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Abstract 26 

The majority of epigenetic epidemiology studies to date have generated genome-wide 27 

profiles from bulk tissues (e.g. whole blood) however these are vulnerable to confounding 28 

from variation in cellular composition. Proxies for cellular composition can be mathematically 29 

derived from the bulk tissue profiles using a deconvolution algorithm however, there is no 30 

method to assess the validity of these estimates for a dataset where the true cellular 31 

proportions are unknown. In this study, we describe, validate and characterise a sample 32 

level accuracy metric for derived cellular heterogeneity variables. The CETYGO score 33 

captures the deviation between a sample’s DNAm profile and its expected profile given the 34 

estimated cellular proportions and cell type reference profiles. We demonstrate that the 35 

CETYGO score consistently distinguishes inaccurate and incomplete deconvolutions when 36 

applied to reconstructed whole blood profiles. By applying our novel metric to > 6,300 37 

empirical whole blood profiles, we find that estimating accurate cellular composition is 38 

influenced by both technical and biological variation. In particular, we show that when using 39 

the standard reference panel for whole blood, less accurate estimates are generated for 40 

females, neonates, older individuals and smokers. Our results highlight the utility of a metric 41 

to assess the accuracy of cellular deconvolution, and describe how it can enhance studies of 42 

DNA methylation that are reliant on statistical proxies for cellular heterogeneity. To facilitate 43 

incorporating our methodology into existing pipelines, we have made it freely available as an 44 

R package (https://github.com/ds420/CETYGO).  45 

   46 
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Introduction 47 

Due to the dynamic nature of the epigenome and its plasticity in response to environmental 48 

exposures (Hannon et al., 2018, Joehanes et al., 2016, Tobi et al., 2014, Gruzieva et al., 49 

2017), there is increasing interest in the role it plays in the aetiology of disease (Murphy and 50 

Mill, 2014). However, this very facet of the epigenome makes epigenetic epidemiology 51 

studies inherently more complex to design and liable to confounding compared to studies of 52 

DNA sequence variation (Heijmans and Mill, 2012, Relton and Davey Smith, 2010). One 53 

major difference is that an individual’s genetic sequence is identical in all cells, and therefore 54 

it does not matter from which tissue DNA is isolated prior to genotyping. In contrast, the 55 

epigenome orchestrates gene expression changes that underpin cellular differentiation, 56 

consequently, cell types can be defined by their epigenetic profiles (Stunnenberg et al., 57 

2016, Roadmap Epigenomics Consortium et al., 2015). It has previously been shown that 58 

variation between cell types is greater than inter-individual variation within a cell type 59 

(Hannon et al., 2021b, Shanthikumar et al., 2021).   60 

 61 

The majority of studies to date have focused on a single epigenetic modification, DNA 62 

methylation, and generated genome-wide profiles from bulk tissues (e.g. whole blood) using 63 

high throughput microarrays (Campagna et al., 2021). A critical challenge in these studies is 64 

that bulk tissue is a heterogeneous mix of different cell types. The epigenetic profile of a bulk 65 

tissue is the average across the profiles of the constituent cell types.  If the composition of 66 

these cell types, specifically the proportions of each cell type, varies across the population 67 

under study, and varies in a manner that correlates with the outcome of interest, this will lead 68 

to false positive associations at sites in the genome that differ between cell types (Jaffe and 69 

Irizarry, 2014, Liu et al., 2013). As a result, epigenome-wide association analyses routinely 70 

include quantitative covariates that capture the heterogeneity in cellular composition across 71 

a dataset. As experimentally derived cell counts are often unavailable, proxies for cellular 72 

composition can be derived from the bulk tissue profile using a deconvolution algorithm. The 73 
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goal of these statistical methodologies is to generate a series of continuous variables that 74 

reflect the underlying cellular heterogeneity of each sample. Deconvolution algorithms can 75 

be separated into two classes. Firstly, supervised methods that incorporate reference 76 

profiles for relevant cell types - generated from purified cell populations - and estimate 77 

proportions for this specified set of cell types (known as reference-based 78 

algorithms)(Houseman et al., 2012, Newman et al., 2015, Accomando et al., 2014, 79 

Guintivano et al., 2013, Teschendorff et al., 2017). Secondly, those that do not use any 80 

reference data and generate an unlimited set of variables that are not directly attributed to 81 

any particular cell type (known as reference-free algorithms)(Houseman et al., 2014, Leek 82 

and Storey, 2007, Rahmani et al., 2019, Zou et al., 2014).   83 

 84 

In tissues for which reference profiles are available, reference based deconvolution 85 

algorithms are most commonly used, likely due to the ease of interpretation. Specifically the 86 

constrained projection methodology proposed by Houseman, often referred to as 87 

“Houseman’s method”, is normally used. There have been a number of studies that have 88 

aimed to validate the application of these methods by testing their performance against 89 

experimentally or computationally derived “bulk” profiles of fixed cellular compositions 90 

