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Abstract

Myeloid-derived suppressor cells (MDSCs) play a prominent and rising role in the tumor mi-
croenvironment. An understanding of the tumor-MDSC interactions that influence disease pro-
gression is critical, and currently lacking. To address this, we developed a mathematical model
of metastatic growth and progression in immune-rich tumor microenvironments. We model the
tumor-immune dynamics with stochastic delay differential equations, and study the impact of
delays in MDSC activation/recruitment on tumor growth outcomes. We find when the circu-
lating level of MDSCs is low, the MDSC delay has a pronounced impact on the probability
of new metastatic establishment: blocking MDSC recruitment can reduce the probability of
metastasis by as much as 50%. We also quantify the extent to which decreasing the immuno-
suppressive capability of the MDSCs impacts the probability that a new metastasis will persist
or grow. In order to quantify patient-specific MDSC dynamics under different conditions we fit
individual tumors treated with immune checkpoint inhibitors to the tumor-MDSC model via
Bayesian parameter inference. We reveal that control of the inhibition rate of natural killer cells
by MDSCs has a larger influence on tumor outcomes than controlling the tumor growth rate
directly. Posterior classification of tumor outcomes demonstrates that incorporating knowledge
of the MDSC responses improves predictive accuracy from 63% to 82%. Our results illustrate
the importance of MDSC dynamics in the tumor microenvironment and predict interventions
that may shift environments towards a less immune-suppressed state. We argue that there is a
pressing need to more often consider MDSCs in analyses of tumor microenvironments.
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. 1 Introduction

2 Myeloid-derived suppressor cells (MDSCs) are immature myeloid immune cells that become patho-
s logically activated with potent immunosuppressive activity (IH7). Since the introduction of the term
s “MDSC” in the late 1990s (4H6l), there has a great deal of effort to understand MDSC phenotypes
5 and dynamics. MDSCs are implicated in the regulation of immune responses in many biological
¢ contexts and pathological conditions, including cancer, inflammation, wound healing, and autoim-
7 mune disorders (IJ). Some have gone as far as to claim that MDSCs are “the most important cell you
s have never heard of” (8). Recently, with the advent of high-dimensional measurement technologies
o including mass cytometry and single-cell RNA sequencing, the characterization of MDSCs and their
10 roles in diverse contexts has become more refined (7, 9)). Here, we characterize MDSCs by their
u  function — immunosuppressive activity — rather than their expression phenotype (e.g. CD11b™* and
12 Gr-17 in mice), bypassing the need to delve into the heterogeneity of the CD11b*Gr-1* population
13 at single-cell level.

14 In the context of cancer, the role of MDSCs is convoluted, in part due to the complexity of
15 the tumor microenvironment and related immunology (3, 10HI4). MDSCs certainly play significant
16 roles in tumor microenvironments (&, 9} (15, 16]); increased levels of MDSCs are associated with poor
17 clinical outcomes (2, 12} 17HI9) (An important caveat is that studies often measure only circulating
18 MDSCs.) There is compelling evidence that MDSCs can effectively shield tumors from anti-tumor
19 immune responses from cytotoxic T cells and natural killer cells (20H24]). Targeting MDSCs as a way
20 to sensitize non-immunogenic tumors is an attractive treatment strategy in cancer immunotherapy
21 (16 17). MDSC dynamics have also been studied in the specific context of breast cancer, where
2 they have been shown to affect the progression of primary breast tumors and associated metastases
23 (7, 15, (18], 23], 25-27]).

2% Understanding tumor-immune-MDSC dynamics is by nature a systems biology problem. Math-
25 ematical and computational modeling are essential to tease apart the intricate relationships involved
2 (28, 29). There have been relatively few works (certainly in comparison to experimental/clinical
27 interest) in the literature that develop mathematical models of MDSCs (30H33)). Shariatpanahi et
2 al. (30) developed a model described by ordinary differential equations with which they explore
20 therapeutic strategies that aim to restore anti-tumor immunity, in comparison with experimental
s data (23). Allahverdy et al. (31)) developed a stochastic agent-based model was used to explore the
a1 effects of different drugs on MDSC and tumor dynamics. Liao et al. (32, B3] developed a model
32 described by partial differential equations were used to determine optimized drug treatment and
33 to understand primary drug resistance. While these models offer insight into the roles of MDSCs,
s a rigorous treatment of MDSC dynamics in the tumor microenvironment, fitting models to data,
35 and taking into account the effects of noise remains lacking.

36 Here, we focus on the effect of MDSC dynamics on metastatic tumor growth following an initial
37 seeding event. A majority of cancer deaths are a result of metastasis (34)): a highly dynamic and
33 stochastic process. Most metastatic tumors are seeded by a small number of circulating tumor
30 cells (I3, 34). MDSC migration to the site of a new tumor has been identified as crucial for cancer
a0 progression, both in primary tumors and metastases, but the interactions involved are not well
a1 understood, in part due to the novelty of MDSC characterization, the complex tumor-immune en-
22 vironment, and the difficulties associated with tracking cell-cell interactions in vivo (13] 135, 36). As
53 aresult, there are many open and pressing questions regarding MDSCs and tumor metastasis (37)).
s« How much therapeutic benefit can be gained by blocking MDSC recruitment to the tumor site?
a5 Would therapies that decrease the circulating number of MDSCs achieve similar or greater effects?
46 There are now various methods to target MDSCs in peripheral lymphoid organs and their migration
47 to tumor sites. However, it is not clear whether either of these methods alone will be sufficient to
a8 inhibit MDSC immunosuppressiveness at a tumor site or whether combination approaches will be
a9 required.

