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26  Abstract

27  The majority of epigenetic epidemiology studies to date have generated genome-wide

28  profiles from bulk tissues (e.g. whole blood) however these are vulnerable to confounding

29  from variation in cellular composition. Proxies for cellular composition can be mathematically
30 derived from the bulk tissue profiles using a deconvolution algorithm however, there is no

31  method to assess the validity of these estimates for a dataset where the true cellular

32 proportions are unknown. In this study, we describe, validate and characterise a sample

33 level accuracy metric for derived cellular heterogeneity variables. The CETYGO score

34  captures the deviation between a sample’s DNAm profile and its expected profile given the
35 estimated cellular proportions and cell type reference profiles. We demonstrate that the

36 CETYGO score consistently distinguishes inaccurate and incomplete deconvolutions when
37  applied to reconstructed whole blood profiles. By applying our novel metric to > 6,300

38  empirical whole blood profiles, we find that estimating accurate cellular composition is

39 influenced by both technical and biological variation. In particular, we show that when using
40 the standard reference panel for whole blood, less accurate estimates are generated for

41 females, neonates, older individuals and smokers. Our results highlight the utility of a metric
42  to assess the accuracy of cellular deconvolution, and describe how it can enhance studies of
43  DNA methylation that are reliant on statistical proxies for cellular heterogeneity. To facilitate
44  incorporating our methodology into existing pipelines, we have made it freely available as an
45 R package (https://github.com/ds420/CETYGO).
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47 Introduction

48  Due to the dynamic nature of the epigenome and its plasticity in response to environmental
49  exposures (Hannon et al., 2018, Joehanes et al., 2016, Tobi et al., 2014, Gruzieva et al.,
50 2017), there is increasing interest in the role it plays in the aetiology of disease (Murphy and
51  Mill, 2014). However, this very facet of the epigenome makes epigenetic epidemiology
52  studies inherently more complex to design and liable to confounding compared to studies of
53  DNA sequence variation (Heijmans and Mill, 2012, Relton and Davey Smith, 2010). One
54  major difference is that an individual's genetic sequence is identical in all cells, and therefore
55 it does not matter from which tissue DNA is isolated prior to genotyping. In contrast, the
56  epigenome orchestrates gene expression changes that underpin cellular differentiation,
57  consequently, cell types can be defined by their epigenetic profiles (Stunnenberg et al.,
58 2016, Roadmap Epigenomics Consortium et al., 2015). It has previously been shown that
59 variation between cell types is greater than inter-individual variation within a cell type

60 (Hannon et al., 2021b, Shanthikumar et al., 2021).

61

62 The majority of studies to date have focused on a single epigenetic modification, DNA
63  methylation, and generated genome-wide profiles from bulk tissues (e.g. whole blood) using
64  high throughput microarrays (Campagna et al., 2021). A critical challenge in these studies is
65 that bulk tissue is a heterogeneous mix of different cell types. The epigenetic profile of a bulk
66  tissue is the average across the profiles of the constituent cell types. If the composition of
67 these cell types, specifically the proportions of each cell type, varies across the population
68 under study, and varies in a manner that correlates with the outcome of interest, this will lead
69 to false positive associations at sites in the genome that differ between cell types (Jaffe and
70  Irizarry, 2014, Liu et al., 2013). As a result, epigenome-wide association analyses routinely
71  include quantitative covariates that capture the heterogeneity in cellular composition across
72  a dataset. As experimentally derived cell counts are often unavailable, proxies for cellular

73 composition can be derived from the bulk tissue profile using a deconvolution algorithm. The
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74  goal of these statistical methodologies is to generate a series of continuous variables that
75  reflect the underlying cellular heterogeneity of each sample. Deconvolution algorithms can
76  be separated into two classes. Firstly, supervised methods that incorporate reference
77  profiles for relevant cell types - generated from purified cell populations - and estimate
78  proportions for this specified set of cell types (known as reference-based
79  algorithms)(Houseman et al., 2012, Newman et al.,, 2015, Accomando et al.,, 2014,
80  Guintivano et al., 2013, Teschendorff et al., 2017). Secondly, those that do not use any
81 reference data and generate an unlimited set of variables that are not directly attributed to
82 any particular cell type (known as reference-free algorithms)(Houseman et al., 2014, Leek

83 and Storey, 2007, Rahmani et al., 2019, Zou et al., 2014).

