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Abstract

Human behavior can be highly sensitive to anticipation, but the mechanisms underlying this
sensitivity are poorly understood. We obtained intracranial e ectrocephal ography (iEEG)
measurements in neurosurgical patients as they performed a simple sensory-motor task with
variable (short or long) foreperiod delays that affected anticipation of the cue to respond.
Participants showed two forms of anticipatory response biases, distinguished by more premature
false alarms (FAS) or faster response times (RTS) on long-delay trials. These biases had distinct
neural signatures in prestimulus neural activity modulations that were distributed and intermixed
across the brain: the FA bias was most evident in preparatory motor activity immediately prior to
response-cue presentation, whereas the RT bias was most evident in visuospatial activity at the
beginning of the foreperiod. These results suggest that human anticipatory behavior emerges
from a combination of motor-preparatory and attention-like modulations of neural activity,
implemented by anatomically widespread and intermixed, but functionally identifiable, brain

networks.
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I ntroduction

Expectations of future events shape human behavior (Friston, 2010; A. C. Nobre & Van Ede,
2018). Even simple stimulus detection is not a passive, purely stimulus-driven process but
involves predictive inference that combines incoming sensory information with expectations
learned from prior experience (Helmholtz, 1866; Rao & Ballard, 1999). However, the
mechanisms in the human brain that alow expectations to influence impending sensory-motor

processing (a set of phenomena that we refer to as “anticipation”) remains unclear.

Anticipatory influences on human behavior have been quantified extensively using simple
sensory-motor detection tasks (Cattell, 1886; Luce, 1986). For example, the variable foreperiod-
delay paradigm has been used to operationalize anticipatory behavior in terms of changesin
response times (RTs) and premature responses (“false alarms’, or FAS) as a function of changes
in the length and predictability of the foreperiod delay (Luce, 1986; Niemi & Nadténen, 1981,
Ollman & Billington, 1972). These effects are thought to reflect modulations of preparatory
motor processes during the foreperiod delay (Los et al., 2001, 2014; A. C. Nobre & Van Ede,
2018; Salet et al., 2022). These preparatory motor processes are often modeled via “rise-to-
bound” dynamics that account for endogenous RT variability as arising from a stochastically
varying processes that triggers a motor response (Brown & Heathcote, 2005; Carpenter &
Williams, 1995; Noorani & Carpenter, 2016; Ratcliff, 1978; Ratcliff et al., 2016; Stone, 1960;
Usher & McCldland, 2001). In these models, anticipatory response biases are often assumed to
arise from prestimulus elevations in the baseline, or “starting point,” of the stochastic rising
process, resulting in faster RTs (Carpenter & Williams, 1995; Noorani & Carpenter, 2016). A

compelling feature of these modelsisthat, in addition to providing parsimonious accounts of
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behavior, they have algorithmic components that are thought to map directly onto the activity
patterns of localized sets of neurons that contribute to motor preparation and execution (Hanes &

Schall, 1996a).

However, exactly how these models relate to sensory-motor processing in the human brain is
not well understood, reflecting alack of brain measurements with appropriate combinations of
high spatiotemporal resolution and broad anatomical scale. Scalp electroencephal ography (EEG)
studies have provided support for anticipatory processing during the foreperiod delay (Miniuss
et al., 1999; Pfeuty et al., 2005; Rohenkohl & Nobre, 2011; Walter et al., 1964), but it is difficult
to interpret these signals in terms of specific neural circuits because they aggregate activity
across large brain regions. Functional MRI studies have shown regionally distributed
hemodynamic correlates of anticipatory processing, but these findings have been inconsi stent
and are difficult to relate to RT variability because of limited temporal resolution (J. T. Coull &

Nobre, 1998; Cui et a., 2009; Vallesi, 2010).

To overcome these limitations, we obtained high-resolution intracranial
el ectroencephal ography (iEEG recordings) from 23 patients with medically refractory epilepsy
with indwelling intraparenchymal electrodes in widespread brain regions as they performed a
stimulus-detection task with a variable foreperiod delay (Fig. 1A, Table S1). We focused on
high-frequency iEEG activity, which reflects local spiking activity (70-200 Hz power; Dubey &
Ray, 2019; Leonard et al., n.d.; Manning et al., 2009) sampled broadly across many parts of
cortex and certain subcortical structures (Parvizi & Kastner, 2018). We tested the hypothesi s that
anticipatory processes modulate prestimulus activity of preparatory motor neural populationsin

the human brain that encode endogenous RT variability. We focused on a broad set anatomical
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regions because neural correlates of RT variability have been identified in several motor-
preparatory brain regions, including activity patterns that map directly (Hanes & Schall, 1996b;
O’'Connell et al., 2012a) or indirectly (Hauser et al., 2018; Heitz & Schall, 2012;
Paraskevopoulou et al., 2021) onto rise-to-bound model dynamics. As detailed below, our results
identify two behaviorally and neurally distinct processes that govern anticipatory effects on
sensory-motor behavior and highlight the complex but identifiable mappings between algorithm-

and implementation-level explanations of human behavior.
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84 Results
85 Twenty-three participants performed a variant of acommonly used “foreperiod-delay
86 task” that has been used extensively to investigate anticipatory influences on sensory-motor
87 behaviors (Klemmer, 1957; Luce, 1986; Niemi & Nadtanen, 1981). Briefly, each trial began with
88 the presentation of avisual target (“warning signal,” S1) on a computer screen that changed color
89 after arandomly selected foreperiod delay of 500 (“short”) or 1500 (“long”) ms. Participants
90 were instructed to respond via button press as soon as they noticed the color change (“stimulus,”
91 S2). RT was measured as the elapsed time between stimulus and response. The different
92 foreperiod delays provided categorically different levels of temporal expectation of stimulus
93 arrival at the time of stimulus presentation (Luce, 1986; A. C. Nobre & Van Ede, 2018; Oliman
94 & Billington, 1972; Salet et al., 2022). On short-delay trials, the stimulus was presented when
95 there was uncertainty about whether the trial was a short- or long-delay tria, resulting in
96 relatively low temporal expectation of stimulus arrival. On long-delay trials, the stimulus was
97 presented when the trial could be identified unequivocally as along-delay trial, resultingin
98 relatively high temporal expectation of stimulusarrival (Fig. 1).
99 Dual behavioral signatures of anticipatory biases
100 The participants' RTsincluded endogenous variability for both delay conditions (median
101 per-participant RT inter-quartile range=66.67 ms for short-delay and 66.75 for long-delay trials;
102 examples are shown in Fig. 1A, Table S2), with two primary effects of anticipation that were
103 consistent with previous findings (Luce, 1986; Nickerson, 1965; Noorani & Carpenter, 2016;
104 Ollman & Billington, 1972). First, participants had faster RTs (paired t-test, t (22)=5.57,
105 p<0.001) on long- versus short-delay trials (“RT bias’)[ 1, albeit with substantial individual
106 variability (mean RT range across participants=354-595 ms and 323-529 ms on short- and long-

