

1 **HIV skews the SARS-CoV-2 B cell response toward an extrafollicular maturation pathway**

2 Robert Krause^{1,2}, Jumari Snyman^{1,2,3}, Hwa Shi-Hsia^{1,5}, Daniel Muema^{1,2,3}, Farina Karim^{1,2}, Yashica
3 Ganga¹, Abigail Ngoepe¹, Yenzekile Zungu^{1,2}, Inbal Gazy^{2,4}, Mallory Bernstein¹, Khadija Khan^{1,2}, Matilda
4 Mazibuko¹, Ntombifuthi Mthabela¹, Dirhona Ramjit¹, COMMIT-KZN Team, Oliver Limbo⁶, Joseph
5 Jardine⁶, Devin Sok⁶, Ian Wilson⁷, Willem Hanekom^{1,5}, Alex Sigal^{1,2,8,9}, Henrik Kloverpris^{1,5,10}, Thunbi
6 Ndung'u^{1,2,3,5,8}, Alasdair Leslie^{1,5}

7
8 ¹Africa Health Research Institute, KwaZulu-Natal, South Africa

9 ²School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South
10 Africa

11 ³HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-
12 Natal, Durban, South Africa

13 ⁴KwaZulu-Natal Research Innovation and Sequencing Platform, Durban 4001, South Africa

14 ⁵Division of Infection and Immunity, University College London, London, UK

15 ⁶International AIDS Vaccine Initiative, NY, USA

16 ⁷The Scripps Research Institute, La Jolla, CA, USA

17 ⁸Max Planck Institute for Infection Biology, Berlin, Germany

18 ⁹Centre for the AIDS Programme of Research in South Africa, Durban, South Africa

19 ¹⁰Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark

20

21 Background:

22 HIV infection dysregulates the B cell compartment, affecting memory B cell formation and the
23 antibody response to infection and vaccination. Understanding the B cell response to SARS-CoV-2 in
24 people living with HIV (PLWH) may explain the increased morbidity, reduced vaccine efficacy, reduced
25 clearance, and intra-host evolution of SARS-CoV-2 observed in some HIV-1 coinfections.

26 Methods:

27 We compared B cell responses to COVID-19 in PLWH and HIV negative (HIV-ve) patients in a cohort
28 recruited in Durban, South Africa, during the first pandemic wave in July 2020 using detailed flow
29 cytometry phenotyping of longitudinal samples with markers of B cell maturation, homing and
30 regulatory features.

31 Results:

32 This revealed a coordinated B cell response to COVID-19 that differed significantly between HIV-ve
33 and PLWH. Memory B cells in PLWH displayed evidence of reduced germinal center (GC) activity,
34 homing capacity and class-switching responses, with increased PD-L1 expression, and decreased Tfh
35 frequency. This was mirrored by increased extrafollicular (EF) activity, with dynamic changes in
36 activated double negative (DN2) and activated naïve B cells, which correlated with anti-RBD-titres in
37 these individuals. An elevated SARS-CoV-2 specific EF response in PLWH was confirmed using viral
38 spike and RBD bait proteins.

39 Conclusions:

40 Despite similar disease severity, these trends were highest in participants with uncontrolled HIV,
41 implicating HIV in driving these changes. EF B cell responses are rapid but give rise to lower affinity
42 antibodies, less durable long-term memory, and reduced capacity to adapt to new variants. Further
43 work is needed to determine the long-term effects of HIV on SARS-CoV-2 immunity, particularly as
44 new variants emerge.

45 Funding:

46 This work was supported by a grant from the Wellcome Trust to the Africa Health Research Institute
47 (Wellcome Trust Strategic Core Award [grant number 201433/Z/16/Z]). Additional funding was
48 received from the South African Department of Science and Innovation through the National Research
49 Foundation (South African Research Chairs Initiative, [grant number 64809]), and the Victor Daitz
50 Foundation.

51

52 **Introduction**

53 SARS-CoV-2 remains a threat to global health, especially in the light of new, more contagious variants
54 capable of escaping vaccine-induced neutralizing antibodies (Cele et al., 2021; Tada et al., 2021;
55 Tegally et al., 2021; Wibmer et al., 2021). Although vaccination may not prevent transmission, it is
56 generally effective at preventing severe disease, primarily via eliciting neutralizing antibodies targeting
57 the SARS-CoV-2 spike protein (Frater et al., 2021; Shinde et al., 2021; Tada et al., 2021). Risk factors
58 for severe disease, especially in unvaccinated people, include old age (>65), underlying lung and heart
59 disease; diabetes; and immune disorders such as those caused by HIV infection (Williamson et al.,
60 2020). HIV has also been associated with increased morbidity and mortality (Bhaskaran et al., 2021;
61 Western Cape Department of Health in collaboration with the National Institute for Communicable
62 Diseases, 2021), especially in patients with uncontrolled HIV viremia (Chanda et al., 2021) and in those
63 with CD4 counts below 200 cells/µl, emphasizing the need for effective antiretroviral therapy (ART)
64 (Karim et al., 2021). In addition, an inadequate immune response to COVID-19 is associated with
65 prolonged SARS-CoV-2 infection and high intra-host mutation rates in both uncontrolled HIV and
66 patients on immune-suppressing medication (Cele et al., 2022; McCormick, Jacobs, & Mellors, 2021).
67 This highlights the importance of understanding the immune response to COVID-19 in patients with
68 HIV, especially in the South African context, which has a high HIV prevalence (Kharsany et al., 2018)
69 and SARS-CoV-2 attack rate (Tegally et al., 2021).

70 HIV affects the adaptive immune response by infecting CD4 T cells and reducing their numbers in
71 circulation (Dalglish et al., 1984; Westendorp et al., 1995). CD4 T follicular helper (Tfh) cells are a
72 critical component of the germinal center (GC) reaction as they assist the affinity maturation of their
73 cognate B cell's antigen receptor (BCR). The knock-on effects of HIV infection can therefore include
74 hypergammaglobulinemia (Lane et al., 1983), depleted resting memory, and increased naïve B cell
75 frequencies (Moir & Fauci, 2014). Interestingly, as with other inflammatory diseases
76 (Freudenhammer, Voll, Binder, Keller, & Warnatz, 2020), HIV is also associated with an increased
77 prevalence of "tissue-like" memory B cells in circulation (Ehrhardt et al., 2005; Knox et al., 2017; Moir
78 & Fauci, 2014). These CD27-ve CD21-ve B cells resemble the EF constituent now often referred to as
79 double-negative (DN) B cells (Jenks, Cashman, Woodruff, Lee, & Sanz, 2019; Jenks et al., 2020;
80 Woodruff et al., 2020). These HIV induced changes in the B cell compartment are likely to be
81 responsible for the reduced vaccine efficacy and durability observed in PLWH, including to novel SARS-
82 CoV-2 vaccines (Hassold et al., 2022; Kerneis et al., 2014), and may contribute to prolonged viremia
83 and increased viral mutation (Cele et al., 2022; Karim et al., 2021).

84 We, therefore, investigated the effect of HIV on the B cell response to SARS-CoV-2 infection, using a
85 comprehensive B cell phenotyping approach and B cell baits to identify SARS-CoV-2 specific B cells.
86 Blood samples were collected at weekly intervals from PLWH and HIV-ve study participants following
87 positive COVID-19 diagnosis during the first wave of infections in a cohort of patients from Durban,
88 South Africa (Karim et al., 2021). In this cohort of individuals with predominantly mild-moderate
89 disease, the B cell response to SARS-CoV-2 infection is strikingly different in PLWH and characterized
90 by reduced GC activity and a contrasting increase in EF activity.

91 **Results**

92 We investigated the longitudinal dynamics of the B cell response to SARS-CoV-2 infection in PLWH
93 compared to HIV-ve patients using a previously described COVID-19 cohort enrolled in Durban, South
94 Africa, during the first wave of the pandemic in July 2020 (Karim et al., 2021). A total of 70 SARS-CoV-
95 2 positive, confirmed by qPCR and serology, and 10 negative control participants were included in this
96 study. Of the SARS-CoV-2 positive participants, 28 (40%) were PLWH, and five (18%) had detectable
97 HIV in their plasma. SARS-CoV-2 infected participants were monitored weekly for 5 follow-up time
98 points. Control participants were recruited at a single time point and were confirmed as SARS-CoV-2
99 negative by qPCR and serology and included two PLWH individuals. As some of the participants
100 remained asymptomatic throughout the study, a timescale relating to days after positive diagnostic
101 swab rather than symptom onset was used (days post-diagnostic swab), which has been shown to
102 correlate well with symptom onset in the symptomatic patients from this cohort (Karim et al., 2021).

103 B cells were initially identified as CD19+ lymphocytes (**Figure 1A**), and the expression pattern of CD27
104 and CD38 was used to identify the canonical naïve, memory, and antibody-secreting cell (ASC) subsets
105 (Glass et al., 2020). The ASC population was further differentiated into CD138+ Plasma cells (PC) and
106 CD138- Plasmablasts (PB) (Glass et al., 2020). Considering all timepoints, HIV viremic participants had
107 lower absolute B cell numbers, although this difference did not reach statistical significance. However,
108 HIV-ve SARS-CoV-2 infected participants had significantly fewer naïve B cells and more memory B cells
109 than SARS-CoV-2 infected PLWH and SARS-CoV-2 uninfected controls (**Figure 1B**; (Moir & Fauci,
110 2014)). The ASC response was significantly elevated at SARS-CoV-2 viremic timepoints in both patient
111 groups, consistent with a robust ASC response to active infection (**Figure 1C**) but was not significantly
112 different in PLWH. In addition, although the frequency of ASC at the earliest timepoint tended to be
113 higher in the HIV-ve group, this was not statistically significant. Using the patient neutrophil-
114 lymphocyte ratio (NLR) as a proxy of inflammation (Ciccullo et al., 2020; Fu et al., 2020; Karim et al.,
115 2021), the frequency of ASC was found to be significantly higher at time points when the NLR ratio
116 was above 3 (**Figure 1D**) suggesting an association between disease severity and ASC frequency.
117 Finally, the PC:PB ratio was not significantly different between PLWH and HIV-ve patients at any time
118 point, although there was a trend for a lower ratio in PLWH (**Figure 1E**). Taken together these data
119 suggest that despite differences in canonical B cell phenotypes known to precede ASC maturation,
120 PLWH mounted a similar ASC response against SARS-CoV-2 infection to HIV-ve participants.

121 To further investigate the B cell response to SARS-CoV-2 in PLWH, we designed three B cell
122 phenotyping flow cytometry panels, using markers specific for B cell maturation, activation, homing,
123 and regulatory function (**Figure 2A, C, D**). Fresh PBMC from all participants were stained using all three
124 panels separately and analyzed using an unbiased approach combining FlowSOM and tSNE pipelines
125 (van der Maaten L., 2008; Van Gassen et al., 2015). This identified 11 to 12 distinct B cell clusters
126 between the three phenotyping panels, with probable B cell phenotypes assigned based on the
127 expression pattern of surface markers associated with each B cell cluster (**Figure 2A, C, D**). To uncover
128 associations between HIV infection status or disease severity, an equal number of B cells for each
129 disease severity category (ordinal scale 1-3 (OS1-3, (Karim et al., 2021)) were included, distributed

130 equally between PLWH and HIV-ve controls. This allowed the relative abundance of each B cell cluster
131 to be compared between the following clinical parameters: an ordinal disease scale (1-3), neutrophil-
132 lymphocyte ratio (NLR) as a measure of inflammation (Ciccullo et al., 2020; Fu et al., 2020; Karim et
133 al., 2021), SARS-CoV-2 viral load and HIV status.

134 Using B cell panel 1 (**Extended Data Table 1, Figure 2A**), distinct patterns of homing marker expression
135 were observed. Two CD27+CD38++ ASC populations are identified, highlighted in red and purple
136 (**Figure 2A**). The former also expressed high levels of CXCR3, the primary receptor for CXCL9, 10, 11,
137 which facilitates homing to inflamed tissues (Onodera et al., 2012; Serre et al., 2012; Sutton et al.,
138 2021), high levels of the extravasation marker CD62L+ and, uniquely, the activation/tissue residency
139 marker CD69+. Therefore, this population is referred to as tissue homing and potentially indicates B
140 cells which preferentially migrate to the diseased lung (Onodera et al., 2012; Serre et al., 2012; Sutton
141 et al., 2021; Weisel et al., 2020). In line with this, tissue homing ASC are highly elevated in participants
142 with the most severe disease (ordinal scale 3), with elevated NLR, and with detectable SARS-CoV-2
143 viremia, as, to a lesser extent, are ASCs lacking this tissue homing phenotype (**Figure 2A, B**). In
144 addition, a population of class switched, IgM^{hi} B cells (highlighted in blue) was associated with severe
145 disease, which co-expressed markers associated with germinal center homing (CXCR5 and CXCR4;
146 (Cyster & Allen, 2019)). Strikingly, all 3 populations are elevated in HIV-ve participants but not in
147 PLWH, as indicated in the final 2 columns of the heat map. In PLWH, by contrast, disease severity was
148 associated with an elevated population of B cells expressing a CD27-IgD- phenotype, corresponding to
149 double negative B cells (DN; highlighted in grey), which lacked elevated expression of any of the
150 homing markers measured. Several B cell subsets are elevated in asymptomatic subjects, including
151 transitional B cells, as reported elsewhere (Woodruff et al., 2020) and a class-switched memory
152 phenotype that expressed CXCR3. As expected, in the control patients, the naïve B cell phenotype was
153 predominantly IgD+ IgM- (brown), whereas the SARS-CoV-2 infected participants IgD + naïve cells also
154 expressed low levels of IgM+ (yellow; **Figure 2B**). Both naïve populations are high for CXCR5 and
155 CXCR4, consistent with their requirement to gain entry to germinal centers for affinity maturation
156 (dark and light zones, respectively (Cyster & Allen, 2019)). Interestingly CCR6 was also upregulated in
157 the SARS-CoV-2+ naïve B cells, suggestive of systemic B cell activation (Reimer et al., 2017; Wiede et
158 al., 2013). Together these data confirm that, as reported elsewhere (Woodruff et al., 2020), COVID-19
159 severity is associated with skewing of B cell phenotype and, for the first time, that this skewing is
160 altered by concurrent HIV infection.

