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Abstract  13 

Human behavior can be highly sensitive to anticipation, but the mechanisms underlying this 14 

sensitivity are poorly understood. We obtained intracranial electrocephalography (iEEG) 15 

measurements in neurosurgical patients as they performed a simple sensory-motor task with 16 

variable (short or long) foreperiod delays that affected anticipation of the cue to respond. 17 

Participants showed two forms of anticipatory response biases, distinguished by more premature 18 

false alarms (FAs) or faster response times (RTs) on long-delay trials. These biases had distinct 19 

neural signatures in prestimulus neural activity modulations that were distributed and intermixed 20 

across the brain: the FA bias was most evident in preparatory motor activity immediately prior to 21 

response-cue presentation, whereas the RT bias was most evident in visuospatial activity at the 22 

beginning of the foreperiod. These results suggest that human anticipatory behavior emerges 23 

from a combination of motor-preparatory and attention-like modulations of neural activity, 24 

implemented by anatomically widespread and intermixed, but functionally identifiable, brain 25 

networks.  26 
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Introduction 32 

Expectations of future events shape human behavior (Friston, 2010; A. C. Nobre & Van Ede, 33 

2018). Even simple stimulus detection is not a passive, purely stimulus-driven process but 34 

involves predictive inference that combines incoming sensory information with expectations 35 

learned from prior experience (Helmholtz, 1866; Rao & Ballard, 1999). However, the 36 

mechanisms in the human brain that allow expectations to influence impending sensory-motor 37 

processing (a set of phenomena that we refer to as “anticipation”) remains unclear. 38 

Anticipatory influences on human behavior have been quantified extensively using simple 39 

sensory-motor detection tasks (Cattell, 1886; Luce, 1986).  For example, the variable foreperiod-40 

delay paradigm has been used to operationalize anticipatory behavior in terms of changes in 41 

response times (RTs) and premature responses (“false alarms”, or FAs) as a function of changes 42 

in the length and predictability of the foreperiod delay (Luce, 1986; Niemi & Näätänen, 1981; 43 

Ollman & Billington, 1972). These effects are thought to reflect modulations of preparatory 44 

motor processes during the foreperiod delay (Los et al., 2001, 2014; A. C. Nobre & Van Ede, 45 

2018; Salet et al., 2022). These preparatory motor processes are often modeled via “rise-to-46 

bound” dynamics that account for endogenous RT variability as arising from a stochastically 47 

varying processes that triggers a motor response (Brown & Heathcote, 2005; Carpenter & 48 

Williams, 1995; Noorani & Carpenter, 2016; Ratcliff, 1978; Ratcliff et al., 2016; Stone, 1960; 49 

Usher & McClelland, 2001). In these models, anticipatory response biases are often assumed to 50 

arise from prestimulus elevations in the baseline, or “starting point,” of the stochastic rising 51 

process, resulting in faster RTs (Carpenter & Williams, 1995; Noorani & Carpenter, 2016). A 52 

compelling feature of these models is that, in addition to providing parsimonious accounts of 53 
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behavior, they have algorithmic components that are thought to map directly onto the activity 54 

patterns of localized sets of neurons that contribute to motor preparation and execution (Hanes & 55 

Schall, 1996a).  56 

However, exactly how these models relate to sensory-motor processing in the human brain is 57 

not well understood, reflecting a lack of brain measurements with appropriate combinations of 58 

high spatiotemporal resolution and broad anatomical scale. Scalp electroencephalography (EEG) 59 

studies have provided support for anticipatory processing during the foreperiod delay (Miniussi 60 

et al., 1999; Pfeuty et al., 2005; Rohenkohl & Nobre, 2011; Walter et al., 1964), but it is difficult 61 

to interpret these signals in terms of specific neural circuits because they aggregate activity 62 

across large brain regions. Functional MRI studies have shown regionally distributed 63 

hemodynamic correlates of anticipatory processing, but these findings have been inconsistent 64 

and are difficult to relate to RT variability because of limited temporal resolution (J. T. Coull & 65 

Nobre, 1998; Cui et al., 2009; Vallesi, 2010).  66 

To overcome these limitations, we obtained high-resolution intracranial 67 

electroencephalography (iEEG recordings) from 23 patients with medically refractory epilepsy 68 

with indwelling intraparenchymal electrodes in widespread brain regions as they performed a 69 

stimulus-detection task with a variable foreperiod delay (Fig. 1A, Table S1). We focused on 70 

high-frequency iEEG activity, which reflects local spiking activity (70–200 Hz power; Dubey & 71 

Ray, 2019; Leonard et al., n.d.; Manning et al., 2009) sampled broadly across many parts of 72 

cortex and certain subcortical structures (Parvizi & Kastner, 2018). We tested the hypothesis that 73 

anticipatory processes modulate prestimulus activity of preparatory motor neural populations in 74 

the human brain that encode endogenous RT variability. We focused on a broad set anatomical 75 
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regions because neural correlates of RT variability have been identified in several motor-76 

preparatory brain regions, including activity patterns that map directly (Hanes & Schall, 1996b; 77 

O’Connell et al., 2012a) or indirectly (Hauser et al., 2018; Heitz & Schall, 2012; 78 

Paraskevopoulou et al., 2021) onto rise-to-bound model dynamics. As detailed below, our results 79 

identify two behaviorally and neurally distinct processes that govern anticipatory effects on 80 

sensory-motor behavior and highlight the complex but identifiable mappings between algorithm- 81 

and implementation-level explanations of human behavior.  82 

  83 
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Results 84 

Twenty-three participants performed a variant of a commonly used “foreperiod-delay 85 

task” that has been used extensively to investigate anticipatory influences on sensory-motor 86 

behaviors (Klemmer, 1957; Luce, 1986; Niemi & Näätänen, 1981). Briefly, each trial began with 87 

the presentation of a visual target (“warning signal,” S1) on a computer screen that changed color 88 

after a randomly selected foreperiod delay of 500 (“short”) or 1500 (“long”) ms. Participants 89 

were instructed to respond via button press as soon as they noticed the color change (“stimulus,” 90 

S2). RT was measured as the elapsed time between stimulus and response. The different 91 

foreperiod delays provided categorically different levels of temporal expectation of stimulus 92 

arrival at the time of stimulus presentation (Luce, 1986; A. C. Nobre & Van Ede, 2018; Ollman 93 

