

1 **Simple Human Response Times are Governed by Dual Anticipatory Processes**
2 **with Distinct and Distributed Neural Signatures**

3 **Ashwin G. Ramayya^{1*}, Vivek Buch¹, Andrew Richardson², Timothy Lucas³,**
4 **and Joshua I. Gold⁴**

5 **Affiliations:**

6 ¹Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA

7 ²Department of Neurosurgery, Hospital of University of Pennsylvania, Philadelphia, PA
8 19104, USA

9 ³NeuroTech Institute, Columbus, OH 43210, USA

10 ⁴Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA

11 *Corresponding author. Email: aramayya@stanford.edu

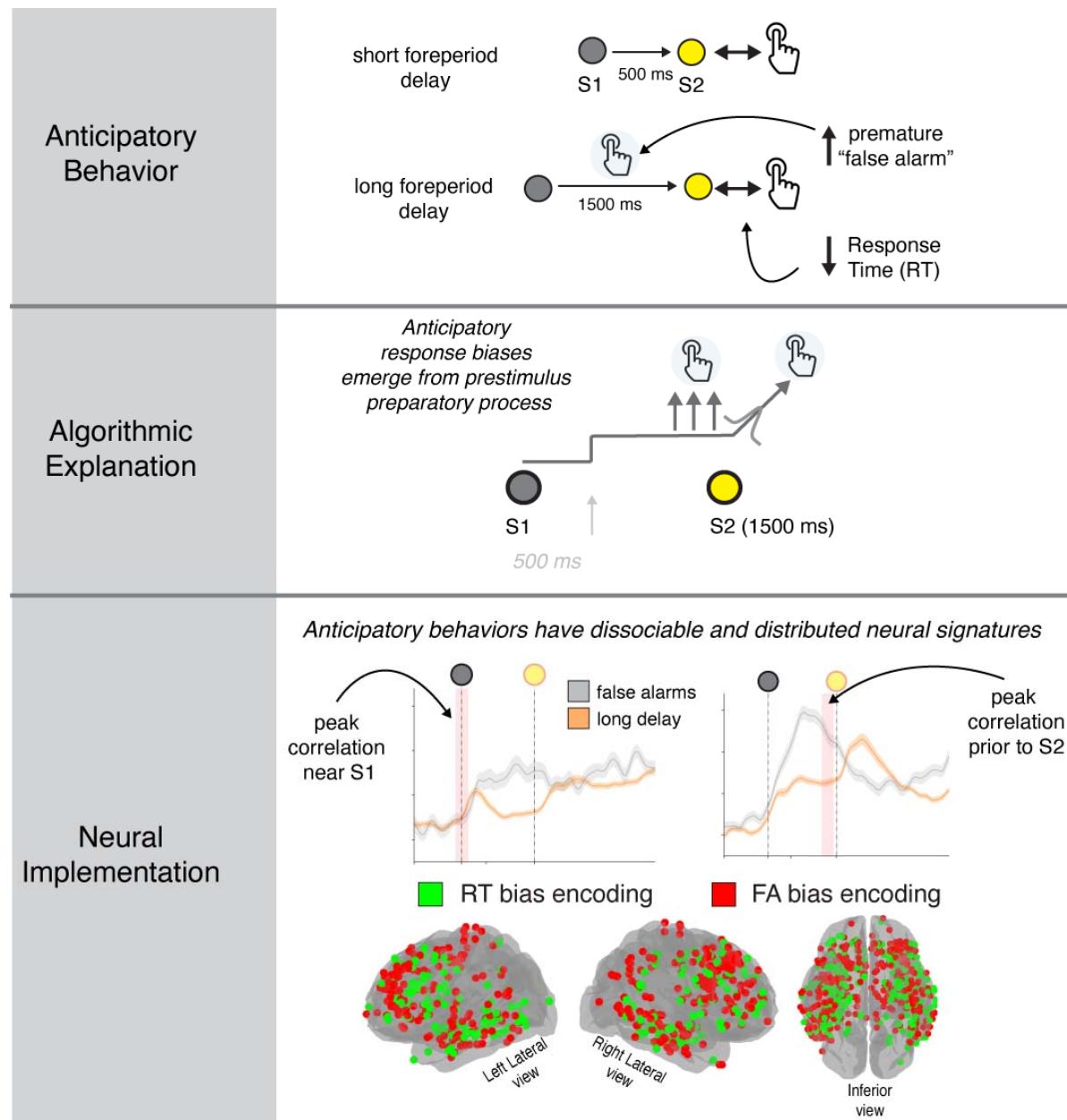
13

Abstract

14 Human behavior can be highly sensitive to anticipation, but the mechanisms underlying this
15 sensitivity are poorly understood. We obtained intracranial electrocephalography (iEEG)
16 measurements in neurosurgical patients as they performed a simple sensory-motor task with
17 variable (short or long) foreperiod delays that affected anticipation of the cue to respond.
18 Participants showed two forms of anticipatory response biases, distinguished by more premature
19 false alarms (FAs) or faster response times (RTs) on long-delay trials. These biases had distinct
20 neural signatures in prestimulus neural activity modulations that were distributed and intermixed
21 across the brain: the FA bias was most evident in preparatory motor activity immediately prior to
22 response-cue presentation, whereas the RT bias was most evident in visuospatial activity at the
23 beginning of the foreperiod. These results suggest that human anticipatory behavior emerges
24 from a combination of motor-preparatory and attention-like modulations of neural activity,
25 implemented by anatomically widespread and intermixed, but functionally identifiable, brain
26 networks.

27

Graphical Abstract



28

29

30

31

32

Introduction

33 Expectations of future events shape human behavior (Friston, 2010; A. C. Nobre & Van Ede,
34 2018). Even simple stimulus detection is not a passive, purely stimulus-driven process but
35 involves predictive inference that combines incoming sensory information with expectations
36 learned from prior experience (Helmholtz, 1866; Rao & Ballard, 1999). However, the
37 mechanisms in the human brain that allow expectations to influence impending sensory-motor
38 processing (a set of phenomena that we refer to as “anticipation”) remains unclear.

39 Anticipatory influences on human behavior have been quantified extensively using simple
40 sensory-motor detection tasks (Cattell, 1886; Luce, 1986). For example, the variable foreperiod-
41 delay paradigm has been used to operationalize anticipatory behavior in terms of changes in
42 response times (RTs) and premature responses (“false alarms”, or FAs) as a function of changes
43 in the length and predictability of the foreperiod delay (Luce, 1986; Niemi & Näätänen, 1981;
44 Ollman & Billington, 1972). These effects are thought to reflect modulations of preparatory
45 motor processes during the foreperiod delay (Los et al., 2001, 2014; A. C. Nobre & Van Ede,
46 2018; Salet et al., 2022). These preparatory motor processes are often modeled via “rise-to-
47 bound” dynamics that account for endogenous RT variability as arising from a stochastically
48 varying processes that triggers a motor response (Brown & Heathcote, 2005; Carpenter &
49 Williams, 1995; Noorani & Carpenter, 2016; Ratcliff, 1978; Ratcliff et al., 2016; Stone, 1960;
50 Usher & McClelland, 2001). In these models, anticipatory response biases are often assumed to
51 arise from prestimulus elevations in the baseline, or “starting point,” of the stochastic rising
52 process, resulting in faster RTs (Carpenter & Williams, 1995; Noorani & Carpenter, 2016). A
53 compelling feature of these models is that, in addition to providing parsimonious accounts of

54 behavior, they have algorithmic components that are thought to map directly onto the activity
55 patterns of localized sets of neurons that contribute to motor preparation and execution (Hanes &
56 Schall, 1996a).

57 However, exactly how these models relate to sensory-motor processing in the human brain is
58 not well understood, reflecting a lack of brain measurements with appropriate combinations of
59 high spatiotemporal resolution and broad anatomical scale. Scalp electroencephalography (EEG)
60 studies have provided support for anticipatory processing during the foreperiod delay (Miniusi
61 et al., 1999; Pfeuty et al., 2005; Rohenkohl & Nobre, 2011; Walter et al., 1964), but it is difficult
62 to interpret these signals in terms of specific neural circuits because they aggregate activity
63 across large brain regions. Functional MRI studies have shown regionally distributed
64 hemodynamic correlates of anticipatory processing, but these findings have been inconsistent
65 and are difficult to relate to RT variability because of limited temporal resolution (J. T. Coull &
66 Nobre, 1998; Cui et al., 2009; Vallesi, 2010).

67 To overcome these limitations, we obtained high-resolution intracranial
68 electroencephalography (iEEG recordings) from 23 patients with medically refractory epilepsy
69 with indwelling intraparenchymal electrodes in widespread brain regions as they performed a
70 stimulus-detection task with a variable foreperiod delay (Fig. 1A, Table S1). We focused on
71 high-frequency iEEG activity, which reflects local spiking activity (70–200 Hz power; Dubey &
72 Ray, 2019; Leonard et al., n.d.; Manning et al., 2009) sampled broadly across many parts of
73 cortex and certain subcortical structures (Parvizi & Kastner, 2018). We tested the hypothesis that
74 anticipatory processes modulate prestimulus activity of preparatory motor neural populations in
75 the human brain that encode endogenous RT variability. We focused on a broad set anatomical

76 regions because neural correlates of RT variability have been identified in several motor-
77 preparatory brain regions, including activity patterns that map directly (Hanes & Schall, 1996b;
78 O'Connell et al., 2012a) or indirectly (Hauser et al., 2018; Heitz & Schall, 2012;
79 Paraskevopoulou et al., 2021) onto rise-to-bound model dynamics. As detailed below, our results
80 identify two behaviorally and neurally distinct processes that govern anticipatory effects on
81 sensory-motor behavior and highlight the complex but identifiable mappings between algorithm-
82 and implementation-level explanations of human behavior.

83

84

Results

85 Twenty-three participants performed a variant of a commonly used “foreperiod-delay
86 task” that has been used extensively to investigate anticipatory influences on sensory-motor
87 behaviors (Klemmer, 1957; Luce, 1986; Niemi & Näätänen, 1981). Briefly, each trial began with
88 the presentation of a visual target (“warning signal,” S1) on a computer screen that changed color
89 after a randomly selected foreperiod delay of 500 (“short”) or 1500 (“long”) ms. Participants
90 were instructed to respond via button press as soon as they noticed the color change (“stimulus,”
91 S2). RT was measured as the elapsed time between stimulus and response. The different
92 foreperiod delays provided categorically different levels of temporal expectation of stimulus
93 arrival at the time of stimulus presentation (Luce, 1986; A. C. Nobre & Van Ede, 2018; Ollman
94 & Billington, 1972; Salet et al., 2022). On short-delay trials, the stimulus was presented when
95 there was uncertainty about whether the trial was a short- or long-delay trial, resulting in
96 relatively low temporal expectation of stimulus arrival. On long-delay trials, the stimulus was
97 presented when the trial could be identified unequivocally as a long-delay trial, resulting in
98 relatively high temporal expectation of stimulus arrival (Fig. 1).

99

Dual behavioral signatures of anticipatory biases

100 The participants’ RTs included endogenous variability for both delay conditions (median
101 per-participant RT inter-quartile range=66.67 ms for short-delay and 66.75 for long-delay trials;
102 examples are shown in Fig. 1A, Table S2), with two primary effects of anticipation that were
103 consistent with previous findings (Luce, 1986; Nickerson, 1965; Noorani & Carpenter, 2016;
104 Ollman & Billington, 1972). First, participants had faster RTs (paired *t*-test, *t* (22)=5.57,
105 *p*<0.001) on long- versus short-delay trials (“RT bias”)□, albeit with substantial individual
106 variability (mean RT range across participants=354–595 ms and 323–529 ms on short- and long-

