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Background: 21 

HIV infection dysregulates the B cell compartment, affecting memory B cell formation and the 22 
antibody response to infection and vaccination. Understanding the B cell response to SARS-CoV-2 in 23 
people living with HIV (PLWH) may explain the increased morbidity, reduced vaccine efficacy, reduced 24 
clearance, and intra-host evolution of SARS-CoV-2 observed in some HIV-1 coinfections.  25 

Methods: 26 

We compared B cell responses to COVID-19 in PLWH and HIV negative (HIV-ve) patients in a cohort 27 
recruited in Durban, South Africa, during the first pandemic wave in July 2020 using detailed flow 28 
cytometry phenotyping of longitudinal samples with markers of B cell maturation, homing and 29 
regulatory features. 30 

Results: 31 

This revealed a coordinated B cell response to COVID-19 that differed significantly between HIV-ve 32 
and PLWH. Memory B cells in PLWH displayed evidence of reduced germinal center (GC) activity, 33 
homing capacity and class-switching responses, with increased PD-L1 expression, and decreased Tfh 34 
frequency. This was mirrored by increased extrafollicular (EF) activity, with dynamic changes in 35 
activated double negative (DN2) and activated naïve B cells, which correlated with anti-RBD-titres in 36 
these individuals. An elevated SARS-CoV-2 specific EF response in PLWH was confirmed using viral 37 
spike and RBD bait proteins.  38 
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Conclusions: 39 

Despite similar disease severity, these trends were highest in participants with uncontrolled HIV, 40 
implicating HIV in driving these changes. EF B cell responses are rapid but give rise to lower affinity 41 
antibodies, less durable long-term memory, and reduced capacity to adapt to new variants. Further 42 
work is needed to determine the long-term effects of HIV on SARS-CoV-2 immunity, particularly as 43 
new variants emerge.  44 
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Introduction 52 

SARS-CoV-2 remains a threat to global health, especially in the light of new, more contagious variants 53 
capable of escaping vaccine-induced neutralizing antibodies (Cele et al., 2021; Tada et al., 2021; 54 
Tegally et al., 2021; Wibmer et al., 2021). Although vaccination may not prevent transmission, it is 55 
generally effective at preventing severe disease, primarily via eliciting neutralizing antibodies targeting 56 
the SARS-CoV-2 spike protein (Frater et al., 2021; Shinde et al., 2021; Tada et al., 2021). Risk factors 57 
for severe disease, especially in unvaccinated people, include old age (>65), underlying lung and heart 58 
disease; diabetes; and immune disorders such as those caused by HIV infection (Williamson et al., 59 
2020). HIV has also been associated with increased morbidity and mortality (Bhaskaran et al., 2021; 60 
Western Cape Department of Health in collaboration with the National Institute for Communicable 61 
Diseases, 2021), especially in patients with uncontrolled HIV viremia (Chanda et al., 2021) and in those 62 
with CD4 counts below 200 cells/µl, emphasizing the need for effective antiretroviral therapy (ART) 63 
(Karim et al., 2021). In addition, an inadequate immune response to COVID-19 is associated with 64 
prolonged SARS-CoV-2 infection and high intra-host mutation rates in both uncontrolled HIV and 65 
patients on immune-suppressing medication (Cele et al., 2022; McCormick, Jacobs, & Mellors, 2021). 66 
This highlights the importance of understanding the immune response to COVID-19 in patients with 67 
HIV, especially in the South African context, which has a high HIV prevalence (Kharsany et al., 2018) 68 
and SARS-CoV-2 attack rate (Tegally et al., 2021).  69 

HIV affects the adaptive immune response by infecting CD4 T cells and reducing their numbers in 70 
circulation  (Dalgleish et al., 1984; Westendorp et al., 1995). CD4 T follicular helper (Tfh) cells are a 71 
critical component of the germinal center (GC) reaction as they assist the affinity maturation of their 72 
cognate B cell’s antigen receptor (BCR). The knock-on effects of HIV infection can therefore include 73 
hypergammaglobulinemia (Lane et al., 1983), depleted resting memory, and increased naïve B cell 74 
frequencies (Moir & Fauci, 2014). Interestingly, as with other inflammatory diseases 75 
(Freudenhammer, Voll, Binder, Keller, & Warnatz, 2020), HIV is also associated with an increased 76 
prevalence of “tissue-like” memory B cells in circulation (Ehrhardt et al., 2005; Knox et al., 2017; Moir 77 
& Fauci, 2014). These CD27-ve CD21-ve B cells resemble the EF constituent now often referred to as 78 
double-negative (DN) B cells (Jenks, Cashman, Woodruff, Lee, & Sanz, 2019; Jenks et al., 2020; 79 
Woodruff et al., 2020). These HIV induced changes in the B cell compartment are likely to be 80 
responsible for the reduced vaccine efficacy and durability observed in PLWH, including to novel SARS-81 
CoV-2 vaccines (Hassold et al., 2022; Kerneis et al., 2014), and may contribute to prolonged viremia 82 
and increased viral mutation (Cele et al., 2022; Karim et al., 2021).  83 
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We, therefore, investigated the effect of HIV on the B cell response to SARS-CoV-2 infection, using a 84 
comprehensive B cell phenotyping approach and B cell baits to identify SARS-CoV-2 specific B cells. 85 
Blood samples were collected at weekly intervals from PLWH and HIV-ve study participants following 86 
positive COVID-19 diagnosis during the first wave of infections in a cohort of patients from Durban, 87 
South Africa (Karim et al., 2021). In this cohort of individuals with predominantly mild-moderate 88 
disease, the B cell response to SARS-CoV-2 infection is strikingly different in PLWH and characterized 89 
by reduced GC activity and a contrasting increase in EF activity.   90 