& Billington, 1972; Salet et al., 2022). On short-delay trials, the stimulus was presented when 94 

there was uncertainty about whether the trial was a short- or long-delay trial, resulting in 95 

relatively low temporal expectation of stimulus arrival. On long-delay trials, the stimulus was 96 

presented when the trial could be identified unequivocally as a long-delay trial, resulting in 97 

relatively high temporal expectation of stimulus arrival (Fig. 1).  98 

Dual behavioral signatures of anticipatory biases 99 

The participants’ RTs included endogenous variability for both delay conditions (median 100 

per-participant RT inter-quartile range=66.67 ms for short-delay and 66.75 for long-delay trials; 101 

examples are shown in Fig. 1A, Table S2), with two primary effects of anticipation that were 102 

consistent with previous findings (Luce, 1986; Nickerson, 1965; Noorani & Carpenter, 2016; 103 

Ollman & Billington, 1972). First, participants had faster RTs (paired t-test, t (22)=5.57, 104 

p<0.001) on long- versus short-delay trials (“RT bias”)�, albeit with substantial individual 105 

variability (mean RT range across participants=354–595 ms and 323–529 ms on short- and long-106 
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delay trials, respectively, Fig. 1C). Second, participants had higher false-alarm rates on long- 107 

versus short-delay trials (“FA bias”; paired t-test, t (22)=4.43, p<0.001; range 1.7–58%, versus 108 

0–7.8%, respectively, Fig. 1D). We did not observe a significant correlation with delay-related 109 

differences in RT and false-alarm rate (p>0.3, Fig. 1E) but did observe a correlation between RT 110 

and false-alarm rate when considering only long-delay trials (r=0.47, p=0.02).   111 

We modeled these anticipatory effects as prestimulus modulations of an abstracted “rise-112 

to-bound” motor-preparatory process (Fig. 1B; Noorani & Carpenter, 2016a). Specifically, we 113 

modeled each RT on short-delay trials as the time taken for a latent variable to rise from a fixed 114 

starting point to a fixed bound value to trigger a motor response (“rising process”). Trial-to-trial 115 

variability in the rate of rise accounts for endogenous RT variability and the characteristic 116 

(delay-independent) right-tailed RT distribution. For correct trials with RT>250 ms, we assumed 117 

that this rising process was triggered by the onset of the stimulus S2. In contrast, for trials with 118 

false alarms, we assumed that this rising process was triggered prior to the onset of S2, according 119 

to a stochastic process that occurred with uniform probability during the 500 ms preceding S2. 120 

We modeled each RT on long-delay trials as emerging from a rising process that was modulated 121 

by increased temporal anticipation. This anticipation took the form of an elevation of the 122 

baseline starting point of the rising process, bringing the process closer to the threshold value 123 

required to trigger a response. This baseline elevation increased the probability of triggering 124 

responses prior to S2 (FA bias) and reduced the time taken to generate a correct response after 125 

S2 (RT bias). We used separate parameters for anticipatory baseline elevation to trigger 126 

premature responses versus speed up correct RTs, to account for largely independent variability 127 

in RT and FA biases across participants.  128 
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This anticipatory starting-point model provided a good fit to participants RTs and 129 

anticipatory response biases (R2 mean=0.85, range=0.62–0.97; Fig. S1 for individual model fits). 130 

For comparison, we tested two alternative models with the same number of free parameters but 131 

other mechanisms to explain anticipatory RT biases. One alternative model replaced modulations 132 

of the starting point with modulations of the variance of the rate of rise. This model produced 133 

poorer fits (R2 mean=0.77, range=0.37–0.97). The other alternative model assumed that FA 134 

biases were based on trial-by-trial modulations of the starting point but that RT biases were 135 

based on trial-by-trial modulations of the mean rate of rise. This model produced fits that were 136 

similar to those produced by the starting-point-only model (R2 mean=0.86, range=0.62–0.97), 137 

which highlights the difficulty in modeling specific algorithmic substrates of anticipatory 138 

behavior (Luce, 1986; Salet et al., 2022). Below we focus on the more parsimonious starting-139 

point-only model to identify relevant neural mechanisms. 140 

 141 
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 142 
Figure 1. Two forms of anticipatory biases. (A) Task summary and RT distributions from an 143 

example participant. Red line indicates stimulus onset, green vertical line indicates 250 ms after 144 

stimulus onset (the fast-response threshold). Blue and orange histograms indicate timing of 145 

responses on short- and long-delay trials, respectively. Premature false alarms are responses that 146 

fall to the left of the red line. (B) Model schematic illustrating abstracted preparatory motor 147 

processes contributing to sensory-motor behavior. Anticipatory elevation of baseline activity can 148 

account for both a decrease in RT and an increase in false-alarm rate. (C,D) Violin plots showing 149 

distributions of mean RTs (C) and premature false-alarm rates (D) on short- (blue) and long- 150 

(orange) delay trials for all 23 participants. (E) Scatterplot showing covariance of delay-related 151 

changes in mean RT and premature false-alarm rate across participants. Each circle corresponds 152 

to data from a single participant. 153 

 154 

Task- and RT-modulated neural responses were distributed widely in the brain 155 

We obtained neural measurements from intraparenchymal depth electrodes implanted in 156 

participants with medically refractory epilepsy for clinical purposes (Fig. 2A). We focused on 157 
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high-frequency activity (HFA, 70–200 Hz power) recorded from bipolar pairs of electrodes, 158 

which provides a reliable surrogate of local (within ~3 mm) neural population spiking activity 159 

(Dubey & Ray, 2019; Leonard et al., 2023; Manning et al., 2009; Ray & Maunsell, 2011). In 160 

total, we studied recordings from 2,609 bipolar pairs of intraparenchymal depth electrodes 161 

distributed widely throughout the brain in 23 patients (mean=113.4 electrodes/participant). We 162 

localized these recordings to various intrinsic brain networks (Figs. 2B). For each electrode, we 163 

measured task-related activity of the nearby neural population time-locked to target onset and 164 

motor response in ~50 ms sliding time intervals, z-scored to an aggregate baseline from the 165 

entire recording session. 166 

 167 

 168 
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Figure 2. Intracranial recordings provide neural measurements with high resolution and 169 

broad anatomical coverage. (A) Extracting high-frequency activity (HFA, 70–200 Hz power) 170 

from intraparenchymal depth electrodes as an estimate of local spiking (red circle indicates 171 

example prefrontal electrode described in C). (B)  Brain plot showing electrode locations from 172 

all participants in standard MNI coordinates. Colors indicate intrinsic brain networks based on a 173 

normative atlas (Yeo et al., 2011). (C) Task-driven responses of local neural activity (average z-174 

