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Abstract: 18 

Background: A pangenome aims to capture the complete genetic diversity within a 19 

species and reduce bias in genetic analysis inherent in using a single reference 20 
genome. However, the current linear format of most plant pangenomes limits the 21 
presentation of position information for novel sequences. Graph pangenomes have 22 

been developed to overcome this limitation. However, there is a lack of 23 
bioinformatics analysis tools for graph format genomes.  24 

Results: To overcome this problem, we have developed a novel pangenome 25 
construction strategy and a downstream pangenome analysis pipeline that captures 26 

position information while maintaining a linearized layout. We applied this strategy to 27 
construct a high-quality rice pangenome using 12 representative rice genomes and 28 
analyze an international rice panel with 413 diverse accessions using the 29 

pangenome reference. Our results provide insights into rice population structure and 30 
genomic diversity. Applying the pangenome for PAV-based GWAS analysis can 31 
identify causal structural variations for rice grain weight and plant height, while SNP-32 

based GWAS can only identify approximate genomic locations. Additionally, a new 33 
locus (qPH8-1) was found to be associated with plant height on chromosome 8 that 34 
could not be detected using the SNP-based GWAS.  35 

Conclusions: Our results demonstrate that the pangenome constructed by our 36 

pipeline combined with PAV-based GWAS can provide additional power for genomic 37 
and genetic analysis. The pangenome constructed in this study and associated 38 
genome sequence data provide valuable genomic resources for future rice crop 39 

improvement. 40 

Keywords: Pangenome, Presence/absence variation, Genomic diversity, PAV-based 41 
GWAS 42 
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Background  43 

Rice (Oryza sativa L) is one of the most important staple crops, feeding nearly half of 44 

the world's population. As this population expands to 10 billion people, there is an 45 
urgent need to increase the productivity of crops, while facing the impact of climate 46 
change on agricultural productivity. The application of genomics assisted breeding is 47 

seen as one of the best opportunities to increase crop productivity, with the 48 
exploitation of diversity stored in germplasm collections as a major resource for crop 49 
improvement [1]. With rapid advances in DNA sequencing technologies, genomic 50 

diversity within rice germplasm has been characterized by resequencing thousands 51 
of individuals and comparing the resulting data with reference genome assemblies. 52 
However, it is now understood that a single reference genome does not represent 53 

the genomic diversity of a species due to significant sequence presence/absence 54 
variation (PAV) between individuals [2]. To capture the genomic variations in a 55 
population, pangenome assemblies have been constructed. Pangenomes represent 56 

the gene content of a species rather than a single individual [3], and using a 57 
pangenome as a reference, structure variations (SVs) can be more easily and 58 
accurately genotyped by low cost short-read sequencing technologies, facilitating 59 

efficiently characterisation of genomic diversity within a species.  60 

Pangenomes have now been constructed and analyzed for several crop species, 61 
including wheat, Brassicas, barley, banana and pigeonpea [4-8]. Several 62 
pangenomes have been constructed in rice, and pangenomic analyses have 63 

identified genome sequences that are absent in the Nipponbare reference, the most 64 
commonly used reference in rice genomic studies [9-11]. For example, a study using 65 
3,010 rice accessions identified 268 Mb of new sequences, with 12,465 new genes, 66 

and 19,721 dispensable genes compared to the Nipponbare reference genome [12].  67 

Recent advances in pangenomics have led to the construction of graph-based 68 
pangenomes [13, 14] that code genetic variants as nodes and edges, and preserve 69 
the contiguity of the sequence and structural variation between individuals [15]. 70 

Graph-based pangenome approaches are relatively new, but have been applied to 71 
important crops, including soybean, bread wheat, and rice [10, 16-18]. Though graph 72 
based pangenomes have advantages, they also suffer limitations; for example, as 73 

most genome analysis tools were developed for linear sequences, scalable software 74 
and mature data structures suitable for graph-based pangenome analysis are still 75 
limited. A linear format pangenome with a fixed order coordinate system is still 76 

valuable for genomic studies, however, they struggle to represent the position of SVs 77 
and so potentially lose valuable information.  78 

In this study, we developed a pangenome construction strategy that can preserve SV 79 
position, embedding them into a linear pangenome. We also developed a suite of 80 

tools for mapping short sequencing reads to this pangenome for PAV genotyping 81 
that can recover the genomic position of sequence variations. We applied this 82 
pipeline to construct a rice pangenome using 12 diverse accessions representing 83 

major subpopulations of Asian rice and identify PAVs from an international rice mini 84 
core panel of 413 accessions [19]. This revealed extensive genomic diversity among 85 
rice germplasm, and PAV-based population analysis provided insights into 86 

population structure and successfully identified causal PAVs that impact grain weight 87 
and plant height. This study presents a new tool for pangenome analysis and 88 
provides valuable genomic resources for rice functional genomics, demonstrating the 89 
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advantages of using a coordinate linked linear pangenome to identify PAVs for 90 
functional analysis.  91 

