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1 A pangenome analysis pipeline (PSVCP) provides insights into rice functional
gene identification
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18 Abstract:

19 Background: A pangenome aims to capture the complete genetic diversity within a
20 species and reduce bias in genetic analysis inherent in using a single reference
21 genome. However, the current linear format of most plant pangenomes limits the
22 presentation of position information for novel sequences. Graph pangenomes have
23 been developed to overcome this limitation. However, there is a lack of
24  bioinformatics analysis tools for graph format genomes.

25 Results: To overcome this problem, we have developed a novel pangenome
26 construction strategy and a downstream pangenome analysis pipeline that captures
27  position information while maintaining a linearized layout. We applied this strategy to
28  construct a high-quality rice pangenome using 12 representative rice genomes and
29 analyze an international rice panel with 413 diverse accessions using the
30 pangenome reference. Our results provide insights into rice population structure and
31 genomic diversity. Applying the pangenome for PAV-based GWAS analysis can
32  identify causal structural variations for rice grain weight and plant height, while SNP-
33 based GWAS can only identify approximate genomic locations. Additionally, a new
34 locus (gPH8-1) was found to be associated with plant height on chromosome 8 that
35 could not be detected using the SNP-based GWAS.

36 Conclusions: Our results demonstrate that the pangenome constructed by our
37 pipeline combined with PAV-based GWAS can provide additional power for genomic
38 and genetic analysis. The pangenome constructed in this study and associated
39 genome sequence data provide valuable genomic resources for future rice crop
40 improvement.

41  Keywords: Pangenome, Presence/absence variation, Genomic diversity, PAV-based
42  GWAS
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Background

Rice (Oryza sativa L) is one of the most important staple crops, feeding nearly half of
the world's population. As this population expands to 10 billion people, there is an
urgent need to increase the productivity of crops, while facing the impact of climate
change on agricultural productivity. The application of genomics assisted breeding is
seen as one of the best opportunities to increase crop productivity, with the
exploitation of diversity stored in germplasm collections as a major resource for crop
improvement [1]. With rapid advances in DNA sequencing technologies, genomic
diversity within rice germplasm has been characterized by resequencing thousands
of individuals and comparing the resulting data with reference genome assemblies.
However, it is now understood that a single reference genome does not represent
the genomic diversity of a species due to significant sequence presence/absence
variation (PAV) between individuals [2]. To capture the genomic variations in a
population, pangenome assemblies have been constructed. Pangenomes represent
the gene content of a species rather than a single individual [3], and using a
pangenome as a reference, structure variations (SVs) can be more easily and
accurately genotyped by low cost short-read sequencing technologies, facilitating
efficiently characterisation of genomic diversity within a species.

Pangenomes have now been constructed and analyzed for several crop species,
including wheat, Brassicas, barley, banana and pigeonpea [4-8]. Several
pangenomes have been constructed in rice, and pangenomic analyses have
identified genome sequences that are absent in the Nipponbare reference, the most
commonly used reference in rice genomic studies [9-11]. For example, a study using
3,010 rice accessions identified 268 Mb of new sequences, with 12,465 new genes,
and 19,721 dispensable genes compared to the Nipponbare reference genome [12].

Recent advances in pangenomics have led to the construction of graph-based
pangenomes [13, 14] that code genetic variants as nodes and edges, and preserve
the contiguity of the sequence and structural variation between individuals [15].
Graph-based pangenome approaches are relatively new, but have been applied to
important crops, including soybean, bread wheat, and rice [10, 16-18]. Though graph
based pangenomes have advantages, they also suffer limitations; for example, as
most genome analysis tools were developed for linear sequences, scalable software
and mature data structures suitable for graph-based pangenome analysis are still
limited. A linear format pangenome with a fixed order coordinate system is still
valuable for genomic studies, however, they struggle to represent the position of SVs
and so potentially lose valuable information.

In this study, we developed a pangenome construction strategy that can preserve SV
position, embedding them into a linear pangenome. We also developed a suite of
tools for mapping short sequencing reads to this pangenome for PAV genotyping
that can recover the genomic position of sequence variations. We applied this
pipeline to construct a rice pangenome using 12 diverse accessions representing
major subpopulations of Asian rice and identify PAVs from an international rice mini
core panel of 413 accessions [19]. This revealed extensive genomic diversity among
rice germplasm, and PAV-based population analysis provided insights into
population structure and successfully identified causal PAVs that impact grain weight
and plant height. This study presents a new tool for pangenome analysis and
provides valuable genomic resources for rice functional genomics, demonstrating the
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90 advantages of using a coordinate linked linear pangenome to identify PAVs for
91 functional analysis.