Results 91 

We investigated the longitudinal dynamics of the B cell response to SARS-CoV-2 infection in PLWH 92 
compared to HIV-ve patients using a previously described COVID-19 cohort enrolled in Durban, South 93 
Africa, during the first wave of the pandemic in July 2020 (Karim et al., 2021). A total of 70 SARS-CoV-94 
2 positive, confirmed by qPCR and serology, and 10 negative control participants were included in this 95 
study. Of the SARS-CoV-2 positive participants, 28 (40%) were PLWH, and five (18%) had detectable 96 
HIV in their plasma. SARS-CoV-2 infected participants were monitored weekly for 5 follow-up time 97 
points. Control participants were recruited at a single time point and were confirmed as SARS-CoV-2 98 
negative by qPCR and serology and included two PLWH individuals. As some of the participants 99 
remained asymptomatic throughout the study, a timescale relating to days after positive diagnostic 100 
swab rather than symptom onset was used (days post-diagnostic swab), which has been shown to 101 
correlate well with symptom onset in the symptomatic patients from this cohort (Karim et al., 2021). 102 

B cells were initially identified as CD19+ lymphocytes (Figure 1A), and the expression pattern of CD27 103 
and CD38 was used to identify the canonical naïve, memory, and antibody-secreting cell (ASC) subsets 104 
(Glass et al., 2020). The ASC population was further differentiated into CD138+ Plasma cells (PC) and 105 
CD138- Plasmablasts (PB) (Glass et al., 2020). Considering all timepoints, HIV viremic participants had 106 
lower absolute B cell numbers, although this difference did not reach statistical significance. However, 107 
HIV-ve SARS-CoV-2 infected participants had significantly fewer naïve B cells and more memory B cells 108 
than SARS-CoV-2 infected PLWH and SARS-CoV-2 uninfected controls (Figure 1B; (Moir & Fauci, 109 
2014)). The ASC response was significantly elevated at SARS-CoV-2 viremic timepoints in both patient 110 
groups, consistent with a robust ASC response to active infection (Figure 1C) but was not significantly 111 
different in PLWH. In addition, although the frequency of ASC at the earliest timepoint tended to be 112 
higher in the HIV-ve group, this was not statistically significant. Using the patient neutrophil-113 
lymphocyte ratio (NLR) as a proxy of inflammation (Ciccullo et al., 2020; Fu et al., 2020; Karim et al., 114 
2021), the frequency of ASC was found to be significantly higher at time points when the NLR ratio 115 
was above 3 (Figure 1D) suggesting an association between disease severity and ASC frequency. 116 
Finally, the PC:PB ratio was not significantly different between PLWH and HIV-ve patients at any time 117 
point, although there was a trend for a lower ratio in PLWH (Figure 1E). Taken together these data 118 
suggest that despite differences in canonical B cell phenotypes known to precede ASC maturation, 119 
PLWH mounted a similar ASC response against SARS-CoV-2 infection to HIV-ve participants.  120 

To further investigate the B cell response to SARS-CoV-2 in PLWH, we designed three B cell 121 
phenotyping flow cytometry panels, using markers specific for B cell maturation, activation, homing, 122 
and regulatory function (Figure 2A, C, D). Fresh PBMC from all participants were stained using all three 123 
panels separately and analyzed using an unbiased approach combining FlowSOM and tSNE pipelines 124 
(van der Maaten L., 2008; Van Gassen et al., 2015). This identified 11 to 12 distinct B cell clusters 125 
between the three phenotyping panels, with probable B cell phenotypes assigned based on the 126 
expression pattern of surface markers associated with each B cell cluster (Figure 2A, C, D). To uncover 127 
associations between HIV infection status or disease severity, an equal number of B cells for each 128 
disease severity category (ordinal scale 1-3 (OS1-3, (Karim et al., 2021)) were included, distributed 129 
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equally between PLWH and HIV-ve controls. This allowed the relative abundance of each B cell cluster 130 
to be compared between the following clinical parameters: an ordinal disease scale (1-3), neutrophil-131 
lymphocyte ratio (NLR) as a measure of inflammation (Ciccullo et al., 2020; Fu et al., 2020; Karim et 132 
al., 2021), SARS-CoV-2 viral load and HIV status.  133 

Using B cell panel 1 (Extended Data Table 1, Figure 2A), distinct patterns of homing marker expression 134 
were observed. Two CD27+CD38++ ASC populations are identified, highlighted in red and purple 135 
(Figure 2A). The former also expressed high levels of CXCR3, the primary receptor for CXCL9, 10, 11, 136 
which facilitates homing to inflamed tissues (Onodera et al., 2012; Serre et al., 2012; Sutton et al., 137 
2021), high levels of the extravasation marker CD62L+ and, uniquely, the activation/tissue residency 138 
marker CD69+. Therefore, this population is referred to as tissue homing and potentially indicates B 139 
cells which preferentially migrate to the diseased lung (Onodera et al., 2012; Serre et al., 2012; Sutton 140 
et al., 2021; Weisel et al., 2020). In line with this, tissue homing ASC are highly elevated in participants 141 
with the most severe disease (ordinal scale 3), with elevated NLR, and with detectable SARS-CoV-2 142 
viremia, as, to a lesser extent, are ASCs lacking this tissue homing phenotype (Figure 2A, B). In 143 
addition, a population of class switched, IgMhi B cells (highlighted in blue) was associated with severe 144 
disease, which co-expressed markers associated with germinal center homing (CXCR5 and CXCR4; 145 
(Cyster & Allen, 2019)). Strikingly, all 3 populations are elevated in HIV-ve participants but not in 146 
PLWH, as indicated in the final 2 columns of the heat map. In PLWH, by contrast, disease severity was 147 
associated with an elevated population of B cells expressing a CD27-IgD- phenotype, corresponding to 148 
double negative B cells (DN; highlighted in grey), which lacked elevated expression of any of the 149 
homing markers measured. Several B cell subsets are elevated in asymptomatic subjects, including 150 
transitional B cells, as reported elsewhere (Woodruff et al., 2020) and a class-switched memory 151 
phenotype that expressed CXCR3. As expected, in the control patients, the naïve B cell phenotype was 152 
predominantly IgD+ IgM- (brown), whereas the SARS-CoV-2 infected participants IgD + naïve cells also 153 
expressed low levels of IgM+ (yellow; Figure 2B). Both naïve populations are high for CXCR5 and 154 
CXCR4, consistent with their requirement to gain entry to germinal centers for affinity maturation 155 
(dark and light zones, respectively (Cyster & Allen, 2019)). Interestingly CCR6 was also upregulated in 156 
the SARS-CoV-2+ naïve B cells, suggestive of systemic B cell activation (Reimer et al., 2017; Wiede et 157 
al., 2013). Together these data confirm that, as reported elsewhere (Woodruff et al., 2020), COVID-19 158 
severity is associated with skewing of B cell phenotype and, for the first time, that this skewing is 159 
altered by concurrent HIV infection. 160 

