

1 Uncertainty quantification of reference based cellular deconvolution algorithms

2

3 **Authors**

4 Dorothea Seiler Vellame¹

5 Gemma Shireby¹

6 Ailsa MacCalman¹

7 Emma L Dempster¹

8 Joe Burrage¹

9 Tyler Gorrie-Stone²

10 Leonard S Schalkwyk²

11 Jonathan Mill¹

12 Eilis Hannon^{1*}

13

14 **Affiliations**

15 ¹ University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, United

16 Kingdom

17 ² School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom

18

19 * Correspondence to: Eilis Hannon, University of Exeter Medical School, RILD Building,

20 Royal Devon and Exeter Hospital, Barrack Road, Exeter. EX2 5DW. UK. E-mail:

21 e.j.hannon@exeter.ac.uk.

22

23 Keywords: DNA methylation, epigenetic epidemiology, Illumina 450K array, Illumina EPIC

24 array, cellular heterogeneity

25

26 **Abstract**

27 The majority of epigenetic epidemiology studies to date have generated genome-wide
28 profiles from bulk tissues (e.g. whole blood) however these are vulnerable to confounding
29 from variation in cellular composition. Proxies for cellular composition can be mathematically
30 derived from the bulk tissue profiles using a deconvolution algorithm however, there is no
31 method to assess the validity of these estimates for a dataset where the true cellular
32 proportions are unknown. In this study, we describe, validate and characterise a sample
33 level accuracy metric for derived cellular heterogeneity variables. The CETYGO score
34 captures the deviation between a sample's DNAm profile and its expected profile given the
35 estimated cellular proportions and cell type reference profiles. We demonstrate that the
36 CETYGO score consistently distinguishes inaccurate and incomplete deconvolutions when
37 applied to reconstructed whole blood profiles. By applying our novel metric to > 6,300
38 empirical whole blood profiles, we find that estimating accurate cellular composition is
39 influenced by both technical and biological variation. In particular, we show that when using
40 the standard reference panel for whole blood, less accurate estimates are generated for
41 females, neonates, older individuals and smokers. Our results highlight the utility of a metric
42 to assess the accuracy of cellular deconvolution, and describe how it can enhance studies of
43 DNA methylation that are reliant on statistical proxies for cellular heterogeneity. To facilitate
44 incorporating our methodology into existing pipelines, we have made it freely available as an
45 R package (<https://github.com/ds420/CETYGO>).

46

47 **Introduction**

48 Due to the dynamic nature of the epigenome and its plasticity in response to environmental
49 exposures (Hannon et al., 2018, Joehanes et al., 2016, Tobi et al., 2014, Gruzieva et al.,
50 2017), there is increasing interest in the role it plays in the aetiology of disease (Murphy and
51 Mill, 2014). However, this very facet of the epigenome makes epigenetic epidemiology
52 studies inherently more complex to design and liable to confounding compared to studies of
53 DNA sequence variation (Heijmans and Mill, 2012, Relton and Davey Smith, 2010). One
54 major difference is that an individual's genetic sequence is identical in all cells, and therefore
55 it does not matter from which tissue DNA is isolated prior to genotyping. In contrast, the
56 epigenome orchestrates gene expression changes that underpin cellular differentiation,
57 consequently, cell types can be defined by their epigenetic profiles (Stunnenberg et al.,
58 2016, Roadmap Epigenomics Consortium et al., 2015). It has previously been shown that
59 variation between cell types is greater than inter-individual variation within a cell type
60 (Hannon et al., 2021b, Shanthikumar et al., 2021).

61

62 The majority of studies to date have focused on a single epigenetic modification, DNA
63 methylation, and generated genome-wide profiles from bulk tissues (e.g. whole blood) using
64 high throughput microarrays (Campagna et al., 2021). A critical challenge in these studies is
65 that bulk tissue is a heterogeneous mix of different cell types. The epigenetic profile of a bulk
66 tissue is the average across the profiles of the constituent cell types. If the composition of
67 these cell types, specifically the proportions of each cell type, varies across the population
68 under study, and varies in a manner that correlates with the outcome of interest, this will lead
69 to false positive associations at sites in the genome that differ between cell types (Jaffe and
70 Irizarry, 2014, Liu et al., 2013). As a result, epigenome-wide association analyses routinely
71 include quantitative covariates that capture the heterogeneity in cellular composition across
72 a dataset. As experimentally derived cell counts are often unavailable, proxies for cellular
73 composition can be derived from the bulk tissue profile using a deconvolution algorithm. The

74 goal of these statistical methodologies is to generate a series of continuous variables that
75 reflect the underlying cellular heterogeneity of each sample. Deconvolution algorithms can
76 be separated into two classes. Firstly, supervised methods that incorporate reference
77 profiles for relevant cell types - generated from purified cell populations - and estimate
78 proportions for this specified set of cell types (known as reference-based
79 algorithms)(Houseman et al., 2012, Newman et al., 2015, Accomando et al., 2014,
80 Quintivano et al., 2013, Teschendorff et al., 2017). Secondly, those that do not use any
81 reference data and generate an unlimited set of variables that are not directly attributed to
82 any particular cell type (known as reference-free algorithms)(Houseman et al., 2014, Leek
83 and Storey, 2007, Rahmani et al., 2019, Zou et al., 2014).

84

85 In tissues for which reference profiles are available, reference based deconvolution
86 algorithms are most commonly used, likely due to the ease of interpretation. Specifically the
87 constrained projection methodology proposed by Houseman, often referred to as
88 “Houseman’s method”, is normally used. There have been a number of studies that have
89 aimed to validate the application of these methods by testing their performance against
90 experimentally or computationally derived “bulk” profiles of fixed cellular compositions
91 (Koestler et al., 2013, Salas et al., 2018). These have primarily focused on the prediction of
92 the major blood cell types from whole blood. Typically, accuracy is reported at the group
93 level, i.e. a single correlation or error statistic across a number of samples, which is then
94 assumed to be representative for all future applications. In prediction modelling, great
95 attention is paid to ensuring that the training data is representative of the testing data to so
96 that the predictions are valid. The vast majority of whole blood epigenetic studies use the
97 same reference dataset generated from six adult males to determine cellular composition,
98 regardless of the age, sex, ethnicity, or disease status characteristics, with little
99 consideration given to whether it is representative of the cohort being tested. Mathematically,
100 there is nothing to prevent a deconvolution algorithm, based on any reference panel of cell

101 types, from being applied to a profile generated from any bulk tissue. As an extreme
102 example, we could input data derived from brain tissue to a model that outputs estimates of
103 the composition of blood cell types and obtain values, due to the mathematical constraints,
104 that are plausible (i.e. between 0 and 1). In a less extreme example, it is unknown how
105 important demographic features (e.g. age, sex, or ethnicity) of the samples in the reference
106 panel affect prediction in samples characterised by different demographics. Currently, there
107 is no method to assess the validity of cellular composition estimates for a single sample, or
108 indeed, a dataset where the true cellular proportions are unknown. If the quality of the
109 deconvolution varies either, across studies or within a study, then the utility of these
110 variables as confounders needs to be reconsidered. This could be especially problematic if
111 the accuracy of the deconvolution is systematically biased and is related to any other
112 confounders such as age or sex. Understanding how reliable a set of cellular heterogeneity
113 variables are for any individual sample is of increasing importance, as the interest in
114 quantifying cellular composition has moved beyond just adjusting for it in epigenome-wide
115 association studies, with these estimates also being analysed as variables of interest in their
116 own right (Hannon et al., 2021a, Koestler et al., 2017, Wiencke et al., 2017).