84

85 In tissues for which reference profiles are available, reference based deconvolution
86  algorithms are most commonly used, likely due to the ease of interpretation. Specifically the
87 constrained projection methodology proposed by Houseman, often referred to as
88 “Houseman’'s method”, is normally used. There have been a number of studies that have
89 aimed to validate the application of these methods by testing their performance against
90 experimentally or computationally derived “bulk” profiles of fixed cellular compositions
91 (Koestler et al., 2013, Salas et al., 2018). These have primarily focused on the prediction of
92 the major blood cell types from whole blood. Typically, accuracy is reported at the group
93 level, i.e. a single correlation or error statistic across a number of samples, which is then
94 assumed to be representative for all future applications. In prediction modelling, great
95 attention is paid to ensuring that the training data is representative of the testing data to so
96 that the predictions are valid. The vast majority of whole blood epigenetic studies use the
97 same reference dataset generated from six adult males to determine cellular composition,
98 regardless of the age, sex, ethnicity, or disease status characteristics, with little
99  consideration given to whether it is representative of the cohort being tested. Mathematically,

100 there is nothing to prevent a deconvolution algorithm, based on any reference panel of cell
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101  types, from being applied to a profile generated from any bulk tissue. As an extreme
102  example, we could input data derived from brain tissue to a model that outputs estimates of
103  the composition of blood cell types and obtain values, due to the mathematical constraints,
104 that are plausible (i.e. between 0 and 1). In a less extreme example, it is unknown how
105 important demographic features (e.g. age, sex, or ethnicity) of the samples in the reference
106  panel affect prediction in samples characterised by different demographics. Currently, there
107 is no method to assess the validity of cellular composition estimates for a single sample, or
108 indeed, a dataset where the true cellular proportions are unknown. If the quality of the
109 deconvolution varies either, across studies or within a study, then the utility of these
110 variables as confounders needs to be reconsidered. This could be especially problematic if
111  the accuracy of the deconvolution is systematically biased and is related to any other
112  confounders such as age or sex. Understanding how reliable a set of cellular heterogeneity
113  variables are for any individual sample is of increasing importance, as the interest in
114  quantifying cellular composition has moved beyond just adjusting for it in epigenome-wide
115  association studies, with these estimates also being analysed as variables of interest in their

116  own right (Hannon et al., 2021a, Koestler et al., 2017, Wiencke et al., 2017).

117

118 In this study, we propose an accuracy metric that quantifies the CEIl TYpe deconvolution
119 GOodness (CETYGO) score of a set of cellular heterogeneity variables derived from a
120 genome-wide DNA methylation profile for an individual sample. While our method is
121  applicable to any reference based deconvolution algorithm, and any reference panel of cell
122  types, to demonstrate the utility of our approach we limit our characterisation to the
123  Houseman algorithm and panels of blood cell types, which represent the majority of
124  applications. We demonstrate that CETYGO indexes the accuracy of the prediction of
125  cellular composition with simulations in which we manipulated the performance of the
126  deconvolution. We then profile the statistical properties of CETYGO by applying it to a

127  number of empirical datasets, to provide guidance on how it can be incorporated into whole
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128  blood DNA methylation studies. Finally, we use the CETYGO score to determine if they are
129 any biases in the effectiveness of existing blood cell type reference panels. To enable the
130  wider research community to incorporate our proposed error metric into their analyses, we
131 have provided our methodology in an R package, CETYGO, as well as adding functions to

132 the wateRmelon package.

133

134  Materials and Methods:

135  Mathematical derivation of the CETYGO score

136  The DNA methylation profile of a bulk tissue can be defined as the sum of DNA methylation
137 levels measured in the constituent cell types weighted by the proportion of total cells

138  represented by that cell type. Mathematically we can represent this as

N
B = Z PikCijx

k=1
139 (Equation 1)
140  where
141 e Bjjrepresents the DNA methylation level in the bulk tissue for sample i at site |
142 e pixrepresents the proportion of cell type k in sample i
143 e Cijx represents the DNA methylation level for sample i at site j in cell type k, for N
144 different cell types.

145  Typically in an epidemiological study, only the bulk tissue DNAm profile (B;;) is measured.
146 However, as cellular composition is an important confounder, it is desirable to know or
147  estimate pjx for all (major) cell types. Methods for this purpose, such as Houseman’s
148  constraint projection approach, have been proposed that take advantage of reference
149  profiles (i.e. Cijx) available to the research community to enable them solve for the unknown

150 pix- This is achieved by selecting M DNA methylation sites that are highly discriminative of
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151  the cell types we want to estimate the proportions of. By definition, these sites exhibit low
152  variation across individuals, and therefore it does not theoretically matter that we have not
153 measured them in the same samples that we have bulk profiles from. If the estimated cell
154  proportions (denoted p,,) are accurate then the expected bulk tissue profile given this
155  composition of cell types should closely resemble the observed data. We can substitute our
156  estimated cell proportions, p,;, back into Equation 1, to calculate the expected profile of

157  DNA methylation values (Equation 2).

N
BL,] = z pl,kCi,j,k
k=1

158 (Equation2)
159

160  We define our error metric, CETYGO, as the root mean square error (RMSE) between the
161  observed bulk DNA methylation profile and the expected profile across the M cell type
162  specific DNA methylation sites used to perform the deconvolution, calculated from the
163  estimated proportions for the N cell types (Equation 3). By definition, O is the lowest value
164 the CETYGO score can take and would indicate a perfect estimate. Higher values of the
165 CETGYO score are indicative of larger errors and therefore a less accurate estimation of

166  cellular composition.