scored HFA) measured at the electrode indicated in Fig. 2A, plotted separately for short- (blue) 175 

and long- (orange) delay trials and binned by stochastic RT percentile (10 bins; lighter shading 176 

indicates faster RTs). Left panel shows target-locked activity. Vertical lines indicate time of target 177 

onset (grey), short-delay color change (blue), and long-delay color change (orange). Middle and 178 

right panels show stimulus- and response-locked activity, respectively. Shaded gray box indicates 179 

a time interval during which we observed a correlation between neural activity and RT 180 

variability. 181 

 182 

We identified task-related modulations and/or correlations with endogenous (delay-183 

independent) RT variability at various time intervals throughout the trial, after accounting for 184 

transient sensory- and motor-driven responses, from 2,142 out of 2,609 electrodes (Fig. S2). To 185 

identify task-related changes in activity, we compared neural activity following the warning 186 

signal (500 ms following S1), stimulus onset (500 ms following S2), and response onset (1000 187 

ms following the button press), relative to a baseline interval (500 ms prior to S1; paired t-tests, 188 

p<0.05). To relate neural activity at each electrode with endogenous, delay-independent RT 189 

variability, we used a multivariate model that included neural activity in various task-related time 190 

intervals (significance via non-parametric shuffle procedure p<0.05; Fig. S2). 191 

An example electrode showing both task- and RT-related activity modulations is shown 192 

in Fig. 2C (the electrode location is indicated in Fig. 2A). This local neural population showed 193 

rising activity following the warning signal (S1) that peaked near the time of response and 194 

descended back to baseline. The prestimulus baseline activity was relatively higher during faster 195 

RT and long-delay trials, followed by a largely RT-independent rate of rise before the motor 196 
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response. In other words, this electrode showed modulations that were roughly consistent with 197 

“rise-to-bound” dynamics found in our and similar models.  198 

However, this electrode was hardly unique in showing task and RT modulations, which 199 

we found throughout the brain (Fig. 3). Task modulations across all task epochs involved activity 200 

increases, rather than decreases, in response to task-relevant sensory and/or motor events (any 201 

interval; two-sided binomial test p<0.001, 95% CI: 83–86%; expected 50%), and rarely included 202 

both task-driven increases and decreases in different task epochs measured at the same electrode 203 

(n=65/2,609, 3%). Task-related increases were generally uniformly distributed across the brain, 204 

but neural populations in the salience network showed more frequent task-driven increases than 205 

expected (two-tailed binomial test, FDR-corrected p<0.001, 95% CI: 74–85%; Fig 3).  206 

RT modulations were also distributed widely, but with different spatial patterns. We 207 

observed a regional intermixing of effects that included both positive correlations, such that 208 

increased activity corresponded to slower RTs, and negative correlations, such that decreased 209 

activity correlated with faster RTs. Neural activity showed more frequent correlations with RT 210 

than chance across the brain (n=638/2609, one-tailed binomial test p<0.001, 95% CI>23%, 211 

where chance=5%) and within each intrinsic brain network (corrected ps<0.001, 95% CIs >15–212 

30%), even when separately considering only positive or negative correlations (corrected p<0.03, 213 

except limbic populations rarely showed positive correlations, corrected p>0.5) We rarely 214 

observed neural populations at a single electrode that showed both positive and negative RT 215 

correlations during different task epochs (n=60/2,609, 2%). These RT modulations were not 216 

distributed uniformly across the brain: visual neural populations showed positive RT correlations 217 

more frequently than expected (two-tailed binomial test, corrected p=0.04; 17–30%), whereas 218 
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somatomotor neural populations showed negative RT correlations more frequently than expected 219 

(corrected p=0.02; 24–37%).  220 

 221 

Figure 3. Task-related neural activity changes were regionally widespread and intermixed 222 

(A) Percentages of electrodes in each region with activity that showed task-related activity 223 

changes following S1, S2, or R. Positive values indicate task-related increases in activity; 224 

negative values indicate task-related decreases in activity. (B) Scatterplot showing the relative 225 

frequency of electrodes with positive (ordinate) and negative (abscissa) changes in activity to 226 

task-relevant events in each intrinsic brain network relative to their overall (expected) frequency 227 

across the brain (z-scores). Positive values indicate increased relative frequency; negative values 228 

indicate decreased relative frequency. Inner and outer ellipses indicate 1� and 2� confidence 229 

intervals derived from the joint distribution, respectively. (C,D) Same as A,B, but for positive 230 

and negative correlations with endogenous, trial-to-trial RT variability during any time interval. 231 

Negative values in C indicate increased activity with faster RTs; positive values indicate 232 

increased activity with slower RTs. 233 
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 234 

 235 

Data-driven clustering of neural activity patterns 236 

To better understand these broadly distributed, diverse activity patterns, we used a data-237 

driven hierarchical clustering algorithm to group electrodes that showed similarities in task-238 

related activity modulations and endogenous, delay-independent RT correlations. We selected a 239 

clustering level (4) that maximized the number of clusters that that included data from all of the 240 

participants (we also excluded clusters with <200 electrodes) and exhibited distinct patterns of 241 

modulations by task events and RT. Cluster 0 showed task-related increases without RT 242 

modulation. Cluster 1 showed task-related increases with negative RT correlations. Cluster 2 243 

showed task-related decreases without RT modulation. Cluster 3 showed task-related increases 244 

with positive RT correlations. These clusters were distributed widely across the brain (see Fig. 245 

S3).  246 
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 247 

Figure 4. Data-driven clustering of task-related neural activity. Illustration of hierarchical 248 

clustering of electrodes based on similar task-related activity modulations. Top row: time 249 

intervals used to measure task modulation and RT correlation for each electrode as detailed in 250 

main text. Bottom row: left, colormap representing a feature matrix across all electrodes, where 251 

each row represents an electrode, and each column represents a feature (task or RT modulation); 252 

middle: dendrogram representing similarities between electrodes; right: feature matrix re-253 

organized based on similar task and RT modulations at the clustering level indicated by the black 254 

line in middle panel, which we used in these analyses. (B) We identified a level of clustering 255 

(black vertical line in dendrogram) based on an objective function that maximized the number of 256 

clusters that were well sampled in our dataset (i.e., each eligible cluster was observed in all 257 

participants and consisted of at least 200 electrodes). (C) Percentage of electrodes that showed 258 

task-related increases and decreases (positive and values, respectively as in Fig. 3A). (D) Same 259 