117

118 In this study, we propose an accuracy metric that quantifies the **C**ELL **T**Ype deconvolution
119 **G**OODness (CETYGO) score of a set of cellular heterogeneity variables derived from a
120 genome-wide DNA methylation profile for an individual sample. While our method is
121 applicable to any reference based deconvolution algorithm, and any reference panel of cell
122 types, to demonstrate the utility of our approach we limit our characterisation to the
123 Houseman algorithm and panels of blood cell types, which represent the majority of
124 applications. We demonstrate that CETYGO indexes the accuracy of the prediction of
125 cellular composition with simulations in which we manipulated the performance of the
126 deconvolution. We then profile the statistical properties of CETYGO by applying it to a
127 number of empirical datasets, to provide guidance on how it can be incorporated into whole

128 blood DNA methylation studies. Finally, we use the CETYGO score to determine if they are
129 any biases in the effectiveness of existing blood cell type reference panels. To enable the
130 wider research community to incorporate our proposed error metric into their analyses, we
131 have provided our methodology in an R package, CETYGO, as well as adding functions to
132 the wateRmelon package.

133

134 **Materials and Methods:**

135 *Mathematical derivation of the CETYGO score*

136 The DNA methylation profile of a bulk tissue can be defined as the sum of DNA methylation
137 levels measured in the constituent cell types weighted by the proportion of total cells
138 represented by that cell type. Mathematically we can represent this as

$$B_{i,j} = \sum_{k=1}^N p_{i,k} C_{i,j,k}$$

139 (*Equation 1*)

140 where

141 • $B_{i,j}$ represents the DNA methylation level in the bulk tissue for sample i at site j
142 • $p_{i,k}$ represents the proportion of cell type k in sample i
143 • $C_{i,j,k}$ represents the DNA methylation level for sample i at site j in cell type k, for N
144 different cell types.

145 Typically in an epidemiological study, only the bulk tissue DNAm profile ($B_{i,j}$) is measured.
146 However, as cellular composition is an important confounder, it is desirable to know or
147 estimate $p_{i,k}$ for all (major) cell types. Methods for this purpose, such as Houseman's
148 constraint projection approach, have been proposed that take advantage of reference
149 profiles (i.e. $C_{i,j,k}$) available to the research community to enable them solve for the unknown
150 $p_{i,k}$. This is achieved by selecting M DNA methylation sites that are highly discriminative of

151 the cell types we want to estimate the proportions of. By definition, these sites exhibit low
152 variation across individuals, and therefore it does not theoretically matter that we have not
153 measured them in the same samples that we have bulk profiles from. If the estimated cell
154 proportions (denoted $\hat{p}_{i,k}$) are accurate then the expected bulk tissue profile given this
155 composition of cell types should closely resemble the observed data. We can substitute our
156 estimated cell proportions, $\hat{p}_{i,k}$, back into Equation 1, to calculate the expected profile of
157 DNA methylation values (Equation 2).

$$\hat{B}_{i,j} = \sum_{k=1}^N \hat{p}_{i,k} C_{i,j,k}$$

158 (Equation 2)

159

160 We define our error metric, CETYGO, as the root mean square error (RMSE) between the
161 observed bulk DNA methylation profile and the expected profile across the M cell type
162 specific DNA methylation sites used to perform the deconvolution, calculated from the
163 estimated proportions for the N cell types (Equation 3). By definition, 0 is the lowest value
164 the CETYGO score can take and would indicate a perfect estimate. Higher values of the
165 CETGYO score are indicative of larger errors and therefore a less accurate estimation of
166 cellular composition.

$$CETYGO_i = RMSE(B_i, \hat{B}_i) = \sqrt{\frac{\sum_1^M ((B_{i,j} - \hat{B}_{i,j})^2)}{M}}$$

167 (Equation 3)

168

169 *Purified blood cell type reference panels*

170 Genome-wide DNA methylation profiles for purified blood cell types generated using the
171 Illumina 450K and EPIC microarray were obtained via the *FlowSorted.Blood.450k* and

172 *FlowSorted.Blood.EPIC* R packages and formatted into matrices of beta values using
173 commands from the *minfi*(Aryee et al., 2014) R package. From the 450K reference panel, we
174 selected the six blood cell types that are mostly commonly used (B-cells, CD4+ T-cells,
175 CD8+ T-cells, granulocytes, monocytes and natural killer cells) which were purified from
176 whole blood from 6 male individuals using flow cytometry (Reinius et al., 2012). The EPIC
177 reference panel contains profiles from antibody bead sorted neutrophils (n = 6), B-cells (n =
178 6), monocytes (n = 6), natural killer cells (n = 6), CD4+ T-cells (n = 7), and CD8+ T-cells (n =
179 6) (Salas et al., 2018). Prior to training any deconvolution models, both reference datasets
180 were filtered to only include autosomal DNA methylation sites.

181

182 *Generation of deconvolution models and simulated whole blood profiles*

183 To test the performance of CETYGO against a known truth, we trained a series of
184 Houseman constraint projection deconvolution models and tested these against
185 reconstructed whole blood DNA methylation profiles where we combined cell-specific
186 profiles in a weighted linear sum of pre-specified proportions of each cell type. Depending on
187 the specific testing framework, the training data comprised of all available samples that were
188 not selected to be part of the testing data, such that the train and test data consisted of
189 distinct sets of samples. It should be noted though, that in some scenarios they were from
190 the same experimental batch, and plausibly share technical batch-specific effects. We
191 modified the *minfi* approach for implementing Houseman's constrained projection
192 methodology to omit the step within *estimateCellCounts()* where the training and test data
193 are normalised together, in order to explore the effect of normalization. This adaptation
194 means that the cellular deconvolution and CETYGO calculation can be applied directly to a
195 matrix of beta values, rather than requiring the raw data stored in an RGSet object. This
196 makes it straightforward and computationally efficient to apply new reference panel (or
197 include a new error metric) to an existing dataset. Briefly, our implementation performs an
198 ANOVA to identify sites that are significantly different (p value < 1×10^{-8}) between the blood

199 cell types, selecting 100 sites per cell type (50 hypermethylated and 50 hypomethylated).
200 These sites are then used to solve Equation 1 using quadratic programming, in essence a
201 least squares minimisation, with the constraint that the proportions are greater than or equal
202 to 0 and the sum of the proportions is less than or equal to 1.