(Koestler et al., 2013, Salas et al., 2018). These have primarily focused on the prediction of 91 

the major blood cell types from whole blood. Typically, accuracy is reported at the group 92 

level, i.e. a single correlation or error statistic across a number of samples, which is then 93 

assumed to be representative for all future applications. In prediction modelling, great 94 

attention is paid to ensuring that the training data is representative of the testing data to so 95 

that the predictions are valid. The vast majority of whole blood epigenetic studies use the 96 

same reference dataset generated from six adult males to determine cellular composition, 97 

regardless of the age, sex, ethnicity, or disease status characteristics, with little 98 

consideration given to whether it is representative of the cohort being tested. Mathematically, 99 

there is nothing to prevent a deconvolution algorithm, based on any reference panel of cell 100 
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types, from being applied to a profile generated from any bulk tissue.  As an extreme 101 

example, we could input data derived from brain tissue to a model that outputs estimates of 102 

the composition of blood cell types and obtain values, due to the mathematical constraints, 103 

that are plausible (i.e. between 0 and 1). In a less extreme example, it is unknown how 104 

important demographic features (e.g. age, sex, or ethnicity) of the samples in the reference 105 

panel affect prediction in samples characterised by different demographics. Currently, there 106 

is no method to assess the validity of cellular composition estimates for a single sample, or 107 

indeed, a dataset where the true cellular proportions are unknown. If the quality of the 108 

deconvolution varies either, across studies or within a study, then the utility of these 109 

variables as confounders needs to be reconsidered. This could be especially problematic if 110 

the accuracy of the deconvolution is systematically biased and is related to any other 111 

confounders such as age or sex. Understanding how reliable a set of cellular heterogeneity 112 

variables are for any individual sample is of increasing importance, as the interest in 113 

quantifying cellular composition has moved beyond just adjusting for it in epigenome-wide 114 

association studies, with these estimates also being analysed as variables of interest in their 115 

own right (Hannon et al., 2021a, Koestler et al., 2017, Wiencke et al., 2017).   116 

 117 

In this study, we propose an accuracy metric that quantifies the CEll TYpe deconvolution 118 

GOodness (CETYGO) score of a set of cellular heterogeneity variables derived from a 119 

genome-wide DNA methylation profile for an individual sample. While our method is 120 

applicable to any reference based deconvolution algorithm, and any reference panel of cell 121 

types, to demonstrate the utility of our approach we limit our characterisation to the 122 

Houseman algorithm and panels of blood cell types, which represent the majority of 123 

applications. We demonstrate that CETYGO indexes the accuracy of the prediction of 124 

cellular composition with simulations in which we manipulated the performance of the 125 

deconvolution. We then profile the statistical properties of CETYGO by applying it to a 126 

number of empirical datasets, to provide guidance on how it can be incorporated into whole 127 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.15.496235doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496235
http://creativecommons.org/licenses/by/4.0/


blood DNA methylation studies. Finally, we use the CETYGO score to determine if they are 128 

any biases in the effectiveness of existing blood cell type reference panels. To enable the 129 

wider research community to incorporate our proposed error metric into their analyses, we 130 

have provided our methodology in an R package, CETYGO, as well as adding functions to 131 

the wateRmelon package.    132 

 133 

Materials and Methods: 134 

Mathematical derivation of the CETYGO score 135 

The DNA methylation profile of a bulk tissue can be defined as the sum of DNA methylation 136 

levels measured in the constituent cell types weighted by the proportion of total cells 137 

represented by that cell type. Mathematically we can represent this as  138 

��,� � � ��,���,�,�
�

���

 

(Equation 1) 139 

where  140 

• Bi,j represents the DNA methylation level in the bulk tissue for sample i at site j 141 

• pi,k represents the proportion of cell type k in sample i 142 

• Ci,j,k represents the DNA methylation level for sample i at site j in cell type k, for N 143 

different cell types.  144 

Typically in an epidemiological study, only the bulk tissue DNAm profile (Bi,j) is measured. 145 

However, as cellular composition is an important confounder, it is desirable to know or 146 

estimate pi,k for all (major) cell types. Methods for this purpose, such as Houseman’s 147 

constraint projection approach, have been proposed that take advantage of reference 148 

profiles (i.e. Ci,j,k) available to the research community to enable them solve for the unknown 149 

pi,k. This is achieved by selecting M DNA methylation sites that are highly discriminative of 150 
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the cell types we want to estimate the proportions of. By definition, these sites exhibit low 151 

variation across individuals, and therefore it does not theoretically matter that we have not 152 

measured them in the same samples that we have bulk profiles from. If the estimated cell 153 

proportions (denoted ��,�� ) are accurate then the expected bulk tissue profile given this 154 

composition of cell types should closely resemble the observed data. We can substitute our 155 

estimated cell proportions, ��,�� , back into Equation 1, to calculate the expected profile of 156 

DNA methylation values (Equation 2).  157 

��,	
� � � ��,�� ��,�,�

�

���

 