50 To address these questions we develop a stochastic delay differential equation model of metastatic
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51 tumor growth. We include an MDSC delay that can represent delays in MDSC recruitment to the
52 metastatic tumor site as well as delays in MDSC activation to suppress anti-tumor immune cells.
53 Stochasticity is included due to the inherent noise in the cell dynamics, and to be able to assess
s« the probabilistic events of new metastases. We first demonstrate the importance of MDSCs in
55 the tumor-immune microenvironment, and establish conditions necessary for metastatic growth
s6 for the deterministic model. We then identify the most important parameters and interactions in
57 the system, to shed light on the underlying biological dynamics. Next, through simulation we ex-
ss  plore the impact of MDSC delays on metastatic growth, we discover that under certain conditions
s inhibiting MDSC recruitment alone might be a highly effective treatment strategy. Finally, we
60 perform Bayesian parameter estimation of models fit to individual tumors growing in vivo, from
61 which we determine tumor- and MDSC-specific parameters. Inference results reveal that knowl-
62 edge of MDSC-specific parameters is important in order to be able to accurately predict metastatic
63 outcomes.

o« 2 Methods

s 2.1 A stochastic delay differential equation model of tumor-immune dynamics
66 in the presence of MDSCs

67 Mathematical modeling of tumor-immune cell interactions has been increasingly recognized as
68 critical for understanding strategies to mount an effective response to cancer initiation, spread, and
o evolution (28| 29, B8/43). In this paper we first describe a theoretical basis for MDSC dynamics
70 in the context of a metastasizing tumor (e.g. in the lung, bone, or liver (44])) from a primary
71 tumor in the breast. For parameterization of the model, we focus on the lung, as it is one of
72 the most common distant metastases sites of breast cancer (45). Our mathematical model is
73 comprised of four non-spatial delay differential equations to describe tumor-immune interactions
7 incorporating MDSCs (30}, [40). We focus on the most important interactions between tumor,
75 immune, and MDSC populations, leading to a relatively simple model that allows us to gain insight
76 into system dynamics and metastatic tumor spread. We include the anti-tumor immune populations
77 of cytotoxic T (CTL) cells and natural killer (NK) cells. MDSC-CTL interactions are important
78 given the primary function of intratumoral MDSCs is suppression of CTLs (I, 6, 15, 16]). MDSC-
79 NK interactions are also important (20-22] 24, 25), and NK cells are increasingly being studied
so as an immune population specifically affected by tumor cells to promote metastasis (46, 47). A

st schematic diagram of the model is provided in Figure

82 We denote zT, xMmpsce, TNk, and zorr, as the populations of tumor cells, MDSCs, NK cells,
ss and CTL cells, respectively, at time ¢. The model derived can be expressed conceptually (i.e.
s« agnostic as yet to the form of the dynamics) as follows, where dx; denotes the rate of change of x;,
ss 1 € [T, MDSC, NK, CTL)|.

dxr = ’ growth of tumor cells ‘ — ‘ tumor cells inhibited by NK cells ‘
- ’tumor cells inhibited by CTL cells ‘ - ‘ death of tumor cells ‘, (1a)
dTMpSC = ’ circulating level of MDSCs ‘ + ‘ recruitment of MDSCs in presence of tumor‘
— | death of MDSCs | (1b)
dTNK = ’ circulating level of NK cells ‘ + ‘ recruitment of NK cells in presence of tumor‘
— | NK cells inhibited by MDSCs | — [ death of NK cells (1c)
dror, = ’ CTL cells stimulated by NK-tumor interaction ‘ + ‘ recruitment of CTL cells in presence of tumor‘
— | CTL cells inhibited by MDSCs | - | death of CTL cells], (1d)
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Figure 1: Schematic diagram of model and population interactions. The myeloid-derived suppressor
cell (MDSC), natural killer (NK) cell, and cytotoxic T (CTL) cell populations are all signaled to proliferate
in the presence of a metastatic tumor. The MDSC population inhibits the NK and CTL populations, and
the NK and CTL populations inhibit the tumor population.

86 Based on these biological processes, we develop a stochastic delay differential equation (SDDE)
s7 model to characterize tumor-immune interactions that takes the form:
dri(t) = f(x(t), z5(t — 7))dt + g(x5(t), z5(t — 7))dW (t), (2)

ss at time ¢, with delay 0 < 7 < t, where f(-) describes the deterministic dynamics controlled by the
s model interactions, g(-)dW (t) describes the stochastic dynamics, dW (t) denotes an increment of
o a Weiner process, W(t), and z;(t) = [zr(t), 2mpsc(t), vk (t), zorL(t)]. The model thus consists
a1 of coupled stochastic delay differential equations (SDDEs), where we assume an It6 interpretation
o2 (48). For the stochastic dynamics, we have:

g(;(t), x5(t — 7)) = &(2),

s where &(t) is the size of the i*® population, i.e. we assume multiplicative noise (48, 49). We study
9¢ the tumor-immune dynamics under the assumption of multiplicative noise given the mounting
os evidence that biological systems more often exhibit dynamics generated from multiplicative noise
s models (50).

For the deterministic dynamics, we have:

_ale(t) log <1'T(t)> — ﬁle(t)SCNK(t) — ﬁQiT(t)fL‘CTL(t) — leL‘T(t)_ (38,)
xp(t—7)
s + ag% — CGaxmpsc(t) (3b)
flas(t), z5(t — 7)) = 71; (tT)gt : ,
oy + asm — Bsampsc(t) ek (t) — Gk (1) (3¢)
2
agrr(t) TNk () + wm — Barmpsc(t)zerL(t) — Grern(t) | (3d)

o7 with description of the parameters is given in Table We model tumor growth according to a
¢ Gompertzian model (first term of Eqn. (3al)) (30} 38), with maximum size 1, where tumor cells can
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be eradicated by the NK and CTL cells (anti-tumor response), with rates 51 and (3, respectively.
MDSCs are activated due to their basal circulation, as, and die at rate (. In addition, in the
presence of tumor cells, immune-suppressive signals lead to increased MDSC production, activation,
and recruitment to the site of the tumor (at rate a3). MDSCs, generated primarily in the bone
marrow, migrate to peripheral lymphoid organs and then to tumor tissues in tumor bearing hosts
(I3, 51). The delay in activation/recruitment of MDSCs is modeled using a Mackey-Glass delay
term (52), with a delay of order 7 (second term of Eqn. (3b))). Here we consider delays only in
xmpsc; while delays in other immune cells, e.g. due to CTL activation, might be important in
some contexts, they were observed to have small effects on the tumor dynamics here, due to the
low circulating levels of CTL cells (see Supplementary Text Section 1). We also note that the model
does not include MDSC subtypes or maturation, but only accounts for their functional significance
as immature myeloid cells with immunosuppressive capability. Future work could include MDSC
maturation into other cell types as influenced by the tumor microenvironment, see the Discussion
for further details.