203

204 In the first simulation analysis, we had six different combinations of training and testing data;
205 within each reference panel (450K and EPIC), across reference panels without normalisation
206 (450K to EPIC and EPIC to 450K) and across reference panels after stratified quantile
207 normalisation as implemented in *minfi* of the combined training and test dataset (450K to
208 EPIC and EPIC to 450K). To construct whole blood profiles for testing we isolated one
209 sample of each cell type. When testing samples were selected from the 450K reference
210 data, we selected a single individual as the test case and took all their purified samples, and
211 therefore there were a maximum of 6 testing iterations (as there are 6 individuals). When
212 testing samples were selected from the EPIC reference data, we randomly selected a test
213 sample for each cell type (as they do not come from the same set of individuals), and
214 repeated this process 10 times to get multiple sets of test data. We constructed whole blood
215 profiles as a linear sum of these cell-specific profiles in a fixed ratio and a defined proportion
216 of noise. Specifically,

$$B_j = \sum_{k=1}^N p_k C_{j,k} + \rho \varepsilon_j$$

217 *Equation 4*

218 Where

219 • B_j represents the simulated DNA methylation level in the bulk tissue at site j.
220 • p_k represents the proportion of cell type k which were standardized for these series of
221 simulations to the mean proportions reported in Reinius et al. (Reinius et al., 2012)
222 (**Supplementary Table 1**).

223 • $C_{j,k}$ represents the DNA methylation level from the test sample for in cell type k at site
224 j.
225 • ρ is the proportion of 'noise' and took the values 0,0.01,0.02,...,1,0.12,0.14,...0.5.
226 • ε_j is a random variable taken from a uniform distribution bounded by 0 and 1.
227 • $\sum_{k=1}^N p_k + \rho = 1$

228

229 In total 31 simulated 'noisy' blood profiles were tested for each iteration of deconvolution
230 model.

231

232 In the second simulation analysis, we focused on a single reference panel, the 450K
233 reference panel. Here we tested a series of deconvolution models, where each cell type was
234 omitted in turn from the reference panel, prior to training the model. Each of these leave one
235 out models, was then tested against simulated whole blood profiles constructed from all six
236 cell types. The five cell types included in the training data were again combined in fixed
237 ratios calculated from the mean proportions reported by Reinius et al (**Supplementary**
238 **Table 1**), with the omitted cell type included at increasing proportions (0.1,0.2,...,0.9). We
239 used the same process to select testing samples as described before meaning that each of
240 the leave one out models was tested against 9 simulated whole blood profiles in 6 different
241 train test permutations.

242

243 In the third simulation analysis, we again focused on a single reference panel, the 450K
244 reference panel. Here we tested all possible deconvolution models, containing between 3
245 and 5 of the 6 blood cell types, a total of 41 combinations. This time we tested the full
246 spectrum of whole blood profiles in 0.1 units, where each cell type represented at least 0.1.
247 In total 126 possible profiles were generated.

248

249 *Profiling the performance of CETYGO in real datasets*

250 A summary of the 17 datasets used to profile CETYGO is provided in **Supplementary Table**
251 **2**. Datasets 2-9, 14, and 15 were generated by our group at the University of Exeter
252 (www.epigenomicslab.com) have been previously published. The pre-processing and
253 normalisation of these datasets is as described in the corresponding manuscripts. Datasets
254 1 and 16 were also generated by our group and are currently unpublished. They followed a
255 standard QC pipeline and were normalised using *dasen()* in the *wateRmelon* package
256 (Pidsley et al., 2013). Datasets 10-13 and 17 are publically available datasets obtained from
257 GEO (<https://www.ncbi.nlm.nih.gov/geo/>). These data were put through a quality control
258 pipeline which included checking the quality of the DNA methylation data (signal intensity,
259 bisulfite conversion and detection p-values) prior to normalisation using *dasen()* in the
260 *wateRmelon* package (Pidsley et al., 2013). For all datasets cellular deconvolution and the
261 calculation of CETYGO was applied using a model trained with all samples for 6 cell types
262 from the 450K reference panel.

263

264 To characterise the relationship between data quality metrics and CETYGO, we used an
265 expanded version of Dataset 3 which retained the samples that failed quality control for
266 either a technical or biological reason (n = 725). For this data we imported the raw signal
267 intensities from the idat files for all samples using the *wateRmelon* package (Pidsley et al.,
268 2013). Signal intensities for each sample were summarised as the median methylated (M)
269 and unmethylated (U) intensity across all sites. Bisulfite conversion efficiency was calculated
270 as the median beta value across 10 fully methylated control probes and converted to a
271 percentage. Samples were then processed through *pfilter()* using the default settings. A
272 sample was classed as a technical failure if either median signal intensity metric was less
273 than 500, the bisulfite conversion statistic was less than 80% or it failed *pfilter()*. In total 62

274 samples were classed as technical failures. Note these thresholds may not match up with
275 the thresholds implemented in the quality control pipeline described in the original
276 manuscript. All 725 samples were then normalised using *dasen* and cellular deconvolution
277 and their CETYGO score estimated.

278

279 In order to test the effect of normalising the reference panel DNA methylation dataset (i.e.
280 training data) with the bulk tissue dataset (i.e. the test data) we imported the raw signal
281 intensities for Dataset 1. We re-normalised these data in conjunction with the reference
282 panel prior to performing cellular deconvolution and the calculation of CETYGO. To facilitate
283 this we have adapted the *estimateCellCounts()* function in *minfi* (Aryee et al., 2014) to a new
284 function *estimateCellCountsWithError()* which calculates CETYGO alongside performing the
285 reference-based deconvolution. These values of CETYGO were compared to CETYGO
286 calculated as described above using the dasen normalised betas, that were not normalised
287 with the reference panel.

288

289 *Ethical approval*

290 The study was approved by the University of Exeter Medical School Research Ethics
291 Committee (reference number 13/02/009).

292

293 *Data and code availability*

294 The DNAm data used in this study are available as R packages or via GEO (see
295 **Supplementary Table 2** for details). We have provided the code for calculating the
296 CETYGO score as an R package available via GitHub (<https://github.com/ds420/CETYGO>).
297 The code to reproduce the analyses in this manuscript using our R package are also
298 available via GitHub (<https://github.com/ejh243/CETYGOAnalyses>).

299

300

301 **Results:**

302 *CETYGO indexes the accuracy of cellular composition estimates in whole blood*

303 The objective of this study was to define, validate and characterise a novel metric that can
304 be used to assess the accuracy of DNAm-based cellular deconvolution in an individual
305 sample. The CETYGO score captures the deviation between the observed DNAm profile
306 and the expected profile for the given set of estimated cell type proportions, where values
307 close to 0 indicate accurate estimates of cellular composition.

308

309 In order to test whether our proposed error metric CETYGO successfully captures inaccurate
310 cellular heterogeneity estimates, we manufactured a series of bulk whole blood profiles
311 where the cellular composition was known and could be estimated with varying degrees of
312 accuracy. This was achieved by standardizing the ratios of the constituent blood cell types
313 and adding an increasing proportion of random ‘noise’, which could reflect either biological
314 variation, technical artefacts or imprecision in the assay (see **Materials and Methods**). The
315 hypothesis is that as the proportion of noise increases, the estimation of cellular composition
316 will be less accurate and the CETYGO score should correlate with the proportion of noise in
317 the whole blood sample. To confirm that our simulation framework was fit for purpose, we
318 calculated the RMSE between the fixed cell type proportions used to construct the whole
319 blood profiles and the predicted values, observing that profiles with a higher proportion of
320 noise were characterized by larger deviations from the truth (**Figure 1A**). Having
321 manufactured a spectrum of inaccurate deconvolutions, we were able to determine whether
322 the CETYGO score changed as a function of noise, finding that it successfully indexed
323 accuracy with a monotonic relationship between the proportion of noise in a bulk sample and
324 the CETYGO score (**Figure 1B**). We observed that for small proportions of noise (between 0

325 and 0.05) the accuracy estimates don't vary very much, but once the proportion of noise
326 goes above 0.05, the effect of additional noise on accuracy starts to accumulate. We also
327 found that when the predictions were less accurate, the total sum of all estimated cell types
328 for a sample was less than one and decreased as noise increased (**Figure 1C**).

