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Abstract

Variations in image intensities between magnetic resonance imaging (MRI) acquisitions affect the
subsequent image processing and its derived outcomes. Therefore, it is necessary to normalize
images of different scanners/acquisitions, especially for longitudinal studies where a change of
scanner or pulse sequence often happens. Here, we propose a robust intensity distribution
alignment (RIDA) method to remove between-scan effects. The method is based on MRI T1w images
acquired in close succession and robustly aligns two cumulative distribution functions (CDF) of voxel
intensities to improve image-derived outcomes of a range of subcortical brain structures with
different acquisition parameters. We compare RIDA with the other image harmonization methods:
mica and RAVEL. We study three intra-scanner and three inter-scanner protocol variations among
the same 20 participants scanned with Siemens 1.5T Avanto, 3T Skyra, and 3T Prisma scanners on
the same day and use image-derived volumetric outputs from the Sequence Adaptive Multimodal
Segmentation (SAMSEG) method. We find that CDF-based intensity harmonization (mica and RIDA)
significantly reduces intensity differences, improves consistency in volume quantification, and
increases spatial overlap between two images acquired in close succession. The improvements

are most considerable if the intensity normalization is based on subcortical structures only (RIDA),
excluding cortical regions, instead of the whole brain. However, the effect of the corrections varies
considerably as a function of the compared scanners and sequences. In conclusion, the RIDA scan-
effect normalization improves the consistency of image-derived measures, but its performance

depends on several factors.
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1. Introduction

Magnetic resonance imaging (MRI) parameters such as pulse sequence, scanner type, or RF coil
configurations can alter signal-to-noise and contrast-to-noise ratios between images (Han et al.,
2006; Jovicich et al., 2009). In addition, MRI images are collected in arbitrary units of intensity which
are often not comparable across visits, even within the same subject and scanner. For instance, in
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Australian Imaging, Biomarkers and
Lifestyle (AIBL) studies, which have highly standardized protocols, noticeable differences in the raw
intensities are observed between imaging sites (Shinohara et al., 2014). Such intensity variations
between acquisitions likely affect subsequent MRI processing and comparability of its derived

outcomes.

Much previous work has attempted to address the complex issue of image standardization,
reviewed in (Shah et al., 2011). One of the most common approaches to image harmonization is
histogram matching, in which the intensity profile of the new image is altered to resemble that of an
image template constructed from training subjects (Nyul et al., 2000). However, the histogram

often fails to preserve biological characteristics (Fortin et al., 2016; Wrobel et al., 2020). Another
popular approach is contrast synthesis, which instead of directly altering intensity values, uses a
database of training images to generate a new image with a desired intensity profile (Iglesias et al.,
2013; Roy et al., 2013). The significant drawbacks of this approach are computational demands and
the need for an extensive training dataset. It has been shown to be beneficial for some intermediate

processing steps such as registration but not for segmenting brain structures (Iglesias et al., 2013).

A novel intensity unit normalization method, called White Stripe (Shinohara et al., 2014), has been
developed to bring raw image intensities to a biologically interpretable scale. The method applies a
z-score transformation on image intensities based on the parameters estimated from the normal-
appearing white matter (NAWM). The use of NAWN makes the method useful for many studies of
brain abnormalities, such as multiple sclerosis lesions. While the method makes the white matter
(WM) comparable across subjects, the residual across-subject intensity variations are still present in
the cerebrospinal fluid (CSF) and grey matter (GM). Therefore, the method is only helpful for the

intensity unit normalization.

To correct between-scan effects, the Removal of Artificial Voxel Effect by Linear regression (RAVEL)

has been proposed (Fortin et al., 2016). The method is an extension of the White Stripe and uses
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White Stripe normalized images to correct for residual unwanted intensity variations across images.

It has been shown to improve the replicability of the biological findings.

Recently, a multisite image harmonization by cumulative distribution function (CDF) alignment
(mica) has been proposed (Wrobel et al., 2020). The method leverages multiple scans of the same
subject to derive an intensity transformation that removes between-scan effects. Although it has
been shown to reduce volumetric differences in WM and GM across sites, it is unclear how well the

approach generalizes to variations in image acquisition and the impact on other brain structures.