92
93 Results

94 A novel pangenome construction and PAV analysis pipeline

95 In this study, we developed a pangenome construction and PAV genotype calling
96 pipeline (PSVCP) (Additional file 1: Fig. S1). The pipeline includes three main steps,
97 1) lIterative alignment between genomes to identify novel segments, then the
98 integration of these sequences into the reference genome to construct a pangenome
99 (Fig. 1A). 2) Mapping of short-read resequencing data to the pangenome to detect
100 PAVs based on read coverage (Fig. 1B). 3) Calling PAV genotypes at the population
101 level based PAVs from all accessions’ (Fig. 1C).

102  We initially selected 12 assembled genome sequences of cultivated rice, including
103 11 Asian cultivated rice (O. sativa) accessions selected from 33 representative
104 accessions based on their subpopulation [10] and one African cultivated rice (Oryza
105 glaberrima) (Additional file 2: Table S1) for pangenome construction using
106  Nipponbare as the primary reference [20]. A total of 24,585 novel sequences were
107 identified and inserted into the Nipponbare reference. The mean, median, maximum
108 and the sum of insertion lengths are 2,607 bp, 338bp, 96,797 bp, and 64.10 Mbp
109 respectively (Additional file 1: Fig. S2A, B). A subset of these sequences was
110 validated by amplification and sequencing (Additional file 1: Fig. S3).

111 We analyzed the distribution of these additional sequences and found that 43.1%
112 overlapped +2 kb upstream/downstream of genes, while 35.7% overlapped with
113  genic regions (Additional file 1: Fig. S2C). Altogether, 6,797 sequences were
114  inserted into 5,925 Nipponbare genes (Fig. 2). A total of 1,939 new genes were de
115 novo annotated, and functional analysis suggests that they are enriched with terms
116  associated with photosynthesis, the generation of precursor metabolites and energy
117  (Additional file 2: Table S2). Modelling suggests that the initial 12 rice accessions
118  were sufficient to capture the majority of sequence diversity within rice (Additional file
119  1: Fig. S4).

120 The completeness of the pangenome was evaluated using Benchmarking Universal
121 Single-Copy Orthologs (BUSCO) [21] (Additional file 2: Table S3). Of the 1614
122 single-copy orthologs identified in embryophytes, 98.8% were complete in our
123 assembly, which is similar to or a little higher than the 3K rice pangenome (98.5%)
124  [12] (Additional file 2: Table S3). We mapped resequencing data for 413 rice
125 accessions collected from a diverse international panel (RPD2) [19] to the
126 pangenome and the Nipponbare genome respectively. The results showed the
127 average mapping rate to the pangenome was 97.84%, which is higher than the
128 mapping rate to the Nipponbare reference (93.05%) (Additional file 1: Fig. S5A).
129 These results demonstrate that our pangenome captured more diversity than the
130  single Nipponbare reference.

131
132 Population-wide TE and PAV analysis in an international diverse rice panel

133 lllumina whole-genome sequencing data was generated for 413 accessions
134  representing an international rice collection from 96 countries [19]. The reads were
135 mapped to the pangenome and PAVs were genotyped using the PSVCP pipeline.
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136  This identified an average of 99,239 PAVs (>50 bp) per accession, ranging from
137 38,052 to 213,931. Around 85% of the inserted sequences were transposable
138 elements, with 40% annotated as Gypsy LTR-retrotransposons and 28.6% as
139  Helitron DNA transposons (Additional file 2: Table S4). We examined the diversity of
140 representative retrotransposon families across all 413 accessions [22]. In total,
141 66,441 variable retrotransposon sequences were identified, with 29,281 (44%)
142 absent from the Nipponbare reference assembly.

143  Retrotransposon abundance ranged from 12 (Rn60/Gypsy) to 15,599 copies (Rire3
144  /Gypsy). Notably, half of the copies in the retrotransposon TE families Rn60, Rire3,
145 Fam81l-fam82, Rire2, Hopi, Fam93 orsl4, Fam51 osr4 and Tosl7 were not
146 identified in the Nipponbare reference. The majority of retrotransposons were from
147  Hopi, Fam81-fam82 and Rire3 TE families, which belong to the Gypsy family, and
148  most of these originate from Indica accessions, suggesting an expansion of Gypsy
149 elements in Indica compared to Japonica [23, 24]. TE families Fam93_ors14, Hopi
150 and Fam81-fam82 show significantly higher frequency in Indica than Japonica and
151  Aus accessions, while the Rire3 family is less abundant in Aus varieties compared to
152 the other populations (Additional file 2: Table S5). This suggests ongoing
153  transposition during domestication and subsequent breeding.

