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Abstract

Myeloid-derived suppressor cells (MDSCs) play a prominent and rising role in the tumor mi-
croenvironment. An understanding of the tumor-MDSC interactions that influence disease pro-
gression is critical, and currently lacking. To address this, we developed a mathematical model
of metastatic growth and progression in immune-rich tumor microenvironments. We model the
tumor-immune dynamics with stochastic delay differential equations, and study the impact of
delays in MDSC activation/recruitment on tumor growth outcomes. We find when the circu-
lating level of MDSCs is low, the MDSC delay has a pronounced impact on the probability
of new metastatic establishment: blocking MDSC recruitment can reduce the probability of
metastasis by as much as 50%. We also quantify the extent to which decreasing the immuno-
suppressive capability of the MDSCs impacts the probability that a new metastasis will persist
or grow. In order to quantify patient-specific MDSC dynamics under different conditions we fit
individual tumors treated with immune checkpoint inhibitors to the tumor-MDSC model via
Bayesian parameter inference. We reveal that control of the inhibition rate of natural killer cells
by MDSCs has a larger influence on tumor outcomes than controlling the tumor growth rate
directly. Posterior classification of tumor outcomes demonstrates that incorporating knowledge
of the MDSC responses improves predictive accuracy from 63% to 82%. Our results illustrate
the importance of MDSC dynamics in the tumor microenvironment and predict interventions
that may shift environments towards a less immune-suppressed state. We argue that there is a
pressing need to more often consider MDSCs in analyses of tumor microenvironments.
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1 Introduction1

Myeloid-derived suppressor cells (MDSCs) are immature myeloid immune cells that become patho-2

logically activated with potent immunosuppressive activity (1–7). Since the introduction of the term3

“MDSC” in the late 1990s (4–6), there has a great deal of effort to understand MDSC phenotypes4

and dynamics. MDSCs are implicated in the regulation of immune responses in many biological5

contexts and pathological conditions, including cancer, inflammation, wound healing, and autoim-6

mune disorders (1). Some have gone as far as to claim that MDSCs are “the most important cell you7

have never heard of” (8). Recently, with the advent of high-dimensional measurement technologies8

including mass cytometry and single-cell RNA sequencing, the characterization of MDSCs and their9

roles in diverse contexts has become more refined (7, 9). Here, we characterize MDSCs by their10

function – immunosuppressive activity – rather than their expression phenotype (e.g. CD11b+ and11

Gr-1+ in mice), bypassing the need to delve into the heterogeneity of the CD11b+Gr-1+ population12

at single-cell level.13

In the context of cancer, the role of MDSCs is convoluted, in part due to the complexity of14

the tumor microenvironment and related immunology (3, 10–14). MDSCs certainly play significant15

roles in tumor microenvironments (8, 9, 15, 16); increased levels of MDSCs are associated with poor16

clinical outcomes (2, 12, 17–19) (An important caveat is that studies often measure only circulating17

MDSCs.) There is compelling evidence that MDSCs can effectively shield tumors from anti-tumor18

immune responses from cytotoxic T cells and natural killer cells (20–24). Targeting MDSCs as a way19

to sensitize non-immunogenic tumors is an attractive treatment strategy in cancer immunotherapy20

(16, 17). MDSC dynamics have also been studied in the specific context of breast cancer, where21

they have been shown to affect the progression of primary breast tumors and associated metastases22

(7, 15, 18, 23, 25–27).23

Understanding tumor-immune-MDSC dynamics is by nature a systems biology problem. Math-24

ematical and computational modeling are essential to tease apart the intricate relationships involved25

(28, 29). There have been relatively few works (certainly in comparison to experimental/clinical26

interest) in the literature that develop mathematical models of MDSCs (30–33). Shariatpanahi et27

al. (30) developed a model described by ordinary differential equations with which they explore28

therapeutic strategies that aim to restore anti-tumor immunity, in comparison with experimental29

data (23). Allahverdy et al. (31) developed a stochastic agent-based model was used to explore the30

effects of different drugs on MDSC and tumor dynamics. Liao et al. (32, 33) developed a model31

described by partial differential equations were used to determine optimized drug treatment and32

to understand primary drug resistance. While these models offer insight into the roles of MDSCs,33

a rigorous treatment of MDSC dynamics in the tumor microenvironment, fitting models to data,34

and taking into account the effects of noise remains lacking.35

Here, we focus on the effect of MDSC dynamics on metastatic tumor growth following an initial36

seeding event. A majority of cancer deaths are a result of metastasis (34): a highly dynamic and37

stochastic process. Most metastatic tumors are seeded by a small number of circulating tumor38

cells (13, 34). MDSC migration to the site of a new tumor has been identified as crucial for cancer39

progression, both in primary tumors and metastases, but the interactions involved are not well40

understood, in part due to the novelty of MDSC characterization, the complex tumor-immune en-41

vironment, and the difficulties associated with tracking cell-cell interactions in vivo (13, 35, 36). As42

a result, there are many open and pressing questions regarding MDSCs and tumor metastasis (37).43

How much therapeutic benefit can be gained by blocking MDSC recruitment to the tumor site?44

Would therapies that decrease the circulating number of MDSCs achieve similar or greater effects?45

There are now various methods to target MDSCs in peripheral lymphoid organs and their migration46

to tumor sites. However, it is not clear whether either of these methods alone will be sufficient to47

inhibit MDSC immunosuppressiveness at a tumor site or whether combination approaches will be48

required.49

To address these questions we develop a stochastic delay differential equation model of metastatic50
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tumor growth. We include an MDSC delay that can represent delays in MDSC recruitment to the51

metastatic tumor site as well as delays in MDSC activation to suppress anti-tumor immune cells.52