Here we propose a Robust Intensity Distribution Alignment (RIDA) method to harmonize image
intensities across visits and improve volumetric outcomes of brain structures in MR images acquired
with different acquisition parameters. The present study builds on the previous work of mica
(Wrobel et al., 2020) but differs in the way the intensity transformation (mapping) is derived and
used. We analyze three intra-scanner and three inter-scanner protocol variations before and after
between-scan effects normalization among the same 20 participants that have been scanned on the
same day. Using the term between-scan effects, we encapsulate residual intensity variability post-
normalization (after White Stripe intensity unit normalization). This allows us to systematically
measure segmentation differences due to variations in acquisition parameters within and between
scanners and to what degree these can be reduced by applying the image harmonization methods.
We use RAVEL, mica, and RIDA to reduce between-scan effects, and volumetric outputs of the
SAMSEG whole-brain segmentation (Puonti et al., 2016) to inspect the impact of different

harmonization methods.

The unique dataset used in this work allows us to inspect the performance of the image
harmonization under distinct circumstances: 1) the same MRI scanner but different image
acquisition protocols; 2) the same imaging protocol but different MRI scanners; 3) different MRI
scanners and imaging protocols. Therefore, the main objectives of this work are: 1) establish a
framework for a robust image harmonization using CDFs (RIDA); 2) implement two versions of RIDA
method — whole-brain and subcortical; 3) evaluate the performance of image harmonization
methods within- and between-scanners. We also show how between-scan normalization methods
work with different bias field correction methods, namely N3, N4, and the one estimated as part of

the SAMSEG's processing stream.
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2. Material and methods

2.1. Datasets

A total of 20 cognitively healthy participants (18 females, age range from 20 to 36 years, mean =
27.3 years, sd = 4.5 years) were scanned using three models of Siemens MRI scanners (Siemens
Medical Solutions, Erlangen, Germany): 1.5T Avanto, 3T Skyra, and 3T Prisma, at Rikshospitalet, Oslo
University Hospital. The project was approved by the Regional Ethical Committee, region South, and
all participants gave informed consent. For each participant, two different T1w scans were acquired
from each scanner on the same day. Table 1 summarizes MRI T1w pulse sequence parameters for
each scanner and outlines the comparisons of interest used in this work. For the optimal
comparability between two acquisitions within each scanner, the participants were not repositioned,

and one T1w acquisition immediately followed the other.

Avanto Skyra Prisma
Al A2 S1 S2 P1 P2
Field strength (T) 1.5 1.5 3 3 3 3
#slices 160 160 176 176 176 208
FoV (mm?) 240x 240 240x240 | 256x256 256 x 256 | 256 x 256 240 x 256
TR (ms) 2400 2400 2300 2400 2300 2400
TE (ms) 3.61 3.61 2.98 2.98 2.98 2.22
Tl (ms) 850 1000 850 1000 850 1000
FA (°) 8 8 8 8 8 8
1.25x 1.25x 0.8x0.8
Voxel size (mm3) I1x1x1 I1x1x1 I1x1x1
1.25x1.2 1.25x1.2 x0.8
Bandwidth (Hz) 180 180 240 240 240 220
GRAPPA factor 1 1 1 2 1 2
Head coil channels 12 12 20 20 32 32

Table 1. A summary of MRI T1w acquisition parameters used for the Siemens Avanto, Skyra, and
Prisma scanners. The between-scan effects normalization methods are applied to all three intra-
scanner comparisons (Al vs. A2, S1vs. S2, P1vs. P2) and a subset of inter-scanner comparisons (A2
vs. S1, A2 vs. P2, S1 vs. P1). The selected inter-scanner comparisons are particularly interesting as
most of the longitudinal data at our research center has been acquired with the selected scanner

changes between visits.
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2.2. MRI pre-processing

First, due to the non-linearity of the magnetic fields from the imaging gradient coils, we pre-
processed the images to reduce the geometrical variability of the same participant’s brains between
different MRI scanners. We obtained scanner-specific spherical harmonics expansions representing

the gradient coils (Jovicich et al., 2006).

Second, we resampled the images to the so-called conformed space (256x256x256 image
dimensions and 1x1x1 mm?3isotropic voxels) using cubic interpolation and corrected for the intensity
inhomogeneities (also known as a bias field) that are caused by the coil sensitivity variations as well
as regional variations in brain tissue magnetic susceptibility. The bias field might not only hamper
the segmentation of brain structures but also is a significant source of between-scan effects,
especially when dealing with images from two different scanners. To address the sensitivity of the
bias field correction to the image harmonization, we considered three bias field correction methods:
N3 (Sled et al., 1998), N4 (Tustison et al., 2010), and SAMSEG’s (Puonti et al., 2016). The bias field in
SAMSEG is modeled as a linear combination of spatially smooth basis functions (Van Leemput et al.,
1999) and is estimated simultaneously with the brain segmentation. The approach is closely related

to the unified segmentation framework described in (Ashburner and Friston, 2005).