XY (B — B,
M

CETYGO; = RMSE(B,;,B,) = \/

167 (Equation 3)
168
169  Purified blood cell type reference panels

170  Genome-wide DNA methylation profiles for purified blood cell types generated using the

171 lllumina 450K and EPIC microarray were obtained via the FlowSorted.Blood.450k and
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172 FlowSorted.Blood.EPIC R packages and formatted into matrices of beta values using
173  commands from the minfi(Aryee et al., 2014) R package. From the 450K reference panel, we
174  selected the six blood cell types that are mostly commonly used (B-cells, CD4+ T-cells,
175 CD8+ T-cells, granulocytes, monocytes and natural killer cells) which were purified from
176  whole blood from 6 male individuals using flow cytometry (Reinius et al., 2012). The EPIC
177  reference panel contains profiles from antibody bead sorted neutrophils (n = 6), B-cells (n =
178  6), monocytes (n = 6), natural killer cells (n = 6), CD4+ T-cells (n = 7), and CD8+ T-cells (n =
179  6) (Salas et al., 2018). Prior to training any deconvolution models, both reference datasets

180  were filtered to only include autosomal DNA methylation sites.
181
182  Generation of deconvolution models and simulated whole blood profiles

183 To test the performance of CETYGO against a known truth, we trained a series of
184 Houseman constraint projection deconvolution models and tested these against
185 reconstructed whole blood DNA methylation profiles where we combined cell-specific
186  profiles in a weighted linear sum of pre-specified proportions of each cell type. Depending on
187  the specific testing framework, the training data comprised of all available samples that were
188  not selected to be part of the testing data, such that the train and test data consisted of
189  distinct sets of samples. It should be noted though, that in some scenarios they were from
190 the sample experimental batch, and plausibly share technical batch-specific effects. We
191 modified the minfi approach for implementing Houseman's constrained projection
192  methodology to omit the step within estimateCellCounts() where the training and test data
193 are normalised together, in order to explore the effect of normalization. This adaptation
194 means that the cellular deconvolution and CETYGO calculation can be applied directly to a
195 matrix of beta values, rather than requiring the raw data stored in an RGSet object. This
196 makes it straightforward and computationally efficient to apply new reference panel (or
197 include a new error metric) to an existing dataset. Briefly, our implementation performs an

198  ANOVA to identify sites that are significantly different (p value < 1x10®) between the blood
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199 cell types, selecting 100 sites per cell type (50 hypermethylated and 50 hypomethylated).
200 These sites are then used to solve Equation 1 using quadratic programming, in essence a
201 least squares minimisation, with the constraint that the proportions are greater than or equal

202  to 0 and the sum of the proportions is less than or equal to 1.
203

204 In the first simulation analysis, we had six different combinations of training and testing data;
205  within each reference panel (450K and EPIC), across reference panels without normalisation
206 (450K to EPIC and EPIC to 450K) and across reference panels after stratified quantile
207 normalisation as implemented in minfi of the combined training and test dataset (450K to
208 EPIC and EPIC to 450K). To construct whole blood profiles for testing we isolated one
209 sample of each cell type. When testing samples were selected from the 450K reference
210 data, we selected a single individual as the test case and took all their purified samples, and
211  therefore there were a maximum of 6 testing iterations (as there are 6 individuals). When
212 testing samples were selected from the EPIC reference data, we randomly selected a test
213  sample for each cell type (as they do not come from the same set of individuals), and
214  repeated this process 10 times to get multiple sets of test data. We constructed whole blood
215  profiles as a linear sum of these cell-specific profiles in a fixed ratio and a defined proportion

216  of noise. Specifically,

N
B] = Z kaj,k + pSJ

k=1
217 Equation 4
218  Where
219 e Bjrepresents the simulated DNA methylation level in the bulk tissue at site j.
220 e pyrepresents the proportion of cell type k which were standardized for these series of
221 simulations to the mean proportions reported in Reinius et al. (Reinius et al., 2012)

222 (Supplementary Table 1).
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223 o Cjx represents the DNA methylation level from the test sample for in cell type k at site
224 j.

225 e pis the proportion of ‘noise’ and took the values 0,0.01,0.02,...,1,0.12,0.14,...0.5.

226 e ¢ is arandom variable taken from a uniform distribution bounded by 0 and 1.

227 o Yiaimk+tp=1

228

229 In total 31 simulated ‘noisy’ blood profiles were tested for each iteration of deconvolution

230 model.