C but for RT correlations. Negative values indicate increased activity with faster RTs; positive 260 

values indicate increased activity with slower RTs (as in Fig. 3C).  261 

 262 

Dual neural signatures of anticipatory biases in prestimulus activity 263 
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Prestimulus activity in two distinct neural clusters encoded participant-to-participant 264 

variability in the two main anticipatory biases we identified from behavior: RT bias in Cluster 3, 265 

and FA bias in Cluster 1 (Fig. 5). Specifically, we measured prestimulus activity in each cluster 266 

on long-delay trials (ranging from 250 ms prior to S1 to 50 ms prior to S2, excluding trials with 267 

FA and RTs<250 ms, averaged within participants) and related these participant-wise measures 268 

to anticipatory RT and FA biases (as shown in Fig 1E). We found that increased prestimulus 269 

activity in Cluster 1 correlated with increased FA bias (ρ=0.53, corrected p=0.04; partial 270 

correlation controlling for RT bias). In contrast, increased prestimulus activity in Cluster 3 271 

correlated with RT bias (ρ=0.62, corrected p=0.002). We further detail the nature of prestimulus 272 

modulations in these two different clusters below. 273 

 274 
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Figure 5. Dissociable prestimulus neural correlates of anticipatory biases. The top schematic 275 

shows the time interval used to compute prestimulus activity in each cluster. The scatterplot 276 

shows partial correlation coefficients for RT bias (controlling for FA bias) on the abscissa and FA 277 

bias (controlling for RT bias) on the ordinate. The green circle indicates a significant relationship 278 

with RT bias, and the red circle indicates a significant relationship with FA bias (corrected 279 

p<0.05). 280 

Anticipatory FA biases were encoded by prestimulus modulations in Cluster 1 neural 281 

activity patterns, which resembled a preparatory motor process (Fig. 6). These activity patterns, 282 

on average, tended to rise after the warning signal, stay elevated during the foreperiod delay, and 283 

peak at the time of the motor response on both correct and false-alarm trials (Fig. 6A,B). There 284 

also were reliable modulations by trial-to-trial RT variability, such that increased activity 285 

corresponded to faster RTs (Fig. 6A). A time-resolved partial-correlation analysis relating 286 

prestimulus activity in Cluster 1 with FA bias (Fig. 6C; 250 ms sliding advanced 10 ms steps, 287 

controlling for RT bias) showed a peak correlation strength immediately preceding S2, when 288 

expectation of stimulus arrival should be relatively high (1180—1430 ms following S1, 289 

highlighted in Fig. 6B; a scatterplot of this correlation is shown in Fig. 6D).  290 

Anticipatory RT biases were encoded by prestimulus modulations in Cluster 3 neural 291 

activity patterns, which were activated more strongly by sensory than motor events (Fig. 7). 292 

These activity patterns, on average, tended to show a transient rise in activity after the onset of 293 

the warning signal and did not show rising activity preceding response, including on FA trials 294 

(Fig 7B). They showed positive correlations with endogenous RT variability such that increased 295 

activity (including prior to S1) corresponded to slower RTs (Fig. 7A). A time-resolved partial 296 

correlation analysis relating prestimulus activity in Cluster 3 with RT bias (7C; 250 ms sliding 297 

advanced 10 ms steps, controlling for FA bias) showed a peak correlation strength immediately 298 
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near the time of S1 onset, when participant’s presumably saccade to target (120 ms prior to and 299 

30 ms following S1, highlighted in Fig 7B; a scatterplot of this correlation is shown in Fig. 7D).  300 

 301 

Figure 6. Neural correlates of anticipatory FA bias. (A) Average task-related neural responses 302 

for Cluster 1 electrodes (same format as Fig. 2C, left panel). (B) Average neural activity locked 303 

to target onset (S1) for long-delay trials associated with correct responses (RT>250; orange) and 304 

false alarms (gray). (C) Time resolved partial correlation coefficient relating neural activity with 305 

FA bias across participants, controlling for RT bias (vertical red line indicates peak correlation, 306 

corresponding to highlighted time interval in B). (D) Scatterplot showing across-participant 307 

correlation between FA bias and prestimulus neural activity (averaged within the 1180-1430ms 308 

window relative to S1, as highlighted in B.). 309 
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  310 

Figure 7. Neural correlates of anticipatory RT bias. (A-B) Same as Fig. 6, but for Cluster 3 311 

electrodes (C) Time resolved partial correlation coefficient relating neural activity with RT bias 312 

across participants, controlling for FA bias (vertical red line indicates peak correlation). (D) 313 

Scatterplot showing across-participant correlation between RT bias and prestimulus neural 314 

activity (averaged within the -120-230ms window relative to S1, as highlighted in B). 315 

These results suggest a functional heterogeneity in prestimulus activity related to 316 

anticipatory processing, such that Cluster 1 activity prior to S2 encodes FA bias, whereas Cluster 317 

3 activity around the time of S1 encodes RT bias. We tested for such a functional dissociation 318 

using a Linear Mixed Model (LMM) analysis, in which we related prestimulus activity (z-scored 319 

HFA) to RT bias (interacting with “cluster,” and “time window,” defined based on peak 320 
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correlations from the previous analysis) and FA bias (also interacting with “cluster” and “time 321 

window”), with “participant” and “intrinsic brain network” as random effects (varying intercepts; 322 

see Materials and Methods). We observed a significant three-way interaction between RT bias, 323 

cluster, and time window (F = 3.93, p= 0.005), and between FA bias, cluster, and time window 324 

(F=19.69, p<0.001), suggesting a functional heterogeneity in prestimulus activity modulations 325 

during anticipatory processing. 326 

Cluster 1 and 3 electrodes were widely distributed and regionally intermixed across the 327 

brain, but each showed non-uniform distributions (Fig. 8A–C). Cluster 1 electrodes were found 328 

more frequently in somatomotor networks (two-tailed binomial test, corrected p=0.02; found 15–329 

27%, expected 14%), and less frequently in visual and limbic networks (corrected ps<0.03; 03–330 

13%), than expected. Cluster 3 electrodes were found more frequently in visual networks (two-331 

tailed binomial test, corrected p=0.02; found 12–23%, expected 10%) than expected. The visual 332 

network was an outlier in showing an increased probability of containing Cluster 3 electrodes, 333 

and a decreased probability of containing Cluster 1 electrodes (Fig. 8C).  334 
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 335 