7
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107 delay trials, respectively, Fig. 1C). Second, participants had higher false-alarm rates on long-
108 versus short-delay trials (“FA bias’; paired t-test, t (22)=4.43, p<0.001; range 1.7-58%, versus
109 0-7.8%, respectively, Fig. 1D). We did not observe a significant correlation with delay-related
110 differencesin RT and false-alarm rate (p>0.3, Fig. 1E) but did observe a correlation between RT
111 and false-alarm rate when considering only long-delay trials (r=0.47, p=0.02).

112 We modeled these anticipatory effects as prestimulus modulations of an abstracted “rise-
113 to-bound” motor-preparatory process (Fig. 1B; Noorani & Carpenter, 20164). Specifically, we
114 modeled each RT on short-delay trials as the time taken for a latent variable to rise from a fixed
115 starting point to a fixed bound value to trigger a motor response (“rising process’). Tria-to-trial
116 variability in the rate of rise accounts for endogenous RT variability and the characteristic

117 (delay-independent) right-tailed RT distribution. For correct trials with RT>250 ms, we assumed
118 that this rising process was triggered by the onset of the stimulus S2. In contrast, for trials with
119 false alarms, we assumed that this rising process was triggered prior to the onset of S2, according
120 to a stochastic process that occurred with uniform probability during the 500 ms preceding S2.
121 We modeled each RT on long-delay trials as emerging from a rising process that was modul ated
122 by increased temporal anticipation. This anticipation took the form of an elevation of the

123 basdline starting point of the rising process, bringing the process closer to the threshold value
124 required to trigger aresponse. This baseline elevation increased the probability of triggering

125 responses prior to S2 (FA bias) and reduced the time taken to generate a correct response after
126 S2 (RT bias). We used separate parameters for anticipatory baseline elevation to trigger

127 premature responses versus speed up correct RTs, to account for largely independent variability
128 in RT and FA biases across participants.
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129 This anticipatory starting-point model provided a good fit to participants RTs and

130 anticipatory response biases (R’ mean=0.85, range=0.62-0.97; Fig. Sl for individual mode! fits).
131 For comparison, we tested two alternative models with the same number of free parameters but
132 other mechanisms to explain anticipatory RT biases. One alternative model replaced modulations
133 of the starting point with modulations of the variance of the rate of rise. Thismodel produced
134 poorer fits (R* mean=0.77, range=0.37-0.97). The other alternative model assumed that FA

135 biases were based on trial-by-trial modulations of the starting point but that RT biases were

136 based on trial-by-trial modulations of the mean rate of rise. Thismodel produced fits that were
137 similar to those produced by the starting-point-only model (R? mean=0.86, range=0.62—0.97),
138 which highlights the difficulty in modeling specific algorithmic substrates of anticipatory

139 behavior (Luce, 1986; Salet et al., 2022). Below we focus on the more parsimonious starting-
140 point-only model to identify relevant neural mechanisms.

141
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143 Figure 1. Two forms of anticipatory biases. (A) Task summary and RT distributions from an
144 example participant. Red line indicates stimulus onset, green vertical line indicates 250 ms after
145 stimulus onset (the fast-response threshold). Blue and orange histograms indicate timing of
146 responses on short- and long-delay trials, respectively. Premature false alarms are responses that
147 fall to the left of thered line. (B) Model schematic illustrating abstracted preparatory motor
148 processes contributing to sensory-motor behavior. Anticipatory elevation of baseline activity can
149 account for both adecrease in RT and an increase in false-alarm rate. (C,D) Violin plots showing
150 distributions of mean RTs (C) and premature false-alarm rates (D) on short- (blue) and long-
151 (orange) delay trials for all 23 participants. (E) Scatterplot showing covariance of delay-related
152 changesin mean RT and premature false-alarm rate across participants. Each circle corresponds
153 to data from a single participant.
154
155 Task- and RT-modulated neural responses wer e distributed widely in the brain
156 We obtained neural measurements from intraparenchymal depth electrodes implanted in
157 participants with medically refractory epilepsy for clinical purposes (Fig. 2A). We focused on

10
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high-frequency activity (HFA, 70-200 Hz power) recorded from bipolar pairs of electrodes,
which provides areliable surrogate of local (within ~3 mm) neural population spiking activity
(Dubey & Ray, 2019; Leonard et a., 2023; Manning et al., 2009; Ray & Maunsell, 2011). In
total, we studied recordings from 2,609 bipolar pairs of intraparenchymal depth electrodes
distributed widely throughout the brain in 23 patients (mean=113.4 electrodes/participant). We
localized these recordingsto various intrinsic brain networks (Figs. 2B). For each electrode, we
measured task-related activity of the nearby neural population time-locked to target onset and
motor response in ~50 ms siding time intervals, z-scored to an aggregate baseline from the

entire recording session.

B 2,609 electrodes, 23 subjects
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169 Figure 2. Intracranial recordings provide neural measurementswith high resolution and
170 broad anatomical coverage. (A) Extracting high-frequency activity (HFA, 70200 Hz power)
171 from intraparenchymal depth electrodes as an estimate of local spiking (red circle indicates

172 example prefrontal electrode described in C). (B) Brain plot showing electrode locations from
173 all participantsin standard MNI coordinates. Colorsindicate intrinsic brain networks based on a
174 normative atlas (Yeo et al., 2011). (C) Task-driven responses of local neura activity (average z-
175 scored HFA) measured at the electrode indicated in Fig. 2A, plotted separately for short- (blue)
176 and long- (orange) delay trials and binned by stochastic RT percentile (10 bins; lighter shading
177 indicates faster RTs). Left panel shows target-locked activity. Vertical linesindicate time of target
178 onset (grey), short-delay color change (blue), and long-delay color change (orange). Middle and
179 right panels show stimulus- and response-locked activity, respectively. Shaded gray box indicates
180 atimeinterval during which we observed a correlation between neural activity and RT

181 variability.