329

330 In our simulation framework, we tested two independent reference datasets (Reinius et al.,
331 2012, Salas et al., 2018), generated using different versions of the Illumina BeadChip array
332 and incorporating subtly different panels of cell types (either granulocytes or neutrophils).
333 We subsequently repeated the simulation framework, but this time training the model using
334 one reference panel (either 450K or EPIC) and testing it in simulations formulated from the
335 other reference panel. This would allow us to explore how batch and normalisation strategy
336 influences the accuracy of cellular deconvolution. These results showed the same general
337 pattern across the different train-test pairings, where the CETYGO score captured
338 decreasing accuracy in estimates of cellular composition (**Supplementary Figure 1**).
339 Differences between datasets did lead to slightly increased imprecision at lower proportions
340 of noise, but this scenario is arguably more representative of the typical application of
341 cellular deconvolution algorithms, where the reference panel and bulk tissue test data are
342 generated in different laboratories. Interestingly, we observed that when the training data
343 was generated with the 450K array and applied to simulated bulk data generated from the
344 EPIC array, the deconvolution was marginally more accurate potentially indicative of
345 reduced signal-to-noise with the EPIC array. In general, whether the two batches of data
346 were normalised together or not had a minimal effect on deconvolution accuracy, measured
347 by either RMSE (**Supplementary Figure 1A**), or the CETYGO score (**Supplementary**
348 **Figure 1B**). There was however, subtle variation dependent on which panel was used as the
349 training data, suggesting that technology, data quality or cell purity is more important than
350 normalisation strategy. Given the comparable performance of the two reference panels, all
351 subsequent analyses were performed with the 450K reference panel only.

352

353 *CETYGO is inflated when applied to incomplete cellular reference panels*

354 Another scenario where inaccurate deconvolutions are likely to occur is when the reference
355 panel of cell types for deconvolution is incomplete. One of the constraints set when
356 implementing Houseman's method to solve for cellular composition proportions is that the
357 sum of the proportions of the cell types in the panel ≤ 1 . In other words, all the cells present
358 in the bulk tissue are (virtually) completely represented by the cell types in the reference
359 panel. When an abundant cell type is missing due to lack of reference data, theoretically, this
360 may lead to errors, as the unrepresented proportion of the bulk tissue will need to be
361 (incorrectly) assigned to an alternative cell type. To explore this, we dropped each cell type
362 in turn from the reference panel, and recalculated the cellular proportion estimates for
363 reconstructed whole blood profiles that included the missing cell type, in increasing
364 proportions. We found that the CETYGO score had a monotonically increasing relationship
365 with the true proportion of the missing cell type (**Figure 2**). Of note, the magnitude of the
366 CETYGO score in blood data depended on which blood cell type was missing, with the
367 omission of B-cells, leading to the largest errors and the omission of CD8+ T-cells the
368 smallest effect. This is likely due to the methylomic similarity of the two sets of T-cells,
369 whereby CD4+ T-cells are a good alternative to CD8+ T-cells, and suggests that at sites
370 included on the 450K array, B-cells have the most distinct profile. We expanded this
371 framework further to omit up to 3 cell types from the training model, finding that the CETYGO
372 score generally decreases as both the number of cell types in the model increases and the
373 proportion of cells represented in the model increases (**Figure 3**). However, the distributions
374 of the CETYGO score across different panels of cell types applied to different compositions
375 of whole blood are overlapping and have long tails, highlighting that there are some
376 scenarios where a model with 3 cell types, outperforms a model with 4 or 5 cell types
377 dependent on the abundance of each cell type in the bulk tissue.

378

379 *CETYGO distinguishes nonsense applications*

380 Having demonstrated the sensitivity of the CETYGO score to detect noisy and incomplete
381 estimates of cellular heterogeneity, we next tested its behaviour when applied to real data in
382 order to provide guidance to the wider research community about how it can be interpreted
383 in the context of epidemiological studies. To this end, we estimated the cellular proportion of
384 six blood cell types and the CETYGO score associated with the estimation for 10,447 DNA
385 methylation profiles, across 17 different datasets and 17 different sample types
386 (**Supplementary Table 2**). 7,184 (68.8%) of these represent realistic applications as the
387 profiles were derived from blood tissue types and can be used to infer the expected
388 distribution of CETGYO scores across a range of experimental and biological sources. The
389 remaining 3,263 (31.2%) represented “nonsense” applications as these profiles were
390 generated from non-blood samples and can be used to highlight whether the CETYGO score
391 can distinguish sensible deconvolutions. In general, there was a clear dichotomy between
392 the output for these two types of sample; CETYGO scores for blood samples were typically
393 < 0.1 and CETYGO scores for non-blood tissues were > 0.1 (**Figure 4**). The median
394 CETYGO score across all whole blood samples was 0.0524 (inter-quartile range = 0.0455-
395 0.0581). Within the whole blood samples there was a bimodal distribution, which on closer
396 inspection was driven by platform, with datasets generated with the 450K array associated
397 with lower CETYGO scores than those generated using the EPIC array (**Supplementary**
398 **Figure 2**). Limiting our comparison to Dataset 8 where we had matched whole blood and
399 purified blood cell types from the same individuals (Hannon et al., 2021b), we observed that
400 purified blood cell types were predicted with higher error than whole blood (**Supplementary**
401 **Figure 3**), with significant differences for all cell types, bar granulocytes (**Supplementary**
402 **Table 3**). This suggests that it is more challenging to determine a cell type is pure, than to
403 deconvolute a mixture of cell types. We also noted that the CETYGO score was significantly
404 higher for both cord blood (mean difference = 0.0207; T-test p-value $< 3.42 \times 10^{-363}$) and
405 neonatal blood spots (mean difference = 0.0307; T-test p-value = 9.19×10^{-62}) compared to

406 whole blood. This is in agreement with previous studies suggesting that the standard panel
407 of major blood cell types is not the most appropriate for the assessment of cellular
408 heterogeneity in blood samples obtained for neonatal epigenetic studies (Bakulski et al.,
409 2016).

410

411 *Cellular heterogeneity estimates are biased by technical factors*

412 While the distribution of CETYGO score across whole blood samples was fairly narrow, we
413 wanted to explore whether CETYGO scores could be used to detect biases in the estimation
414 of cellular composition from whole blood DNA methylation profiles. In the simulation study
415 we showed that noisy DNA methylation profiles lead to less accurate estimates of cellular
416 composition. In real data, technically noisy signals should be excluded as part of the pre-
417 processing pipeline in order to improve the power to detect differences between groups. We
418 hypothesized that samples excluded based on technical quality metrics are likely to have
419 higher deconvolution errors as measured by the CETYGO score. Comparing CETYGO
420 scores against standard quality control metrics we found that higher values of the CETYGO
421 score were associated with lower median signal intensities and lower bisulfite conversion
422 statistics (**Supplementary Figure 4**), consistent with our hypothesis.

