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1 Abstract
2 Adventitious rooting is critical to the propagation, breeding, and genetic engineering or
3 editing of trees. The capacity for plants to undergo these processes is highly heritable; however,
4 the basis of its genetic variation is largely uncharacterized. To identify genetic regulators of these
5  processes, we performed a genome-wide association study (GWAS) using 1,148 genotypes of
6  Populus trichocarpa. GWAS are often limited by the abilities of researchers to collect precise
7  phenotype data on a high-throughput scale; to help overcome this limitation, we developed a
8  computer vision system to measure an array of traits related to adventitious root development in
9  poplar, including temporal measures of lateral and basal root length and area. GWAS was
10 performed using multiple methods and significance thresholds to handle non-normal phenotype
11  statistics, and to gain statistical power. These analyses yielded a total of 277 unique associations,
12 suggesting that genes that control rooting include regulators of hormone signaling, cell division
13 and structure, and reactive oxygen species signaling. Genes related to other processes with
14 known roles in root development, and numerous genes with uncharacterized functions and/or
15  cryptic roles, were also identified. These candidates provide targets for functional analysis,
16  including physiological and epistatic analyses, to better characterize the complex polygenic
17  regulation of adventitious rooting.

18  Introduction

19 The species within the genus Populus spp. (poplar) are among the most rapidly-growing
20  trees of the northern hemisphere (Dickmann & Stuart, 1983) and have outsized roles in natural
21  ecosystems as keystone species (Brunner et al., 2004; Kouki et al., 2004; Bailey & Whitham,

22 2006; Kivinen et al., 2020). They are also of major economic importance for agroforestry, and as
23 sources of wood, fiber, and biofuel (Sun et al., 2021; Fuertes et al., 2021). In either context, the
24 growth and asexual propagation of poplar relies on the rapid establishment, proliferation and

25  maintenance of a robust root system for nutrient and water absorption. Elite hybrid clones of

26  poplar are propagated in stool beds through a process that relies on the ability of cuttings to

27  undergo adventitious rooting (Stanton et al., 2019). In addition, asexual reproduction of poplar in
28  nature commonly occurs via the process of “root sprouting” from existing roots or the root-shoot
29  junction zone (Wiehle ef al., 2009). Moreover, biotic and abiotic stresses such as waterlogging
30  and pest damage often interfere with above-ground tree health by damaging root systems

31 (Brandtetal., 2003; Sticha et al., 2016), a stress that is certain to be exacerbated by climate
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change (Overpeck & Udall, 2020; Gullino et al., 2021). A deeper understanding of the genes that
control rooting may provide new insights into means for improved propagation of recalcitrant
genotypes and species, options for improvement of regeneration during genetic
engineering/editing, and suggest new strategies for mitigating stress in managed and wild
populations.

Adventitious rooting in poplar is a highly complex trait that is regulated by many factors,
including plant age, genotype, and physiology; the many forms of plant stress; and
environmental cues such as temperature, photoperiod, and nutrients. These act through
phytohormone signaling cascades that lead to differentiation and development of root tissue.
Overexpression and RNAi-mediated suppression of over two dozen genes involved in
phytohormone synthesis and response have been reported to lead to increased or decreased
adventitious root formation and/or root growth (reviewed by Bannoud & Bellini, 2021). These
root-related traits have been shown to be genotype-dependent, with phenotypic variation across
Populus spp. depending in large part on variable sequence and expression of phytohormone-
related genes, especially those involved in auxin pathways or crosstalk between auxin and other
phytohormones (Ribeiro ef al., 2016; Sun et al., 2019). Genome-wide association studies
(GWAS) provide opportunity for insight into how variation in root-related traits across
genotypes results from variation in these phytohormone regulators and other genes. To date,
GWAS of adventitious rooting performed in plants including rice (Ribeiro ef al., 2016) and
Populus (Sun et al., 2019) have contributed to an improved understanding of these gene-function
relationships and others.

GWAS of root traits, both from adventitious roots and non-adventitious roots, commonly
involve measurement of the lengths, diameters, or types of roots, among other statistics. As
collection of these traits can prove laborious and time-consuming, a wide array of computer
vision tools have been developed to extract these features from root images, with varying
degrees of human intervention or automation (e.g., Arsenault et al., 1995; Das et al., 2015;
Zhang et al., 2018; Yasrab et al., 2019; Zheng et al., 2020). These methods have been applied to
enable GWAS and other genetic analyses of rooting in common bean, cowpea (Burridge ef al.,
2016), maize (Arsenault et al., 1995; Zhang et al., 2018) and hybrid poplar (Sun et al., 2019),
among others. Methods involving manual measurements with rulers or ImageJ have been applied

to GWAS of rooting traits in plants including maize (Trachsel et al., 2011), rice (Courtois et al.,
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2013; Liet al., 2017; Wang et al., 2018; Xu et al., 2020; Zhang et al., 2020), wheat (Ayalew et
al., 2018) and hybrid poplar (Dash ef al., 2018). The production of more general and user-
friendly root phenotyping platforms can help to extend automated methods to more species and
laboratories, potentially assisting expansion of GWAS population size by reducing the amount of
manual labor needed for phenotyping. With increased population size, GWAS gain greater
statistical power and improved ability to detect significant effects of genes regulating traits,
particularly those or smaller effect size, and those imparted by rare alleles (Lopez-Cortegano &
Caballero, 2019).