 92 

Results  93 

A novel pangenome construction and PAV analysis pipeline  94 

In this study, we developed a pangenome construction and PAV genotype calling 95 
pipeline (PSVCP) (Additional file 1: Fig. S1). The pipeline includes three main steps, 96 
1) Iterative alignment between genomes to identify novel segments, then the 97 

integration of these sequences into the reference genome to construct a pangenome 98 
(Fig. 1A). 2) Mapping of short-read resequencing data to the pangenome to detect 99 
PAVs based on read coverage (Fig. 1B). 3) Calling PAV genotypes at the population 100 

level based PAVs from all accessions’ (Fig. 1C). 101 

We initially selected 12 assembled genome sequences of cultivated rice, including 102 
11 Asian cultivated rice (O. sativa) accessions selected from 33 representative 103 
accessions based on their subpopulation [10] and one African cultivated rice (Oryza 104 

glaberrima) (Additional file 2: Table S1) for pangenome construction using 105 
Nipponbare as the primary reference [20]. A total of 24,585 novel sequences were 106 
identified and inserted into the Nipponbare reference. The mean, median, maximum 107 

and the sum of insertion lengths are 2,607 bp, 338bp, 96,797 bp, and 64.10 Mbp 108 
respectively (Additional file 1: Fig. S2A, B). A subset of these sequences was 109 
validated by amplification and sequencing (Additional file 1: Fig. S3).  110 

We analyzed the distribution of these additional sequences and found that 43.1% 111 

overlapped ±2 kb upstream/downstream of genes, while 35.7% overlapped with 112 
genic regions (Additional file 1: Fig. S2C). Altogether, 6,797 sequences were 113 
inserted into 5,925 Nipponbare genes (Fig. 2). A total of 1,939 new genes were de 114 

novo annotated, and functional analysis suggests that they are enriched with terms 115 
associated with photosynthesis, the generation of precursor metabolites and energy 116 
(Additional file 2: Table S2). Modelling suggests that the initial 12 rice accessions 117 

were sufficient to capture the majority of sequence diversity within rice (Additional file 118 
1: Fig. S4).  119 

The completeness of the pangenome was evaluated using Benchmarking Universal 120 
Single-Copy Orthologs (BUSCO) [21] (Additional file 2: Table S3). Of the 1614 121 

single-copy orthologs identified in embryophytes, 98.8% were complete in our 122 
assembly, which is similar to or a little higher than the 3K rice pangenome (98.5%) 123 
[12] (Additional file 2: Table S3). We mapped resequencing data for 413 rice 124 

accessions collected from a diverse international panel (RPD2) [19] to the 125 
pangenome and the Nipponbare genome respectively. The results showed the 126 
average mapping rate to the pangenome was 97.84%, which is higher than the 127 

mapping rate to the Nipponbare reference (93.05%) (Additional file 1: Fig. S5A). 128 
These results demonstrate that our pangenome captured more diversity than the 129 
single Nipponbare reference. 130 

 131 

Population-wide TE and PAV analysis in an international diverse rice panel 132 

Illumina whole-genome sequencing data was generated for 413 accessions 133 

representing an international rice collection from 96 countries [19]. The reads were 134 
mapped to the pangenome and PAVs were genotyped using the PSVCP pipeline. 135 
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This identified an average of 99,239 PAVs (>50 bp) per accession, ranging from 136 
38,052 to 213,931. Around 85% of the inserted sequences were transposable 137 

elements, with 40% annotated as Gypsy LTR-retrotransposons and 28.6% as 138 
Helitron DNA transposons (Additional file 2: Table S4). We examined the diversity of 139 
representative retrotransposon families across all 413 accessions [22]. In total, 140 

66,441 variable retrotransposon sequences were identified, with 29,281 (44%) 141 
absent from the Nipponbare reference assembly.  142 

Retrotransposon abundance ranged from 12 (Rn60/Gypsy) to 15,599 copies (Rire3 143 
/Gypsy). Notably, half of the copies in the retrotransposon TE families Rn60, Rire3, 144 

Fam81-fam82, Rire2, Hopi, Fam93_ors14, Fam51_osr4 and Tos17 were not 145 
identified in the Nipponbare reference. The majority of retrotransposons were from 146 
Hopi, Fam81-fam82 and Rire3 TE families, which belong to the Gypsy family, and 147 

most of these originate from Indica accessions, suggesting an expansion of Gypsy 148 
elements in Indica compared to Japonica [23, 24]. TE families Fam93_ors14, Hopi 149 
and Fam81-fam82 show significantly higher frequency in Indica than Japonica and 150 