Figure 8. Anatomical distribution of dual distributed networks encoding anticipatory 336 

biases. (A) Brain plot showing anatomical distribution of Cluster 1 (red) and Cluster 3 (green), 337 

which encoded FA and RT biases, respectively. (B) Percentage of electrodes in each intrinsic 338 

brain network assigned to Cluster 1 (top bars), and Cluster 3 (bottom bars). Horizontal dashed 339 

line is expected percentage assuming a uniform anatomical distribution. (C) Scatterplot showing 340 

the relative frequency of Cluster 1 electrodes (ordinate) and Cluster 3 electrodes (abscissa) in 341 

each intrinsic brain network relative to their overall (expected) frequency across the brain (z-342 

scores; same format as Fig. 3B) 343 

 344 
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 349 
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 351 
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Discussion 352 

We identified neural correlates in the human brain of two behaviorally distinguishable 353 

effects of anticipation on a simple sensory-motor behavior. The first effect, which we refer to as 354 

a false-alarm (FA) bias, was characterized behaviorally by an increase in premature responses 355 

under conditions of higher (more certain) anticipation – akin to pressing the car brakes sooner 356 

than necessary when you think the car in front of you is about to stop. As has been reported 357 

previously, these increased false alarms tended to be accompanied by faster RTs, thus reflecting 358 

a form of speed-accuracy trade-off (Green & Swets, 1966; Luce, 1986). We found that these FA 359 

biases were encoded by prestimulus neural activity near the end of the foreperiod delay, when 360 

the probability of the stimulus was relatively certain, in widespread neural populations that 361 

tended to ramp up just preceding the motor response and showed increased activity when RTs 362 

were faster, and were prevalent in somatomotor networks, consistent with a role in response 363 

generation (Hanes & Schall, 1996a).  364 

The second effect, which we refer to as an RT bias, was characterized behaviorally by 365 

faster RTs under conditions of higher (more certain) anticipation – akin to pressing the car 366 

breaks faster than usual when you expect, and then see, the brake lights on the car in front of you 367 

go on. This bias is consistent with well-established relationships between stimulus uncertainty 368 

and mean RT (Klemmer, 1957; Niemi & Näätänen, 1981), including for very similar task 369 

designs using randomly interleaved foreperiod delays. Under these conditions, responses are 370 

thought to be suppressed while waiting the estimated duration of the short delay (when it is 371 

unknown whether it is a short- or long-delay trial) and then facilitated around the estimated end 372 

of the long delay (Luce, 1986; A. Nobre et al., 2007; A. C. Nobre & Van Ede, 2018; Ollman & 373 

Billington, 1972; Salet et al., 2022). We found that these RT biases were encoded by prestimulus 374 
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neural activity at the beginning of the foreperiod delay interval, which is a reference moment for 375 

implicit time estimation, in widespread neural that tended to have transient visual responses and 376 

build gradually throughout each trial, and showed increased activity when RTs were slower, 377 

consistent with a role in visuospatial attention and response inhibition (Houghton & Tipper, 378 

1984; Neill et al., 1995; van Moorselaar et al., 2020).  379 

Previous work also identified many instances of anticipatory modulations of neural 380 

activity (e.g., Nobre & Van Ede, 2018). Our work provides new insights into those findings, 381 

leveraging the unique combination of high spatio-temporal resolution and broad anatomical 382 

sampling of iEEG measurements (Parvizi & Kastner, 2018) to show that such anticipatory-driven 383 

modulations of neural activity: 1) are not limited to particular, spatially restricted sensory and/or 384 

motor neural populations, as might be inferred from animal electrophysiology studies that 385 

typically target spatially restricted recording sites (e.g., Ghose & Maunsell, 2002; Janssen & 386 

Shadlen, 2005)�; 2) are more heterogeneous than might be inferred from scalp EEG studies that 387 

report only signals that reflect neural activity patterns that have been aggregated across large 388 

cortical areas (Miniussi et al., 1999; Rohenkohl & Nobre, 2011; Walter et al., 1964)�; and 3) 389 

have more complex temporal dynamics than might be inferred from functional neuroimaging 390 

studies with relatively low temporal resolution (Coull & Nobre, 1998; A Vallesi, 2010; Antonino 391 

Vallesi et al., 2009). Our results also build on recent work (Paraskevopoulou et al., 2021) 392 

showing that that spontaneous fluctuations in neural activity that underlie intertrial variability in 393 

human behavior are far more widespread than shown by prior functional neuroimaging studies 394 

(Fox et al., 2007).   395 
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One of our key findings was that the “rise-to-bound” dynamics of our model, which have 396 

previously been used to link algorithmic descriptions of behavior to their implementations in the 397 

brain (Gold & Shadlen, 2007; Hanes & Schall, 1996a; Heitz & Schall, 2012; O’Connell et al., 398 

2012b)�, had a relatively direct mapping to just a subset of the task-relevant neural signals that 399 

we identified. Instead, we found two distributed networks with task-relevant modulations of 400 

neural activity, corresponding roughly two distinct classes of algorithmic models of anticipatory 401 

behavior: those that feature motor preparation (Los et al., 2014; Noorani & Carpenter, 2016; 402 

Salet et al., 2022) and those that feature visuospatial attention (Janssen & Shadlen, 2005; 403 

Summerfield & Egner, 2009). More generally, our results suggest that the mapping between 404 

algorithmic models fit to behavior and brain dynamics is not as straightforward as suggested by 405 

certain local and aggregate neural signals, as has been noted previously (Hauser et al., 2018; 406 

Heitz & Schall, 2012; O’Connell et al., 2012b, 2018). In particular, the mapping appears to 407 

involve neural signals that have diverse forms and locations, which we characterized though our 408 

clustering analysis. Results from these analyses are in-line with the emerging view that although 409 

the cortex can be segmented into distinct regions based on structural features (Desikan et al., 410 

2006; Fischl et al., 2004)�, information processing is largely distributed across parallel, 411 

interleaved processing streams (“intrinsic brain networks”), with localized information 412 

processing limited to certain primary sensory and motor regions (Glasser et al., 2016; Van Essen 413 

et al., 1992; Yeo et al., 2011).  414 

Our study has several limitations. First, it is possible that some of these results are 415 

particular to our patient population. In general, epilepsy patients can show additional forms of 416 

inter-individual variability in their brain networks related to their pathology (Bettus et al., 2008) 417 
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that might also manifest in certain categorical behavioral differences compared to healthy 418 

controls (Bruhn & Parsons, 1977).  However, we sought to mitigate such concerns by focusing 419 

on neural signals associated with specific, highly controlled behaviors. Under these kinds of 420 

conditions, it has been shown that neural findings from intracranial EEG studies in patients with 421 

epilepsy can generalize to healthy controls populations(Long et al., 2014). Nevertheless, more 422 

work is needed to fully understand the relationship between behavioral and neural variability 423 

across individuals (Genon et al., 2022), which can have broad evolutionary (Bechara et al., 424 

