared.

We next performed a systematic evaluation using the top 100 discrepant gene pairs between CCC and
the other two coefficients. For each gene pair prioritized in GTEx (whole blood), we autodetected a
relevant cell type using GIANT to assess whether genes were predicted to be specifically expressed in
a blood-relevant cell lineage. For this, we used the top five most commonly autodetected cell types for
each coefficient and assessed connectivity in the resulting networks (see Methods). The top 5
predicted cell types for gene pairs highly ranked by CCC and not by the rest were all blood-specific
(Figure 5 ¢, top left), including macrophage, leukocyte, natural killer cell, blood and mononuclear
phagocyte. The average probability of interaction between genes in these CCC-ranked networks was
significantly higher than the other coefficients (Figure 5 ¢, top right), with all medians larger than 67%
and first quartiles above 41% across predicted cell types. In contrast, most Pearson’s gene pairs were
predicted to be specific to tissues unrelated to blood (Figure 5 ¢, bottom left), with skeletal muscle
being the most commonly predicted tissue. The interaction probabilities in these Pearson-ranked
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networks were also generally lower than in CCC, except for blood-specific gene pairs (Figure 5 ¢,
bottom right). The associations exclusively detected by CCC in whole blood from GTEx were more
strongly replicated in these independent networks that incorporated multiple data modalities. CCC-
ranked gene pairs not only had high probabilities of belonging to the same biological process but
were also predicted to be specifically expressed in blood cell lineages. Conversely, most Pearson-
ranked gene pairs were not predicted to be blood-specific, and their interaction probabilities were
relatively low. This lack of replication in GIANT suggests that top Pearson-ranked gene pairs in GTEx
might be driven mainly by outliers, which is consistent with our earlier observations of outlier-driven
associations (Figure 3 b).

Discussion

We introduce the Clustermatch Correlation Coefficient (CCC), an efficient not-only-linear machine
learning-based statistic. Applying CCC to GTEx v8 revealed that it was robust to outliers and detected
linear relationships as well as complex and biologically meaningful patterns that standard coefficients
missed. In particular, CCC alone detected gene pairs with complex nonlinear patterns from the sex
chromosomes, highlighting the way that not-only-linear coefficients can play in capturing sex-specific
differences. The ability to capture these nonlinear patterns, however, extends beyond sex differences:
it provides a powerful approach to detect complex relationships where a subset of samples or
conditions are explained by other factors (such as differences between health and disease). We found
that top CCC-ranked gene pairs in whole blood from GTEx were replicated in independent tissue-
specific networks trained from multiple data types and attributed to cell lineages from blood, even
though CCC did not have access to any cell lineage-specific information. This suggests that CCC can
disentangle intricate cell lineage-specific transcriptional patterns missed by linear-only coefficients. In
addition to capturing nonlinear patterns, the CCC was more similar to Spearman than Pearson,
highlighting their shared robustness to outliers. The CCC results were concordant with MIC, but much
faster to compute and thus practical for large datasets. Another advantage over MIC is that CCC can
also process categorical variables together with numerical values. CCC is conceptually easy to
interpret and has a single parameter that controls the maximum complexity of the detected
relationships while also balancing compute time.

Datasets such as Anscombe or “Datasaurus” highlight the value of visualization instead of relying on
simple data summaries. While visual analysis is helpful, for many datasets examining each possible
relationship is infeasible, and this is where more sophisticated and robust correlation coefficients are
necessary. Advanced yet interpretable coefficients like CCC can focus human interpretation on
patterns that are more likely to reflect real biology. The complexity of these patterns might reflect
heterogeneity in samples that mask clear relationships between variables. For example, genes UTY -
KDMG6A (from sex chromosomes), detected by CCC, have a strong linear relationship but only in a
subset of samples (males), which was not captured by linear-only coefficients. This example, in
particular, highlights the importance of considering sex as a biological variable (SABV) [48] to avoid
overlooking important differences between men and women, for instance, in disease manifestations
[49,50]. More generally, a not-only-linear correlation coefficient like CCC could identify significant
differences between variables (such as genes) that are explained by a third factor (beyond sex
differences), that would be entirely missed by linear-only coefficients.