Here, we report insights into the genetic control of rooting obtained through GWAS. By
use of a large resequenced and highly polymorphic population of wild Populus trichocarpa that
shows very rapid decay of linkage disequilibrium—and a novel machine vision phenomic system
and multiple GWAS pipelines—we were able to statistically detect large numbers of candidate
genes. The potential for rare allele discovery was enhanced by our use of the SNP-Set Sequence
Kernel Association Test, which upweights and combines effects from rare SNPs to increase
power in their detection (Wu et al., 2011). We report a total of 277 unique associations passing
significance thresholds, including many involved in hormone signaling, cell division, and post-

translational modification of proteins—in addition to many genes of unknown function.

Methods and Materials

Plant materials

We used a P. trichocarpa GW AS population that was recently expanded to include a
total of 1,323 genotypes (Yates et al., 2021); subsets of this population were used in previous
GWAS projects (Tuskan et al., 2018; Bdeir et al., 2019; Weighill et al., 2019; Chhetri et al.,
2020; Chen et al., 2021; Nagle et al., 2022). This population is comprised of variation in wild P.
trichocarpa spanning regions of British Columbia, Washington, Oregon, Idaho and northern
California. Clone banks for this GWAS population were produced in multiple locations, among
which a replicate in a Corvallis, OR field location was utilized to obtain cuttings for this study.
This study was performed using materials collected as described in previous work (Nagle et al.,
2022). In summary, dormant cuttings were collected in the winters of 2018, 2019 and 2020, then
rooted up to a year later and grown in a greenhouse. Finally, fresh cuttings were collected and

frozen for 2-4 weeks, then used for rooting assays.
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93  Assay of rooting

94 Cuttings were placed in 50mL Falcon tubes with water and allowed to root. Beginning
95  two weeks later, images were collected at weekly timepoints for four weeks. Prior to taking each
96  image, plants were removed from water and placed on top of a surface with roots arranged to
97  separate putative lateral and basal roots. To aid their recognition by our machine vision pipeline,
98  basal roots were laid downward atop blue felt while lateral roots were laid to the side on gray
99  felt. Each image also included a label and ruler. Plants were imaged from above using a Canon
100  Rebel XSi DSLR camera attached to a mount and facing downward. Due to practical limitations
101  in the number of cuttings that could be studied at once, the study was divided into eight
102 “phases,” each of which featured ~400 cuttings, including two replicates for each of ~200 given
103 genotypes.
104  Computer vision pipeline

105 We adopted the DeepLab network (Chen et al., 2018) with backbone ResNet50 (He et

106  al., 2016) as our segmentation model for its efficiency and accuracy. We trained two different
107  segmentation models: the first was used to segment an image into background, plant, ruler, and
108  label (Model 1); the second was used to segment the image into background, leaf, stem, and root
109  (Model 2). Below, we introduce how we collected training labels to train the two networks and
110 then used the two networks to measure biological traits of interest.

111 Because images were collected in various orientations, with the camera in either portrait
112 or landscape mode, we first rotated images to a uniform orientation. Next, the background was
113 segmented based on color thresholding. As the plant, ruler and label varied in color and were
114  found in approximately similar positions from image to image, we first segmented these

115  components based on their spatial positioning and colors using mean-shift segmentation and k-
116  means clustering. Images successfully segmented as such were used to produce a training set
117  with approximately 500 images used to train a deep model for segmentation of the remaining
118  images. Inference was performed using this model, and correct examples were used to retrain the
119  model with an expanded dataset, resulting in a final model trained with 2,239 examples (Deep
120 Model 1). Afterward, to segment the plant into stem, root and leaf, we performed mean-shift

121  segmentation and applied a location threshold to produce a training set of approximately 900

122 images. These were used to train a second deep model and the training set was again expanded
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123 by running inference on new images and selecting correct results, resulting in a final training set
124 with 3,496 training examples (Deep Model 2).

125 Following training of both deep segmentation models, they were applied for inference of
126  the full dataset. All images were standardized to the same orientation, followed by deployment of
127  both models. The final result of segmentation was separation of background, leaf, stem, root,
128  ruler, and label for each image. Next, the segmentation results were further analyzed to produce
129  statistics on biological traits of interest. Since the camera height varied across images, we

130  computed the number of pixels per ruler width for each image to enable standardization via the
131  actual size represented by a single pixel.

132 We proceeded to compute the lengths and area of roots in centimeters, as well as the

133 diameters of stems. Root statistics were computed as follows. (1) First, we isolated the segment
134 of root by distinct connections to the stem via connected components (2) The background was
135  classified as top background and bottom background based on the color of the felt background
136  below the stem, allowing each root to be classified as lateral or basal depending on the

137  background. (3) For each basal and lateral root, we computed root length using a distance map
138  and root area by counting pixels. Longest root length (LRL) and total root area were computed
139  separately for basal and lateral roots in each image. RGB and false-color images of the

140  segmentation process are shown in Fig. 1.
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plant/ruler/label

leaf/stem/root

(E) Total area (cm?) Longest root length (cm)
Basal root 3135 9.3
Lateral root 356.5 10.6

Figure 1. Workflow for phenotyping root traits: (A) RGB images were collected for plants with
rulers and labels. (B) The first round of segmentation was performed to separate the plant, ruler
and label. (C) A subsequent round of segmentation separated the roots by their type (basal or
lateral, shown respectively in red and green). (D) Finally, the length of each root was measured
from root tip to connection to stem. (E) An example of total area and longest root length

computed over basal and lateral types of adventitious roots.