231

232 In the second simulation analysis, we focused on a single reference panel, the 450K
233 reference panel. Here we tested a series of deconvolution models, where each cell type was
234  omitted in turn from the reference panel, prior to training the model. Each of these leave one
235  out models, was then tested against simulated whole blood profiles constructed from all six
236  cell types. The five cell types included in the training data were again combined in fixed
237  ratios calculated from the mean proportions reported by Reinius et al (Supplementary
238 Table 1), with the omitted cell type included at increasing proportions (0.1,0.2,...,0.9). We
239  used the same process to select testing samples as described before meaning that each of
240 the leave one out models was tested against 9 simulated whole blood profiles in 6 different

241  train test permutations.

242

243 In the third simulation analysis, we again focused on a single reference panel, the 450K
244  reference panel. Here we tested all possible deconvolution models, containing between 3
245 and 5 of the 6 blood cell types, a total of 41 combinations. This time we tested the full
246 spectrum of whole blood profiles in 0.1 units, where each cell type represented at least 0.1.

247  Intotal 126 possible profiles were generated.
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248

249  Profiling the performance of CETYGO in real datasets

250 A summary of the 17 datasets used to profile CETYGO is provided in Supplementary Table
251 2. Datasets 2-9, 14, and 15 were generated by our group at the University of Exeter
252 (www.epigenomicslab.com) have been previously published. The pre-processing and
253  normalisation of these datasets is as described in the corresponding manuscripts. Datasets
254 1 and 16 were also generated by our group and are currently unpublished. They followed a
255 standard QC pipeline and were normalised using dasen() in the wateRmelon package
256  (Pidsley et al., 2013). Datasets 10-13 and 17 are publically available datasets obtained from
257 GEO (https://www.ncbi.nlm.nih.gov/geo/). These data were put through a quality control
258  pipeline which included checking the quality of the DNA methylation data (signal intensity,
259  bisulfite conversion and detection p-values) prior to normalisation using dasen() in the
260  wateRmelon package (Pidsley et al., 2013). For all datasets cellular deconvolution and the
261  calculation of CETYGO was applied using a model trained with all samples for 6 cell types

262  from the 450K reference panel.

263

264  To characterise the relationship between data quality metrics and CETYGO, we used an
265 expanded version of Dataset 3 which retained the samples that failed quality control for
266  either a technical or biological reason (n = 725). For this data we imported the raw signal
267 intensities from the idat files for all samples using the wateRmelon package (Pidsley et al.,
268  2013). Signal intensities for each sample were summarised as the median methylated (M)
269  and unmethylated (U) intensity across all sites. Bisulfite conversion efficiency was calculated
270  as the median beta value across 10 fully methylated control probes and converted to a
271  percentage. Samples were then processed through pfilter() using the default settings. A
272 sample was classed as a technical failure if either median signal intensity metric was less

273 than 500, the bisulfite conversion statistic was less than 80% or it failed pfilter(). In total 62
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274  samples were classed as technical failures. Note these thresholds may not match up with
275 the thresholds implemented in the quality control pipeline described in the original
276  manuscript. All 725 samples were then normalised using dasen and cellular deconvolution

277 and their CETYGO score estimated.

278

279 In order to test the effect of normalising the reference panel DNA methylation dataset (i.e.
280  training data) with the bulk tissue dataset (i.e. the test data) we imported the raw signal
281 intensities for Dataset 1. We the re-normalised these data in conjunction with the reference
282  panel prior to performing cellular deconvolution and the calculation of CETYGO. To facilitate
283  this we have adapted the estimateCellCounts() function in minfi (Aryee et al., 2014) to a new
284  function estimateCellCountsWithError() which calculates CETYGO alongside performing the
285  reference-based deconvolution. These values of CETYGO were compared to CETYGO
286  calculated as described above using the dasen normalised betas, that were not normalised

287  with the reference panel.

288

289  Ethical approval

290 The study was approved by the University of Exeter Medical School Research Ethics

291  Committee (reference number 13/02/009).

292

293  Data and code availability

294 The DNAm data used in this study are available as R packages or via GEO (see
295  Supplementary Table 2 for details). We have provided the code for calculating the

296 CETYGO score as an R package available via GitHub (https://github.com/ds420/CETYGO).

297 The code to reproduce the analyses in this manuscript using our R package are also

298 available via GitHub (https://github.com/ejh243/CETYGOAnalyses).
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299

300

301 Results:

302 CETYGO indexes the accuracy of cellular composition estimates in whole blood

303 The objective of this study was to define, validate and characterise a novel metric that can
304 be used to assess the accuracy of DNAm-based cellular deconvolution in an individual
305 sample. The CETYGO score captures the deviation between the observed DNAm profile
306 and the expected profile for the given set of estimated cell type proportions, where values

307 close to O indicate accurate estimates of cellular composition.