(Equation2) 158 

 159 

We define our error metric, CETYGO, as the root mean square error (RMSE) between the 160 

observed bulk DNA methylation profile and the expected profile across the M cell type 161 

specific DNA methylation sites used to perform the deconvolution, calculated from the 162 

estimated proportions for the N cell types (Equation 3). By definition, 0 is the lowest value 163 

the CETYGO score can take and would indicate a perfect estimate. Higher values of the 164 

CETGYO score are indicative of larger errors and therefore a less accurate estimation of 165 

cellular composition. 166 

��	
��� � 
������ , ��
� � � �∑ ����,� �  ��,	

� �
��
� �  

(Equation 3) 167 

 168 

Purified blood cell type reference panels  169 

Genome-wide DNA methylation profiles for purified blood cell types generated using the 170 

Illumina 450K and EPIC microarray were obtained via the FlowSorted.Blood.450k and 171 
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FlowSorted.Blood.EPIC R packages and formatted into matrices of beta values using 172 

commands from the minfi(Aryee et al., 2014) R package. From the 450K reference panel, we 173 

selected the six blood cell types that are mostly commonly used (B-cells, CD4+ T-cells, 174 

CD8+ T-cells, granulocytes, monocytes and natural killer cells) which were purified from 175 

whole blood from 6 male individuals using flow cytometry (Reinius et al., 2012). The EPIC 176 

reference panel contains profiles from antibody bead sorted neutrophils (n = 6), B-cells (n = 177 

6), monocytes (n = 6), natural killer cells (n = 6), CD4+ T-cells (n = 7), and CD8+ T-cells (n = 178 

6) (Salas et al., 2018). Prior to training any deconvolution models, both reference datasets 179 

were filtered to only include autosomal DNA methylation sites. 180 

 181 

Generation of deconvolution models and simulated whole blood profiles 182 

To test the performance of CETYGO against a known truth, we trained a series of 183 

Houseman constraint projection deconvolution models and tested these against 184 

reconstructed whole blood DNA methylation profiles where we combined cell-specific 185 

profiles in a weighted linear sum of pre-specified proportions of each cell type. Depending on 186 

the specific testing framework, the training data comprised of all available samples that were 187 

not selected to be part of the testing data, such that the train and test data consisted of 188 

distinct sets of samples. It should be noted though, that in some scenarios they were from 189 

the sample experimental batch, and plausibly share technical batch-specific effects. We 190 

modified the minfi approach for implementing Houseman’s constrained projection 191 

methodology to omit the step within estimateCellCounts() where the training and test data 192 

are normalised together, in order to explore the effect of normalization. This adaptation 193 

means that the cellular deconvolution and CETYGO calculation can be applied directly to a 194 

matrix of beta values, rather than requiring the raw data stored in an RGSet object. This 195 

makes it straightforward and computationally efficient to apply new reference panel (or 196 

include a new error metric) to an existing dataset. Briefly, our implementation performs an 197 

ANOVA to identify sites that are significantly different (p value < 1x10-8) between the blood 198 
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cell types, selecting 100 sites per cell type (50 hypermethylated and 50 hypomethylated). 199 

These sites are then used to solve Equation 1 using quadratic programming, in essence a 200 

least squares minimisation, with the constraint that the  proportions are greater than or equal 201 

to 0 and the sum of the proportions is less than or equal to 1.  202 

 203 

In the first simulation analysis, we had six different combinations of training and testing data; 204 

within each reference panel (450K and EPIC), across reference panels without normalisation 205 

(450K to EPIC and EPIC to 450K) and across reference panels after stratified quantile 206 

normalisation as implemented in minfi of the combined training and test dataset (450K to 207 

EPIC and EPIC to 450K). To construct whole blood profiles for testing we isolated one 208 

sample of each cell type. When testing samples were selected from the 450K reference 209 

data, we selected a single individual as the test case and took all their purified samples, and 210 

therefore there were a maximum of 6 testing iterations (as there are 6 individuals).  When 211 

testing samples were selected from the EPIC reference data, we randomly selected a test 212 

sample for each cell type (as they do not come from the same set of individuals), and 213 

repeated this process 10 times to get multiple sets of test data. We constructed whole blood 214 

profiles as a linear sum of these cell-specific profiles in a fixed ratio and a defined proportion 215 

of noise. Specifically, 216 

�� � � ����,�
�

���

� ���  

Equation 4 217 

Where  218 

• Bj represents the simulated DNA methylation level in the bulk tissue at site j. 219 

• pk represents the proportion of cell type k which were standardized for these series of 220 

simulations to the mean proportions reported in Reinius et al. (Reinius et al., 2012) 221 

(Supplementary Table 1).  222 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.15.496235doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496235
http://creativecommons.org/licenses/by/4.0/


• Cj,k represents the DNA methylation level from the test sample for in cell type k at site 223 

j.  224 

• ρ is the proportion of ‘noise’ and took the values 0,0.01,0.02,…,1,0.12,0.14,…0.5. 225 

• εj is a random variable taken from a uniform distribution bounded by 0 and 1. 226 