182

183 We identified task-related modulations and/or correlations with endogenous (delay-

184 independent) RT variability at various time intervals throughout the trial, after accounting for
185 transient sensory- and motor-driven responses, from 2,142 out of 2,609 electrodes (Fig. S2). To
186 identify task-related changesin activity, we compared neural activity following the warning

187 signal (500 msfollowing S1), stimulus onset (500 ms following S2), and response onset (1000
188 ms following the button press), relative to a baseline interval (500 ms prior to S1; paired t-tests,
189 p<0.05). To relate neural activity at each electrode with endogenous, delay-independent RT

190 variability, we used a multivariate model that included neural activity in various task-related time
191 intervals (significance via non-parametric shuffle procedure p<0.05; Fig. S2).

192 An example electrode showing both task- and RT-related activity modulations is shown
193 in Fig. 2C (the electrode location isindicated in Fig. 2A). Thislocal neural population showed
194 rising activity following the warning signal (S1) that peaked near the time of response and

195 descended back to baseline. The prestimulus baseline activity was relatively higher during faster
196 RT and long-delay trials, followed by alargely RT-independent rate of rise before the motor

12
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197 response. In other words, this electrode showed modulations that were roughly consistent with
198 “rise-to-bound” dynamics found in our and similar models.

199 However, this electrode was hardly unique in showing task and RT modulations, which
200 we found throughout the brain (Fig. 3). Task modulations across all task epochs involved activity
201 increases, rather than decreases, in response to task-relevant sensory and/or motor events (any
202 interval; two-sided binomial test p<0.001, 95% CI. 83-86%; expected 50%), and rarely included
203 both task-driven increases and decreases in different task epochs measured at the same electrode
204 (n=65/2,609, 3%). Task-related increases were generally uniformly distributed across the brain,
205 but neural populationsin the salience network showed more frequent task-driven increases than
206 expected (two-tailed binomial test, FDR-corrected p<0.001, 95% Cl: 74-85%; Fig 3).

207 RT modulations were also distributed widely, but with different spatial patterns. We

208 observed aregional intermixing of effects that included both positive correlations, such that

209 increased activity corresponded to slower RTs, and negative correlations, such that decreased
210 activity correlated with faster RTs. Neural activity showed more frequent correlations with RT
211 than chance across the brain (n=638/2609, one-tailed binomial test p<0.001, 95% CI1>23%,

212 where chance=5%) and within each intrinsic brain network (corrected ps<0.001, 95% Cls >15—
213 30%), even when separately considering only positive or negative correlations (corrected p<0.03,
214 except limbic populations rarely showed positive correlations, corrected p>0.5) We rarely

215 observed neural populations at a single electrode that showed both positive and negative RT

216 correlations during different task epochs (n=60/2,609, 2%). These RT modulations were not

217 distributed uniformly across the brain: visual neural populations showed positive RT correlations
218 more frequently than expected (two-tailed binomial test, corrected p=0.04; 17-30%), whereas

13
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somatomotor neural populations showed negative RT correlations more frequently than expected

(corrected p=0.02; 24-37%).
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Figure 3. Task-related neural activity changes wer e regionally widespread and inter mixed
(A) Percentages of electrodesin each region with activity that showed task-related activity
changes following S1, S2, or R. Positive values indicate task-related increases in activity;
negative values indicate task-related decreases in activity. (B) Scatterplot showing the relative
frequency of electrodes with positive (ordinate) and negative (abscissa) changes in activity to
task-relevant eventsin each intrinsic brain network relative to their overall (expected) frequency
across the brain (z-scores). Positive values indicate increased relative frequency; negative values
indicate decreased relative frequency. Inner and outer ellipses indicate 1o and 20 confidence
intervals derived from the joint distribution, respectively. (C,D) Same as A,B, but for positive
and negative correlations with endogenous, trial-to-trial RT variability during any time interval.
Negative valuesin C indicate increased activity with faster RTs; positive values indicate
increased activity with slower RTs.
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234

235

236 Data-driven clustering of neural activity patterns

237 To better understand these broadly distributed, diverse activity patterns, we used a data-
238 driven hierarchical clustering algorithm to group electrodes that showed similaritiesin task-
239 related activity modulations and endogenous, delay-independent RT correlations. We selected a
240 clustering level (4) that maximized the number of clusters that that included data from all of the
241 participants (we also excluded clusters with <200 electrodes) and exhibited distinct patterns of
242 modulations by task events and RT. Cluster O showed task-related increases without RT

243 modulation. Cluster 1 showed task-related increases with negative RT correlations. Cluster 2
244 showed task-related decreases without RT modulation. Cluster 3 showed task-related increases
245 with positive RT correlations. These clusters were distributed widely across the brain (see Fig.
246 3).

15
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248 Figure 4. Data-driven clustering of task-related neural activity. Illustration of hierarchical
249 clustering of electrodes based on similar task-related activity modulations. Top row: time
250 intervals used to measure task modulation and RT correlation for each electrode as detailed in
251 main text. Bottom row: left, colormap representing a feature matrix across al electrodes, where
252 each row represents an electrode, and each column represents afeature (task or RT modulation);
253 middle: dendrogram representing similarities between electrodes; right: feature matrix re-
254 organized based on similar task and RT modulations at the clustering level indicated by the black
255 line in middle panel, which we used in these analyses. (B) We identified a level of clustering
256 (black vertical line in dendrogram) based on an objective function that maximized the number of
257 clusters that were well sampled in our dataset (i.e., each eligible cluster was observed in al
258 participants and consisted of at least 200 electrodes). (C) Percentage of electrodes that showed
259 task-related increases and decreases (positive and values, respectively asin Fig. 3A). (D) Same
260 C but for RT correlations. Negative values indicate increased activity with faster RTs; positive
261 values indicate increased activity with slower RTs (asin Fig. 3C).
262
263 Dual neural signatures of anticipatory biasesin prestimulus activity