Data Error Checking Methods

Source images were compared to segmented images (e.g. Fig. 1) to identify cases where
data contained errors for the length, area, type or number of roots. Each image was scored

according to the error or errors observed (Table 1). Images were then sorted into folders
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145  according to the types of data errors they contained using a spreadsheet and an R script.

146

Error ID | Description Frequency among images
0 No significant error 81.3%

1 Undetected roots 1.3%

2 Incorrect number of roots 7.2%

3 Undetected basal root, but detected lateral root 0.2%

4 Incorrectly identified feature (e.g. basal root labeled as lateral) | 4.6%

5 Root label shorter than root in image (truncation) 2.9%

6 Errant detection of root where no root exists 0.3%

Table 1. Descriptions of error types and their frequencies

147  Data Correction Methods

148  Imagel version 1.53a software and the SmartRoot version 4.21 plugin were installed and used to
149  make all measurements. Source images were opened in ImageJ with the SmartRoot plugin then
150  converted to an 8-bit greyscale and inverted. The global scale was then set to 1 pixel/unit in

151  ImagelJ and 2.54 DPI in SmartRoot to acquire units of pixels for all measurements. Roots that
152  required correction of length data were then traced using the SmartRoot Trace Root tool. To

153  calculate root areas, the image color threshold was adjusted until only the roots were highlighted,
154  then the area was selected using the Wand Tracing tool and measured in ImageJ. Root types

155  were corrected based on manual judgement of whether a root was a lateral root or basal root,

156  while recalling that these were placed on different areas of felt during imaging as previously

157  described.

158  Data preparation

159 Mean values of each trait were computed across replicates for each genotype and used for
160  downstream GWAS. Principal component analysis (PCA) was performed using “stats::princomp’
161  in R to produce PCs representing trends across traits and timepoints. PCA was performed over
162  three batches of traits: 1) area of basal or lateral roots at all timepoints; 2) LRL for basal or

163 lateral roots at all timepoints; and 3) all traits, including area and LRL of basal or lateral root at
164  all timepoints. Scree plots were consulted to determine the numbers of PCs, representing

165  significant variation for each batch, to be used for downstream GWAS.
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166 Normality of traits was assessed in parallel to traits for our published GWAS of in planta
167  regeneration in poplar, using the same methods (Nagle ef al., 2022). In short, we assessed

168  normality of untransformed traits using Q-Q plots, histograms, Shapiro-Wilks tests and Pearson
169  correlation coefficients with theoretical normal distributions, then applied necessary

170  transformations including Box-Cox transformations, rank-based inverse normal transformations,
171  removal of zero values and removal of outliers on a case-by-case basis for conservative but

172 adequate transformation of each trait (Figure S2, Table S1-2).

173  Association mapping

174 Association mapping of all traits was performed in parallel with traits in our published
175  GWAS of in planta regeneration, using methods and SNP sets detailed in this previous work
176  (Nagle et al., 2022). To summarize, four GWAS methods were used: 1) Genome-wide Efficient
177  Mixed Model Association (GEMMA; Zhou & Stephens, 2012); 2) Generalized Mixed Model
178  Association Test (GMMAT; Chen et al., 2016); 3) Fixed and Random Model Circulating

179  Probability Unification (FarmCPU; Liu ef al., 2016), specifically the implementation

180  FarmCPUpp (Kusmec & Schnable, 2018); and 4) SNP-set (sequence) Kernel Association Test
181  (SKAT; Ionita-Laza ef al., 2013) with the Multi-Threaded Monte Carlo SKAT (MTMC-SKAT)
182 R extension we developed. Versions of trait data transformed toward normal distributions were
183  analyzed with GEMMA and FarmCPU, while binarized traits were analyzed with GMMAT and
184  untransformed traits with MTMC-SKAT using resampling to avoid violations of linear model
185  assumptions for high-confidence associations. GEMMA and GMMAT were run using kinship
186  matrices to adjust for population stratification, with a set of 13.2 million SNPs with a minor
187  allele frequency (MAF) threshold of 1% and that are missing in no more than 10% of genotypes.
188  FarmCPU uses a novel approach to adjust for population stratification while avoiding

189  overcorrection and was run with a SNP set with MAF above 5%, missing rate below 10% and
190  pruning based on linkage disequilibrium (LD). MTMC-SKAT was run using six principal

191  components derived from SNP data to correct for population stratification and a set of 34.0 M
192 SNPs with missing rate below 15%. MTMC-SKAT was deployed on the high-performance

193  cluster COMET, made available through NSF XSEDE (Towns et al., 2014). Stem diameter and
194  phase were used as covariates for all GWAS methods.

195 To identify QTLs from results that are statistically significant, we computed multiple

196  testing correction thresholds using the Bonferroni method (parameters: a = 0.05, N tests equal to
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197 N SNPs) and Benjamini-Hochberg false discovery rate (o = 0.10). We further sought to identify
198  candidate genes that failed to meet significance according to either of these criteria, but were
199  represented by a peak of QTLs showing a pattern of LD decay suggestive of a causative

200  association. Toward this end, we applied an implementation of the Augmented Rank Truncation
201  (ART; Vsevolozhskaya et al., 2019) over GEMMA and GMMAT results as we previously

202  described (Nagle et al., 2022).