423

424 The vast majority of DNA methylation studies perform normalisation to align the distributions
425 across samples, and ultimately make the data more comparable, particularly where data
426 have been generated across multiple batches. We hypothesised that normalising reference
427 data and test data together to make the genome-wide profiles more similar would attenuate
428 the discriminative signals between cell types and negatively affect the performance of
429 cellular deconvolution. We therefore compared the CETYGO scores calculated with and
430 without normalisation of the test data with the reference panel for Dataset 1. In general, the
431 overall distribution of values did not differ dramatically between normalisation strategies.

432 However, we did observe that when the reference panel (which is all male) was normalised
433 with the test data, there was a clear bias towards females having higher error
434 (**Supplementary Figure 5**), consistent with analyses showing that normalisation can
435 introduce sex effects(Wang et al., 2021). In contrast, our adapted method, where we
436 normalised the data separately, was characterized by a dramatically reduced sex difference.

437

438 *Cellular heterogeneity estimates are biased by age, sex and smoking status*

439 Across the 6,351 whole blood samples included in our analysis we fitted a linear regression
440 model to test the influence of additional factors on CETYGO scores (**Supplementary Table**
441 **4**). As well as the platform effects we described earlier (p-value = 2.72×10^{-223}) there were
442 further significant differences between datasets (p-value = 1.75×10^{-222}) even after controlling
443 for platform. We also found that every biological factor we tested had a significant
444 association with CETYGO (**Supplementary Figure 6**). This included a negative association
445 with age (coefficient = -7.1×10^{-5} , p-value = 0.00215), a positive association with age squared
446 (coefficient = 8.8×10^{-7} , p-value = 0.000189), sex (mean difference in males = 9.6×10^{-4} , p-
447 value = 4.03×10^{-12}) and a positive association with smoking score (coefficient = 6.7×10^{-5} , p-
448 value = 1.84×10^{-6}).

449

450 *Inaccuracies in DNA methylation prediction algorithms are concordant across predictors for*
451 *different phenotypes*

452 Finally, we were interested in whether inaccuracy in cellular deconvolution was mirrored by
453 inaccuracies in other epigenetic predictors. Comparing CETYGO against the deviation
454 between chronological age and epigenetic age predicted with the Horvath multi-tissue clock
455 (Horvath, 2013), we found a significant positive relationship (coefficient = 43.0, p-value =
456 1.68×10^{-5}) highlighting that samples with inaccurate cellular deconvolution have a larger
457 difference between epigenetic age and chronological age (**Figure 5**).This suggests that

458 studies which use the residual between epigenetic age and chronological age as a proxy for
459 accelerated aging are potentially just modelling the imprecision in the technology.

460

461 **Discussion:**

462 The estimation of cellular composition is vital in epigenetic epidemiology, with these
463 variables being included as co-variates in analyses to minimise the effect of confounding. To
464 compliment these analyses, we have described and validated a novel error metric –
465 CETYGO - that enables the *accuracy* of the deconvolution to be quantified at an individual
466 sample level. Our results demonstrate that the CETYGO score consistently distinguishes
467 inaccurate and incomplete deconvolutions when applied to reconstructed whole blood
468 profiles and support its inclusion in future DNA methylation association studies to identify
469 scenarios, or individual cases, when cell composition estimates are unreliable. We have
470 applied it to several existing datasets to further characterise the performance of the
471 predominant application with a reference panel of blood cell types. These analyses provided
472 a number of insights. First, our results indicate that cell types are not equal when it comes to
473 deconvolution accuracy. For example, the omission of B-cells from the standard blood
474 reference panel had the most dramatic effect on their accuracy, while the omission of one of
475 the two types of T-cells had the smallest effect. This is consistent with previous reports that
476 the DNA methylation profile of B cells is relatively distinct to that of other blood cell-types,
477 with the profiles of the two T-cells being most similar (Hannon et al., 2021b). Second, we
478 highlighted that the estimation of cellular deconvolution using the existing reference panel is
479 biased. Specifically, it is less accurate in females, neonates, older individuals and smokers.
480 This has important consequences for epigenome-wide association studies, as it may indicate
481 that existing efforts to adjust for cellular heterogeneity may be less effective in some sets of
482 samples. This emphasizes the need to thoroughly benchmark all reference panels and
483 characterise which scenarios they are appropriate for and to increase the diversity of
484 available reference panels.

485

486 Our primary motivation was to develop a metric that that could be used to assess for an
487 individual sample, how reliable derived estimates of cellular heterogeneity are. To facilitate
488 this we have calculated the CETYGO score in >6,300 whole blood profiles, and provided
489 some guidance about how to interpret the metric. Our data suggest that a CETYGO score >
490 0.1 is consistent with the reference panel not being relevant for the specific tissue being
491 profiled. Although incorrect tissue, had the most dramatic effect, we also found that elevated
492 CETYGO can be induced by poor quality DNAm data, where the noise to signal ratio is
493 elevated, generating less sensitive DNA methylation profiles to the extent that it interferes
494 with the accuracy of the deconvolution model. This can be mitigated by implementing
495 stringent pre-processing pipelines to remove poor quality data. In particular, the principle
496 behind our metric is comparable to the quality control metric DMRSE available in the
497 wateRmelon R package(Pidsley et al., 2013). However, even within the pre-processed
498 datasets used in our study there were a handful of samples with outlier CETYGO values. For
499 this reason, we suggest that CETYGO should be added to existing pipelines to provide
500 confidence in analyses that incorporate cellular composition variables. To facilitate this, we
501 have made our method available as a standard alone R package – CETYGO - available via
502 GitHub which adapts the existing workflow within minfi (Aryee et al., 2014) to simultaneously
503 calculate the CETYGO score alongside the estimation of cellular composition variables using
504 Houseman's algorithm. In this way it can easily be adapted for use with other available
505 reference panels, both now and in the future. We have also integrated the CETYGO score
506 into the wateRmelon function *EstimateCellCounts.wmln()*, used to predict cell type
507 composition, providing users with their deconvolution accuracy estimate when they predict
508 composition.

509

510 Our findings should be considered in the light of a number of limitations. First, for the
511 purpose of validation, we limited our analyses to the most commonly used deconvolution

512 algorithm, Houseman's constrained projection approach (Houseman et al., 2012), and the
513 most commonly used bulk tissue, whole blood, for which a previously validated reference
514 panels (Accomando et al., 2014, Koestler et al., 2013) exist. Comparisons of the different
515 methodologies for inferring cellular heterogeneity estimates from bulk tissue have concluded
516 that no single method is superior across all test scenarios (Teschendorff et al., 2017).
517 Theoretically, though, the concept behind the CETYGO score should be extendable to any
518 reference based deconvolution algorithm or reference panel of cell types and therefore
519 applicable to any tissue, organism, or DNA methylation profiling technique and could be
520 used to compare the performance of difference algorithms within a single dataset where true
521 cellular heterogeneity is unknown. Second, our method assumes that the cell-specific sites
522 used to estimate cellular composition are not influenced by any exposure. If differences were
523 induced at these sites, this would cause the error to be overestimated. This assumption is
524 also made by most deconvolution algorithms, and it has been suggested that it is unlikely to
525 be a major concern (Teschendorff and Zheng, 2017). Third, we limited the majority of
526 analyses to a reference panel generated with the 450K array and therefore, the conclusions
527 regarding the effect of the specific blood cell types on accuracy may be influenced by the
528 subset of genomic loci included on that technology.