161 The association between disease severity and B cell phenotype was less apparent in data generated
162 using the other two flow cytometry panels and, therefore not reported in the heat maps (**Figure 2C,D**;
163 **Extended Data Figure 2B,C**). However, distinct differences between PLHW and HIV-ve participants
164 were also apparent. Panel 2, composed of maturation markers (**Figure 2C**), again suggests that ASC
165 were less prevalent in PLWH than in HIV-ve participants, particularly CD138+ plasma cells. In addition,
166 class-switched memory cells (CSM) expressing CD69, consistent with activation, were elevated in HIV-
167 ve participants but not PLWH. In contrast, two DN populations can be distinguished, differing by CD40
168 expression (purple and turquoise), both of which feed into an EF B cell maturation pathway (Jenks et
169 al., 2019; Jenks et al., 2020; Woodruff et al., 2020), and both were elevated in PLWH. Likewise, an
170 activated naïve (CD21^{lo}) population (orange) was also elevated in PLWH relative to HIV-ve participants.
171 Two other naïve phenotypes were apparent, differing by their expression of CD40, of which the CD40-
172 ve population appeared to be unique to the HIV-ve COVID-19+ participants (red population). Finally,
173 two small transitional B cell populations were detectable, one of which, with a distinctive high IgD,
174 CD21, and CD40 phenotype, was elevated in PLWH.

175 For panel 3, comprised of regulatory markers, the same reduced ASC response in PLWH was suggested
176 (highlighted in blue), as the key B cell markers CD19, IgD, IgM, CD27, and CD38 are shared between
177 all three panels. In this case, ASC are shown to express high levels of CD86, associated with B cell
178 activation (Cyster & Allen, 2019). The same association between PLWH and DN B cells was also
179 apparent (highlighted in orange), and which also display CD86 expression (**Figure 2D**). In addition, a
180 small population of B cells expressing high levels of CD5 (CD5++) was elevated in PLWH. These cells
181 co-express CD1d, consistent with regulatory B cells producing the critical regulatory cytokine IL-10
182 (Oleinika et al., 2018; Palmer, Nganga, Rothermund, Perry, & Swanson, 2015; Yanaba et al., 2008).
183 Another important regulatory molecule in B cells is PD-L1, which can limit T-cell help via engaging with
184 PD-1 on the surface of Tfh cells in the GC (Khan et al., 2015). The expression of this marker was
185 primarily associated with B cell subsets present in non-COVID-19 controls (**Figure 2D**, pink and grey),
186 suggesting it is downregulated during SARS-CoV-2 infection. However, PD-L1 expression did not
187 appear to be affected by HIV coinfection. Taken together, these unbiased analyses consistently show
188 the B cell response to SARS-CoV-2 is skewed in PLWH, associated with a reduction in ASC subsets, class
189 switching, and markers of GC homing and with an increase of B cell phenotypes associated with EF
190 maturation.

191 To drill down further, we next analyzed the skewed B cell subsets of interest in longitudinal samples
192 by Boolean gating. Unlike in the tSNE analysis, where downsampling was used to prevent bias analysis,
193 all study subjects were included in these analyses. Consistent with the potential difference in GC
194 activity and class switching observed above, we found that CD27+ IgD- switched memory B cells (SM)
195 were significantly more frequent in HIV-ve COVID-19 patients than in PLWH (**Figure 3A**). Furthermore,
196 the fraction of SM B cells expressing CD62L and CXCR5, allowing them to home the GC, was reduced
197 in PLWH, particularly in individuals with viremic HIV (**Figure 3B**). Longitudinal analysis shows this
198 population increases over time in both groups, consistent with a dynamic change associated with
199 SARS-CoV-2 infection but is consistently lower in PLWH (**Figure 3B**). A similar trend was observed for
200 CSM B cells, which were expanded in HIV-ve participants compared to controls but were significantly
201 lower in viremic PLWH (**Figure 3C**). Interestingly, IgM switched memory B cells were significantly
202 upregulated in all COVID-19 patient groups relative to the control group, but again this was reduced
203 in the PLWH group. Although the precise function of this B cell subset is debated, it is believed they
204 can achieve rapid plasma cell differentiation, germinal center re-initiation, and IgM and IgG memory
205 pool replenishment (Weill & Reynaud, 2020). Together these data suggest that concurrent HIV
206 infection may cause a reduction in GC homing, class switching, and memory establishment after SARS-
207 CoV-2 infection, which was generally exacerbated in individuals with viremic HIV.

208 Next, given that the alternative to B cell maturation in the GC involves an EF route, DN B cells were
209 examined in detail. The DN phenotype, also referred to as atypical B cells, forms part of an EF B cell
210 response, which circumvents/pre-empts the germinal center reaction resulting in a rapid but short-
211 lived PB response that facilitates rapid antibody production (Jenks et al., 2019; Jenks et al., 2020;
212 Woodruff et al., 2020). Both activated DN B cells, commonly referred to as the DN2 cells, and activated
213 naïve phenotypes, contribute to the EF response (Jenks et al., 2019) and are identified as CD21^{lo} CD95+
214 subsets (**Figure 4A**). Multiple studies have described the expansion of DN2 B cells in association with
215 severe COVID disease (Chen et al., 2020; Kaneko et al., 2020; Woodruff et al., 2020), but not in relation
216 to HIV. Here, DN2 and activated naïve B cells were identified by expression of CD95, a known marker
217 of activation on B cells (Freudenhammer et al., 2020; Glass et al., 2020; Jenks et al., 2020; Le Gallo,
218 Poissonnier, Blanco, & Legembre, 2017). Both EF-associated B cell phenotypes were significantly more
219 frequent in the SARS-CoV-2 infected PLWH relative to the HIV-ve group, irrespective of HIV viremia in
220 the case of DN2 (**Figure 4B and extended Figure 4A(i)**). In addition, both subsets change in frequency
221 over the course of infection, expanding from timepoint 2 (day 7-13) and remaining significantly

222 expanded compared to HIV-ve participants until after timepoint 4 (day 21-27), after which they
223 contract to the same level (**Figure 4C and extended Figure 4B**). The dynamic nature of this EF response
224 strongly suggests it emerges during SARS-CoV-2 infection and does not represent a pre-existing
225 difference associated with HIV. This is further supported by the fact that the frequency of DN2 and, to
226 a lesser extent, activated naïve B cells, correlates with the RBD antibody titer in PLWH, particularly
227 those with detectable HIV (**Figure 4D and extended Figure 4C**). In addition, the frequency of these
228 populations was associated with increased clinical disease severity and NLR in PLWH but not in HIV-
229 ve participants (**Figure 4C and extended Figure 4B**). Indeed, the lack of an EF response in HIV-ve
230 participants is highlighted by the absence of DN populations even in subjects in OS3 and with elevated
231 NLRs. These data are highly consistent with the data shown in **Figure 3** and suggest that the B cell
232 response to SARS-CoV-2 infection in PLWH is associated with reduced GC maturation and increased
233 EF activity.

234 Having observed elevated PD-L1 in non-COVID controls, we examined the expression of this marker
235 longitudinally in conjunction with CD5 to examine regulatory B cell frequency (**Figure 5A**; (Catalan et
236 al., 2021; Khan et al., 2015; Sun, Zhang, Li, Yin, & Xue, 2019). This revealed a clear shift in PD-L1
237 expression on naïve B cells longitudinally, which was very low at baseline and increased to the range
238 observed in controls by the final time point (**Figure 5B**). Similar frequencies and longitudinal trends
239 were observed in both PLWH and HIV-ve participants, suggesting this is a consistent feature of the
240 acute B cell response to SARS-CoV-2 infection. However, PD-L1 CD5+ B cells are significantly more
241 frequent in HIV viremic individuals (**Figure 4A**). PD-L1 expression plays an integral part in the GC
242 response and maintains the relatively unstable Tfh lineage (Khan et al., 2015). Interestingly, the
243 frequency of total Tfh tended to be higher in PLWH, reaching significance at timepoints 2 and 5 (**Figure**
244 **4C**). Although the frequency of SARS-CoV-2 specific Tfh was not measured, these data again point to
245 potential impairment of the GC response in PLWH, which is dependent on the crosstalk between B
246 cells and Tfh governed, in part, by the interaction between PD-L1 expressed on B cells and PD-1 on Tfh
247 (Khan et al., 2015; Sun et al., 2019).

248 Finally, as the data presented above was based on bulk B cell phenotyping, we examined a subset of
249 informative markers on SARS-CoV-2 specific B cells using recombinant SARS-CoV-2 spike and receptor
250 binding domain (RBD) proteins conjugated to fluorescent streptavidin as baits ((Goel et al., 2021)
251 Krause et al., submitted; **Figure 6A; Extended Data Table 2**). B cells staining with both spike and RBD
252 baits were quantified at baseline and 3 months, revealing robust SARS-CoV-2 specific memory B cell
253 populations in all individuals, which did not significantly wane by 3 months and were not different in
254 frequency between PLWH and HIV-ve participants (**Figure 6B**). Interestingly, in this subset of
255 participants, the degree of CSM was not significantly different between groups and tended to increase
256 over time in both. However, spike-specific memory B cells from PLWH tended to express higher levels
257 of CXCR3 (**Figure 6C**), particularly at month 3, a marker associated with homing to inflamed tissue
258 (Onodera et al., 2012; Serre et al., 2012; Sutton et al., 2021). Finally, a significantly higher proportion
259 of spike-specific B cells from PLWH displayed a DN2 phenotype, confirming the increased EF activity
260 towards SARS-CoV-2 in these individuals suggested by the bulk phenotyping.

261 Discussion

262 Using longitudinal samples from the first wave of infection in South Africa, we found that HIV
263 coinfection significantly impacted the B cell response to SARS-CoV-2. Overall, these data show that
264 the B cell response in PLWH is skewed towards an EF route and away from GC maturation. This is
265 demonstrated by several observations, including elevated DN2 and activated naïve B cells in PLWH,
266 consistent with EF maturation; mirrored by reduced class switching of memory B cells and reduced
267 expression of markers CXCR5 and CD62L allowing B cells to home to the GC. In addition, as an effective

268 GC reaction requires tight regulation of the Tfh response, observed differences in PD-L1 expression on
269 B cells and Tfh frequency in PLWH are likely to hamper B cell maturation via this pathway. Importantly,
270 the skewing toward EF B cell maturation in PLWH correlated with anti-RBD antibody titer in these
271 individuals and was confirmed on SARS-CoV-2 spike-specific B cells.

272 Multiple studies have characterized the B cell response to COVID-19 in HIV-ve individuals and
273 observed a positive correlation between disease severity and an elevated ASC response (Kaneko et
274 al., 2020; Karim et al., 2021; Woodruff et al., 2020). Furthermore, an EF B cell response has been
275 associated with severe COVID-19 and predicts poor clinical outcomes, and severe COVID-19 cases have
276 been characterized by poor GC formation in secondary lymphoid organs (Chen et al., 2020; Kaneko et
277 al., 2020; Woodruff et al., 2020). However, the impact of HIV coinfection on the B cell response and
278 these associations is unknown. Here, we find that the ASC response is associated with disease severity
279 in both HIV-ve participants and PLWH, although the effect appears more robust in HIV-ve participants.
280 More detailed phenotyping of the ASC supports this, as CD138+ plasma cells and ASC with a tissue
281 homing and activated phenotype (CXCR3+CD69+ in panel 1 and CD86+ in panel 2) were more strongly
282 associated with SARS-CoV-2 infection in HIV-ve participants. In contrast, the association between
283 disease severity and EF activity was uniquely observed in PLWH. The absence of EF activity in HIV-ve
284 participants is not at odds with published literature, as no individuals with severe COVID-19 were
285 included in this study (Kaneko et al., 2020; Woodruff et al., 2020). Therefore, the association between
286 HIV and EF B cells is not driven by disease severity.

287 Although not previously observed for COVID-19, the skewing of B cells towards an EF response in
288 PLWH makes biological sense. Both DN2 and activated naïve B cells mature via an EF pathway,
289 independent of T cell help and in response to pro-inflammatory cytokines IFN γ , TNF α , and IL-21; and
290 TLR 7 and 9 stimulation (Jenks et al., 2019; Jenks et al., 2020). HIV induces a pro-inflammatory state
291 (Connolly, Riddler, & Rinaldo, 2005; Roff, Noon-Song, & Yamamoto, 2014), making B cells more prone
292 to EF maturation; and HIV viremia is known to induce a DN2 response (Amu, Ruffin, Rethi, & Chiodi,
293 2013; Ferreira et al., 2013). This link may explain the association between DN2 frequency and
294 inflammation in PLWH, as measured by the NLR ratio. On the other hand, since HIV depletes CD4 T
295 cells, it also impairs germinal center (GC) activity, including BCR somatic hypermutation, class
296 switching, and, ultimately, the ASC response (Okoye & Picker, 2013; Pallikkuth et al., 2012; Perreau et
297 al., 2013), consistent with the trends observed. Likewise, HIV alters the B cell compartment by
298 affecting the frequencies of naïve and memory B cells (Moir & Fauci, 2014), again agreeing with the
299 differences in the frequency of naïve and memory B cells observed in this study.