16
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264 Prestimulus activity in two distinct neural clusters encoded participant-to-partici pant

265 variability in the two main anticipatory biases we identified from behavior: RT biasin Cluster 3,
266 and FA biasin Cluster 1 (Fig. 5). Specifically, we measured prestimulus activity in each cluster
267 on long-delay trials (ranging from 250 ms prior to S1 to 50 ms prior to S2, excluding trials with
268 FA and RTs<250 ms, averaged within participants) and related these partici pant-wise measures
269 to anticipatory RT and FA biases (as shown in Fig 1E). We found that increased prestimulus
270 activity in Cluster 1 correlated with increased FA bias (p=0.53, corrected p=0.04; partial

271 correlation controlling for RT bias). In contrast, increased prestimulus activity in Cluster 3

272 correlated with RT bias (p=0.62, corrected p=0.002). We further detail the nature of prestimulus
273 modulationsin these two different clusters below.
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275 Figure5. Dissociable prestimulus neural correlates of anticipatory biases. The top schematic
276 shows the time interval used to compute prestimulus activity in each cluster. The scatterplot

277 shows partial correlation coefficients for RT bias (controlling for FA bias) on the abscissaand FA
278 bias (controlling for RT bias) on the ordinate. The green circle indicates a significant relationship
279 with RT bias, and the red circle indicates a significant relationship with FA bias (corrected

280 p<0.05).

281 Anticipatory FA biases were encoded by prestimulus modulationsin Cluster 1 neural

282 activity patterns, which resembled a preparatory motor process (Fig. 6). These activity patterns,
283 on average, tended to rise after the warning signal, stay elevated during the foreperiod delay, and
284 peak at the time of the motor response on both correct and false-alarm trials (Fig. 6A,B). There
285 also were reliable modulations by tria-to-trial RT variability, such that increased activity

286 corresponded to faster RTs (Fig. 6A). A time-resolved partial-correlation analysis relating

287 prestimulus activity in Cluster 1 with FA bias (Fig. 6C; 250 ms sliding advanced 10 ms steps,
288 controlling for RT bias) showed a peak correlation strength immediately preceding S2, when
289 expectation of stimulus arrival should be relatively high (1180—1430 msfollowing S1,

290 highlighted in Fig. 6B; a scatterplot of this correlation is shown in Fig. 6D).

291 Anticipatory RT biases were encoded by prestimulus modulations in Cluster 3 neural

292 activity patterns, which were activated more strongly by sensory than motor events (Fig. 7).

293 These activity patterns, on average, tended to show atransient risein activity after the onset of
294 the warning signal and did not show rising activity preceding response, including on FA trials
295 (Fig 7B). They showed positive correlations with endogenous RT variability such that increased
296 activity (including prior to S1) corresponded to slower RTs (Fig. 7A). A time-resolved partial
297 correlation analysis relating prestimulus activity in Cluster 3 with RT bias (7C; 250 ms dliding
298 advanced 10 ms steps, controlling for FA bias) showed a pesk correlation strength immediately
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299 near the time of S1 onset, when participant’ s presumably saccade to target (120 ms prior to and
300 30 msfollowing S1, highlighted in Fig 7B; a scatterplot of this correlation is shown in Fig. 7D).
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302 Figure 6. Neural correlates of anticipatory FA bias. (A) Average task-related neural responses
303 for Cluster 1 electrodes (same format as Fig. 2C, left pandl). (B) Average neural activity locked
304 to target onset (S1) for long-delay trials associated with correct responses (RT>250; orange) and
305 false alarms (gray). (C) Time resolved partial correlation coefficient relating neural activity with
306 FA bias across participants, controlling for RT bias (vertical red line indicates peak correlation,
307 corresponding to highlighted timeinterval in B). (D) Scatterplot showing across-participant
308 correlation between FA bias and prestimulus neural activity (averaged within the 1180-1430ms
309 window relativeto S1, as highlighted in B.).
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311 Figure7. Neural correlates of anticipatory RT bias. (A-B) Same as Fig. 6, but for Cluster 3
312 electrodes (C) Time resolved partial correlation coefficient relating neural activity with RT bias
313 across participants, controlling for FA bias (vertical red lineindicates peak correlation). (D)
314 Scatterplot showing across-participant correlation between RT bias and prestimulus neural
315 activity (averaged within the -120-230ms window relative to S1, as highlighted in B).
316 These results suggest afunctional heterogeneity in prestimulus activity related to
317 anticipatory processing, such that Cluster 1 activity prior to S2 encodes FA bias, whereas Cluster
318 3 activity around the time of S1 encodes RT bias. We tested for such a functional dissociation
319 using aLinear Mixed Model (LMM) analysis, in which we related prestimulus activity (z-scored
320 HFA) to RT bias (interacting with “cluster,” and “time window,” defined based on peak
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321 correlations from the previous analysis) and FA bias (also interacting with “cluster” and “time
322 window”), with “participant” and “intrinsic brain network” as random effects (varying intercepts,
323 see Materials and Methods). We observed a significant three-way interaction between RT bias,
324 cluster, and time window (F = 3.93, p= 0.005), and between FA bias, cluster, and time window
325 (F=19.69, p<0.001), suggesting a functional heterogeneity in prestimulus activity modulations
326 during anticipatory processing.