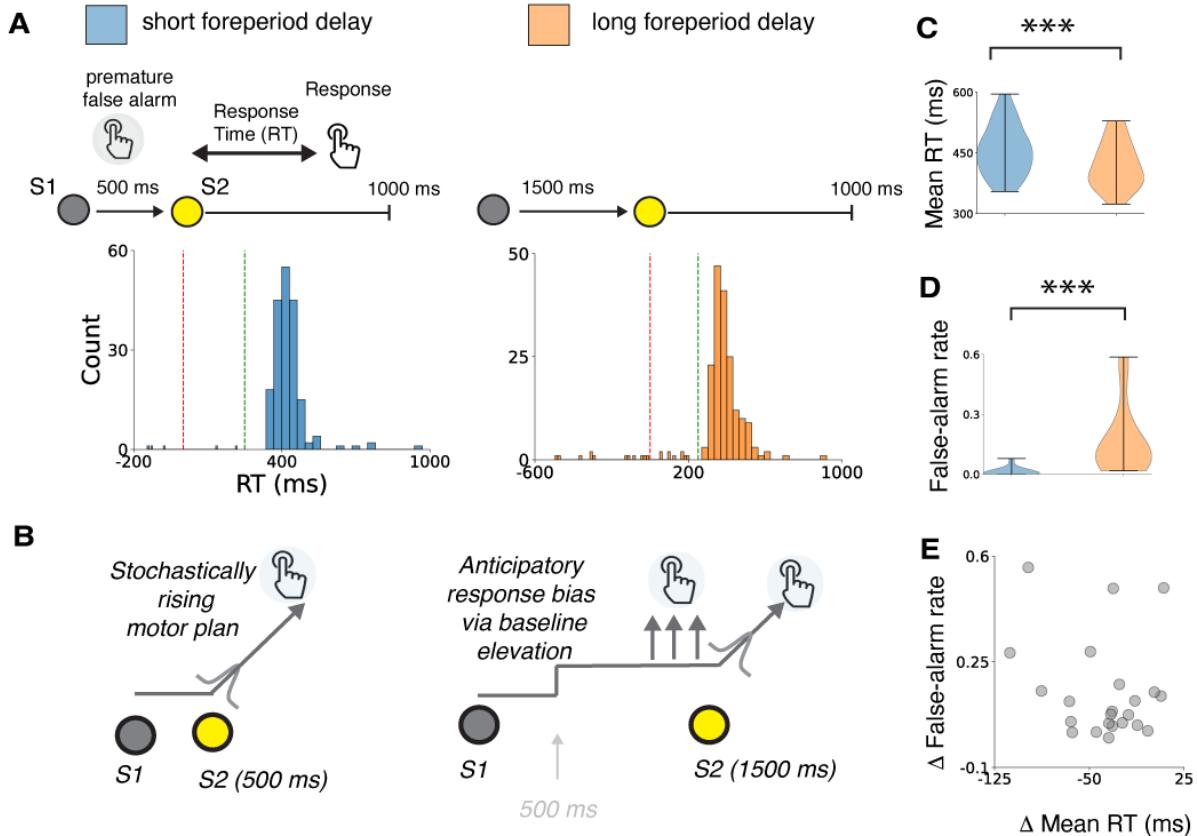
107 delay trials, respectively, Fig. 1C). Second, participants had higher false-alarm rates on long-
108 versus short-delay trials (“FA bias”; paired *t*-test, *t* (22)=4.43, *p*<0.001; range 1.7–58%, versus
109 0–7.8%, respectively, Fig. 1D). We did not observe a significant correlation with delay-related
110 differences in RT and false-alarm rate (*p*>0.3, Fig. 1E) but did observe a correlation between RT
111 and false-alarm rate when considering only long-delay trials (*r*=0.47, *p*=0.02).

112 We modeled these anticipatory effects as prestimulus modulations of an abstracted “rise-
113 to-bound” motor-preparatory process (Fig. 1B; Noorani & Carpenter, 2016a). Specifically, we
114 modeled each RT on short-delay trials as the time taken for a latent variable to rise from a fixed
115 starting point to a fixed bound value to trigger a motor response (“rising process”). Trial-to-trial
116 variability in the rate of rise accounts for endogenous RT variability and the characteristic
117 (delay-independent) right-tailed RT distribution. For correct trials with RT>250 ms, we assumed
118 that this rising process was triggered by the onset of the stimulus S2. In contrast, for trials with
119 false alarms, we assumed that this rising process was triggered prior to the onset of S2, according
120 to a stochastic process that occurred with uniform probability during the 500 ms preceding S2.

121 We modeled each RT on long-delay trials as emerging from a rising process that was modulated
122 by increased temporal anticipation. This anticipation took the form of an elevation of the
123 baseline starting point of the rising process, bringing the process closer to the threshold value
124 required to trigger a response. This baseline elevation increased the probability of triggering
125 responses prior to S2 (FA bias) and reduced the time taken to generate a correct response after
126 S2 (RT bias). We used separate parameters for anticipatory baseline elevation to trigger
127 premature responses versus speed up correct RTs, to account for largely independent variability
128 in RT and FA biases across participants.

129 This anticipatory starting-point model provided a good fit to participants RTs and
130 anticipatory response biases (R^2 mean=0.85, range=0.62–0.97; Fig. S1 for individual model fits).
131 For comparison, we tested two alternative models with the same number of free parameters but
132 other mechanisms to explain anticipatory RT biases. One alternative model replaced modulations
133 of the starting point with modulations of the variance of the rate of rise. This model produced
134 poorer fits (R^2 mean=0.77, range=0.37–0.97). The other alternative model assumed that FA
135 biases were based on trial-by-trial modulations of the starting point but that RT biases were
136 based on trial-by-trial modulations of the mean rate of rise. This model produced fits that were
137 similar to those produced by the starting-point-only model (R^2 mean=0.86, range=0.62–0.97),
138 which highlights the difficulty in modeling specific algorithmic substrates of anticipatory
139 behavior (Luce, 1986; Salet et al., 2022). Below we focus on the more parsimonious starting-
140 point-only model to identify relevant neural mechanisms.

141



142
143 **Figure 1. Two forms of anticipatory biases.** (A) Task summary and RT distributions from an
144 example participant. Red line indicates stimulus onset, green vertical line indicates 250 ms after
145 stimulus onset (the fast-response threshold). Blue and orange histograms indicate timing of
146 responses on short- and long-delay trials, respectively. Premature false alarms are responses that
147 fall to the left of the red line. (B) Model schematic illustrating abstracted preparatory motor
148 processes contributing to sensory-motor behavior. Anticipatory elevation of baseline activity can
149 account for both a decrease in RT and an increase in false-alarm rate. (C,D) Violin plots showing
150 distributions of mean RTs (C) and premature false-alarm rates (D) on short- (blue) and long-
151 (orange) delay trials for all 23 participants. (E) Scatterplot showing covariance of delay-related
152 changes in mean RT and premature false-alarm rate across participants. Each circle corresponds
153 to data from a single participant.

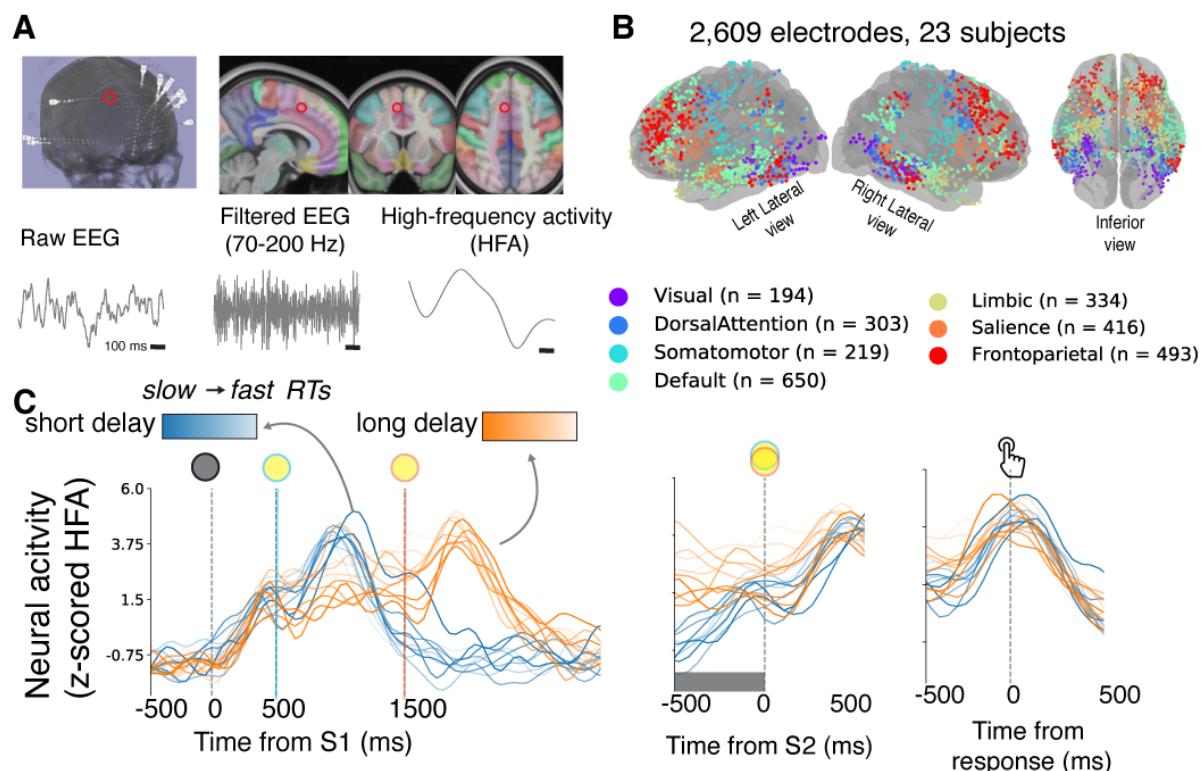
154

155 Task- and RT-modulated neural responses were distributed widely in the brain

156 We obtained neural measurements from intraparenchymal depth electrodes implanted in
157 participants with medically refractory epilepsy for clinical purposes (Fig. 2A). We focused on

158 high-frequency activity (HFA, 70–200 Hz power) recorded from bipolar pairs of electrodes,
159 which provides a reliable surrogate of local (within ~3 mm) neural population spiking activity
160 (Dubey & Ray, 2019; Leonard et al., 2023; Manning et al., 2009; Ray & Maunsell, 2011). In
161 total, we studied recordings from 2,609 bipolar pairs of intraparenchymal depth electrodes
162 distributed widely throughout the brain in 23 patients (mean=113.4 electrodes/participant). We
163 localized these recordings to various intrinsic brain networks (Figs. 2B). For each electrode, we
164 measured task-related activity of the nearby neural population time-locked to target onset and
165 motor response in ~50 ms sliding time intervals, z-scored to an aggregate baseline from the
166 entire recording session.

167



168

169 **Figure 2. Intracranial recordings provide neural measurements with high resolution and**
170 **broad anatomical coverage.** (A) Extracting high-frequency activity (HFA, 70–200 Hz power)
171 from intraparenchymal depth electrodes as an estimate of local spiking (red circle indicates
172 example prefrontal electrode described in C). (B) Brain plot showing electrode locations from
173 all participants in standard MNI coordinates. Colors indicate intrinsic brain networks based on a
174 normative atlas (Yeo et al., 2011). (C) Task-driven responses of local neural activity (average z-
175 scored HFA) measured at the electrode indicated in Fig. 2A, plotted separately for short- (blue)
176 and long- (orange) delay trials and binned by stochastic RT percentile (10 bins; lighter shading
177 indicates faster RTs). Left panel shows target-locked activity. Vertical lines indicate time of target
178 onset (grey), short-delay color change (blue), and long-delay color change (orange). Middle and
179 right panels show stimulus- and response-locked activity, respectively. Shaded gray box indicates
180 a time interval during which we observed a correlation between neural activity and RT
181 variability.

182

183 We identified task-related modulations and/or correlations with endogenous (delay-
184 independent) RT variability at various time intervals throughout the trial, after accounting for
185 transient sensory- and motor-driven responses, from 2,142 out of 2,609 electrodes (Fig. S2). To
186 identify task-related changes in activity, we compared neural activity following the warning
187 signal (500 ms following S1), stimulus onset (500 ms following S2), and response onset (1000
188 ms following the button press), relative to a baseline interval (500 ms prior to S1; paired *t*-tests,
189 $p < 0.05$). To relate neural activity at each electrode with endogenous, delay-independent RT
190 variability, we used a multivariate model that included neural activity in various task-related time
191 intervals (significance via non-parametric shuffle procedure $p < 0.05$; Fig. S2).