308

309 In order to test whether our proposed error metric CETYGO successfully captures inaccurate
310  cellular heterogeneity estimates, we manufactured a series of bulk whole blood profiles
311  where the cellular composition was known and could be estimated with varying degrees of
312 accuracy. This was achieved by standardizing the ratios of the constituent blood cell types
313 and adding an increasing proportion of random ‘noise’, which could reflect either biological
314  variation, technical artefacts or imprecision in the assay (see Materials and Methods). The
315 hypothesis is that as the proportion of noise increases, the estimation of cellular composition
316  will be less accurate and the CETYGO score should correlate with the proportion of noise in
317 the whole blood sample. To confirm that our simulation framework was fit for purpose, we
318 calculated the RMSE between the fixed cell type proportions used to construct the whole
319  blood profiles and the predicted values, observing that profiles with a higher proportion of
320 noise were characterized by larger deviations from the truth (Figure 1A). Having
321  manufactured a spectrum of inaccurate deconvolutions, we were able to determine whether
322 the CETYGO score changed as a function of noise, finding that it successfully indexed
323  accuracy with a monotonic relationship between the proportion of noise in a bulk sample and

324  the CETYGO score (Figure 1B). We observed that for small proportions of noise (between 0
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325 and 0.05) the accuracy estimates don’t vary very much, but once the proportion of noise
326  goes above 0.05, the effect of additional noise on accuracy starts to accumulate. We also
327  found that when the predictions were less accurate, the total sum of all estimated cell types

328  for a sample was less than one and decreased as noise increased (Figure 1C).

329

330 In our simulation framework, we tested two independent reference datasets (Reinius et al.,
331 2012, Salas et al., 2018), generated using different versions of the lllumina BeadChip array
332 and incorporating subtly different panels of cell types (either granuloctyes or neutrophils).
333  We subsequently repeated the simulation framework, but this time training the model using
334  one reference panel (either 450K or EPIC) and testing it in simulations formulated from the
335  other reference panel. This would allow us to explore how batch and normalisation strategy
336 influences the accuracy of cellular deconvolution. These results showed the same general
337 pattern across the different train-test pairings, where the CETYGO score captured
338 decreasing accuracy in estimates of cellular composition (Supplementary Figure 1).
339  Differences between datasets did lead to slightly increased imprecision at lower proportions
340 of noise, but this scenario is arguably more representative of the typical application of
341  cellular deconvolution algorithms, where the reference panel and bulk tissue test data are
342  generated in different laboratories. Interestingly, we observed that when the training data
343  was generated with the 450K array and applied to simulated bulk data generated from the
344 EPIC array, the deconvolution was marginally more accurate potentially indicative of
345 reduced signal-to-noise with the EPIC array. In general, whether the two batches of data
346  were normalised together or not had a minimal effect on deconvolution accuracy, measured
347 by either RMSE (Supplementary Figure 1A), or the CETYGO score (Supplementary
348  Figure 1B), There was however, subtle variation dependent on which panel was used as the
349 training data, suggesting that technology, data quality or cell purity is more important than
350 normalisation strategy. Given the comparable performance of the two reference panels, all

351  subsequent analyses were performed with the 450K reference panel only.
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352

353 CETYGO is inflated when applied to incomplete cellular reference panels

354  Another scenario where inaccurate deconvolutions are likely to occur is when the reference
355 panel of cell types for deconvolution is incomplete. One of the constraints set when
356 implementing Houseman’s method to solve for cellular composition proportions is that the
357  sum of the proportions of the cell types in the panel < 1. In other words, all the cells present
358 in the bulk tissue are (virtually) completely represented by the cell types in the reference
359  panel. When an abundant cell type is missing due to lack of reference data, theoretically, this
360 may lead to errors, as the unrepresented proportion of the bulk tissue will need to be
361 (incorrectly) assigned to an alternative cell type. To explore this, we dropped each cell type
362 in turn from the reference panel, and recalculated the cellular proportion estimates for
363  reconstructed whole blood profiles that included the missing cell type, in increasing
364  proportions. We found that the CETYGO score had a monotonically increasing relationship
365  with the true proportion of the missing cell type (Figure 2). Of note, the magnitude of the
366 CETYGO score in blood data depended on which blood cell type was missing, with the
367 omission of B-cells, leading to the largest errors and the omission of CD8+ T-cells the
368 smallest effect. This is likely due to the methylomic similarity of the two sets of T-cells,
369 whereby CD4+ T-cells are a good alternative to CD8+ T-cells, and suggests that at sites
370 included on the 450K array, B-cells have the most distinct profile. We expanded this
371  framework further to omit up to 3 cell types from the training model, finding that the CETYGO
372  score generally decreases as both the number of cell types in the model increases and the
373  proportion of cells represented in the model increases (Figure 3). However, the distributions
374  of the CETYGO score across different panels of cell types applied to different compositions
375 of whole blood are overlapping and have long tails, highlighting that there are some
376  scenarios where a model with 3 cell types, outperforms a model with 4 or 5 cell types

377 dependent on the abundance of each cell type in the bulk tissue.