For the anti-tumor immune dynamics, NK cells are produced at rate ay; CTL cells are activated
by the NK cell—tumor cell interaction at rate ag. In line with (30), both NK and CTL cells can be
activated by the tumor (at rates as and a7, respectively). We assume that NK and CTL cells can be
inhibited by MDSCs (at rates 3 and (4, respectively), and are lost due to cell death (at rates (3 and
(4, respectively). In simulations of new metastases (with Eqns. (3a)-(3d))), the initial conditions are
set by the tumor-free steady state (Eqns. —), except that we seed tumor growth by one or two
initial tumor cells. Unless explicitly stated otherwise, all parameter values used for simulation are
as defined in Table|l| The standard error is defined as standard deviation/v/number of simulations.
The red lines represent the tumor population, the yellow lines represent the MDSC population, the
green lines represent the NK cell population, and the blue lines represent the CTL population.
The horizontal axis is the time in days, and the vertical axis is the size of the population (see for
example Figure .

In our studies below we consider analyses of the full SDDE model as well as different reduced
models. In the case that g = 0, the SDDE model reduces to a deterministic delay differential equa-
tion (DDE) model. In the case that g = 0 and 7 = 0, the model reduces to an ordinary differential
equation (ODE) model. All models are developed in the Julia programming language (53]), using
DifferentialEquations.jl (54). For simulation of the full model, we use the SOSRI algorithm for stiff
stochastic differential equations (55). Metaprogramming in Julia enables transitioning between
model formulations (SDDE, DDE, or ODE) with ease (56]).

2.2 Parameter sensitivity analysis

We perform parameter sensitivity analysis to assess the relative importance of parameters on the
model given by Eqns. (Ba)-(3d). We use Morris global sensitivity analysis (GSA) (66} [67) for the
steady state of the tumor population for all model parameters. Table[I[]contains GSA ranges and pa-
rameter descriptions. The parameters used for the Morris algorithm (using DifferentialEquations.jl
(54)) are total_num_trajectory = 1000 and num_trajectory = 100.

2.3 Bayesian parameter inference with RECIST data

RECIST criteria have been developed for use in clinical trials as a way to determine the change
in tumor burden of selected target lesions to inform whether a patient is responding to a given
therapy (68). We implement Bayesian parameter inference to fit the model to tumor responses using
RECIST to classify tumor sizes and responses over time (described below, (69)). We fit differential
equation-based models to RECIST data following a similar conceptual framework to (38). In the
case of our model, we also fit certain MDSC parameters, such as the interaction strengths between
the MDSCs and other immune/tumor populations, to assess the effect of MDSC dynamics on
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H Notation ‘ Description ‘ Value ‘ Units Reference ‘ Range
x7(t),t <0 initial condition for tumor cells 1or2 - - -
zmpsc (0) initial condition for MDSCs az/C2 - - -

Nk (0) initial condition for NK cells % - - -
zcrL(0) initial condition for CTL cells 0 - - -
T delay parameter for MDSCs varies days - -
i tumor growth rate 10-1 days—1T (40, 1571, 58) [1072,5 x 10 1]
n tumor maximum size 107 - estimated [105,10%]
51 tumor cells inhibition rate by NK cells 3.5 x 1070 days—1T (40, 57, 158]) 10=7,10°
B2 tumor cells inhibition rate by CTL cells 1.1 x 1077 days—1T [(5%4) 107,106
¢ tumor cell death rate 0, varies days—! (30) [0,0.1]
as MDSCs circulating rate 102, varies days—! | estimated (59) [0,107]
o3 MDSCs expansion coefficient 108 days—1 | (23} B30, 60} [60) [107,107]
o MDSCs death rate 0.2 days—T (61}, 162)) [0,1]
ag NK cells circulating rate 1.4 x 10% days™1 (5y4) [103,107]
as NK cells expansion coefficient 2.5 x 1072 days~1T (40l 57 B8] 10=2,10° 1T
B3 NK cells inhibition rate by MDSCs 4 x 107?, varies | days—1T (30) 10~°,10~%
C3 NK cells death rate 412 x 1072 days—1T [(5%d) 102,101
ag CTL stimulation by tumor-NK cell interaction 1.1 x 107 days—1 (63, [64]) 10~7,10°©
ar CTL expansion coefficient 10T days—1 (65) [5x 102,107 1]
Ba CTL inhibition rate by MDSCs 10— %, varies days~T (30) [5x 10755 x 10~ 7]
Ca CTL death rate 2x 1072 days—T (@Q, 63) [10=2,101]
Y1 steepness of MDSC production 1010 - (30, [60) [10°,1017]
Y2 steepness of NK production 2.02 x 107 - (40l 57)) 10%, 108
¥3 steepness of CTL production 2.02 x 107 - (40, 57, 158]) 105,108
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Table 1: Description of model parameters and values. Estimated from the literature, see in particular
(405, 57, 59] [60). Cell populations are measured in terms of cell numbers and are non-dimensionalized. The
first column is the parameter notation, the second column is the parameter description, the third column is
the parameter estimated value, the fourth column is the parameter units (if applicable), the fifth column is
the citation of the reference for the parameter estimate, and the sixth column is the parameter range used
for the global stability analysis in Section

clinically-relevant tumor growth. We employ Bayesian parameter inference (70)) implemented in
Turing.jl (71)).