The association between disease severity and B cell phenotype was less apparent in data generated 161 
using the other two flow cytometry panels and, therefore not reported in the heat maps (Figure 2C,D; 162 
Extended Data Figure 2B,C). However, distinct differences between PLHW and HIV-ve participants 163 
were also apparent. Panel 2, composed of maturation markers (Figure 2C), again suggests that ASC 164 
were less prevalent in PLWH than in HIV-ve participants, particularly CD138+ plasma cells. In addition, 165 
class-switched memory cells (CSM) expressing CD69, consistent with activation, were elevated in HIV-166 
ve participants but not PLWH. In contrast, two DN populations can be distinguished, differing by CD40 167 
expression (purple and turquoise), both of which feed into an EF B cell maturation pathway (Jenks et 168 
al., 2019; Jenks et al., 2020; Woodruff et al., 2020), and both were elevated in PLWH. Likewise, an 169 
activated naïve (CD21lo) population (orange) was also elevated in PLWH relative to HIV-ve participants. 170 
Two other naïve phenotypes were apparent, differing by their expression of CD40, of which the CD40-171 
ve population appeared to be unique to the HIV-ve COVID-19+ participants (red population). Finally, 172 
two small transitional B cell populations were detectable, one of which, with a distinctive high IgD, 173 
CD21, and CD40 phenotype, was elevated in PLWH.  174 
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For panel 3, comprised of regulatory markers, the same reduced ASC response in PLWH was suggested 175 
(highlighted in blue), as the key B cell markers CD19, IgD, IgM, CD27, and CD38 are shared between 176 
all three panels. In this case, ASC are shown to express high levels of CD86, associated with B cell 177 
activation (Cyster & Allen, 2019). The same association between PLWH and DN B cells was also 178 
apparent (highlighted in orange), and which also display CD86 expression (Figure 2D). In addition, a 179 
small population of B cells expressing high levels of CD5 (CD5++) was elevated in PLWH. These cells 180 
co-express CD1d, consistent with regulatory B cells producing the critical regulatory cytokine IL-10 181 
(Oleinika et al., 2018; Palmer, Nganga, Rothermund, Perry, & Swanson, 2015; Yanaba et al., 2008). 182 
Another important regulatory molecule in B cells is PD-L1, which can limit T-cell help via engaging with 183 
PD-1 on the surface of Tfh cells in the GC (Khan et al., 2015). The expression of this marker was 184 
primarily associated with B cell subsets present in non-COVID-19 controls (Figure 2D, pink and grey), 185 
suggesting it is downregulated during SARS-CoV-2 infection. However, PD-L1 expression did not 186 
appear to be affected by HIV coinfection. Taken together, these unbiased analyses consistently show 187 
the B cell response to SARS-CoV-2 is skewed in PLWH, associated with a reduction in ASC subsets, class 188 
switching, and markers of GC homing and with an increase of B cell phenotypes associated with EF 189 
maturation.  190 

To drill down further, we next analyzed the skewed B cell subsets of interest in longitudinal samples 191 
by Boolean gating. Unlike in the tSNE analysis, where downsampling was used to prevent bias analysis, 192 
all study subjects were included in these analyses. Consistent with the potential difference in GC 193 
activity and class switching observed above, we found that CD27+ IgD- switched memory B cells (SM) 194 
were significantly more frequent in HIV-ve COVID-19 patients than in PLWH (Figure 3A). Furthermore, 195 
the fraction of SM B cells expressing CD62L and CXCR5, allowing them to home the GC, was reduced 196 
in PLWH, particularly in individuals with viremic HIV (Figure 3B). Longitudinal analysis shows this 197 
population increases over time in both groups, consistent with a dynamic change associated with 198 
SARS-CoV-2 infection but is consistently lower in PLWH (Figure 3B). A similar trend was observed for 199 
CSM B cells, which were expanded in HIV-ve participants compared to controls but were significantly 200 
lower in viremic PLWH (Figure 3C). Interestingly, IgM switched memory B cells were significantly 201 
upregulated in all COVID-19 patient groups relative to the control group, but again this was reduced 202 
in the PLWH group. Although the precise function of this B cell subset is debated, it is believed they 203 
can achieve rapid plasma cell differentiation, germinal center re-initiation, and IgM and IgG memory 204 
pool replenishment (Weill & Reynaud, 2020). Together these data suggest that concurrent HIV 205 
infection may cause a reduction in GC homing, class switching, and memory establishment after SARS-206 
CoV-2 infection, which was generally exacerbated in individuals with viremic HIV.    207 