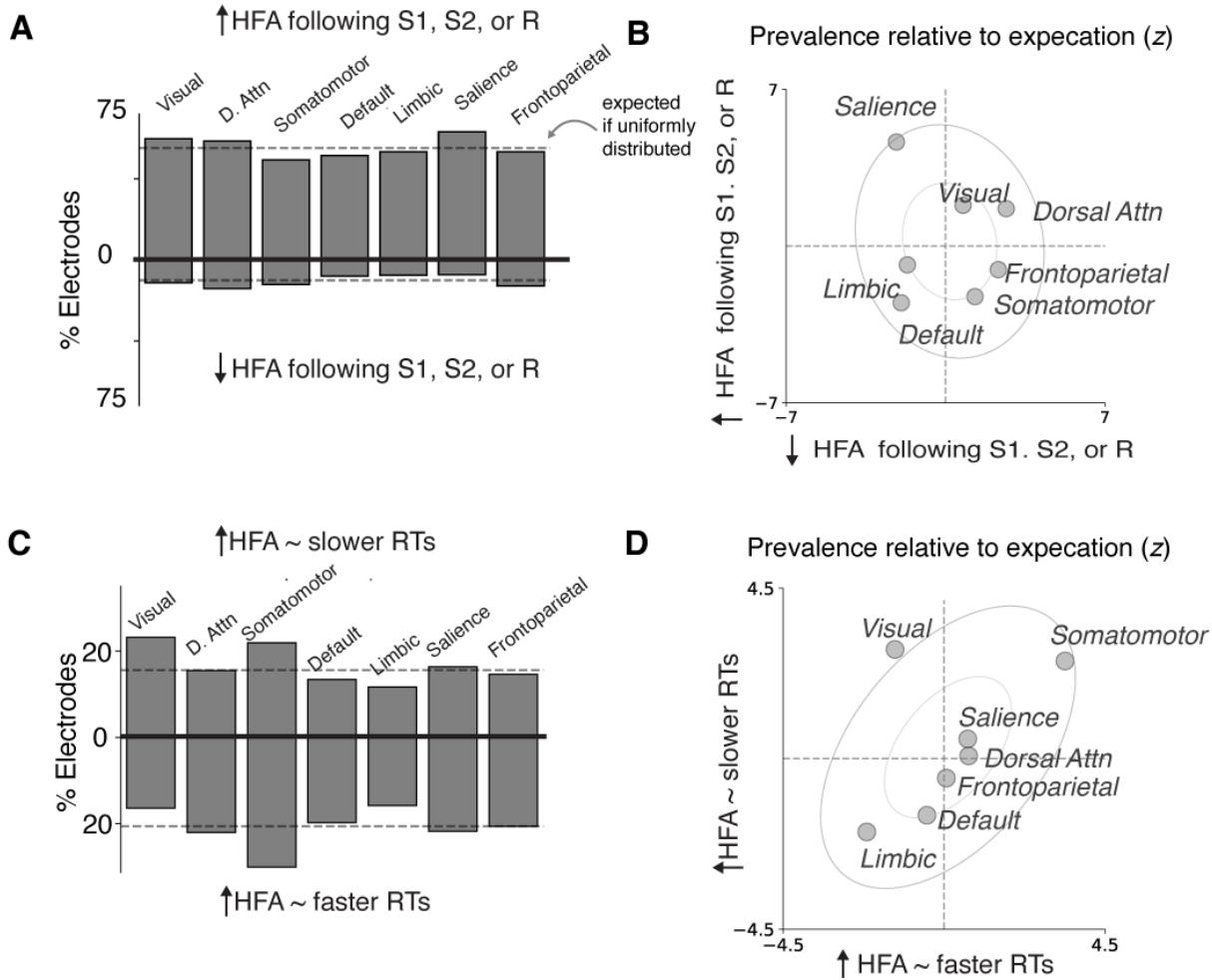
192 An example electrode showing both task- and RT-related activity modulations is shown
193 in Fig. 2C (the electrode location is indicated in Fig. 2A). This local neural population showed
194 rising activity following the warning signal (S1) that peaked near the time of response and
195 descended back to baseline. The prestimulus baseline activity was relatively higher during faster
196 RT and long-delay trials, followed by a largely RT-independent rate of rise before the motor

197 response. In other words, this electrode showed modulations that were roughly consistent with
198 “rise-to-bound” dynamics found in our and similar models.

199 However, this electrode was hardly unique in showing task and RT modulations, which
200 we found throughout the brain (Fig. 3). Task modulations across all task epochs involved activity
201 increases, rather than decreases, in response to task-relevant sensory and/or motor events (any
202 interval; two-sided binomial test $p<0.001$, 95% CI: 83–86%; expected 50%), and rarely included
203 both task-driven increases and decreases in different task epochs measured at the same electrode
204 ($n=65/2,609$, 3%). Task-related increases were generally uniformly distributed across the brain,
205 but neural populations in the salience network showed more frequent task-driven increases than
206 expected (two-tailed binomial test, FDR-corrected $p<0.001$, 95% CI: 74–85%; Fig 3).

207 RT modulations were also distributed widely, but with different spatial patterns. We
208 observed a regional intermixing of effects that included both positive correlations, such that
209 increased activity corresponded to slower RTs, and negative correlations, such that decreased
210 activity correlated with faster RTs. Neural activity showed more frequent correlations with RT
211 than chance across the brain ($n=638/2609$, one-tailed binomial test $p<0.001$, 95% CI>23%,
212 where chance=5%) and within each intrinsic brain network (corrected $ps<0.001$, 95% CIs >15–
213 30%), even when separately considering only positive or negative correlations (corrected $p<0.03$,
214 except limbic populations rarely showed positive correlations, corrected $p>0.5$) We rarely
215 observed neural populations at a single electrode that showed both positive and negative RT
216 correlations during different task epochs ($n=60/2,609$, 2%). These RT modulations were not
217 distributed uniformly across the brain: visual neural populations showed positive RT correlations
218 more frequently than expected (two-tailed binomial test, corrected $p=0.04$; 17–30%), whereas

219 somatomotor neural populations showed negative RT correlations more frequently than expected
220 (corrected $p=0.02$; 24–37%).



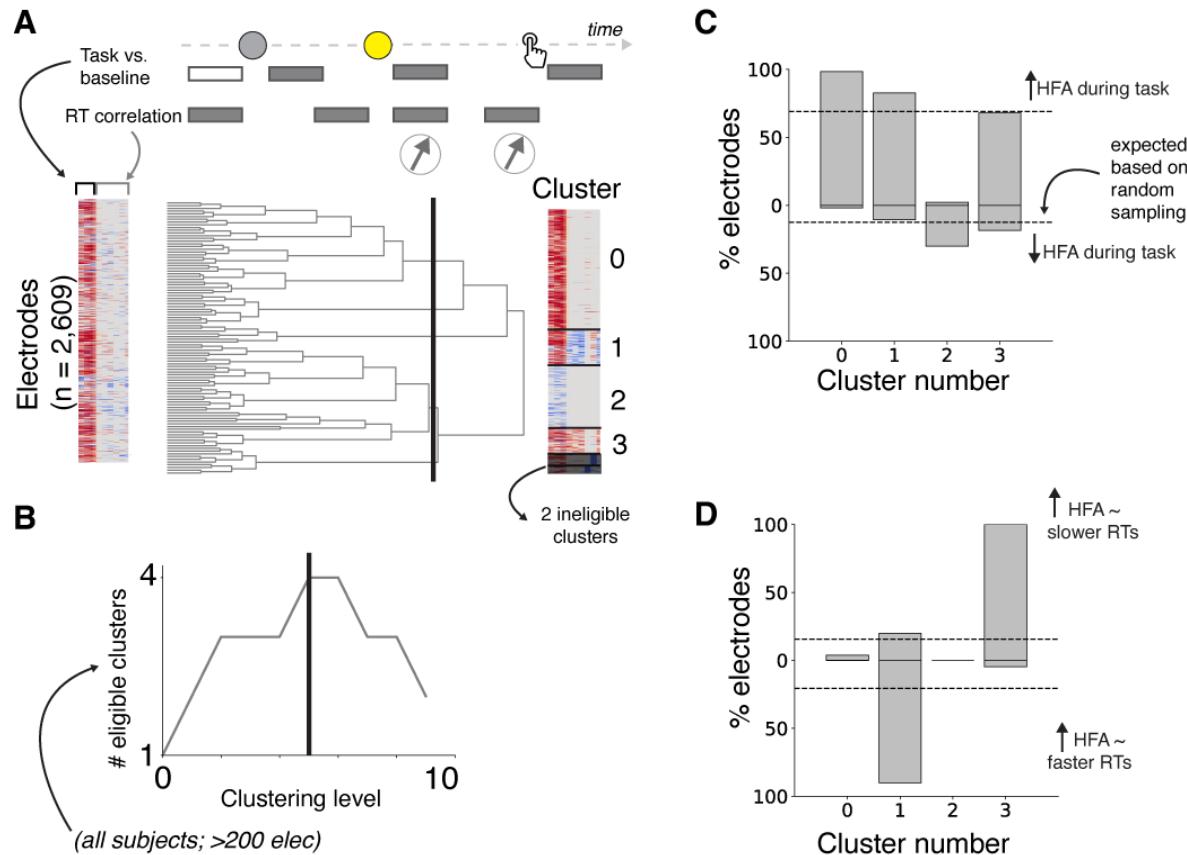
221

222 **Figure 3. Task-related neural activity changes were regionally widespread and intermixed**
223 (A) Percentages of electrodes in each region with activity that showed task-related activity
224 changes following S1, S2, or R. Positive values indicate task-related increases in activity;
225 negative values indicate task-related decreases in activity. (B) Scatterplot showing the relative
226 frequency of electrodes with positive (ordinate) and negative (abscissa) changes in activity to
227 task-relevant events in each intrinsic brain network relative to their overall (expected) frequency
228 across the brain (z-scores). Positive values indicate increased relative frequency; negative values
229 indicate decreased relative frequency. Inner and outer ellipses indicate 1 σ and 2 σ confidence
230 intervals derived from the joint distribution, respectively. (C,D) Same as A,B, but for positive
231 and negative correlations with endogenous, trial-to-trial RT variability during any time interval.
232 Negative values in C indicate increased activity with faster RTs; positive values indicate
233 increased activity with slower RTs.

234
235
236

Data-driven clustering of neural activity patterns

237 To better understand these broadly distributed, diverse activity patterns, we used a data-
238 driven hierarchical clustering algorithm to group electrodes that showed similarities in task-
239 related activity modulations and endogenous, delay-independent RT correlations. We selected a
240 clustering level (4) that maximized the number of clusters that included data from all of the
241 participants (we also excluded clusters with <200 electrodes) and exhibited distinct patterns of
242 modulations by task events and RT. Cluster 0 showed task-related increases without RT
243 modulation. Cluster 1 showed task-related increases with negative RT correlations. Cluster 2
244 showed task-related decreases without RT modulation. Cluster 3 showed task-related increases
245 with positive RT correlations. These clusters were distributed widely across the brain (see Fig.
246 S3).



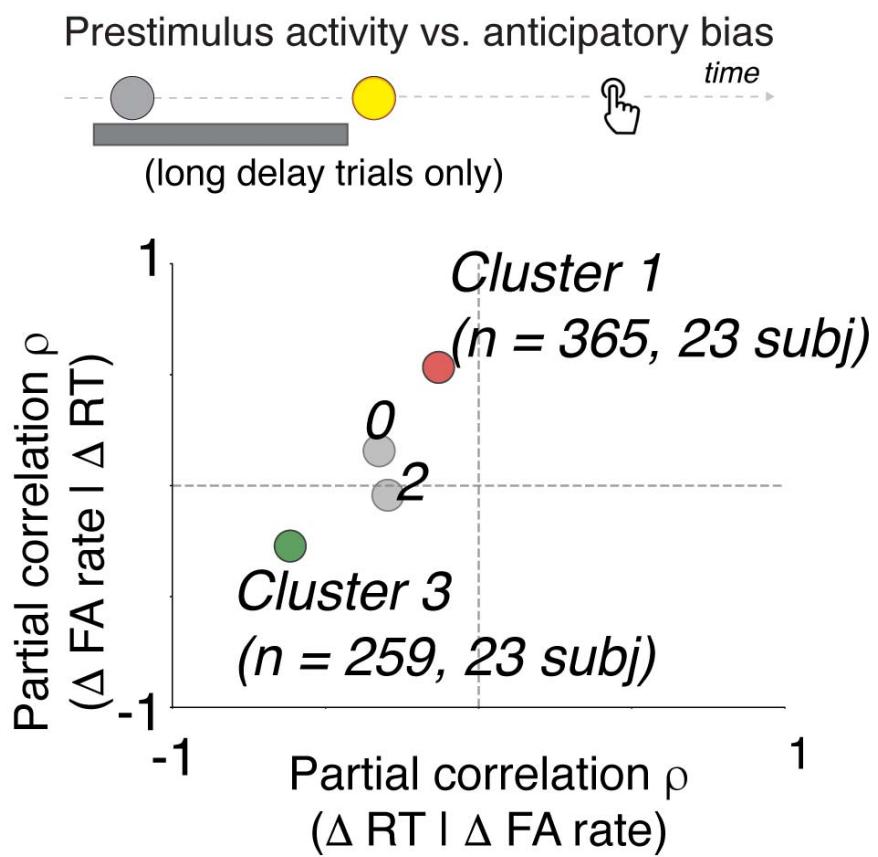
247

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

Figure 4. Data-driven clustering of task-related neural activity. Illustration of hierarchical clustering of electrodes based on similar task-related activity modulations. Top row: time intervals used to measure task modulation and RT correlation for each electrode as detailed in main text. Bottom row: left, colormap representing a feature matrix across all electrodes, where each row represents an electrode, and each column represents a feature (task or RT modulation); middle: dendrogram representing similarities between electrodes; right: feature matrix reorganized based on similar task and RT modulations at the clustering level indicated by the black line in middle panel, which we used in these analyses. **(B)** We identified a level of clustering (black vertical line in dendrogram) based on an objective function that maximized the number of clusters that were well sampled in our dataset (i.e., each eligible cluster was observed in all participants and consisted of at least 200 electrodes). **(C)** Percentage of electrodes that showed task-related increases and decreases (positive and negative, respectively as in Fig. 3A). **(D)** Same C but for RT correlations. Negative values indicate increased activity with faster RTs; positive values indicate increased activity with slower RTs (as in Fig. 3C).

Dual neural signatures of anticipatory biases in prestimulus activity

264 Prestimulus activity in two distinct neural clusters encoded participant-to-participant
265 variability in the two main anticipatory biases we identified from behavior: RT bias in Cluster 3,
266 and FA bias in Cluster 1 (Fig. 5). Specifically, we measured prestimulus activity in each cluster
267 on long-delay trials (ranging from 250 ms prior to S1 to 50 ms prior to S2, excluding trials with
268 FA and RTs < 250 ms, averaged within participants) and related these participant-wise measures
269 to anticipatory RT and FA biases (as shown in Fig 1E). We found that increased prestimulus
270 activity in Cluster 1 correlated with increased FA bias ($\rho=0.53$, corrected $p=0.04$; partial
271 correlation controlling for RT bias). In contrast, increased prestimulus activity in Cluster 3
272 correlated with RT bias ($\rho=0.62$, corrected $p=0.002$). We further detail the nature of prestimulus
273 modulations in these two different clusters below.