Aus accessions, while the Rire3 family is less abundant in Aus varieties compared to 151 
the other populations (Additional file 2: Table S5). This suggests ongoing 152 
transposition during domestication and subsequent breeding.  153 

We identified 11,617 (28.9%) dispensable genes across the 413 rice accessions 154 

(Additional file 2: Table S6). Annotation suggests that these are enriched for 155 
functions associated with protein phosphorylation, telomere maintenance, DNA 156 
duplex unwinding, photosynthesis, defence response and pathogenesis (Additional 157 

file 2: Table S7), which is similar to the findings in other crop pangenome studies [25, 158 
26]. We observed a significant difference in average gene numbers between 159 
Japonica, Indica and Aus (Fig. 3A). Japonica contains the most genes (48,884 ± 160 

472), with fewer genes in Indica (47,455 ± 537) and Aus (47,441 ± 405). The 161 
difference in average gene number hides a complex pattern of increases and 162 
decreases in the frequency of specific genes (Fig. 3B). A total of 978 genes show 163 

increased frequency in Japonica, while 2,986 genes show decreased frequency. 164 
Genes showing increased frequency are enriched in functions associated with DNA 165 
integration (Additional file 2: Table S8), while genes showing decreased frequency 166 

are annotated with disease resistance terms, including pathogenesis and defence 167 
response (Additional file 2: Table S9). Among the 2,986 genes with lower frequency 168 
in Indica, 116 (3.8%) genes are absent from the Nipponbare reference. In contrast, 169 

of the 978 genes exhibiting higher frequency in Indica, 513 (52.5%) genes are 170 
absent from the Nipponbare reference, with 482 derived from the Indica rice 171 
genomes. This reflects differences in gene content between sub-species at the 172 

population level.  173 

 174 

Population structure analysis based on pangenome PAVs  175 

We performed population genetic analysis in the international panel using PAVs and 176 
compared the results with SNP-based analysis. The mean fixation index (Fst) 177 
between populations estimated using the SNP data (Japonica-Indica: 0.476 ±0.207, 178 

Japonica-Aus: 0.525 ±0.205 and Indica-Aus: 0.304 ±0.158) is higher than calculated 179 
using PAV data (Japonica-Indica: 0.416 ±0.183, Japonica-Aus: 0.430 ±0.184 and 180 
India-Aus: 0.204 ±0.128) (Additional file 2: Table S10). Fst analysis results show 181 

similar distribution trends between PAVs and SNPs on the whole genome scale 182 
(Additional file 1: Fig. S6). SNP-based analysis shared Fst differentiation regions 183 
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with PAV-based analysis (within the top 1% Fst windows) between populations. For 184 
example, both SNP and PAV results share 33 out of 54 of the Japonica-Indica Fst 185 

differentiation regions, which contained 376 genes. We analysed 15 well-studied 186 
domestication and improvement associated genes to compare the Fst detection 187 
between SNP and PAVs. Among the 15 genes, three were within the top 10% of 188 

FST differentiation regions among Indica, Japonica and Aus subpopulations using 189 
SNP and PAV data (Additional file 2: Table S11). We also detected regions 190 
displaying significant differences between Fst values based on PAVs and SNPs. To 191 

investigate this further, we selected a prominent region at 7.2-9.2 Mbp of 192 
chromosome 8 where we observed a much higher Fst value between Indica and 193 
Japonica calculated by PAVs than SNPs (Fig. 4A). Further analysis revealed that 194 

PAVs could detect more genetic diversity than SNPs in this region (Fig. 4A). The 195 
region showed a higher ratio of novel sequences than the Nipponbare reference. 196 
The length of this region is about 1,600 kb in Nipponbare, while in the pangenome, 197 

the interval is 2 Mb, with 271 annotated genes, of which 162 are transposons.  198 

PAV-based population structure shows similar clustering to SNP-based phylogeny, 199 
with 413 accessions clustered into three main subpopulations. However, the PAV-200 
based phylogeny does not cluster individuals completely according to 201 

subpopulations, and the PAV-based PCA suggests a greater variation between rice 202 
accessions than the SNP-based analyses (Fig. 4B). For example, accessions in 203 
Indica and Aus subpopulations were grouped into two clusters compared with the 204 

SNP-based PCA result, and some accessions in the Indica subpopulation clustered 205 
with the Aus subpopulation. A similar pattern was observed in the PAV-based 206 
phylogeny with 73 Indica accessions clustering with the Aus subpopulation 207 