300 The downstream consequence of skewed B cell maturation in PLWH is unclear from this study.
301 However, the EF response relies primarily on the existing germline and memory BCR repertoire,
302 whereas the GC response allows for honing of the BCR repertoire through somatic hypermutation and
303 stringent affinity selection of BCR clones to generate high-affinity long term ASC and memory
304 responses (Jenks et al., 2020; Kaneko et al., 2020). Therefore, the loss of GC B cell maturation could
305 result in a less effective B cell response to infection in PLWH and potentially a greater susceptibility to
306 infection by variants. (Sette & Crotty, 2021) demonstrated that the antibody response to COVID-19
307 parent strain derives from the germline B cell receptor (BCR) repertoire without the need for extensive
308 hypermutation. This might explain why HIV status did not seem to affect the antibody response during
309 the first wave of infections (Snyman et al., 2021). In contrast, the antibody response to the second
310 wave of infections was affected by HIV status, with PLWH mounting less effective IgG responses to the
311 Beta variant (Hwa, Snyman et al., submitted). Therefore, the skewed EF B cell response could explain
312 the less effective response against new variants. Indeed, multiple studies have revealed B cell
313 maturation and expanded somatic hypermutation months after primary infection in COVID-19

314 patients without HIV (Gaebler et al., 2021; Wang et al., 2021) and have highlighted the importance of
315 antibody affinity maturation (Chen et al., 2020; Muecksch et al., 2021) and class switching (Zohar et
316 al., 2020) to reduce disease severity and gain improved efficacy against new variants. This might also
317 explain the lack of effective clearance of SARS-CoV-2 in HIV viremic individuals and might be a
318 mechanism for intra-host evolution in patients with uncontrolled HIV (Cele et al., 2022). Further work
319 is needed to understand how the skewed B cell response to natural infection impacts long-term
320 memory and the ability to adapt to new viral variants. It will also be essential to understand the impact
321 of vaccination on the B cell memory compartment.

322 **Acknowledgements**

323 **COMMIT-KZN Team**

324 Moherndran Archary, Department of Paediatrics and Child Health, University of KwaZulu-Natal;
325 Kaylesh J. Dullabh, Department of Cardiothoracic Surgery, University of KwaZulu-Natal; Jennifer
326 Giandhari, KwaZulu-Natal Research Innovation and Sequencing Platform; Philip Goulder, Africa Health
327 Research Institute and Department of Paediatrics, Oxford; Guy Harling, Africa Health Research
328 Institute and the Institute for Global Health, University College London; Rohen Harrichandparsad,
329 Department of Neurosurgery, University of KwaZulu-Natal; Kobus Herbst, Africa Health Research
330 Institute and the South African Population Research Infrastructure Network; Prakash Jeena,
331 Department of Paediatrics and Child Health, University of KwaZulu-Natal; Thandeka Khoza, Africa
332 Health Research Institute; Nigel Klein, Africa Health Research Institute and the Institute of Child
333 Health, University College London; Rajhmun Madansein, Department of Cardiothoracic Surgery,
334 University of KwaZulu-Natal; Mohlopheni Marakalala, Africa Health Research Institute and Division of
335 Infection and Immunity, University College London; Mosa Moshabela, College of Health Sciences,
336 University of KwaZulu-Natal; Kogie Naidoo, Centre for the AIDS Programme of Research in South
337 Africa; Zaza Ndhlovu, Africa Health Research Institute and the Ragon Institute of MGH, MIT and
338 Harvard; Kennedy Nyamande, Department of Pulmonology and Critical Care, University of KwaZulu-
339 Natal; Nesri Padayatchi, Centre for the AIDS Programme of Research in South Africa; Vinod Patel,
340 Department of Neurology, University of KwaZulu-Natal; Theresa Smit, Africa Health Research Institute;
341 Adrie Steyn, Africa Health Research Institute and Division of Infectious Diseases, University of Alabama
342 at Birmingham
343

344 **Figure Legends**

345 **Figure 1. Canonical B cell phenotype frequencies vary with HIV status but still mount robust**
346 **antibody secreting cell (ASC) responses. (A)** Gating strategy to identify CD19+ B cells within the
347 PBMC compartment. B cells were further gated on CD27 and CD38 to identify CD27+ Memory, CD27-
348 Naïve and CD27+CD38++ ASC. **(B)** Absolute B cell counts were calculated from patient total
349 lymphocyte counts, followed by percent Naïve, Memory and ASC fractions of the CD19+ parent
350 population. **(C)** The ASC response associated with SARS-CoV-2 viremia and was tracked longitudinally
351 up to day 35 post diagnosis. **(D)** A neutrophil lymphocyte ratio (NLR) served as a proxy of
352 inflammation and associated with the ASC as well as Plasmablast and Plasma cell responses.
353 Statistical analyses were performed using the Kruskal-Wallis H test for multiple comparisons and
354 Mann-Whitney for SARS-CoV-2 viremia or NLR comparisons within groups. *P* values are denoted by *
355 ≤ 0.05 ; ** < 0.01 ; *** < 0.001 and **** < 0.0001 .

356 **Figure 2. tSNE analysis of the B cell phenotypes and frequencies relative to COVID-19 clinical**
357 **parameters including disease severity, neutrophil lymphocyte ratio, SARS-CoV-2 viremia, and HIV**
358 **status.** A total of 80000 CD19+ B cells from four patient groups (20000 cells per group) were used in
359 an unbiased tSNE analysis. Patients were grouped by decreasing disease severity according to an

360 ordinal scale ranging from 3 to 1 (OS3 to 1) and a healthy control group. There was an equal
361 contribution from PLWH and HIV-ve patients per group except for the control group. Three B cell
362 phenotyping panels were used, focusing on homing (**A, B**); maturation (**C**) and regulatory (**D**)
363 markers. Each panel included an anchor panel of CD19, IgD, IgM, CD27 and CD38. The key to the
364 colouring of the different tSNE clusters is included alongside with a description of the phenotype.
365 The phenotype is then depicted as a heatmap of the median fluorescence intensity (MFI) of each
366 surface marker within that cluster, followed by a heatmap of the cluster frequency relative to ordinal
367 scale (OS3 to 1); neutrophil lymphocyte ratio (NLR) cut-off of 3.0 to separate moderate and mild
368 inflammation; SARS-CoV-2 viremia (S-CoV) and HIV status. (**B**) The frequency of each B cell
369 phenotypic cluster identified by tSNE depicted as pie charts, separated based on disease severity
370 (OS3 to 1) and controls.

371 **Figure 3. Reduced germinal centre homing and class switching of memory B cells in HIV viraemic**
372 **COVID-19 patients.** (**A**) Gating strategy for total switched memory (SM; CD27+ IgD-) and homing to
373 germinal centres (CD62L+ CXCR5+) and comparison of SM with respect to HIV status. (**B**) Germinal
374 centre homing capacity relative to HIV status and longitudinal comparison. (**C**) The switched memory
375 was further gated on IgM and IgD to identify IgM+ and class switched (IgM-IgD-) B cells. Both
376 responses were compared with respect to HIV status. Statistical analyses were performed using the
377 Kruskal-Wallis H test for multiple comparisons. *P* values are denoted by * ≤ 0.05; ** < 0.01; *** <
378 0.001 and **** < 0.0001.

379 **Figure 4. Pronounced extrafollicular B cell activation in PLWH.** (**A**) Naïve (CD27-IgD+) and double
380 negative (DN; CD27-IgD-) B cell activation was measured as a CD21- CD95+ phenotype. The
381 respective activated populations are thus DN2 and activated naïve. (**B**) Prevalence of the DN2 and
382 activated naïve phenotypes with respect to HIV status. (**C**) The DN2 frequencies were tracked
383 longitudinally and with respect to disease severity (Ordinal scale 1 to 3) and neutrophil lymphocyte
384 ratio (NLR) respectively. (**D**) Spearman non-parametric correlation of the DN2 B cell response
385 relative to the anti-RBD antibody titre. Statistical analyses were performed using the Kruskal-Wallis
386 H test for multiple comparisons and Mann-Whitney for disease severity or NLR comparisons within
387 groups. *P* values are denoted by * ≤ 0.05; ** < 0.01; *** < 0.001 and **** < 0.0001.

388 **Figure 5. CD5+ PD-L1+ regulatory B cells contract during early response to infection.** (**A**) Baseline
389 (BL) and day 35 (D35+) example plots of a patient's CD5+ PD-L1+ regulatory B cell response. These
390 cells were gated from the total naïve (CD27-) B cell population and their frequencies compared
391 relative to HIV status. (**B**) This response was tracked longitudinally and relative to disease severity
392 (ordinal scale 1 to 3) and controls denoted as "C". In (**C**) the corresponding CD4+ Tfh response was
393 tracked longitudinally. Statistical analyses were performed using the Kruskal-Wallis H test for
394 multiple comparisons and Mann-Whitney for disease severity. *P* values are denoted by * ≤ 0.05; ** <
395 0.01; *** < 0.001 and **** < 0.0001.

396 **Figure 6. SARS-CoV-2 spike and receptor binding domain (RBD) specific B cell responses highlight**
397 **an upregulated extrafollicular response in PLWH.** The ancestral D614G viral spike (Spike-APC) and
398 receptor binding domain (RBD-PE) proteins were used as baits to detect SARS-CoV-2 specific B cells
399 with SA-APC and SA-PE used as controls (**A**). The bait specific B cells were then overlaid onto an IgM
400 vs. IgD plot (**B**). The extent of IgM switched (MSM) and class switched memory (CSM) B cells were
401 compared at both baseline (day 0) and day 84 post diagnosis. (**C**) Similarly, the level of CXCR3
402 expression was assessed. (**D**) The extent of double negative (DN) B cell activation (CD21- CD95+) was
403 compared regarding HIV status at both time points. Statistical analyses were performed using
404 Wilcoxon and Mann-Whitney tests. *P* values are denoted by * ≤ 0.05; ** < 0.01; *** < 0.001 and
405 **** < 0.0001.

406 **Extended Data Figure 1. Individual patient longitudinal ASC responses.**

407 **Extended Data Figure 2A. Heatmap overlays B cell compartment tSNE plots focusing on homing**
408 **markers.** A total of 80000 CD19+ B cells were used in an unbiased tSNE analysis of the B cell
409 compartment with increasing disease severity ranked by ordinal scale 1 to 3 (OS1 to 3) and in
410 healthy controls (Control). This means a total of 20000 CD19+ B cells were contributed by each
411 group. The B cell homing marker expression is represented as a heat map with high (red) to low
412 (blue) fluorescence intensity depicted.

413 **Extended Data Figure 2B. Heatmap overlays B cell compartment tSNE plots focusing on maturation**
414 **markers.** A total of 80000 CD19+ B cells were used in an unbiased tSNE analysis of the B cell
415 compartment with increasing disease severity ranked by ordinal scale 1 to 3 (OS1 to 3) and in
416 healthy controls (Control). This means a total of 20000 CD19+ B cells were contributed by each
417 group. The B cell maturation marker expression is represented as a heat map with high (red) to low
418 (blue) fluorescence intensity depicted.

419 **Extended Data Figure 2C. Heatmap overlays B cell compartment tSNE plots focusing on regulatory**
420 **markers.** A total of 80000 CD19+ B cells were used in an unbiased tSNE analysis of the B cell
421 compartment with increasing disease severity ranked by ordinal scale 1 to 3 (OS1 to 3) and in
422 healthy controls (Control). This means a total of 20000 CD19+ B cells were contributed by each
423 group. The B cell regulatory marker expression is represented as a heat map with high (red) to low
424 (blue) fluorescence intensity depicted.

425 **Extended Data Figure 3. Individual patient longitudinal switched memory GC homing responses.**

426 **Extended Data Figure 4. Individual patient longitudinal DN2 and activated naïve B cell responses**
427 **and detailed analysis of the activated naïve B cell response.** Individual longitudinal DN2 (**A(i)**) and
428 activated naïve (**A(ii)**) B cell responses. (**B**) The activated naïve B cell frequencies were tracked
429 longitudinally and with respect to disease severity (Ordinal scale 1 to 3) and neutrophil lymphocyte
430 ratio (NLR) respectively. (**C**) Spearman non-parametric correlation of the activated naïve B cell
431 response relative to the anti-RBD antibody titre. Statistical analyses were performed using the
432 Kruskal-Wallis H test for multiple comparisons and Mann-Whitney for disease severity or NLR
433 comparisons within groups. *P* values are denoted by * ≤ 0.05; ** < 0.01; *** < 0.001 and **** <
434 0.0001.

435 **Extended Data Figure 5. Individual patient longitudinal CD5+ PDL1+ B cell and Tfh responses.**

436 **Materials and methods**

437 **Ethical approval**

438 The study protocol was approved by the University of KwaZulu-Natal Biomedical Research Ethics
439 Committee (approval BREC/00001275/2020). Written informed consent was obtained for all enrolled
440 participants.

441 **Participant enrolment and clinical severity score**

442 All study participants were over 18 years old and capable of giving informed consent; presented with
443 a positive SARS-CoV-2 diagnosis and were recruited from two hospitals (King Edward VIII or Clairwood)
444 in Durban, KwaZulu-Natal, South Africa, between 8 June and 25 September 2020. In total 126
445 participants were enrolled. Participants consented to blood and nasopharyngeal/oropharyngeal swab
446 collection at recruitment and during weekly follow-up visits. All participant SARS-CoV-2 diagnoses
447 were verified by an in-house RT-qPCR test which also served to quantify the SARS-CoV-2 viral load.

448 Two participants were excluded after their in-house RT-qPCR results remained negative and
449 contradicted their initial diagnosis. All participants were ranked according to a clinical severity score
450 of (1) asymptomatic, (2) symptomatic/mild without requiring supplemental oxygen and (3) moderate
451 requiring supplemental oxygen. A total of 10 healthy controls were included in the study that tested
452 SARS-CoV-2 negative by PCR and were seronegative by ELISA (described below).

453 **Real Time-qPCR detection of SARS-CoV-2**

454 The QIAamp Viral RNA Mini kit (cat. 52906, QIAGEN, Hilden, Germany) was used according to
455 manufacturer's instructions to extract SARS-CoV-2 RNA from the combined nasopharyngeal and
456 oropharyngeal swabs and 5 µl of the extracted RNA was used for RT-qPCR reactions. Three SARS-CoV-
457 2 genes (ORF1ab, S and N) were amplified using the TaqPath COVID-19 Combo kit and TaqPath COVID-
458 19 CE-IVD RT-PCR kit (ThermoFischer Scientific, MA, USA) using a QuantStudio 7 Flex Real-Time PCR
459 system and analysed using the Design and Analysis software (ThermoFischer Scientific). Results were
460 interpreted as positive if at least two of the three genes were amplified and regarded inconclusive if
461 only one of the three genes were detected.