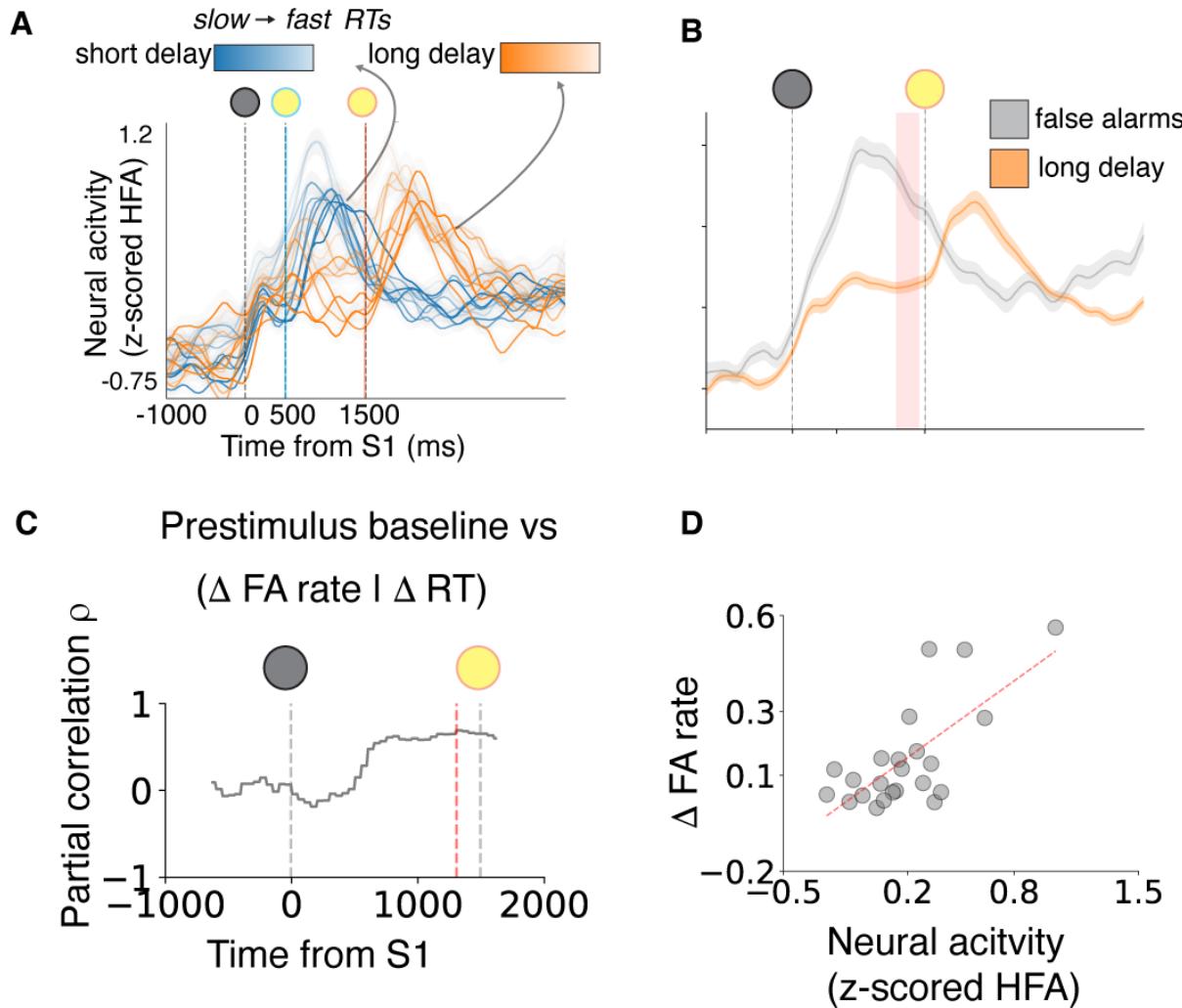
274

Figure 5. Dissociable prestimulus neural correlates of anticipatory biases. The top schematic shows the time interval used to compute prestimulus activity in each cluster. The scatterplot shows partial correlation coefficients for RT bias (controlling for FA bias) on the abscissa and FA bias (controlling for RT bias) on the ordinate. The green circle indicates a significant relationship with RT bias, and the red circle indicates a significant relationship with FA bias (corrected $p < 0.05$).

Anticipatory FA biases were encoded by prestimulus modulations in Cluster 1 neural activity patterns, which resembled a preparatory motor process (Fig. 6). These activity patterns, on average, tended to rise after the warning signal, stay elevated during the foreperiod delay, and peak at the time of the motor response on both correct and false-alarm trials (Fig. 6A,B). There also were reliable modulations by trial-to-trial RT variability, such that increased activity corresponded to faster RTs (Fig. 6A). A time-resolved partial-correlation analysis relating prestimulus activity in Cluster 1 with FA bias (Fig. 6C; 250 ms sliding advanced 10 ms steps, controlling for RT bias) showed a peak correlation strength immediately preceding S2, when expectation of stimulus arrival should be relatively high (1180—1430 ms following S1, highlighted in Fig. 6B; a scatterplot of this correlation is shown in Fig. 6D).

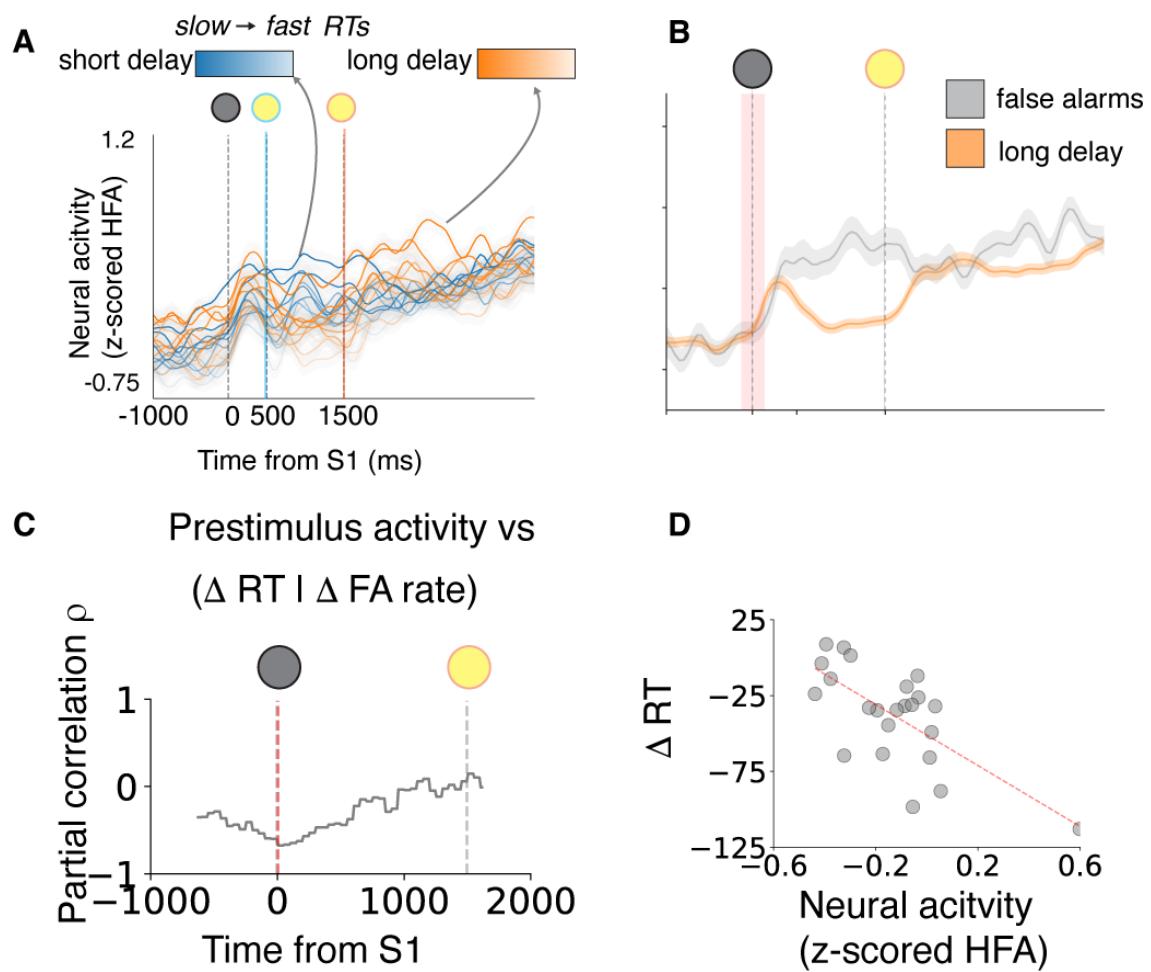
Anticipatory RT biases were encoded by prestimulus modulations in Cluster 3 neural activity patterns, which were activated more strongly by sensory than motor events (Fig. 7). These activity patterns, on average, tended to show a transient rise in activity after the onset of the warning signal and did not show rising activity preceding response, including on FA trials (Fig 7B). They showed positive correlations with endogenous RT variability such that increased activity (including prior to S1) corresponded to slower RTs (Fig. 7A). A time-resolved partial correlation analysis relating prestimulus activity in Cluster 3 with RT bias (7C; 250 ms sliding advanced 10 ms steps, controlling for FA bias) showed a peak correlation strength immediately

299 near the time of S1 onset, when participant's presumably saccade to target (120 ms prior to and
300 30 ms following S1, highlighted in Fig 7B; a scatterplot of this correlation is shown in Fig. 7D).



301

302 **Figure 6. Neural correlates of anticipatory FA bias.** (A) Average task-related neural responses
303 for Cluster 1 electrodes (same format as Fig. 2C, left panel). (B) Average neural activity locked
304 to target onset (S1) for long-delay trials associated with correct responses (RT>250; orange) and
305 false alarms (gray). (C) Time resolved partial correlation coefficient relating neural activity with
306 FA bias across participants, controlling for RT bias (vertical red line indicates peak correlation,
307 corresponding to highlighted time interval in B). (D) Scatterplot showing across-participant
308 correlation between FA bias and prestimulus neural activity (averaged within the 1180-1430ms
309 window relative to S1, as highlighted in B.).



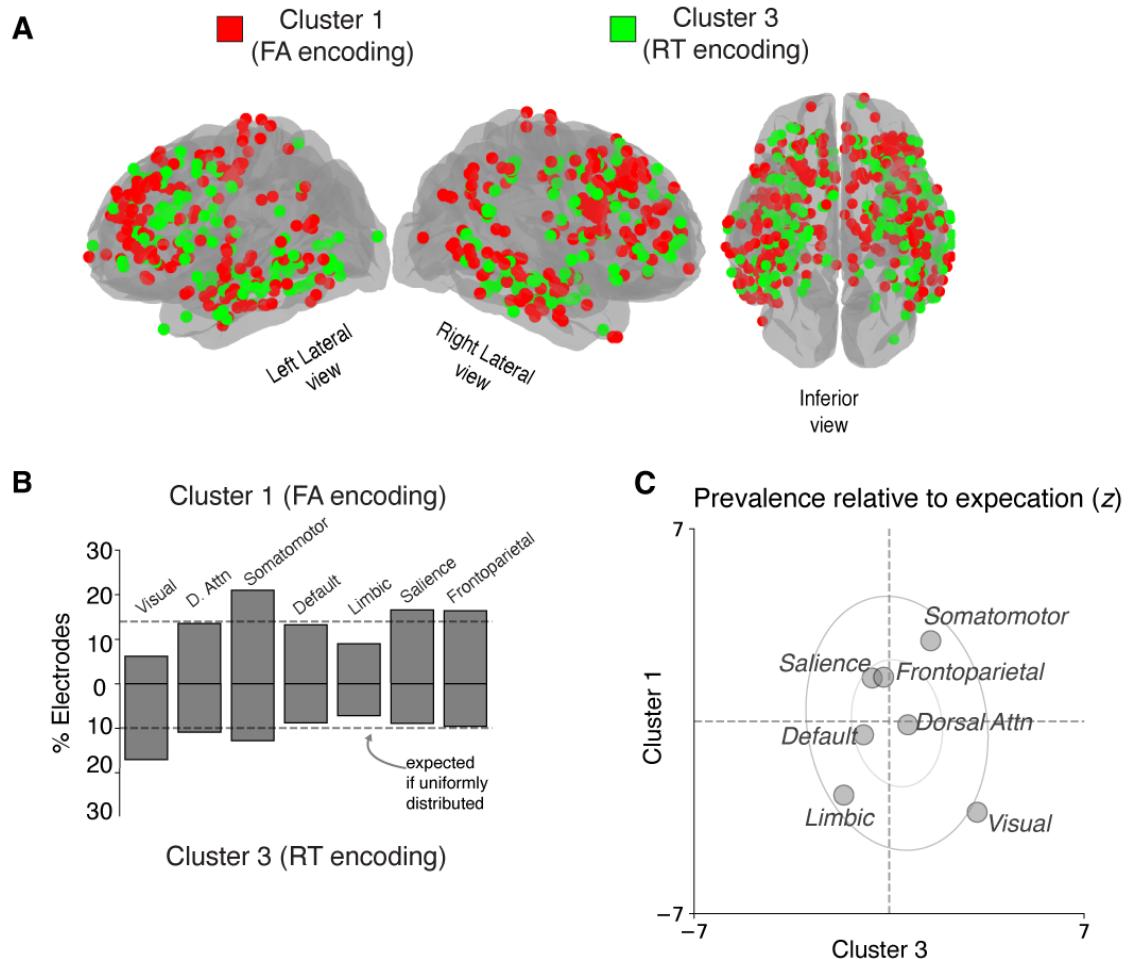
310

311 **Figure 7. Neural correlates of anticipatory RT bias.** (A-B) Same as Fig. 6, but for Cluster 3
312 electrodes (C) Time resolved partial correlation coefficient relating neural activity with RT bias
313 across participants, controlling for FA bias (vertical red line indicates peak correlation). (D)
314 Scatterplot showing across-participant correlation between RT bias and prestimulus neural
315 activity (averaged within the -120-230ms window relative to S1, as highlighted in B).