We use in vivo tumor data from a study evaluating the efficacy and safety of anti-programmed
death-ligand 1 (PD-L1) atezolizumab in advanced non-small cell lung cancer (69). This data was
also recently used to fit mathematical models of tumor growth (Study 1, (38)). Each tumor has a
baseline assessment before the initiation of treatment in the clinical trial (for the purposes of fitting
we set the time of the baseline assessment to be zero). Tumor size is then reassessed approximately
every six weeks for twelve months, then every nine weeks, and then at disease progression. At each
assessment the tumor size is measured in millimeters in one dimension (x), which we convert to
a volume following the convention adopted by Laleh et al., i.e. taking the volume (mm?) as %x‘g
(38, 72). We estimate the number of tumor cells from this volume by multiplying by a factor of 107
(73)). From the available data we selected six measurable tumors from six different patients that
each have data from at least five time points (including the baseline assessment), are from all three
study cohorts, and are representative of the range of the dataset (i.e. tumors that increase/decrease
at a variety of rates). We fit the relative change in the tumor population, which is measured
as the difference between the measurement and the baseline assessment, divided by the baseline
assessment (measur%rgse;?;ebasehne, which produces a real number € [—1,00)). As the relative change
at the baseline assessment is always zero, we remove this data point for all tumors. Since only the
tumor data is available, we fit the log transformed data from this population (i.e. log(xr +1)). All
of the data for each of the six tumors is available in the supplementary file tumor_data.xlsx.

For inference, a three-dimensional free parameter space was selected in which we fit the following
parameters: (33 (NK cells inhibition rate by MDSCs), ag (CTL stimulation by tumor-NK cell
interaction), and oy (tumor growth rate). As no information on time since incidence was available,
we set the initial conditions according to previous simulations (see Figure and Table (1)) at day
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1o 100 (z7(0) = 8395.4, zmpsc(0) = 804.1, xnk(0) = 197565.7 and zc7r,(0) = 1654.4). Therefore,
11 we rescale 7 = 10° (tumor maximum size), and all other parameters are set to be as in Table
12 with 7 = 0. The weakly informative prior distributions for the parameters (means set to the values
173 in Table |1 and the standard deviations set to be wide) for the Bayesian parameter estimation are
174 as follows:

B3 ~ truncated (N (4 x 1075, 10_4) ,0, 10_2) (4a)
ag ~ truncated (N (1.1 x 1077, 10_6) ,0, 10_2) (4b)
a; ~ truncated (M (1071,3 x 107"),0,1) (4c)

o ~ InverseGamma (2, 3) (4d)

175 where ¢ is the noise estimate. For each tumor we run four independent Markov chain Monte Carlo
176 (MCMC) simulations with 2 x 103 iterations using the No U-Turn Sampler (NUTS) with a target
177 acceptance ratio of 0.65 (74)).

178

w9 2.4 Decision tree classification of tumor responses

10 We train decision trees classifiers on different combinations of posterior parameters from the
181 Bayesian parameter inference to classify tumor response as either decreasing or increasing over
122 time. Decision trees are built using DecisionTree.jl (75) and cross validation is done using scikit-
183 learn (70).

8 3 Results

s 3.1 Dynamics of metastatic growth in the presence of MDSCs

185 We study MDSC dynamics in the context of a metastasizing tumor, specifically we focus on breast-
187 to-lung metastasis, i.e. metastatic growth in the lung resulting from a primary tumor in the breast.
188 Thus to parameterize the model, we take into account the immune cell composition known to be
189 present in tumors in lungs (77)) (Figure . We begin by analyzing the behavior of the deterministic
o model (delay differential equations (DDEs); Eqns. (3a)-(3d} g = 0). Simulation of the DDE model
11 for different sizes of MDSC delay (7) show that the delay in the recruitment of MDSCs to the
12 tumor site plays a critical role in determining metastatic tumor size after one year (Figure .
103 We see that increasing 7 leads to slower growth and smaller population sizes of both the MDSC
104 and tumor populations. Increasing the delay leads to a lag before the MDSCs receive activation
105 signals from the tumor and begin to proliferate. Smaller MDSC population sizes lead to slower
196 growth/smaller tumor population sizes because a smaller MDSC population makes the tumor more
107 immunosusceptible to cell killing by NK and CTL populations. Note that, given the parameters in
198 Table [1| the same steady state will be reached for any finite 7, 0 < 7 < co. The time until steady
100 state is positively correlated with the delay 7.

200 In the case of no tumor (z1 = 0), the tumor-free fixed point of the model is:

.fT — O, (5&)

. a2
ITMDSC = s (Sb)

G

3 Gy

€T = e e————— 5C
e @23 + C2C3 (5¢)
Zetn, = 0, (5d)

201 where &7, TMmDpsc, INK, and oy, represent the steady state values of 1, xympsce, Nk, and oL,
202 respectively. We observe baseline populations of MDSCs and NK cells at the metastatic site, but
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Figure 2: Larger MDSC delays result in significantly altered tumor growth dynamics. Simula-
tions of the deterministic (DDE) system (Eqns. (3a)-(3d), g = 0) over one year, with one initial tumor cell
and different MDSC delay parameter 7. See Methods for simulation details. A: 7 =0. B: 7 =10. C: 7 =
50. D: 7 = 365.
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203 no CTL cells, as they need to be recruited and activated against the tumor. Since tumor cells
204 cannot be spontaneously generated in this model, the tumor-free fixed point (Eqns. (ba))-(5d))) is
205 stable. In the case of a nonzero tumor population (Zp > 0), in general the steady state must be
206 determined numerically, although we can derive analytical approximations in special cases. For
207 example, for Z1 > 0, the steady states of the non-tumor populations are:

ag(Zr +71) + asdr (6a)
Gt +v1)
Pk = Gt +m) (4 (83 + 12) + asdF) (6b)
(2% + 72) (a2Bs(ZT + 7)) + asfsir + GC3(Er + M)’
R GaT(y1 + 1)
T = , 6c
Tt (2 + 42) (73 + 22 ha (6e)

IMDSC

208 where
hi = (@r(agBsor(v+d1) (V2 + &%) + Gasagdr(n + 21) (v3 + 27) + asfsardr (2 + 47)
+ GGar(n +at) (2 + 7)) + Gasas( + @) (12 + 27) (3 +27) ),
he = (2fBs(n1 +21) + aszfsit + (v + 21))(a2Bs(y1 + &1) + asbait + (2la(11 + 21)).

200 If we assume that the tumor reaches its carrying capacity, n, then the tumor steady state is given
210 by Eqns. — with 21 = 7.