Stochasticity is included due to the inherent noise in the cell dynamics, and to be able to assess53

the probabilistic events of new metastases. We first demonstrate the importance of MDSCs in54

the tumor-immune microenvironment, and establish conditions necessary for metastatic growth55

for the deterministic model. We then identify the most important parameters and interactions in56

the system, to shed light on the underlying biological dynamics. Next, through simulation we ex-57

plore the impact of MDSC delays on metastatic growth, we discover that under certain conditions58

inhibiting MDSC recruitment alone might be a highly effective treatment strategy. Finally, we59

perform Bayesian parameter estimation of models fit to individual tumors growing in vivo, from60

which we determine tumor- and MDSC-specific parameters. Inference results reveal that knowl-61

edge of MDSC-specific parameters is important in order to be able to accurately predict metastatic62

outcomes.63

2 Methods64

2.1 A stochastic delay differential equation model of tumor-immune dynamics65

in the presence of MDSCs66

Mathematical modeling of tumor-immune cell interactions has been increasingly recognized as67

critical for understanding strategies to mount an effective response to cancer initiation, spread, and68

evolution (28, 29, 38–43). In this paper we first describe a theoretical basis for MDSC dynamics69

in the context of a metastasizing tumor (e.g. in the lung, bone, or liver (44)) from a primary70

tumor in the breast. For parameterization of the model, we focus on the lung, as it is one of71

the most common distant metastases sites of breast cancer (45). Our mathematical model is72

comprised of four non-spatial delay differential equations to describe tumor-immune interactions73

incorporating MDSCs (30, 40). We focus on the most important interactions between tumor,74

immune, and MDSC populations, leading to a relatively simple model that allows us to gain insight75

into system dynamics and metastatic tumor spread. We include the anti-tumor immune populations76

of cytotoxic T (CTL) cells and natural killer (NK) cells. MDSC-CTL interactions are important77

given the primary function of intratumoral MDSCs is suppression of CTLs (1, 6, 15, 16). MDSC-78

NK interactions are also important (20–22, 24, 25), and NK cells are increasingly being studied79

as an immune population specifically affected by tumor cells to promote metastasis (46, 47). A80

schematic diagram of the model is provided in Figure 1.81

We denote xT, xMDSC, xNK, and xCTL as the populations of tumor cells, MDSCs, NK cells,82

and CTL cells, respectively, at time t. The model derived can be expressed conceptually (i.e.83

agnostic as yet to the form of the dynamics) as follows, where δxi denotes the rate of change of xi,84

i ∈ [T, MDSC, NK, CTL].85

δxT = growth of tumor cells − tumor cells inhibited by NK cells

− tumor cells inhibited by CTL cells − death of tumor cells , (1a)

δxMDSC = circulating level of MDSCs + recruitment of MDSCs in presence of tumor

− death of MDSCs , (1b)

δxNK = circulating level of NK cells + recruitment of NK cells in presence of tumor

− NK cells inhibited by MDSCs − death of NK cells , (1c)

δxCTL = CTL cells stimulated by NK-tumor interaction + recruitment of CTL cells in presence of tumor

− CTL cells inhibited by MDSCs − death of CTL cells , (1d)
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Figure 1: Schematic diagram of model and population interactions. The myeloid-derived suppressor
cell (MDSC), natural killer (NK) cell, and cytotoxic T (CTL) cell populations are all signaled to proliferate
in the presence of a metastatic tumor. The MDSC population inhibits the NK and CTL populations, and
the NK and CTL populations inhibit the tumor population.

Based on these biological processes, we develop a stochastic delay differential equation (SDDE)86

model to characterize tumor-immune interactions that takes the form:87

dxi(t) = f(xj(t), xj(t− τ))dt+ g(xj(t), xj(t− τ))dW (t), (2)

at time t, with delay 0 < τ < t, where f(·) describes the deterministic dynamics controlled by the88

model interactions, g(·)dW (t) describes the stochastic dynamics, dW (t) denotes an increment of89

a Weiner process, W (t), and xj(t) = [xT(t), xMDSC(t), xNK(t), xCTL(t)]. The model thus consists90

of coupled stochastic delay differential equations (SDDEs), where we assume an Itô interpretation91

(48). For the stochastic dynamics, we have:92

g(xj(t), xj(t− τ)) = ξi(t),

where ξi(t) is the size of the ith population, i.e. we assume multiplicative noise (48, 49). We study93

the tumor-immune dynamics under the assumption of multiplicative noise given the mounting94

evidence that biological systems more often exhibit dynamics generated from multiplicative noise95

models (50).96

For the deterministic dynamics, we have:

f(xj(t), xj(t− τ)) =



α1xT(t) log

(
η

xT(t)

)
− β1xT(t)xNK(t)− β2xT(t)xCTL(t)− ζ1xT(t)

α2 + α3
xT(t− τ)

γ1 + xT(t− τ)
− ζ2xMDSC(t)

α4 + α5
xT(t)2

γ2 + xT(t)2
− β3xMDSC(t)xNK(t)− ζ3xNK(t)

α6xT(t)xNK(t) + α7
xT(t)2

γ3 + xT(t)2
− β4xMDSC(t)xCTL(t)− ζ4xCTL(t)


,

(3a)

(3b)

(3c)

(3d)

with description of the parameters is given in Table 1. We model tumor growth according to a97

Gompertzian model (first term of Eqn. (3a)) (30, 38), with maximum size η, where tumor cells can98
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be eradicated by the NK and CTL cells (anti-tumor response), with rates β1 and β2, respectively.99

MDSCs are activated due to their basal circulation, α2, and die at rate ζ2. In addition, in the100

presence of tumor cells, immune-suppressive signals lead to increased MDSC production, activation,101

and recruitment to the site of the tumor (at rate α3). MDSCs, generated primarily in the bone102

marrow, migrate to peripheral lymphoid organs and then to tumor tissues in tumor bearing hosts103

(13, 51). The delay in activation/recruitment of MDSCs is modeled using a Mackey-Glass delay104

term (52), with a delay of order τ (second term of Eqn. (3b)). Here we consider delays only in105

xMDSC; while delays in other immune cells, e.g. due to CTL activation, might be important in106

some contexts, they were observed to have small effects on the tumor dynamics here, due to the107

low circulating levels of CTL cells (see Supplementary Text Section 1). We also note that the model108

does not include MDSC subtypes or maturation, but only accounts for their functional significance109

as immature myeloid cells with immunosuppressive capability. Future work could include MDSC110

maturation into other cell types as influenced by the tumor microenvironment, see the Discussion111

for further details.112

For the anti-tumor immune dynamics, NK cells are produced at rate α4; CTL cells are activated113

by the NK cell—tumor cell interaction at rate α6. In line with (30), both NK and CTL cells can be114

activated by the tumor (at rates α5 and α7, respectively). We assume that NK and CTL cells can be115

inhibited by MDSCs (at rates β3 and β4, respectively), and are lost due to cell death (at rates ζ3 and116