462 **Clinical laboratory testing**

463 A separate blood sample per participant was sent to an accredited diagnostic laboratory (Molecular
464 Diagnostic Services, Durban, South Africa) for HIV testing by rapid test and quantification of HIV viral
465 load using the RealTime HIV-1 viral load test on an Abbott machine. A full blood count, including CD4
466 and CD8 count, was performed by another accredited diagnostic laboratory (Ampath, Durban, South
467 Africa).

468 **Immune phenotyping of fresh PBMC by flow cytometry**

469 Blood was collected in EDTA tubes and diluted 1 in 3 with PBS. Peripheral blood mononuclear cells
470 (PBMC) were isolated by density gradient centrifugation through Histopaque 1077 (SIGMA) in
471 SepMate separation tubes (STEMCELL Technologies, Vancouver Canada). For immune phenotyping
472 10⁶ fresh PBMC were surface stained in a 25 µl antibody mix containing a LIVE/DEAD™ fixable near-
473 IR-dead cell staining reagent (1:200 dilution, cat. L10119, Invitrogen, Carlsbad, CA, USA) with
474 combinations of the listed antibodies (**Extended Data Table 1.**) from BD Biosciences (Franklin Lakes,
475 NJ, USA); or from BioLegend (San Diego, CA, USA) or from Beckman Coulter (Brea, CA, USA). Cells were
476 stained for 20 min in the dark at 4°C, followed by two 1 ml washes with cold PBS, then fixed in 2%
477 paraformaldehyde and stored at 4°C until acquisition on a FACSaria Fusion III flow cytometer (BD).
478 Flow cytometry data was analysed with FlowJo version 9.9.6 (Tree Star).

479 **IgM and IgG ELISA detecting receptor binding domain specific antibodies**

480 Patient plasma samples were tested for the presence of anti-SARS-CoV-2 reactive IgM or IgG
481 antibodies as described previously (**Snyman et al., 2020**). ELISA plates were coated with 500 ng/ml of
482 the D614G ancestral virus receptor binding domain (RBD) (GenBank: MN975262; provided by Dr Galit
483 Alter, Ragon Institute, Cambridge, Massachusetts, USA) overnight at 4°C. Then blocked with 1% BSA-
484 TBS at room temperature (RT) for 1 hour, followed by samples diluted at 1:100 in BSA-TBS + 0.05%
485 Tween 20 for 1 hour at RT. Secondary anti-IgM or -IgG antibodies (Jackson ImmunoResearch, West
486 Grove, PA, USA) were added at 1:5000 diluted in BSA-TBS + 0.05% Tween 20 and incubated again for
487 1 hour at RT. Finally, plates were developed with 1-step Ultra TMB substrate (ThermoFischer Scientific)
488 for 3 or 5 min respectively and signal development was stopped with the addition of 1 N H₂SO₄. Plates
489 were washed with TBS + 0.05% Tween 20 between each incubation step. All signals were compared
490 to anti-SARS-CoV-2 specific monoclonal IgG (clone CR3022) or IgM (clone hIgM2001). Pre-pandemic

491 plasma samples were used as negative controls to determine seroconversion cut-offs calculated as
492 three times the standard deviation plus the mean.

493 **Statistical analysis**

494 All analyses were performed in Prism (v9; GraphPad Software Inc., San Diego, CA, USA).
495 Nonparametric tests were used throughout, with Mann-Whitney and Wilcoxon tests used for
496 unmatched and paired samples, respectively. Kruskal-Wallis H test was used for multiple comparisons.
497 *P* values less than 0.05 were considered statistically significant and denoted by * ≤ 0.05 ; ** < 0.01 ; ***
498 < 0.001 and **** < 0.0001 .

499 **References**

500 Amu, S., Ruffin, N., Rethi, B., & Chiodi, F. (2013). Impairment of B-cell functions during HIV-1 infection.
501 *AIDS*, 27(15), 2323-2334. doi:10.1097/QAD.0b013e328361a427

502 Bhaskaran, K., Rentsch, C. T., MacKenna, B., Schultze, A., Mehrkar, A., Bates, C. J., . . . Goldacre, B.
503 (2021). HIV infection and COVID-19 death: a population-based cohort analysis of UK primary
504 care data and linked national death registrations within the OpenSAFELY platform. *Lancet HIV*,
505 8(1), e24-e32. doi:10.1016/S2352-3018(20)30305-2

506 Catalan, D., Mansilla, M. A., Ferrier, A., Soto, L., Oleinika, K., Aguillon, J. C., & Aravena, O. (2021).
507 Immunosuppressive Mechanisms of Regulatory B Cells. *Front Immunol*, 12, 611795.
508 doi:10.3389/fimmu.2021.611795

509 Cele, S., Gazy, I., Jackson, L., Hwa, S. H., Tegally, H., Lustig, G., . . . Sigal, A. (2021). Escape of SARS-CoV-
510 2 501Y.V2 from neutralization by convalescent plasma. *Nature*, 593(7857), 142-146.
511 doi:10.1038/s41586-021-03471-w

512 Cele, S., Karim, F., Lustig, G., San, J. E., Hermanus, T., Tegally, H., . . . Sigal, A. (2022). SARS-CoV-2
513 prolonged infection during advanced HIV disease evolves extensive immune escape. *Cell Host
514 Microbe*, 30(2), 154-162 e155. doi:10.1016/j.chom.2022.01.005

515 Chanda, D., Minchella, P. A., Kampamba, D., Itoh, M., Hines, J. Z., Fwoloshi, S., . . . Mulenga, L. B. (2021).
516 COVID-19 Severity and COVID-19-Associated Deaths Among Hospitalized Patients with HIV
517 Infection - Zambia, March-December 2020. *MMWR Morb Mortal Wkly Rep*, 70(22), 807-810.
518 doi:10.15585/mmwr.mm7022a2

519 Chen, Y., Zuiani, A., Fischinger, S., Mullur, J., Atyeo, C., Travers, M., . . . Wesemann, D. R. (2020). Quick
520 COVID-19 Healers Sustain Anti-SARS-CoV-2 Antibody Production. *Cell*, 183(6), 1496-1507
521 e1416. doi:10.1016/j.cell.2020.10.051

522 Ciccullo, A., Borghetti, A., Zileri Dal Verme, L., Tosoni, A., Lombardi, F., Garcovich, M., . . . Group, G. A.
523 C. (2020). Neutrophil-to-lymphocyte ratio and clinical outcome in COVID-19: a report from the
524 Italian front line. *Int J Antimicrob Agents*, 56(2), 106017.
525 doi:10.1016/j.ijantimicag.2020.106017

526 Connolly, N. C., Riddler, S. A., & Rinaldo, C. R. (2005). Proinflammatory cytokines in HIV disease-a
527 review and rationale for new therapeutic approaches. *AIDS Rev*, 7(3), 168-180. Retrieved from
528 <https://www.ncbi.nlm.nih.gov/pubmed/16302465>

529 Cyster, J. G., & Allen, C. D. C. (2019). B Cell Responses: Cell Interaction Dynamics and Decisions. *Cell*,
530 177(3), 524-540. doi:10.1016/j.cell.2019.03.016

531 Dalgleish, A. G., Beverley, P. C., Clapham, P. R., Crawford, D. H., Greaves, M. F., & Weiss, R. A. (1984).
532 The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. *Nature*,
533 312(5996), 763-767. doi:10.1038/312763a0

534 Ehrhardt, G. R., Hsu, J. T., Gartland, L., Leu, C. M., Zhang, S., Davis, R. S., & Cooper, M. D. (2005).
535 Expression of the immunoregulatory molecule FcRH4 defines a distinctive tissue-based
536 population of memory B cells. *J Exp Med*, 202(6), 783-791. doi:10.1084/jem.20050879

537 Ferreira, C. B., Merino-Mansilla, A., Llano, A., Perez, I., Crespo, I., Llinas, L., . . . Sanchez-Merino, V.
538 (2013). Evolution of broadly cross-reactive HIV-1-neutralizing activity: therapy-associated

539 decline, positive association with detectable viremia, and partial restoration of B-cell
540 subpopulations. *J Virol*, 87(22), 12227-12236. doi:10.1128/JVI.02155-13

541 Frater, J., Ewer, K. J., Ogbe, A., Pace, M., Adele, S., Adland, E., . . . Oxford, C. V. T. G. (2021). Safety and
542 immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in HIV
543 infection: a single-arm substudy of a phase 2/3 clinical trial. *Lancet HIV*, 8(8), e474-e485.
544 doi:10.1016/S2352-3018(21)00103-X

545 Freudenthaler, M., Voll, R. E., Binder, S. C., Keller, B., & Warnatz, K. (2020). Naive- and Memory-like
546 CD21(low) B Cell Subsets Share Core Phenotypic and Signaling Characteristics in Systemic
547 Autoimmune Disorders. *J Immunol*, 205(8), 2016-2025. doi:10.4049/jimmunol.2000343

548 Fu, J., Kong, J., Wang, W., Wu, M., Yao, L., Wang, Z., . . . Yu, X. (2020). The clinical implication of dynamic
549 neutrophil to lymphocyte ratio and D-dimer in COVID-19: A retrospective study in Suzhou
550 China. *Thromb Res*, 192, 3-8. doi:10.1016/j.thromres.2020.05.006

551 Gaebler, C., Wang, Z., Lorenzi, J. C. C., Muecksch, F., Finkin, S., Tokuyama, M., . . . Nussenzweig, M. C.
552 (2021). Evolution of antibody immunity to SARS-CoV-2. *Nature*, 591(7851), 639-644.
553 doi:10.1038/s41586-021-03207-w

554 Glass, D. R., Tsai, A. G., Oliveria, J. P., Hartmann, F. J., Kimmey, S. C., Calderon, A. A., . . . Bendall, S. C.
555 (2020). An Integrated Multi-omic Single-Cell Atlas of Human B Cell Identity. *Immunity*, 53(1),
556 217-232 e215. doi:10.1016/j.jimmuni.2020.06.013

557 Goel, R. R., Apostolidis, S. A., Painter, M. M., Mathew, D., Pattekar, A., Kuthuru, O., . . . Wherry, E. J.
558 (2021). Distinct antibody and memory B cell responses in SARS-CoV-2 naive and recovered
559 individuals following mRNA vaccination. *Sci Immunol*, 6(58). doi:10.1126/sciimmunol.abi6950

560 Hassold, N., Brichler, S., Ouedraogo, E., Leclerc, D., Carroue, S., Gater, Y., . . . Delagreverie, H. (2022).
561 Impaired antibody response to COVID-19 vaccination in advanced HIV infection. *AIDS*, 36(4),
562 F1-F5. doi:10.1097/QAD.0000000000003166

563 Jenks, S. A., Cashman, K. S., Woodruff, M. C., Lee, F. E., & Sanz, I. (2019). Extrafollicular responses in
564 humans and SLE. *Immunol Rev*, 288(1), 136-148. doi:10.1111/imr.12741

565 Jenks, S. A., Cashman, K. S., Zumaquero, E., Marigorta, U. M., Patel, A. V., Wang, X., . . . Sanz, I. (2020).
566 Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic
567 Responses in Systemic Lupus Erythematosus. *Immunity*, 52(1), 203.
568 doi:10.1016/j.jimmuni.2019.12.005

569 Kaneko, N., Kuo, H. H., Boucau, J., Farmer, J. R., Allard-Chamard, H., Mahajan, V. S., . . . Massachusetts
570 Consortium on Pathogen Readiness Specimen Working, G. (2020). Loss of Bcl-6-Expressing T
571 Follicular Helper Cells and Germinal Centers in COVID-19. *Cell*, 183(1), 143-157 e113.
572 doi:10.1016/j.cell.2020.08.025

573 Karim, F., Gazy, I., Cele, S., Zungu, Y., Krause, R., Bernstein, M., . . . Sigal, A. (2021). HIV status alters
574 disease severity and immune cell responses in Beta variant SARS-CoV-2 infection wave. *eLife*,
575 10. doi:10.7554/eLife.67397

576 Kerneis, S., Launay, O., Turbelin, C., Batteux, F., Hanslik, T., & Boelle, P. Y. (2014). Long-term immune
577 responses to vaccination in HIV-infected patients: a systematic review and meta-analysis. *Clin
578 Infect Dis*, 58(8), 1130-1139. doi:10.1093/cid/cit937

579 Khan, A. R., Hams, E., Floudas, A., Sparwasser, T., Weaver, C. T., & Fallon, P. G. (2015). PD-L1hi B cells
580 are critical regulators of humoral immunity. *Nat Commun*, 6, 5997. doi:10.1038/ncomms6997

581 Kharsany, A. B. M., Cawood, C., Khanyile, D., Lewis, L., Grobler, A., Puren, A., . . . Abdoor Karim, Q.
582 (2018). Community-based HIV prevalence in KwaZulu-Natal, South Africa: results of a cross-
583 sectional household survey. *Lancet HIV*, 5(8), e427-e437. doi:10.1016/S2352-3018(18)30104-
584 8

585 Knox, J. J., Buggert, M., Kardava, L., Seaton, K. E., Eller, M. A., Canaday, D. H., . . . Betts, M. R. (2017).
586 T-bet+ B cells are induced by human viral infections and dominate the HIV gp140 response.
587 *JCI Insight*, 2(8). doi:10.1172/jci.insight.92943

588 Lane, H. C., Masur, H., Edgar, L. C., Whalen, G., Rook, A. H., & Fauci, A. S. (1983). Abnormalities of B-
589 cell activation and immunoregulation in patients with the acquired immunodeficiency
590 syndrome. *N Engl J Med*, 309(8), 453-458. doi:10.1056/NEJM198308253090803