211 We can also determine whether a small initial number of tumor cells will grow to a significantly
212 sized positive steady state (e.g. a steady state in which zp > 10) or will initially decay. This is an
213 important question, as we expect metastases to be seeded from a small initial number of circulating
2za tumor cells (11, 3] 34, 37, [78). If we begin at the tumor-free steady state (Eqns. (5b)-(5d)), and
215 increase the number of tumor cells by one or two, then taking the highest order terms in Eqn. (3a))
216 we see that the rate of change of the tumor population will be initially positive if G > 0. Here G
217 can be defined as the tumor growth threshold, or equivalently, the tumor basic reproductive ratio
218 (analogous to Ry in epidemiological models; see Supplementary Information Section [S4| for details).

20 G is given by:
C2f1ay

agfs + (oCs - @

220 Examples of simulations starting from the tumor-free steady state (Eqns. —) but with the
21 addition of a single tumor cell are shown in Figure [BJA-C. The tumor population grows initially if
22 and only if G > 0. In Figure the parameter values are as defined in Table (1} giving G =~ 0.8,
»3 and a resulting tumor size at steady state of 9.8 x 105. We change the tumor cell death rate (¢1) to
24 vary G: to G =~ 0 (giving a tumor steady state of ~ 1; Figure ), and to G ~ —0.2 (giving a tumor
25 steady state of < 1; Figure ) The threshold G thus gives an approximation of whether small
26 numbers of tumor cells will grow into fully developed metastases, of relevance for cancer prognosis,
227 treatment, and progression (30).

G = aylog(n) —

228

»o 3.2 Parameter sensitivity analysis reveals that inhibition rates between popu-
230 lations are most important in determining tumor growth outcomes

231 We perform parameter sensitivity analysis to assess the relative importance of model parameters
232 on the growth and final size of the tumor population. Since the tumor steady state is independent
233 of the MDSC delay as t — oo, for sensitivity analysis we set the delay 7 = 0.

234 As seen in the model (Eqns. —), the MDSC-specific parameters are as, as, (2, 53, B4,
235 and 1. The Morris global sensitivity analysis for the effect of the MDSC-specific parameters on the
236 tumor population steady state (numerically calculated) is shown in Figure , where the MDSC-
237 specific parameters are marked by large hexagons. The green (red) color denotes parameters that
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Figure 3: Dependencies of tumor growth characteristics on model parameters. Simulations
of the ODE system (Eqns. )-(3d , g = 7 = 0) with one initial tumor cell. A-C: Different tumor
growth thresholds G (Eqn. ' ~ 0.8 (parameters as in Table [I). (B); G = 0 (¢ = 0.81).
(C); G =~ —-02 (¢ =1). D: MOI‘I‘IS global sensitivity analysis (GSA) for the steady state of the tumor
population for all model parameters. Green denotes parameters that are positively correlated with the
tumor size at steady state; red denotes negatively correlated. Hexagons represent MDSC-specific parameters;
circles represent non-MDSC-specific parameters. E-F: Effects of the NK inhibition rate by MDSCs (53),
for B3 = 107°, the minimum of the GSA range (E); the tumor size at steady state is 2.5 x 102. And for
B3 = 107%, the maximum of the GSA range (F); The tumor size at steady state is 9.9 x 10°.
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238 are positively (negatively) correlated with the steady state of the tumor population. As expected,
230 (o (death rate of MDSCs) and ~; (steepness of MDSC production) are the only MDSC-specific
20 parameters negatively correlated with the tumor population, as increasing either of these parameters
21 results in fewer MDSCs and thus a more immunosusceptible tumor population.
242 In Figure we also see that O3 (inhibition of NK cells by MDSCs) is the most important
23 MDSC-specific parameter for the tumor steady state. This is because initially the NK cell popu-
24 lation is very large (77) (see the green line in Figure [2l and Eqn. ) and the MDSC population
25 must effectively suppress the NK cells for the tumor to be able to grow and not die out quickly.
26 Similarly, 84 (inhibition of CTL cells by MDSCs) is also very important, but less so than (3 as
27 the CTL population is initially small and so less important to the initial growth of the tumor
2s  (see the blue line in Figure [2| and Eqn. , and the Discussion for consideration of CTL rich
220 environments).
250 Figure [BE-F explicitly shows the effect of 83 (inhibition of NK cells by MDSCs) on the tumor
251 steady state at both ends of the GSA range. Here, we see that small 83 (Figure ) results in a small
22 metastatic tumor (B3 = 107°, tumor population steady state 2.5 x 10?) whereas large (3 (Figure
253 |3F) results in a large metastatic tumor (83 = 10~%, tumor population steady state 9.9 x 10°).
254 The Morris global sensitivity analysis for all model parameters is shown in Figure , (non-
255 MDSC parameters marked by circles) where again the green (red) color denotes parameters that
256 are positively (negatively) correlated with the steady state of the tumor population. Here we see
7 that ag, az, a1, 1, B3, (3, B4, (4, Y2, and 3 are positively correlated with the tumor population
s steady state and all other parameters are negatively correlated. The most important parameters
250 (as measured by their effect on the tumor steady state) are ag, 51, B2, (3 and 4, where ag is
260 the rate of CTL stimulation by tumor-NK cell interaction, 51 and 82 are inhibition rates of tumor
261 cells by NK and CTL cells, and 3 and (4 are inhibition rates of NK and CTL cells by MDSCs
22 (see Table [1f for a full list of parameter descriptions). Therefore, our model dynamics are largely
23 influenced by inhibition/stimulation between competing populations (see Figure 1| for schematic
24 diagram), which makes sense as these interactions (especially recently in the context of increased
265 focus on MDSC populations) have been shown to be important determinants of cancer dynamics
266 in tumor microenvironments (I, [8, 10, 17, 20} 2T, 42).

267

% 3.3 Stochastic dynamics of metastatic growth and establishment

260 We now turn to analysis of the stochastic dynamics of the model. Given the seeding of metastases
270 by one or a few cells, stochastic effects are likely to play a large role in the system. In order to study
a1 metastatic tumor establishment and viability we simulate the SDDE model (Eqns. —), with
oz MDSC delay 7 > 0.