2000), developmental (Tenenbaum et al., 2011), and functional (Yang & Wang, 2020) causes. 425 

Second, our clustering analysis was intended to identify distinct functional neural population that 426 

were evident across all subjects we studied. A more granular clustering of distinct functional 427 

profiles may be possible with a larger dataset. Third, we focused on within-trial anticipatory 428 

biases for this study but recognize that across-trial biases may also occur (Salet et al., 2022). 429 

Further work is needed to understand if and how within- and across-trial anticipatory biases 430 

relate to each other on a neural level.   431 

Despite these limitations, our study provided new insights into the distributed neural 432 

processes in the human brain that support anticipatory influences on sensory-motor behaviors. 433 

Despite relatively simple algorithmic explanations underlying anticipatory behavior, we found 434 

that anticipatory computations had heterogeneous, distributed, and regionally intermixed neural 435 

correlates in the human brain. These results reflect the fundamental role of anticipation in higher 436 

brain function and can help explain why simple sensory-motor processing engages widespread 437 

brain networks (Gonzalez-Castillo et al., 2012; Mesulam, 1998). These results illustrate how 438 

high-resolution neural measurements in the human brain can complement algorithmic models in 439 
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illuminating cognitive processes underlying human behavior. Moreover, these results motivate 440 

the need for more high-resolution and large-scale neural recordings combined with sophisticated 441 

computational models of brain activity and behavior to help bridge gaps in our understanding of 442 

the computational underpinnings of behavior and their complex neural substrates (Bogacz & 443 

Gurney, 2007; Wong & Wang, 2006; Yang & Wang, 2020)�. 444 

Materials and Methods 445 

Participants 446 

We studied 23 patients with medically refractory epilepsy who underwent surgical 447 

implantation of intracranial electrodes for seizure localization (Table S1). Patients provided 448 

informed consent to perform cognitive testing as part of our research study while they were 449 

admitted to the hospital. Our study was approved by the University of Pennsylvania Institutional 450 

Review Board. Clinical circumstances alone determined the number and placement of implanted 451 

electrodes. 452 

Stimulus-detection task 453 

We used a stimulus-detection task with a variable foreperiod delay (Luce, 1986; 454 

Nickerson, 1965; Niemi & Näätänen, 1981)�. Participants viewed visual stimuli on a laptop 455 

computer screen and responded by pressing a button on a game controller with their right thumb. 456 

Each trial began with the presentation of a small white box at a randomized location on the 457 

screen as a fixation target (one of nine locations on a 3 x 3 grid). The stimulus changed color to 458 

yellow after one of two randomly selected foreperiod delays: 1) short delay=500 ms, or 2) long 459 

delay=1500 ms. We measured response time (RT) as the time between color change (stimulus) 460 

and button press (response). If a response was provided within a predefined response interval 461 
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(1000 ms after color change), visual feedback was provided as follows: 1) for RTs ≤ 150 ms, 462 

salient positive feedback was shown, consisting of a smiley face with text below (“wow!”); 2) 463 

for RTs > 150 ms, the RT was shown, color-coded by binned values (green for 150–300 ms, 464 

yellow for 300–600 ms, red for 600–1000 ms). If a response occurred before the color change of 465 

the stimulus (“premature false alarm”) or if no response was provided within 1000 ms after color 466 

change, the participant was shown a blank screen for 2500–2750 ms. During each session, the 467 

participant performed blocks of 9 trials each. After six blocks, the participant was provided with 468 

an option of performing additional blocks of trials. On average, participants performed a mean of 469 

149 trials (i.e., 1.34 sessions). Two participants performed additional trials with a 1000 ms 470 

foreperiod delay, which we excluded from our analyses. 471 

 472 

Extended LATER model of RT 473 

All model-fitting procedures described below were implemented by finding the minimum 474 

of the appropriate objective function using the SciPy Optimization package in Python. We 475 

modeled RT distributions using an extended version the LATER model(Carpenter & Williams, 476 

1995; Noorani & Carpenter, 2016). This rise-to-bound model describes RTs as measuring the 477 

time it takes for a latent variable to rise linearly from a starting value (S0) at stimulus 478 

presentation to a threshold value (St) at response. The model accounts for trial-to-trial RT 479 

variability by assuming that the rate-of-rise of this process varies stochastically from trial-to-trial 480 

per a Gaussian process. The basic form of the LATER model describes an RT distribution using 481 

two free parameters, as follows: 482 

�� �
1

���, ��
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Where N represents a Gaussian distribution with mean � and standard deviation �. Note that this 483 

version assumes that the threshold value St=1; an equivalent formulation assumes that �=1, and 484 

St is a free parameter. These parameters are estimated by fitting a Gaussian probability density 485 

function to reciprocal RTs, which typically resembles a Gaussian distribution (Noorani & 486 

Carpenter, 2016).  487 

We extended this basic model to account for premature false alarms and RTs<250 ms, 488 

which we modeled as a stochastic process that occurred with uniform probability during the 500 489 

ms preceding S2. For these and other RT analyses, we assumed that this false alarm-generating 490 

process also triggered responses within 250 ms after stimulus onset (“fast responses”), because 491 

these fast responses are thought to arise from processes distinct from those driving slower RTs 492 

(we chose 250 ms as a conservative cutoff to ensure that our neural analyses do not conflate 493 

these two processes; Luce, 1986; Noorani & Carpenter, 2016). 494 

We first fit this extended LATER model to behavior on the short-delay trials. We then fit 495 

a modified model to behavior on long-delay trials that included two additional free parameters 496 

representing delay-related changes in: 1) the starting point of the LATER unit, and 2) the 497 

uniform probability of generating a premature or fast response. We evaluated the overall model 498 

fits by computing an R2 value comparing the (z-scored) model-predicted probability distributions 499 

and an empirically estimated probability distribution based on a Gaussian-smoothed reciprocal 500 

RT histograms (including all responses from 500 ms prior to stimulus onset to 1000 ms 501 

following stimulus onset, with an offset such that all RTs on anticipatory false alarms were 502 

positive values and RTs on short and long-delay trials were aligned relative to stimulus onset), 503 
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and also the cumulative probability of observing a premature false alarm based on the uniform 504 

distribution (see Fig. S1 for individual model fits for each participant).  505 

Intracranial neural recordings via intraparenchymal electrodes 506 

Patients were implanted exclusively with intraparencymal depth electrodes (“stereo 507 