154  We identified 11,617 (28.9%) dispensable genes across the 413 rice accessions
155  (Additional file 2: Table S6). Annotation suggests that these are enriched for
156  functions associated with protein phosphorylation, telomere maintenance, DNA
157  duplex unwinding, photosynthesis, defence response and pathogenesis (Additional
158 file 2: Table S7), which is similar to the findings in other crop pangenome studies [25,
159 26]. We observed a significant difference in average gene numbers between
160 Japonica, Indica and Aus (Fig. 3A). Japonica contains the most genes (48,884 *
161  472), with fewer genes in Indica (47,455 + 537) and Aus (47,441 = 405). The
162  difference in average gene number hides a complex pattern of increases and
163  decreases in the frequency of specific genes (Fig. 3B). A total of 978 genes show
164 increased frequency in Japonica, while 2,986 genes show decreased frequency.
165 Genes showing increased frequency are enriched in functions associated with DNA
166 integration (Additional file 2: Table S8), while genes showing decreased frequency
167 are annotated with disease resistance terms, including pathogenesis and defence
168 response (Additional file 2: Table S9). Among the 2,986 genes with lower frequency
169 in Indica, 116 (3.8%) genes are absent from the Nipponbare reference. In contrast,
170 of the 978 genes exhibiting higher frequency in Indica, 513 (52.5%) genes are
171 absent from the Nipponbare reference, with 482 derived from the Indica rice
172 genomes. This reflects differences in gene content between sub-species at the
173 population level.

174
175 Population structure analysis based on pangenome PAVs

176  We performed population genetic analysis in the international panel using PAVs and
177 compared the results with SNP-based analysis. The mean fixation index (Fst)
178  between populations estimated using the SNP data (Japonica-Indica: 0.476 +0.207,
179  Japonica-Aus: 0.525 +0.205 and Indica-Aus: 0.304 +0.158) is higher than calculated
180 using PAV data (Japonica-Indica: 0.416 +0.183, Japonica-Aus: 0.430 +0.184 and
181 India-Aus: 0.204 +0.128) (Additional file 2: Table S10). Fst analysis results show
182  similar distribution trends between PAVs and SNPs on the whole genome scale
183  (Additional file 1: Fig. S6). SNP-based analysis shared Fst differentiation regions
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184  with PAV-based analysis (within the top 1% Fst windows) between populations. For
185 example, both SNP and PAV results share 33 out of 54 of the Japonica-Indica Fst
186 differentiation regions, which contained 376 genes. We analysed 15 well-studied
187 domestication and improvement associated genes to compare the Fst detection
188  between SNP and PAVs. Among the 15 genes, three were within the top 10% of
189  FST differentiation regions among Indica, Japonica and Aus subpopulations using
190 SNP and PAV data (Additional file 2: Table S11). We also detected regions
191  displaying significant differences between Fst values based on PAVs and SNPs. To
192 investigate this further, we selected a prominent region at 7.2-9.2 Mbp of
193 chromosome 8 where we observed a much higher Fst value between Indica and
194 Japonica calculated by PAVs than SNPs (Fig. 4A). Further analysis revealed that
195 PAVs could detect more genetic diversity than SNPs in this region (Fig. 4A). The
196 region showed a higher ratio of novel sequences than the Nipponbare reference.
197  The length of this region is about 1,600 kb in Nipponbare, while in the pangenome,
198 theinterval is 2 Mb, with 271 annotated genes, of which 162 are transposons.

199 PAV-based population structure shows similar clustering to SNP-based phylogeny,
200 with 413 accessions clustered into three main subpopulations. However, the PAV-
201 based phylogeny does not cluster individuals completely according to
202  subpopulations, and the PAV-based PCA suggests a greater variation between rice
203 accessions than the SNP-based analyses (Fig. 4B). For example, accessions in
204 Indica and Aus subpopulations were grouped into two clusters compared with the
205 SNP-based PCA result, and some accessions in the Indica subpopulation clustered
206  with the Aus subpopulation. A similar pattern was observed in the PAV-based
207 phylogeny with 73 Indica accessions clustering with the Aus subpopulation
208  (Additional file 1: Fig. S7).