• ∑ ���
��� � � � 1 227 

 228 

In total 31 simulated ‘noisy’ blood profiles were tested for each iteration of deconvolution 229 

model. 230 

 231 

In the second simulation analysis, we focused on a single reference panel, the 450K 232 

reference panel. Here we tested a series of deconvolution models, where each cell type was 233 

omitted in turn from the reference panel, prior to training the model. Each of these leave one 234 

out models, was then tested against simulated whole blood profiles constructed from all six 235 

cell types. The five cell types included in the training data were again combined in fixed 236 

ratios calculated from the mean proportions reported by Reinius et al (Supplementary 237 

Table 1), with the omitted cell type included at increasing proportions (0.1,0.2,…,0.9). We 238 

used the same process to select testing samples as described before meaning that each of 239 

the leave one out models was tested against 9 simulated whole blood profiles in 6 different 240 

train test permutations.  241 

 242 

In the third simulation analysis, we again focused on a single reference panel, the 450K 243 

reference panel. Here we tested all possible deconvolution models, containing between 3 244 

and 5 of the 6 blood cell types, a total of 41 combinations. This time we tested the full 245 

spectrum of whole blood profiles in 0.1 units, where each cell type represented at least 0.1. 246 

In total 126 possible profiles were generated. 247 
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 248 

Profiling the performance of CETYGO in real datasets 249 

A summary of the 17 datasets used to profile CETYGO is provided in Supplementary Table 250 

2. Datasets 2-9, 14, and 15 were generated by our group at the University of Exeter 251 

(www.epigenomicslab.com) have been previously published. The pre-processing and 252 

normalisation of these datasets is as described in the corresponding manuscripts. Datasets 253 

1 and 16 were also generated by our group and are currently unpublished. They followed a 254 

standard QC pipeline and were normalised using dasen() in the wateRmelon package 255 

(Pidsley et al., 2013). Datasets 10-13 and 17 are publically available datasets obtained from 256 

GEO (https://www.ncbi.nlm.nih.gov/geo/). These data were put through a quality control 257 

pipeline which included checking the quality of the DNA methylation data (signal intensity, 258 

bisulfite conversion and detection p-values) prior to normalisation using dasen() in the 259 

wateRmelon package (Pidsley et al., 2013). For all datasets cellular deconvolution and the 260 

calculation of CETYGO was applied using a model trained with all samples for 6 cell types 261 

from the 450K reference panel. 262 

 263 

To characterise the relationship between data quality metrics and CETYGO, we used an 264 

expanded version of Dataset 3 which retained the samples that failed quality control for 265 

either a technical or biological reason (n = 725). For this data we imported the raw signal 266 

intensities from the idat files for all samples using the wateRmelon package (Pidsley et al., 267 

2013). Signal intensities for each sample were summarised as the median methylated (M) 268 

and unmethylated (U) intensity across all sites. Bisulfite conversion efficiency was calculated 269 

as the median beta value across 10 fully methylated control probes and converted to a 270 

percentage. Samples were then processed through pfilter() using the default settings. A 271 

sample was classed as a technical failure if either median signal intensity metric was less 272 

than 500, the bisulfite conversion statistic was less than 80% or it failed pfilter(). In total 62 273 
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samples were classed as technical failures. Note these thresholds may not match up with 274 

the thresholds implemented in the quality control pipeline described in the original 275 

manuscript. All 725 samples were then normalised using dasen and cellular deconvolution 276 

and their CETYGO score estimated.  277 

 278 

In order to test the effect of normalising the reference panel DNA methylation dataset (i.e. 279 

training data) with the bulk tissue dataset (i.e. the test data) we imported the raw signal 280 

intensities for Dataset 1. We the re-normalised these data in conjunction with the reference 281 

panel prior to performing cellular deconvolution and the calculation of CETYGO. To facilitate 282 

this we have adapted the estimateCellCounts() function in minfi (Aryee et al., 2014) to a new 283 

function estimateCellCountsWithError() which calculates CETYGO alongside performing the 284 

reference-based deconvolution. These values of CETYGO were compared to CETYGO 285 

calculated as described above using the dasen normalised betas, that were not normalised 286 

with the reference panel.  287 

 288 

Ethical approval 289 

The study was approved by the University of Exeter Medical School Research Ethics 290 

Committee (reference number 13/02/009). 291 

 292 

Data and code availability 293 

The DNAm data used in this study are available as R packages or via GEO (see 294 

Supplementary Table 2 for details). We have provided the code for calculating the 295 

CETYGO score as an R package available via GitHub (https://github.com/ds420/CETYGO). 296 

The code to reproduce the analyses in this manuscript using our R package are also 297 

available via GitHub (https://github.com/ejh243/CETYGOAnalyses).  298 
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 299 