EEG,” Ad-tech, 1.1 diameter, 4 contacts spaced 5 mm apart), except in one patient who also had 508 

subdural grid electrodes (Participant #142, Ad-tech, 4 mm contacts, spaced 10 mm apart). iEEG 509 

was recorded using a Natus recording system. Based on the amplifier and the discretion of the 510 

clinical team, signals were sampled at either 512 or 1024 Hz. Signals were converted to a bipolar 511 

montage by taking the difference of signals between each pair of immediately adjacent contacts 512 

on the same electrode. The resulting bipolar signals were treated as new virtual electrodes 513 

(henceforth, “electrodes”), originating from the midpoint between each electrode pair (Burke et 514 

al., 2014; Ramayya et al., 2015, 2021)�. Digital pulses synchronized the electrophysiological 515 

recordings with task events. We excluded electrodes that recorded prominent 60 Hz electrical 516 

line noise, defined as electrodes that showed greater spectral power in the 58–62 Hz range 517 

compared to the 18–22 Hz range, or electrodes that were disconnected (standard deviation=0). 518 

We excluded trials with prominent noise artifacts (e.g., if voltage data were not recorded due to 519 

saturation, or if the mean or standard deviation of voltage was >10 standard deviations of all 520 

trials). We did not specifically exclude electrodes based on epileptic activity because our 521 

analyses focused on behaviorally linked neural activity, which should not be influenced 522 

systematically by epileptic networks (Liu & Parvizi, 2019)�. We analyzed data from 2,609 523 

electrodes.  524 

Anatomical localization of electrodes 525 
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Intracranial electrodes were identified manually on each post-operative CT scan and 526 

contact coordinates recorded using custom software based on the center of density of the 527 

radiodense contacts on thresholded images. To obtain contact locations in each patient's native 528 

anatomic space as well as a common reference space (MNI coordinates), we used Advanced 529 

Normalization Tools (Avants et al., 2011)to register the post-operative CT to the pre-operative 530 

MRI, and the MRI to the Montreal Neurological Institute (MNI) average brain. We assigned 531 

each electrode to various canonical intrinsic brain networks (“7 network model”) using a 532 

volumetric atlas in MNI coordinates (Yeo et al., 2011). We refer to the “ventral attention” 533 

network as the “salience” network based on its resemblance to behaviorally defined networks 534 

important for emotion (Seeley et al., 2007), but otherwise use terminology as reported in the 535 

original study (Yeo et al., 2011). 536 

Extracting high-frequency activity (HFA) 537 

We extracted 5000 ms segments of iEEG data around the following task events: 1) 2000 538 

ms prior to target onset, 2) 5000 ms after target onset, 3) the stimulus color change, and 4) onset 539 

of the motor response. For each segment, we extracted spectral power using five complex-valued 540 

Morlet wavelets (wave number 3, to increase temporal resolution) with logarithmically spaced 541 

center frequencies from 70 to 200 Hz. We squared and log-transformed the wavelet convolutions 542 

to obtain power estimates at each time sample. We removed 1000 ms buffers at the beginning 543 

and end of each segment to avoid contamination from edge artifacts. We averaged these power 544 

estimates across the 5 wavelets, resulting in a single power value for each time sample. We 545 

convolved each power-time series with a Gaussian kernel (half-width of 75 ms), resulting in a 546 

continuous representation of high-frequency activity (HFA) surrounding each task event. We z-547 
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scored HFA by the mean and standard deviation of the distribution of HFA values obtained from 548 

randomly selected segments of iEEG data recorded from that session clips (matched to the 549 

number of total task events) to not bias values towards any particular task-related event (Burke et 550 

al., 2014; Ramayya et al., 2015, 2021)�. We refer to z-scored HFA as “HFA.” 551 

Measuring and preprocessing electrode-specific activation functions 552 

We quantified the activity pattern recorded by each electrode by measuring the average 553 

HFA around target onset during, measured separately on short-delay and long-delay trials 554 

(subsequently referred to as “activation functions”). We measured target-locked activation 555 

functions from 1000 ms prior to, until 4000 ms following target onset. 556 

To ensure that all subsequent analyses focused on modulations of the activation functions 557 

that were separate from the immediate sensory and motor responses, we preprocessed the data as 558 

follows (all curve fits were performed using the SciPy Optimization package in Python 559 

(“cuve_fit”): 560 

First, we estimated the overall (linear) trends in HFA that occurred over the course of the 561 

trial independent of changes that occurred immediately following stimulus presentation using the 562 

target-locked activation function (averaged across both trial types). Specifically, we fit a line to 563 

estimate how HFA changed over time using during two short segments of this activation 564 

function: 1) 1000 ms to -500 before target onset, and 2) 1000 ms after color change occurred on 565 

long-delay trial (2500 ms to 3000 ms after target onset). We subtracted these lines from each 566 

target-locked activation function to obtain detrended functions. 567 

Second, we estimated the changes in activity that occurred immediately after target onset 568 

across both trial types. Specifically, if the detrended target-locked activation function (averaged 569 
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across both trial types, from target onset to 500 ms afterwards) contained any activity peaks or 570 

troughs that were outside of the electrode’s baseline activity range, we fit a Gaussian function to 571 

model these activity excursions. If both a peak and trough were detected in a given electrode’s 572 

activation function, we modeled whichever one was larger. We then removed the post-target 573 

Gaussian from each target-locked activation function. For long-delay trials, we also fit a 574 

Gaussian to the 500–1500 ms interval after target onset and subtracted it from the activation 575 

function to remove any expectation-related changes in activity that occurred in response to the 576 

target not changing color. 577 

Third, we modeled activity locked to the color change separately for short- and long-578 

delay trials. Specifically, we first fit a Gaussian to a short time segment after the color change 579 

(0–500 ms post-stimulus) to capture any changes in activity that occurred immediately after 580 

color change. We also fit any residual peaks or troughs over a longer time segment (0–1000 ms 581 

post-stimulus). We then subtracted these fit Gaussians from the activation function from each 582 

trial.  583 

Fourth, we modeled activity locked to the motor response separately for short- and long-584 

delay trials. Specifically, we fit separate Gaussians to the 500 ms preceding the response, to 585 

capture any pre-response ramping activity or any smeared stimulus-locked activity from the 586 

preceding color change, and to any residual peaks or troughs during the 500 ms post-response 587 

interval, to capture further changes in activity related to either the response or feedback 588 

presentation. We then subtracted these fit Gaussians from the activation function from each trial. 589 
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In summary, these procedures resulted in residual trial-by-trial HFA measures that were 590 

time-locked to four task events: 1) target-locked, short delay; 2) target-locked, long delay; 3) 591 

response-locked, short delay; and 4) response-locked, long delay. 592 

Relating residual neural activity to endogenous RT variability 593 

We measured endogenous (non delay-related) RT variability for each participant as 594 

follows.  First, we transformed RTs during correct responses (excluding “fast response” RTs < 595 