ζ4, respectively). In simulations of new metastases (with Eqns. (3a)-(3d)), the initial conditions are117

set by the tumor-free steady state (Eqns. 5b)-(5d)), except that we seed tumor growth by one or two118

initial tumor cells. Unless explicitly stated otherwise, all parameter values used for simulation are119

as defined in Table 1. The standard error is defined as standard deviation/
√

number of simulations.120

The red lines represent the tumor population, the yellow lines represent the MDSC population, the121

green lines represent the NK cell population, and the blue lines represent the CTL population.122

The horizontal axis is the time in days, and the vertical axis is the size of the population (see for123

example Figure 2).124

In our studies below we consider analyses of the full SDDE model as well as different reduced125

models. In the case that g = 0, the SDDE model reduces to a deterministic delay differential equa-126

tion (DDE) model. In the case that g = 0 and τ = 0, the model reduces to an ordinary differential127

equation (ODE) model. All models are developed in the Julia programming language (53), using128

DifferentialEquations.jl (54). For simulation of the full model, we use the SOSRI algorithm for stiff129

stochastic differential equations (55). Metaprogramming in Julia enables transitioning between130

model formulations (SDDE, DDE, or ODE) with ease (56).131

2.2 Parameter sensitivity analysis132

We perform parameter sensitivity analysis to assess the relative importance of parameters on the133

model given by Eqns. (3a)-(3d). We use Morris global sensitivity analysis (GSA) (66, 67) for the134

steady state of the tumor population for all model parameters. Table 1 contains GSA ranges and pa-135

rameter descriptions. The parameters used for the Morris algorithm (using DifferentialEquations.jl136

(54)) are total num trajectory = 1000 and num trajectory = 100.137

2.3 Bayesian parameter inference with RECIST data138

RECIST criteria have been developed for use in clinical trials as a way to determine the change139

in tumor burden of selected target lesions to inform whether a patient is responding to a given140

therapy (68). We implement Bayesian parameter inference to fit the model to tumor responses using141

RECIST to classify tumor sizes and responses over time (described below, (69)). We fit differential142

equation-based models to RECIST data following a similar conceptual framework to (38). In the143

case of our model, we also fit certain MDSC parameters, such as the interaction strengths between144

the MDSCs and other immune/tumor populations, to assess the effect of MDSC dynamics on145
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Notation Description Value Units Reference Range

xT(t), t ≤ 0 initial condition for tumor cells 1 or 2 - - -
xMDSC(0) initial condition for MDSCs α2/ζ2 - - -

xNK(0) initial condition for NK cells ζ2α4
α2β3+ζ2ζ3

- - -

xCTL(0) initial condition for CTL cells 0 - - -
τ delay parameter for MDSCs varies days - -
α1 tumor growth rate 10−1 days−1 (40, 57, 58) [10−2, 5 × 10−1]
η tumor maximum size 107 - estimated [106, 108]
β1 tumor cells inhibition rate by NK cells 3.5 × 10−6 days−1 (40, 57, 58) [10−7, 10−6]
β2 tumor cells inhibition rate by CTL cells 1.1 × 10−7 days−1 (57) [10−7, 10−6]
ζ1 tumor cell death rate 0, varies days−1 (30) [0, 0.1]
α2 MDSCs circulating rate 102, varies days−1 estimated (59) [0, 103]
α3 MDSCs expansion coefficient 108 days−1 (23, 30, 60, 60) [107, 109]
ζ2 MDSCs death rate 0.2 days−1 (61, 62) [0, 1]
α4 NK cells circulating rate 1.4 × 104 days−1 (57) [103, 105]
α5 NK cells expansion coefficient 2.5 × 10−2 days−1 (40, 57, 58) [10−2, 10−1]
β3 NK cells inhibition rate by MDSCs 4 × 10−5, varies days−1 (30) [10−5, 10−4]
ζ3 NK cells death rate 4.12 × 10−2 days−1 (57) [10−2, 10−1]
α6 CTL stimulation by tumor-NK cell interaction 1.1 × 10−7 days−1 (63, 64) [10−7, 10−6]
α7 CTL expansion coefficient 10−1 days−1 (65) [5 × 10−2, 10−1]
β4 CTL inhibition rate by MDSCs 10−4, varies days−1 (30) [5 × 10−5, 5 × 10−4]
ζ4 CTL death rate 2 × 10−2 days−1 (40, 63) [10−2, 10−1]
γ1 steepness of MDSC production 1010 - (30, 60) [109, 1011]
γ2 steepness of NK production 2.02 × 107 - (40, 57) [106, 108]
γ3 steepness of CTL production 2.02 × 107 - (40, 57, 58) [106, 108]

Table 1: Description of model parameters and values. Estimated from the literature, see in particular
(40, 57, 59, 60). Cell populations are measured in terms of cell numbers and are non-dimensionalized. The
first column is the parameter notation, the second column is the parameter description, the third column is
the parameter estimated value, the fourth column is the parameter units (if applicable), the fifth column is
the citation of the reference for the parameter estimate, and the sixth column is the parameter range used
for the global stability analysis in Section 3.2.

clinically-relevant tumor growth. We employ Bayesian parameter inference (70) implemented in146

Turing.jl (71).147

We use in vivo tumor data from a study evaluating the efficacy and safety of anti-programmed148

death-ligand 1 (PD-L1) atezolizumab in advanced non-small cell lung cancer (69). This data was149

also recently used to fit mathematical models of tumor growth (Study 1, (38)). Each tumor has a150

baseline assessment before the initiation of treatment in the clinical trial (for the purposes of fitting151

we set the time of the baseline assessment to be zero). Tumor size is then reassessed approximately152

every six weeks for twelve months, then every nine weeks, and then at disease progression. At each153

assessment the tumor size is measured in millimeters in one dimension (x), which we convert to154

a volume following the convention adopted by Laleh et al., i.e. taking the volume (mm3) as 1
2x

3
155

(38, 72). We estimate the number of tumor cells from this volume by multiplying by a factor of 107
156