 300 

Results: 301 

CETYGO indexes the accuracy of cellular composition estimates in whole blood 302 

The objective of this study was to define, validate and characterise a novel metric that can 303 

be used to assess the accuracy of DNAm-based cellular deconvolution in an individual 304 

sample. The CETYGO score captures the deviation between the observed DNAm profile 305 

and the expected profile for the given set of estimated cell type proportions, where values 306 

close to 0 indicate accurate estimates of cellular composition.  307 

 308 

In order to test whether our proposed error metric CETYGO successfully captures inaccurate 309 

cellular heterogeneity estimates, we manufactured a series of bulk whole blood profiles 310 

where the cellular composition was known and could be estimated with varying degrees of 311 

accuracy. This was achieved by standardizing the ratios of the constituent blood cell types 312 

and adding an increasing proportion of random ‘noise’, which could reflect either biological 313 

variation, technical artefacts or imprecision in the assay (see Materials and Methods). The 314 

hypothesis is that as the proportion of noise increases, the estimation of cellular composition 315 

will be less accurate and the CETYGO score should correlate with the proportion of noise in 316 

the whole blood sample. To confirm that our simulation framework was fit for purpose, we 317 

calculated the RMSE between the fixed cell type proportions used to construct the whole 318 

blood profiles and the predicted values, observing that profiles with a higher proportion of 319 

noise were characterized by larger deviations from the truth (Figure 1A). Having 320 

manufactured a spectrum of inaccurate deconvolutions, we were able to determine whether 321 

the CETYGO score changed as a function of noise, finding that it successfully indexed 322 

accuracy with a monotonic relationship between the proportion of noise in a bulk sample and 323 

the CETYGO score (Figure 1B). We observed that for small proportions of noise (between 0 324 
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and 0.05) the accuracy estimates don’t vary very much, but once the proportion of noise 325 

goes above 0.05, the effect of additional noise on accuracy starts to accumulate. We also 326 

found that when the predictions were less accurate, the total sum of all estimated cell types 327 

for a sample was less than one and decreased as noise increased (Figure 1C). 328 

 329 

In our simulation framework, we tested two independent reference datasets (Reinius et al., 330 

2012, Salas et al., 2018), generated using different versions of the Illumina BeadChip array 331 

and incorporating subtly different panels of cell types (either granuloctyes or neutrophils). 332 

We subsequently repeated the simulation framework, but this time training the model using 333 

one reference panel (either 450K or EPIC) and testing it in simulations formulated from the 334 

other reference panel. This would allow us to explore how batch and normalisation strategy 335 

influences the accuracy of cellular deconvolution. These results showed the same general 336 

pattern across the different train-test pairings, where the CETYGO score captured 337 

decreasing accuracy in estimates of cellular composition (Supplementary Figure 1). 338 

Differences between datasets did lead to slightly increased imprecision at lower proportions 339 

of noise, but this scenario is arguably more representative of the typical application of 340 

cellular deconvolution algorithms, where the reference panel and bulk tissue test data are 341 

generated in different laboratories.  Interestingly, we observed that when the training data 342 

was generated with the 450K array and applied to simulated bulk data generated from the 343 

EPIC array, the deconvolution was marginally more accurate potentially indicative of 344 

reduced signal-to-noise with the EPIC array. In general, whether the two batches of data 345 

were normalised together or not had a minimal effect on deconvolution accuracy, measured 346 

by either RMSE (Supplementary Figure 1A), or the CETYGO score (Supplementary 347 

Figure 1B), There was however, subtle variation dependent on which panel was used as the 348 

training data, suggesting that technology, data quality or cell purity is more important than 349 

normalisation strategy. Given the comparable performance of the two reference panels, all 350 

subsequent analyses were performed with the 450K reference panel only.  351 
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 352 

CETYGO is inflated when applied to incomplete cellular reference panels 353 

Another scenario where inaccurate deconvolutions are likely to occur is when the reference 354 

panel of cell types for deconvolution is incomplete. One of the constraints set when 355 

implementing Houseman’s method to solve for cellular composition proportions is that the 356 

sum of the proportions of the cell types in the panel ≤ 1. In other words, all the cells present 357 

in the bulk tissue are (virtually) completely represented by the cell types in the reference 358 

panel. When an abundant cell type is missing due to lack of reference data, theoretically, this 359 

may lead to errors, as the unrepresented proportion of the bulk tissue will need to be 360 

(incorrectly) assigned to an alternative cell type. To explore this, we dropped each cell type 361 

in turn from the reference panel, and recalculated the cellular proportion estimates for 362 

reconstructed whole blood profiles that included the missing cell type, in increasing 363 

proportions. We found that the CETYGO score had a monotonically increasing relationship 364 

with the true proportion of the missing cell type (Figure 2). Of note, the magnitude of the 365 

CETYGO score in blood data depended on which blood cell type was missing, with the 366 

omission of B-cells, leading to the largest errors and the omission of CD8+ T-cells the 367 

smallest effect. This is likely due to the methylomic similarity of the two sets of T-cells, 368 

whereby CD4+ T-cells are a good alternative to CD8+ T-cells, and suggests that at sites 369 

included on the 450K array, B-cells have the most distinct profile. We expanded this 370 

framework further to omit up to 3 cell types from the training model, finding that the CETYGO 371 

score generally decreases as both the number of cell types in the model increases and the 372 

proportion of cells represented in the model increases (Figure 3). However, the distributions 373 

of the CETYGO score across different panels of cell types applied to different compositions 374 

of whole blood are overlapping and have long tails, highlighting that there are some 375 

scenarios where a model with 3 cell types, outperforms a model with 4 or 5 cell types 376 

dependent on the abundance of each cell type in the bulk tissue.  377 

 378 
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CETYGO distinguishes nonsense applications  379 