(Additional file 1: Fig. S7).  208 

 209 

Using pangenome to perform PAV-based GWAS 210 

As a pangenome permits the genotyping of a greater amount of genetic diversity 211 
than a single reference, it supports more powerful genetic analysis, capturing 212 
missing heritability. To explore this additional potential, particularly for identifying 213 

functional PAVs underlying QTLs, we conducted GWAS for two important agronomic 214 
traits of rice, thousand grain weight (TGW) and plant height (PH), using SNPs 215 
genotyped from Nipponbare and PAVs genotyped across the pangenome.  216 

For TGW, the SNP-GWAS identified 354 significant associations (Additional file 1: 217 

Fig. S8A), with the most significant located in Nip Chr5: 5,375,764 bp (pangenome 218 
Chr5: 6,017,339 bp), 9,063 bp away from GW5, a known functional gene controlling 219 
rice grain weight [26]. However, none of the associated SNPs were the causal 220 

variations of GW5, which are two PAVs (950-bp and 1,212-bp) in the promoter 221 
region, controlling the grain weight phenotype [27]. Our pangenome can capture 222 
these PAVs, which are absent in the Nipponbare reference genome. Using the 223 

pangenome, PAV-GWAS narrowed down the association signal in the same interval 224 
as SNP-GWAS (Fig. 5A; Additional file 1: S8A) and also detected the most 225 
significant associated signal as the causal variations of GW5 (Fig. 5B, C). We further 226 

analyzed the PAV genotypes and identified three haplotypes. The accessions with 227 
Hap1 (with both 1,212 bp and 950 bp PAVs) showed significantly lower grain weight 228 
than accessions with the other two haplotypes (Hap2, Hap3) with p-values (two-229 

tailed student’s t-test) of 3X10-5 and 3X10-9 respectively (Fig. 5C). This result is in 230 
accord with a previous study that demonstrated that the 950 bp deletion decreased 231 
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the expression of the functional gene (qSW5), while the 1,212 bp deletion disrupts 232 
the coding region. Both deletions will lead to grain width and weight phenotype 233 

variations [26].  234 

SNP-GWAS identified 37 SNPs associated with plant height (Additional file 1: Fig. 235 
S8B). Similar to the TGW GWAS result, both SNPs and PAV-GWAS were able to 236 
locate previously characterized locus harboring the "Green Revolution Gene" (sd1) 237 

[28]. The most significant PAV is located inside the sd1 gene, a previously reported 238 
causal variation determining plant height in rice (Additional file 1: Fig. S9) [28]. 239 
Statistical analysis shows that this PAV is significantly correlated with the PH 240 

phenotype (two-tailed student’s t-test, p-value: 3.3 X 10-29), further validating the 241 
accuracy of PAV-GWAS. Furthermore, we also identified a novel locus (qPH8-1) 242 
controlling PH in rice on chromosome 8 by PAV-GWAS (interval: 4,660,000-243 

4,860,000 bp in the pangenome), that was not identified by SNP-GWAS (Fig. 6). The 244 
most significant PAV was a 13 kb sequence containing two retrotransposon genes 245 
(LOC_Os08g07410, LOC_Os08g07420) located 1 kb upstream of 246 

LOC_Os08g07400. This sequence was present in 288 out of the 413 accessions, 247 
and the accessions without the 13 kb sequence had significantly greater plant height 248 
(two-tailed student’s t-test, p-value: 5.7 X 10-20) than those had the 13 kb sequence. 249 

Expression analysis shows that the presence or absence of this 13 kb sequence is 250 
significantly correlated with the expression level of LOC_Os08g07400, which is 251 
located 2 kb downstream from the PAV (Fig. 6C). These results suggest that this 252 

PAV, caused by retrotransposon movement, may impact downstream gene 253 
expression and plant height phenotype. The mechanisms underlying the discordance 254 
of results between SNP-GWAS and PAV-GWAS in this PH QTL were further 255 

investigated. We examined the genome structure landscape at the population level 256 
and examined the relationship between the 13 kb PAV and the nearby SNPs. The 257 
presence or absence of the 13 kb sequence strongly correlates with the plant height 258 

phenotype (Fig. 7A). However, the SNPs on both sides of the PAV did not associate 259 
with the plant height. Linkage disequilibrium (LD) analysis further demonstrated the 260 
PAV interval formed an LD block, while the PAV genotype did not correlate with the 261 

SNP phenotype (Fig. 7B).  262 

 263 

Discussion 264 

PSVCP provides an accurate and robust tool for pangenome analysis  265 

Many genomics studies include mapping sequencing data to reference genomes to 266 
identify genomic variation. However, these analyses suffer from bias due to the use 267 

of a single reference genome. Reference bias is especially problematic in the 268 
analysis of SVs, which is a major form of genomic variation in plants [29]. As an 269 
alternative, a pangenome can represent the genomic diversity of a species or 270 

population better than a single reference. Using a pangenome as a reference for 271 
mapping sequencing data supports accurate downstream analysis and avoids 272 
reference bias. 273 