Next, given that the alternative to B cell maturation in the GC involves an EF route, DN B cells were 208 
examined in detail. The DN phenotype, also referred to as atypical B cells, forms part of an EF B cell 209 
response, which circumvents/pre-empts the germinal center reaction resulting in a rapid but short-210 
lived PB response that facilitates rapid antibody production (Jenks et al., 2019; Jenks et al., 2020; 211 
Woodruff et al., 2020). Both activated DN B cells, commonly referred to as the DN2 cells, and activated 212 
naïve phenotypes, contribute to the EF response (Jenks et al., 2019) and are identified as CD21lo CD95+ 213 
subsets (Figure 4A). Multiple studies have described the expansion of DN2 B cells in association with 214 
severe COVID disease (Chen et al., 2020; Kaneko et al., 2020; Woodruff et al., 2020), but not in relation 215 
to HIV. Here, DN2 and activated naïve B cells were identified by expression of CD95, a known marker 216 
of activation on B cells (Freudenhammer et al., 2020; Glass et al., 2020; Jenks et al., 2020; Le Gallo, 217 
Poissonnier, Blanco, & Legembre, 2017). Both EF-associated B cell phenotypes were significantly more 218 
frequent in the SARS-CoV-2 infected PLWH relative to the HIV-ve group, irrespective of HIV viremia in 219 
the case of DN2 (Figure 4B and extended Figure 4A(i)). In addition, both subsets change in frequency 220 
over the course of infection, expanding from timepoint 2 (day 7-13) and remaining significantly 221 
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expanded compared to HIV-ve participants until after timepoint 4 (day 21-27), after which they 222 
contract to the same level (Figure 4C and extended Figure 4B). The dynamic nature of this EF response 223 
strongly suggests it emerges during SARS-CoV-2 infection and does not represent a pre-existing 224 
difference associated with HIV. This is further supported by the fact that the frequency of DN2 and, to 225 
a lesser extent, activated naïve B cells, correlates with the RBD antibody titer in PLWH, particularly 226 
those with detectable HIV (Figure 4D and extended Figure 4C). In addition, the frequency of these 227 
populations was associated with increased clinical disease severity and NLR in PLWH but not in HIV-228 
ve participants (Figure 4C and extended Figure 4B). Indeed, the lack of an EF response in HIV-ve 229 
participants is highlighted by the absence of DN populations even in subjects in OS3 and with elevated 230 
NLRs. These data are highly consistent with the data shown in Figure 3 and suggest that the B cell 231 
response to SARS-CoV-2 infection in PLWH is associated with reduced GC maturation and increased 232 
EF activity. 233 

Having observed elevated PD-L1 in non-COVID controls, we examined the expression of this marker 234 
longitudinally in conjunction with CD5 to examine regulatory B cell frequency (Figure 5A; (Catalan et 235 
al., 2021; Khan et al., 2015; Sun, Zhang, Li, Yin, & Xue, 2019). This revealed a clear shift in PD-L1 236 
expression on naïve B cells longitudinally, which was very low at baseline and increased to the range 237 
observed in controls by the final time point (Figure 5B). Similar frequencies and longitudinal trends 238 
were observed in both PLWH and HIV-ve participants, suggesting this is a consistent feature of the 239 
acute B cell response to SARS-CoV-2 infection. However, PD-L1 CD5+ B cells are significantly more 240 
frequent in HIV viremic individuals (Figure 4A). PD-L1 expression plays an integral part in the GC 241 
response and maintains the relatively unstable Tfh lineage (Khan et al., 2015). Interestingly, the 242 
frequency of total Tfh tended to be higher in PLWH, reaching significance at timepoints 2 and 5 (Figure 243 
4C). Although the frequency of SARS-CoV-2 specific Tfh was not measured, these data again point to 244 
potential impairment of the GC response in PLWH, which is dependent on the crosstalk between B 245 
cells and Tfh governed, in part, by the interaction between PD-L1 expressed on B cells and PD-1 on Tfh 246 
(Khan et al., 2015; Sun et al., 2019). 247 

Finally, as the data presented above was based on bulk B cell phenotyping, we examined a subset of 248 
informative markers on SARS-CoV-2 specific B cells using recombinant SARS-CoV-2 spike and receptor 249 
binding domain (RBD) proteins conjugated to fluorescent streptavidin as baits ((Goel et al., 2021) 250 
Krause et al., submitted; Figure 6A; Extended Data Table 2). B cells staining with both spike and RBD 251 
baits were quantified at baseline and 3 months, revealing robust SARS-CoV-2 specific memory B cell 252 
populations in all individuals, which did not significantly wane by 3 months and were not different in 253 
frequency between PLHW and HIV-ve participants (Figure 6B). Interestingly, in this subset of 254 
participants, the degree of CSM was not significantly different between groups and tended to increase 255 
over time in both. However, spike-specific memory B cells from PLWH tended to express higher levels 256 
of CXCR3 (Figure 6C), particularly at month 3, a marker associated with homing to inflamed tissue 257 
(Onodera et al., 2012; Serre et al., 2012; Sutton et al., 2021). Finally, a significantly higher proportion 258 
of spike-specific B cells from PLWH displayed a DN2 phenotype, confirming the increased EF activity 259 
towards SARS-CoV-2 in these individuals suggested by the bulk phenotyping. 260 

Discussion 261 

Using longitudinal samples from the first wave of infection in South Africa, we found that HIV 262 
coinfection significantly impacted the B cell response to SARS-CoV-2. Overall, these data show that 263 
the B cell response in PLWH is skewed towards an EF route and away from GC maturation. This is 264 
demonstrated by several observations, including elevated DN2 and activated naïve B cells in PLWH, 265 
consistent with EF maturation; mirrored by reduced class switching of memory B cells and reduced 266 
expression of markers CXCR5 and CD62L allowing B cells to home to the GC. In addition, as an effective 267 
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GC reaction requires tight regulation of the Tfh response, observed differences in PD-L1 expression on 268 
B cells and Tfh frequency in PLWH are likely to hamper B cell maturation via this pathway. Importantly, 269 
the skewing toward EF B cell maturation in PLWH correlated with anti-RBD antibody titer in these 270 
individuals and was confirmed on SARS-CoV-2 spike-specific B cells.  271 