591 Le Gallo, M., Poissonnier, A., Blanco, P., & Legembre, P. (2017). CD95/Fas, Non-Apoptotic Signaling
592 Pathways, and Kinases. *Front Immunol*, 8, 1216. doi:10.3389/fimmu.2017.01216

593 McCormick, K. D., Jacobs, J. L., & Mellors, J. W. (2021). The emerging plasticity of SARS-CoV-2. *Science*,
594 371(6536), 1306-1308. doi:10.1126/science.abg4493

595 Moir, S., & Fauci, A. S. (2014). B-cell exhaustion in HIV infection: the role of immune activation. *Curr
596 Opin HIV AIDS*, 9(5), 472-477. doi:10.1097/COH.0000000000000092

597 Muecksch, F., Weisblum, Y., Barnes, C. O., Schmidt, F., Schaefer-Babajew, D., Wang, Z., . . . Bieniasz, P.
598 D. (2021). Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth,
599 and resilience to viral escape mutations. *Immunity*, 54(8), 1853-1868 e1857.
600 doi:10.1016/j.jimmuni.2021.07.008

601 Okoye, A. A., & Picker, L. J. (2013). CD4(+) T-cell depletion in HIV infection: mechanisms of
602 immunological failure. *Immunol Rev*, 254(1), 54-64. doi:10.1111/imr.12066

603 Oleinika, K., Rosser, E. C., Matei, D. E., Nistala, K., Bosma, A., Drozdov, I., & Mauri, C. (2018). CD1d-
604 dependent immune suppression mediated by regulatory B cells through modulations of iNKT
605 cells. *Nat Commun*, 9(1), 684. doi:10.1038/s41467-018-02911-y

606 Onodera, T., Takahashi, Y., Yokoi, Y., Ato, M., Kodama, Y., Hachimura, S., . . . Kobayashi, K. (2012).
607 Memory B cells in the lung participate in protective humoral immune responses to pulmonary
608 influenza virus reinfection. *Proc Natl Acad Sci U S A*, 109(7), 2485-2490.
609 doi:10.1073/pnas.1115369109

610 Pallikkuth, S., Parmigiani, A., Silva, S. Y., George, V. K., Fischl, M., Pahwa, R., & Pahwa, S. (2012).
611 Impaired peripheral blood T-follicular helper cell function in HIV-infected nonresponders to
612 the 2009 H1N1/09 vaccine. *Blood*, 120(5), 985-993. doi:10.1182/blood-2011-12-396648

613 Palmer, V. L., Nganga, V. K., Rothermund, M. E., Perry, G. A., & Swanson, P. C. (2015). Cd1d regulates
614 B cell development but not B cell accumulation and IL10 production in mice with pathologic
615 CD5(+) B cell expansion. *BMC Immunol*, 16, 66. doi:10.1186/s12865-015-0130-z

616 Perreau, M., Savoye, A. L., De Crignis, E., Corpataux, J. M., Cubas, R., Haddad, E. K., . . . Pantaleo, G.
617 (2013). Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection,
618 replication, and production. *J Exp Med*, 210(1), 143-156. doi:10.1084/jem.20121932

619 Reimer, D., Lee, A. Y., Bannan, J., Fromm, P., Kara, E. E., Comerford, I., . . . Korner, H. (2017). Early CCR6
620 expression on B cells modulates germinal centre kinetics and efficient antibody responses.
621 *Immunol Cell Biol*, 95(1), 33-41. doi:10.1038/icb.2016.68

622 Roff, S. R., Noon-Song, E. N., & Yamamoto, J. K. (2014). The Significance of Interferon-gamma in HIV-1
623 Pathogenesis, Therapy, and Prophylaxis. *Front Immunol*, 4, 498.
624 doi:10.3389/fimmu.2013.00498

625 Serre, K., Cunningham, A. F., Coughlan, R. E., Lino, A. C., Rot, A., Hub, E., . . . Mohr, E. (2012). CD8 T
626 cells induce T-bet-dependent migration toward CXCR3 ligands by differentiated B cells
627 produced during responses to alum-protein vaccines. *Blood*, 120(23), 4552-4559.
628 doi:10.1182/blood-2012-03-417733

629 Sette, A., & Crotty, S. (2021). Adaptive immunity to SARS-CoV-2 and COVID-19. *Cell*, 184(4), 861-880.
630 doi:10.1016/j.cell.2021.01.007

631 Shinde, V., Bhikha, S., Hoosain, Z., Archary, M., Bhorat, Q., Fairlie, L., . . . nCo, V. S. G. (2021). Efficacy
632 of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant. *N Engl J Med*, 384(20), 1899-
633 1909. doi:10.1056/NEJMoa2103055

634 Snyman, J., Hwa, S. H., Krause, R., Muema, D., Reddy, T., Ganga, Y., . . . Team, C.-K. (2021). Similar
635 antibody responses against SARS-CoV-2 in HIV uninfected and infected individuals on
636 antiretroviral therapy during the first South African infection wave. *Clin Infect Dis*.
637 doi:10.1093/cid/ciab758

638 Sun, X., Zhang, T., Li, M., Yin, L., & Xue, J. (2019). Immunosuppressive B cells expressing PD-1/PD-L1 in
639 solid tumors: A mini review. *QJM*. doi:10.1093/qjmed/hcz162

640 Sutton, H. J., Aye, R., Idris, A. H., Vistein, R., Nduati, E., Kai, O., . . . Cockburn, I. A. (2021). Atypical B
641 cells are part of an alternative lineage of B cells that participates in responses to vaccination
642 and infection in humans. *Cell Rep*, 34(6), 108684. doi:10.1016/j.celrep.2020.108684

643 Tada, T., Zhou, H., Samanovic, M. I., Dcosta, B. M., Cornelius, A., Mulligan, M. J., & Landau, N. R. (2021).
644 Comparison of Neutralizing Antibody Titers Elicited by mRNA and Adenoviral Vector Vaccine
645 against SARS-CoV-2 Variants. *bioRxiv*. doi:10.1101/2021.07.19.452771

646 Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., . . . de Oliveira, T.
647 (2021). Detection of a SARS-CoV-2 variant of concern in South Africa. *Nature*, 592(7854), 438-
648 443. doi:10.1038/s41586-021-03402-9

649 van der Maaten L., H. G. (2008). Visualizing Data using t-SNE. *Journal of Machine Learning Research*,
650 9, 2579-2605.

651 Van Gassen, S., Callebaut, B., Van Helden, M. J., Lambrecht, B. N., Demeester, P., Dhaene, T., & Saeys,
652 Y. (2015). FlowSOM: Using self-organizing maps for visualization and interpretation of
653 cytometry data. *Cytometry A*, 87(7), 636-645. doi:10.1002/cyto.a.22625

654 Wang, Z., Schmidt, F., Weisblum, Y., Muecksch, F., Barnes, C. O., Finkin, S., . . . Nussenzweig, M. C.
655 (2021). mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. *Nature*,
656 592(7855), 616-622. doi:10.1038/s41586-021-03324-6

657 Weill, J. C., & Reynaud, C. A. (2020). IgM memory B cells: specific effectors of innate-like and adaptive
658 responses. *Curr Opin Immunol*, 63, 1-6. doi:10.1016/j.coi.2019.09.003

659 Weisel, N. M., Weisel, F. J., Farber, D. L., Borghesi, L. A., Shen, Y., Ma, W., . . . Shlomchik, M. J. (2020).
660 Comprehensive analyses of B-cell compartments across the human body reveal novel subsets
661 and a gut-resident memory phenotype. *Blood*, 136(24), 2774-2785.
662 doi:10.1182/blood.2019002782

663 Westendorp, M. O., Frank, R., Ochsenbauer, C., Stricker, K., Dhein, J., Walczak, H., . . . Krammer, P. H.
664 (1995). Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. *Nature*,
665 375(6531), 497-500. doi:10.1038/375497a0

666 Western Cape Department of Health in collaboration with the National Institute for Communicable
667 Diseases, S. A. (2021). Risk Factors for Coronavirus Disease 2019 (COVID-19) Death in a
668 Population Cohort Study from the Western Cape Province, South Africa. *Clin Infect Dis*, 73(7),
669 e2005-e2015. doi:10.1093/cid/ciaa1198

670 Wibmer, C. K., Ayres, F., Hermanus, T., Madzivhandila, M., Kgagudi, P., Oosthuysen, B., . . . Moore, P.
671 L. (2021). SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor
672 plasma. *Nat Med*, 27(4), 622-625. doi:10.1038/s41591-021-01285-x

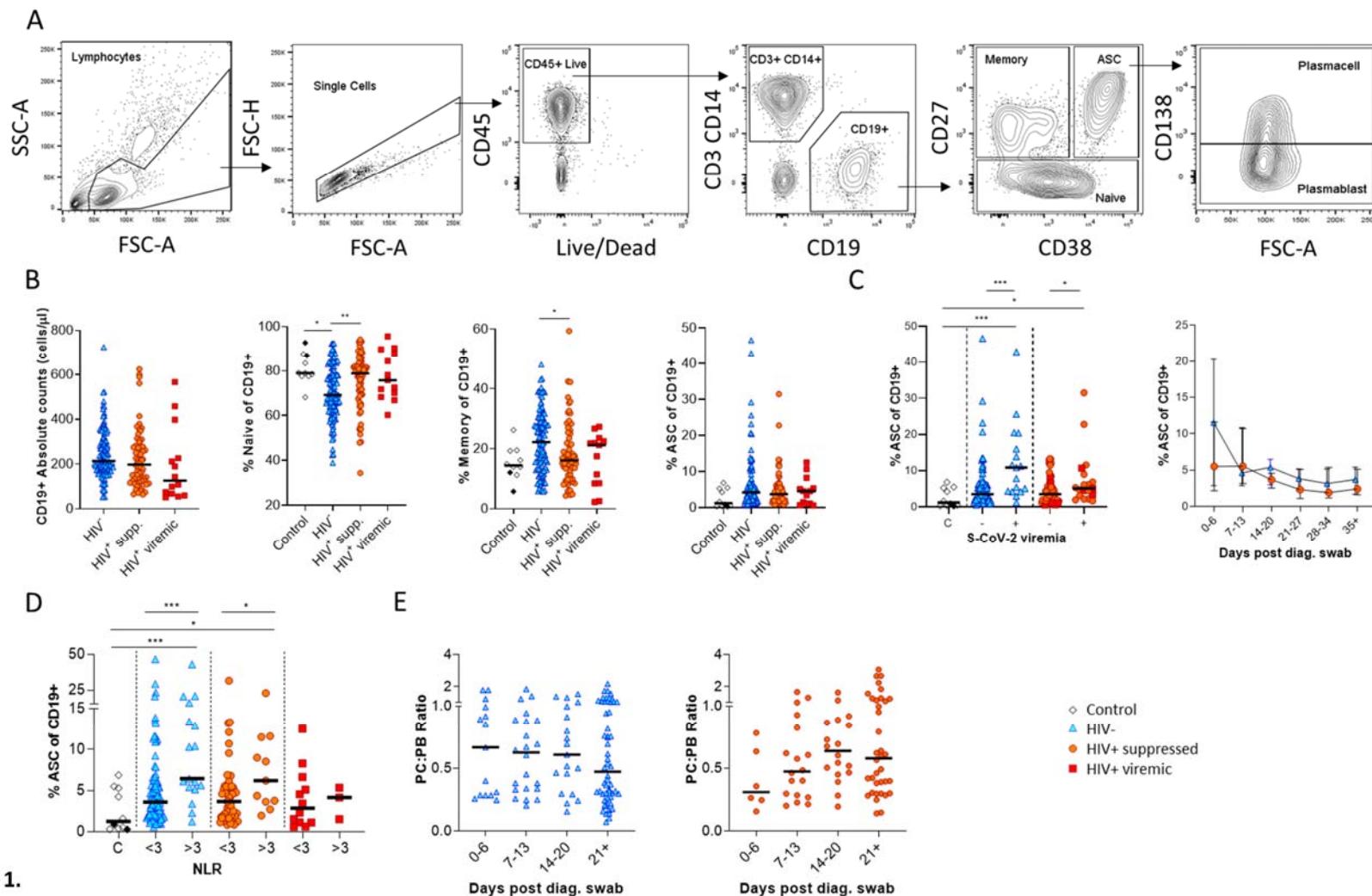
673 Wiede, F., Fromm, P. D., Comerford, I., Kara, E., Bannan, J., Schuh, W., . . . Korner, H. (2013). CCR6 is
674 transiently upregulated on B cells after activation and modulates the germinal center reaction
675 in the mouse. *Immunol Cell Biol*, 91(5), 335-339. doi:10.1038/icb.2013.14

676 Williamson, E. J., Walker, A. J., Bhaskaran, K., Bacon, S., Bates, C., Morton, C. E., . . . Goldacre, B. (2020).
677 Factors associated with COVID-19-related death using OpenSAFELY. *Nature*, 584(7821), 430-
678 436. doi:10.1038/s41586-020-2521-4

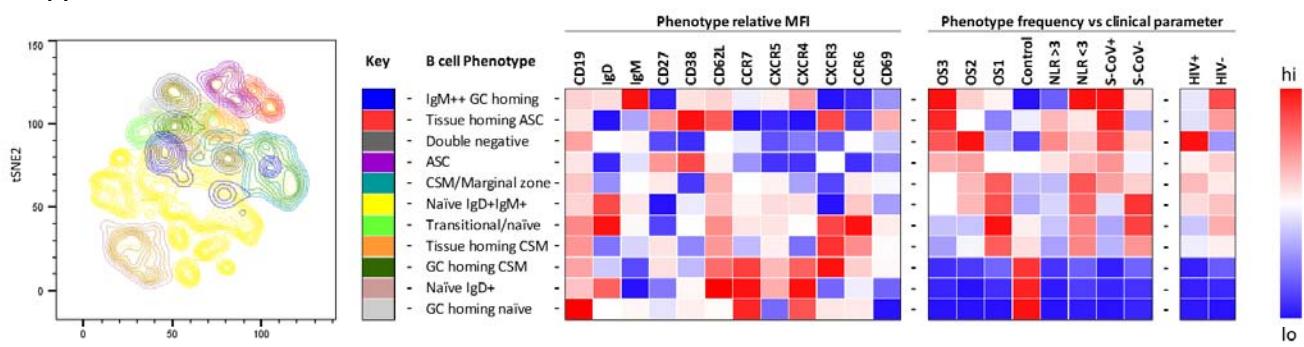
679 Woodruff, M. C., Ramonell, R. P., Nguyen, D. C., Cashman, K. S., Saini, A. S., Haddad, N. S., . . . Sanz, I.
680 (2020). Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in
681 COVID-19. *Nat Immunol*, 21(12), 1506-1516. doi:10.1038/s41590-020-00814-z