Currently, the most advanced method for pangenome construction and analysis is 274 

the graph-based strategy, which maintains the position of variable genetic 275 
information for each accession [14-16]. However, the graph-based pangenome 276 
approach also leads to challenges. This strategy is still in the early development 277 

stage, and plants lack a standard approach for graph-based pangenome 278 
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construction and analysis. Furthermore, which are common in plants. Many 279 
pangenomic approaches stem from research on the human genome, which has 280 

much smaller genome variations between individuals than plant genomes. So graph-281 
based pangenomes sometimes may not be able to fully represent large structural 282 
variations [30]. Furthermore, since plants contain complex repeat regions, they 283 

require significant computational resources for graph-based pangenome construction, 284 
especially for crops with large genome sizes. There are still insufficient tools 285 
available for the analysis of graph-based pangenomes. For example, while 286 

pangenome mapping algorithms have been developed for mapping reads to 287 
sequence graphs [31], none have challenged the dominance of linear genome-based 288 
mapping tools.  289 

Because of the challenges in applying graph-based pangenomes, the linear 290 

pangenome is still useful for both functional genomic studies and breeding 291 
applications. In this study, we developed a new pipeline for constructing linear 292 
pangenomes (PSVCP) and aimed to overcome the bottleneck of other linear 293 

pangenome strategies. A major challenge for current linear pangenome construction 294 
strategies is the ability to accurately embed the newly identified PAV sequences into 295 
the linear reference. In several recent pangenome studies, including the 3,010 rice 296 

pangenome [12], the tomato pangenome [32] and Brassica napus pangenomes [4], 297 
novel sequences are placed as contigs that do not consider their genomic context. 298 
This limitation can limit further use of the pangenome in downstream gene mapping 299 

or functional validation of the candidate PAVs, since the nearby sequences may be 300 
important for the functional analysis of the PAVs. For example, a Pan-SV analysis in 301 
tomatoes revealed that the majority of gene-associated SVs are in cis-regulatory 302 

regions, and many are associated with subtle changes in expression [33]. To 303 
address this issue, PSVCP is designed to place novel sequences into the correct 304 
genome position, providing an accurate genetic map for functional genomic studies. 305 

The accuracy of the placement of the novel sequences by PSVCP was confirmed by 306 
successfully identifying the existence of the novel sequences and the sequence 307 
surrounding them by PCR amplification followed by sequencing. The advantage of 308 

our strategy was further demonstrated by GWAS analysis using PAV genotypes from 309 
our pangenome. Our PAV-GWAS successfully captured the casual structural 310 
variants of TGW and PH, while these variants are not available in the Nipponbare 311 

reference, or hard to characterize their biological meaning without the sequence 312 
information surrounding them. The pangenome constructed using PSVCP benefits 313 
from its linear format, which can directly integrate with currently available 314 

bioinformatics pipelines such as GATK [34] for genome variant discovery, and 315 
JBrowse [35] for genome visualization.  316 

 317 

PAVs provide insights into rice population structure.  318 

Most population structure studies are currently performed using SNPs [36], however, 319 
structural variants such as PAVs are increasingly used since they provide additional 320 

information about the population structure [4, 16, 32]. SV-based population structure 321 
studies are likely to become a tool for improving our understanding of the adaptation 322 
and evolution of species.  323 

The rice pangenome constructed in this study contains novel genome sequences 324 

and annotated genes from comprehensive comparative genomic analysis. Our 325 
results indicate that compared to SNPs, PAVs provided further insights into rice 326 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.15.496234doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496234
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

evolution when used to identify genetic differentiation regions using Fst and 327 
phylogenetic inferences. In most cases, we found that SNP and PAV-based 328 

population structure analyses shared a similar Fst value change. However, in some 329 
genetic regions, PAV-based analysis has significant different Fst values than SNP-330 
based results, providing higher resolution to differentiate the population structure. A 331 

1.6 Mb interval in chromosome 8 displayed a much higher Fst value in PAV-based 332 
analysis than SNP-based analysis between Japonica and Indica. Higher frequencies 333 
of novel sequence insertions were discovered, which may be due to transposon 334 

movement in this region. More haplotype diversity was observed using PAVs than 335 
SNPs, suggesting that SNPs may underestimate genetic differentiation in some 336 
highly diverse genomic regions. These results demonstrate that PAV genotypes in 337 

our pangenome can provide additional power and information in analyzing genomic 338 
divergence and evolution.  339 