Multiple studies have characterized the B cell response to COVID-19 in HIV-ve individuals and 272 
observed a positive correlation between disease severity and an elevated ASC response (Kaneko et 273 
al., 2020; Karim et al., 2021; Woodruff et al., 2020). Furthermore, an EF B cell response has been 274 
associated with severe COVID-19 and predicts poor clinical outcomes, and severe COVID-19 cases have 275 
been characterized by poor GC formation in secondary lymphoid organs (Chen et al., 2020; Kaneko et 276 
al., 2020; Woodruff et al., 2020). However, the impact of HIV coinfection on the B cell response and 277 
these associations is unknown. Here, we find that the ASC response is associated with disease severity 278 
in both HIV-ve participants and PLWH, although the effect appears more robust in HIV-ve participants. 279 
More detailed phenotyping of the ASC supports this, as CD138+ plasma cells and ASC with a tissue 280 
homing and activated phenotype (CXCR3+CD69+ in panel 1 and CD86+ in panel 2) were more strongly 281 
associated with SARS-CoV-2 infection in HIV-ve participants. In contrast, the association between 282 
disease severity and EF activity was uniquely observed in PLWH. The absence of EF activity in HIV-ve 283 
participants is not at odds with published literature, as no individuals with severe COVID-19 were 284 
included in this study (Kaneko et al., 2020; Woodruff et al., 2020). Therefore, the association between 285 
HIV and EF B cells is not driven by disease severity.  286 

Although not previously observed for COVID-19, the skewing of B cells towards an EF response in 287 
PLWH makes biological sense. Both DN2 and activated naïve B cells mature via an EF pathway, 288 
independent of T cell help and in response to pro-inflammatory cytokines IFNγ, TNFa, and IL-21; and 289 
TLR 7 and 9 stimulation (Jenks et al., 2019; Jenks et al., 2020). HIV induces a pro-inflammatory state 290 
(Connolly, Riddler, & Rinaldo, 2005; Roff, Noon-Song, & Yamamoto, 2014), making B cells more prone 291 
to EF maturation; and HIV viremia is known to induce a DN2 response (Amu, Ruffin, Rethi, & Chiodi, 292 
2013; Ferreira et al., 2013). This link may explain the association between DN2 frequency and 293 
inflammation in PLWH, as measured by the NLR ratio. On the other hand, since HIV depletes CD4 T 294 
cells, it also impairs germinal center (GC) activity, including BCR somatic hypermutation, class 295 
switching, and, ultimately, the ASC response (Okoye & Picker, 2013; Pallikkuth et al., 2012; Perreau et 296 
al., 2013), consistent with the trends observed. Likewise, HIV alters the B cell compartment by 297 
affecting the frequencies of naïve and memory B cells (Moir & Fauci, 2014), again agreeing with the 298 
differences in the frequency of naïve and memory B cells observed in this study.  299 

The downstream consequence of skewed B cell maturation in PLWH is unclear from this study. 300 
However, the EF response relies primarily on the existing germline and memory BCR repertoire, 301 
whereas the GC response allows for honing of the BCR repertoire through somatic hypermutation and 302 
stringent affinity selection of BCR clones to generate high-affinity long term ASC and memory 303 
responses (Jenks et al., 2020; Kaneko et al., 2020). Therefore, the loss of GC B cell maturation could 304 
result in a less effective B cell response to infection in PLWH and potentially a greater susceptibility to 305 
infection by variants. (Sette & Crotty, 2021) demonstrated that the antibody response to COVID-19 306 
parent strain derives from the germline B cell receptor (BCR) repertoire without the need for extensive 307 
hypermutation. This might explain why HIV status did not seem to affect the antibody response during 308 
the first wave of infections (Snyman et al., 2021). In contrast, the antibody response to the second 309 
wave of infections was affected by HIV status, with PLWH mounting less effective IgG responses to the 310 
Beta variant (Hwa, Snyman et al., submitted). Therefore, the skewed EF B cell response could explain 311 
the less effective response against new variants. Indeed, multiple studies have revealed B cell 312 
maturation and expanded somatic hypermutation months after primary infection in COVID-19 313 
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patients without HIV (Gaebler et al., 2021; Wang et al., 2021) and have highlighted the importance of 314 
antibody affinity maturation (Chen et al., 2020; Muecksch et al., 2021) and class switching (Zohar et 315 
al., 2020) to reduce disease severity and gain improved efficacy against new variants. This might also 316 
explain the lack of effective clearance of SARS-CoV-2 in HIV viremic individuals and might be a 317 
mechanism for intra-host evolution in patients with uncontrolled HIV (Cele et al., 2022). Further work 318 
is needed to understand how the skewed B cell response to natural infection impacts long-term 319 
memory and the ability to adapt to new viral variants. It will also be essential to understand the impact 320 
of vaccination on the B cell memory compartment. 321 
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 343 
Figure Legends 344 

Figure 1. Canonical B cell phenotype frequencies vary with HIV status but still mount robust 345 
antibody secreting cell (ASC) responses. (A) Gating strategy to identify CD19+ B cells within the 346 
PBMC compartment. B cells were further gated on CD27 and CD38 to identify CD27+ Memory, CD27- 347 
Naïve and CD27+CD38++ ASC. (B) Absolute B cell counts were calculated from patient total 348 
lymphocyte counts, followed by percent Naïve, Memory and ASC fractions of the CD19+ parent 349 
population. (C) The ASC response associated with SARS-CoV-2 viremia and was tracked longitudinally 350 
up to day 35 post diagnosis. (D) A neutrophil lymphocyte ratio (NLR) served as a proxy of 351 
inflammation and associated with the ASC as well as Plasmablast and Plasma cell responses. 352 
Statistical analyses were performed using the Kruskal-Wallis H test for multiple comparisons and 353 
Mann-Whitney for SARS-CoV-2 viremia or NLR comparisons within groups. P values are denoted by * 354 
≤ 0.05; ** < 0.01; *** < 0.001 and **** < 0.0001. 355 