(73). From the available data we selected six measurable tumors from six different patients that157

each have data from at least five time points (including the baseline assessment), are from all three158

study cohorts, and are representative of the range of the dataset (i.e. tumors that increase/decrease159

at a variety of rates). We fit the relative change in the tumor population, which is measured160

as the difference between the measurement and the baseline assessment, divided by the baseline161

assessment (measurement−baseline
baseline , which produces a real number ∈ [−1,∞)). As the relative change162

at the baseline assessment is always zero, we remove this data point for all tumors. Since only the163

tumor data is available, we fit the log transformed data from this population (i.e. log(xT + 1)). All164

of the data for each of the six tumors is available in the supplementary file tumor data.xlsx.165

For inference, a three-dimensional free parameter space was selected in which we fit the following166

parameters: β3 (NK cells inhibition rate by MDSCs), α6 (CTL stimulation by tumor-NK cell167

interaction), and α1 (tumor growth rate). As no information on time since incidence was available,168

we set the initial conditions according to previous simulations (see Figure 2A and Table 1) at day169
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100 (xT(0) = 8395.4, xMDSC(0) = 804.1, xNK(0) = 197565.7 and xCTL(0) = 1654.4). Therefore,170

we rescale η = 105 (tumor maximum size), and all other parameters are set to be as in Table 1171

with τ = 0. The weakly informative prior distributions for the parameters (means set to the values172

in Table 1 and the standard deviations set to be wide) for the Bayesian parameter estimation are173

as follows:174

β3 ∼ truncated
(
N
(
4× 10−5, 10−4

)
, 0, 10−2

)
(4a)

α6 ∼ truncated
(
N
(
1.1× 10−7, 10−6

)
, 0, 10−2

)
(4b)

α1 ∼ truncated
(
N
(
10−1, 3× 10−1

)
, 0, 1

)
(4c)

σ ∼ InverseGamma (2, 3) (4d)

where σ is the noise estimate. For each tumor we run four independent Markov chain Monte Carlo175

(MCMC) simulations with 2× 103 iterations using the No U-Turn Sampler (NUTS) with a target176

acceptance ratio of 0.65 (74).177

178

2.4 Decision tree classification of tumor responses179

We train decision trees classifiers on different combinations of posterior parameters from the180

Bayesian parameter inference to classify tumor response as either decreasing or increasing over181

time. Decision trees are built using DecisionTree.jl (75) and cross validation is done using scikit-182

learn (76).183

3 Results184

3.1 Dynamics of metastatic growth in the presence of MDSCs185

We study MDSC dynamics in the context of a metastasizing tumor, specifically we focus on breast-186

to-lung metastasis, i.e. metastatic growth in the lung resulting from a primary tumor in the breast.187

Thus to parameterize the model, we take into account the immune cell composition known to be188

present in tumors in lungs (77) (Figure 1). We begin by analyzing the behavior of the deterministic189

model (delay differential equations (DDEs); Eqns. (3a)-(3d, g = 0). Simulation of the DDE model190

for different sizes of MDSC delay (τ) show that the delay in the recruitment of MDSCs to the191

tumor site plays a critical role in determining metastatic tumor size after one year (Figure 2).192

We see that increasing τ leads to slower growth and smaller population sizes of both the MDSC193

and tumor populations. Increasing the delay leads to a lag before the MDSCs receive activation194

signals from the tumor and begin to proliferate. Smaller MDSC population sizes lead to slower195

growth/smaller tumor population sizes because a smaller MDSC population makes the tumor more196

immunosusceptible to cell killing by NK and CTL populations. Note that, given the parameters in197

Table 1, the same steady state will be reached for any finite τ , 0 ≤ τ <∞. The time until steady198

state is positively correlated with the delay τ .199

In the case of no tumor (xT = 0), the tumor-free fixed point of the model is:200

x̂T = 0, (5a)

x̂MDSC =
α2

ζ2
, (5b)

x̂NK =
ζ2α4

α2β3 + ζ2ζ3
, (5c)

x̂CTL = 0, (5d)

where x̂T, x̂MDSC, x̂NK, and x̂CTL represent the steady state values of xT, xMDSC, xNK, and xCTL,201

respectively. We observe baseline populations of MDSCs and NK cells at the metastatic site, but202
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Figure 2: Larger MDSC delays result in significantly altered tumor growth dynamics. Simula-
tions of the deterministic (DDE) system (Eqns. (3a)-(3d), g = 0) over one year, with one initial tumor cell
and different MDSC delay parameter τ . See Methods for simulation details. A: τ = 0. B: τ = 10. C: τ =
50. D: τ = 365.
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no CTL cells, as they need to be recruited and activated against the tumor. Since tumor cells203

cannot be spontaneously generated in this model, the tumor-free fixed point (Eqns. (5a)-(5d)) is204

stable. In the case of a nonzero tumor population (x̂T > 0), in general the steady state must be205

determined numerically, although we can derive analytical approximations in special cases. For206

example, for x̂T > 0, the steady states of the non-tumor populations are:207

x̂MDSC =
α2(x̂T + γ1) + α3x̂T

ζ2(x̂T + γ1)
, (6a)

x̂NK =
ζ2(x̂T + γ1)

(
α4

(
x̂2

T + γ2

)
+ α5x̂

2
T

)(
x̂2

T + γ2

)
(α2β3(x̂T + γ1) + α3β3x̂T + ζ2ζ3(x̂T + γ1))

, (6b)

x̂CTL =
ζ2x̂T(γ1 + x̂T)h1(

γ2 + x̂2
T

) (
γ3 + x̂2

T

)
h2
, (6c)

where208

h1 =
(
x̂T

(
α2β3α7(γ1 + x̂T)

(
γ2 + x̂2

T

)
+ ζ2α5α6x̂T(γ1 + x̂T)

(
γ3 + x̂2

T

)
+ α3β3α7x̂T

(
γ2 + x̂2

T

)
+ ζ2ζ3α7(γ1 + x̂T)

(
γ2 + x̂2

T

) )
+ ζ2α4α6(γ1 + x̂T)

(
γ2 + x̂2

T

) (
γ3 + x̂2

T

) )
,

h2 = (α2β3(γ1 + x̂T) + α3β3x̂T + ζ2ζ3(γ1 + x̂T))(α2β4(γ1 + x̂T) + α3β4x̂T + ζ2ζ4(γ1 + x̂T)).