378
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379  CETYGO distinguishes nonsense applications

380 Having demonstrated the sensitivity of the CETYGO score to detect noisy and incomplete
381 estimates of cellular heterogeneity, we next tested its behaviour when applied to real data in
382  order to provide guidance to the wider research community about how it can be interpreted
383 in the context of epidemiological studies. To this end, we estimated the cellular proportion of
384  six blood cell types and the CETYGO score associated with the estimation for 10,447 DNA
385 methylation profiles, across 17 different datasets and 17 different sample types
386 (Supplementary Table 2). 7,184 (68.8%) of these represent realistic applications as the
387 profiles were derived from blood tissue types and can be used to infer the expected
388  distribution of CETGYO scores across a range of experimental and biological sources. The
389 remaining 3,263 (31.2%) represented “nonsense” applications as these profiles were
390 generated from non-blood samples and can be used to highlight whether the CETYGO score
391 can distinguish sensible deconvolutions. In general, there was a clear dichotomy between
392  the output for these two types of sample; CETYGO scores for blood samples were typically
393 < 0.1 and CETYGO scores for non-blood tissues were > 0.1 (Figure 4). The median
394 CETYGO score across all whole blood samples was 0.0524 (inter-quartile range = 0.0455-
395  0.0581). Within the whole blood samples there was a bimodal distribution, which on closer
396 inspection was driven by platform, with datasets generated with the 450K array associated
397  with lower CETYGO scores than those generated using the EPIC array (Supplementary
398  Figure 2). Limiting our comparison to Dataset 8 where we had matched whole blood and
399 purified blood cell types from the same individuals (Hannon et al., 2021b), we observed that
400 purified blood cell types were predicted with higher error than whole blood (Supplementary
401  Figure 3), with significant differences for all cell types, bar granulocytes (Supplementary
402  Table 3). This suggests that it is more challenging to determine a cell type is pure, than to
403  deconvolute a mixture of cell types. We also noted that the CETYGO score was significantly
404  higher for both cord blood (mean difference = 0.0207; T-test p-value < 3.42x10°%%) and

405 neonatal blood spots (mean difference = 0.0307; T-test p—value = 9.19x10°%%) compared to
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406  whole blood. This is in agreement with previous studies suggesting that the standard panel
407 of major blood cell types is not the most appropriate for the assessment of cellular
408 heterogeneity in blood samples obtained for neonatal epigenetic studies (Bakulski et al.,

409  2016).

410

411  Cellular heterogeneity estimates are biased by technical factors

412  While the distribution of CETYGO score across whole blood samples was fairly narrow, we
413  wanted to explore whether CETYGO scores could be used to detect biases in the estimation
414  of cellular composition from whole blood DNA methylation profiles. In the simulation study
415 we showed that noisy DNA methylation profiles lead to less accurate estimates of cellular
416  composition. In real data, technically noisy signals should be excluded as part of the pre-
417  processing pipeline in order to improve the power to detect differences between groups. We
418 hypothesized that samples excluded based on technical quality metrics are likely to have
419  higher deconvolution errors as measured by the CETYGO score. Comparing CETYGO
420  scores against standard quality control metrics we found that higher values of the CETYGO
421  score were associated with lower median signal intensities and lower bisulfite conversion

422  statistics (Supplementary Figure 4), consistent with our hypothesis.

423

424  The vast majority of DNA methylation studies perform normalisation to align the distributions
425 across samples, and ultimately make the data more comparable, particularly where data
426  have been generated across multiple batches. We hypothesised that normalising reference
427  data and test data together to make the genome-wide profiles more similar would attenuate
428 the discriminative signals between cell types and negatively affect the performance of
429  cellular deconvolution. We therefore compared the CETYGO scores calculated with and
430 without normalisation of the test data with the reference panel for Dataset 1. In general, the

431  overall distribution of values did not differ dramatically between normalisation strategies.
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432  However, we did observe that when the reference panel (which is all male) was normalised
433 with the test data, there was a clear bias towards females having higher error
434  (Supplementary Figure 5), consistent with analyses showing that normalisation can
435 introduce sex effects(Wang et al., 2021). In contrast, our adapted method, where we

436  normalised the data separately, was characterized by a dramatically reduced sex difference.
437
438  Cellular heterogeneity estimates are biased by age, sex and smoking status

439  Across the 6,351 whole blood samples included in our analysis we fitted a linear regression
440  model to test the influence of additional factors on CETYGO scores (Supplementary Table

223

441  4). As well as the platform effects we described earlier (p-value = 2.72x10“°) there were

442  further significant differences between datasets (p-value = 1.75x10%??