Our results indicate that the majority of the newly inserted PAV sequences are 340 
transposable elements. Compared with SNP-based phylogeny, PAV-based 341 

phylogeny shows that some Indica accessions clustered with the Aus subpopulation, 342 
which is consistent with the TE-insertion phylogeny analysis using 3000 rice 343 
accessions [12]. This result also reflects the fact that Aus and Indica contain more 344 

common TE-insertions, since the divergence of the Indica/Aus lineages occurred 345 
more recently (~540,000 years ago) than the divergence of Japonica (~800,000 346 
years ago). Additionally, introgression is potentially detected between Indica and Aus 347 

subpopulations based on the PAV data, consistent with previous studies showing 348 
that Indica accessions contain Aus introgressions [37] and Indica and Aus show 349 
closer genetic affinity [38]. The phylogeny variations between SNP and PAV analysis 350 

are consistent with observations in other plants such as Arabidopsis [39], Amborella 351 
trichopoda [25], green millet Setaria viridis [40] and Brassica oleracea [4], showing 352 
that PAV or SV can provide additional information to characterize population 353 

structure that might associate with transposon movement during genome evolution, 354 
highlighting the value of using PAVs or SVs in addition to SNPs in assessing species 355 
evolution. 356 

 357 

PAV-based GWAS provides additional power to identify causal variants  358 

Most GWAS analysis uses SNPs identified from a single reference genome as 359 

markers to detect marker-trait associations. However, recent studies suggest that 360 
SVs, including PAVs, contribute to and explain more variation than SNPs for many 361 
traits [41]. Phenotypes associated with regions that are absent in the reference 362 

genome can only be mapped to a region in the LD block linked with the PAV. 363 
However, this association cannot be identified if the PAV haplotypes are not in LD 364 
with the SNPs surrounding them, which we observed in our results (Fig. 7A). 365 

Furthermore, using variation identified from a single reference in GWAS may cause 366 
bias, which weakens the ability of GWAS to identify associations. For example, a 367 
maize gene conferring resistance to sugarcane mosaic virus is present in the B73 368 

reference but not in the PH207 reference. Conducting GWAS using SNPs genotyped 369 
using the B73 reference can identify the gene, while the PH207 cannot [42]. Using 370 
PAVs identified from a pangenome can help resolve the above problems, and PAVs 371 

can complement SNP-based GWAS. For example, a recent study in Brassica napus 372 
shows that a PAV-based pangenome-wide association study can directly pinpoint 373 
the causal SVs for silique length, seed weight and flowering time [43].  374 
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In this study, PAVs are genotyped from the pangenome constructed by the PSVCP 375 
pipeline, and used for GWAS analysis of TGW and PH in an international rice panel. 376 

Both PAV-GWAS and SNP-GWAS methods can identify previous characterized 377 
QTLs, such as GW5 for TGW and sd1 for PH. Surprisingly, the peak PAV-GWAS 378 
signals are directly and accurately located in the functional PAVs, causing the 379 

phenotypic variations, while the most significant signal for SNP-GWAS can only 380 
identify the approximate location of the causal variants.  381 

Importantly, PAV-GWAS can identify new candidate causal variations that SNP-382 
GWAS cannot discover. In our study, a 13 kb PAV containing two retrotransposons 383 

was found to be strongly associated with plant height using PAV-GWAS, and this 384 
was not identified using SNP-GWAS. Transposon movements are important sources 385 
of phenotypic variants. A GWAS study in tomatoes based on TE insertion 386 

polymorphisms revealed that transposon movement was associated with leaf 387 
morphology and fruit colour [44]. Further investigation of the 13-kb rice PAV showed 388 
that it was 2 kb upstream from LOC_Os08g07400, whose expression was 389 

associated with the present and absence of the 13-kb sequence. These results 390 
suggest that retrotransposon movement in this locus may lead to phenotypic 391 
variation by affecting the promoter region of LOC_Os08g07400.  392 

To unravel why SNP-GWAS cannot identify this locus, we investigated the candidate 393 

variant region at a population level. Our results show that no SNPs were found in the 394 
13 kb PAV sequence, and SNPs located near the 13 kb PAV sequence show a poor 395 
correlation with the PAVs, with no association between SNPs and the plant height 396 

phenotype. TEs having a low LD with nearby SNPs were observed in other genomic 397 
studies in rice and tomato [45]. Akakpo et al. (2020) reported that TE-GWAS could 398 
identify a signal associated with rice grain width on chromosome 4 that was missing 399 

in SNP-GWAS [46]. Recent retrotransposon insertion may cause the low LD of SNPs 400 
by breaking previous linkage disequilibrium. However, further investigation is 401 
required to understand how they affect functional gene expression and phenotype 402 

variation. Our study demonstrates that a PAV-based pangenome-wide association 403 
analysis is a powerful approach to detect and dissect the genetic variants causing 404 
phenotypic variation of agronomical traits.  405 