If we assume that the tumor reaches its carrying capacity, η, then the tumor steady state is given209

by Eqns. (6a)-(6c) with x̂T = η.210

We can also determine whether a small initial number of tumor cells will grow to a significantly211

sized positive steady state (e.g. a steady state in which xT > 10) or will initially decay. This is an212

important question, as we expect metastases to be seeded from a small initial number of circulating213

tumor cells (1, 13, 34, 37, 78). If we begin at the tumor-free steady state (Eqns. (5b)-(5d)), and214

increase the number of tumor cells by one or two, then taking the highest order terms in Eqn. (3a)215

we see that the rate of change of the tumor population will be initially positive if G > 0. Here G216

can be defined as the tumor growth threshold, or equivalently, the tumor basic reproductive ratio217

(analogous to R0 in epidemiological models; see Supplementary Information Section S4 for details).218

G is given by:219

G = α1 log (η)− ζ2β1α4

α2β3 + ζ2ζ3
− ζ1. (7)

Examples of simulations starting from the tumor-free steady state (Eqns. (5b)-(5d)) but with the220

addition of a single tumor cell are shown in Figure 3A-C. The tumor population grows initially if221

and only if G > 0. In Figure 3A the parameter values are as defined in Table 1, giving G ≈ 0.8,222

and a resulting tumor size at steady state of 9.8× 106. We change the tumor cell death rate (ζ1) to223

vary G: to G ≈ 0 (giving a tumor steady state of ≈ 1; Figure 3B), and to G ≈ −0.2 (giving a tumor224

steady state of < 1; Figure 3C). The threshold G thus gives an approximation of whether small225

numbers of tumor cells will grow into fully developed metastases, of relevance for cancer prognosis,226

treatment, and progression (36).227

228

3.2 Parameter sensitivity analysis reveals that inhibition rates between popu-229

lations are most important in determining tumor growth outcomes230

We perform parameter sensitivity analysis to assess the relative importance of model parameters231

on the growth and final size of the tumor population. Since the tumor steady state is independent232

of the MDSC delay as t→∞, for sensitivity analysis we set the delay τ = 0.233

As seen in the model (Eqns. (3a)-(3d)), the MDSC-specific parameters are α2, α3, ζ2, β3, β4,234

and γ1. The Morris global sensitivity analysis for the effect of the MDSC-specific parameters on the235

tumor population steady state (numerically calculated) is shown in Figure 3D, where the MDSC-236

specific parameters are marked by large hexagons. The green (red) color denotes parameters that237
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Figure 3: Dependencies of tumor growth characteristics on model parameters. Simulations
of the ODE system (Eqns. (3a)-(3d), g = τ = 0) with one initial tumor cell. A-C: Different tumor
growth thresholds G (Eqn. (7)). (A); G ≈ 0.8 (parameters as in Table 1). (B); G ≈ 0 (ζ1 = 0.81).
(C); G ≈ −0.2 (ζ1 = 1). D: Morris global sensitivity analysis (GSA) for the steady state of the tumor
population for all model parameters. Green denotes parameters that are positively correlated with the
tumor size at steady state; red denotes negatively correlated. Hexagons represent MDSC-specific parameters;
circles represent non-MDSC-specific parameters. E-F: Effects of the NK inhibition rate by MDSCs (β3),
for β3 = 10−5, the minimum of the GSA range (E); the tumor size at steady state is 2.5 × 102. And for
β3 = 10−4, the maximum of the GSA range (F); The tumor size at steady state is 9.9× 106.
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are positively (negatively) correlated with the steady state of the tumor population. As expected,238

ζ2 (death rate of MDSCs) and γ1 (steepness of MDSC production) are the only MDSC-specific239

parameters negatively correlated with the tumor population, as increasing either of these parameters240

results in fewer MDSCs and thus a more immunosusceptible tumor population.241

In Figure 3D we also see that β3 (inhibition of NK cells by MDSCs) is the most important242

MDSC-specific parameter for the tumor steady state. This is because initially the NK cell popu-243

lation is very large (77) (see the green line in Figure 2 and Eqn. (5c)) and the MDSC population244

must effectively suppress the NK cells for the tumor to be able to grow and not die out quickly.245

Similarly, β4 (inhibition of CTL cells by MDSCs) is also very important, but less so than β3 as246

the CTL population is initially small and so less important to the initial growth of the tumor247

(see the blue line in Figure 2 and Eqn. (5d), and the Discussion for consideration of CTL rich248

environments).249

Figure 3E-F explicitly shows the effect of β3 (inhibition of NK cells by MDSCs) on the tumor250

steady state at both ends of the GSA range. Here, we see that small β3 (Figure 3E) results in a small251

metastatic tumor (β3 = 10−5, tumor population steady state 2.5 × 102) whereas large β3 (Figure252

3F) results in a large metastatic tumor (β3 = 10−4, tumor population steady state 9.9× 106).253

The Morris global sensitivity analysis for all model parameters is shown in Figure 3D, (non-254

MDSC parameters marked by circles) where again the green (red) color denotes parameters that255

are positively (negatively) correlated with the steady state of the tumor population. Here we see256

that α2, α3, α1, η, β3, ζ3, β4, ζ4, γ2, and γ3 are positively correlated with the tumor population257

steady state and all other parameters are negatively correlated. The most important parameters258

(as measured by their effect on the tumor steady state) are α6, β1, β2, β3 and β4, where α6 is259

the rate of CTL stimulation by tumor-NK cell interaction, β1 and β2 are inhibition rates of tumor260

cells by NK and CTL cells, and β3 and β4 are inhibition rates of NK and CTL cells by MDSCs261

(see Table 1 for a full list of parameter descriptions). Therefore, our model dynamics are largely262

influenced by inhibition/stimulation between competing populations (see Figure 1 for schematic263

diagram), which makes sense as these interactions (especially recently in the context of increased264

focus on MDSC populations) have been shown to be important determinants of cancer dynamics265

in tumor microenvironments (1, 8, 10, 17, 20, 21, 42).266

267

3.3 Stochastic dynamics of metastatic growth and establishment268

We now turn to analysis of the stochastic dynamics of the model. Given the seeding of metastases269

by one or a few cells, stochastic effects are likely to play a large role in the system. In order to study270

metastatic tumor establishment and viability we simulate the SDDE model (Eqns. (3a)-(3d)), with271