Finally, we normalized each image using the White Stripe method (Shinohara et al., 2014). The
normalization is based on the normal-appearing white matter (NAWM) and scales image intensities
so that white matter becomes comparable across images. Instead of z-transforming the images
initially, we scaled the intensities so that the mean NAWM intensity value was 110. We refer to
these images as WM-normalized as the method aligns WM intensity distributions between images.

However, residual across-subject variability is still present in the CSF and grey matter.
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2.3. Between-scan effects normalization

Here we describe three approaches to address the issue of between-scan effects: RAVEL, mica, and
RIDA. RIDA and mica are similar and based on the same underlying principle — the alignment of two
cumulative distributions of voxel intensities. Both methods are expected to work best when two
different images of the same subject are acquired in a short time interval. The differences between
images would be attributed to the between-scan effects rather than biological differences. On the
other hand, RAVEL utilizes all study images to estimate unwanted variability from a control region
and perform voxel-wise intensity corrections using a linear regression model. The main advantage of
RAVEL is that it does not require images of the same subject to be acquired in a short time interval

and can also be of different subjects.

2.3.1. RAVEL

RAVEL is a tool for removing scan effects that utilize all images in the study to leverage information
about unwanted variability after intensity normalization (White Stripe). Each image of the study is
non-linearly registered to a standard template to allow voxel-wise linear models and estimate the
unwanted variation component from regions of the brain that are not expected to be associated

with the clinical covariate of interest.

Here, we used an R package https://github.com/Jfortin1/RAVEL to perform RAVEL and pre-

processed images described in Section 2.2 as inputs to RAVEL. Briefly, the unwanted variation
component was estimated from a control region where voxels were labeled as a cerebrospinal fluid
(CSF) for all images. These intensities are unassociated with disease status and other clinical
covariates (Luoma et al., 1993). To get the corrected intensity values back into the native space, we
applied the back-transformation from the template to the native space. To be consistent with the
other two normalization methods, we did not use any additional covariates, which is possible by

RAVEL.

2.3.2. mica

Multisite image harmonization by CDF alignment (mica) harmonizes images by aligning cumulative
distribution functions (CDFs) of the voxel intensities (Wrobel et al., 2020). Here, it estimates a
nonlinear, monotonically increasing transformation of the voxel intensity values in one scan
(“source”) such that the resulting intensity CDF perfectly matches the intensity CDF from a second
(“target”) scan. These intensity transformations called warping functions, define a one-to-one

mapping between intensity values from a source scan to corresponding intensity values from the
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target scan. The CDF alignment occurs at the subject level, meaning that two images of the same
subject collected in close succession are needed. The warping function is estimated for the whole

brain and does not require spatial normalization (registration).

Here, we used an R package https://github.com/julia-wrobel/mica to perform mica image

harmonization. Before running mica, we performed ROBEX skull-stripping (Iglesias et al., 2011) on
the pre-processed images described in Section 2.2. Then, we computed CDFs independently for each

image and derived warping functions from CDF alignment to generate harmonized images.

2.3.3. RIDA

The goal of the image harmonization framework based on CDFs is to transform the voxel intensities
of one image to match the intensities of another image. Therefore, throughout the descriptions
below, we assume that we operate on two MRI T1lw images of the same participant — a source and a
target — that have been acquired with distinct acquisition parameters, either within the same or
across different scanners. Any technical variability resulting from different protocol

implementations or differences between scanners are referred to as between-scan effects.

The underlying principle of the Robust Intensity Distribution Alignment (RIDA) is the same as for
mica — align two intensity distributions and derive a warping function. However, several important
improvements and considerations make RIDA more robust and reliable for image harmonization.
Here, we present a framework with two parts: an additional image pre-processing required to
harness the potential of close succession scans and a robust intensity distribution alignment

approach.