It is well-known that biomedical research is biased towards a small fraction of human genes [51,52].
Some genes highlighted in CCC-ranked pairs (Figure 3 b), such as SDS (12924) and ZDHHC12 (9q34),
were previously found to be the focus of fewer than expected publications [53]. It is possible that the
widespread use of linear coefficients may bias researchers away from genes with complex
coexpression patterns. A beyond-linear gene co-expression analysis on large compendia might shed
light on the function of understudied genes. For example, gene KLHL21 (1p36) and AC068580.6
(ENSG00000235027,in 11p15) have a high CCC value and are missed by the other coefficients. KLHL21
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was suggested as a potential therapeutic target for hepatocellular carcinoma [54] and other cancers
[55,56]. Its nonlinear correlation with AC068580.6 might unveil other important players in cancer
initiation or progression, potentially in subsets of samples with specific characteristics (as suggested in
Figure 3 b).

Not-only-linear correlation coefficients might also be helpful in the field of genetic studies. In this
context, genome-wide association studies (GWAS) have been successful in understanding the
molecular basis of common diseases by estimating the association between genotype and phenotype
[57]. However, the estimated effect sizes of genes identified with GWAS are generally modest, and
they explain only a fraction of the phenotype variance, hampering the clinical translation of these
findings [58]. Recent theories, like the omnigenic model for complex traits [16,17], argue that these
observations are explained by highly-interconnected gene regulatory networks, with some core genes
having a more direct effect on the phenotype than others. Using this omnigenic perspective, we and
others [19,20,23] have shown that integrating gene co-expression networks in genetic studies could
potentially identify core genes that are missed by linear-only models alone like GWAS. Our results
suggest that building these networks with more advanced and efficient correlation coefficients could
better estimate gene co-expression profiles and thus more accurately identify these core genes.
Approaches like CCC could play a significant role in the precision medicine field by providing the
computational tools to focus on more promising genes representing potentially better candidate drug
targets.

Our analyses have some limitations. We worked on a sample with the top variable genes to keep
computation time feasible. Although CCC is much faster than MIC, Pearson and Spearman are still the
most computationally efficient since they only rely on simple data statistics. Our results, however,
reveal the advantages of using more advanced coefficients like CCC for detecting and studying more
intricate molecular mechanisms that replicated in independent datasets. The application of CCC on
larger compendia, such as recount3 [11] with thousands of heterogeneous samples across different
conditions, can reveal other potentially meaningful gene interactions. The single parameter of CCC,
kmax, controls the maximum complexity of patterns found and also impacts the compute time. Our
analysis suggested that k., = 10 was sufficient to identify both linear and more complex patterns in
gene expression. A more comprehensive analysis of optimal values for this parameter could provide
insights to adjust it for different applications or data types.

While linear and rank-based correlation coefficients are exceptionally fast to calculate, not all relevant
patterns in biological datasets are linear. For example, patterns associated with sex as a biological
variable are not apparent to the linear-only coefficients that we evaluated but are revealed by not-
only-linear methods. Beyond sex differences, being able to use a method that inherently identifies
patterns driven by other factors is likely to be desirable. Not-only-linear coefficients can also
disentangle intricate yet relevant patterns from expression data alone that were replicated in models
integrating different data modalities. CCC, in particular, is highly parallelizable, and we anticipate
efficient GPU-based implementations that could make it even faster. The CCC is an efficient, next-
generation correlation coefficient that is highly effective in transcriptome analyses and potentially
useful in a broad range of other domains.