529

530 In summary, we have proposed a new metric, CETYGO, to evaluate the accuracy of
531 reference based cellular deconvolution algorithms at an individual sample level. We believe,
532 this tool will be asset in studies of DNA methylation and have demonstrated how it can be
533 used to assess bias in reference panels, and to identify unreliable estimates of cellular
534 composition.

535

536 **Acknowledgements**

537 We are grateful to Alice Franklin and Sim Lin for testing out the CETYGO package.

538

539 **Funding**

540 D.S.V is funded by a BBSRC CASE PhD studentship. E.H is supported by an Engineering
541 and Physical Sciences Research Council Fellowship EP/V052527/1. E.H., J.M., E.L.D, and
542 L.C.S. were supported by Medical Research Council grant MR/R005176/1. G.S. was
543 supported by a PhD studentship from the Alzheimer's Society. The generation of the DNA
544 methylation data was primarily funded by Medical Research Council grant MR/K013807/1.
545 Data analysis was undertaken using high-performance computing supported by a Medical
546 Research Council (MRC) Clinical Infrastructure award (M008924). For the purpose of open
547 access, the author has applied a 'Creative Commons Attribution (CC BY) licence to any
548 Author Accepted Manuscript version arising.

549

550

551 **Disclosure of interest**

552 The authors report no conflict of interest.

553

554 **References**

555 ACCOMANDO, W. P., WIENCKE, J. K., HOUSEMAN, E. A., NELSON, H. H. & KELSEY, K. T. 2014.
556 Quantitative reconstruction of leukocyte subsets using DNA methylation. *Genome Biol*, 15,
557 R50.

558 ARYEE, M. J., JAFFE, A. E., CORRADA-BRAVO, H., LADD-ACOSTA, C., FEINBERG, A. P., HANSEN, K. D. &
559 IRIZARRY, R. A. 2014. Minfi: a flexible and comprehensive Bioconductor package for the
560 analysis of Infinium DNA methylation microarrays. *Bioinformatics*, 30, 1363-9.

561 BAKULSKI, K. M., FEINBERG, J. I., ANDREWS, S. V., YANG, J., BROWN, S., L MCKENNEY, S., WITTER, F.,
562 WALSTON, J., FEINBERG, A. P. & FALLIN, M. D. 2016. DNA methylation of cord blood cell
563 types: Applications for mixed cell birth studies. *Epigenetics*, 11, 354-62.

564 CAMPAGNA, M. P., XAVIER, A., LECHNER-SCOTT, J., MALTBY, V., SCOTT, R. J., BUTZKUEVEN, H.,
565 JOKUBAITIS, V. G. & LEA, R. A. 2021. Epigenome-wide association studies: current
566 knowledge, strategies and recommendations. *Clin Epigenetics*, 13, 214.

567 GRUZIEVA, O., XU, C. J., BRETON, C. V., ANNESI-MAESANO, I., ANTÓ, J. M., AUFRAY, C., BALLEAU,
568 S., BELLANDER, T., BOUSQUET, J., BUSTAMANTE, M., CHARLES, M. A., DE KLUIZENAAR, Y.,
569 DEN DEKKER, H. T., DUIJTS, L., FELIX, J. F., GEHRING, U., GUXENS, M., JADDOE, V. V.,
570 JANKIPERSADSING, S. A., MERID, S. K., KERE, J., KUMAR, A., LEMONNIER, N., LEPEULE, J.,
571 NYSTAD, W., PAGE, C. M., PANASEVICH, S., POSTMA, D., SLAMA, R., SUNYER, J., SÖDERHÄLL,
572 C., YAO, J., LONDON, S. J., PERSHAGEN, G., KOPPELMAN, G. H. & MELÉN, E. 2017.
573 Epigenome-Wide Meta-Analysis of Methylation in Children Related to Prenatal NO₂ Air
574 Pollution Exposure. *Environ Health Perspect*, 125, 104-110.

575 GUINTIVANO, J., ARYEE, M. J. & KAMINSKY, Z. A. 2013. A cell epigenotype specific model for the
576 correction of brain cellular heterogeneity bias and its application to age, brain region and
577 major depression. *Epigenetics*, 8, 290-302.

578 HANNON, E., DEMPSTER, E. L., MANSELL, G., BURRAGE, J., BASS, N., BOHLKEN, M. M., CORVIN, A.,
579 CURTIS, C. J., DEMPSTER, D., DI FORTI, M., DINAN, T. G., DONOHOE, G., GAUGHRAN, F., GILL,
580 M., GILLESPIE, A., GUNASINGHE, C., HULSHOFF, H. E., HULTMAN, C. M., JOHANSSON, V.,
581 KAHN, R. S., KAPRIO, J., KENIS, G., KOWALEC, K., MACCABE, J., MCDONALD, C., MCQUILLIN,
582 A., MORRIS, D. W., MURPHY, K. C., MUSTARD, C. J., NENADIC, I., O'DONOVAN, M. C.,
583 QUATTRONE, D., RICHARDS, A. L., RUTTEN, B. P., ST CLAIR, D., THERMAN, S.,
584 TOULOPOULOU, T., VAN OS, J., WADDINGTON, J. L., SULLIVAN, P., VASSOS, E., BREEN, G.,
585 COLLIER, D. A., MURRAY, R. M., SCHALKWYK, L. S., MILL, J., (WTCCC), W. T. C. C. C. &
586 CONSORTIUM, C. 2021a. DNA methylation meta-analysis reveals cellular alterations in
587 psychosis and markers of treatment-resistant schizophrenia. *Elife*, 10.

588 HANNON, E., KNOX, O., SUGDEN, K., BURRAGE, J., WONG, C. C. Y., BELSKY, D. W., CORCORAN, D. L.,
589 ARSENEAULT, L., MOFFITT, T. E., CASPI, A. & MILL, J. 2018. Characterizing genetic and
590 environmental influences on variable DNA methylation using monozygotic and dizygotic
591 twins. *PLoS Genet*, 14, e1007544.

592 HANNON, E., MANSELL, G., WALKER, E., NABAIS, M. F., BURRAGE, J., KEPA, A., BEST-LANE, J., ROSE,
593 A., HECK, S., MOFFITT, T. E., CASPI, A., ARSENEAULT, L. & MILL, J. 2021b. Assessing the co-
594 variability of DNA methylation across peripheral cells and tissues: Implications for the
595 interpretation of findings in epigenetic epidemiology. *PLoS Genet*, 17, e1009443.

596 HEIJMANS, B. T. & MILL, J. 2012. Commentary: The seven plagues of epigenetic epidemiology. *Int J
597 Epidemiol*, 41, 74-8.

598 HORVATH, S. 2013. DNA methylation age of human tissues and cell types. *Genome Biol*, 14, R115.

599 HOUSEMAN, E. A., ACCOMANDO, W. P., KOESTLER, D. C., CHRISTENSEN, B. C., MARSIT, C. J., NELSON,
600 H. H., WIENCKE, J. K. & KELSEY, K. T. 2012. DNA methylation arrays as surrogate measures of
601 cell mixture distribution. *BMC Bioinformatics*, 13, 86.

602 HOUSEMAN, E. A., MOLITOR, J. & MARSIT, C. J. 2014. Reference-free cell mixture adjustments in
603 analysis of DNA methylation data. *Bioinformatics*, 30, 1431-9.