203  Results

204  Principal components describe complex patterns of root development

205 Significant patterns of root development over time and across root types (basal and

206 lateral) were summarized by PCA. For each of the three batches of traits used for PCA, the top
207  two PCs appear to explain significant portions of variance as indicated by Scree plots. PCA was
208  performed over three batches as previously described (Methods and Materials). The first two

209  batches, for root area or root length traits, each across basal and lateral roots and timepoints, both
210  produced a first PC representing lateral root development independent of basal root and a second
211  PC representing a lack of basal root development independent of lateral root (Fig. 2, Fig. S1).
212 For the third batch, including all area and length traits together, the first PC shows a trend of

213 overall root development and the second shows a preference for development of basal root rather

214  than lateral root (Fig. S2).
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Figure 2. Results from PCA over all root area traits, across root type (basal or lateral) and all
four timepoints of data collection: (A) Scree plot showing proportion of variance explained by
each PC; (B) Loadings for top two PCs.

215

216  Use of multiple GWAS methods vielded numerous associations

217  We evaluated results to identify candidate QTLs and genes implicated for all 13 traits with h%snp
218  above 0.10, three of which were evaluated with two different transformations due to ambiguity in
219  the ideal transformation (Table S1-S3). We term a “QTL peak’ as any SNP or SNP window

220  associated with a given trait that is not within 30kb of any other SNP or SNP window with a

221  lower p-value for the associated trait, thus appearing as the peak position of a group of signals on
222 a Manbhattan plot. Only MTMC-SKAT yielded QTL peaks passing the conventional Bonferroni
223 threshold under the assumption that each test (SNP window) is independent. MTMC-SKAT

224 using 3kb SNP windows yielded a total of 31 unique Bonferroni-significant associations across
225  all traits, 22 of which had a window center within 5kb of an annotated gene, as well as 164

226  unique associations passing the FDR (a = 0.10) and/or the conservative Bonferroni threshold

227 (112 of which had window centers within 5kb of a gene). The apparent power of SKAT is in
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228  contrast to GEMMA and GMMAT; GEMMA yielded only two associations passing the FDR (a
229  =0.10) threshold and none passing the conservative Bonferroni threshold, while GMMAT

230  yielded none passing either. Statistical power for GEMMA and GMMAT was greatly increased
231 by the use of ART to combine signals across windows of SNPs, which enabled detection of over
232 100 associations for GEMMA and eight for GMMAT (Fig. 3-4). Fig.5 provides an example of
233 manual inspection of QTL peaks using integrative genomics viewer (IGV; Thorvaldsdéttir et al.,
234 2013). Associations of note that are addressed in the discussion section are presented in Table 2,
235  with summary statistics for all associations in Table S4 and details presented in Table S5-8. No

236  significant associations were found using FarmCPU.
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Figure 3. Barplots summarizing the numbers of associations from each GWAS method, with
each type of significance threshold, as well as within a 5kb distance threshold to the nearest
gene. QTL peaks were taken as the point with the lowest p-value at any given position near a
significant SNP, where multiple points within the same peak may otherwise pass a given
significance threshold. (A) QTL peaks passing the conservative Bonferroni threshold, given an
assumption of independence of all SNP associations; (B) QTL peaks passing Benjamini-
Hochberg threshold (FDR; a. = 0.10) and/or the conservative Bonferroni Threshold. (C) QTL
peaks passing ART-Bonferroni threshold (o = 0.05, N of # 1kb windows in genome); ART was
only applied to the single-SNP GWAS methods, GEMMA and GMMAT.
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Figure 4. Manhattan plot of GEMMA results for the trait of longest lateral root length at week 3.
Black and orange solid lines represent Bonferroni significance thresholds for GEMMA results
with independent SNPs, and for ART applied to GEMMA over 1kb windows of SNPs. The black
dotted line represents the significance threshold with a false discovery rate of 10% for
independent SNP tests. Black circles represent tests of individual SNPs by GEMMA. Orange
triangles represent 1kb windows tested by ART applied to GEMMA results.
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Figure 5. Close-up view of Manhattan plots aligned with P. trichocarpa genome annotation
(v3.1) using IGV. (A) SKAT results (prior to resampling top associations with MTMC-SKAT)
for LRL at week three display an association with a possible promoter region of a putative
homolog of DEFECTIVE ANTHER DEHISCENCE 1; (B) GEMMA results (without GEMMA-
ART displayed) for basal root area at week five display an association with a ~2kb region of
exons and short introns of a putative leucine repeat rich transmembrane protein kinase. Exons are
visualized as thickened portions on the gene track. Plots are displayed without MTMC-SKAT
and GEMMA-ART p-values for simplicity; these statistics can be found in Table S6-7. Boxes