316 These results suggest a functional heterogeneity in prestimulus activity related to
317 anticipatory processing, such that Cluster 1 activity prior to S2 encodes FA bias, whereas Cluster
318 3 activity around the time of S1 encodes RT bias. We tested for such a functional dissociation
319 using a Linear Mixed Model (LMM) analysis, in which we related prestimulus activity (z-scored
320 HFA) to RT bias (interacting with “cluster,” and “time window,” defined based on peak

321 correlations from the previous analysis) and FA bias (also interacting with “cluster” and “time
322 window”), with “participant” and “intrinsic brain network” as random effects (varying intercepts;
323 see Materials and Methods). We observed a significant three-way interaction between RT bias,
324 cluster, and time window ($F = 3.93, p= 0.005$), and between FA bias, cluster, and time window
325 ($F=19.69, p<0.001$), suggesting a functional heterogeneity in prestimulus activity modulations
326 during anticipatory processing.

327 Cluster 1 and 3 electrodes were widely distributed and regionally intermixed across the
328 brain, but each showed non-uniform distributions (Fig. 8A–C). Cluster 1 electrodes were found
329 more frequently in somatomotor networks (two-tailed binomial test, corrected $p=0.02$; found 15–
330 27%, expected 14%), and less frequently in visual and limbic networks (corrected $ps<0.03$; 03–
331 13%), than expected. Cluster 3 electrodes were found more frequently in visual networks (two-
332 tailed binomial test, corrected $p=0.02$; found 12–23%, expected 10%) than expected. The visual
333 network was an outlier in showing an increased probability of containing Cluster 3 electrodes,
334 and a decreased probability of containing Cluster 1 electrodes (Fig. 8C).



335

336 **Figure 8. Anatomical distribution of dual distributed networks encoding anticipatory**
337 **biases. (A)** Brain plot showing anatomical distribution of Cluster 1 (red) and Cluster 3 (green),
338 which encoded FA and RT biases, respectively. **(B)** Percentage of electrodes in each intrinsic
339 brain network assigned to Cluster 1 (top bars), and Cluster 3 (bottom bars). Horizontal dashed
340 line is expected percentage assuming a uniform anatomical distribution. **(C)** Scatterplot showing
341 the relative frequency of Cluster 1 electrodes (ordinate) and Cluster 3 electrodes (abscissa) in
342 each intrinsic brain network relative to their overall (expected) frequency across the brain (z -
343 scores; same format as Fig. 3B)

344

345

346

347

348

349

350

351

352

Discussion

353

We identified neural correlates in the human brain of two behaviorally distinguishable effects of anticipation on a simple sensory-motor behavior. The first effect, which we refer to as a false-alarm (FA) bias, was characterized behaviorally by an increase in premature responses under conditions of higher (more certain) anticipation – akin to pressing the car brakes sooner than necessary when you think the car in front of you is about to stop. As has been reported previously, these increased false alarms tended to be accompanied by faster RTs, thus reflecting a form of speed-accuracy trade-off (Green & Swets, 1966; Luce, 1986). We found that these FA biases were encoded by prestimulus neural activity near the end of the foreperiod delay, when the probability of the stimulus was relatively certain, in widespread neural populations that tended to ramp up just preceding the motor response and showed increased activity when RTs were faster, and were prevalent in somatomotor networks, consistent with a role in response generation (Hanes & Schall, 1996a).

365

The second effect, which we refer to as an RT bias, was characterized behaviorally by faster RTs under conditions of higher (more certain) anticipation – akin to pressing the car breaks faster than usual when you expect, and then see, the brake lights on the car in front of you go on. This bias is consistent with well-established relationships between stimulus uncertainty and mean RT (Klemmer, 1957; Niemi & Näätänen, 1981), including for very similar task designs using randomly interleaved foreperiod delays. Under these conditions, responses are thought to be suppressed while waiting the estimated duration of the short delay (when it is unknown whether it is a short- or long-delay trial) and then facilitated around the estimated end of the long delay (Luce, 1986; A. Nobre et al., 2007; A. C. Nobre & Van Ede, 2018; Ollman & Billington, 1972; Salet et al., 2022). We found that these RT biases were encoded by prestimulus

375 neural activity at the beginning of the foreperiod delay interval, which is a reference moment for
376 implicit time estimation, in widespread neural that tended to have transient visual responses and
377 build gradually throughout each trial, and showed increased activity when RTs were slower,
378 consistent with a role in visuospatial attention and response inhibition (Houghton & Tipper,
379 1984; Neill et al., 1995; van Moorselaar et al., 2020).

380 Previous work also identified many instances of anticipatory modulations of neural
381 activity (e.g., Nobre & Van Ede, 2018). Our work provides new insights into those findings,
382 leveraging the unique combination of high spatio-temporal resolution and broad anatomical
383 sampling of iEEG measurements (Parvizi & Kastner, 2018) to show that such anticipatory-driven
384 modulations of neural activity: 1) are not limited to particular, spatially restricted sensory and/or
385 motor neural populations, as might be inferred from animal electrophysiology studies that
386 typically target spatially restricted recording sites (e.g., Ghose & Maunsell, 2002; Janssen &
387 Shadlen, 2005)□; 2) are more heterogeneous than might be inferred from scalp EEG studies that
388 report only signals that reflect neural activity patterns that have been aggregated across large
389 cortical areas (Miniussi et al., 1999; Rohenkohl & Nobre, 2011; Walter et al., 1964)□; and 3)
390 have more complex temporal dynamics than might be inferred from functional neuroimaging
391 studies with relatively low temporal resolution (Coull & Nobre, 1998; A Vallesi, 2010; Antonino
392 Vallesi et al., 2009). Our results also build on recent work (Paraskevopoulou et al., 2021)
393 showing that that spontaneous fluctuations in neural activity that underlie intertrial variability in
394 human behavior are far more widespread than shown by prior functional neuroimaging studies
395 (Fox et al., 2007).

396 One of our key findings was that the “rise-to-bound” dynamics of our model, which have
397 previously been used to link algorithmic descriptions of behavior to their implementations in the
398 brain (Gold & Shadlen, 2007; Hanes & Schall, 1996a; Heitz & Schall, 2012; O’Connell et al.,
399 2012b)□, had a relatively direct mapping to just a subset of the task-relevant neural signals that
400 we identified. Instead, we found two distributed networks with task-relevant modulations of
401 neural activity, corresponding roughly two distinct classes of algorithmic models of anticipatory
402 behavior: those that feature motor preparation (Los et al., 2014; Noorani & Carpenter, 2016;
403 Salet et al., 2022) and those that feature visuospatial attention (Janssen & Shadlen, 2005;
404 Summerfield & Egner, 2009). More generally, our results suggest that the mapping between
405 algorithmic models fit to behavior and brain dynamics is not as straightforward as suggested by
406 certain local and aggregate neural signals, as has been noted previously (Hauser et al., 2018;
407 Heitz & Schall, 2012; O’Connell et al., 2012b, 2018). In particular, the mapping appears to
408 involve neural signals that have diverse forms and locations, which we characterized though our
409 clustering analysis. Results from these analyses are in-line with the emerging view that although
410 the cortex can be segmented into distinct regions based on structural features (Desikan et al.,
411 2006; Fischl et al., 2004)□, information processing is largely distributed across parallel,
412 interleaved processing streams (“intrinsic brain networks”), with localized information
413 processing limited to certain primary sensory and motor regions (Glasser et al., 2016; Van Essen
414 et al., 1992; Yeo et al., 2011).

415 Our study has several limitations. First, it is possible that some of these results are
416 particular to our patient population. In general, epilepsy patients can show additional forms of
417 inter-individual variability in their brain networks related to their pathology (Bettus et al., 2008)

418 that might also manifest in certain categorical behavioral differences compared to healthy
419 controls (Bruhn & Parsons, 1977). However, we sought to mitigate such concerns by focusing
420 on neural signals associated with specific, highly controlled behaviors. Under these kinds of
421 conditions, it has been shown that neural findings from intracranial EEG studies in patients with
422 epilepsy can generalize to healthy controls populations (Long et al., 2014). Nevertheless, more
423 work is needed to fully understand the relationship between behavioral and neural variability
424 across individuals (Genon et al., 2022), which can have broad evolutionary (Bechara et al.,
425 2000), developmental (Tenenbaum et al., 2011), and functional (Yang & Wang, 2020) causes.
426 Second, our clustering analysis was intended to identify distinct functional neural population that
427 were evident across all subjects we studied. A more granular clustering of distinct functional
428 profiles may be possible with a larger dataset. Third, we focused on within-trial anticipatory
429 biases for this study but recognize that across-trial biases may also occur (Salet et al., 2022).
430 Further work is needed to understand if and how within- and across-trial anticipatory biases
431 relate to each other on a neural level.

432 Despite these limitations, our study provided new insights into the distributed neural
433 processes in the human brain that support anticipatory influences on sensory-motor behaviors.
434 Despite relatively simple algorithmic explanations underlying anticipatory behavior, we found
435 that anticipatory computations had heterogeneous, distributed, and regionally intermixed neural
436 correlates in the human brain. These results reflect the fundamental role of anticipation in higher
437 brain function and can help explain why simple sensory-motor processing engages widespread
438 brain networks (Gonzalez-Castillo et al., 2012; Mesulam, 1998). These results illustrate how
439 high-resolution neural measurements in the human brain can complement algorithmic models in

440 illuminating cognitive processes underlying human behavior. Moreover, these results motivate
441 the need for more high-resolution and large-scale neural recordings combined with sophisticated
442 computational models of brain activity and behavior to help bridge gaps in our understanding of
443 the computational underpinnings of behavior and their complex neural substrates (Bogacz &
444 Gurney, 2007; Wong & Wang, 2006; Yang & Wang, 2020)□.

445 **Materials and Methods**

446 Participants

447 We studied 23 patients with medically refractory epilepsy who underwent surgical
448 implantation of intracranial electrodes for seizure localization (Table S1). Patients provided
449 informed consent to perform cognitive testing as part of our research study while they were
450 admitted to the hospital. Our study was approved by the University of Pennsylvania Institutional
451 Review Board. Clinical circumstances alone determined the number and placement of implanted
452 electrodes.

453 Stimulus-detection task

454 We used a stimulus-detection task with a variable foreperiod delay (Luce, 1986;
455 Nickerson, 1965; Niemi & Näätänen, 1981)□. Participants viewed visual stimuli on a laptop
456 computer screen and responded by pressing a button on a game controller with their right thumb.
457 Each trial began with the presentation of a small white box at a randomized location on the
458 screen as a fixation target (one of nine locations on a 3 x 3 grid). The stimulus changed color to
459 yellow after one of two randomly selected foreperiod delays: 1) short delay=500 ms, or 2) long
460 delay=1500 ms. We measured response time (RT) as the time between color change (stimulus)
461 and button press (response). If a response was provided within a predefined response interval

462 (1000 ms after color change), visual feedback was provided as follows: 1) for RTs \leq 150 ms,
463 salient positive feedback was shown, consisting of a smiley face with text below (“wow!”); 2)
464 for RTs $>$ 150 ms, the RT was shown, color-coded by binned values (green for 150–300 ms,
465 yellow for 300–600 ms, red for 600–1000 ms). If a response occurred before the color change of
466 the stimulus (“premature false alarm”) or if no response was provided within 1000 ms after color
467 change, the participant was shown a blank screen for 2500–2750 ms. During each session, the
468 participant performed blocks of 9 trials each. After six blocks, the participant was provided with
469 an option of performing additional blocks of trials. On average, participants performed a mean of
470 149 trials (i.e., 1.34 sessions). Two participants performed additional trials with a 1000 ms
471 foreperiod delay, which we excluded from our analyses.