327 Cluster 1 and 3 electrodes were widely distributed and regionally intermixed across the
328 brain, but each showed non-uniform distributions (Fig. 8A—C). Cluster 1 electrodes were found
329 more frequently in somatomotor networks (two-tailed binomial test, corrected p=0.02; found 15—
330 27%, expected 14%), and less frequently in visual and limbic networks (corrected ps<0.03; 03—
331 13%), than expected. Cluster 3 electrodes were found more frequently in visual networks (two-
332 tailed binomial test, corrected p=0.02; found 12—23%, expected 10%) than expected. The visual
333 network was an outlier in showing an increased probability of containing Cluster 3 electrodes,
334 and a decreased probability of containing Cluster 1 electrodes (Fig. 8C).
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scores; same format as Fig. 3B)
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352 Discussion

353 We identified neural correlates in the human brain of two behaviorally distinguishable
354 effects of anticipation on a simple sensory-motor behavior. The first effect, which we refer to as
355 afalse-alarm (FA) bias, was characterized behaviorally by an increase in premature responses
356 under conditions of higher (more certain) anticipation — akin to pressing the car brakes sooner
357 than necessary when you think the car in front of you is about to stop. As has been reported

358 previously, these increased false alarms tended to be accompanied by faster RTs, thus reflecting
359 aform of speed-accuracy trade-off (Green & Swets, 1966; Luce, 1986). We found that these FA
360 biases were encoded by prestimulus neural activity near the end of the foreperiod delay, when
361 the probability of the stimulus was relatively certain, in widespread neural populations that

362 tended to ramp up just preceding the motor response and showed increased activity when RTs
363 were faster, and were prevalent in somatomotor networks, consistent with arole in response
364 generation (Hanes & Schall, 1996a).

365 The second effect, which we refer to as an RT bias, was characterized behaviorally by
366 faster RTs under conditions of higher (more certain) anticipation — akin to pressing the car

367 breaks faster than usual when you expect, and then see, the brake lights on the car in front of you
368 go on. Thishiasis consistent with well-established relationships between stimulus uncertainty
369 and mean RT (Klemmer, 1957; Niemi & N&dtanen, 1981), including for very similar task

370 designs using randomly interleaved foreperiod delays. Under these conditions, responses are
371 thought to be suppressed while waiting the estimated duration of the short delay (when itis

372 unknown whether it is a short- or long-delay trial) and then facilitated around the estimated end
373 of thelong delay (Luce, 1986; A. Nobre et a., 2007; A. C. Nobre & Van Ede, 2018; Ollman &
374 Billington, 1972; Salet et al., 2022). We found that these RT biases were encoded by prestimulus
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375 neural activity at the beginning of the foreperiod delay interval, which is a reference moment for
376 implicit time estimation, in widespread neural that tended to have transient visual responses and
377 build gradually throughout each trial, and showed increased activity when RTs were slower,

378 consistent with arolein visuospatial attention and response inhibition (Houghton & Tipper,

379 1984; Neill et al., 1995; van Moorselaar et al., 2020).

380 Previous work also identified many instances of anticipatory modulations of neural

381 activity (e.g., Nobre & Van Ede, 2018). Our work provides new insights into those findings,
382 leveraging the unique combination of high spatio-temporal resolution and broad anatomical

383 sampling of IEEG measurements (Parvizi & Kastner, 2018) to show that such anticipatory-driven
384 modulations of neural activity: 1) are not limited to particular, spatially restricted sensory and/or
385 motor neural populations, as might be inferred from animal electrophysiology studies that

386 typically target spatially restricted recording sites (e.g., Ghose & Maunsdll, 2002; Janssen &

387 Shadlen, 2005)(; 2) are more heterogeneous than might be inferred from scalp EEG studies that
388 report only signals that reflect neural activity patterns that have been aggregated across large
389 cortical areas (Miniuss et al., 1999; Rohenkohl & Nobre, 2011; Walter et a., 1964) J; and 3)
390 have more complex temporal dynamics than might be inferred from functional neuroimaging
391 studies with relatively low temporal resolution (Coull & Nobre, 1998; A Vallesi, 2010; Antonino
392 Valles et al., 2009). Our results also build on recent work (Paraskevopoulou et al., 2021)

393 showing that that spontaneous fluctuationsin neural activity that underlie intertrial variability in
394 human behavior are far more widespread than shown by prior functional neuroimaging studies
395 (Fox et a., 2007).
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396 One of our key findings was that the “rise-to-bound” dynamics of our model, which have
397 previously been used to link algorithmic descriptions of behavior to their implementationsin the
398 brain (Gold & Shadlen, 2007; Hanes & Schall, 1996a; Heitz & Schall, 2012; O’ Connell et al.,
399 2012b)[1, had arelatively direct mapping to just a subset of the task-relevant neural signals that
400 we identified. Instead, we found two distributed networks with task-relevant modulations of

401 neural activity, corresponding roughly two distinct classes of algorithmic models of anticipatory
402 behavior: those that feature motor preparation (Los et al., 2014; Noorani & Carpenter, 2016;
403 Sdlet et al., 2022) and those that feature visuospatial attention (Janssen & Shadlen, 2005;

404 Summerfield & Egner, 2009). More generally, our results suggest that the mapping between

405 algorithmic models fit to behavior and brain dynamicsis not as straightforward as suggested by
406 certain local and aggregate neural signals, as has been noted previously (Hauser et al., 2018;
407 Heitz & Schall, 2012; O’ Connell et al., 2012b, 2018). In particular, the mapping appears to

408 involve neural signalsthat have diverse forms and locations, which we characterized though our
409 clustering analysis. Results from these analyses are in-line with the emerging view that although
410 the cortex can be segmented into distinct regions based on structural features (Desikan et al.,
411 2006; Fischl et al., 2004)1, information processing is largely distributed across parallel,

412 interleaved processing streams (“intrinsic brain networks’), with localized information

413 processing limited to certain primary sensory and motor regions (Glasser et a., 2016; Van Essen
414 eta., 1992; Yeo et al., 2011).

415 Our study has several limitations. First, it is possible that some of these results are

416 particular to our patient population. In general, epilepsy patients can show additional forms of
417 inter-individual variability in their brain networks related to their pathology (Bettus et al., 2008)
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418 that might also manifest in certain categorical behavioral differences compared to healthy

419 controls (Bruhn & Parsons, 1977). However, we sought to mitigate such concerns by focusing
420 on neural signals associated with specific, highly controlled behaviors. Under these kinds of
421 conditions, it has been shown that neural findings from intracranial EEG studies in patients with
422 epilepsy can generalize to healthy controls populations(Long et al., 2014). Nevertheless, more
423 work is needed to fully understand the relationship between behavioral and neural variability
424 across individuals (Genon et al., 2022), which can have broad evolutionary (Bechara et al.,

425 2000), developmental (Tenenbaum et al., 2011), and functional (Yang & Wang, 2020) causes.
426 Second, our clustering analysis was intended to identify distinct functional neural population that
427 were evident across all subjects we studied. A more granular clustering of distinct functional
428 profiles may be possible with alarger dataset. Third, we focused on within-trial anticipatory
429 biases for this study but recognize that across-trial biases may also occur (Salet et al., 2022).
430 Further work is needed to understand if and how within- and across-trial anticipatory biases
431 relate to each other on aneural level.