) even after controlling
443  for platform. We also found that every biological factor we tested had a significant
444  association with CETYGO (Supplementary Figure 6). This included a negative association
445  with age (coefficient = -7.1x107°, p-value = 0.00215), a positive association with age squared
446  (coefficient = 8.8x107, p-value = 0.000189), sex (mean difference in males = 9.6x10™, p-

447  value = 4.03x10™%) and a positive association with smoking score (coefficient = 6.7x10°°, p-

448  value = 1.84x10°).
449

450 Inaccuracies in DNA methylation prediction algorithms are concordant across predictors for

451  different phenotypes

452  Finally, we were interested in whether inaccuracy in cellular deconvolution was mirrored by
453  inaccuracies in other epigenetic predictors. Comparing CETYGO against the deviation
454  between chronological age and epigenetic age predicted with the Horvath multi-tissue clock
455  (Horvath, 2013), we found a significant positive relationship (coefficient = 43.0, p-value =
456  1.68x10™) highlighting that samples with inaccurate cellular deconvolution have a larger

457  difference between epigenetic age and chronological age (Figure 5).This suggests that
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458  studies which use the residual between epigenetic age and chronological age as a proxy for

459  accelerated aging are potentially just modelling the imprecision in the technology.

460

461 Discussion:

462 The estimation of cellular composition is vital in epigenetic epidemiology, with these
463  variables being included as co-variates in analyses to minimise the effect of confounding. To
464  compliment these analyses, we have described and validated a novel error metric —
465 CETYGO - that enables the accuracy of the deconvolution to be quantified at an individual
466  sample level. Our results demonstrate that the CETYGO score consistently distinguishes
467 inaccurate and incomplete deconvolutions when applied to reconstructed whole blood
468  profiles and support its inclusion in future DNA methylation association studies to identify
469  scenarios, or individual cases, when cell composition estimates are unreliable. We have
470 applied it to several existing datasets to further characterise the performance of the
471  predominant application with a reference panel of blood cell types. These analyses provided
472  a number of insights. First, our results indicate that cell types are not equal when it comes to
473  deconvolution accuracy. For example, the omission of B-cells from the standard blood
474  reference panel had the most dramatic effect on their accuracy, while the omission of one of
475  the two types of T-cells had the smallest effect. This is consistent with previous reports that
476  the DNA methylation profile of B cells is relatively distinct to that of other blood cell-types,
477  with the profiles of the two T-cells being most similar (Hannon et al., 2021b). Second, we
478  highlighted that the estimation of cellular deconvolution using the existing reference panel is
479 biased. Specifically, it is less accurate in females, neonates, older individuals and smokers.
480  This has important consequences for epigenome-wide association studies, as it may indicate
481 that existing efforts to adjust for cellular heterogeneity may be less effective in some sets of
482  samples. This emphasizes the need to thoroughly benchmark all reference panels and
483  characterise which scenarios they are appropriate for and to increase the diversity of

484  available reference panels.
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485

486  Our primary motivation was to develop a metric that that could be used to assess for an
487  individual sample, how reliable derived estimates of cellular heterogeneity are. To facilitate
488  this we have calculated the CETYGO score in >6,300 whole blood profiles, and provided
489  some guidance about how to interpret the metric. Our data suggest that a CETYGO score >
490 0.1 is consistent with the reference panel not being relevant for the specific tissue being
491  profiled. Although incorrect tissue, had the most dramatic effect, we also found that elevated
492 CETYGO can be induced by poor quality DNAmM data, where the noise to signal ratio is
493  elevated, generating less sensitive DNA methylation profiles to the extent that it interferes
494  with the accuracy of the deconvolution model. This can be mitigated by implementing
495  stringent pre-processing pipelines to remove poor quality data. In particular, the principle
496  behind our metric is comparable to the quality control metric DMRSE available in the
497 wateRmelon R package(Pidsley et al., 2013). However, even within the pre-processed
498  datasets used in our study there were a handful of samples with outlier CETYGO values. For
499 this reason, we suggest that CETYGO should be added to existing pipelines to provide
500 confidence in analyses that incorporate cellular composition variables. To facilitate this, we
501 have made our method available as a standard alone R package — CETYGO - available via
502  GitHub which adapts the existing workflow within minfi (Aryee et al., 2014) to simultaneously
503 calculate the CETYGO score alongside the estimation of cellular composition variables using
504 Houseman’s algorithm. In this way it can easily be adapted for use with other available
505 reference panels, both now and in the future. We have also integrated the CETYGO score
506 into the wateRmelon function EstimateCellCounts.wmin(), used to predict cell type
507 composition, providing users with their deconvolution accuracy estimate when they predict

508 composition.