682 Yanaba, K., Bouaziz, J. D., Haas, K. M., Poe, J. C., Fujimoto, M., & Tedder, T. F. (2008). A regulatory B
683 cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory
684 responses. *Immunity*, 28(5), 639-650. doi:10.1016/j.jimmuni.2008.03.017

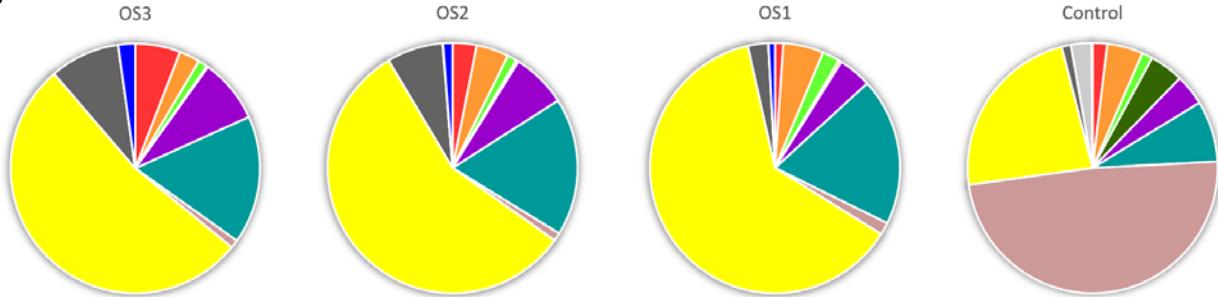
685 Zohar, T., Loos, C., Fischinger, S., Atyeo, C., Wang, C., Slein, M. D., . . . Alter, G. (2020). Compromised
686 Humoral Functional Evolution Tracks with SARS-CoV-2 Mortality. *Cell*, 183(6), 1508-1519
687 e1512. doi:10.1016/j.cell.2020.10.052