Methods

The code needed to reproduce all of our analyses and generate the figures is available in
https://github.com/greenelab/ccc. We provide scripts to download the required data and run all the
steps. A Docker image is provided to use the same runtime environment.
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The CCC algorithm

The Clustermatch Correlation Coefficient (CCC) computes a similarity value ¢ € [0, 1] between any
pair of numerical or categorical features/variables x and y measured on 1 objects. CCC assumes that
if two features x and y are similar, then the partitioning by clustering of the n objects using each
feature separately should match. For example, given x = (11, 27, 32, 40) and

y = 10z = (110,270, 320,400), where n = 4, partitioning each variable into two clusters (k = 2)
using their medians (29.5 for x and 295 for y) would result in partition §2;°_, = (1,1,2,2) forx, and

partition QZ:2 = (1,1,2,2) for y. Then, the agreement between Q}_, and QZ:2 can be computed

using any measure of similarity between partitions, like the adjusted Rand index (ARI) [32]. In that
case, it will return the maximum value (1.0 in the case of ARI). Note that the same value of k might not
be the right one to find a relationship between any two features. For instance, in the quadratic
example in Figure 1, CCC returns a value of 0.36 (grouping objects in four clusters using one feature
and two using the other). If we used only two clusters instead, CCC would return a similarity value of
0.02. Therefore, the CCC algorithm (shown below) searches for this optimal number of clusters given a
maximum k, which is its single parameter kpay.

Algorithm 1: CCC algorithm

1 Function get _partitions(v, kpax):

Output:
Q,: clustering with r clusters over n objects
2 if v R"” then
3 for r + 2 to min{kpax, [v| — 1} do
1 p < (pe| Pr(vi<pe) <(¢ —1)/r) VL€ [Lr+1]
5 Qe {i | pe <vi < pesa}, V€ [1,7]
6 else
7 C «+ Uj{l)i}
8 r <+ |C|
9 | Qe {iv; =Cc}, Ve e [1,7]
10 Q«—{Q ||| >1},Vr
11 | return
12
13 Function ccc(X, y, kmax):
Input:

x: feature values on n objects

y: feature values on n objects

kmax: maximum number of internal clusters
Output:

c: similarity value for x and y (¢ € [0, 1])

14 O* = get_partitions(x, kmax)
15 Y = get_partitions(y, kmax)
16 c < max{A(25, Q¥)},Vp, q
17 return max(c,0)

The main function of the algorithm, ccc, generates a list of partitionings Q* and ¥ (lines 14 and
15), for each feature x and y. Then, it computes the ARI between each partition in * and Y (line
16), and then it keeps the pair that generates the maximum ARI. Finally, since ARI does not have a
lower bound (it could return negative values, which in our case are not meaningful), CCC returns only
values between 0 and 1 (line 17).
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Interestingly, since CCC only needs a pair of partitions to compute a similarity value, any type of
feature that can be used to perform clustering/grouping is supported. If the feature is numerical (lines
2to5inthe get_partitions function), then quantiles are used for clustering (for example, the
median generates k = 2 clusters of objects), from k = 2 to k = k.. If the feature is categorical
(lines 7 to 9), the categories are used to group objects together. Consequently, since features are
internally categorized into clusters, numerical and categorical variables can be naturally integrated
since clusters do not need an order.

For all our analyses we used k,.x = 10. This means that for each gene pair, 18 partitions are
generated (9 for each gene, from k = 2 to k = 10), and 81 ARl comparisons are performed. Smaller
values of k.« can reduce computation time, although at the expense of missing more
complex/general relationships. Our examples in Figure 1 suggest that using kmax = 2 would force
CCC to find linear-only patterns, which could be a valid use case scenario where only this kind of
relationships are desired. In addition, kmax = 2 implies that only two partitions are generated, and
only one ARI comparison is performed. In this regard, our Python implementation of CCC provides
flexibility in specifying k,.x. For instance, instead of the maximum k (an integer), the parameter could
be a custom list of integers: for example, [2, 5, 10] will partition the data into two, five and ten
clusters.