432 Despite these limitations, our study provided new insightsinto the distributed neural

433 processes in the human brain that support anticipatory influences on sensory-motor behaviors.
434 Despite relatively ssimple algorithmic explanations underlying anticipatory behavior, we found
435 that anticipatory computations had heterogeneous, distributed, and regionally intermixed neural
436 correlates in the human brain. These results reflect the fundamental role of anticipation in higher
437 brain function and can help explain why simple sensory-motor processing engages widespread
438 brain networks (Gonzalez-Castillo et al., 2012; Mesulam, 1998). These resultsillustrate how
439 high-resolution neural measurements in the human brain can complement agorithmic modelsin
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440 illuminating cognitive processes underlying human behavior. Moreover, these results motivate
441 the need for more high-resolution and large-scale neural recordings combined with sophisticated
442 computational models of brain activity and behavior to help bridge gaps in our understanding of
443 the computational underpinnings of behavior and their complex neural substrates (Bogacz &
444 Gurney, 2007; Wong & Wang, 2006; Y ang & Wang, 2020) 1.

445 Materialsand Methods

446 Participants

447 We studied 23 patients with medically refractory epilepsy who underwent surgical

448 implantation of intracranial electrodes for seizure localization (Table S1). Patients provided

449 informed consent to perform cognitive testing as part of our research study while they were

450 admitted to the hospital. Our study was approved by the University of Pennsylvania Institutional
451 Review Board. Clinical circumstances alone determined the number and placement of implanted
452 electrodes.

453 Stimulus-detection task

454 We used a stimulus-detection task with avariable foreperiod delay (Luce, 1986;

455 Nickerson, 1965; Niemi & N&&tanen, 1981) |. Participants viewed visual stimuli on alaptop
456 computer screen and responded by pressing a button on a game controller with their right thumb.
457 Each trial began with the presentation of a small white box at a randomized location on the

458 screen as afixation target (one of nine locations on a3 x 3 grid). The stimulus changed color to
459 yellow after one of two randomly selected foreperiod delays: 1) short delay=500 ms, or 2) long
460 delay=1500 ms. We measured response time (RT) as the time between color change (stimulus)
461 and button press (response). If a response was provided within a predefined response interval
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462 (1000 ms after color change), visual feedback was provided as follows: 1) for RTs < 150 ms,
463 salient positive feedback was shown, consisting of a smiley face with text below (“wow!”); 2)
464 for RTs> 150 ms, the RT was shown, color-coded by binned values (green for 150-300 ms,
465 yellow for 300-600 ms, red for 600-1000 ms). If a response occurred before the color change of
466 the stimulus (* premature false alarm”) or if no response was provided within 1000 ms after color
467 change, the participant was shown a blank screen for 25002750 ms. During each session, the
468 participant performed blocks of 9 trials each. After six blocks, the participant was provided with
469 an option of performing additional blocks of trials. On average, participants performed a mean of
470 149 trials (i.e., 1.34 sessions). Two participants performed additional trials with a 1000 ms
471 foreperiod delay, which we excluded from our analyses.
472
473 Extended LATER moddl of RT
474 All model-fitting procedures described below were implemented by finding the minimum
475 of the appropriate objective function using the SciPy Optimization package in Python. We
476 modeled RT digtributions using an extended version the LATER model(Carpenter & Williams,
477 1995; Noorani & Carpenter, 2016). Thisrise-to-bound model describes RTs as measuring the
478 time it takes for alatent variable to rise linearly from a starting value (&) at stimulus
479 presentation to athreshold value (S) at response. The model accountsfor trial-to-trial RT
480 variability by assuming that the rate-of-rise of this process varies stochastically from trial-to-trial
481 per a Gaussian process. The basic form of the LATER model describes an RT distribution using
482 two free parameters, as follows:

RT ~ ;

N(u,0?)
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483 Where N represents a Gaussian distribution with mean y and standard deviation o. Note that this
484 version assumes that the threshold value S=1; an equivalent formulation assumes that =1, and
485 S isafree parameter. These parameters are estimated by fitting a Gaussian probability density
486 function to reciprocal RTs, which typically resembles a Gaussian distribution (Noorani &

487 Carpenter, 2016).

488 We extended this basic model to account for premature false alarms and RTs<250 ms,
489 which we modeled as a stochastic process that occurred with uniform probability during the 500
490 ms preceding S2. For these and other RT analyses, we assumed that this false alarm-generating
491 process a so triggered responses within 250 ms after stimulus onset (“fast responses’), because
492 these fast responses are thought to arise from processes distinct from those driving slower RTs
493 (we chose 250 ms as a conservative cutoff to ensure that our neural analyses do not conflate

494 these two processes; Luce, 1986; Noorani & Carpenter, 2016).

495 Wefirst fit this extended LATER model to behavior on the short-delay trials. We then fit
496 amodified model to behavior on long-delay trials that included two additional free parameters
497 representing delay-related changesin: 1) the starting point of the LATER unit, and 2) the

498 uniform probability of generating a premature or fast response. We evaluated the overall model
499 fits by computing an R? value comparing the (z-scored) model-predicted probability distributions
500 and an empirically estimated probability distribution based on a Gaussian-smoothed reciprocal
501 RT histograms (including all responses from 500 ms prior to stimulus onset to 1000 ms

502 following stimulus onset, with an offset such that all RTs on anticipatory false alarms were

503 positive values and RTs on short and long-delay trials were aligned relative to stimulus onset),
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504 and also the cumulative probability of observing a premature false alarm based on the uniform
505 distribution (see Fig. S1 for individual model fits for each participant).