689

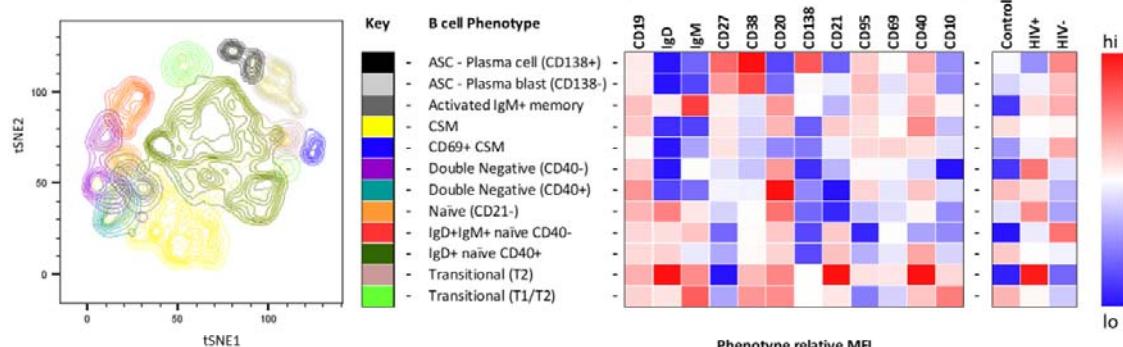
690

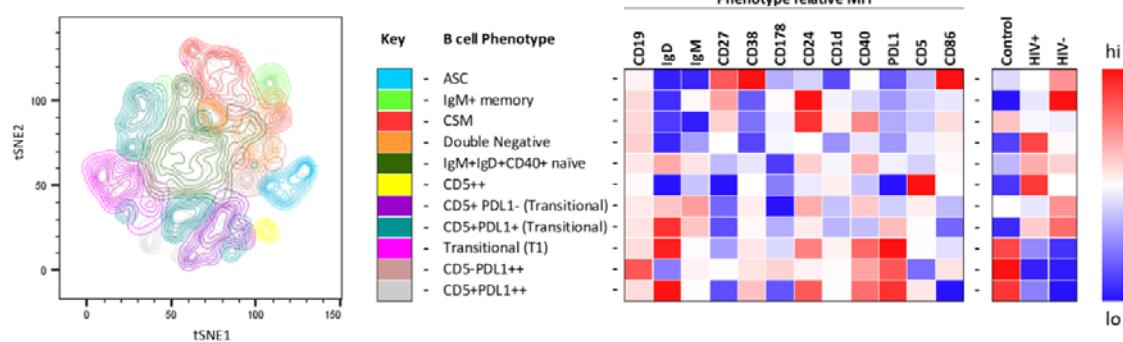

691

692


693

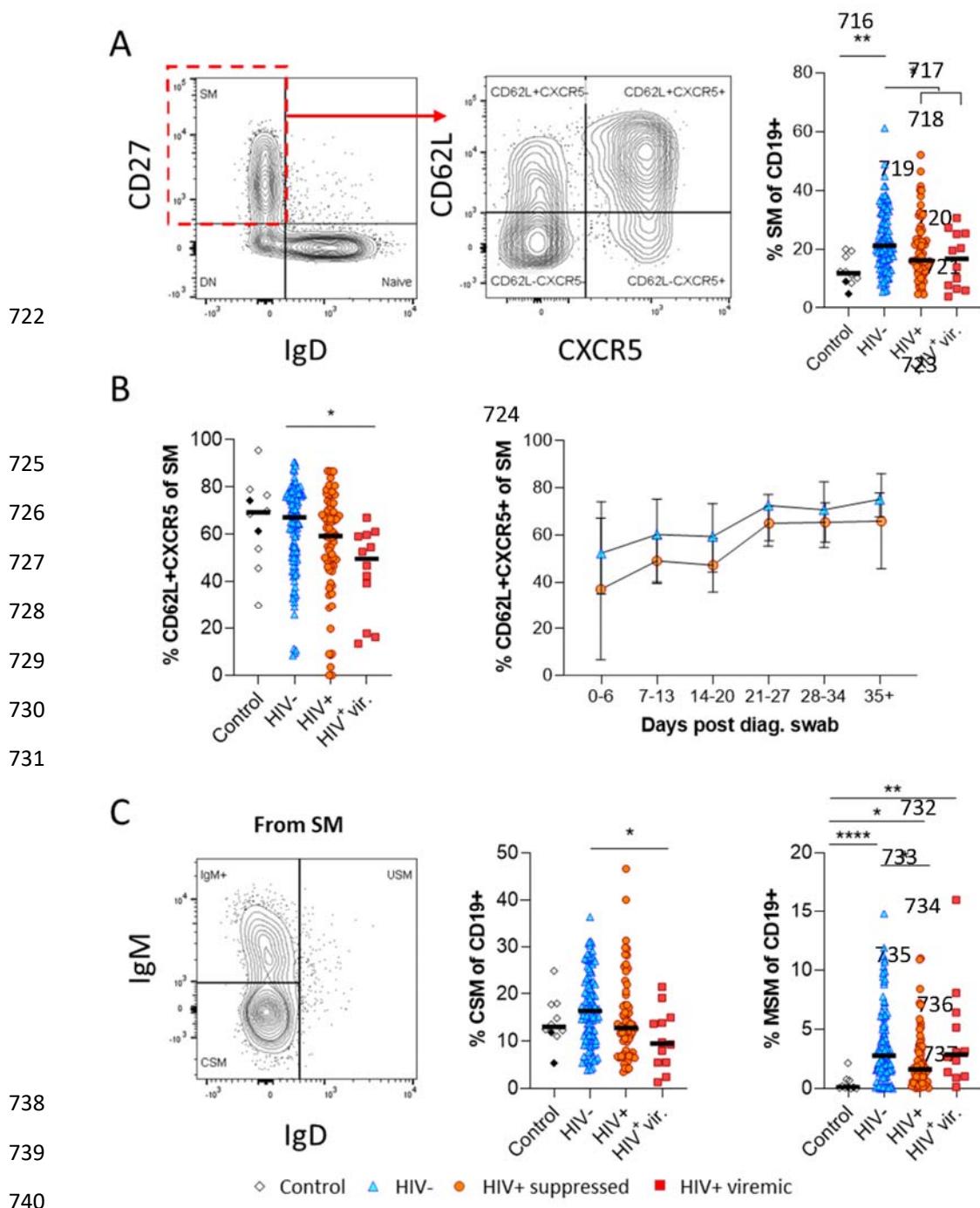
711 **Figure 1.**


A


B

C

D



712

713

714

715 **Figure 2.**

742 **Figure 3**

743

744

745

746

747

748

749

750

751

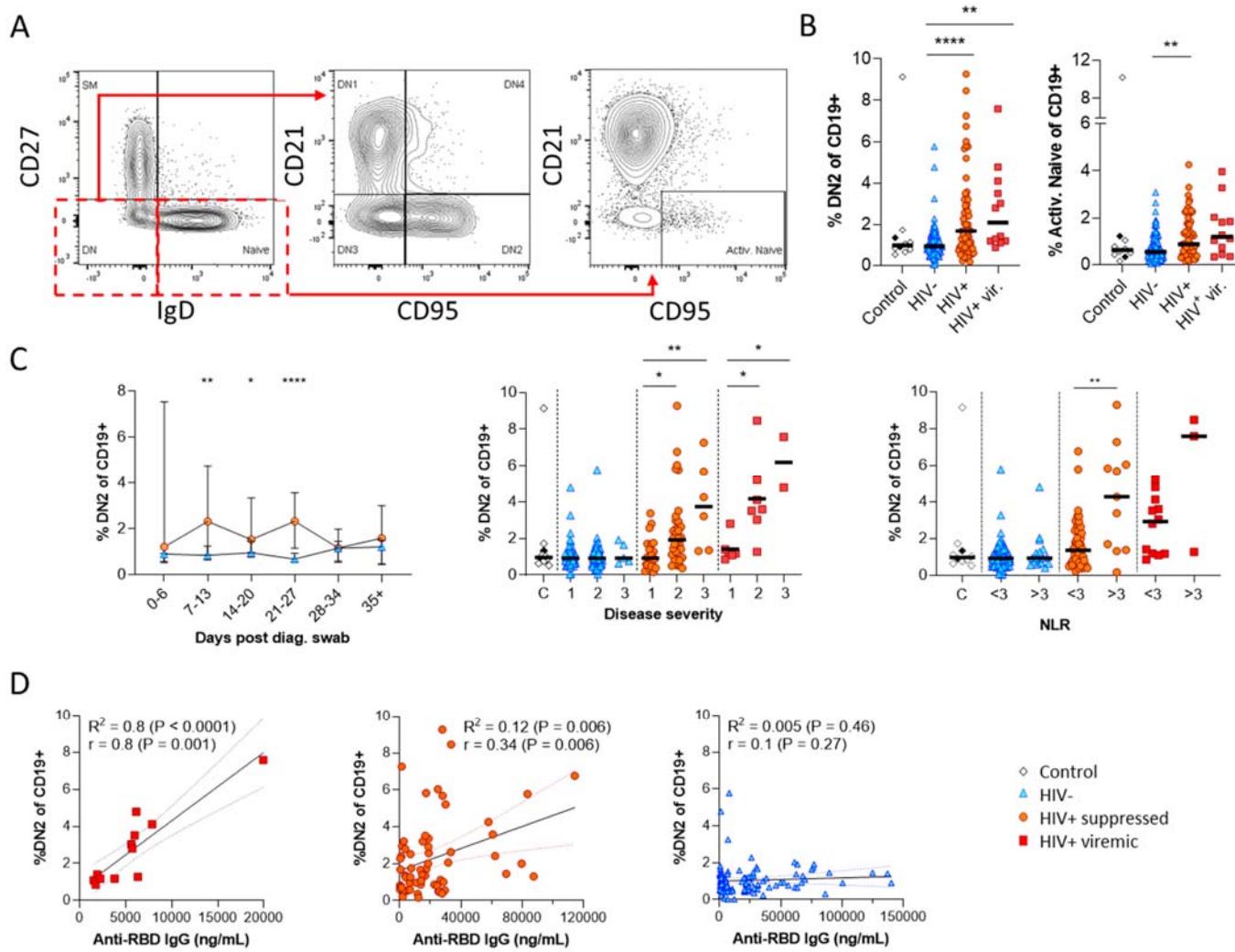
752

753

754

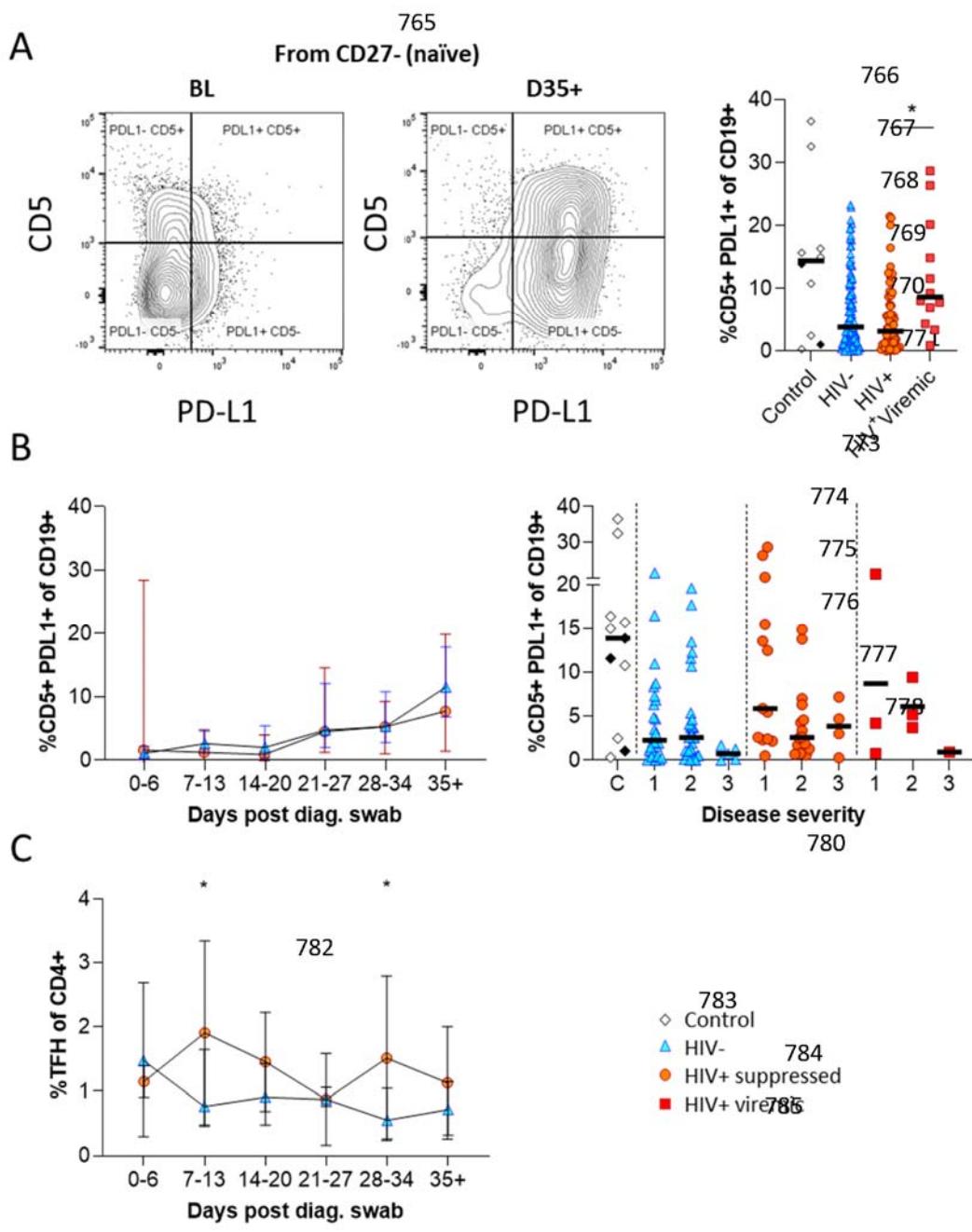
755

756


757

758

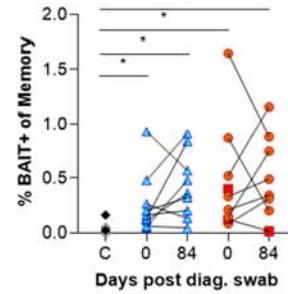
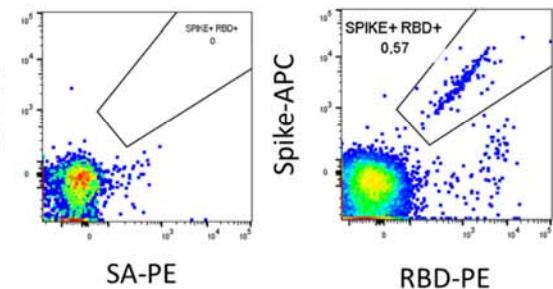
759

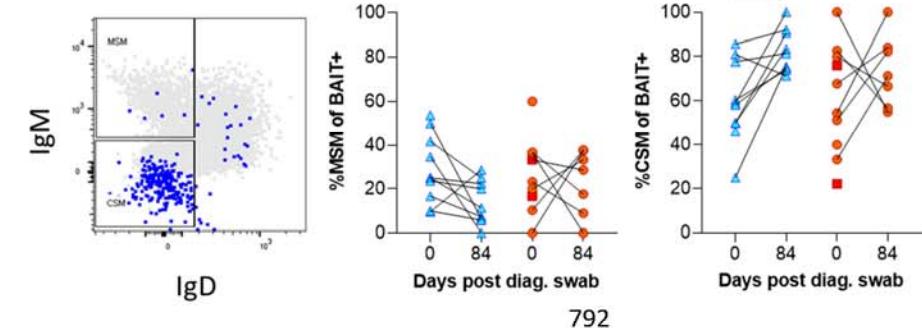

760

761

762 **Figure 4.**

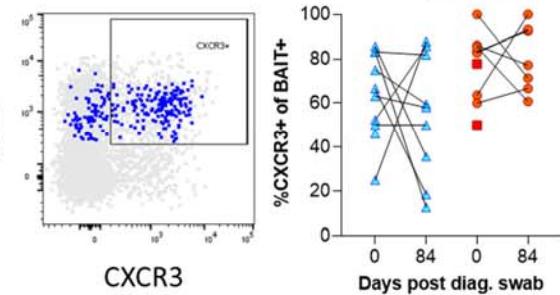
763



764

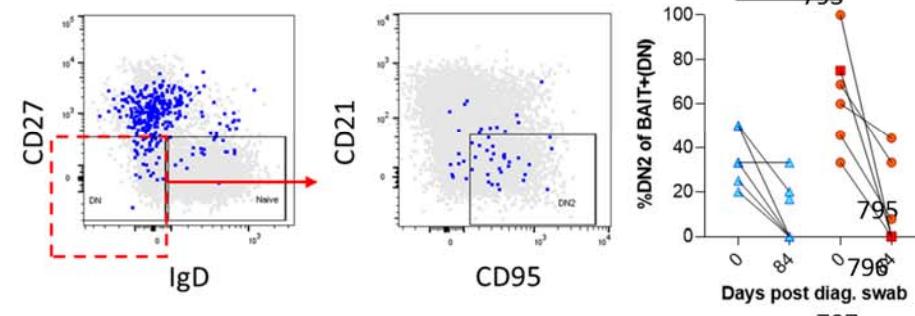

789 Figure 5.

|790

A



B



792

C

D

797

791

794
 ◊ Control
 ▲ HIV-
 ● HIV+ suppressed
 ■ HIV+ viremic

798

799

800

801 **Figure 6.**

802

803 **Extended Data Table 1. Flow Cytometry B cell phenotyping antibody panels**

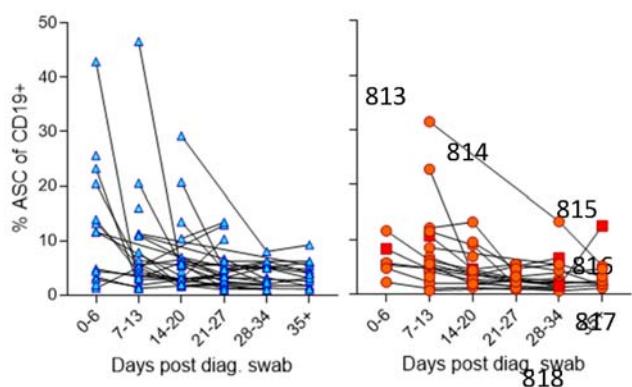
Panel	Marker	Label	clone	cat no	Supplier
Core	L/D	APC-Cy7		L10119	Invitrogen
	CD45	APC	HI30	304012	BioLegend
	CD3	Bv711	OKT3	317328	BioLegend
	CD14	Bv711	M5E2	301838	BioLegend
	CD19	Bv605	HIB19	302244	BioLegend
	CD27	Bv510	O323	302836	BioLegend
	CD38	PECy7	HIT2	303516	BioLegend
	IgM	PerCP/Cy5.5	MHM-88	314512	BioLegend
	IgD	AF700	IA6-2	348230	BioLegend
Homing	CD27	Bv510	O323	302836	BioLegend
	CCR6 (CD196)	Bv421	GO34E3	353439	BioLegend
	CXCR5	AF488 (FITC)	RF8B2	558112	BD Pharmingen
	CXCR4 (CD184)	Bv785™	12G5	306530	BioLegend
	CD62L	PE-Cy5	DREG-56	555545	BD Pharmingen
	CXCR3 (CD183)	PE-CF594	IC6/CXCR3	562451	BD Horizon
	CD69	BUV395	FN50	564364	BD Horizon
	CCR7	PE	150503	FAB197P	R&D Biosystems
Maturation	CD27	Bv510	O323	302836	BioLegend
	CD138 (Syndecan-1)	Bv785™	MI15	356538	BioLegend
	CXCR5	AF488 (FITC)	RF8B2	558112	BD Pharmingen
	CD11c	PE	S-HCL-3	371504	BioLegend
	CD95 (Fas)	Bv650™	DX2	305642	BioLegend
	CD20	PE/Dazzle™ 594	2H7	302348	BioLegend
	CD69	BUV395	FN50	564364	BD Horizon
	CD10	PE-Cy5	HI10a (RUO)	555376	BD Pharmingen
	CD21	Bv421	B-ly4	562966	BD Horizon
	CD40	BUV496	5C3	741159	BD OptiBuild
Regulatory	CD27	PE-Cy5	1A4CD27	6607107	Beckman Coulter
	CD40	BUV496	5C3	741159	BD OptiBuild
	PD-L1 (CD274)	PE	29E.2A3	329706	BioLegend
	CD24	FITC	ML5	311104	BioLegend
	CD178 (Fas-L)	Bv421™	NOK-1	306412	BioLegend
	CD1d	Bv510™	51.1	350314	BioLegend
	CD5	PE/Dazzle™ 594	L17F12	364012	BioLegend
	CD86	Bv650™	IT2.2	305428	BioLegend

804

805

806

807


808 **Extended Data Table 2. Flow Cytometry B cell BAIT antibody panel**

Marker	Label	clone	cat no	Supplier
L/D	APC-Cy7		L10119	Invitrogen
CD45	Hv500	HI30	560777	BD Horizon
CD3	Bv711	OKT3	317328	BioLegend
CD14	Bv711	M5E2	301838	BioLegend
CD19	Bv605	HIB19	302244	BioLegend
CD27	PE-Cy5	1A4CD27	6607107	Beckman Coulter
CD38	PECy7	HIT2	303516	BioLegend
IgM	PerCP/Cy5.5	MHM-88	314512	BioLegend
IgD	AF700	IA6-2	348230	BioLegend
CXCR3	PE-CF594	IC6/CXCR3	562451	BD Horizon
CD21	Bv421	B-ly4	562966	BD Horizon
BAIT	SA-APC		405207	BioLegend
BIAT	SA-PE		405204	BioLegend