209
210 Using pangenome to perform PAV-based GWAS

211  As a pangenome permits the genotyping of a greater amount of genetic diversity
212 than a single reference, it supports more powerful genetic analysis, capturing
213  missing heritability. To explore this additional potential, particularly for identifying
214  functional PAVs underlying QTLs, we conducted GWAS for two important agronomic
215 traits of rice, thousand grain weight (TGW) and plant height (PH), using SNPs
216  genotyped from Nipponbare and PAVs genotyped across the pangenome.

217  For TGW, the SNP-GWAS identified 354 significant associations (Additional file 1:
218  Fig. S8A), with the most significant located in Nip Chr5: 5,375,764 bp (pangenome
219  Chr5: 6,017,339 bp), 9,063 bp away from GW5, a known functional gene controlling
220 rice grain weight [26]. However, none of the associated SNPs were the causal
221  variations of GWS5, which are two PAVs (950-bp and 1,212-bp) in the promoter
222 region, controlling the grain weight phenotype [27]. Our pangenome can capture
223 these PAVs, which are absent in the Nipponbare reference genome. Using the
224  pangenome, PAV-GWAS narrowed down the association signal in the same interval
225 as SNP-GWAS (Fig. 5A; Additional file 1: S8A) and also detected the most
226  significant associated signal as the causal variations of GW5 (Fig. 5B, C). We further
227 analyzed the PAV genotypes and identified three haplotypes. The accessions with
228 Hapl (with both 1,212 bp and 950 bp PAVs) showed significantly lower grain weight
229 than accessions with the other two haplotypes (Hap2, Hap3) with p-values (two-
230 tailed student’s t-test) of 3X10° and 3X107° respectively (Fig. 5C). This result is in
231 accord with a previous study that demonstrated that the 950 bp deletion decreased
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232  the expression of the functional gene (qSW5), while the 1,212 bp deletion disrupts
233  the coding region. Both deletions will lead to grain width and weight phenotype
234  variations [26].

235 SNP-GWAS identified 37 SNPs associated with plant height (Additional file 1. Fig.
236  S8B). Similar to the TGW GWAS result, both SNPs and PAV-GWAS were able to
237 locate previously characterized locus harboring the "Green Revolution Gene" (sdl)
238 [28]. The most significant PAV is located inside the sd1 gene, a previously reported
239 causal variation determining plant height in rice (Additional file 1: Fig. S9) [28].
240  Statistical analysis shows that this PAV is significantly correlated with the PH
241  phenotype (two-tailed student’s t-test, p-value: 3.3 X 10%°), further validating the
242  accuracy of PAV-GWAS. Furthermore, we also identified a novel locus (qPHS8-1)
243  controlling PH in rice on chromosome 8 by PAV-GWAS (interval: 4,660,000-
244 4,860,000 bp in the pangenome), that was not identified by SNP-GWAS (Fig. 6). The
245  most significant PAV was a 13 kb sequence containing two retrotransposon genes
246 (LOC_0s08g07410, LOC_Os08g07420) located 1 kb  upstream  of
247  LOC_0s08g07400. This sequence was present in 288 out of the 413 accessions,
248  and the accessions without the 13 kb sequence had significantly greater plant height
249  (two-tailed student’s t-test, p-value: 5.7 X 102°) than those had the 13 kb sequence.
250 Expression analysis shows that the presence or absence of this 13 kb sequence is
251 significantly correlated with the expression level of LOC_0s08g07400, which is
252 located 2 kb downstream from the PAV (Fig. 6C). These results suggest that this
253  PAV, caused by retrotransposon movement, may impact downstream gene
254  expression and plant height phenotype. The mechanisms underlying the discordance
255 of results between SNP-GWAS and PAV-GWAS in this PH QTL were further
256 investigated. We examined the genome structure landscape at the population level
257 and examined the relationship between the 13 kb PAV and the nearby SNPs. The
258  presence or absence of the 13 kb sequence strongly correlates with the plant height
259  phenotype (Fig. 7A). However, the SNPs on both sides of the PAV did not associate
260 with the plant height. Linkage disequilibrium (LD) analysis further demonstrated the
261  PAV interval formed an LD block, while the PAV genotype did not correlate with the
262  SNP phenotype (Fig. 7B).