Figure 2. tSNE analysis of the B cell phenotypes and frequencies relative to COVID-19 clinical 356 
parameters including disease severity, neutrophil lymphocyte ratio, SARS-CoV-2 viremia, and HIV 357 
status. A total of 80000 CD19+ B cells from four patient groups (20000 cells per group) were used in 358 
an unbiased tSNE analysis. Patients were grouped by decreasing disease severity according to an 359 
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ordinal scale ranging from 3 to 1 (OS3 to 1) and a healthy control group. There was an equal 360 
contribution from PLWH and HIV-ve patients per group except for the control group. Three B cell 361 
phenotyping panels were used, focusing on homing (A, B); maturation (C) and regulatory (D) 362 
markers. Each panel included an anchor panel of CD19, IgD, IgM, CD27 and CD38. The key to the 363 
colouring of the different tSNE clusters is included alongside with a description of the phenotype. 364 
The phenotype is then depicted as a heatmap of the median fluorescence intensity (MFI) of each 365 
surface marker within that cluster, followed by a heatmap of the cluster frequency relative to ordinal 366 
scale (OS3 to 1); neutrophil lymphocyte ratio (NLR) cut-off of 3.0 to separate moderate and mild 367 
inflammation; SARS-CoV-2 viremia (S-CoV) and HIV status. (B) The frequency of each B cell 368 
phenotypic cluster identified by tSNE depicted as pie charts, separated based on disease severity 369 
(OS3 to 1) and controls.  370 

Figure 3. Reduced germinal centre homing and class switching of memory B cells in HIV viraemic 371 
COVID-19 patients. (A) Gating strategy for total switched memory (SM; CD27+ IgD-) and homing to 372 
germinal centres (CD62L+ CXCR5+) and comparison of SM with respect to HIV status. (B) Germinal 373 
centre homing capacity relative to HIV status and longitudinal comparison. (C) The switched memory 374 
was further gated on IgM and IgD to identify IgM+ and class switched (IgM-IgD-) B cells. Both 375 
responses were compared with respect to HIV status. Statistical analyses were performed using the 376 
Kruskal-Wallis H test for multiple comparisons. P values are denoted by * ≤ 0.05; ** < 0.01; *** < 377 
0.001 and **** < 0.0001. 378 

Figure 4. Pronounced extrafollicular B cell activation in PLWH. (A) Naïve (CD27-IgD+) and double 379 
negative (DN; CD27-IgD-) B cell activation was measured as a CD21- CD95+ phenotype. The 380 
respective activated populations are thus DN2 and activated naïve. (B) Prevalence of the DN2 and 381 
activated naïve phenotypes with respect to HIV status. (C) The DN2 frequencies were tracked 382 
longitudinally and with respect to disease severity (Ordinal scale 1 to 3) and neutrophil lymphocyte 383 
ratio (NLR) respectively. (D) Spearman non-parametric correlation of the DN2 B cell response 384 
relative to the anti-RBD antibody titre. Statistical analyses were performed using the Kruskal-Wallis 385 
H test for multiple comparisons and Mann-Whitney for disease severity or NLR comparisons within 386 
groups. P values are denoted by * ≤ 0.05; ** < 0.01; *** < 0.001 and **** < 0.0001. 387 

Figure 5. CD5+ PD-L1+ regulatory B cells contract during early response to infection. (A) Baseline 388 
(BL) and day 35 (D35+) example plots of a patient’s CD5+ PD-L1+ regulatory B cell response. These 389 
cells were gated from the total naïve (CD27-) B cell population and their frequencies compared 390 
relative to HIV status. (B) This response was tracked longitudinally and relative to disease severity 391 
(ordinal scale 1 to 3) and controls denoted as “C”. In (C) the corresponding CD4+ Tfh response was 392 
tracked longitudinally. Statistical analyses were performed using the Kruskal-Wallis H test for 393 
multiple comparisons and Mann-Whitney for disease severity. P values are denoted by * ≤ 0.05; ** < 394 
0.01; *** < 0.001 and **** < 0.0001. 395 

Figure 6. SARS-CoV-2 spike and receptor binding domain (RBD) specific B cell responses highlight 396 
an upregulated extrafollicular response in PLWH. The ancestral D614G viral spike (Spike-APC) and 397 
receptor binding domain (RBD-PE) proteins were used as baits to detect SARS-CoV-2 specific B cells 398 
with SA-APC and SA-PE used as controls (A). The bait specific B cells were then overlaid onto an IgM 399 
vs. IgD plot (B). The extent of IgM switched (MSM) and class switched memory (CSM) B cells were 400 
compared at both baseline (day 0) and day 84 post diagnosis. (C) Similarly, the level of CXCR3 401 
expression was assessed. (D) The extent of double negative (DN) B cell activation (CD21- CD95+) was 402 
compared regarding HIV status at both time points. Statistical analyses were performed using 403 
Wilcoxon and Mann-Whitney tests. P values are denoted by * ≤ 0.05; ** < 0.01; *** < 0.001 and 404 
**** < 0.0001. 405 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2022. ; https://doi.org/10.1101/2022.06.14.496062doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.14.496062
http://creativecommons.org/licenses/by/4.0/


10 
 

Extended Data Figure 1. Individual patient longitudinal ASC responses. 406 

Extended Data Figure 2A. Heatmap overlays B cell compartment tSNE plots focusing on homing 407 
markers. A total of 80000 CD19+ B cells were used in an unbiased tSNE analysis of the B cell 408 
compartment with increasing disease severity ranked by ordinal scale 1 to 3 (OS1 to 3) and in 409 
healthy controls (Control). This means a total of 20000 CD19+ B cells were contributed by each 410 
group. The B cell homing marker expression is represented as a heat map with high (red) to low 411 
(blue) fluorescence intensity depicted. 412 