472

473 Extended LATER model of RT

474 All model-fitting procedures described below were implemented by finding the minimum
475 of the appropriate objective function using the SciPy Optimization package in Python. We
476 modeled RT distributions using an extended version the LATER model([Carpenter & Williams,](#)
477 [1995; Noorani & Carpenter, 2016](#)). This rise-to-bound model describes RTs as measuring the
478 time it takes for a latent variable to rise linearly from a starting value (S_0) at stimulus
479 presentation to a threshold value (S_t) at response. The model accounts for trial-to-trial RT
480 variability by assuming that the rate-of-rise of this process varies stochastically from trial-to-trial
481 per a Gaussian process. The basic form of the LATER model describes an RT distribution using
482 two free parameters, as follows:

$$RT \sim \frac{1}{N(\mu, \sigma^2)}$$

483 Where N represents a Gaussian distribution with mean μ and standard deviation σ . Note that this
484 version assumes that the threshold value $S_t=1$; an equivalent formulation assumes that $\sigma=1$, and
485 S_t is a free parameter. These parameters are estimated by fitting a Gaussian probability density
486 function to reciprocal RTs, which typically resembles a Gaussian distribution (Noorani &
487 Carpenter, 2016).

488 We extended this basic model to account for premature false alarms and RTs<250 ms,
489 which we modeled as a stochastic process that occurred with uniform probability during the 500
490 ms preceding S2. For these and other RT analyses, we assumed that this false alarm-generating
491 process also triggered responses within 250 ms after stimulus onset (“fast responses”), because
492 these fast responses are thought to arise from processes distinct from those driving slower RTs
493 (we chose 250 ms as a conservative cutoff to ensure that our neural analyses do not conflate
494 these two processes; Luce, 1986; Noorani & Carpenter, 2016).

495 We first fit this extended LATER model to behavior on the short-delay trials. We then fit
496 a modified model to behavior on long-delay trials that included two additional free parameters
497 representing delay-related changes in: 1) the starting point of the LATER unit, and 2) the
498 uniform probability of generating a premature or fast response. We evaluated the overall model
499 fits by computing an R^2 value comparing the (z-scored) model-predicted probability distributions
500 and an empirically estimated probability distribution based on a Gaussian-smoothed reciprocal
501 RT histograms (including all responses from 500 ms prior to stimulus onset to 1000 ms
502 following stimulus onset, with an offset such that all RTs on anticipatory false alarms were
503 positive values and RTs on short and long-delay trials were aligned relative to stimulus onset),

504 and also the cumulative probability of observing a premature false alarm based on the uniform
505 distribution (see Fig. S1 for individual model fits for each participant).

506 Intracranial neural recordings via intraparenchymal electrodes

507 Patients were implanted exclusively with intraparenchymal depth electrodes (“stereo
508 EEG,” Ad-tech, 1.1 diameter, 4 contacts spaced 5 mm apart), except in one patient who also had
509 subdural grid electrodes (Participant #142, Ad-tech, 4 mm contacts, spaced 10 mm apart). iEEG
510 was recorded using a Natus recording system. Based on the amplifier and the discretion of the
511 clinical team, signals were sampled at either 512 or 1024 Hz. Signals were converted to a bipolar
512 montage by taking the difference of signals between each pair of immediately adjacent contacts
513 on the same electrode. The resulting bipolar signals were treated as new virtual electrodes
514 (henceforth, “electrodes”), originating from the midpoint between each electrode pair (Burke et
515 al., 2014; Ramayya et al., 2015, 2021)□. Digital pulses synchronized the electrophysiological
516 recordings with task events. We excluded electrodes that recorded prominent 60 Hz electrical
517 line noise, defined as electrodes that showed greater spectral power in the 58–62 Hz range
518 compared to the 18–22 Hz range, or electrodes that were disconnected (standard deviation=0).
519 We excluded trials with prominent noise artifacts (e.g., if voltage data were not recorded due to
520 saturation, or if the mean or standard deviation of voltage was >10 standard deviations of all
521 trials). We did not specifically exclude electrodes based on epileptic activity because our
522 analyses focused on behaviorally linked neural activity, which should not be influenced
523 systematically by epileptic networks (Liu & Parvizi, 2019)□. We analyzed data from 2,609
524 electrodes.

525 Anatomical localization of electrodes

526 Intracranial electrodes were identified manually on each post-operative CT scan and
527 contact coordinates recorded using custom software based on the center of density of the
528 radiodense contacts on thresholded images. To obtain contact locations in each patient's native
529 anatomic space as well as a common reference space (MNI coordinates), we used Advanced
530 Normalization Tools (Avants et al., 2011) to register the post-operative CT to the pre-operative
531 MRI, and the MRI to the Montreal Neurological Institute (MNI) average brain. We assigned
532 each electrode to various canonical intrinsic brain networks ("7 network model") using a
533 volumetric atlas in MNI coordinates (Yeo et al., 2011). We refer to the "ventral attention"
534 network as the "salience" network based on its resemblance to behaviorally defined networks
535 important for emotion (Seeley et al., 2007), but otherwise use terminology as reported in the
536 original study (Yeo et al., 2011).

537 Extracting high-frequency activity (HFA)

538 We extracted 5000 ms segments of iEEG data around the following task events: 1) 2000
539 ms prior to target onset, 2) 5000 ms after target onset, 3) the stimulus color change, and 4) onset
540 of the motor response. For each segment, we extracted spectral power using five complex-valued
541 Morlet wavelets (wave number 3, to increase temporal resolution) with logarithmically spaced
542 center frequencies from 70 to 200 Hz. We squared and log-transformed the wavelet convolutions
543 to obtain power estimates at each time sample. We removed 1000 ms buffers at the beginning
544 and end of each segment to avoid contamination from edge artifacts. We averaged these power
545 estimates across the 5 wavelets, resulting in a single power value for each time sample. We
546 convolved each power-time series with a Gaussian kernel (half-width of 75 ms), resulting in a
547 continuous representation of high-frequency activity (HFA) surrounding each task event. We z-

548 scored HFA by the mean and standard deviation of the distribution of HFA values obtained from
549 randomly selected segments of iEEG data recorded from that session clips (matched to the
550 number of total task events) to not bias values towards any particular task-related event (Burke et
551 al., 2014; Ramayya et al., 2015, 2021) . We refer to z -scored HFA as “HFA.”

552 Measuring and preprocessing electrode-specific activation functions

553 We quantified the activity pattern recorded by each electrode by measuring the average
554 HFA around target onset during, measured separately on short-delay and long-delay trials
555 (subsequently referred to as “activation functions”). We measured target-locked activation
556 functions from 1000 ms prior to, until 4000 ms following target onset.

557 To ensure that all subsequent analyses focused on modulations of the activation functions
558 that were separate from the immediate sensory and motor responses, we preprocessed the data as
559 follows (all curve fits were performed using the *SciPy* Optimization package in *Python*
560 (“`curve_fit`”):

561 First, we estimated the overall (linear) trends in HFA that occurred over the course of the
562 trial independent of changes that occurred immediately following stimulus presentation using the
563 target-locked activation function (averaged across both trial types). Specifically, we fit a line to
564 estimate how HFA changed over time using during two short segments of this activation
565 function: 1) 1000 ms to -500 before target onset, and 2) 1000 ms after color change occurred on
566 long-delay trial (2500 ms to 3000 ms after target onset). We subtracted these lines from each
567 target-locked activation function to obtain detrended functions.

568 Second, we estimated the changes in activity that occurred immediately after target onset
569 across both trial types. Specifically, if the detrended target-locked activation function (averaged

570 across both trial types, from target onset to 500 ms afterwards) contained any activity peaks or
571 troughs that were outside of the electrode's baseline activity range, we fit a Gaussian function to
572 model these activity excursions. If both a peak and trough were detected in a given electrode's
573 activation function, we modeled whichever one was larger. We then removed the post-target
574 Gaussian from each target-locked activation function. For long-delay trials, we also fit a
575 Gaussian to the 500–1500 ms interval after target onset and subtracted it from the activation
576 function to remove any expectation-related changes in activity that occurred in response to the
577 target not changing color.

578 Third, we modeled activity locked to the color change separately for short- and long-
579 delay trials. Specifically, we first fit a Gaussian to a short time segment after the color change
580 (0–500 ms post-stimulus) to capture any changes in activity that occurred immediately after
581 color change. We also fit any residual peaks or troughs over a longer time segment (0–1000 ms
582 post-stimulus). We then subtracted these fit Gaussians from the activation function from each
583 trial.

584 Fourth, we modeled activity locked to the motor response separately for short- and long-
585 delay trials. Specifically, we fit separate Gaussians to the 500 ms preceding the response, to
586 capture any pre-response ramping activity or any smeared stimulus-locked activity from the
587 preceding color change, and to any residual peaks or troughs during the 500 ms post-response
588 interval, to capture further changes in activity related to either the response or feedback
589 presentation. We then subtracted these fit Gaussians from the activation function from each trial.

590 In summary, these procedures resulted in residual trial-by-trial HFA measures that were
591 time-locked to four task events: 1) target-locked, short delay; 2) target-locked, long delay; 3)
592 response-locked, short delay; and 4) response-locked, long delay.

593 Relating residual neural activity to endogenous RT variability

594 We measured endogenous (non delay-related) RT variability for each participant as
595 follows. First, we transformed RTs during correct responses (excluding “fast response” RTs <
596 250 ms) by taking the negative reciprocal ($-1/RT$), which transforms right-tailed RTs into an
597 approximately Gaussian distribution (the negative sign is applied for convenience such that long
598 RTs are still associated with larger values; Noorani & Carpenter, 2016) \square . Then, we removed
599 delay-related RT variability by z-scoring reciprocal RTs within each delay condition.

600 We assessed whether endogenous RT variability was related to neural activity at a given
601 electrode on a trial-by-trial basis, after removing stimulus- and response-locked components of
602 the activation function, including ramping components (Fig. S2). We considered several trial-by-
603 trial neural features locked to trial events: 1) baseline interval prior to target onset (500 ms), 2)
604 baseline interval prior to stimulus (500 ms), 3) post-stimulus activity (250 ms), 4) post-stimulus
605 buildup rate (slope of a line fit to HFA trend 250 ms following stimulus), 5) pre-response
606 buildup rate (slope of a line fit to HFA 250 ms prior to response), and 6) pre-response activity
607 (250 ms).

608 We performed an omnibus test to assess for any relationship between neural activity and
609 stochastic RT variability using a multi-variate linear regression model. The dependent variable
610 was stochastic RT variability across all trials, and the independent variables were each of the
611 neural features described above. We measured the predictive power of this model using the sum

612 squared error of residuals (SSE). We also assessed specific relationships between each neural
613 feature and stochastic RT variability using Spearman correlations.

614 We assigned non-parametric z -statistics and p values for each of these tests by comparing
615 each of these “true” statistics (SSE of multi-variate model, and Spearman’s ρ for each neural
616 features) to null distributions generated for each electrode by misaligning RTs and neural data
617 (using a circular shift procedure, 1000 iterations, to account for any autocorrelation in RTs). For
618 the omnibus test, we assigned a one-tailed p value (i.e., if the true SSE was $<5\%$ of null SSE
619 values, we assigned a p value of 0.05). For Spearman correlations, we assigned a two-tailed p
620 value (i.e., if ρ was $>2.5\%$ of null ρ values, we assigned a p value of 0.05).

621 Hierarchical clustering of neural populations based on functional properties.

622 We used data-driven unsupervised clustering to group all electrodes based on similar
623 task-driven neural activation patterns. This approach allowed us to study task-relevant neural
624 representations that were possibly distributed across many regions. For each electrode, we
625 defined a multi-variate feature vector representing the magnitude of (linear) relationships
626 between: 1) each of the five features of the activation function listed above (i.e., baseline, post-
627 stimulus activity, post-stimulus buildup rate, pre-response buildup rate, pre-response activity)
628 and stochastic RT variability (i.e., z-scored RT computed separately for short- and long-delay
629 trials, thus removing any mean difference in RT for the two delay conditions), and 2) task-related
630 modulations relative to pre-target baseline activity (Fig. 3). We characterized this feature vector
631 as a multinomial distribution indicating the presence and direction of a significant effect ($p < 0.05$;
632 0 indicates no relation, or no significant task-related modulation; 1 indicates relatively increased
633 activity with long RTs or task-related increases in activity; and -1 indicates relatively increased

634 activity with short RTs or task-related decreases in activity). We used an agglomerative
635 clustering algorithm (*scikit learn, Python*) to group all electrodes using Euclidean distance as a
636 measure of pairwise similarity and a linkage function that merges clusters to minimize the
637 variance within all clusters. We identified 4 clusters that were grouped by similar functional
638 profiles using an objective function maximized the number of clusters that were observed in all
639 participants and contained at least 200 electrodes.

