

1 **Basis for antibody- and hormone-mediated activation of TSHR in Graves' disease**

2

3 Jia Duan^{1,2*}, Peiyu Xu^{1*}, Xiaodong Luan^{3,4,5,6*}, Yujie Ji^{1,2}, Qingning Yuan¹, Xinheng He^{1,2}, Ye
4 Jin^{3,4}, Xi Cheng¹, Hualiang Jiang^{1,2,7}, Shuyang Zhang^{3,4,5,6,#}, Yi Jiang^{1,#}, H. Eric Xu^{1,2,7,#}

5

6 ¹The CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research,
7 Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203,
8 China

9 ²University of Chinese Academy of Sciences, Beijing 100049, China

10 ³Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical
11 College and Chinese Academy of Medical Sciences, Beijing, China

12 ⁴Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical
13 College and Chinese Academy of Medical Sciences, Beijing, China

14 ⁵School of Medicine, Tsinghua University, Beijing, China

15 ⁶Tsinghua-Peking Center for life science, Tsinghua University, Beijing, China

16 ⁷School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China

17 *These authors contributed equally.

18 **#Co-corresponding authors:**

19 H.E.X., email: eric.xu@simm.ac.cn,

20 S. Z., email: shuyangzhang103@nrdrs.org

21 Y. J., email: yijiang@simm.ac.cn

22

23 Keywords: GPCRs, autoimmune disease, thyroid hormone diseases, Graves' disease,
24 antibody

25 **Thyroid stimulating hormone (TSH), through activation of its G protein-coupled**
26 **receptor TSHR, controls the synthesis of thyroid hormone (TH), an essential metabolic**
27 **hormone. Aberrant signaling of TSHR by autoantibodies causes Graves' disease and**
28 **hypothyroidism that affect millions of patients worldwide. Here we report the active**
29 **structures of TSHR with TSH and an activating autoantibody M22, both bound to an**
30 **allosteric agonist ML-109, as well as an inactive TSHR structure with inhibitory antibody**
31 **K1-70. Both TSH and M22 push the extracellular domain (ECD) of TSHR into the upright**
32 **active conformation. In contrast, K1-70 blocks TSH binding and is incapable of pushing**
33 **the ECD to the upright conformation. Comparisons of the active and inactive structures**
34 **of TSHR with those of the luteinizing hormone–choriogonadotropin receptor (LHCGR)**
35 **reveal a universal activation mechanism of glycoprotein hormone receptors, in which**
36 **a conserved 10-residue fragment (P10) from the hinge C-terminal loop mediated**
37 **interactions from the receptor ECD to its transmembrane domain. One surprisingly**
38 **feature is that there are over 15 cholesterol surrounding TSHR, supporting its**
39 **preferential location in lipid rafts. These structures also highlight a common**
40 **mechanism for TSH and autoantibody M22 to activate TSHR, thus providing the**
41 **molecular basis for Graves' disease.**

42
43
44 Thyroid stimulating hormone (TSH) is a pituitary hormone that connects the signaling cascade
45 from the hypothalamus to the thyroid, which is termed the hypothalamic-pituitary-thyroid axis
46 (HPT), which is critical for many physiological functions¹ (Fig. 1a). The function of TSH is
47 mediated through its binding and activation of the G protein-coupled receptor, TSHR, which is
48 richly expressed in thyroid². TSHR activation is primarily coupled to the Gs and Gq proteins
49 and leads to up-regulation of the secondary message cAMP and phospholipase C³, which
50 then stimulate the production and secretion of thyroid hormone, an essential hormone for
51 metabolic homeostasis and development in vertebrates⁴ (Fig. 1a).

52
53 TSH belongs to the glycoprotein hormone family, which also includes follicle-stimulating
54 hormone (FSH), luteinizing hormone (LH) and chorionic gonadotropin (CG)⁵. TSHR and
55 related glycoprotein hormone receptors contain a large extracellular domain (ECD) of 11-12

56 leucine-rich-repeats (LRRs), a hinge region, and a transmembrane domain (TMD)^{6,7}. In the
57 case of TSHR, its ECD can be shedding from TMD and the free ECD could become an
58 autoantigen that induces various types of antibodies against TSHR^{8,9}. Autoantibodies,
59 including M22, that activate TSHR increase abnormal production of thyroid hormone and lead
60 to Graves' disease¹⁰ (Fig. 1a). Autoantibodies such as K1-70 that inhibit TSHR decrease
61 thyroid hormone that causes hypothyroidism and Hashimoto's disease^{10,11} (Fig. 1a). In
62 combination, the diseases caused by the aberrant signaling of TSHR affect over hundreds of
63 millions of patients worldwide¹². However, the basis of TSH-mediated TSHR activation or
64 antibody-mediated TSHR activation and inhibition remains unknown.