Extended Data Figure 2B. Heatmap overlays B cell compartment tSNE plots focusing on maturation 413 
markers. A total of 80000 CD19+ B cells were used in an unbiased tSNE analysis of the B cell 414 
compartment with increasing disease severity ranked by ordinal scale 1 to 3 (OS1 to 3) and in 415 
healthy controls (Control). This means a total of 20000 CD19+ B cells were contributed by each 416 
group. The B cell maturation marker expression is represented as a heat map with high (red) to low 417 
(blue) fluorescence intensity depicted. 418 

Extended Data Figure 2C. Heatmap overlays B cell compartment tSNE plots focusing on regulatory 419 
markers. A total of 80000 CD19+ B cells were used in an unbiased tSNE analysis of the B cell 420 
compartment with increasing disease severity ranked by ordinal scale 1 to 3 (OS1 to 3) and in 421 
healthy controls (Control). This means a total of 20000 CD19+ B cells were contributed by each 422 
group. The B cell regulatory marker expression is represented as a heat map with high (red) to low 423 
(blue) fluorescence intensity depicted. 424 

Extended Data Figure 3. Individual patient longitudinal switched memory GC homing responses. 425 

Extended Data Figure 4. Individual patient longitudinal DN2 and activated naïve B cell responses 426 
and detailed analysis of the activated naïve B cell response. Individual longitudinal DN2 (A(i)) and 427 
activated naïve (A(ii)) B cell responses. (B) The activated naïve B cell frequencies were tracked 428 
longitudinally and with respect to disease severity (Ordinal scale 1 to 3) and neutrophil lymphocyte 429 
ratio (NLR) respectively. (C) Spearman non-parametric correlation of the activated naïve B cell 430 
response relative to the anti-RBD antibody titre. Statistical analyses were performed using the 431 
Kruskal-Wallis H test for multiple comparisons and Mann-Whitney for disease severity or NLR 432 
comparisons within groups. P values are denoted by * ≤ 0.05; ** < 0.01; *** < 0.001 and **** < 433 
0.0001. 434 

Extended Data Figure 5. Individual patient longitudinal CD5+ PDL1+ B cell and Tfh responses. 435 

Materials and methods 436 

Ethical approval 437 

The study protocol was approved by the University of KwaZulu-Natal Biomedical Research Ethics 438 
Committee (approval BREC/00001275/2020). Written informed consent was obtained for all enrolled 439 
participants. 440 

Participant enrolment and clinical severity score 441 

All study participants were over 18 years old and capable of giving informed consent; presented with 442 
a positive SARS-CoV-2 diagnosis and were recruited from two hospitals (King Edward VIII or Clairwood) 443 
in Durban, KwaZulu-Natal, South Africa, between 8 June and 25 September 2020. In total 126 444 
participants were enrolled. Participants consented to blood and nasopharyngeal/oropharyngeal swab 445 
collection at recruitment and during weekly follow-up visits. All participant SARS-CoV-2 diagnoses 446 
were verified by an in-house RT-qPCR test which also served to quantify the SARS-CoV-2 viral load. 447 
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Two participants were excluded after their in-house RT-qPCR results remained negative and 448 
contradicted their initial diagnosis. All participants were ranked according to a clinical severity score 449 
of (1) asymptomatic, (2) symptomatic/mild without requiring supplemental oxygen and (3) moderate 450 
requiring supplemental oxygen. A total of 10 healthy controls were included in the study that tested 451 
SARS-CoV-2 negative by PCR and were seronegative by ELISA (described below). 452 

Real Time-qPCR detection of SARS-CoV-2 453 

The QIAmp Viral RNA Mini kit (cat. 52906, QIAGEN, Hilden, Germany) was used according to 454 
manufacturer’s instructions to extract SARS-CoV-2 RNA from the combined nasopharyngeal and 455 
oropharyngeal swabs and 5 µl of the extracted RNA was used for RT-qPCR reactions. Three SARS-CoV-456 
2 genes (ORF1ab, S and N) were amplified using the TaqPath COVID-19 Combo kit and TaqPath COVID-457 
19 CE-IVD RT-PCR kit (ThermoFischer Scientific, MA, USA) using a QuantStudio 7 Flex Real-Time PCR 458 
system and analysed using the Design and Analysis software (ThermoFischer Scientific). Results were 459 
interpreted as positive if at least two of the three genes were amplified and regarded inconclusive if 460 
only one of the three genes were detected. 461 

Clinical laboratory testing 462 

A separate blood sample per participant was sent to an accredited diagnostic laboratory (Molecular 463 
Diagnostic Services, Durban, South Africa) for HIV testing by rapid test and quantification of HIV viral 464 
load using the RealTime HIV-1 viral load test on an Abbott machine. A full blood count, including CD4 465 
and CD8 count, was performed by another accredited diagnostic laboratory (Ampath, Durban, South 466 
Africa). 467 

Immune phenotyping of fresh PBMC by flow cytometry 468 

Blood was collected in EDTA tubes and diluted 1 in 3 with PBS. Peripheral blood mononuclear cells 469 
(PBMC) were isolated by density gradient centrifugation through Histopaque 1077 (SIGMA) in 470 
SepMate separation tubes (STEMCELL Technologies, Vancouver Canada). For immune phenotyping 471 
106 fresh PBMC were surface stained in a 25 µl antibody mix containing a LIVE/DEADTM fixable near-472 
IR-dead cell staining reagent (1:200 dilution, cat. L10119, Invitrogen, Carlsbad, CA, USA) with 473 
combinations of the listed antibodies (Extended Data Table 1.) from BD Biosciences (Franklin Lakes, 474 
NJ, USA); or from BioLegend (San Diego, CA, USA) or from Beckman Coulter (Brea, CA, USA). Cells were 475 
stained for 20 min in the dark at 4°C, followed by two 1 ml washes with cold PBS, then fixed in 2% 476 
paraformaldehyde and stored at 4°C until acquisition on a FACSAria Fusion III flow cytometer (BD). 477 
Flow cytometry data was analysed with FlowJo version 9.9.6 (Tree Star). 478 