263
264 Discussion
265 PSVCP provides an accurate and robust tool for pangenome analysis

266  Many genomics studies include mapping sequencing data to reference genomes to
267 identify genomic variation. However, these analyses suffer from bias due to the use
268 of a single reference genome. Reference bias is especially problematic in the
269 analysis of SVs, which is a major form of genomic variation in plants [29]. As an
270 alternative, a pangenome can represent the genomic diversity of a species or
271  population better than a single reference. Using a pangenome as a reference for
272 mapping sequencing data supports accurate downstream analysis and avoids
273 reference bias.

274  Currently, the most advanced method for pangenome construction and analysis is
275 the graph-based strategy, which maintains the position of variable genetic
276 information for each accession [14-16]. However, the graph-based pangenome
277 approach also leads to challenges. This strategy is still in the early development
278 stage, and plants lack a standard approach for graph-based pangenome
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279  construction and analysis. Furthermore, which are common in plants. Many
280 pangenomic approaches stem from research on the human genome, which has
281  much smaller genome variations between individuals than plant genomes. So graph-
282 based pangenomes sometimes may not be able to fully represent large structural
283 variations [30]. Furthermore, since plants contain complex repeat regions, they
284  require significant computational resources for graph-based pangenome construction,
285 especially for crops with large genome sizes. There are still insufficient tools
286 available for the analysis of graph-based pangenomes. For example, while
287 pangenome mapping algorithms have been developed for mapping reads to
288  sequence graphs [31], none have challenged the dominance of linear genome-based
289  mapping tools.

290 Because of the challenges in applying graph-based pangenomes, the linear
291 pangenome is still useful for both functional genomic studies and breeding
292  applications. In this study, we developed a new pipeline for constructing linear
293 pangenomes (PSVCP) and aimed to overcome the bottleneck of other linear
294  pangenome strategies. A major challenge for current linear pangenome construction
295 strategies is the ability to accurately embed the newly identified PAV sequences into
296 the linear reference. In several recent pangenome studies, including the 3,010 rice
297 pangenome [12], the tomato pangenome [32] and Brassica napus pangenomes [4],
298 novel sequences are placed as contigs that do not consider their genomic context.
299  This limitation can limit further use of the pangenome in downstream gene mapping
300 or functional validation of the candidate PAVs, since the nearby sequences may be
301 important for the functional analysis of the PAVs. For example, a Pan-SV analysis in
302 tomatoes revealed that the majority of gene-associated SVs are in cis-regulatory
303 regions, and many are associated with subtle changes in expression [33]. To
304 address this issue, PSVCP is designed to place novel sequences into the correct
305 genome position, providing an accurate genetic map for functional genomic studies.
306 The accuracy of the placement of the novel sequences by PSVCP was confirmed by
307 successfully identifying the existence of the novel sequences and the sequence
308 surrounding them by PCR amplification followed by sequencing. The advantage of
309 our strategy was further demonstrated by GWAS analysis using PAV genotypes from
310 our pangenome. Our PAV-GWAS successfully captured the casual structural
311 variants of TGW and PH, while these variants are not available in the Nipponbare
312 reference, or hard to characterize their biological meaning without the sequence
313 information surrounding them. The pangenome constructed using PSVCP benefits
314 from its linear format, which can directly integrate with currently available
315 bioinformatics pipelines such as GATK [34] for genome variant discovery, and
316  JBrowse [35] for genome visualization.

317
318 PAVs provide insights into rice population structure.

319  Most population structure studies are currently performed using SNPs [36], however,
320 structural variants such as PAVs are increasingly used since they provide additional
321 information about the population structure [4, 16, 32]. SV-based population structure
322 studies are likely to become a tool for improving our understanding of the adaptation
323  and evolution of species.

324 The rice pangenome constructed in this study contains novel genome sequences
325 and annotated genes from comprehensive comparative genomic analysis. Our
326 results indicate that compared to SNPs, PAVs provided further insights into rice
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327 evolution when used to identify genetic differentiation regions using Fst and
328 phylogenetic inferences. In most cases, we found that SNP and PAV-based
329 population structure analyses shared a similar Fst value change. However, in some
330 genetic regions, PAV-based analysis has significant different Fst values than SNP-
331 based results, providing higher resolution to differentiate the population structure. A
332 1.6 Mb interval in chromosome 8 displayed a much higher Fst value in PAV-based
333 analysis than SNP-based analysis between Japonica and Indica. Higher frequencies
334 of novel sequence insertions were discovered, which may be due to transposon
335 movement in this region. More haplotype diversity was observed using PAVs than
336 SNPs, suggesting that SNPs may underestimate genetic differentiation in some
337  highly diverse genomic regions. These results demonstrate that PAV genotypes in
338 our pangenome can provide additional power and information in analyzing genomic
339 divergence and evolution.