Pre-processing. We used pre-processed images described in Section 2.2 to further pre-process for
the RIDA. First, we co-registered two images to their halfway space using FreeSurfer’s
mri_robust_register program (Reuter et al., 2010). The program computes an inverse consistent
registration of two volumes via an iterative symmetric alignment of the two images. It uses a
method based on robust statistics to detect and remove outliers from the registration. Second, we
non-linearly registered the source image to the target image using ANTs diffeomorphic registration
(Avants et al., 2011). This allowed for better spatial normalization and voxel-wise intensity
comparisons. Third, we performed whole-brain segmentation of both images using SAMSEG to label
brains into different regions later used for the intensity mappings. Finally, we White Stripe

normalized both images based on the common NAWM mask, which is the intersection of two
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NAWM masks — one for each image. We then used the pre-processed T1lw images and their
corresponding whole-brain segmentation for the robust intensity distribution alignment described

below.

A robust intensity distribution alignment. Given a pair of pre-processed images of the same subject
- a source (Ig) and a target (I;) - we computed two CDFs, namely cdf; and cdf;, within a region of
interest (RO/) which was selected from the whole brain segmentation. Next, we derived intensity
mappings from cdf; to cdf;, and from cdf; to cdf; at pre-defined intensity query points x (from O to
150, n = 300) by using 1D linear interpolation. Each such mapping defined a non-linear
transformation (a lookup table) where a particular intensity value of one image was mapped to the
intensity value of another image. In other words, we aligned two intensity distributions both ways.
Finally, to make this transformation unbiased towards the selected target image, we found an
inverse consistent transformation by calculating the inverse of cdf; to cdf; mapping and averaging it
with the cdf; to cdf; mapping, see Fig. 1. The derived transformation then was used to transform
the intensities of the source image I (which was still non-linearly registered to the target image), so

it became more like the target image, see Fig. 2.

120 A 120 ®
110 110 |
100 100 ¢
2 2
2 90 2 90}
5 o
E 80 E 80 |
70 70|
60 60 +
50 50!
0 20 40 60 80 100 0 20 40 60 80 100
Percentile Percentile

Fig. 1. An example of two CDFs and their alignment. Figure (A) shows the intensity profiles derived from two different T1w
images of the same participant — a source (cdfs) and a target (cdf:). Figure (B) shows the intensity profiles after the intensity
normalization.
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Fig. 2. An example of intensity harmonization by CDF alignment. The images represent a) a target image; b) a source image;
¢) a source image normalized to match the intensities of the target image; d) the original voxel-wise differences between
target and source images; e) voxel-wise differences between target and normalized source images. Images d) and e) are of
the same intensity scale.

We repeated the same procedure twice, but we excluded potential outliers within the ROl before
calculating CDFs. These outliers were characterized as voxels with much larger voxel-wise
differences in intensities compared to the rest of the voxel-wise differences within the ROI after
intensity normalization of the source scan. This can happen due to noise, poor registration, or the
protocol implementations where one image can contain structures that are not present in another
image, for example, blood vessels. Therefore, to reduce the effects of outliers, we excluded voxels
for which the absolute difference between images was three times larger than the median of all

absolute differences within the RO!:

IIZ(ROI) — I,(ROD)| > 3 - median{|I:(ROI) — I,(ROD)|},
(1)

where Ig is the source scan after image harmonization. The whole procedure can be summarized as

follows:
1. Calculate cdf; and cdf; within the selected ROI.
2. Derive intensity mappings from cdf; to cdf;, and from cdf; to cdf;.
3. Calculate the inverse of cdf; to cdf; mapping and average it with the cdf; to cdf; mapping.
4. Apply the average intensity mapping to the source image.
5. Update ROl mask by excluding voxels that match (1) criterion.
6. Repeat steps 1-5 two more times.

We used the final derived transformation (after three iterations) to reduce between-scan effects by
transforming the intensities of the source image in its native space (before spatial normalization).
Still, we derived the intensity mapping from two images spatially normalized by the non-linear

registration to allow the robust exclusion of outlier voxels, see Fig. 3.
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target source iter 1 iter 2 iter 3

Fig. 3. Removal of outlier voxels. The source and target images are spatially normalized by non-linear registration to
improve voxel-wise correspondence. White overlayed masks (iter 1, iter 2, and iter 3) represent brain voxels from which the
intensity mapping is derived at each iteration. The target image's initial brain mask (iter 1) gets refined by excluding outlier
voxels.