604 JAFFE, A. E. & IRIZARRY, R. A. 2014. Accounting for cellular heterogeneity is critical in epigenome-
605 wide association studies. *Genome Biol*, 15, R31.

606 JOEHANES, R., JUST, A. C., MARIONI, R. E., PILLING, L. C., REYNOLDS, L. M., MANDAVIYA, P. R., GUAN,
607 W., XU, T., ELKS, C. E., ASLIBEKYAN, S., MORENO-MACIAS, H., SMITH, J. A., BRODY, J. A.,
608 DHINGRA, R., YOUSEFI, P., PANKOW, J. S., KUNZE, S., SHAH, S. H., MCRAE, A. F., LOHMAN, K.,
609 SHA, J., ABSHER, D. M., FERRUCCI, L., ZHAO, W., DEMERATH, E. W., BRESSLER, J., GROVE, M.
610 L., HUAN, T., LIU, C., MENDELSON, M. M., YAO, C., KIEL, D. P., PETERS, A., WANG-SATTLER,
611 R., VISSCHER, P. M., WRAY, N. R., STARR, J. M., DING, J., RODRIGUEZ, C. J., WAREHAM, N. J.,
612 IRVIN, M. R., ZHI, D., BARRDAHL, M., VINEIS, P., AMBATIPUDI, S., UITTERLINDEN, A. G.,
613 HOFMAN, A., SCHWARTZ, J., COLICINO, E., HOU, L., VOKONAS, P. S., HERNANDEZ, D. G.,
614 SINGLETON, A. B., BANDINELLI, S., TURNER, S. T., WARE, E. B., SMITH, A. K., KLENGEL, T.,
615 BINDER, E. B., PSATY, B. M., TAYLOR, K. D., GHARIB, S. A., SWENSON, B. R., LIANG, L.,
616 DEMEO, D. L., O'CONNOR, G. T., HERCEG, Z., RESSLER, K. J., CONNEELY, K. N., SOTOODEHNIA,
617 N., KARDIA, S. L., MELZER, D., BACCARELLI, A. A., VAN MEURS, J. B., ROMIEU, I., ARNETT, D.
618 K., ONG, K. K., LIU, Y., WALDENBERGER, M., DEARY, I. J., FORNAGE, M., LEVY, D. & LONDON,
619 S. J. 2016. Epigenetic Signatures of Cigarette Smoking. *Circ Cardiovasc Genet*, 9, 436-447.

620 KOESTLER, D. C., CHRISTENSEN, B., KARAGAS, M. R., MARSIT, C. J., LANGEVIN, S. M., KELSEY, K. T.,
621 WIENCKE, J. K. & HOUSEMAN, E. A. 2013. Blood-based profiles of DNA methylation predict
622 the underlying distribution of cell types: a validation analysis. *Epigenetics*, 8, 816-26.

623 KOESTLER, D. C., USSET, J., CHRISTENSEN, B. C., MARSIT, C. J., KARAGAS, M. R., KELSEY, K. T. &
624 WIENCKE, J. K. 2017. DNA Methylation-Derived Neutrophil-to-Lymphocyte Ratio: An
625 Epigenetic Tool to Explore Cancer Inflammation and Outcomes. *Cancer Epidemiol
626 Biomarkers Prev*, 26, 328-338.

627 LEEK, J. T. & STOREY, J. D. 2007. Capturing heterogeneity in gene expression studies by surrogate
628 variable analysis. *PLoS Genet*, 3, 1724-35.

629 LIU, Y., ARYEE, M. J., PADYUKOV, L., FALLIN, M. D., HESSELBERG, E., RUNARSSON, A., REINIUS, L.,
630 ACEVEDO, N., TAUB, M., RONNINGER, M., SHCHETYNKY, K., SCHEYNIUS, A., KERE, J.,
631 ALFREDSSON, L., KLARESKOG, L., EKSTRÖM, T. J. & FEINBERG, A. P. 2013. Epigenome-wide
632 association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid
633 arthritis. *Nat Biotechnol*, 31, 142-7.

634 MURPHY, T. M. & MILL, J. 2014. Epigenetics in health and disease: heralding the EWAS era. *Lancet*,
635 383, 1952-4.

636 NEWMAN, A. M., LIU, C. L., GREEN, M. R., GENTLES, A. J., FENG, W., XU, Y., HOANG, C. D., DIEHN, M.
637 & ALIZADEH, A. A. 2015. Robust enumeration of cell subsets from tissue expression profiles.
638 *Nat Methods*, 12, 453-7.

639 PIDSLEY, R., WONG, C. C. Y., VOLTA, M., LUNNON, K., MILL, J. & SCHALKWYK, L. C. 2013. A data-
640 driven approach to preprocessing Illumina 450K methylation array data. *Bmc Genomics*, 14.

641 RAHMANI, E., SCHWEIGER, R., RHEAD, B., CRISWELL, L. A., BARCELLOS, L. F., ESKIN, E., ROSSET, S.,
642 SANKARARAMAN, S. & HALPERIN, E. 2019. Cell-type-specific resolution epigenetics without
643 the need for cell sorting or single-cell biology. *Nat Commun*, 10, 3417.

644 REINIUS, L. E., ACEVEDO, N., JOERINK, M., PERSHAGEN, G., DAHLÉN, S. E., GRECO, D., SÖDERHÄLL, C.,
645 SCHEYNIUS, A. & KERE, J. 2012. Differential DNA methylation in purified human blood cells:
646 implications for cell lineage and studies on disease susceptibility. *PLoS One*, 7, e41361.

647 RELTON, C. L. & DAVEY SMITH, G. 2010. Epigenetic epidemiology of common complex disease:
648 prospects for prediction, prevention, and treatment. *PLoS Med*, 7, e1000356.

649 ROADMAP EPIGENOMICS CONSORTIUM, KUNDAJE, A., MEULEMAN, W., ERNST, J., BILENKY, M., YEN,
650 A., HERAVI-MOUSSAVI, A., KHERADPOUR, P., ZHANG, Z., WANG, J., ZILLER, M. J., AMIN, V.,
651 WHITAKER, J. W., SCHULTZ, M. D., WARD, L. D., SARKAR, A., QUON, G., SANDSTROM, R. S.,
652 EATON, M. L., WU, Y. C., PFENNING, A. R., WANG, X., CLAUSSNITZER, M., LIU, Y., COARFA, C.,
653 HARRIS, R. A., SHORESH, N., EPSTEIN, C. B., GJONESKA, E., LEUNG, D., XIE, W., HAWKINS, R.
654 D., LISTER, R., HONG, C., GASCARD, P., MUNGALL, A. J., MOORE, R., CHUAH, E., TAM, A.,

655 CANFIELD, T. K., HANSEN, R. S., KAUL, R., SABO, P. J., BANSAL, M. S., CARLES, A., DIXON, J. R.,
656 FARH, K. H., FEIZI, S., KARLIC, R., KIM, A. R., KULKARNI, A., LI, D., LOWDON, R., ELLIOTT, G.,
657 MERCER, T. R., NEPH, S. J., ONUCHIC, V., POLAK, P., RAJAGOPAL, N., RAY, P., SALLARI, R. C.,
658 SIEBENTHAL, K. T., SINNOTT-ARMSTRONG, N. A., STEVENS, M., THURMAN, R. E., WU, J.,
659 ZHANG, B., ZHOU, X., BEAUDET, A. E., BOYER, L. A., DE JAGER, P. L., FARNHAM, P. J., FISHER,
660 S. J., HAUSSLER, D., JONES, S. J., LI, W., MARRA, M. A., MCMANUS, M. T., SUNYAEV, S.,
661 THOMSON, J. A., TLSTY, T. D., TSAI, L. H., WANG, W., WATERLAND, R. A., ZHANG, M. Q.,
662 CHADWICK, L. H., BERNSTEIN, B. E., COSTELLO, J. F., ECKER, J. R., HIRST, M., MEISSNER, A.,
663 MILOSAVLJEVIC, A., REN, B., STAMATOYANPOULOS, J. A., WANG, T., KELLIS, M. &
664 CONSORTIUM, R. E. 2015. Integrative analysis of 111 reference human epigenomes. *Nature*,
665 518, 317-30.