with gene accession IDs, strand of gene and gene info were added manually to IGV plots.
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Gene candidates Arabidopsis homologs
Trait Accession Accession
Threshold Method Transformation Dist. QTL Pos. Description Score Similarity
name ID ID
MTMC- Intragenic, Potri. novel plant snare AT
Bonf. RA PC2 Untransformed 3,509 . 403 92.3%
SKAT non-exonic 001G149200 11 2G35190
RA PC2;
Basal RA
growth ~ MTMC- Potri.
Bonf. Untransformed 2,034 5 lincRNA NA NA NA
wk. 2-5;  SKAT 003G054300
Basal RA
wk. 5
FASCICLIN-like
FDR (o= Overall MTMC- Potri. AT
Untransformed 22 3 arabinogalactan- 189 83.0%
0.1) PC2 SKAT 004G210600 i 5G60490
protein 12
MTMC- Potri. AT
Bonf. RA PCl1 Untransformed 52 5' CYCLIN D3;2 361 74.9%
SKAT 005G141900 5G67260
RA PC2;
Basal RA
5" indoleacetic acid-
growth ~ MTMC- 730; Potri. AT
Bonf. Untransformed Intragenic, induced protein 162 86.0%
wk. 2-5;  SKAT 270 006G161200 3G04730
non-exonic 16
Basal RA
wk. 5
Lateral
MTMC- Potri.
Bonf. LRL (wk. Untransformed 596 5! lincRNA NA NA NA
3 SKAT 006G193400
RA PC2;
LRL PC2;
Basal RA
growth
MTMC- 1,570; Potri. AT
Bonf. (wk. 2-5); Untransformed Exonic histidine kinase 1 1634 81.8%
SKAT 2,570 007G056400 2G17820
Basal RA
(wk. 5);
Overall
PC2
MTMC- 10,480; Potri. Protein kinase AT
Bonf. RA PC1 Untransformed h) 1828 81.7%
SKAT 11,480 010G031800 | family protein ~ 5G18700
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Basal RA Potri.
GEMMA Box-Cox 0 Exonic
(wk. 5) 016G061500
RA )
o ) Potri.
growth GMMAT Binarized trait 2,675 h)
008G072700
(wk. 2-5)

Leucine-rich

repeat AT
622 62.7%
transmembrane  1G53440
protein kinase
AT
ferritin 2; 3G11050; 373; 83.1%;
ferritin 4 AT 358 84.9%
2G40300

Table 2. Twenty gene candidates with Arabidopsis homologs or encoding lincRNAs with

putative role in biological processes of root development. For each candidate with an

Arabidopsis homolog, relevant literature is summarized (Discussion). QTLs were identified from

various traits related to root area (RA) and longest root length (LRL), for either basal or lateral

ARs, or both types combined. For some associations found by MTMC-SKAT, two nearby SNP

windows have equal p-values for association (1*10°7) due to the practical limits of our

permutation analysis. Remaining associations are presented in Tables S5-S8.


https://doi.org/10.1101/2022.06.14.496209
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.14.496209; this version posted June 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

237  Discussion

238  As discussed in depth below, we reported a high number of putative associations from our

239  GWAS pipeline. FarmCPU, however, gave no significant associations, and only a single

240  candidate association in our prior study using this pipeline (Nagle et al., 2022). We are unaware
241  of any other reports of this GWAS method being used in poplar. We speculate that the lack of
242 success with this method may stem from the high SNP density and rapid linkage disequilibrium
243 (LD) decay in poplar, the unique approach FarmCPU employs in controlling for population

244  stratification using a limited set of SNPs, and/or the LD-based pruning that was needed to avoid

245  errors during this process for the SNP set we used.

246  Two putative modes of adventitious root regeneration in poplar

247 We observed that when ARs grew from the base of cuttings, the base was often enlarged,
248  distorted, and disorganized in appearance, resembling the calli found in in vitro tissue cultures or
249  atin planta wound sites (Fig. 6). We term these “basal ARs.” Although we are aware of little
250  research into this specific type of AR in poplar, research in Populus balsamifera (a closely

251  related species interfertile with P. trichocarpa), suggested that AR development depends on

252 calcium and pH, and that hard callus may inhibit root emergence (Cormack, 1965). More

253 recently, basal ARs growing from callus have been studied in Pinus (Rasmussen et al., 2009).
254  These contrast with ARs growing from the sides of cuttings (“lateral ARs”), which appeared to
255  grow directly from the stem without an intermediate callus stage (Fig. 6). Prior histological

256  research in poplar indicated that lateral ARs appear to originate from secondary meristematic
257  tissue in the cambium (Rigal ef al., 2012). We therefore set up our phenomics pipeline to

258  measure lateral and basal ARs separately, assuming they are biologically distinct and likely

259  originate from different progenitor cells. Their high degree of independence was supported by
260  our PCA analysis, which by inspection of loadings appear to represent “ratios” between the two
261  types of root (Fig. 2, Fig. S1-2). There was also a number of GWAS associations for one root
262  type or the other, or for these PCs (discussed below).
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Figure 6. Selected images collected during root phenotyping, with zoomed-in views showing
callus or callus-like tissue at the base of stems from which basal ARs emerge. (A) Genotype

BESC-153, (B) BESC-327, (C) GW-9914, and (D) BESC-337.

Phenomics workflow accelerated phenotyping but required human intervention

Our phenomics workflow using machine vision enabled us to extract root trait data from
a number of images that would otherwise have been infeasible for humans unassisted. The
training of models for this workflow did not require manual preparation of ground-truth semantic
labels by humans using an annotation interface, but rather utilized ground-truth labels prepared
by thresholding and cropping. Although this approach offers the advantage of accelerated

training dataset preparation, it lacks the ability for machine vision results to be compared to
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271  human-produced ground truth labels using statistics such as intersection over union (IoU). To
272 assess model performance, we inspected each image and grouped them according to notable