IgM and IgG ELISA detecting receptor binding domain specific antibodies 479 

Patient plasma samples were tested for the presence of anti-SARS-CoV-2 reactive IgM or IgG 480 
antibodies as described previously (Snyman et al., 2020). ELISA plates were coated with 500 ng/ml of 481 
the D614G ancestral virus receptor binding domain (RBD) (GenBank: MN975262; provided by Dr Galit 482 
Alter, Ragon Institute, Cambridge, Massachusetts, USA) overnight at 4°C. Then blocked with 1% BSA-483 
TBS at room temperature (RT) for 1 hour, followed by samples diluted at 1:100 in BSA-TBS + 0.05% 484 
Tween 20 for 1 hour at RT. Secondary anti-IgM or -IgG antibodies (Jackson ImmunoReasearch, West 485 
Grove, PA, USA) were added at 1:5000 diluted in BSA-TBS + 0.05% Tween 20 and incubated again for 486 
1 hour at RT. Finally, plates were developed with 1-step Ultra TMB substrate (ThermoFischer Scientific) 487 
for 3 or 5 min respectively and signal development was stopped with the addition of 1 N H2SO4. Plates 488 
were washed with TBS + 0.05% Tween 20 between each incubation step. All signals were compared 489 
to anti-SARS-CoV-2 specific monoclonal IgG (clone CR3022) or IgM (clone hIgM2001). Pre-pandemic 490 
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plasma samples were used as negative controls to determine seroconversion cut-offs calculated as 491 
three times the standard deviation plus the mean. 492 

Statistical analysis 493 

All analyses were performed in Prism (v9; GraphPad Software Inc., San Diego, CA, USA). 494 
Nonparametric tests were used throughout, with Mann-Whitney and Wilcoxon tests used for 495 
unmatched and paired samples, respectively. Kruskal-Wallis H test was used for multiple comparisons. 496 
P values less than 0.05 were considered statistically significant and denoted by * ≤ 0.05; ** < 0.01; *** 497 
< 0.001 and **** < 0.0001.  498 
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Extended Data Table 1. Flow Cytometry B cell phenotyping antibody panels 803 

Panel Marker Label clone cat no Supplier 
Core L/D APC-Cy7 L10119 Invitrogen 

 CD45 APC HI30 304012 BioLegend 

 CD3 Bv711 OKT3 317328 BioLegend 

 CD14 Bv711 M5E2 301838 BioLegend 

 CD19 Bv605 HIB19 302244 BioLegend 

 CD27 Bv510 O323 302836 BioLegend 

 CD38 PECy7 HIT2 303516 BioLegend 

 IgM PerCP/Cy5.5 MHM-88 314512 BioLegend 
  IgD  AF700  IA6-2 348230 BioLegend 

Homing CD27 Bv510 O323 302836 BioLegend 

 CCR6 (CD196) Bv421 GO34E3 353439 BioLegend 

 CXCR5 AF488 (FITC) RF8B2 558112 BD Pharmingen 

 CXCR4 (CD184)  Bv785™ 12G5 306530 BioLegend 

 CD62L PE-Cy5 DREG-56 555545 BD Pharmingen 

 CXCR3 (CD183) PE-CF594 IC6/CXCR3 562451 BD Horizon 

 CD69 BUV395 FN50 564364 BD Horizon 

  CCR7 PE 150503 FAB197P R&D Biosystems 

Maturation CD27 Bv510 O323 302836 BioLegend 

 CD138 (Syndecan-1) Bv785™  MI15 356538 BioLegend 

 CXCR5 AF488 (FITC) RF8B2 558112 BD Pharmingen 

 CD11c PE S-HCL-3 371504 BioLegend 

 CD95 (Fas)  Bv650™  DX2 305642 BioLegend 

 CD20  PE/Dazzle™ 594 2H7 302348 BioLegend 

 CD69 BUV395 FN50 564364 BD Horizon 

 CD10 PE-Cy5 HI10a (RUO) 555376 BD Pharmingen 

 CD21 Bv421 B-ly4 562966 BD Horizon 
  CD40 BUV496  5C3 741159 BD OptiBuild 

Regulatory CD27 PE-Cy5 1A4CD27 6607107 
Beckman 
Coulter 

 CD40 BUV496  5C3 741159 BD OptiBuild 

 PD-L1 (CD274) PE 29E.2A3 329706 BioLegend 

 CD24  FITC  ML5 311104 BioLegend 

 CD178 (Fas-L)  Bv421™  NOK-1 306412 BioLegend 

 CD1d  Bv510™  51.1 350314 BioLegend 

 CD5  PE/Dazzle™ 594  L17F12 364012 BioLegend 

 CD86  Bv650™  IT2.2 305428 BioLegend 
 804 

 805 

 806 

 807 
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Extended Data Table 2. Flow Cytometry B cell BAIT antibody panel 808 

Marker Label clone cat no Supplier 
L/D APC-Cy7  L10119 Invitrogen 
CD45 Hv500 HI30 560777 BD Horizon 
CD3 Bv711 OKT3 317328 BioLegend 
CD14 Bv711 M5E2 301838 BioLegend 
CD19 Bv605 HIB19 302244 BioLegend 
CD27 PE-Cy5 1A4CD27 6607107 Beckman Coulter 
CD38 PECy7 HIT2 303516 BioLegend 
IgM PerCP/Cy5.5 MHM-88 314512 BioLegend 
IgD  AF700  IA6-2 348230 BioLegend 
CXCR3  PE-CF594 IC6/CXCR3 562451 BD Horizon 
CD21 Bv421 B-ly4 562966 BD Horizon 
BAIT SA-APC  405207 BioLegend 
BIAT SA-PE  405204 BioLegend 
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