273 Stochastic simulations allow for the probabilistic analysis of “successful metastases”. In the
274 deterministic setting, G determines whether a new metastasis forms: using the parameters defined
275 in Table[l, a metastatic tumor is always formed (G > 0). In the stochastic setting, this is no longer
276 the case. Model outcomes vary even for identical initial conditions due to the noise in the system
2r7 (10} [79] [B0). Although we do not study the sources of biological noise here, we expect the major
278 component to result from noise in the intercellular signaling processes, i.e. extrinsic noise (81J).

279 To study the probability that a small number of pioneering cells will establish a new metastasis,
280 we start simulations with (the continuous differential equation equivalent of) two tumor cells, and
21 denote a metastasis successful if the number of tumor cells does not drop below one (i.e. [z (t)] >
222 0) in a one-year timespan (¢t € [0, 365] days). Figure [4| shows examples of both successful metastatic
253 tumors (panels A and C) and unsuccessful metastatic tumors (panels B and D) for different values
s of the MDSC delay 7 (see Supplementary Information Section for further description). For
255 more examples of successful and unsuccessful tumors see Figures S2 and S3 respectively. While a
256 metastatic tumor can become unsuccessful at any time point (and all tumors will be unsuccessful
257 almost surely as ¢t — o0), the tumor population is most likely to drop below one near the beginning

11
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Figure 4: Stochastic effects influence the growth and probability of establishment of metastatic
tumors. Examples of simulations of the SDDE system (Eqns. —) over one year, with two initial
tumor cells and different values of the MDSC delay parameter, 7. A “successful” metastatic tumor is one
that does not drop below a size of one tumor cell over the simulation period. A: 7 = 0; successful. B: 7 =
10; unsuccessful. C: 7 = 50; successful. D: 7 = 365; unsuccessful.

of the simulation (i.e. soon after metastatic tumor seeding) when the tumor population is small
(Figures S4 and S5).

3.4 Delays in MDSC recruitment decrease the probability of metastasis and
the size of metastatic tumors

Analysis of the probability of metastasis under different assumptions of MDSC-tumor-immune inter-
actions for thousands of tumors studied in silico revealed striking dependencies of tumor outcomes
on MDSC dynamics (Figure [5). Through joint analysis of the effects of the number of circulat-
ing MDSCs (ag) and the size of the MDSC delay (7), we found that the probability of successful
metastatic tumor establishment and the average size of metastatic tumors are positively correlated
with the level of circulating MDSCs, and negatively correlated with the size of the MDSC delay.
As more MDSCs become available at or near the site of the nascent metastasis, the NK and CTL
populations become more suppressed, resulting in a greater likelihood of tumor growth (Figure
[A-B). Importantly: the positive feedback loop (tumor cells are able to activate more MDSCs)
reinforces the tumor’s ability to grow even in a “hot” tumor.

We found that our model provides novel and biologically-driven means to determine exactly
what can be inferred from levels of circulating MDSCs. Given the relative difficulty of defining
MDSCs and the relative ease of sampling circulating cells this bears important clinical relevance
(19). If the baseline level of circulating MDSCs (ag) is high, MDSC activation delays have little
effect on the metastasis establishment probability (Figure -B), but the MDSC delay still has a
pronounced effect on the resulting sizes of the metastases that grow (Figure —D and Figure S6).
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Recall that our definition of successful metastasis is liberal: a population of > 1 tumor cells that
survives for a year. Differences in the sizes of these nascent metastases from tens to thousands of
cells bear direct clinical relevance. Further statistics on metastatic survival and size can be found in
Table S1. Relative to a MDSC delay of 0 days, a MDSC delay of 365 days leads to a 2-fold decrease
in the probability of successful metastasis, a 21-fold decrease in the mean tumor size (of successful
tumors), and a 4.6-fold increase in the mean time to extinction of unsuccessful metastases.

Figure S7 shows the effect of the rate of MDSC inhibition of NK cells (/33) and Figure S8 shows
the effect of the rate of MDSC inhibition of CTL cells (54). Here, we see that more effective
(i.e. more inhibitory against anti-tumor populations) MDSCs (83, 54 1, 7 J) means NK and CTL
populations are more inhibited, which results in more tumor cells. However, if the level of inhibition
of NK cells (f3) is high enough, delays in recruitment of more MDSCs (7) has little effect on the
probability of successful metastatic tumors (as the tumor population will grow to very large levels
very quickly, independently of a large increase in the number of MDSCs) but still effects the average
size as less NK cells results in more tumor cells (Figure S7). Since there are initially zero CTL
cells and the CTL population does not reach extremely high levels relative to other populations
(see for instance Figure [2| blue lines) changing 4 does not have a large effect on the probability of
successful metastasis (Figure S8A-B). However, increasing (34 can result in a small increase in the
average size of successful tumors (see Figure S8C-D).

MDSCs can be sub-divided into one of two states: monocytic M-MDSCs (typically assumed to
be more immunosuppressive) and granulocytic/poly-mononuclear (G- or PMN-MDSCs) (1, 3, [6]).
The relative proportion of G- to M-MDSCs can alter the immunosuppressive properties of the
tumor microenvironment (15, 82)). For example, if the relative proportion of G- to M-MDSCs skews
toward M-MDSCs, we would expect larger effects of MDSC delays (as seen in Figure [5)), whereas
the opposite would be expected if G-MDSCs dominate. Extensions of the current model include
separating M-MDSCs and G-MDSCs, with for instance ﬁé\&‘MDSCS > Bg‘MDSCS and BEA‘MDSCS >
ﬁf"MDSCS, see the Discussion for further details.

To summarize the results of this section, we have identified two crucial effects of MDSC delays
on the stochastic tumor dynamics. First, that MDSC delays always result in significantly smaller
tumor sizes. This effect is pronounced when MDSCs are more immune-suppressive (i.e. when f3, 54
are large). Under these conditions, the increase in MDSCs most allows the tumor to outcompete
the anti-tumor populations and reach large sizes. However if the MDSCs are so powerful as to
completely inhibit the NK and CTL populations, then increasing fs, 54 will have no further effect.
The effect of MDSC delay on tumor size is less pronounced when the MDSCs are less immune-
suppressive (i.e. when (3,34 are small): in this case increases in the number of MDSCs will not
have significant effects on the long term dynamics of the other populations.