340 Our results indicate that the majority of the newly inserted PAV sequences are
341 transposable elements. Compared with SNP-based phylogeny, PAV-based
342  phylogeny shows that some Indica accessions clustered with the Aus subpopulation,
343 which is consistent with the TE-insertion phylogeny analysis using 3000 rice
344 accessions [12]. This result also reflects the fact that Aus and Indica contain more
345 common TE-insertions, since the divergence of the Indica/Aus lineages occurred
346 more recently (~540,000 years ago) than the divergence of Japonica (~800,000
347 years ago). Additionally, introgression is potentially detected between Indica and Aus
348 subpopulations based on the PAV data, consistent with previous studies showing
349 that Indica accessions contain Aus introgressions [37] and Indica and Aus show
350 closer genetic affinity [38]. The phylogeny variations between SNP and PAV analysis
351 are consistent with observations in other plants such as Arabidopsis [39], Amborella
352 trichopoda [25], green millet Setaria viridis [40] and Brassica oleracea [4], showing
353 that PAV or SV can provide additional information to characterize population
354  structure that might associate with transposon movement during genome evolution,
355 highlighting the value of using PAVs or SVs in addition to SNPs in assessing species
356  evolution.

357
358 PAV-based GWAS provides additional power to identify causal variants

359 Most GWAS analysis uses SNPs identified from a single reference genome as
360 markers to detect marker-trait associations. However, recent studies suggest that
361 SVs, including PAVs, contribute to and explain more variation than SNPs for many
362 traits [41]. Phenotypes associated with regions that are absent in the reference
363 genome can only be mapped to a region in the LD block linked with the PAV.
364 However, this association cannot be identified if the PAV haplotypes are not in LD
365 with the SNPs surrounding them, which we observed in our results (Fig. 7A).
366  Furthermore, using variation identified from a single reference in GWAS may cause
367 bias, which weakens the ability of GWAS to identify associations. For example, a
368 maize gene conferring resistance to sugarcane mosaic virus is present in the B73
369 reference but not in the PH207 reference. Conducting GWAS using SNPs genotyped
370 using the B73 reference can identify the gene, while the PH207 cannot [42]. Using
371 PAVs identified from a pangenome can help resolve the above problems, and PAVs
372 can complement SNP-based GWAS. For example, a recent study in Brassica napus
373 shows that a PAV-based pangenome-wide association study can directly pinpoint
374 the causal SVs for silique length, seed weight and flowering time [43].
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375 In this study, PAVs are genotyped from the pangenome constructed by the PSVCP
376  pipeline, and used for GWAS analysis of TGW and PH in an international rice panel.
377 Both PAV-GWAS and SNP-GWAS methods can identify previous characterized
378 QTLs, such as GW5 for TGW and sd1 for PH. Surprisingly, the peak PAV-GWAS
379 signals are directly and accurately located in the functional PAVs, causing the
380 phenotypic variations, while the most significant signal for SNP-GWAS can only
381 identify the approximate location of the causal variants.

382 Importantly, PAV-GWAS can identify new candidate causal variations that SNP-
383  GWAS cannot discover. In our study, a 13 kb PAV containing two retrotransposons
384 was found to be strongly associated with plant height using PAV-GWAS, and this
385 was not identified using SNP-GWAS. Transposon movements are important sources
386 of phenotypic variants. A GWAS study in tomatoes based on TE insertion
387 polymorphisms revealed that transposon movement was associated with leaf
388  morphology and fruit colour [44]. Further investigation of the 13-kb rice PAV showed
389 that it was 2 kb upstream from LOC_0Os08g07400, whose expression was
390 associated with the present and absence of the 13-kb sequence. These results
391 suggest that retrotransposon movement in this locus may lead to phenotypic
392 variation by affecting the promoter region of LOC_0s08g07400.