Having demonstrated the sensitivity of the CETYGO score to detect noisy and incomplete 380 

estimates of cellular heterogeneity, we next tested its behaviour when applied to real data in 381 

order to provide guidance to the wider research community about how it can be interpreted 382 

in the context of epidemiological studies. To this end, we estimated the cellular proportion of 383 

six blood cell types and the CETYGO score associated with the estimation for 10,447 DNA 384 

methylation profiles, across 17 different datasets and 17 different sample types 385 

(Supplementary Table 2). 7,184 (68.8%) of these represent realistic applications as the 386 

profiles were derived from blood tissue types and can be used to infer the expected 387 

distribution of CETGYO scores across a range of experimental and biological sources. The 388 

remaining 3,263 (31.2%) represented “nonsense” applications as these profiles were 389 

generated from non-blood samples and can be used to highlight whether the CETYGO score 390 

can distinguish sensible deconvolutions.  In general, there was a clear dichotomy between 391 

the output for these two types of sample; CETYGO scores for blood samples were typically 392 

< 0.1 and CETYGO scores for non-blood tissues were > 0.1 (Figure 4). The median 393 

CETYGO score across all whole blood samples was 0.0524 (inter-quartile range = 0.0455-394 

0.0581). Within the whole blood samples there was a bimodal distribution, which on closer 395 

inspection was driven by platform, with datasets generated with the 450K array associated 396 

with lower CETYGO scores than those generated using the EPIC array (Supplementary 397 

Figure 2). Limiting our comparison to Dataset 8 where we had matched whole blood and 398 

purified blood cell types from the same individuals (Hannon et al., 2021b), we observed that 399 

purified blood cell types were predicted with higher error than whole blood (Supplementary 400 

Figure 3), with significant differences for all cell types, bar granulocytes (Supplementary 401 

Table 3). This suggests that it is more challenging to determine a cell type is pure, than to 402 

deconvolute a mixture of cell types. We also noted that the CETYGO score was significantly 403 

higher for both cord blood (mean difference = 0.0207; T-test p–value < 3.42x10-363) and 404 

neonatal blood spots (mean difference = 0.0307; T-test p–value = 9.19x10-62) compared to 405 
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whole blood. This is in agreement with previous studies suggesting that the standard panel 406 

of major blood cell types is not the most appropriate for the assessment of cellular 407 

heterogeneity in blood samples obtained for neonatal epigenetic studies (Bakulski et al., 408 

2016).  409 

 410 

Cellular heterogeneity estimates are biased by technical factors 411 

While the distribution of CETYGO score across whole blood samples was fairly narrow, we 412 

wanted to explore whether CETYGO scores could be used to detect biases in the estimation 413 

of cellular composition from whole blood DNA methylation profiles. In the simulation study 414 

we showed that noisy DNA methylation profiles lead to less accurate estimates of cellular 415 

composition. In real data, technically noisy signals should be excluded as part of the pre-416 

processing pipeline in order to improve the power to detect differences between groups. We 417 

hypothesized that samples excluded based on technical quality metrics are likely to have 418 

higher deconvolution errors as measured by the CETYGO score. Comparing CETYGO 419 

scores against standard quality control metrics we found that higher values of the CETYGO 420 

score were associated with lower median signal intensities and lower bisulfite conversion 421 

statistics (Supplementary Figure 4), consistent with our hypothesis.  422 

 423 

The vast majority of DNA methylation studies perform normalisation to align the distributions 424 

across samples, and ultimately make the data more comparable, particularly where data 425 

have been generated across multiple batches. We hypothesised that normalising reference 426 

data and test data together to make the genome-wide profiles more similar would attenuate 427 

the discriminative signals between cell types and negatively affect the performance of 428 

cellular deconvolution. We therefore compared the CETYGO scores calculated with and 429 

without normalisation of the test data with the reference panel for Dataset 1. In general, the 430 

overall distribution of values did not differ dramatically between normalisation strategies. 431 
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However, we did observe that when the reference panel (which is all male) was normalised 432 

with the test data, there was a clear bias towards females having higher error 433 

(Supplementary Figure 5), consistent with analyses showing that normalisation can 434 

introduce sex effects(Wang et al., 2021). In contrast, our adapted method, where we 435 

normalised the data separately, was characterized by a dramatically reduced sex difference.       436 

 437 

Cellular heterogeneity estimates are biased by age, sex and smoking status 438 

Across the 6,351 whole blood samples included in our analysis we fitted a linear regression 439 

model to test the influence of additional factors on CETYGO scores (Supplementary Table 440 