640 Statistical tests

641 We performed non-parametric statistical tests as described above, when appropriate.
642 Otherwise, we performed *t*-tests to compare continuous distributions and binomial to compare
643 categorical distributions (counts data). We used partial correlation analysis to assess across-
644 participant correlations between neural activity and anticipatory biases (delay-related differences
645 in mean RT and false alarm rate). Based on our partial correlation analysis, we specifically
646 assessed for a functional dissociation between prestimulus activity modulations in Cluster 1 and
647 Cluster 3 using a linear mixed-effects model, as follows:

$$Y \sim 1 + (\Delta RT \times time \times cluster) + (\Delta FA \times time \times cluster) + (1|subj) + (1|roi)$$

648 Where Y is a continuous variable that represents neural activity (z-scored HFA) averaged within
649 each subject for a specific cluster (Cluster 1 or 3), and a specific time window (-120-130ms,
650 “early” or 1180-1430ms, “late” relative to S1, as identified by the partial correlation analyses,
651 Figs. 6, 7). The Fixed Effects are two separate three-way interactions between ΔRT (continuous
652 variable indicating delay-related difference in mean RT for each participant), time (categorical
653 variable indicating early or late time window), and cluster (categorical variable indicating
654 Cluster 1 or 3), and between ΔFA (continuous variable indicating delay-related difference in FA

655 rate for each participant), time, and cluster. The Random Effects are subject (“subj”) and
656 intrinsic brain network (“roi”).

657 We used False Discovery Rate (FDR) correction for multiple comparisons (Benjamini &
658 Hochberg, 1995)□ and considered an FDR-corrected p value <0.05 to be statistically significant.

659 We report FDR-corrected p values when indicated, otherwise reported p values are uncorrected.

660 We performed most of our analyses using Python using both custom code and publicly available
661 packages (e.g., *NumPy* for numerical computing, *SciPy* for statistics and signal processing, *MNE*
662 for spectral analyses, *statsmodels* for regression modeling, *pingouin* for partial correlation
663 analysis). We fit linear mixed effects models using in R using the *lme4* and *lmeTest* packages
664 (Bates et al., 2015; Kuznetsova et al., 2017).

665 Data sharing and Code Accessibility

666 Behavioral and neural data used for this study will be made publicly available and have
667 been submitted to Dryad. The Python code used to process these data are available online
668 (https://github.com/ashwinramayya/code_RamaEtal_AntReact)

669

670

671

672 **Acknowledgments:** We thank Drs. Michael Kahana, Michael Beauchamp, Tahra Eissa,
673 Matthew Nassar, Long Ding, Kareem Zaghloul, Daniel Yoshor, Alex Vaz, and William Songjun
674 Li for helpful feedback on the manuscript. We thank Cameron Brandon, Everett Prince, John
675 Bernabei, Jacqueline Boccanfuso, and Joel Stein for technical assistance in data collection.

676 **Funding:** National Institutes of Health grant 6T32NS091006 (AGR)

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691 References:

692 Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A
693 reproducible evaluation of ANTs similarity metric performance in brain image registration.
694 *NeuroImage*, 54(3), 2033–2044. <https://doi.org/10.1016/j.neuroimage.2010.09.025>

695 Barack, D. L., & Krakauer, J. W. (2021). Two views on the cognitive brain. *Nature Reviews
696 Neuroscience*, 22(June). <https://doi.org/10.1038/s41583-021-00448-6>

697 Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, Decision Making and the
698 Orbitofrontal Cortex. *Cerebral Cortex*, 10(3), 295–307.
699 <https://doi.org/10.1093/CERCOR/10.3.295>

700 Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and
701 Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society: Series B
702 (Methodological)*, 57(1), 289–300. <https://doi.org/10.1111/j.2517-6161.1995.tb02031.x>

703 Bettus, G., Wendling, F., Guye, M., Valton, L., Régis, J., Chauvel, P., & Bartolomei, F. (2008).
704 Enhanced EEG functional connectivity in mesial temporal lobe epilepsy. *Epilepsy
705 Research*, 81(1), 58–68. <https://doi.org/10.1016/j.epilepsyres.2008.04.020>

706 Bogacz, R., & Gurney, K. (2007). The basal ganglia and cortex implement optimal decision
707 making between alternative actions. *Neural Computation*, 19(2), 442–477.
708 <https://doi.org/10.1162/neco.2007.19.2.442>

709 Bruhn, P., & Parsons, O. A. (1977). Reaction Time Variability in Epileptic and Brain-Damaged
710 Patients. *Cortex*, 13(4), 373–384. [https://doi.org/10.1016/S0010-9452\(77\)80018-X](https://doi.org/10.1016/S0010-9452(77)80018-X)

711 Burke, J. F., Zaghloul, K. A., Jacobs, J., Williams, R. B., Sperling, M. R., Sharan, A. D., &
712 Kahana, M. J. (2013). Synchronous and asynchronous theta and gamma activity during
713 episodic memory formation. *The Journal of Neuroscience*: The Official Journal of the
714 Society for Neuroscience, 33(1), 292–304. <https://doi.org/10.1523/JNEUROSCI.2057-12.2013>

716 Callaway, E., & Yeager, C. L. (1960). Relationship between reaction time and
717 electroencephalographic alpha phase. *Science*, 132(3441), 1765–1766.
718 <https://doi.org/10.1126/science.132.3441.1765>

719 Carpenter, R. H. S., & Williams, M. L. L. (1995). Neural computation of log likelihood in
720 control of saccadic eye movements. *Nature*, 377(6544), 59–62.
721 <https://doi.org/10.1038/377059a0>

722 Cattell, J. M. (1886). The time taken up by cerebral operations. *Mind*, 11(42), 220–242.

723 Churchland, M., Byron, M., Cunningham, J., Sugrue, L., Cohen, M., Corrado, G., Newsome, W.,
724 Clark, A., Hosseini, P., Scott, B., & Bradley, D. (2010). Stimulus onset quenches neural
725 variability: a widespread cortical phenomenon. *Nature Neuroscience*, 13(3).
726 <https://doi.org/10.3389/conf.neuro.06.2009.03.295>

727 Coull, J. T., & Nobre, A. C. (1998). Where and when to pay attention: The neural systems for
728 directing attention to spatial locations and to time intervals as revealed by both PET and
729 fMRI. *Journal of Neuroscience*, 18(18), 7426–7435. <https://doi.org/10.1523/jneurosci.18-18-07426.1998>

731 Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R.
732 L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An
733 automated labeling system for subdividing the human cerebral cortex on MRI scans into
734 gyral based regions of interest. *NeuroImage*, 31(3), 968–980.
735 <https://doi.org/10.1016/j.neuroimage.2006.01.021>

736 Dubey, A., & Ray, S. (2019). Cortical electrocorticogram (Ecog) is a local signal. *Journal of
737 Neuroscience*, 39(22), 4299–4311. <https://doi.org/10.1523/JNEUROSCI.2917-18.2019>

738 Dustman, R. E., & Beck, E. C. (1965). Phase of alpha brain waves, reaction time and visually
739 evoked potentials. *Electroencephalography and Clinical Neurophysiology*, 18(5), 433–440.
740 [https://doi.org/10.1016/0013-4694\(65\)90123-9](https://doi.org/10.1016/0013-4694(65)90123-9)

741 Ebitz, R. B., & Hayden, B. Y. (2021). The population doctrine in cognitive neuroscience. In
742 *Neuron* (Vol. 109, Issue 19, pp. 3055–3068). Cell Press.
743 <https://doi.org/10.1016/j.neuron.2021.07.011>

744 Eichenbaum, H. (2014). Time cells in the hippocampus: A new dimension for mapping
745 memories. In *Nature Reviews Neuroscience* (Vol. 15, Issue 11, pp. 732–744).
746 <https://doi.org/10.1038/nrn3827>

747 Fischl, B., Van Der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., Busa, E.,
748 Seidman, L. J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., & Dale, A.
749 M. (2004). Automatically Parcellating the Human Cerebral Cortex. *Cerebral Cortex*, 14(1),
750 11–22. <https://doi.org/10.1093/cercor/bhg087>

751 Fox, M. D., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2007). Intrinsic Fluctuations within
752 Cortical Systems Account for Intertrial Variability in Human Behavior. *Neuron*, 56(1), 171–
753 184. <https://doi.org/10.1016/j.neuron.2007.08.023>

754 Friston, K. (2010). The free-energy principle: A unified brain theory? *Nature Reviews
755 Neuroscience*, 11(2), 127–138. <https://doi.org/10.1038/nrn2787>

756 Genon, S., Eickhoff, S. B., & Kharabian, S. (2022). Linking interindividual variability in brain
757 structure to behaviour. *Nature Reviews Neuroscience*. <https://doi.org/10.1038/s41583-022-00584-7>

759 Ghose, G. M., & Maunsell, J. H. R. (2002). Attentional modulation in visual cortex depends on
760 task timing. *Nature*, 419(6907), 616–620. <https://doi.org/10.1038/nature01057>

761 Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil,
762 K., Andersson, J., Beckmann, C. F., Jenkinson, M., Smith, S. M., & Van Essen, D. C.
763 (2016). A multi-modal parcellation of human cerebral cortex. *Nature*, 536(7615), 171–178.
764 <https://doi.org/10.1038/NATURE18933>

765 Goel, A., & Buonomano, D. V. (2014). Timing as an intrinsic property of neural networks:
766 Evidence from in vivo and in vitro experiments. In *Philosophical Transactions of the Royal
767 Society B: Biological Sciences* (Vol. 369, Issue 1637).
768 <https://doi.org/10.1098/rstb.2012.0460>

769 Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. *Annual Review of
770 Neuroscience*, 30(1), 535–574. <https://doi.org/10.1146/annurev.neuro.29.051605.113038>

771 Gonzalez-Castillo, J., Saad, Z. S., Handwerker, D. A., Inati, S. J., Brenowitz, N., & Bandettini,
772 P. A. (2012). Whole-brain, time-locked activation with simple tasks revealed using massive
773 averaging and model-free analysis. *Proceedings of the National Academy of Sciences of the
774 United States of America*, 109(14), 5487–5492. <https://doi.org/10.1073/pnas.1121049109>

775 Hanes, D., & Schall, J. (1996). Neural control of voluntary movement initiation. *Science*,
776 274(5286), 427–430.

777 Hauser, C. K., Zhu, D., Stanford, T. R., & Salinas, E. (2018). Motor selection dynamics in FEF
778 explain the reaction time variance of saccades to single targets. *eLife*, 7.
779 <https://doi.org/10.7554/eLife.33456>

780 Heitz, R. P., & Schall, J. D. (2012). Neural Mechanisms of Speed-Accuracy Tradeoff. *Neuron*,
781 76(3), 616–628. <https://doi.org/10.1016/j.neuron.2012.08.030>

782 Helmholtz, H. Von. (1866). Treatise on Physiological Optics. In *Book* (Issues 3d ed, 1910).

783 Howard, M. W., Shankar, K. H., Aue, W. R., & Criss, A. H. (2015). A distributed representation
784 of internal time. *Psychological Review*, 122(1), 24–53. <https://doi.org/10.1037/a0037840>

785 Humphries, M. D. (2021). Strong and weak principles of neural dimension reduction. *Neurons,
786 Behavior, Data Analysis, and Theory*. <https://doi.org/10.51628/001c.24619>

787 Janssen, P., & Shadlen, M. N. (2005). A representation of the hazard rate of elapsed time in
788 macaque area LIP. *Nature Neuroscience*, 8(2), 234–241. <https://doi.org/10.1038/nn1386>

789 Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis -
790 connecting the branches of systems neuroscience. *Frontiers in Systems Neuroscience*,
791 2(NOV). <https://doi.org/10.3389/neuro.06.004.2008>

792 Landman, B., & Warfield, S. (2012). MICCAI workshop on multi-atlas labeling. *Medical Image
793 Computing and Computer Assisted Intervention Conference*.