509

510 Our findings should be considered in the light of a number of limitations. First, for the

511  purpose of validation, we limited our analyses to the most commonly used deconvolution
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512 algorithm, Houseman’s constrained projection approach (Houseman et al., 2012), and the
513  most commonly used bulk tissue, whole blood, for which a previously validated reference
514  panels (Accomando et al., 2014, Koestler et al., 2013) exist. Comparisons of the different
515 methodologies for inferring cellular heterogeneity estimates from bulk tissue have concluded
516 that no single method is superior across all test scenarios (Teschendorff et al., 2017).
517  Theoretically, though, the concept behind the CETYGO score should be extendable to any
518 reference based deconvolution algorithm or reference panel of cell types and therefore
519 applicable to any tissue, organism, or DNA methylation profiling technique and could be
520 used to compare the performance of difference algorithms within a single dataset where true
521  cellular heterogeneity is unknown. Second, our method assumes that the cell-specific sites
522  used to estimate cellular composition are not influenced by any exposure. If differences were
523 induced at these sites, this would cause the error to be overestimated. This assumption is
524  also made by most deconvolution algorithms, and it has been suggested that it is unlikely to
525 be a major concern (Teschendorff and Zheng, 2017). Third, we limited the majority of
526  analyses to a reference panel generated with the 450K array and therefore, the conclusions
527 regarding the effect of the specific blood cell types on accuracy may be influenced by the

528  subset of genomic loci included on that technology.

529

530 In summary, we have proposed a new metric, CETYGO, to evaluate the accuracy of

531 reference based cellular deconvolution algorithms at an individual sample level. We believe,
532 this tool will be asset in studies of DNA methylation and have demonstrated how it can be
533  used to assess bias in reference panels, and to identify unreliable estimates of cellular

534  composition.

535
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697  Figure Legends

698

699  Figure 1. CETYGO captures variation in accuracy of cellular deconvolution in whole
700 blood. Line graphs plotting the error associated with estimating the cellular proportions of
701  reconstructed whole blood profiles with increasing proportion of noise (x-axis). Where the y-
702  axis presents A) the root mean square error (RMSE) between the fixed cellular proportions
703  used to construct the whole blood profiles and the estimated proportions generated with
704  Houseman’'s method, B) the error metric CETYGO and C) the sum of all proportions
705 estimated. The points represent the mean value and the dashed lines the 95% confidence
706 intervals calculated across multiple simulations. The two lines represent simulations
707  constructed from reference data generated from two different platforms, the Illumina 450K

708 and EPIC BeadChip microarrays.

709

710  Figure 2. Cell type dependent effects on accuracy when omitted from reference based
711  cellular deconvolution algorithms. Line graph of the error associated with estimating the
712 cellular proportions of reconstructed whole blood profiles where the reference panel is
713  missing one of six cell types. Each coloured line represents a different cell type being
714  omitted from the reference panel, but included in the reconstructed whole blood profiles used
715  for testing. Plotted is the proportion in the testing profile that the missing cell type is set to
716  occupy (x-axis) against the error, measured using CETYGO, of the deconvolution (y-axis).
717  The points represent the mean value and the dashed lines the 95% confidence intervals

718  calculated across multiple simulations.

719

720  Figure 3. The accuracy of cellular heterogeneity estimation increases as the reference
721  panel becomes more representative. Violin plots of the error associated with estimating

722  the cellular proportions of reconstructed whole blood profiles where the reference panel is
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723  missing between one and three cell types. Each violin plot shows the distribution of the error,
724  measured using CETYGO, of the deconvolution (y-axis) grouped by A) the number of cell
725  types included in the reference panel and B) the proportion of cells in the reconstructed

726 whole blood profile that are from cell types included in the reference panel.

727

728  Figure 4. CETYGO captures the tissue specificity of deconvolution reference panels.
729  Violin plots of the error associated with estimating the cellular proportions where a reference
730  panel consisting of six blood cell types was applied to 10,447 DNA methylation profiles,
731 across 18 different datasets and 20 different sample types. Each violin plot shows the
732 distribution of the error, measured using CETYGO, of the deconvolution (y-axis) grouped by
733  the tissue/cell-type, where the violins are coloured to highlight which samples are derived
734  from blood, which are human derived non-blood bulk tissue, and which are human derived

735 cell-lines.

736

737  Figure 5. Error in estimation of cellular heterogeneity from DNA methylation data
738 correlates with error from epigenetic clock algorithms. Heatscatterplot of the error
739  measured using CETYGO (y-axis), associated with estimating the cellular proportions across
740 6,351 whole blood profiles against the difference between the sample’s chronological age
741 and age predicted using Horvaths pan-tissue algorithm from the DNA methylation data

742  (Delta age; x-axis). The colour of the points represents the density of points at that location.

743

744

745

746
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