506 Intracranial neural recordings viaintraparenchymal electrodes

507 Patients were implanted exclusively with intraparencymal depth electrodes (“ stereo

508 EEG,” Ad-tech, 1.1 diameter, 4 contacts spaced 5 mm apart), except in one patient who also had
509 subdural grid electrodes (Participant #142, Ad-tech, 4 mm contacts, spaced 10 mm apart). iEEG
510 was recorded using a Natus recording system. Based on the amplifier and the discretion of the
511 clinical team, signals were sampled at either 512 or 1024 Hz. Signals were converted to a bipolar
512 montage by taking the difference of signals between each pair of immediately adjacent contacts
513 on the same electrode. The resulting bipolar signals were treated as new virtual electrodes

514 (henceforth, “electrodes’), originating from the midpoint between each electrode pair (Burke et
515 a., 2014; Ramayyaet al., 2015, 2021) . Digital pulses synchronized the electrophysiological
516 recordings with task events. We excluded electrodes that recorded prominent 60 Hz electrical
517 line noise, defined as electrodes that showed greater spectral power in the 58-62 Hz range

518 compared to the 18-22 Hz range, or electrodes that were disconnected (standard deviation=0).
519 We excluded trials with prominent noise artifacts (e.g., if voltage data were not recorded due to
520 saturation, or if the mean or standard deviation of voltage was >10 standard deviations of all
521 trials). We did not specifically exclude el ectrodes based on epileptic activity because our

522 analyses focused on behaviorally linked neural activity, which should not be influenced

523 systematically by epileptic networks (Liu & Parvizi, 2019)[1. We analyzed data from 2,609

524 electrodes.

525 Anatomical localization of electrodes
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526 Intracranial electrodes were identified manually on each post-operative CT scan and

527 contact coordinates recorded using custom software based on the center of density of the

528 radi odense contacts on thresholded images. To obtain contact locationsin each patient's native
529 anatomic space as well as acommon reference space (MNI coordinates), we used Advanced
530 Normalization Tools (Avants et a., 2011)to register the post-operative CT to the pre-operative
531 MRI, and the MRI to the Montreal Neurological Institute (MNI) average brain. We assigned
532 each electrode to various canonical intrinsic brain networks (“7 network model”) using a

533 volumetric atlasin MNI coordinates (Yeo et al., 2011). We refer to the “ventral attention”

534 network as the “salience” network based on its resemblance to behaviorally defined networks
535 important for emotion (Seeley et al., 2007), but otherwise use terminology as reported in the
536 origina study (Yeo et a., 2011).

537 Extracting high-frequency activity (HFA)

538 We extracted 5000 ms segments of iEEG data around the following task events: 1) 2000
539 ms prior to target onset, 2) 5000 ms after target onset, 3) the stimulus color change, and 4) onset
540 of the motor response. For each segment, we extracted spectral power using five complex-valued
541 Morlet wavelets (wave number 3, to increase temporal resolution) with logarithmically spaced
542 center frequencies from 70 to 200 Hz. We squared and log-transformed the wavel et convolutions
543 to obtain power estimates at each time sample. We removed 1000 ms buffers at the beginning
544 and end of each segment to avoid contamination from edge artifacts. We averaged these power
545 estimates across the 5 wavelets, resulting in a single power value for each time sample. We

546 convolved each power-time series with a Gaussian kernel (half-width of 75 ms), resulting in a
547 continuous representation of high-frequency activity (HFA) surrounding each task event. We z-
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548 scored HFA by the mean and standard deviation of the distribution of HFA values obtained from
549 randomly selected segments of iEEG data recorded from that session clips (matched to the

550 number of total task events) to not bias values towards any particular task-related event (Burke et
551 a., 2014; Ramayyaet al., 2015, 2021) . We refer to z-scored HFA as “HFA.”

552 M easuring and preprocessing electrode-specific activation functions

553 We quantified the activity pattern recorded by each electrode by measuring the average
554 HFA around target onset during, measured separately on short-delay and long-delay trials

555 (subsequently referred to as “activation functions’). We measured target-locked activation

556 functions from 1000 ms prior to, until 4000 ms following target onset.

557 To ensure that all subsequent analyses focused on modulations of the activation functions
558 that were separate from the immediate sensory and motor responses, we preprocessed the data as
559 follows (all curvefits were performed using the SciPy Optimization package in Python

560 (“cuve fit"):

561 First, we estimated the overall (linear) trendsin HFA that occurred over the course of the
562 trial independent of changes that occurred immediately following stimulus presentation using the
563 target-locked activation function (averaged across both trial types). Specifically, wefit alineto
564 estimate how HFA changed over time using during two short segments of this activation

565 function: 1) 1000 msto -500 before target onset, and 2) 1000 ms after color change occurred on
566 long-delay trial (2500 msto 3000 ms after target onset). We subtracted these lines from each

567 target-locked activation function to obtain detrended functions.

568 Second, we estimated the changes in activity that occurred immediately after target onset
569 across both trial types. Specifically, if the detrended target-locked activation function (averaged
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570 across both trial types, from target onset to 500 ms afterwards) contained any activity peaks or
571 troughs that were outside of the electrode’ s baseline activity range, we fit a Gaussian function to
572 model these activity excursions. If both a peak and trough were detected in a given electrode’s
573 activation function, we modeled whichever one was larger. We then removed the post-target
574 Gaussian from each target-locked activation function. For long-delay trials, we also fit a

575 Gaussian to the 500-1500 msinterval after target onset and subtracted it from the activation
576 function to remove any expectation-related changes in activity that occurred in response to the
577 target not changing color.

578 Third, we modeled activity locked to the color change separately for short- and long-
579 delay trials. Specifically, wefirst fit a Gaussian to a short time segment after the color change
580 (0500 ms post-stimulus) to capture any changesin activity that occurred immediately after

581 color change. We also fit any residual peaks or troughs over alonger time segment (0—1000 ms
582 post-stimulus). We then subtracted these fit Gaussians from the activation function from each
583 trial.

584 Fourth, we modeled activity locked to the motor response separately for short- and long-
585 delay trials. Specifically, we fit separate Gaussians to the 500 ms preceding the response, to

586 capture any pre-response ramping activity or any smeared stimulus-locked activity from the
587 preceding color change, and to any residual peaks or troughs during the 500 ms post-response
588 interval, to capture further changesin activity related to either the response or feedback

589 presentation. We then subtracted these fit Gaussians from the activation function from each trial.
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590 In summary, these procedures resulted in residual trial-by-trial HFA measures that were
591 time-locked to four task events: 1) target-locked, short delay; 2) target-locked, long delay; 3)
592 response-locked, short delay; and 4) response-locked, long delay.