The application of the framework largely depends on the selected ROI. Consequently, we present
two ROI-specific applications of the framework, namely whole-brain and subcortical intensity

harmonization.

Whole-brain intensity harmonization. The whole-brain image harmonization aims to transform
intensity values of all brain regions at once. Therefore, a natural choice of ROI for the framework is a
brain mask that covers the entire brain area. To be more specific, given two pre-processed MRI
images and their whole-brain segmentation (as described in the MRI pre-processing section), we
found whole-brain masks for each image which we used to derive a robust intensity mapping. Then,
we applied the intensity transformation to the pre-processed source image in the native space
(before spatial normalization). This resulted in a corrected image where voxel intensities were

altered to match the intensities of the target image.

Subcortical intensity harmonization. We also defined an ROI that only covered the subcortical brain
structures and did not include cortical regions. This ROl directly corresponded to the brain structures
of interest analyzed in this paper. This ROl selection was used to test whether cortical intensity

values (and their surroundings) significantly impacted the scan effects of the subcortical structures.

2.4. Brain segmentation

We used a fully automated whole-brain segmentation method SAMSEG (part of FreeSurfer v7.2) to
label eight brain structures of interest: amygdala, caudate, hippocampus, lateral ventricles, inferior
lateral ventricles, pallidum, putamen, and thalamus. Briefly, SAMSEG utilizes a mesh-based atlas and
a Bayesian modeling framework to obtain volumetric segmentation without the need for skull-
stripping as it includes segments for the extra cerebrospinal fluid, skull, and soft tissue outside of the

skull. To extract reliable segmentation results, we processed pairs of images with a longitudinal
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stream in SAMSEG. The longitudinal SAMSEG is based on a generative model of longitudinal data
(Cerri et al., 2020; Iglesias et al., 2016). In the forward model, a subject-specific atlas is obtained by
generating a random warp from the usual population atlas. Subsequently, each time point is again
randomly warped from this subject-specific atlas. Bayesian inference is used to obtain the most
likely segmentation, with the intermediate subject-specific atlas playing the role of latent variable in
the model, whose function is to ensure that various time points have atlas warps that are similar

between themselves without having to define a priori what these warps should be like.

2.5. Statistics
To evaluate the consistency of post-processing outcomes after image harmonization, we used the
absolute symmetrized percent difference (ASPD) metric between a pair of images of each subject

and the brain structure of interest:

2|M(Ly) — M(Lp)|

ASPD(Ly,Lp) = M(Ly) + M(Ly)

X 100%,

where L, and L, are the segmented labels of the same structure but of different images and M (L) is
the measurement of interest calculated for that label. ASPD value closer to 0 indicates a better
guantification consistency between a pair of images. We used ASPDs to evaluate differences in
image-derived measurements: mean intensity, volume, and spatial overlap (Dice scores) (Dice,
1945). We separately calculated ASPD and Dice scores for the left and right hemispheric structures

and then averaged.

We also conducted a three-way repeated-measures ANOVA to examine the effects of brain
structure, study, and image harmonization method on volume ASPD values in 20 subjects. In
addition, we used paired t-tests with Bonferroni multiple comparisons correction (Bland and Altman,
1995) to test whether there were significant pairwise differences among intensity harmonization

approaches within each study.

All statistical analyses described above were done using R statistical software package v3.6.3 (R Core
Team, 2020) and its related packages: ggplot2 (Wickham, 2016), ggpubr (Kassambara, 2020), and
dplyr (Wickham et al., 2020).
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Fig. 4. The effect of the bias field correction on volume ASPDs between the Avanto (A) and the Skyra (S) scanners. RAW
indicates White Stripe normalized images used as input to the image harmonization methods: RAVEL, MICA, and RIDA
(whole brain and subcortical). The vertical bars show standard errors, and significant pairwise differences are indicated by
the horizontal bars with the following significance codes of the p-values: 0.0001 “****’,0.001 “***’, 0.01 “**’, 0.05 “*".