666 SALAS, L. A., KOESTLER, D. C., BUTLER, R. A., HANSEN, H. M., WIENCKE, J. K., KELSEY, K. T. &
667 CHRISTENSEN, B. C. 2018. An optimized library for reference-based deconvolution of whole-
668 blood biospecimens assayed using the Illumina HumanMethylationEPIC BeadArray. *Genome
Biol.*, 19, 64.

669 SHANTHIKUMAR, S., NEELAND, M. R., SAFFERY, R., RANGANATHAN, S. C., OSHLACK, A. &
670 MAKSIMOVIC, J. 2021. DNA Methylation Profiles of Purified Cell Types in Bronchoalveolar
671 Lavage: Applications for Mixed Cell Paediatric Pulmonary Studies. *Front Immunol*, 12,
672 788705.

673 STUNNENBERG, H. G., HIRST, M. & CONSORTIUM, I. H. E. 2016. The International Human Epigenome
674 Consortium: A Blueprint for Scientific Collaboration and Discovery. *Cell*, 167, 1897.

675 TESCHENDORFF, A. E., BREEZE, C. E., ZHENG, S. C. & BECK, S. 2017. A comparison of reference-based
676 algorithms for correcting cell-type heterogeneity in Epigenome-Wide Association Studies.
677 *BMC Bioinformatics*, 18, 105.

678 TESCHENDORFF, A. E. & ZHENG, S. C. 2017. Cell-type deconvolution in epigenome-wide association
679 studies: a review and recommendations. *Epigenomics*, 9, 757-768.

680 TOBI, E. W., GOEMAN, J. J., MONAJEMI, R., GU, H., PUTTER, H., ZHANG, Y., SLIEKER, R. C., STOK, A. P.,
681 THIJSSEN, P. E., MÜLLER, F., VAN ZWET, E. W., BOCK, C., MEISSNER, A., LUMEY, L. H., ELINE
682 SLAGBOOM, P. & HEIJMANS, B. T. 2014. DNA methylation signatures link prenatal famine
683 exposure to growth and metabolism. *Nat Commun*, 5, 5592.

684 WANG, Y., GORRIE-STONE, T. J., GRANT, O. A., ANDRAYAS, A. D., ZHAI, X., MCDONALD-MAIER, K. D.
685 & SCHALKWYK, L. C. 2021. interpolatedXY: a two-step strategy to normalise DNA
686 methylation microarray data avoiding sex bias. *bioRxiv*, 2021.09.30.462546.

687 WIENCKE, J. K., KOESTLER, D. C., SALAS, L. A., WIEMELS, J. L., ROY, R. P., HANSEN, H. M., RICE, T.,
688 MCCOY, L. S., BRACCI, P. M., MOLINARO, A. M., KELSEY, K. T., WRENSCH, M. R. &
689 CHRISTENSEN, B. C. 2017. Immunomethylomic approach to explore the blood neutrophil
690 lymphocyte ratio (NLR) in glioma survival. *Clin Epigenetics*, 9, 10.

691 ZOU, J., LIPPERT, C., HECKERMAN, D., ARYEE, M. & LISTGARTEN, J. 2014. Epigenome-wide association
692 studies without the need for cell-type composition. *Nat Methods*, 11, 309-11.

693

694

695

696

697 **Figure Legends**

698

699 **Figure 1. CETYGO captures variation in accuracy of cellular deconvolution in whole**
700 **blood.** Line graphs plotting the error associated with estimating the cellular proportions of
701 reconstructed whole blood profiles with increasing proportion of noise (x-axis). Where the y-
702 axis presents **A**) the root mean square error (RMSE) between the fixed cellular proportions
703 used to construct the whole blood profiles and the estimated proportions generated with
704 Houseman's method, **B**) the error metric CETYGO and **C**) the sum of all proportions
705 estimated. The points represent the mean value and the dashed lines the 95% confidence
706 intervals calculated across multiple simulations. The two lines represent simulations
707 constructed from reference data generated from two different platforms, the Illumina 450K
708 and EPIC BeadChip microarrays.

709

710 **Figure 2. Cell type dependent effects on accuracy when omitted from reference based**
711 **cellular deconvolution algorithms.** Line graph of the error associated with estimating the
712 cellular proportions of reconstructed whole blood profiles where the reference panel is
713 missing one of six cell types. Each coloured line represents a different cell type being
714 omitted from the reference panel, but included in the reconstructed whole blood profiles used
715 for testing. Plotted is the proportion in the testing profile that the missing cell type is set to
716 occupy (x-axis) against the error, measured using CETYGO, of the deconvolution (y-axis).
717 The points represent the mean value and the dashed lines the 95% confidence intervals
718 calculated across multiple simulations.

719

720 **Figure 3. The accuracy of cellular heterogeneity estimation increases as the reference**
721 **panel becomes more representative.** Violin plots of the error associated with estimating
722 the cellular proportions of reconstructed whole blood profiles where the reference panel is

723 missing between one and three cell types. Each violin plot shows the distribution of the error,
724 measured using CETYGO, of the deconvolution (y-axis) grouped by **A**) the number of cell
725 types included in the reference panel and **B**) the proportion of cells in the reconstructed
726 whole blood profile that are from cell types included in the reference panel.

727

728 **Figure 4. CETYGO captures the tissue specificity of deconvolution reference panels.**
729 Violin plots of the error associated with estimating the cellular proportions where a reference
730 panel consisting of six blood cell types was applied to 10,447 DNA methylation profiles,
731 across 18 different datasets and 20 different sample types. Each violin plot shows the
732 distribution of the error, measured using CETYGO, of the deconvolution (y-axis) grouped by
733 the tissue/cell-type, where the violins are coloured to highlight which samples are derived
734 from blood, which are human derived non-blood bulk tissue, and which are human derived
735 cell-lines.

736

737 **Figure 5. Error in estimation of cellular heterogeneity from DNA methylation data**
738 **correlates with error from epigenetic clock algorithms.** Heatscatterplot of the error
739 measured using CETYGO (y-axis), associated with estimating the cellular proportions across
740 6,351 whole blood profiles against the difference between the sample's chronological age
741 and age predicted using Horvaths pan-tissue algorithm from the DNA methylation data
742 (Delta age; x-axis). The colour of the points represents the density of points at that location.

743

744

745

746