For a single pair of features (genes in our study), generating partitions or computing their similarity
can be parallelized. We used three CPU cores in our analyses to speed up the computation of CCC. A
future improved implementation of CCC could potentially use graphical processing units (GPU) to
parallelize its computation further.

A Python implementation of CCC (optimized with numba [59]) can be found in our Github repository
[60], as well as a package published in the Python Package Index (PyPl) that can be easily installed.

Gene expression data and preprocessing

We downloaded GTEx v8 data for all tissues, normalized using TPM (transcripts per million), and
focused our primary analysis on whole blood, which has a good sample size (755). We selected the top
5,000 genes from whole blood with the largest variance after standardizing with log(z + 1) to avoid a
bias towards highly-expressed genes. We then computed Pearson, Spearman, MIC and CCC on these
5,000 genes across all 755 samples on the TPM-normalized data, generating a pairwise similarity
matrix of size 5,000 x 5,000.

Tissue-specific network analyses using GIANT

We accessed tissue-specific gene networks of GIANT using both the web interface and web services
provided by HumanBase [42]. The GIANT version used in this study included 987 genome-scale
datasets with approximately 38,000 conditions from around 14,000 publications. Details on how these
networks were built are described in [31]. Briefly, tissue-specific gene networks were built using gene
expression data (without GTEx samples [43]) from the NCBI's Gene Expression Omnibus (GEO) [61],
protein-protein interaction (BioGRID [62], IntAct [63], MINT [64] and MIPS [65]), transcription factor
regulation using binding motifs from JASPAR [66], and chemical and genetic perturbations from
MSigDB [67]. Gene expression data were log-transformed, and the Pearson correlation was computed
for each gene pair, normalized using the Fisher's z transform, and z-scores discretized into different
bins. Gold standards for tissue-specific functional relationships were built using expert curation and
experimentally derived gene annotations from the Gene Ontology. Then, one naive Bayesian classifier
(using C++ implementations from the Sleipnir library [68]) for each of the 144 tissues was trained
using these gold standards. Finally, these classifiers were used to estimate the probability of tissue-
specific interactions for each gene pair.
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For each pair of genes prioritized in our study using GTEx, we used GIANT through HumanBase to
obtain 1) a predicted gene network for blood (manually selected to match whole blood in GTEx) and 2)
a gene network with an automatically predicted tissue using the method described in [45] and
provided by HumanBase web interfaces/services. Briefly, the tissue prediction approach trains a
machine learning model using comprehensive transcriptional data with human-curated markers of
different cell lineages (e.g., macrophages) as gold standards. Then, these models are used to predict
other cell lineage-specific genes. In addition to reporting this predicted tissue or cell lineage, we
computed the average probability of interaction between all genes in the network retrieved from
GIANT. Following the default procedure used in GIANT, we included the top 15 genes with the highest
probability of interaction with the queried gene pair for each network.

Maximal Information Coefficient (MIC)

We used the Python package minepy [69,70] (version 1.2.5) to estimate the MIC coefficient. In GTEx
v8 (whole blood), we used MIC, (an improved implementation of the original MIC introduced in [71])
with the default parameters alpha=0.6, c=15 and estimator='mic_e'.We used the
pairwise_distances function from scikit-learn [72] to parallelize the computation of MIC on
GTEx. For our computational complexity analyses (see Supplementary Material), we ran the original
MIC (using parameter estimator="'mic_approx')and MIC, (estimator="mic_e").
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Supplementary material

Supplementary Note 1: Comparison with the Maximal Information
Coefficient (MIC) on gene expression data