 406 

Conclusions 407 

A new strategy and pipeline to construct a linear pangenome by whole genome 408 

comparison were developed in the present study. This strategy supported the 409 
construction of a linear pangenome that can solve the problems of preserving the 410 
location information of SVs and facilitates downstream pangenomic analysis. A rice 411 

pangenome was constructed using 12 complete genomes spanning all rice 412 
subpopulations. Downstream population analysis demonstrated that using the 413 
pangenome provided insights into the rice population structure and evolution, which 414 

are not available by analysis using SNPs from a single reference. GWAS analysis 415 
using the pangenome reference revealed a significant improvement in power, 416 
especially in characterizing causal PAVs. The new pangenome construction pipeline 417 

and the rice pangenome provide a novel framework for future pangenomic studies in 418 
rice and other plants.  419 

  420 
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Methods 421 

Plant materials  422 

Seed for 413 accessions was sown on July 28th, 2020, at Guangzhou, Guangdong, 423 

China. High-molecular-weight genomic DNA was extracted from 30-day-old leaves 424 
following a standard CTAB (hexadecyltrimethylammonium bromide) protocol. 425 
Sequencing was performed on the Illumina NovaSeq6000 platform (BerryGenomics, 426 

China). A fastx_toolkit (http://hannonlab.cshl.edu/fastx_toolkit) was used to remove 427 
adaptor and low-quality reads. All reads have been deposited in the NCBI sequence 428 
read archive (BioProject accession PRJNA820969). Plant height and thousand grain 429 

weight were assessed at the mature growth stage with three biological replicates.   430 

 431 

Construction of the pangenome 432 

Data for twelve assembled genomes were downloaded from the Rice Resource 433 
Center (https://ricerc.sicau.edu.cn/) [10], representing MSU, Lemont, NamRoo, LJ, 434 
CN1, R498, TM, Tumba, FH838, N22, Basmati1 and CG14. We employed an 435 

iterative strategy to construct the pangenome. First, we carried out pairwise 436 
collinearity comparison between NIP and Lemont using MUMmer 4.0.0 [47], with 437 
parameters: ‘‘--maxgap 500 --mincluster 1000 --diagdiff 20”. NIP was named as ref0. 438 

We used Assemblytics to detect and analyze variants from MUMmer. SVs were 439 
identified by comparison of the first genome (Lemont) with the Nipponbare reference 440 
genome assembly (ref0). The insertions larger than 50 bp were identified and 441 

incorporated to generate the new reference genome (ref1). The ref1 genome was 442 
then further compared with each genome iteratively until all genomes were 443 
incorporated into the pangenome (Additional file 2: Table S1). 444 

 445 

Short read data processing for PAV-GWAS 446 

Paired-end short-read sequencing data for each accession was aligned to the 447 

pangenome using BWA-MEM [48]. Mapping results were sorted using Picard and 448 
filtered using SAMtools [49], retaining reads with a mapping quality over 20. We 449 
used the SAMtools with the parameters: ‘‘-F 4 -F 256” to remove reads that did not 450 

map to the pangenome or mapped to the pangenome repeatedly. Using the 451 
pangenome as the reference genome, the coverage of each accession was detected 452 
in every 20 bp region by Mosdepth [50] with the parameters: “-b 20”. Two adjacent 453 

20 bp regions were merged if adjacent sequences had coverage of >5 reads.  454 

 455 

PAV identification 456 

PAVs were called based on the coverage for each accession. We combined all PAV 457 
information by row into a map, displayed as a matrix (Fig 1C) with accession names 458 
as rows. Segments were defined as PAV regions, named by the adjacent left 459 

breakpoint position, and the population PAV genotype matrix was filtered by minor 460 
allele frequency (MAF) >0.05. 461 

 462 

Gene PAV detection 463 
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A gene was considered missing when the horizontal coverage across the CDS is 464 
less than 95% and the vertical coverage less than two, as used in the 3K-RG study 465 

[12] using Mosdepth v0.2.6 [50]. A PAV matrix was generated showing the presence 466 
or absence of each gene for each accession. The statistical significance of gene 467 
frequency changes was calculated using Fisher's exact test. P-values were adjusted 468 

for multiple comparisons using the Bonferroni method as implemented in p.adjust 469 
from R v3.5.0. Genes with an adjusted p-value<0.001 and difference frequency 470 

between groups ≥10%[32] were defined as significant.  471 

 472 

Short read data processing for SNP-GWAS 473 

Short read resequencing data were aligned to the NIP reference genome using 474 

BWA-MEM. The results were sorted using Picard and filtered using SAMtools, 475 
retaining reads with a mapping quality over 20. Nucleotide variants for each 476 
accession were detected using HaplotypeCaller in GATK (v3.8-1-0) [34] with the 477 