273 errors that we observed. The most frequent errors were in root counting, found in at least 7.2.%
274  of images (Table 1). Root count statistics were not used in GWAS because of the relatively high
275  error rate and because the summary statistics of aggregate root area provides a proxy for root
276  system proliferation, while being more robust to errors. Another common type of error was of
277  incorrectly applied labels, for example basal roots labeled as lateral roots or vice versa (Table 1).
278  With our system, we attempted to facilitate the labeling of basal and lateral roots by manually
279  placing roots of each type in areas with different background colors (Fig. 6). We are not aware of
280  other root phenomics workflows that aim to distinguish basal and lateral ARs, although several
281  distinguished root type for non-adventitious roots, such as for alfalfa (Xu et al., 2022),

282  Arabidopsis, wheat and Brassica (Yasrab et al., 2019).

283 We attempted to correct errors using ImageJ with the SmartRoot plugin (Methods and
284  Materials). This error correction was performed on approximately 18.7% of images. Considering
285  our hybrid approach utilizing both machine vision and manual correction of errant labels, our
286  method is comparable to RootReader (Clark ef al., 2013), a tool that similarly performs initial
287  labeling of images and then allows for user correction. The scope of our work did not include the
288  development of a user-friendly and generalizable root annotation method that can be practically
289  applied by other labs with diverse imaging conditions and across diverse species of plants.

290  However, several such tools have been recently developed, including RootNav 2.0, which has
291  demonstrated an ability via transfer learning to generalize across different background types and

292  species including maize, Arabidopsis and Brassica (Yasrab et al., 2019).

293  Gene candidates represent diverse functional roles

294 Regulators of cell division and structure

295 D-type cyclins regulate the G1-to-S progression of the cell cycle and comprise a family
296  of ten known proteins in Arabidopsis and 22 in poplar (Dong ef al., 2011). Potri.005G141900
297  encodes a homolog of CYCLIN D3;2 (CYCD3;2) or CYCLIN D3;3 (CYCD3;3), which are
298  among at least five D-type cyclins known to have roles in root precursor cells in embryonic
299  and/or mature tissues (De Veylder et al., 1999; Nieuwland et al., 2009; Collins et al., 2012;
300 Forzani et al., 2014). A comparative transcriptomic study in Populus found this gene to be

301 differentially expressed between two genotypes with contrasting rates of stem growth and


https://doi.org/10.1101/2022.06.14.496209
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.14.496209; this version posted June 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

302  biomass accumulation (Han et al., 2020). In Arabidopsis, concurrent knockout of all three

303  members of the CYCD3 clade led to retarded seed development, while overexpression of

304 CYCD3;1 led to premature, irregular and disorganized division of the hypophysis (Collins et al.,
305  2012). Transcription of CYCD3;1 and CYCD3;3 is negatively regulated by WUSCHEL-

306 ASSOCIATED HOMEOBOX 5 (Forzani et al., 2014), a poplar homolog of which enhances AR
307  in poplar when overexpressed (Li et al., 2018). Although we are unaware of any reports of

308  mutant phenotypes resulting from CYCD3 overexpression or knockout in mature roots, several
309 relevant root-related phenotypes have been reported for CYCD2 and CYCD4 members.

310 CYCLIN D4;1 knockout was reported to reduce pericycle cell divisions as well as the number of
311 Ilateral roots, while these phenotypes were rescued by exogenous auxin, perhaps due to auxin-
312 responsiveness of D-type cyclins with overlapping functional roles (Nieuwland et al., 2009).

313 CYCD2;1 overexpression led to increased root apical meristem divisions and increased

314  sensitivity to effects of exogenous auxin in promoting lateral root formation, while knockout led
315  toreduced auxin sensitivity although no reduction in RAM divisions, possibly due to redundant
316  homologs (Sanz et al., 2011).

317 Potri.001G149200 encodes a homolog of NOVEL PLANT SNARE 11 (NPSN11), which
318 is believed to interact with other SNARE proteins to provide energy needed for the fusion of
319  membranes that give rise to the cell plate during cytokinesis (Zheng et al., 2002). Knockout of
320 NPSNI11 alone yields no mutant phenotype in Arabidopsis, putatively due to redundancy with a
321  similar SNARE protein. Defects in cytokinesis and embryo development are conferred by

322 simultaneous knockout of NSPN11 and the functionally redundant SNAP33 (El Kasmi et al.,
323 2013).

324 Potri.004G210600 and Potri.018G097000 encode members of the FASICLIN-LIKE

325 ARABINOGALACTAN (FLA) family, which consists of 21 members in Arabidopsis and has
326  established roles in adhesion in cell walls, plasma membranes and extracellular matrices

327  (reviewed by Zang et al., 2015). Transcriptomic analysis of tension wood development in

328  Populus provides support for a role of Potri.004G210600 in cell wall structure (Bygdell ef al.,
329 2017). Knockout of Arabidopsis FLA4, also known as SALT OVERSENSITIVE 5, was reported
330  to reduce root elongation, cell wall thickness and root tip swelling under salt stress (Shi et al.,

331  2003) and experiments with ethylene inhibitors suggest that FLA4 functions downstream of
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332 ethylene signaling (Xu et al., 2008). We are unaware of reports of root-related mutant

333 phenotypes of other FLA members.