393  To unravel why SNP-GWAS cannot identify this locus, we investigated the candidate
394 variant region at a population level. Our results show that no SNPs were found in the
395 13 kb PAV sequence, and SNPs located near the 13 kb PAV sequence show a poor
396 correlation with the PAVs, with no association between SNPs and the plant height
397 phenotype. TEs having a low LD with nearby SNPs were observed in other genomic
398 studies in rice and tomato [45]. Akakpo et al. (2020) reported that TE-GWAS could
399 identify a signal associated with rice grain width on chromosome 4 that was missing
400 in SNP-GWAS [46]. Recent retrotransposon insertion may cause the low LD of SNPs
401 by breaking previous linkage disequilibrium. However, further investigation is
402 required to understand how they affect functional gene expression and phenotype
403 variation. Our study demonstrates that a PAV-based pangenome-wide association
404 analysis is a powerful approach to detect and dissect the genetic variants causing
405 phenotypic variation of agronomical traits.

406
407 Conclusions

408 A new strategy and pipeline to construct a linear pangenome by whole genome
409 comparison were developed in the present study. This strategy supported the
410 construction of a linear pangenome that can solve the problems of preserving the
411 location information of SVs and facilitates downstream pangenomic analysis. A rice
412 pangenome was constructed using 12 complete genomes spanning all rice
413  subpopulations. Downstream population analysis demonstrated that using the
414  pangenome provided insights into the rice population structure and evolution, which
415 are not available by analysis using SNPs from a single reference. GWAS analysis
416 using the pangenome reference revealed a significant improvement in power,
417  especially in characterizing causal PAVs. The new pangenome construction pipeline
418 and the rice pangenome provide a novel framework for future pangenomic studies in
419 rice and other plants.

420
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421 Methods
422  Plant materials

423  Seed for 413 accessions was sown on July 28th, 2020, at Guangzhou, Guangdong,
424  China. High-molecular-weight genomic DNA was extracted from 30-day-old leaves
425 following a standard CTAB (hexadecyltrimethylammonium bromide) protocol.
426  Sequencing was performed on the Illumina NovaSeq6000 platform (BerryGenomics,
427 China). A fastx_toolkit (http://hannonlab.cshl.edu/fastx_toolkit) was used to remove
428 adaptor and low-quality reads. All reads have been deposited in the NCBI sequence
429 read archive (BioProject accession PRINA820969). Plant height and thousand grain
430 weight were assessed at the mature growth stage with three biological replicates.

431
432  Construction of the pangenome

433 Data for twelve assembled genomes were downloaded from the Rice Resource
434  Center (https://ricerc.sicau.edu.cn/) [10], representing MSU, Lemont, NamRoo, LJ,
435 CN1, R498, TM, Tumba, FH838, N22, Basmatil and CG14. We employed an
436 iterative strategy to construct the pangenome. First, we carried out pairwise
437  collinearity comparison between NIP and Lemont using MUMmer 4.0.0 [47], with
438  parameters: “--maxgap 500 --mincluster 1000 --diagdiff 20”. NIP was named as ref0.
439 We used Assemblytics to detect and analyze variants from MUMmer. SVs were
440 identified by comparison of the first genome (Lemont) with the Nipponbare reference
441 genome assembly (ref0). The insertions larger than 50 bp were identified and
442  incorporated to generate the new reference genome (refl). The refl genome was
443  then further compared with each genome iteratively until all genomes were
444  incorporated into the pangenome (Additional file 2: Table S1).

445
446  Short read data processing for PAV-GWAS

447 Paired-end short-read sequencing data for each accession was aligned to the
448 pangenome using BWA-MEM [48]. Mapping results were sorted using Picard and
449 filtered using SAMtools [49], retaining reads with a mapping quality over 20. We
450 used the SAMtools with the parameters: “-F 4 -F 256" to remove reads that did not
451 map to the pangenome or mapped to the pangenome repeatedly. Using the
452  pangenome as the reference genome, the coverage of each accession was detected
453 in every 20 bp region by Mosdepth [50] with the parameters: “-b 20”. Two adjacent
454 20 bp regions were merged if adjacent sequences had coverage of >5 reads.

455

456 PAV identification

457  PAVs were called based on the coverage for each accession. We combined all PAV
458 information by row into a map, displayed as a matrix (Fig 1C) with accession names
459 as rows. Segments were defined as PAV regions, named by the adjacent left
460  breakpoint position, and the population PAV genotype matrix was filtered by minor
461 allele frequency (MAF) >0.05.