default parameters. Population nucleotide variants were called using 478 
CombineGVCFs and GenotypeGVCFs tool in GATK. Finally, we used the 479 
SelectVariants and VariantFiltration tool in GATK to filter the genotype of the 480 

population. 481 

 482 

GWAS analysis  483 

To construct the PAV genotype map for GWAS, we used “A” representing “Absent” 484 
and “C” to represent “Present” in the HapMap genotype file. PAVs and SNPs were 485 
selected for GWAS analysis based on the criteria of missing data <15% and minor 486 

allele frequency of >0.05. GWAS was performed using a mixed linear model (MLM) 487 
with kinship matrix and principal component analysis in GAPIT version 2 [51]. The 488 
significance cutoff was defined as the threshold of –log10(p) <5. Manhattan plots 489 

were produced using CMplot package (https://github.com/YinLiLin/R-CMplot) in R 490 
v3.5.0.  491 

 492 

GO analysis 493 

Functional annotation was performed using Blast2GO v2.5 [52]. Genes were aligned 494 
to the proteins in the Viridiplantae database using BLASTP [53] (E-values <1 × 10-5). 495 

Gene ontology (GO) analysis was conducted using topGO [54] and Fisher's exact 496 
test with ‘elim’ was used to correct for multiple comparisons. 497 

 498 

Population structure and genotype analysis 499 

Filtered PAV and SNP data were used for the population structure study. SNP-based 500 
and PAV-based phylogenetic trees of 413 rice accessions were constructed using 501 

IQ-tree using a maximum likelihood method (with the alrt 1000 -bb 1000), 502 
respectively. SNP-based and PAV-based principal component analyses were 503 
performed with GCTA (Genome-wide Complex Trait Analysis) v1.93.2 [55]. SNP-504 

based and PAV-based Fixation index (Fst) values were calculated using a 100 kb 505 
sliding window (with a 10 kb step for FST values calculation) using VCFtools [56]. 506 

 507 
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TE analysis  508 

A de novo transposable element (TE) library was generated for the rice pangenome 509 
using EDTA v1. Using BLAST+ v 2.2.3 [53], the representative retrotransposon TE 510 

families in Carpentier et al. (2019) [22] were used to search the rice pangenome 511 
library to identify the whole genome-wide TEs (with >85% sequence identity and e-512 
value < 10-5) .  513 
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Fig. 1 Scheme diagram of PSVCP pipeline. A construction 

of linearized pan-genome.  B PAV was re-calling by 

sequencing coverage calculation. C. population PAV 

genotype calling

A B

C
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Fig. 2 Linear pan-genome constructed by 12 rice 

accession

a. New genes transported with PAV

b. Genes in MSU interrupted by PAV

c. Pan genes density

d. PAV density

e. PAV from CG14.fa; f. PAV from Basmati1.fa; g. PAV 

from N22.fa; h. PAV from FH838.fa; i. PAV from 

Tumba.fa; j. PAV from TM.fa; k. PAV from R498.fa; l. 

PAV from CN1.fa; m. PAV from LJ.fa; n. PAV from 

NamRoo.fa; o. PAV from Lemont.fa
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Fig. 3 Gene number and frequency analysis among 

subpopulation.

A Violin plots showing gene abundance for the Aus, 

Indica and Japonica significance differences between 

groups are indicated (***p < .005 ). B Comparison of 

gene frequency between Indica and Japonica. Colors

indicate p-value

A B

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.15.496234doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496234
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 4 Population structure analysis based on PAV and SNP

A haplotype pattern and Fst analysis by PAV and SNP datga in 

7.2-9.2 Mb of chromosome 8 in the rice pangenome. B PCA 

plot generated by PAV and SNP data

A

B
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Fig. 5 GWAS of thousand grain weight in 413 accessions 

population. A,B Manhattan plots for thousand grain weight 

analysed by SNP-GWAS and PAV-GWAS. C Haplotype 

analysis in GW5 promoter region
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Fig. 6 GWAS of plant height in 413 accessions population. 

A,B Manhattan plots for plant height analysed by SNP-

GWAS and PAV-GWAS. C Expression analysis of 

LOC_Os08g07400 in the accessions with absence and 

presence of 13-kb. The blue line is the mean value.

Chr8
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Fig. 7 The relationship of PAVs and SNPs underlying plant 

height QTL in Chromosome 8. A Genotype of PAVs and 

SNPs display. In the PAV region, red bar means present of 

the PAV, yellow bar represents absence of the PAV. The five-

pointed star indicates the position of the peak association 

PAV. B LD heatmap shows the regions surrounding the 

strong peaks of the PAV.
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