4). As well as the platform effects we described earlier (p-value = 2.72x10-223) there were 441 

further significant differences between datasets (p-value = 1.75x10-222) even after controlling 442 

for platform. We also found that every biological factor we tested had a significant 443 

association with CETYGO (Supplementary Figure 6). This included a negative association 444 

with age (coefficient = -7.1x10-5, p-value = 0.00215), a positive association with age squared 445 

(coefficient = 8.8x10-7, p-value = 0.000189), sex (mean difference in males = 9.6x10-4, p-446 

value = 4.03x10-12) and a positive association with smoking score (coefficient = 6.7x10-5, p-447 

value = 1.84x10-6).   448 

 449 

Inaccuracies in DNA methylation prediction algorithms are concordant across predictors for 450 

different phenotypes 451 

Finally, we were interested in whether inaccuracy in cellular deconvolution was mirrored by 452 

inaccuracies in other epigenetic predictors. Comparing CETYGO against the deviation 453 

between chronological age and epigenetic age predicted with the Horvath multi-tissue clock 454 

(Horvath, 2013), we found a significant positive relationship (coefficient = 43.0, p-value = 455 

1.68x10-5) highlighting that samples with inaccurate cellular deconvolution have a larger 456 

difference between epigenetic age and chronological age (Figure 5).This suggests that 457 
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studies which use the residual between epigenetic age and chronological age as a proxy for 458 

accelerated aging are potentially just modelling the imprecision in the technology.   459 

 460 

Discussion:  461 

The estimation of cellular composition is vital in epigenetic epidemiology, with these 462 

variables being included as co-variates in analyses to minimise the effect of confounding. To 463 

compliment these analyses, we have described and validated a novel error metric – 464 

CETYGO - that enables the accuracy of the deconvolution to be quantified at an individual 465 

sample level. Our results demonstrate that the CETYGO score consistently distinguishes 466 

inaccurate and incomplete deconvolutions when applied to reconstructed whole blood 467 

profiles and support its inclusion in future DNA methylation association studies to identify 468 

scenarios, or individual cases, when cell composition estimates are unreliable. We have 469 

applied it to several existing datasets to further characterise the performance of the 470 

predominant application with a reference panel of blood cell types. These analyses provided 471 

a number of insights. First, our results indicate that cell types are not equal when it comes to 472 

deconvolution accuracy. For example, the omission of B-cells from the standard blood 473 

reference panel had the most dramatic effect on their accuracy, while the omission of one of 474 

the two types of T-cells had the smallest effect. This is consistent with previous reports that 475 

the DNA methylation profile of B cells is relatively distinct to that of other blood cell-types, 476 

with the profiles of the two T-cells being most similar (Hannon et al., 2021b). Second, we 477 

highlighted that the estimation of cellular deconvolution using the existing reference panel is 478 

biased. Specifically, it is less accurate in females, neonates, older individuals and smokers. 479 

This has important consequences for epigenome-wide association studies, as it may indicate 480 

that existing efforts to adjust for cellular heterogeneity may be less effective in some sets of 481 

samples. This emphasizes the need to thoroughly benchmark all reference panels and 482 

characterise which scenarios they are appropriate for and to increase the diversity of 483 

available reference panels.  484 
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 485 

Our primary motivation was to develop a metric that that could be used to assess for an 486 

individual sample, how reliable derived estimates of cellular heterogeneity are. To facilitate 487 

this we have calculated the CETYGO score in >6,300 whole blood profiles, and provided 488 

some guidance about how to interpret the metric. Our data suggest that a CETYGO score > 489 

0.1 is consistent with the reference panel not being relevant for the specific tissue being 490 

profiled. Although incorrect tissue, had the most dramatic effect, we also found that elevated 491 

CETYGO can be induced by poor quality DNAm data, where the noise to signal ratio is 492 

elevated, generating less sensitive DNA methylation profiles to the extent that it interferes 493 

with the accuracy of the deconvolution model. This can be mitigated by implementing 494 

stringent pre-processing pipelines to remove poor quality data. In particular, the principle 495 

behind our metric is comparable to the quality control metric DMRSE available in the 496 

wateRmelon R package(Pidsley et al., 2013). However, even within the pre-processed 497 

datasets used in our study there were a handful of samples with outlier CETYGO values. For 498 

this reason, we suggest that CETYGO should be added to existing pipelines to provide 499 

confidence in analyses that incorporate cellular composition variables. To facilitate this, we 500 

have made our method available as a standard alone R package – CETYGO - available via 501 

GitHub which adapts the existing workflow within minfi (Aryee et al., 2014) to simultaneously 502 

calculate the CETYGO score alongside the estimation of cellular composition variables using 503 