462
463 Gene PAV detection
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464 A gene was considered missing when the horizontal coverage across the CDS is
465 less than 95% and the vertical coverage less than two, as used in the 3K-RG study
466  [12] using Mosdepth v0.2.6 [50]. A PAV matrix was generated showing the presence
467 or absence of each gene for each accession. The statistical significance of gene
468  frequency changes was calculated using Fisher's exact test. P-values were adjusted
469  for multiple comparisons using the Bonferroni method as implemented in p.adjust
470 from R v3.5.0. Genes with an adjusted p-value<0.001 and difference frequency

471  between groups >10%[32] were defined as significant.

472
473  Short read data processing for SNP-GWAS

474  Short read resequencing data were aligned to the NIP reference genome using
475 BWA-MEM. The results were sorted using Picard and filtered using SAMtools,
476  retaining reads with a mapping quality over 20. Nucleotide variants for each
477 accession were detected using HaplotypeCaller in GATK (v3.8-1-0) [34] with the
478 default parameters. Population nucleotide variants were called using
479 CombineGVCFs and GenotypeGVCFs tool in GATK. Finally, we used the
480 SelectVariants and VariantFiltration tool in GATK to filter the genotype of the
481  population.

482
483  GWAS analysis

484  To construct the PAV genotype map for GWAS, we used “A” representing “Absent”
485 and “C” to represent “Present” in the HapMap genotype file. PAVs and SNPs were
486  selected for GWAS analysis based on the criteria of missing data <15% and minor
487  allele frequency of >0.05. GWAS was performed using a mixed linear model (MLM)
488  with kinship matrix and principal component analysis in GAPIT version 2 [51]. The
489  significance cutoff was defined as the threshold of —logio(p) <5. Manhattan plots
490 were produced using CMplot package (https://github.com/YinLiLin/R-CMplot) in R
491  v3.5.0.

492
493 GO analysis

494  Functional annotation was performed using Blast2GO v2.5 [52]. Genes were aligned
495  to the proteins in the Viridiplantae database using BLASTP [53] (E-values <1 x 107).
496 Gene ontology (GO) analysis was conducted using topGO [54] and Fisher's exact
497  test with ‘elim’ was used to correct for multiple comparisons.

498
499  Population structure and genotype analysis

500 Filtered PAV and SNP data were used for the population structure study. SNP-based
501 and PAV-based phylogenetic trees of 413 rice accessions were constructed using
502 IQ-tree using a maximum likelihood method (with the alrt 1000 -bb 1000),
503 respectively. SNP-based and PAV-based principal component analyses were
504 performed with GCTA (Genome-wide Complex Trait Analysis) v1.93.2 [55]. SNP-
505 based and PAV-based Fixation index (Fst) values were calculated using a 100 kb
506  sliding window (with a 10 kb step for FST values calculation) using VCFtools [56].

507
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508 TE analysis

509 A de novo transposable element (TE) library was generated for the rice pangenome
510 using EDTA v1. Using BLAST+ v 2.2.3 [53], the representative retrotransposon TE
511 families in Carpentier et al. (2019) [22] were used to search the rice pangenome
512 library to identify the whole genome-wide TEs (with >85% sequence identity and e-
513 value <107%).
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Fig. 3 Gene number and frequency analysis among
subpopulation.

A Violin plots showing gene abundance for the Aus,
Indica and Japonica significance differences between
groups are indicated (***p < .005 ). B Comparison of
gene frequency between Indica and Japonica. Colors
indicate p-value
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Fig. 4 Population structure analysis based on PAV and SNP

A haplotype pattern and Fst analysis by PAV and SNP datga in
7.2-9.2 Mb of chromosome 8 in the rice pangenome. B PCA
plot generated by PAV and SNP data
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Fig. 5 GWAS of thousand grain weight in 413 accessions
population. A,B Manhattan plots for thousand grain weight
analysed by SNP-GWAS and PAV-GWAS. C Haplotype
analysis in GW5 promoter region
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Fig. 6 GWAS of plant helght in 413 accessions population.
A,B Manhattan plots for plant height analysed by SNP-
GWAS and PAV-GWAS. C Expression analysis of
LOC_0s08g07400 in the accessions with absence and
presence of 13-kb. The blue line is the mean value.
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Fig. 7 The relationship of PAVs and SNPs underlying plant
height QTL in Chromosome 8. A Genotype of PAVs and
SNPs display. In the PAV region, red bar means present of
the PAV, yellow bar represents absence of the PAV. The five-
pointed star indicates the position of the peak association
PAV. B LD heatmap shows the regions surrounding the
strong peaks of the PAV.
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