3. Results

3.1. The effect of bias field correction

Fig. 4 presents volume ASPDs for a single study, A vs. S, and three bias field corrections: N3, N4, and
SAMSEG. The choice of the bias field correction had almost no impact (only slightly worse for N4) for
RAVEL method. This was expected as RAVEL does linear regression on a voxel-wise basis. Contrary to
RAVEL, mica and RIDA had significantly different outcomes due to the choice of the correction as
both methods operate globally and include residual bias fields. This becomes evident in Fig. 5, where
White Stripe normalized images, and their corresponding NAWM labels are shown. The residual bias
fields after N3 and N4 hampered NAWN detection in the frontal lobe area, whereas this was not the
case for SAMSEG’s bias-corrected images. Hence, for most brain structures, the intensity mappings
derived from SAMSEG'’s bias field corrected images showed significant improvement in the
consistency of volume quantification between scanning protocols. Therefore, it was used for further

analysis and results.
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original N3 N4 SAMSEG

Fig. 5. White Stripe Normal Appearing White Matter (NAWM) marked in yellow after removal of bias field. Regional
intensity variations are still present in the frontal lobe area after N3 and N4 but less apparent after SAMSEG’s bias field
correction, leading to a more uniform NAWM labeling.

3.2. mica vs. RIDA intensity mappings

Fig. 6 presents individual intensity mappings of 20 subjects derived from a single study, A vs. S, using
mica and RIDA scan-effect normalization methods. More considerable inter-subject variability
observed at the higher intensities is less critical since these usually correspond to non-brain regions
such as the skull or blood vessels. The increased inter-subject variability was observed at the lower
intensities. This is because the source and target images have an unequal number of brain voxels
from which the CDFs are estimated and do not have a perfect spatial voxel-wise correspondence.
The number of brain voxels varies from image to image even for the same subject due to the skull

stripping, poorer spatial normalization around the cortex, and CSF which represent most of the

lower intensities.

mica RIDA whole-brain RIDA subcortical

150 150 ¢ 4 150

z‘,‘ 100 z‘,‘ 100 z‘: 100
C C [
2 o 2

£ 50 £ 50 £ 50

0 0 0

0 50 100 150 0 50 100 150 0 50 100 150
In'tensitys ln'tensitys Intensi'(ys

Fig. 6. Intensity mappings of 20 subjects from a single study Avanto (A) vs. Skyra (S). Source intensities (Intensitys) are
mapped to the target intensities (Intensity:). A dashed line indicates identity transformation, which has no effect between
images when applied.
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Fig. 7. Mean intensity ASPDs per brain region. RAW indicates White Stripe normalized images used as input to the scan-
effect normalization methods: RAVEL, MICA, and RIDA (whole brain and subcortical). Standard errors are shown by the
vertical bars.

3.3. Consistency in image-derived measurements

Fig. 7 presents the mean intensity ASPDs per brain region and study. CDF-based intensity
harmonization significantly reduced intensity differences between images, whereas slight
improvement was observed for RAVEL. In most cases, RIDA subcortical approach provided superior

results.

Fig. 8 presents volume ASPDs per brain region and study. A three-way repeated-measures ANOVA of
volume ASPDs indicated a significant interaction between brain structure, study (protocol
comparison), and image harmonization approach (F(140,4541) = 8.44,p < 0.0001) as well as all
two-way and one-way interactions (p-values < 0.0001). Therefore, the results of the image
harmonization depend on a particular setup of the pulse sequences, a structure of interest, and a

normalization method.

An evident advantage of the CDF-based intensity harmonization (mica and RIDA) was seen for
ventricles, hippocampus, amygdala, and caudate. The largest improvements were observed for

Prisma vs. Prisma (PvsP) and Avanto vs. Prisma (AvsP) studies. On the other hand, RAVEL showed a
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slight improvement compared to other approaches but did not tend to make the results worse than

before the image normalization — it either stayed around the same level or slightly improved.

The performance of mica was comparable to the RIDA whole-brain approach, but in more cases, the
latter yielded even smaller volumetric differences between the images, especially for the ventricles.
RIDA subcortical-based corrections reduced initial volumetric differences more than the RIDA whole-
brain corrections, for example, putamen and caudate (AvsA and AvsS), hippocampus (AvsA and
AvsP), lateral ventricles (AvsA, AvsS, and AvsP). There also were cases where RIDA whole-brain
corrections increased initial (uncorrected) volumetric differences. Still, subcortical-based corrections
reduced it, for example, putamen (AvsA, PvsS, and AvsS), thalamus (PvsP and AvsS), and

hippocampus (AvsS). Overall, the subcortical-based RIDA was superior to the whole-brain RIDA.