Second, that MDSC delays can result in drastically decreased probabilities of a successful new
metastasis. This effect is most pronounced when the initial level of circulating MDSCs (a2) is not
too high, and when the MDSCs are not too immune-suppressive of the NK population (large /33).
This is due to the greater likelihood of extinction of stochastic tumors (|xT] < 1) early in the
simulation. If the level of circulating MDSCs (aw) is high, offering the nascent tumor protection
against CTL and NK cell responses, then the effects of delays in recruitment of more MDSCs
are lessened. Similarly, if the MDSCs are strongly immune-suppressive (particularly against NK
cells), then the tumor is likely to grow to a large size quickly, negating the impact of delays in
MDSC recruitment on the probability of successful establishment of a new metastasis. These results
establish how MDSC plasticity, as defined by their different suppressive functions and environments
(i.e. circulation throughout the body or within a tumor), differentially contribute to tumor growth
and progression of disease from a primary tumor location to a distant metastatic site.
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Figure 5: Effects of MDSC properties on the probability of metastatic establishment. Stochastic
simulations run for a period of one year. Each point is the mean over at least 10° simulations. Ribbons
(shaded area) represent the standard error. A: Probability of new tumor establishment over a period of one
year, for different values of the level of circulating MDSCs (az) and the MDSC delay (7). B: As for A with
7 plotted on log scale. C: Of the new metastases that are successfully established, the distribution of their
means sizes is given. D: As for C with 7 plotted on log scale. E: Of the new metastases that go extinct, the
distribution of the mean times to extinction is given. F: As for E with 7 plotted on log scale.
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Figure 6: Interactions between MDSCs and NK cells control clinical tumor growth outcomes.
A: Relative change in tumor size from the baseline assessment for six tumors from non-small cell lung cancer
patients undergoing treatment with anti-PD-L1. Tumors are ordered (1-6) by their response, compared to
baseline assessment. B: Tumor 2 model trajectories based on the relative change in the tumor population
with the black dots representing the data, the purple line representing the fit from using the median of the
posterior distribution for each parameter, and the shaded area denoting the 90% credible interval (where 90%
of the posterior trajectories lie). C: Same as B for tumor 5. D-F: Samples from the posterior distribution
of each of the six tumors, 8 x 10% samples plotted for pairs of model parameters: (D); NK cell inhibition
rate by MDSCs (3) versus tumor growth rate (a1). (E); NK cell inhibition rate by MDSCs (83) versus
CTL stimulation by tumor-NK cell interaction (ag) (F); CTL stimulation by tumor-NK cell interaction (cg)
versus tumor growth rate (aq).
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3.5 Bayesian parameter inference reveals the importance of MDSC-NK cell
interactions in determining clinical outcomes

In order to assess more rigorously the variability and uncertainty with which we know model pa-
rameters, we performed Bayesian parameter inference using clinical data on tumor progression as
defined through RECIST ((38) and see Methods). We fit our tumor-immune model to data from
six individual tumors that broadly span the possible in vivo response outcomes (Figure @A) We
selected a three-dimensional parameter space to study important parameters as identified previ-
ously, consisting of the tumor growth rate, the NK inhibition rate by MDSCs, and the rate of CTL
stimulation by tumor-NK cell interactions. Successful fits were obtained for each of the tumors fit
(Figure —C and Supplementary Information Section .

To analyze the parameters that give rise to different response dynamics, we plot parameters
sampled from the posteriors of each tumor fit (Figure @D—F) We can see a clear trend towards
larger values of tumor growth rate () and NK inhibition rate by MDSCs (33) for tumors that
do not respond to treatment (tumors 5 & 6) compared to those that do respond to treatment
(tumors 1 & 2) (Figure[6D). This can be understood in light of the previously characterized effects
these parameters have on tumor growth (see e.g. Figure ) Furthermore, strong correlations
can be observed for these parameters. The correlation between the two parameters is steeper for
increasing tumors, suggestive of the discriminative ability of this parameter pair for quantifying
tumor outcomes (i.e. whether tumors will grow or decay upon the initiation of treatment). In
comparison, no correlations nor distinct effects on tumor outcomes are observed for the other two
parameter pairs (Figure [6E-F).

We tested the discriminative power of different combinations of posterior parameters by training
decision trees to classify tumor responses as either decreasing (i.e. tumors 1 & 2) or increasing (i.e.
tumors 5 & 6) over time. Table [2| gives the cross validation scores for decision trees (maximum
depth three) trained on different sets of posterior parameters as features. In line with the marginal
posteriors (Figure @D) we see that the best discriminative power is obtained using both the tumor
growth rate () and the NK cell inhibition rate by MDSCs (f3) as features. Strikingly, constrained
to using one feature, the NK cell inhibition rate by MDSCs is a better predictor than the tumor
growth rate, even though the tumor growth rate is intricately tied to the classification outcome
(43). Interest in interactions between MDSCs and NK cells has already been growing in recent
years (20, 21} 24)); this result urges that much more investigation is warranted.

Given that the clinical data available for inference do not capture immune dynamics, coupled
with the relative simplicity of the tumor dynamics in response to treatment, we expected to be
able to obtain fits to various individual tumor outcomes with our tumor-immune model. However,
the relative importances of parameters that this data fitting revealed were completely unexpected.
The strength of immune-suppressiveness — as controlled by NK cell inhibition by MDSCs — was
identified as the most important parameter in determining outcome. This has direct clinical impli-
cations: while it may not yet be possible to directly modulate this parameter in a clinical setting,
it highlights the importance of interventions targeting properties of MDSCs in and around the
tumor site. Moreover, successfully fitting of various tumor responses to tumor-MDSC dynamics
and the stratification of rate parameters that resulted demonstrates our ability to build and fit
patient-specific tumor growth models (83), with which to predict metastatic outcomes.