593 Relating residual neural activity to endogenous RT variability

594 We measured endogenous (non delay-related) RT variability for each participant as

595 follows. First, we transformed RTs during correct responses (excluding “fast response” RTs <
596 250 ms) by taking the negative reciprocal (—1/RT), which transforms right-tailed RTs into an
597 approximately Gaussian distribution (the negative sign is applied for convenience such that long
598 RTsare still associated with larger values; Noorani & Carpenter, 2016)(1. Then, we removed
599 delay-related RT variability by z-scoring reciprocal RTs within each delay condition.

600 We assessed whether endogenous RT variability was related to neural activity at a given
601 electrode on atrial-by-trial bass, after removing stimulus- and response-locked components of
602 the activation function, including ramping components (Fig. S2). We considered several trial-by-
603 trial neural features locked to trial events: 1) basdline interval prior to target onset (500 ms), 2)
604 basdine interval prior to stimulus (500 ms), 3) post-stimulus activity (250 ms), 4) post-stimulus
605 buildup rate (slope of alinefit to HFA trend 250 ms following stimulus), 5) pre-response

606 buildup rate (dope of alinefit to HFA 250 ms prior to response), and 6) pre-response activity
607 (250 ms).

608 We performed an omnibustest to assess for any relationship between neural activity and
609 stochastic RT variability using a multi-variate linear regression model. The dependent variable
610 was stochastic RT variability across dl trials, and the independent variables were each of the
611 neural features described above. We measured the predictive power of this model using the sum
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612 squared error of residuals (SSE). We also assessed specific relationships between each neural
613 feature and stochastic RT variability using Spearman correlations.

614 We assigned non-parametric z-statistics and p values for each of these tests by comparing
615 each of these “true’ statistics (SSE of multi-variate model, and Spearman’ srho for each neural
616 features) to null distributions generated for each electrode by misaligning RTs and neural data
617 (using a circular shift procedure, 1000 iterations, to account for any autocorrelation in RTs). For
618 the omnibus test, we assigned a one-tailed p value (i.e., if the true SSE was <5% of null SSE

619 values, we assigned a p value of 0.05). For Spearman correlations, we assigned a two-tailed p
620 value (i.e., if rho was >2.5% of null rho values, we assigned a p value of 0.05).

621 Hierarchical clustering of neural populations based on functional properties.

622 We used data-driven unsupervised clustering to group all electrodes based on similar

623 task-driven neural activation patterns. This approach allowed us to study task-relevant neural
624 representations that were possibly distributed across many regions. For each electrode, we

625 defined a multi-variate feature vector representing the magnitude of (linear) relationships

626 between: 1) each of the five features of the activation function listed above (i.e., baseline, post-
627 stimulus activity, post-stimulus buildup rate, pre-response buildup rate, pre-response activity)
628 and stochastic RT variability (i.e., z-scored RT computed separately for short- and long-delay
629 trials, thus removing any mean differencein RT for the two delay conditions), and 2) task-related
630 modulations relative to pre-target baseline activity (Fig. 3). We characterized this feature vector
631 as amultinomial distribution indicating the presence and direction of a significant effect (p<0.05;
632 0 indicates no relation, or no significant task-related modulation; 1 indicates relatively increased
633 activity with long RTs or task-related increases in activity; and -1 indicates relatively increased
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634 activity with short RTs or task-related decreases in activity). We used an agglomerative

635 clustering algorithm (scikit learn, Python) to group all e ectrodes using Euclidean distance asa
636 measure of pairwise similarity and a linkage function that merges clusters to minimize the

637 variance within all clusters. We identified 4 clusters that were grouped by similar functional
638 profiles using an objective function maximized the number of clusters that were observed in all
639 participants and contained at least 200 electrodes.

640 Statistical tests

641 We performed non-parametric statistical tests as described above, when appropriate.

642 Otherwise, we performed t-tests to compare continuous distributions and binomial to compare
643 categorical distributions (counts data). We used partial correlation analysis to assess across-
644 participant correlations between neural activity and anticipatory biases (delay-related differences
645 in mean RT and false alarm rate). Based on our partial correlation analysis, we specifically

646 assessed for a functional dissociation between prestimulus activity modulations in Cluster 1 and
647 Cluster 3 using alinear mixed-effects model, as follows:

Y ~ 1+ (ART X time X cluster) + (AFA X time X cluster) + (1|subj) + (1|roi)

648 WhereY is acontinuous variable that represents neural activity (z-scored HFA) averaged within
649 each subject for a specific cluster (Cluster 1 or 3), and a specific time window (-120-130ms,

650 “early” or 1180-1430ms, “late” relativeto S1, asidentified by the partial correlation analyses,
651 Figs. 6, 7). The Fixed Effects are two separate three-way interactions between ART (continuous
652 variable indicating delay-related difference in mean RT for each participant), time (categorical
653 variable indicating early or late time window), and cluster (categorical variable indicating

654 Cluster 1 or 3), and between AFA (continuous variable indicating delay-related differencein FA
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655 rate for each participant), time, and cluster. The Random Effects are subject (“subj”) and

656 intrinsic brain network (“roi”).

657 We used False Discovery Rate (FDR) correction for multiple comparisons (Benjamini &
658 Hochberg, 1995) " and considered an FDR-corrected p value <0.05 to be statistically significant.
659 We report FDR-corrected p values when indicated, otherwise reported p values are uncorrected.
660 We performed most of our analyses using Python using both custom code and publicly available
661 packages (e.g., NumPy for numerical computing, SciPy for statistics and signal processing, MNE
662 for spectral analyses, statsmodels for regression modeling, pingouin for partial correlation

663 analysis). Wefit linear mixed effects models using in R using the Ime4 and ImeTest packages
664 (Bates et al., 2015; Kuznetsova et a., 2017).

665 Data sharing and Code Accessibility

666 Behavioral and neural data used for this study will be made publicly available and have
667 been submitted to Dryad. The Python code used to process these data are available online

668 (https://github.com/ashwinramayya/code_RamaEtal_AntReact)
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