MDSC delay τ ≥ 0.272

Stochastic simulations allow for the probabilistic analysis of “successful metastases”. In the273

deterministic setting, G determines whether a new metastasis forms: using the parameters defined274

in Table 1, a metastatic tumor is always formed (G > 0). In the stochastic setting, this is no longer275

the case. Model outcomes vary even for identical initial conditions due to the noise in the system276

(10, 79, 80). Although we do not study the sources of biological noise here, we expect the major277

component to result from noise in the intercellular signaling processes, i.e. extrinsic noise (81).278

To study the probability that a small number of pioneering cells will establish a new metastasis,279

we start simulations with (the continuous differential equation equivalent of) two tumor cells, and280

denote a metastasis successful if the number of tumor cells does not drop below one (i.e. bxT(t)c >281

0) in a one-year timespan (t ∈ [0, 365] days). Figure 4 shows examples of both successful metastatic282

tumors (panels A and C) and unsuccessful metastatic tumors (panels B and D) for different values283

of the MDSC delay τ (see Supplementary Information Section S3 for further description). For284

more examples of successful and unsuccessful tumors see Figures S2 and S3 respectively. While a285

metastatic tumor can become unsuccessful at any time point (and all tumors will be unsuccessful286

almost surely as t→∞), the tumor population is most likely to drop below one near the beginning287
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Figure 4: Stochastic effects influence the growth and probability of establishment of metastatic
tumors. Examples of simulations of the SDDE system (Eqns. (3a)-(3d)) over one year, with two initial
tumor cells and different values of the MDSC delay parameter, τ . A “successful” metastatic tumor is one
that does not drop below a size of one tumor cell over the simulation period. A: τ = 0; successful. B: τ =
10; unsuccessful. C: τ = 50; successful. D: τ = 365; unsuccessful.

of the simulation (i.e. soon after metastatic tumor seeding) when the tumor population is small288

(Figures S4 and S5).289

290

3.4 Delays in MDSC recruitment decrease the probability of metastasis and291

the size of metastatic tumors292

Analysis of the probability of metastasis under different assumptions of MDSC-tumor-immune inter-293

actions for thousands of tumors studied in silico revealed striking dependencies of tumor outcomes294

on MDSC dynamics (Figure 5). Through joint analysis of the effects of the number of circulat-295

ing MDSCs (α2) and the size of the MDSC delay (τ), we found that the probability of successful296

metastatic tumor establishment and the average size of metastatic tumors are positively correlated297

with the level of circulating MDSCs, and negatively correlated with the size of the MDSC delay.298

As more MDSCs become available at or near the site of the nascent metastasis, the NK and CTL299

populations become more suppressed, resulting in a greater likelihood of tumor growth (Figure300

5A-B). Importantly: the positive feedback loop (tumor cells are able to activate more MDSCs)301

reinforces the tumor’s ability to grow even in a “hot” tumor.302

We found that our model provides novel and biologically-driven means to determine exactly303

what can be inferred from levels of circulating MDSCs. Given the relative difficulty of defining304

MDSCs and the relative ease of sampling circulating cells this bears important clinical relevance305

(19). If the baseline level of circulating MDSCs (α2) is high, MDSC activation delays have little306

effect on the metastasis establishment probability (Figure 5A-B), but the MDSC delay still has a307

pronounced effect on the resulting sizes of the metastases that grow (Figure 5C-D and Figure S6).308
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Recall that our definition of successful metastasis is liberal: a population of > 1 tumor cells that309

survives for a year. Differences in the sizes of these nascent metastases from tens to thousands of310

cells bear direct clinical relevance. Further statistics on metastatic survival and size can be found in311

Table S1. Relative to a MDSC delay of 0 days, a MDSC delay of 365 days leads to a 2-fold decrease312

in the probability of successful metastasis, a 21-fold decrease in the mean tumor size (of successful313

tumors), and a 4.6-fold increase in the mean time to extinction of unsuccessful metastases.314

Figure S7 shows the effect of the rate of MDSC inhibition of NK cells (β3) and Figure S8 shows315

the effect of the rate of MDSC inhibition of CTL cells (β4). Here, we see that more effective316

(i.e. more inhibitory against anti-tumor populations) MDSCs (β3, β4 ↑, τ ↓) means NK and CTL317

populations are more inhibited, which results in more tumor cells. However, if the level of inhibition318

of NK cells (β3) is high enough, delays in recruitment of more MDSCs (τ) has little effect on the319

probability of successful metastatic tumors (as the tumor population will grow to very large levels320

very quickly, independently of a large increase in the number of MDSCs) but still effects the average321

size as less NK cells results in more tumor cells (Figure S7). Since there are initially zero CTL322

cells and the CTL population does not reach extremely high levels relative to other populations323

(see for instance Figure 2, blue lines) changing β4 does not have a large effect on the probability of324

successful metastasis (Figure S8A-B). However, increasing β4 can result in a small increase in the325

average size of successful tumors (see Figure S8C-D).326

MDSCs can be sub-divided into one of two states: monocytic M-MDSCs (typically assumed to327

be more immunosuppressive) and granulocytic/poly-mononuclear (G- or PMN-MDSCs) (1, 3, 6).328

The relative proportion of G- to M-MDSCs can alter the immunosuppressive properties of the329

tumor microenvironment (15, 82). For example, if the relative proportion of G- to M-MDSCs skews330

toward M-MDSCs, we would expect larger effects of MDSC delays (as seen in Figure 5), whereas331

the opposite would be expected if G-MDSCs dominate. Extensions of the current model include332

separating M-MDSCs and G-MDSCs, with for instance βM-MDSCs
3 > βG-MDSCs

3 and βM-MDSCs
4 >333

βG-MDSCs
4 , see the Discussion for further details.334

To summarize the results of this section, we have identified two crucial effects of MDSC delays335

on the stochastic tumor dynamics. First, that MDSC delays always result in significantly smaller336

tumor sizes. This effect is pronounced when MDSCs are more immune-suppressive (i.e. when β3, β4337

are large). Under these conditions, the increase in MDSCs most allows the tumor to outcompete338

the anti-tumor populations and reach large sizes. However if the MDSCs are so powerful as to339

completely inhibit the NK and CTL populations, then increasing β3, β4 will have no further effect.340