Numerical results of Fig. 8 are presented in the appendix (see Fig. A.1) along with the spatial overlap

(Dice scores) results (see Fig. A.2). CDF-based normalization, in general, tended to increase the

spatial overlap, which was already large. There was little difference in the spatial overlap between

RIDA whole-brain and subcortical approaches, whereas RAVEL did not indicate any improvements.
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Fig. 8. Volume ASPDs per brain structure. RAW indicates White Stripe normalized images used as input to the scan-effect
normalization methods: RAVEL, MICA, and RIDA (whole brain and subcortical). Standard errors are shown by the vertical

bars.
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4. Discussion

CDF-based image harmonization significantly improved the consistency of image-derived
measurements between scanning protocols. This was particularly true for the RIDA subcortical-
based transformations, which often worked better than the whole-brain corrections and did not
make differences larger even in the few cases where the whole-brain corrections did. The benefit of
the subcortical-based transformation comes from excluding the cortical intensity values that overlap
with a range of the subcortical regions’ intensity values. This indicates that a more specific intensity
transformation can provide more consistent segmentation outcomes. However, the extent to which
the intensity harmonization improved the downstream results depended on several factors,
including scanner/sequence comparisons and regions in the brain. Hence, while CDF-based intensity
harmonization shows substantial potential to improve the consistency of image-derived
measurements, the exact choices recommended for a particular study will depend on these different

factors.

We described an MRI T1w image pre-processing for each image regardless of the image
harmonization method applied. Notice that, in practice, any other method could be used for a
particular pre-processing step, such as the bias field correction and intensity unit normalization, not
necessarily those presented in this paper. We also compared the impact of the different bias field
corrections and found that the bias field corrected image resulting from the SAMSEG processing

yielded the most reliable results.

RAVEL is entirely data-driven and does not necessarily need multiple scans for the same subject.
However, the method does not demonstrate improved consistency in image-derived measures to a
similar extent as the CDF-based approach. RAVEL assumes that the space spanned by the unwanted
factors estimated from the control voxels also spans the unwanted variation space for all voxels,
which in this case may be violated. Another drawback is that a large study requires huge memory
resources as the whole dataset must be stored in the memory and non-linear registration to the

standard template is time-consuming.

RIDA and mica are based on the same principle — the alighment of two cumulative distributions of
voxel intensities. mica and RIDA need specific datasets which usually are expensive to obtain or
sometimes infeasible. However, given the benefits of the CDF-based harmonization, it might be

worth the extra effort. In addition, mica does not require spatial registration (normalization) and the
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whole-brain segmentation as opposed to the RIDA but is less robust to the regional structure

variations and does not handle outliers.

The robustness of the RIDA method comes from two improvements: non-linear diffeomorphic
registration and exclusion of outliers. Thus, the correction for geometrical distortion might not be
needed for close succession scans as the non-linear diffeomorphic registration can account for
regional variations. This makes the method robust to geometrical differences between the scanners.
The exclusion of outliers makes the procedure less sensitive to different pulse sequence
implementations. The advantage of both can be observed from the results where the whole-brain

RIDA generally yielded better consistency in measurement quantification.

The most notable improvements for nearly all pulse sequence comparisons were observed for the
ventricles. This is likely due to the lower intensity values that are primarily present within ventricles,
and do not overlap with other intensity distributions, see Fig. 9. It also confirms the observation
from Fischl et al. (2002) that the hippocampus and amygdala have almost completely overlapping
intensity profiles, which necessitates using probability information in addition to intensity in
segmenting these structures. Nevertheless, whole-brain and subcortical RIDA corrections
significantly reduced the differences between 1.5T Avanto and 3T Prisma, and between the two
Prisma sequences, in similar ways for the hippocampus and amygdala. This shows that the
correction can affect the segmentation of structures with the same intensity profiles in similar ways.
This further underscores the point that optimal correction procedure depends on multiple

parameters, including sequence, scanner, and brain region of interest.
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Fig. 9. An example of the intensity distributions before (left) and after (right) RIDA intensity harmonization for 1.5T Avanto
vs. 3T Skyra comparison for a single participant. The source (S) distributions are displayed as dashed lines and the target (T)
distributions as solid lines. Lower intensities are primarily present within ventricles and almost do not overlap with other

subcortical structures.
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Fig. 10. Intensity mappings of 20 subjects from a single study Skyra (S) vs. Prisma (P) represent the same MRI acquisition
protocol but different scanners. Source intensities (Intensitys) are mapped to the target intensities (Intensity). A dashed line
indicates identity transformation, which has no effect between images when applied.