334 Cell expansion is influenced by bundling and rearrangements of actin filaments, regulated
335  atleast in part by auxin and cytokinin (Zhu & Geisler, 2015; Scheuring et al., 2016; Arieti &
336 Staiger, 2020). We report two gene candidates encoding putative actins or actin-like proteins,
337  Potri.010G202000 and Potri.012G081500. In Arabidopsis, loss-of-function mutants of ACTIN 7
338  displayed reduced root length and reduced cell divisions in the proximal meristem (PM) of root
339  tips as well as an increased number of transition zone (TZ) cells, while dual mutants of ACTIN 2
340 and ACTIN 8 presented a loss of root hairs and increases in TZ cells with a lack of PM effects
341 (Kandasamy et al., 2009; Takatsuka et al., 2018). The variable effects of different auxins on root
342 development, together with the lack of clear homology for these actin-related gene candidates,
343  welcome physiological investigation of the mechanisms by which these gene candidates may

344  affect root in poplar.

345  Regulators of hormone signaling

346 Potri.006G161200 encodes a member of the Aux/IAA F-Box protein family, believed to
347  have 35 members in Populus trichocarpa (Kalluri et al., 2007) and 29 in Arabidopsis

348  (Overvoorde et al., 2005), and appears to be a homolog of IAA16 or another member of the 29-
349  gene IAA family. In Arabidopsis, Aux/IAA proteins have been well-characterized and are known
350  to undergo auxin-dependent proteasomal degradation and to function via auxin-dependent

351  protein-protein interactions that repress the transcriptional activity of various Auxin Response
352  Factor (ARF) family members (reviewed by (Luo et al., 2018)). A specific role for ARF

353  members in regulating AR development is believed to function via the action of downstream

354  GRETCHEN HAGEN family genes responsible for conjugating jasmonic acid (JA) into bioactive
355  jasmonoyl-L-isoleucine (JA-Ile). Evidence for conservation of this pathway in Populus has been
356  reported, with enhanced or delayed AR development respectively resulting from overexpression
357  or knockdown of a homolog of TRANSPORT INHIBITOR RESPONSE 1, responsible for

358  Aux/IAA proteasomal degradation and found to interact with a Populus homolog of IAA28 (Shu,
359  etal. 2019).

360 Further evidence for a role of JA signaling in rooting of poplar is indicated by an

361  association with Potri.014G047900, encoding a homolog of DEFECTIVE IN ANTHER

362 DEHISCHENCEI1 (DAD1), which catalyzes the first step of JA biosynthesis (Ishiguro et al.,
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363  2001). Several possible roles for JA in adventitious rooting of Populus have been discussed in a
364  recent review; in summary, these roles may include cross-talk with auxin signaling among

365  others, and are evidenced to vary across genera (Bannoud & Bellini, 2021). Our previous GWAS
366  of in planta regeneration in poplar support a major role for JA signaling in callus and shoot

367  regeneration (Nagle ef al., 2022; and sources cited within), via pathways that are likely to be

368 relevant to adventitious rooting considering the previously discussed emergence of basal ARs

369  from callus.

370  Regulators of post-translational modifications

371 Among our candidate genes, we report a notable number of genes encoding putative
372  catalysts of post-translational modifications (PTMs), including a histidine kinase

373  (Potri.007G056400), serine/threonine kinases (Potri.011G028200, Potri.010G031800,

374  Potri.019G127200 and Potri.016G061500), a serine/threonine phosphatase (Potri.015G105000)
375  and a glutathione-S-transferase (Potri.001G436800). We are particularly unsure of the precise
376  mechanisms by which these candidates affect root traits because their PTM activity may be

377  highly nonspecific and a majority of plant genes are likely to undergo PTMs. Evidence has been
378  found for PTMs of over 12,000 substrates in Arabidopsis (Xue ef al., 2022), including

379  arabinogalactans (Schultz et al 2004) and microtubule proteins involved in cell structure and
380  division (Parrotta et al., 2014) as well as hormone signal regulators (reviewed by Hill, 2015).
381  Specific interactions between PTM catalysts and other gene candidates can be interrogated via
382  statistical tests for epistasis.

383 Arabidopsis mutants of certain PTM-related candidate homologs display phenotypes
384  relevant to root development. Mutants of the serine/threonine phosphatase PROPYZAMIND-
385  HYPERSENSITIVE 1 (homolog of Potri.015G105000) demonstrate embryo fatality (for null
386  mutants) or microtubule defects leading to left-handed helical growth of roots in seedlings (for
387  mutants with reduced phosphatase activity) (Naoi and Hashimoto, 2004). HISTIDINE KINASE
388 1 (homolog of Potri.007G056400) is believed to have a role in abscisic acid (ABA) signaling,
389 indicated by increased sensitivity of seedlings to the effects of ABA in inhibiting germination
390 (Tran et al., 2007). In Populus, the putative histidine kinase Potri.007G056400 was found to be
391  differentially expressed in Populus roots in response to boron deficiency (Su ef al., 2019) and the
392 putative serine/threonine kinase Potri.015G105000 was previously identified in GWAS as an
393  association with bud set and growth period (McKown et al., 2014).
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394 Noncoding RNAs

395 We sought to identify possible targets of putative ncRNAs that were found as

396  associations in our GWAS, and indicated by the GreeNC pipeline to be probable ncRNAs

397  (Di Marsico et al., 2022). Potri.003G054300 shares significant homology with the predicted

398  exon of Potri.006G260300, a gene that appears to encode a transmembrane protein but for which
399  we were unable to identify a homolog in model species. We did not find any known protein-

400  coding genes that Potri.006G193400 and Potri.017G083100 align well with. We note that

401  noncoding RNAs may be involved in processes other than RNA interference of coding genes,
402  such as in ribonucleoprotein complexes and chromatin modification (reviewed by Statello ef al.,
403  2021). Whereas gene-silencing effects of ncRNAs can be predicted by sequence alignment, other

404  roles may not be unraveled without wet-lab protocols (reviewed by Lucero ef al., 2021).