The effect of MDSC delay on tumor size is less pronounced when the MDSCs are less immune-341

suppressive (i.e. when β3, β4 are small): in this case increases in the number of MDSCs will not342

have significant effects on the long term dynamics of the other populations.343

Second, that MDSC delays can result in drastically decreased probabilities of a successful new344

metastasis. This effect is most pronounced when the initial level of circulating MDSCs (α2) is not345

too high, and when the MDSCs are not too immune-suppressive of the NK population (large β3).346

This is due to the greater likelihood of extinction of stochastic tumors (bxTc < 1) early in the347

simulation. If the level of circulating MDSCs (α2) is high, offering the nascent tumor protection348

against CTL and NK cell responses, then the effects of delays in recruitment of more MDSCs349

are lessened. Similarly, if the MDSCs are strongly immune-suppressive (particularly against NK350

cells), then the tumor is likely to grow to a large size quickly, negating the impact of delays in351

MDSC recruitment on the probability of successful establishment of a new metastasis. These results352

establish how MDSC plasticity, as defined by their different suppressive functions and environments353

(i.e. circulation throughout the body or within a tumor), differentially contribute to tumor growth354

and progression of disease from a primary tumor location to a distant metastatic site.355
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Figure 5: Effects of MDSC properties on the probability of metastatic establishment. Stochastic
simulations run for a period of one year. Each point is the mean over at least 105 simulations. Ribbons
(shaded area) represent the standard error. A: Probability of new tumor establishment over a period of one
year, for different values of the level of circulating MDSCs (α2) and the MDSC delay (τ). B: As for A with
τ plotted on log scale. C: Of the new metastases that are successfully established, the distribution of their
means sizes is given. D: As for C with τ plotted on log scale. E: Of the new metastases that go extinct, the
distribution of the mean times to extinction is given. F: As for E with τ plotted on log scale.
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Figure 6: Interactions between MDSCs and NK cells control clinical tumor growth outcomes.
A: Relative change in tumor size from the baseline assessment for six tumors from non-small cell lung cancer
patients undergoing treatment with anti-PD-L1. Tumors are ordered (1-6) by their response, compared to
baseline assessment. B: Tumor 2 model trajectories based on the relative change in the tumor population
with the black dots representing the data, the purple line representing the fit from using the median of the
posterior distribution for each parameter, and the shaded area denoting the 90% credible interval (where 90%
of the posterior trajectories lie). C: Same as B for tumor 5. D-F: Samples from the posterior distribution
of each of the six tumors, 8 × 103 samples plotted for pairs of model parameters: (D); NK cell inhibition
rate by MDSCs (β3) versus tumor growth rate (α1). (E); NK cell inhibition rate by MDSCs (β3) versus
CTL stimulation by tumor-NK cell interaction (α6) (F); CTL stimulation by tumor-NK cell interaction (α6)
versus tumor growth rate (α1).
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3.5 Bayesian parameter inference reveals the importance of MDSC-NK cell356

interactions in determining clinical outcomes357

In order to assess more rigorously the variability and uncertainty with which we know model pa-358

rameters, we performed Bayesian parameter inference using clinical data on tumor progression as359

defined through RECIST ((38) and see Methods). We fit our tumor-immune model to data from360

six individual tumors that broadly span the possible in vivo response outcomes (Figure 6A). We361

selected a three-dimensional parameter space to study important parameters as identified previ-362

ously, consisting of the tumor growth rate, the NK inhibition rate by MDSCs, and the rate of CTL363

stimulation by tumor-NK cell interactions. Successful fits were obtained for each of the tumors fit364

(Figure 6B-C and Supplementary Information Section S5).365

To analyze the parameters that give rise to different response dynamics, we plot parameters366

sampled from the posteriors of each tumor fit (Figure 6D-F). We can see a clear trend towards367

larger values of tumor growth rate (α1) and NK inhibition rate by MDSCs (β3) for tumors that368

do not respond to treatment (tumors 5 & 6) compared to those that do respond to treatment369

(tumors 1 & 2) (Figure 6D). This can be understood in light of the previously characterized effects370

these parameters have on tumor growth (see e.g. Figure 3D). Furthermore, strong correlations371

can be observed for these parameters. The correlation between the two parameters is steeper for372

increasing tumors, suggestive of the discriminative ability of this parameter pair for quantifying373

tumor outcomes (i.e. whether tumors will grow or decay upon the initiation of treatment). In374

comparison, no correlations nor distinct effects on tumor outcomes are observed for the other two375

parameter pairs (Figure 6E-F).376

We tested the discriminative power of different combinations of posterior parameters by training377

decision trees to classify tumor responses as either decreasing (i.e. tumors 1 & 2) or increasing (i.e.378

tumors 5 & 6) over time. Table 2 gives the cross validation scores for decision trees (maximum379

depth three) trained on different sets of posterior parameters as features. In line with the marginal380

posteriors (Figure 6D) we see that the best discriminative power is obtained using both the tumor381

growth rate (α1) and the NK cell inhibition rate by MDSCs (β3) as features. Strikingly, constrained382

to using one feature, the NK cell inhibition rate by MDSCs is a better predictor than the tumor383

growth rate, even though the tumor growth rate is intricately tied to the classification outcome384

(43). Interest in interactions between MDSCs and NK cells has already been growing in recent385

years (20, 21, 24); this result urges that much more investigation is warranted.386

Given that the clinical data available for inference do not capture immune dynamics, coupled387

with the relative simplicity of the tumor dynamics in response to treatment, we expected to be388

able to obtain fits to various individual tumor outcomes with our tumor-immune model. However,389

the relative importances of parameters that this data fitting revealed were completely unexpected.390

The strength of immune-suppressiveness – as controlled by NK cell inhibition by MDSCs – was391

identified as the most important parameter in determining outcome. This has direct clinical impli-392

cations: while it may not yet be possible to directly modulate this parameter in a clinical setting,393

it highlights the importance of interventions targeting properties of MDSCs in and around the394

tumor site. Moreover, successfully fitting of various tumor responses to tumor-MDSC dynamics395

and the stratification of rate parameters that resulted demonstrates our ability to build and fit396

patient-specific tumor growth models (83), with which to predict metastatic outcomes.397

4 Discussion398

Cancer dynamics are complex, and understanding cancer-immune dynamics is a complex systems399

biology problem (10, 28, 29, 39, 43). Modeling how tumors interact with the immune system is criti-400

cal for understanding treatment responses and predicting the best possible therapeutic strategies in401

response to metastasis. Myeloid-derived suppressor cells (MDSCs) have been identified in various402

tumor microenvironments (8, 9, 15), where they can exert strong immunosuppressive effects leading403
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Features for prediction Three-fold cross validation scores