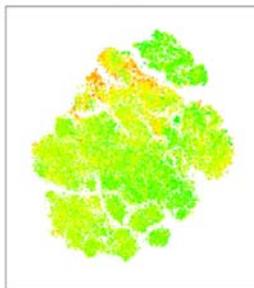
809

810

811

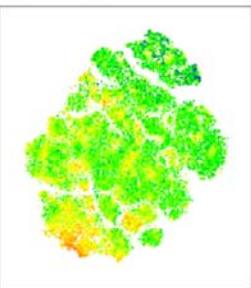
818

819

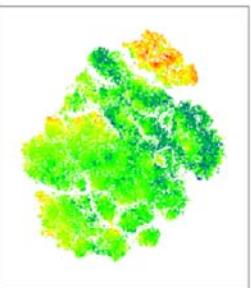

820 **Extended data Figure 1.**

821

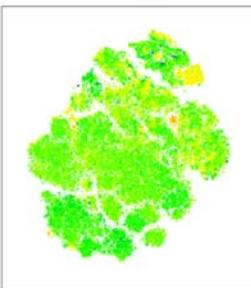
822

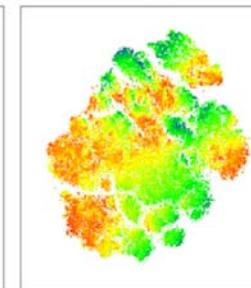

823

CD19



824

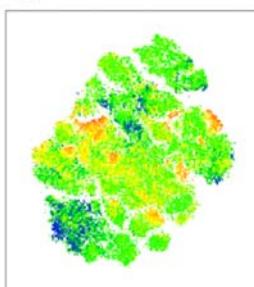

CXCR4


CD38

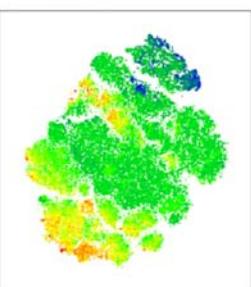
CD69

CD62L

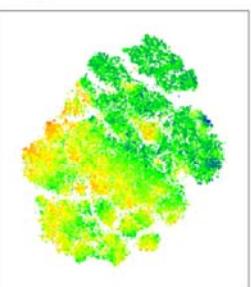
825

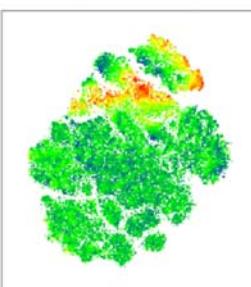

826

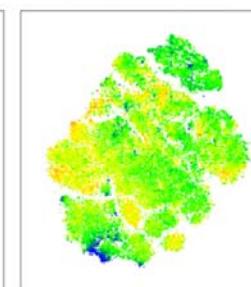
827


828

829


IgM

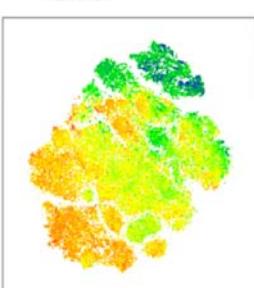

CCR7


IgD

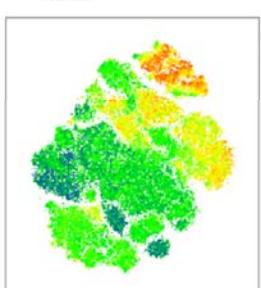
CXCR3

CCR6

830

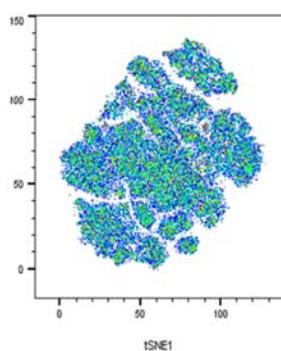

831

832


833

834

CXCR5



CD27

hi

lo

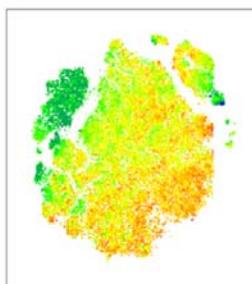
835

836

837

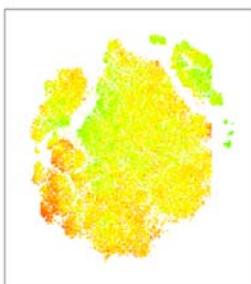
838

839

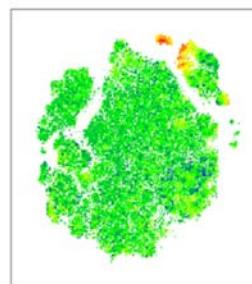

840

841

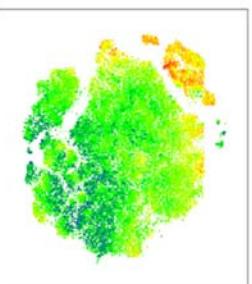
842 **Extended Data Figure 2A.**

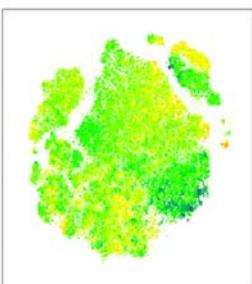

843

CD40



844

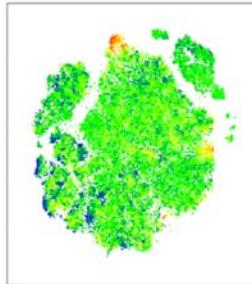

CD19


CD138

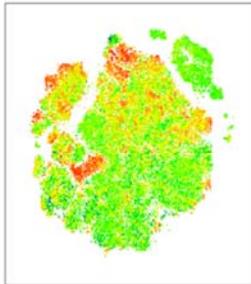
CD38

CD69

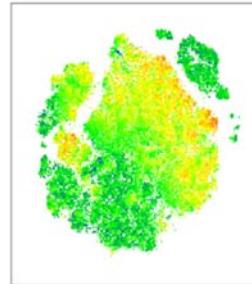
845

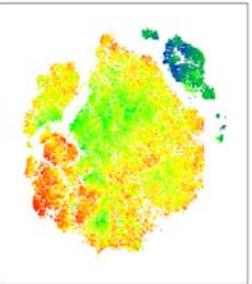

846

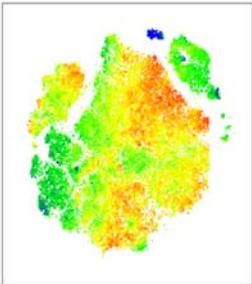
847


848

849


CD10


IgM


IgD

CD20

CD21

850

851

852

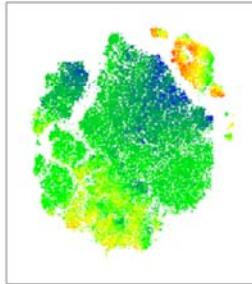
853

854

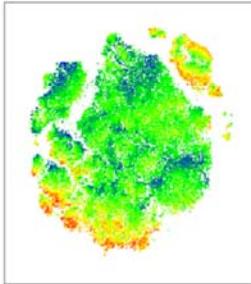
855

856

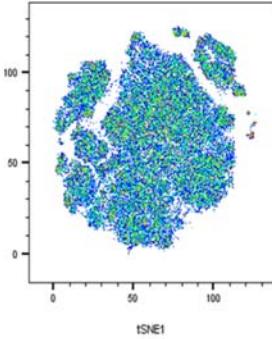
857

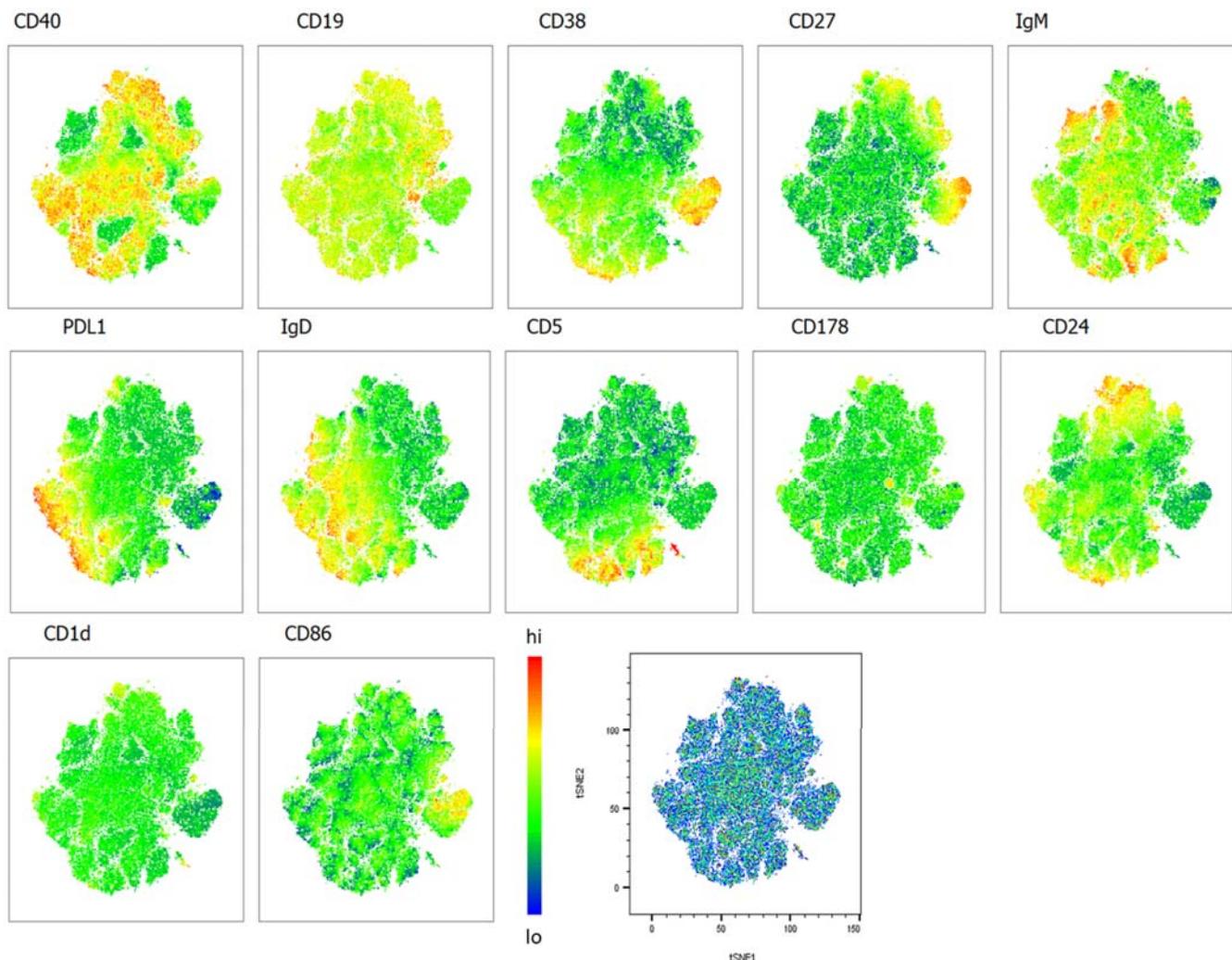

858

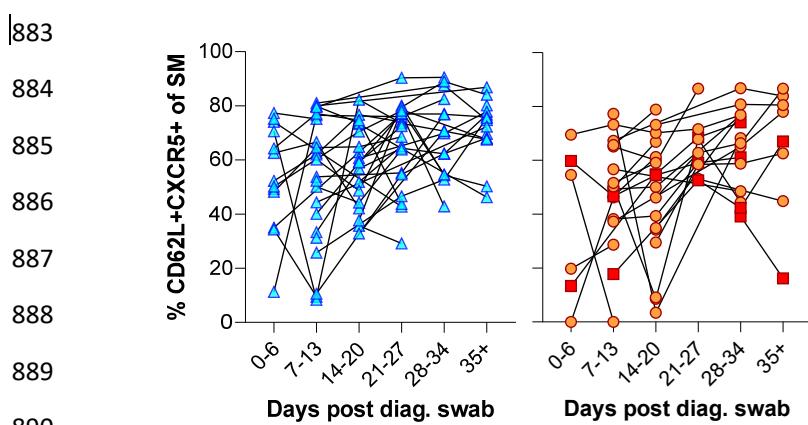
859


860

861


CD27




CD95

hi
lo

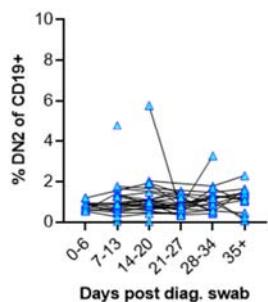
A vertical color scale bar with a gradient from blue at the bottom to red at the top. The word "hi" is at the top and "lo" is at the bottom. The word "tsNE2" is written vertically next to the bar.862 **Extended Data Figure 2B.**

891 **Extended Data Figure 3.**

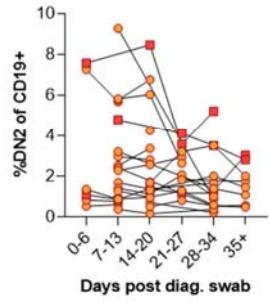
892

893

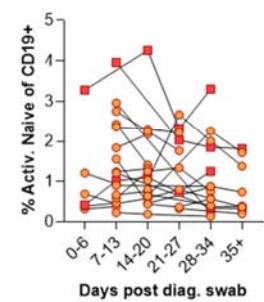
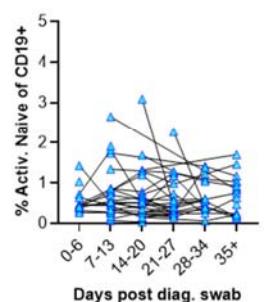
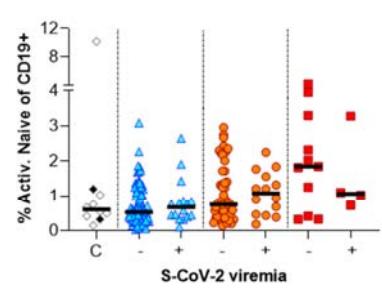
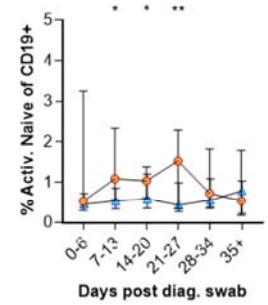
894

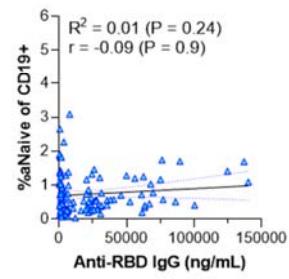
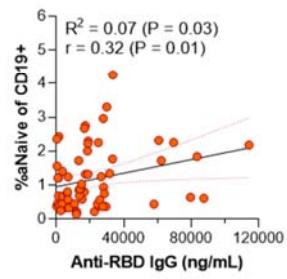
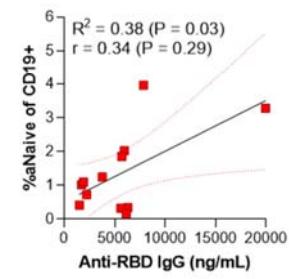

895

896

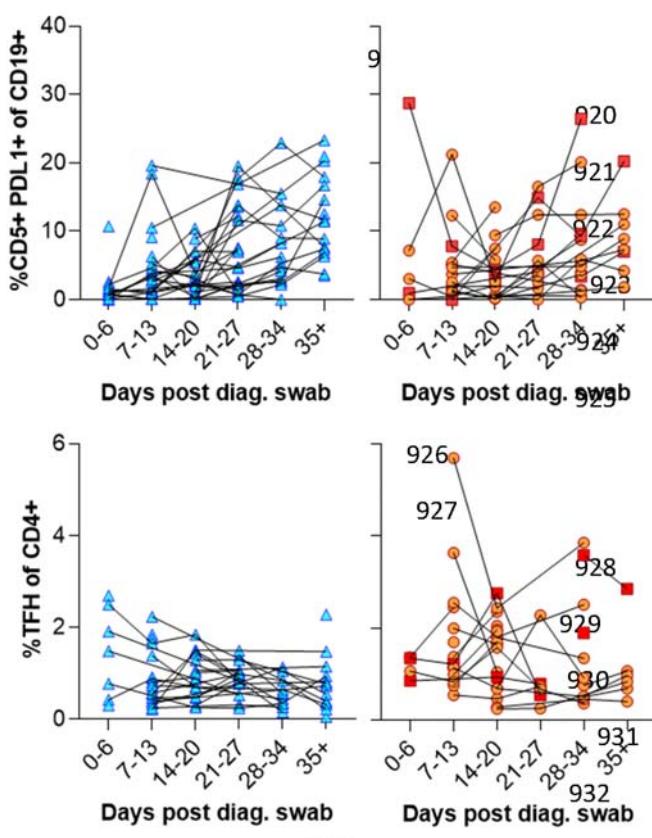

897

898





A (i)




(ii)

B



C

◇ Control
△ HIV-
○ HIV+ suppressed
■ HIV+ viremic

917 Extended Data Figure 4.

934

935 **Extended Data Figure 5.**

936

937

938

939

940