We compared all the coefficients in this study with MIC [24], a popular nonlinear method that can find
complex relationships in data, although very computationally intensive [73]. We ran MIC, (see
Methods) on all possible pairwise comparisons of our 5,000 highly variable genes from whole blood in
GTEx v8. This took 4 days and 19 hours to finish (compared with 9 hours for CCC). Then we performed
the analysis on the distribution of coefficients (the same as in the main text), shown in Figure 6. We
verified that CCC and MIC behave similarly in this dataset, with essentially the same distribution but
only shifted. Figure 6 ¢ shows that these two coefficients relate almost linearly, and both compare
very similarly with Pearson and Spearman.
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Figure 6: Distribution of MIC values on gene expression (GTEx v8, whole blood) and comparison with other
methods. a) Histogram of coefficient values. b) Corresponding cumulative histogram. The dotted line maps the
coefficient value that accumulates 70% of gene pairs. ) 2D histogram plot with hexagonal bins between all coefficients,
where a logarithmic scale was used to color each hexagon.
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Supplementary Note 2: Computational complexity of coefficients

We also compared CCC with the other coefficients in terms of computational complexity. Although
CCC and MIC might identify similar gene pairs in gene expression data (see here), the use of MIC in
large datasets remains limited due to its very long computation time, despite some

uses ApproxMaxMl, a computationally demanding heuristic estimator [37]. Recently, a more efficient
implementation called MIC, was proposed [71]. These two MIC estimators are provided by the
minepy package [69], a Cimplementation available for Python. We compared all these coefficients in
terms of computation time on randomly generated variables of different sizes, which simulates a
scenario of gene expression data with different numbers of conditions. Differently from the rest, CCC
allows us to easily parallelize the computation of a single gene pair (see Methods), so we also tested
the cases using 1 and 3 CPU cores. Figure 7 shows the time in seconds in log scale.
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Figure 7: Computational complexity of all correlation coefficients on simulated data. We simulated
variables/features with varying data sizes (from 100 to a million, z-axis). The plot shows the average time in seconds
(log-scale) taken for each coefficient on ten repetitions (1000 repetitions were performed for data size 100). CCC was run
using 1 and 3 CPU cores. MIC and MIC, did not finish running in a reasonable amount of time for data sizes of 10,000
and 100,000, respectively.

As we already expected, Pearson and Spearman were the fastest, given that they only need to
compute basic summary statistics from the data. For example, Pearson is three orders of magnitude
faster than CCC. Among the nonlinear coefficients, CCC was faster than the two MIC variations (up to
two orders of magnitude), with the only exception in very small data sizes. The difference is important
because both MIC variants were implemented in C [69], a high-performance programming language,
whereas CCC was implemented in Python (optimized with numba ). For a data size of a million, the
multi-core CCC was twice as fast as the single-core CCC. This suggests that new implementations using
more advanced processing units (such as GPUs) are feasible and could make CCC reach speeds closer
to Pearson.
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Tissue-specific gene networks with GIANT

Table 1: Network statistics of six gene pairs shown in Figure 3 b for blood and predicted cell types. Only gene pairs
present in GIANT models are listed. For each gene in the pair (first column), the minimum, average and maximum
interaction coefficients with the other genes in the network are shown.

Gene
IFNG
SDS

JUN
APOCT

ZDHHC12
CcCL18

RASSF2
cyTip

MYOZ1
TNNIZ

PYGM
TPMZ2

Min.

0.19

0.18

0.26

0.22

0.05

0.74

0.69
0.74

0.09

0.10

0.02
0.05

Blood
Avg.
0.42

0.29

0.68

0.47

0.07

0.79

0.77
0.85

0.17

0.22

0.04
0.56

Max.

0.54

0.41

0.97

0.77

0.10

0.86

0.90
0.91

0.37

0.44

0.14
0.80

Interaction confidence

Cell type

Natural killer cell

Mononuclear
phagocyte

Macrophage

Leukocyte

Skeletal muscle

Skeletal muscle

Predicted cell type

Min.

0.74

0.65

0.36

0.29

0.03

0.36

0.66
0.76

0.11

0.10

0.01
0.01

Avg.
0.90

0.81

0.73

0.50

0.12

0.70

0.74
0.84

0.1

0.11

0.02
0.28

Max.
0.99

0.94

0.94

0.80

0.33

0.90

0.88
0.91

0.12

0.12

0.04
0.47
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