794 Latimer, K. W., Yates, J. L., Meister, M. L. R., Huk, A. C., & Pillow, J. W. (2015). Single-trial
795 spike trains in parietal cortex reveal discrete steps during decision-making. *Science*,
796 349(6244), 184–187.
797 https://doi.org/10.1126/SCIENCE.AAA4056/SUPPL_FILE/LATIMER-SM.PDF

798 Liu, S., & Parvizi, J. (2019). Cognitive refractory state caused by spontaneous epileptic high-
799 frequency oscillations in the human brain. *Science Translational Medicine*, 11(514), 1–14.
800 <https://doi.org/10.1126/scitranslmed.aax7830>

801 Long, N. M., Burke, J. F., & Kahana, M. J. (2014). Subsequent memory effect in intracranial and
802 scalp EEG. *NeuroImage*, 84, 488–494. <https://doi.org/10.1016/j.neuroimage.2013.08.052>

803 Los, S. A., Kruijne, W., & Meeter, M. (2014). Outlines of a multiple trace theory of temporal
804 preparation. In *Frontiers in Psychology* (Vol. 5, Issue SEP).
805 <https://doi.org/10.3389/fpsyg.2014.01058>

806 Los, S. A., & Van Den Heuvel, C. E. (2001). Intentional and unintentional contributions to
807 nonspecific preparation during reaction time foreperiods. *Journal of Experimental
808 Psychology: Human Perception and Performance*, 27(2), 370–386.
809 <https://doi.org/10.1037/0096-1523.27.2.370>

810 Luce, R. D. (1986). Response Times: Their Role in Inferring Elementary Mental Organization.
811 In *Response Times: Their Role in Inferring Elementary Mental Organization*. Oxford
812 University Press. <https://doi.org/10.1093/acprof:oso/9780195070019.001.0001>

813 MacDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H. (2011). Hippocampal “time
814 cells” bridge the gap in memory for discontiguous events. *Neuron*, 71(4), 737–749.
815 <https://doi.org/10.1016/j.neuron.2011.07.012>

816 Manning, J. R., Jacobs, J., Fried, I., & Kahana, M. J. (2009). Broadband Shifts in Local Field
817 Potential Power Spectra Are Correlated with Single-Neuron Spiking in Humans. *Journal of
818 Neuroscience*, 29(43), 13613–13620. <https://doi.org/10.1523/JNEUROSCI.2041-09.2009>

819 Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T.,
820 Simpson, G., Pike, B., Holmes, C., Collins, L., Thompson, P., MacDonald, D., Iacoboni,
821 M., Schormann, T., Amunts, K., Palomero-Gallagher, N., Geyer, S., ... Mazoyer, B. (2001).
822 A probabilistic atlas and reference system for the human brain: International Consortium for
823 Brain Mapping (ICBM). *Philosophical Transactions of the Royal Society of London. Series*
824 *B: Biological Sciences*, 356(1412), 1293–1322. <https://doi.org/10.1098/rstb.2001.0915>

825 Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic feature encoding in
826 human superior temporal gyrus. *Science*, 343(6174), 1006–1010.
827 <https://doi.org/10.1126/science.1245994>

828 Mesulam, M. M. (1998). From sensation to cognition. *Brain*, 121(6), 1013–1052.

829 Miniussi, C., Wilding, E. L., Coull, J. T., & Nobre, A. C. (1999). Orienting attention in time.
830 Modulation of brain potentials. *Brain*, 122(8), 1507–1518.
831 <https://doi.org/10.1093/brain/122.8.1507>

832 Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic
833 dopamine systems based on predictive Hebbian learning. *Journal of Neuroscience*, 16(5),
834 1936–1947. <https://doi.org/10.1523/jneurosci.16-05-01936.1996>

835 Natraj, N., Silversmith, D. B., Chang, E. F., & Ganguly, K. (2022). Compartmentalized
836 dynamics within a common multi-area mesoscale manifold represent a repertoire of human
837 hand movements. *Neuron*, 110(1), 154-174.e12.
838 <https://doi.org/10.1016/j.neuron.2021.10.002>

839 Nickerson, R. S. (1965). Response time to the second of two successive signals as a function of
840 absolute and relative duration of intersignal interval. *Perceptual and Motor Skills*, 21(1), 3–
841 10. <https://doi.org/10.2466/pms.1965.21.1.3>

842 Niemi, P., & Näätänen, R. (1981). Foreperiod and simple reaction time. *Psychological Bulletin*,
843 89(1), 133–162. <https://doi.org/10.1037/0033-2909.89.1.133>

844 Nobre, A. C., & Van Ede, F. (2018). Anticipated moments: Temporal structure in attention. In
845 *Nature Reviews Neuroscience* (Vol. 19, Issue 1, pp. 34–48).
846 <https://doi.org/10.1038/nrn.2017.141>

847 Noorani, I., & Carpenter, R. H. S. (2016). The LATER model of reaction time and decision. In
848 *Neuroscience and Biobehavioral Reviews* (Vol. 64, pp. 229–251).
849 <https://doi.org/10.1016/j.neubiorev.2016.02.018>

850 O'Connell, R. G., Dockree, P. M., & Kelly, S. P. (2012). A supramodal accumulation-to-bound
851 signal that determines perceptual decisions in humans. *Nature Neuroscience*, 15(12), 1729–
852 1735. <https://doi.org/10.1038/nn.3248>

853 O'Connell, R. G., Shadlen, M. N., Wong-Lin, K. F., & Kelly, S. P. (2018). Bridging Neural and
854 Computational Viewpoints on Perceptual Decision-Making. *Trends in Neurosciences*,
855 41(11), 838–852. <https://doi.org/10.1016/j.tins.2018.06.005>

856 Ollman, R. T., & Billington, M. J. (1972). The Deadline model for simple reaction times.
857 *Cognitive Psychology*, 3(2), 311–336. [https://doi.org/10.1016/0010-0285\(72\)90010-2](https://doi.org/10.1016/0010-0285(72)90010-2)

858 Paraskevopoulou, S. E., Coon, W. G., Brunner, P., Miller, K. J., & Schalk, G. (2021). Within-
859 subject reaction time variability: Role of cortical networks and underlying
860 neurophysiological mechanisms. *NeuroImage*, 237.
861 <https://doi.org/10.1016/j.neuroimage.2021.118127>

862 Parvizi, J., & Kastner, S. (2018). Promises and limitations of human intracranial
863 electroencephalography. *Nature Neuroscience*, 21(4), 474–483.
864 <https://doi.org/10.1038/s41593-018-0108-2>

865 Purcell, B. A., Heitz, R. P., Cohen, J. Y., Schall, J. D., Logan, G. D., & Palmeri, T. J. (2010).
866 Neurally constrained modeling of perceptual decision making. *Psychological Review*,
867 117(4), 1113–1143. <https://doi.org/10.1037/a0020311>

868 Ramayya, A. G., Pedisich, I., & Kahana, M. J. (2015). Expectation modulates neural
869 representations of valence throughout the human brain. *NeuroImage*, 115, 214–223.
870 <https://doi.org/10.1016/j.neuroimage.2015.04.037>

871 Ramayya, A. G., Yang, A. I., Buch, V. P., Burke, J. F., Richardson, A. G., Brandon, C., Stein, J.
872 M., Davis, K. A., Chen, H. I., Proekt, A., Kelz, M. B., Litt, B., Gold, J. I., & Lucas, T. H.
873 (2021). Theta Synchrony Is Increased near Neural Populations That Are Active When
874 Initiating Instructed Movement. *ENeuro*, 8(1). <https://doi.org/10.1523/ENEURO.0252-20.2020>

876 Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional
877 interpretation of some extra-classical receptive-field effects. *Nature Neuroscience*, 2(1), 79–
878 87. <https://doi.org/10.1038/4580>

879 Ratcliff, R., Philiastides, M. G., Sajda, P., & Shiffrin, R. M. (2009). *Quality of evidence for
880 perceptual decision making is indexed by trial-to-trial variability of the EEG*. 106(16),
881 6539–6544. <https://doi.org/10.1073/pnas.0812589106>

882 Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion Decision Model:
883 Current Issues and History. In *Trends in Cognitive Sciences* (Vol. 20, Issue 4, pp. 260–281).
884 <https://doi.org/10.1016/j.tics.2016.01.007>

885 Ray, S., & Maunsell, J. H. R. (2011). Different Origins of Gamma Rhythm and High-Gamma
886 Activity in Macaque Visual Cortex. *PLoS Biology*, 9(4), e1000610.
887 <https://doi.org/10.1371/journal.pbio.1000610>

888 Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning and the
889 effectiveness of reinforcement and non-reinforcement. In *Classical Conditioning. 2.*
890 *Current Research and Theory*. (pp. 64–69). <https://ci.nii.ac.jp/naid/10024275851/>

891 Rohenkohl, G., & Nobre, A. C. (2011). Alpha oscillations related to anticipatory attention follow
892 temporal expectations. *Journal of Neuroscience*, 31(40), 14076–14084.
893 <https://doi.org/10.1523/JNEUROSCI.3387-11.2011>

894 Salet, J., Kruijne, W., van Rijn, H., Los, S. A., & Meeter, M. (2022). fMTP: A unifying
895 computational framework of temporal preparation across time scales. In *Psychological
896 Review*.

897 Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L.,
898 & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience
899 processing and executive control. *Journal of Neuroscience*, 27(9), 2349–2356.
900 <https://doi.org/10.1523/JNEUROSCI.5587-06.2007>

901 Shadlen, M. N., Kiani, R., Newsome, W. T., Gold, J. I., Wolpert, D. M., Zylberberg, A.,
902 Ditterich, J., De Lafuente, V., Yang, T., & Roitman, J. (2016). Comment on “Single-trial
903 spike trains in parietal cortex reveal discrete steps during decision-making.” *Science (New
904 York, N.Y.)*, 351(6280), 1406. <https://doi.org/10.1126/SCIENCE.AAD3242>

905 Shankar, K. H., & Howard, M. W. (2012). A scale-invariant internal representation of time. In
906 *Neural Computation* (Vol. 24, Issue 1, pp. 134–193).
907 https://doi.org/10.1162/NECO_a_00212

908 Stachenfeld, K. L., Botvinick, M. M., & Gershman, S. J. (2017). The hippocampus as a
909 predictive map. *Nature Neuroscience*, 20(11), 1643–1653. <https://doi.org/10.1038/nn.4650>

910 Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. *Trends in
911 Cognitive Sciences*.
https://www.sciencedirect.com/science/article/pii/S1364661309001442?casa_token=EMs14nsV5yUAAAAA:drBcxAV1eu4AZBYurLNwKW0_VDmrsgm9A88W5GYzHUr4zObJzwyJkeQnETpgeSESLzzT5CHcDg

915 Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind:
916 Statistics, structure, and abstraction. *Science*, 331(6022), 1279–1285.
917 <https://doi.org/10.1126/SCIENCE.1192788>/SUPPL_FILE/TENENBAUM.SOM.REV1.PD
918 F

919 Umakantha, A., Morina, R., Cowley, B. R., Snyder, A. C., Smith, M. A., & Yu, B. M. (2021).
920 Bridging neuronal correlations and dimensionality reduction. *Neuron*, 109(17), 2740–
921 2754.e12. <https://doi.org/10.1016/j.neuron.2021.06.028>

922 Vallesi, A. (2010). Neuro-anatomical substrates of foreperiod effects. In *Attention and Time*.
923 [https://books.google.com/books?hl=en&lr=&id=LBoDED__q3gC&oi=fnd&pg=PA303&dq=](https://books.google.com/books?hl=en&lr=&id=LBoDED__q3gC&oi=fnd&pg=PA303&dq=vallesi+neuroanatomical+substrates&ots=8sKa_kv7lh&sig=v1E1sodk_uTkVt9O1ELS-mW_v2E)
924 [vallesi+neuroanatomical+substrates&ots=8sKa_kv7lh&sig=v1E1sodk_uTkVt9O1ELS-](https://books.google.com/books?hl=en&lr=&id=LBoDED__q3gC&oi=fnd&pg=PA303&dq=vallesi+neuroanatomical+substrates&ots=8sKa_kv7lh&sig=v1E1sodk_uTkVt9O1ELS-mW_v2E)
925 [mW_v2E](https://books.google.com/books?hl=en&lr=&id=LBoDED__q3gC&oi=fnd&pg=PA303&dq=vallesi+neuroanatomical+substrates&ots=8sKa_kv7lh&sig=v1E1sodk_uTkVt9O1ELS-mW_v2E)

926 Vallesi, Antonino, McIntosh, A. R., Shallice, T., & Stuss, D. T. (2009). When time shapes
927 behavior: fMRI evidence of brain correlates of temporal monitoring. *Journal of Cognitive*
928 *Neuroscience*, 21(6), 1116–1126. <https://doi.org/10.1162/jocn.2009.21098>

929 Van Essen, D. C., Anderson, C. H., & Felleman, D. J. (1992). Information processing in the
930 primate visual system: an integrated systems perspective. In *Science* (Vol. 255, Issue 5043,
931 pp. 419–423). <https://doi.org/10.1113/jphysiol.2010.201798>

932 Vyas, S., Golub, M. D., Sussillo, D., & Shenoy, K. V. (2020). Computation through Neural
933 Population Dynamics. In *Annual Review of Neuroscience* (Vol. 43, Issue 1, pp. 249–275).
934 <https://doi.org/10.1146/annurev-neuro-092619-094115>

935 Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C., & Winter, A. L. (1964).
936 Contingent negative variation□: An electric sign of sensori-motor association and
937 expectancy in the human brain. *Nature*, 203(4943), 380–384.
938 <https://doi.org/10.1038/203380a0>

939 Warrington, S., Bryant, K. L., Khrapitchev, A. A., Sallet, J., Charquero-Ballester, M., Douaud,
940 G., Jbabdi, S., Mars, R. B., & Sotiropoulos, S. N. (2020). XTRACT - Standardised
941 protocols for automated tractography in the human and macaque brain. *NeuroImage*, 217,
942 116923. <https://doi.org/10.1016/j.neuroimage.2020.116923>

943 Wong, K. F., & Wang, X. J. (2006). A recurrent network mechanism of time integration in
944 perceptual decisions. *Journal of Neuroscience*, 26(4), 1314–1328.
945 <https://doi.org/10.1523/JNEUROSCI.3733-05.2006>

946 Yang, G. R., & Wang, X. J. (2020). Artificial Neural Networks for Neuroscientists: A Primer.
947 *Neuron*, 107(6), 1048–1070. <https://doi.org/10.1016/j.neuron.2020.09.005>

948 Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M.,
949 Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fisch, B., Liu, H., & Buckner, R. L.
950 (2011). The organization of the human cerebral cortex estimated by intrinsic functional
951 connectivity. *Journal of Neurophysiology*, 106(3), 1125–1165.
952 <https://doi.org/10.1152/JN.00338.2011>

953

954

955