405  Regulators of reactive oxygen species (ROS) signaling

406 ROS can affect or correspond to root development through multiple mechanisms. High
407  levels of ROS are associated with various biotic and abiotic stressors in plants (Sharma et al.,
408  2019; Qamer et al., 2021) and are well-established as a cause of DNA and tissue damage across
409  eukaryotes (Arfin ef al., 2021). As a means of post-transcriptional regulation, ROS can catalyze
410  activation of deactivation of transcription factors (Wu et al., 2012; Kong et al., 2018) and other
411  developmental genes such as cell cycle regulators (Yi et al., 2014). Additionally, the previously
412  discussed roles of auxin in root signaling relate to ROS as the bioactive auxin IAA is produced by
413  a peroxisome-mediated reaction involving the precursor IBA, producing nitric oxide as a
414  byproduct (reviewed by Damodaran & Strader, 2019). Moreover, nitric oxide is involved in
415  nitrosylation of proteins including the auxin receptor TRANSPORT INHIBITOR RESPONSE
416  (TIR1), promoting its interaction with Aux/IAA proteins (Terrile et al., 2012) such as the
417  previously discussed IAA16. NO and ROS also have roles in mediating symbioses with
418  mycorrhizae as well as pathogen defense (reviewed by Martinez-Medina et al., 2019) although
419  these roles are likely not relevant to our root assays in our laboratory using water rather than soil.
420 Oxidative stress is mitigated in part by ferritins, proteins that sequester Fe and thus

421  prevent Fe from reacting with oxygen and producing oxygen radicals. Potri.008G072700

422  encodes a homolog of the four-member ferritin family in Arabidopsis, and is most closely related
423  to FERRITIN 2 (greater Smith-Waterman alignment score) and FERRITIN 4 (greater residue

424  similarity). The latter homolog has been studied in the context of root system architecture. While
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425  increasing concentrations of Fe in media led to an increase in lateral root density, this effect was
426  abolished in triple knockouts of FERRITIN 1, 2 and 4 (Reyt ef al., 2015).

427 In addition to catalyzing a PTM of endogenous proteins as previously discussed,

428  glutathione S-transferases (GSTs) such as Potri.001G436800 are well-known to have roles in
429  detoxification of xenobiotics such as herbicides, and have lesser-characterized roles in regulation
430  of redox balance via glutathione, an antioxidant (reviewed by Herndndez Estévez & Rodriguez
431  Hernandez, 2020). Transgenic studies have found Arabidopsis lines overexpressing various GST
432  homologs to have increased tolerance to oxidative stress (Sharma et al., 2014; Xu et al., 2017)
433 and enhanced root proliferation, although more research is needed to determine the specific

434  mechanism or mechanisms by which GSTs regulate root development, whether via ROS, PTMs
435  or other roles (Chen et al., 2012).

436 Other enzymes have more direct roles in oxidative stress and signaling, such as

437  peroxidases that catalyze redox reactions (Yoshida et al., 2003). Potri.004G023100 is an

438  example of a putative peroxidase and is closely related to Arabidopsis accessions AT3G01190
439  and AT5G15180, both of which are highly expressed in root apices (Klepikova et al., 2016) but

440  have not been characterized in mutant studies to our knowledge.

441 Agreement with previous GWAS of adventitious rooting in poplar

442 Very few of our gene candidates were also identified as possible regulators of

443  adventitious root traits in published studies. In a prior GWAS in Populus deltoides x simonii that
444  employed 434 genotypes and yield 224 QTLs, with multiple possible candidate genes being
445  proposed for a given QTL, an uncharacterized gene believed to be a transcription factor

446  (Potri.005G154200), as well as a putative xyloglucan endotransglucosylase/hydrolase

447  (Potri.016G098600), were associated with rooting traits. They appeared as associations with
448  lateral LRL at week three in our work, and with total number of roots in this prior work (Table
449  S6). Potri.015G026500 encodes an uncharacterized putative phospholipase that is found as
450  associated with lateral LRL at week 3 in our work, and with root volume and total root number
451  in this prior work. Potri.016G098500 encodes a putative heme-binding protein we found to be
452  associated with the first PC of LRL traits (across root types and timepoints) and that Sun et al.
453  (2019), found associated with LRL (Table S7). Possible reasons for the relatively low level of

454  overlap between these studies include differences between species of poplar, variation in GWAS
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455  populations and statistical methods, as well as the use of different rooting assays (Sun et al.,

456 2019).

457  Conclusion

458 We performed GWAS to identify regulators of adventitious rooting capacity in 1,148
459  genotypes from a P. trichocarpa clone bank. To facilitate the collection of quantitative measures
460  of adventitious root development, we employed a phenotyping system tailored for our

461  adventitious rooting assay in poplar. The hundreds of gene candidates identified include

462  regulators of cell division and structure, hormone signaling, reactive oxygen species signaling
463  and post-translational modifications as well as many genes of miscellaneous or unknown

464  function. The distinct origins of basal and lateral roots were supported both by our multivariate
465  phenotype analysis and GWAS associations. As root development is a complex and polygenic
466  process, future research will benefit from investigation of interactions between genes such as the
467  candidates identified here, functional studies such as through mutagenesis, and differential

468  rooting responses to environmental treatments.
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