The outcomes for Skyra vs. Prisma (S vs. P) study, which represents the same pulse sequence but
different scanners, did not show any improvements for neither of the image harmonization
methods. The individual intensity mappings shown in Fig. 10 indicate that neither mica nor RIDA was
sensitive enough to model the between-scanner differences (scanner effects) - the mappings were
close to identity transformations meaning that small intensity changes were done. Interestingly,
while the differences in estimated volumes tended to be relatively small for this comparison — 3T
Skyra vs. 3T Prisma with the same sequence parameters — the correction procedure was often able

to reduce the initially more considerable differences between the other scanners/sequences down
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to a level comparable with the Prisma — Skyra same sequence differences. However, while the
correction procedure could not reduce this between-scanner difference in the present study, the
procedure still warrants further investigation for such corrections. Our comparisons were between
Siemens scanners, and it is possible that the correction would reduce differences between scanners

from different vendors.

In the intensity harmonization by CDF (either mica or RIDA), we assume that we have a pair of
images — a source and a target — for the same participant scanned within a short time interval. This is
necessary to derive a reliable intensity mapping from one image to another. In practice, however,
we would only acquire a small number of paired scans to derive a transformation between two
specific MRI acquisitions, either within or between the scanners. The rest of the images would be
acquired by one of the acquisitions. Therefore, to reflect a more realistic scenario, we would need to
derive an average intensity mapping from a training dataset and apply it to a new independent test
dataset. In this work, however, we derived and used intensity mappings under “perfect” conditions
meaning that each subject had a unique intensity transformation. This yielded overly too optimistic

outcomes.

Nevertheless, suppose each subject’s unique intensity mapping cannot improve consistency in
between-scan measurements. In that case, it is unreasonable to expect it to work any better in a
more realistic scenario. Therefore, this empirical study gives us a glimpse of the performance of each
harmonization method, allowing us to compare inter-individual variations. In general, as seen from
Fig. 6, the observed individual intensity mappings of mica and RIDA indicated low inter-individual

variability meaning that a reliable average transformation could be derived.

In this work, we have only analyzed the subcortical structures. The next step would be to inspect
how the CDF-based harmonization works for the surface-based analysis where, for example, the
cortical thickness measures would be of interest. Moreover, instead of deriving the exact
transformation for each subject, we must inspect how well the RIDA generalizes. We need to derive
an average intensity mapping from a sample of subjects and apply it to other subjects. Furthermore,
we have seen that using a targeted intensity transformation (subcortical-based) yielded better
results than the general approach (whole-brain). Therefore, this indicates a potential for further
improvements, possibly the application of convolutional neural networks, which might help avoid
the overlapping intensity distributions of different structures, which in turn causes favorable

outcomes for some structures but not others.
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5. Conclusions

The intensity harmonization by cumulative distribution function can be useful for increasing the
intra- and inter-scanner reproducibility of subcortical segmentation in cases of MRI pulse sequence
parameter variations. However, the outcomes vary between subcortical structures and depend on a
particular pulse sequence comparison. Therefore, a pilot study tailored to the sequences and
scanners in question is recommended before applying the RIDA framework to a large-scale study,
which can be expensive or infeasible due to the necessary condition of participants being scanned in
close succession. However, in studies with a limited number of scanners and sequences, or
longitudinal studies that for various reasons need to change scanners between follow-up
examinations, it may be worth the effort to collect a set of multiple scans of the same participants
using each of the sites/sequences that are part of the study. That will enable selecting the optimal
correction method to reduce differences. Suppose no such paired scans are available and cannot be
obtained. In that case, the present results still suggest that 1) performing corrections yield smaller
differences than not performing corrections, and 2) the subcortical-based intensity correction (RIDA

subcortical) tends to yield smaller differences than the whole-brain correction.
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Fig. A. 1. A heat map of the numerical results of the mean volume ASPDs per brain structure and study. It presents
volumetric differences before (RAW) and after scan-effect harmonization (RAVEL, MICA, RIDA brain, and RIDA subcortical).
To improve readability, the colors of ASPD values greater than five are ‘saturated’ and shown with the same hue.
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Fig. A. 2. Box plots of Dice scores per brain structure and study. RAW indicates White Stripe
normalized images used as input to the scan-effect normalization methods: RAVEL, MICA, and RIDA
(whole brain and subcortical).
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