α1 62.8± 5.68

β3 69.1± 5.12

α6 55.6± 4.51

(α1, β3) 81.5± 7.88

(α1, α6) 63.0± 5.37

(β3, α6) 68.2± 5.60

(α1, β3, α6) 81.5± 7.88

Table 2: Classification of tumor responses using posterior parameters shows relationship be-
tween tumor growth and MDSC inhibition rates. Decision trees were used to classify tumor responses
as either decreasing (tumors 1 & 2) or increasing (tumors 5 & 6) based on sets of one or two posterior pa-
rameters as features. Three-fold cross validation scores are given as mean ± standard deviation.

to worse outcomes (12, 17, 37), yet a rigorous theoretical characterization of MDSC dynamics in404

the tumor microenvironment has remained lacking. Here, through the introduction of a stochastic405

delay differential equation (SDDE) model with which to study tumor-MDSC dynamics, we have406

provided means to characterize the plasticity of MDSCs and their effects on tumor progression and407

outcome.408

With this model we began by studying outcomes under simple, idealized circumstances, such as:409

how large do tumors grow in the presence of MDSCs? What is their likelihood of persistence in the410

stochastic case? We discovered that delays in MDSC recruitment/activation have striking effects411

on metastatic growth and establishment. Under certain conditions (lower levels of circulating412

MDSCs), strategies that block MDSC recruitment to the site of the tumor are likely to greatly413

improve metastatic outcomes and hinder growth. We also demonstrated through model analyses414

how strategies that decrease the immunosuppressive properties of MDSCs can have dramatic anti-415

tumor effects. Via Bayesian parameter estimation using data from tumor growth in vivo, we have416

found interesting and novel correlations between the tumor and the MDSC response parameters,417

again demonstrating the potential of inhibition of MDSCs as a desirable drug target.418

Our inference results showed that the MDSC inhibition of NK cells was a crucial parameter419

informing outcomes; more important than the tumor growth rate, as well as the MDSC inhibition of420

CTL cells. It is important to note that there will be differences between tumor microenvironments:421

here we studied MDSC dynamics in the lungs, an NK cell rich environment (24, 77). If we were to422

study MDSC dynamics in different environments, such as those in which CTL cells are greater in423

number than NK cells, we would likely observe different model effects dominating, e.g. the role of424

CTL activation might rise in prominence (84–88).425

These results suggest that the identification of effective anti-MDSC treatment strategies to con-426

trol cancer growth and spread ought to be more highly prioritized (8, 13, 17, 24). In particular, drug427

treatments that block MDSC recruitment to tumor sites and/or target MDSCs in the lymphoid428

organs seem to be most highly effective in preventing metastasis, but their effects are lessened if429

the level of circulating MDSCs is low, or if MDSCs are less effective at suppressing anti-tumor pop-430

ulations. Since the level of circulating MDSCs (as well as the level of MDSC-immunosuppresion)431

is likely to be highly variable within patients (20, 59), effective treatment strategies ought to be432

informed by patient-specific biomarkers (83, 89). In addition, evaluation of the phentoype of circu-433

lating MDSCs may not fully reflect the immunosuppressed state within tumors enough to predict434

potential response to immunotherapy, which may be determined in part by further mathematical435

and data-driven modeling. Towards this end, we have shown via tumor-specific parameter infer-436

ence that we can train machine learning models using posterior parameters to classify metastatic437

outcomes. Future work, informed by more data (such as richer dynamic information or single-cell438

gene expression data) will provide additional means to classify treatment outcomes. In this context439
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it will be important to consider the prediction of responses in different tumor microenvironments440

and under different treatment regimes.441

MDSCs cannot be assumed to be a homogeneous population. Although we have assumed as442

such here – for lack of data with which to quantify subpopulation-specific MDSC rate parameters443

– future models ought to consider MDSC heterogeneity. MDSCs are typically classified into one444

of two possible cell types, monocytic (M-MDSCs) and granulocytic/polymononuclear (G-/PMN-445

MDSCs), which exhibit different levels of immunosuppression (1, 3, 15). M-MDSCs in metastatic446

breast cancer patients resemble monocytes isolated from patients with sepsis, indicating fascinating447

similarities between the immunosuppression capability of the MDSCs present in metastatic (but448

perhaps not primary) breast cancer patients and those involved in the immunosuppressive sepsis449

response (90). Further measurement of MDSC subtype-specific immunosuppression in vivo will450

likely yield substantial new insight into their activity. Moreover, these additional data will permit451

the fitting of more detailed mathematical models that are able to describe patient-specific (or even452

tumor site-specific) dynamics, and quantify the possible benefits of treatments targeting MDSCs.453

Current knowledge suggests that shifting MDSC phenotypes towards G-MDSCs is beneficial as this454

state is less immunosuppresive (1, 15), however further characterization of these states is needed.455

The models we have developed of MDSCs in the tumor microenvironment do not consider space,456

although of course spatial architectures play an important role in tumor progression (28, 32), in457

primary growth as well as for circulating tumor cells that seed metastases (34, 91). The role of458

spatial aspects of cancer niches in regulating MDSC-tumor dynamics will be an important topic in459

future work (92). Here, carefully fitting models to appropriate data ought to include both single-cell-460

resolved characterization of the tumor microenvironment (15) and explicit spatial characterizations461

(93, 94).462

There is an urgent need to understand the role of MDSC dynamics during tumor growth and463

metastasis. Here we discovered an essential and remarkable role for MDSC recruitment/activation464

in dictating growth outcomes in the context of new metastases. This is but the first step. To465

make progress further conceptual model development tightly linked to inference and the gathering466

of higher-resolution data on MDSC phenotypes in vivo will be crucial. Mathematical modeling467

will continue to play an integral part in discovery as it allows us to account for the numerous468

and dynamic factors controlling MDSC plasticity and its impact of tumor responses in a way469

that traditional biologic biomarkers alone cannot. Only by developing theory and gathering data470

hand-in-hand can we hope to gain an understanding of the dynamics of MDSCs in the tumor471

microenvironment, and in turn, develop new therapies for metastatic disease.472
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