4 Discussion

Cancer dynamics are complex, and understanding cancer-immune dynamics is a complex systems
biology problem (10, 28] 29] [39, 43)). Modeling how tumors interact with the immune system is criti-
cal for understanding treatment responses and predicting the best possible therapeutic strategies in
response to metastasis. Myeloid-derived suppressor cells (MDSCs) have been identified in various
tumor microenvironments (8, 9, [15), where they can exert strong immunosuppressive effects leading
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H Features for prediction | Three-fold cross validation scores H

a1 62.8 + 5.68
B3 69.1 +5.12

g 55.6 + 4.51
(a1, f3) 81.5 + 7.88
(a1, o) 63.0 + 5.37
(B3, a6) 68.2 &+ 5.60
(a1, B3, o) 81.5 + 7.88

Table 2: Classification of tumor responses using posterior parameters shows relationship be-
tween tumor growth and MDSC inhibition rates. Decision trees were used to classify tumor responses
as either decreasing (tumors 1 & 2) or increasing (tumors 5 & 6) based on sets of one or two posterior pa-
rameters as features. Three-fold cross validation scores are given as mean + standard deviation.

to worse outcomes (12 17, B7), yet a rigorous theoretical characterization of MDSC dynamics in
the tumor microenvironment has remained lacking. Here, through the introduction of a stochastic
delay differential equation (SDDE) model with which to study tumor-MDSC dynamics, we have
provided means to characterize the plasticity of MDSCs and their effects on tumor progression and
outcome.

With this model we began by studying outcomes under simple, idealized circumstances, such as:
how large do tumors grow in the presence of MDSCs? What is their likelihood of persistence in the
stochastic case? We discovered that delays in MDSC recruitment/activation have striking effects
on metastatic growth and establishment. Under certain conditions (lower levels of circulating
MDSCs), strategies that block MDSC recruitment to the site of the tumor are likely to greatly
improve metastatic outcomes and hinder growth. We also demonstrated through model analyses
how strategies that decrease the immunosuppressive properties of MDSCs can have dramatic anti-
tumor effects. Via Bayesian parameter estimation using data from tumor growth in vivo, we have
found interesting and novel correlations between the tumor and the MDSC response parameters,
again demonstrating the potential of inhibition of MDSCs as a desirable drug target.

Our inference results showed that the MDSC inhibition of NK cells was a crucial parameter
informing outcomes; more important than the tumor growth rate, as well as the MDSC inhibition of
CTL cells. It is important to note that there will be differences between tumor microenvironments:
here we studied MDSC dynamics in the lungs, an NK cell rich environment (24, [77)). If we were to
study MDSC dynamics in different environments, such as those in which CTL cells are greater in
number than NK cells, we would likely observe different model effects dominating, e.g. the role of
CTL activation might rise in prominence (84-88)).

These results suggest that the identification of effective anti-MDSC treatment strategies to con-
trol cancer growth and spread ought to be more highly prioritized (8,13} [17,24). In particular, drug
treatments that block MDSC recruitment to tumor sites and/or target MDSCs in the lymphoid
organs seem to be most highly effective in preventing metastasis, but their effects are lessened if
the level of circulating MDSCs is low, or if MDSCs are less effective at suppressing anti-tumor pop-
ulations. Since the level of circulating MDSCs (as well as the level of MDSC-immunosuppresion)
is likely to be highly variable within patients (20], 59), effective treatment strategies ought to be
informed by patient-specific biomarkers (83, [89). In addition, evaluation of the phentoype of circu-
lating MDSCs may not fully reflect the immunosuppressed state within tumors enough to predict
potential response to immunotherapy, which may be determined in part by further mathematical
and data-driven modeling. Towards this end, we have shown via tumor-specific parameter infer-
ence that we can train machine learning models using posterior parameters to classify metastatic
outcomes. Future work, informed by more data (such as richer dynamic information or single-cell
gene expression data) will provide additional means to classify treatment outcomes. In this context
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40 it will be important to consider the prediction of responses in different tumor microenvironments
41 and under different treatment regimes.
442 MDSCs cannot be assumed to be a homogeneous population. Although we have assumed as
413 such here — for lack of data with which to quantify subpopulation-specific MDSC rate parameters
44— future models ought to consider MDSC heterogeneity. MDSCs are typically classified into one
as  of two possible cell types, monocytic (M-MDSCs) and granulocytic/polymononuclear (G-/PMN-
us  MDSCs), which exhibit different levels of immunosuppression (I, B, 15). M-MDSCs in metastatic
47 breast cancer patients resemble monocytes isolated from patients with sepsis, indicating fascinating
us  similarities between the immunosuppression capability of the MDSCs present in metastatic (but
a9 perhaps not primary) breast cancer patients and those involved in the immunosuppressive sepsis
a0 response (90). Further measurement of MDSC subtype-specific immunosuppression in vivo will
451 likely yield substantial new insight into their activity. Moreover, these additional data will permit
a2 the fitting of more detailed mathematical models that are able to describe patient-specific (or even
53 tumor site-specific) dynamics, and quantify the possible benefits of treatments targeting MDSCs.
asa Current knowledge suggests that shifting MDSC phenotypes towards G-MDSCs is beneficial as this
a5 state is less immunosuppresive (I, [15]), however further characterization of these states is needed.
456 The models we have developed of MDSCs in the tumor microenvironment do not consider space,
57 although of course spatial architectures play an important role in tumor progression (28| [32)), in
a3 primary growth as well as for circulating tumor cells that seed metastases (34, [O1)). The role of
459 spatial aspects of cancer niches in regulating MDSC-tumor dynamics will be an important topic in
w0 future work (92)). Here, carefully fitting models to appropriate data ought to include both single-cell-
a1 resolved characterization of the tumor microenvironment (15) and explicit spatial characterizations
2 (93], 94]).
463 There is an urgent need to understand the role of MDSC dynamics during tumor growth and
s+ metastasis. Here we discovered an essential and remarkable role for MDSC recruitment/activation
465 in dictating growth outcomes in the context of new metastases. This is but the first step. To
466 make progress further conceptual model development tightly linked to inference and the gathering
467 of higher-resolution data on MDSC phenotypes in vivo will be crucial. Mathematical modeling
468 will continue to play an integral part in discovery as it allows us to account for the numerous
460 and dynamic factors controlling MDSC plasticity and its impact of tumor responses in a way
470 that traditional biologic biomarkers alone cannot. Only by developing theory and gathering data
4n1 hand-in-hand can we hope to gain an understanding of the dynamics of MDSCs in the tumor
472 microenvironment, and in turn, develop new therapies for metastatic disease.
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