250 ms) by taking the negative reciprocal (�1/��), which transforms right-tailed RTs into an 596 

approximately Gaussian distribution (the negative sign is applied for convenience such that long 597 

RTs are still associated with larger values; Noorani & Carpenter, 2016)�. Then, we removed 598 

delay-related RT variability by z-scoring reciprocal RTs within each delay condition. 599 

We assessed whether endogenous RT variability was related to neural activity at a given 600 

electrode on a trial-by-trial basis, after removing stimulus- and response-locked components of 601 

the activation function, including ramping components (Fig. S2). We considered several trial-by-602 

trial neural features locked to trial events: 1) baseline interval prior to target onset (500 ms), 2) 603 

baseline interval prior to stimulus (500 ms), 3) post-stimulus activity (250 ms), 4) post-stimulus 604 

buildup rate (slope of a line fit to HFA trend 250 ms following stimulus), 5) pre-response 605 

buildup rate (slope of a line fit to HFA 250 ms prior to response), and 6) pre-response activity 606 

(250 ms).  607 

We performed an omnibus test to assess for any relationship between neural activity and 608 

stochastic RT variability using a multi-variate linear regression model. The dependent variable 609 

was stochastic RT variability across all trials, and the independent variables were each of the 610 

neural features described above. We measured the predictive power of this model using the sum 611 
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squared error of residuals (SSE). We also assessed specific relationships between each neural 612 

feature and stochastic RT variability using Spearman correlations.  613 

We assigned non-parametric z-statistics and p values for each of these tests by comparing 614 

each of these “true” statistics (SSE of multi-variate model, and Spearman’s rho for each neural 615 

features) to null distributions generated for each electrode by misaligning RTs and neural data 616 

(using a circular shift procedure, 1000 iterations, to account for any autocorrelation in RTs). For 617 

the omnibus test, we assigned a one-tailed p value (i.e., if the true SSE was <5% of null SSE 618 

values, we assigned a p value of 0.05). For Spearman correlations, we assigned a two-tailed p 619 

value (i.e., if rho was >2.5% of null rho values, we assigned a p value of 0.05). 620 

Hierarchical clustering of neural populations based on functional properties. 621 

We used data-driven unsupervised clustering to group all electrodes based on similar 622 

task-driven neural activation patterns. This approach allowed us to study task-relevant neural 623 

representations that were possibly distributed across many regions. For each electrode, we 624 

defined a multi-variate feature vector representing the magnitude of (linear) relationships 625 

between: 1) each of the five features of the activation function listed above (i.e., baseline, post-626 

stimulus activity, post-stimulus buildup rate, pre-response buildup rate, pre-response activity) 627 

and stochastic RT variability (i.e., z-scored RT computed separately for short- and long-delay 628 

trials, thus removing any mean difference in RT for the two delay conditions), and 2) task-related 629 

modulations relative to pre-target baseline activity (Fig. 3). We characterized this feature vector 630 

as a multinomial distribution indicating the presence and direction of a significant effect (p<0.05; 631 

0 indicates no relation, or no significant task-related modulation; 1 indicates relatively increased 632 

activity with long RTs or task-related increases in activity; and -1 indicates relatively increased 633 
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activity with short RTs or task-related decreases in activity). We used an agglomerative 634 

clustering algorithm (scikit learn, Python) to group all electrodes using Euclidean distance as a 635 

measure of pairwise similarity and a linkage function that merges clusters to minimize the 636 

variance within all clusters. We identified 4 clusters that were grouped by similar functional 637 

profiles using an objective function maximized the number of clusters that were observed in all 638 

participants and contained at least 200 electrodes.  639 

Statistical tests 640 

We performed non-parametric statistical tests as described above, when appropriate. 641 

Otherwise, we performed t-tests to compare continuous distributions and binomial to compare 642 

categorical distributions (counts data). We used partial correlation analysis to assess across-643 

participant correlations between neural activity and anticipatory biases (delay-related differences 644 

in mean RT and false alarm rate). Based on our partial correlation analysis, we specifically 645 

assessed for a functional dissociation between prestimulus activity modulations in Cluster 1 and 646 

Cluster 3 using a linear mixed-effects model, as follows: 647 


 ~ 1 � �ΔRT � ���� � �������
 � �ΔFA � ���� � �������
 � �1|��!"
 � �1|�#�
 

Where Y is a continuous variable that represents neural activity (z-scored HFA) averaged within 648 

each subject for a specific cluster (Cluster 1 or 3), and a specific time window (-120-130ms, 649 

“early” or 1180-1430ms, “late” relative to S1, as identified by the partial correlation analyses, 650 

Figs. 6, 7). The Fixed Effects are two separate three-way interactions between ΔRT (continuous 651 

variable indicating delay-related difference in mean RT for each participant), time (categorical 652 

variable indicating early or late time window), and cluster (categorical variable indicating 653 

Cluster 1 or 3), and between ΔFA (continuous variable indicating delay-related difference in FA 654 
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rate for each participant), time, and cluster. The Random Effects are subject (“subj”) and 655 

intrinsic brain network (“roi”). 656 

We used False Discovery Rate (FDR) correction for multiple comparisons (Benjamini & 657 

Hochberg, 1995)� and considered an FDR-corrected p value <0.05 to be statistically significant. 658 

We report FDR-corrected p values when indicated, otherwise reported p values are uncorrected. 659 

We performed most of our analyses using Python using both custom code and publicly available 660 

packages (e.g., NumPy for numerical computing, SciPy for statistics and signal processing, MNE 661 

for spectral analyses, statsmodels for regression modeling, pingouin for partial correlation 662 

analysis). We fit linear mixed effects models using in R using the lme4 and lmeTest packages 663 

(Bates et al., 2015; Kuznetsova et al., 2017). 664 

Data sharing and Code Accessibility 665 

Behavioral and neural data used for this study will be made publicly available and have 666 

been submitted to Dryad. The Python code used to process these data are available online 667 

(https://github.com/ashwinramayya/code_RamaEtal_AntReact) 668 

 669 

 670 
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