Houseman’s algorithm. In this way it can easily be adapted for use with other available 504 

reference panels, both now and in the future. We have also integrated the CETYGO score 505 

into the wateRmelon function EstimateCellCounts.wmln(), used to predict cell type 506 

composition, providing users with their deconvolution accuracy estimate when they predict 507 

composition. 508 

 509 

Our findings should be considered in the light of a number of limitations. First, for the 510 

purpose of validation, we limited our analyses to the most commonly used deconvolution 511 
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algorithm, Houseman’s constrained projection approach (Houseman et al., 2012), and the 512 

most commonly used bulk tissue, whole blood, for which a previously validated reference  513 

panels (Accomando et al., 2014, Koestler et al., 2013) exist. Comparisons of the different 514 

methodologies for inferring cellular heterogeneity estimates from bulk tissue have concluded 515 

that no single method is superior across all test scenarios (Teschendorff et al., 2017). 516 

Theoretically, though, the concept behind the CETYGO score should be extendable to any 517 

reference based deconvolution algorithm or reference panel of cell types and therefore 518 

applicable to any tissue, organism, or DNA methylation profiling technique and could be 519 

used to compare the performance of difference algorithms within a single dataset where true 520 

cellular heterogeneity is unknown. Second, our method assumes that the cell-specific sites 521 

used to estimate cellular composition are not influenced by any exposure. If differences were 522 

induced at these sites, this would cause the error to be overestimated. This assumption is 523 

also made by most deconvolution algorithms, and it has been suggested that it is unlikely to 524 

be a major concern (Teschendorff and Zheng, 2017).  Third, we limited the majority of 525 

analyses to a reference panel generated with the 450K array and therefore, the conclusions 526 

regarding the effect of the specific blood cell types on accuracy may be influenced by the 527 

subset of genomic loci included on that technology.   528 

 529 

In summary, we have proposed a new metric, CETYGO, to evaluate the accuracy of 530 

reference based cellular deconvolution algorithms at an individual sample level. We believe, 531 

this tool will be asset in studies of DNA methylation and have demonstrated how it can be 532 

used to assess bias in reference panels, and to identify unreliable estimates of cellular 533 

composition.  534 
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Figure Legends 697 

 698 

Figure 1. CETYGO captures variation in accuracy of cellular deconvolution in whole 699 

blood. Line graphs plotting the error associated with estimating the cellular proportions of 700 

reconstructed whole blood profiles with increasing proportion of noise (x-axis). Where the y-701 

axis presents A) the root mean square error (RMSE) between the fixed cellular proportions 702 

used to construct the whole blood profiles and the estimated proportions generated with 703 

Houseman’s method, B) the error metric CETYGO and C) the sum of all proportions 704 

estimated. The points represent the mean value and the dashed lines the 95% confidence 705 

intervals calculated across multiple simulations. The two lines represent simulations 706 

constructed from reference data generated from two different platforms, the Illumina 450K 707 

and EPIC BeadChip microarrays. 708 

 709 

Figure 2. Cell type dependent effects on accuracy when omitted from reference based 710 

cellular deconvolution algorithms.  Line graph of the error associated with estimating the 711 

cellular proportions of reconstructed whole blood profiles where the reference panel is 712 

missing one of six cell types. Each coloured line represents a different cell type being 713 

omitted from the reference panel, but included in the reconstructed whole blood profiles used 714 

for testing. Plotted is the proportion in the testing profile that the missing cell type is set to 715 

occupy (x-axis) against the error, measured using CETYGO, of the deconvolution (y-axis). 716 

The points represent the mean value and the dashed lines the 95% confidence intervals 717 

calculated across multiple simulations. 718 

 719 

Figure 3. The accuracy of cellular heterogeneity estimation increases as the reference 720 

panel becomes more representative. Violin plots of the error associated with estimating 721 

the cellular proportions of reconstructed whole blood profiles where the reference panel is 722 
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missing between one and three cell types. Each violin plot shows the distribution of the error, 723 

measured using CETYGO, of the deconvolution (y-axis) grouped by A) the number of cell 724 

types included in the reference panel and B) the proportion of cells in the reconstructed 725 

whole blood profile that are from cell types included in the reference panel.  726 

 727 

Figure 4. CETYGO captures the tissue specificity of deconvolution reference panels. 728 

Violin plots of the error associated with estimating the cellular proportions where a reference 729 

panel consisting of six blood cell types was applied to 10,447 DNA methylation profiles, 730 

across 18 different datasets and 20 different sample types. Each violin plot shows the 731 

distribution of the error, measured using CETYGO, of the deconvolution (y-axis) grouped by 732 

the tissue/cell-type, where the violins are coloured to highlight which samples are derived 733 

from blood, which are human derived non-blood bulk tissue, and which are human derived 734 

cell-lines.  735 

 736 

Figure 5. Error in estimation of cellular heterogeneity from DNA methylation data 737 

correlates with error from epigenetic clock algorithms. Heatscatterplot of the error 738 

measured using CETYGO (y-axis), associated with estimating the cellular proportions across 739 

6,351 whole blood profiles against the difference between the sample’s chronological age 740 

and age predicted using Horvaths pan-tissue algorithm from the DNA methylation data 741 

(Delta age; x-axis). The colour of the points represents the density of points at that location.  742 

 743 

 744 

 745 
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