65

66 Because of its disease relevance, TSHR is an attractive target of drug discovery¹³. Small
67 molecule agonist such as ML-109, a selective TSHR allosteric agonist, has been developed¹⁴.
68 In this paper, we used cryo-electron microscope (cryo-EM) to determine an extensive set of
69 TSHR structures bound to ML-109, TSH, and autoantibodies M22 and K1-70. Combined with
70 functional studies, our structures reveal a conserved activation mechanism of glycoprotein
71 hormone receptors and highlight a shared mechanism for TSH and autoantibody M22 to
72 activate TSHR, thus providing the molecular basis for Graves' disease as well as for
73 hypothyroidism and Hashimoto's disease.

74

75 **Structure of the TSH-TSHR-Gs complex**

76 To determine the mechanism of TSH-mediated TSHR activation, we first solved the structures
77 of human TSHR bound to human TSH. TSHR used in our studies contains a deletion of
78 residues 317-366 in the hinge region, which is naturally removed from matured TSHR¹⁵. It has
79 been shown that the region of residues 317-366 is not required for TSHR folding and signaling,
80 and its deletion increases TSHR stability^{15,16}. In addition, a TSHR constitutively active mutation,
81 S281I, was also introduced to enhance the assembly of the TSH-TSHR-Gs complex^{6,17}. The
82 structure was determined with TSH and TSHR in complex with the mini-Gs/G β heterotrimer,
83 the Gs stabilizing nanobody Nb35¹⁸, and the allosteric agonist ML-109, to a global nominal
84 resolution of 2.96 Å (Fig. 1b, Extended Data Fig. 1, Table 1). Local refinement of the TSH-
85 TSHR ECD subcomplex yielded a map at a resolution of 2.67 Å (Extended Data Fig. 1). The
86 quality of EM map is sufficient for placement of ML-109, TSH, TSHR, the mini G heterotrimer

87 into the structure model (Fig. 1b, Extended Data Fig. 2a). In addition, more than 20 cholesterol
88 molecules were found to surround the TMD of the TSHR, especially near the extracellular side,
89 like a cholesterol belt circulating the top half of the TMD (Fig 1b and Extended Data Fig. 3a).
90 This finding is consistent with that TSHR is preferentially located within lipid rafts that are
91 enriched with cholesterol^{19,20}.

92

93 The overall structure of the TSH-TSHR complex reveals an up-right ECD conformation relative
94 to the membrane layer (Fig. 1b), with TSH binding to the concave surface of the ECD, which
95 contains 12 LRR units (Fig. 2a). TSH is a heterodimer of cysteine-knot protein, which shares
96 a common α -subunit with other glycoprotein hormones and a unique β -subunit that determines
97 hormone specificity²¹⁻²³. The TSH structure in the complex resembles those of FSH and
98 CG^{24,25}, with an elongated fold for both α and β subunits that contains three conserved
99 glycosylation sites (two in α -chain and one in β -chain) (Fig. 2b, Extended Data Fig. 4b ,4c).
100 The glycosylation at N52 from α -chain is at the interface between α and β subunits (Extended
101 Data Fig. 3b), and is probably important for the stability of TSH.

102

103 **Recognition of TSH by TSHR**

104 In the structure, TSH forms direct contact with LRR2-10 with both charge complementary
105 interactions and shape-matching interactions (Fig. 2a, c). The binding of TSH to TSHR buries
106 the total surface areas of 1955 \AA^2 . Structure comparisons of TSH and other glycoprotein
107 hormones bound to their receptors reveal the overall similarity in their ECD structures and the
108 binding interfaces^{6,7} (Fig. 2d), but the major difference is seen in the C-terminal seat belt of
109 the β -subunit (Fig. 2e). The RMSD of the Ca atoms from the TSH seat belt residues 107-121
110 to those of FSH seat belt residues 86-94 is 0.49 \AA , with the Ca of residues 93-100 deviated
111 from the corresponding CG by as much as 0.76 \AA . The differences in the TSH seat belt
112 structure also result in the different interaction patterns in the binding interface (Fig. 2f,
113 Extended Data Fig. 4a, 4b), particularly D111 and E118 from the TSH seat belt, which forms
114 salt bridges with K209 and K58 from TSHR. These electrostatic interactions are specific to the
115 TSH-TSHR complex and mutations in K209 and K58 of TSHR resulted in a more than a 10-
116 fold reduction of TSH potency (Fig. 2g, Extended Data Table 2), supporting their important role
117 in TSH binding specificity and receptor activation.

118
119 At the C-terminus of the TSHR ECD is the hinge region, which contains LRR11, two α -helices
120 (termed as hinge helix 1 and 2), LRR12, a short linker fragment (residues 396-404), and the
121 conserved p10 region (residues 405-414) (Extended Data Fig. 3c, 4b). Together with LRR1-
122 10, the hinge region forms the complete TSHR ECD. Following the conserved p10 region is
123 the TSHR TMD, which adopts the active conformation and is coupled to the G protein
124 heterotrimer at its cytoplasmic face. The TSH-TSHR structure is highly similar to the active
125 structure of the CG-LHCGR complex⁶ (Fig. 3a, Extended Data Fig. 3d), with the RMSD of
126 their TMD (residues 415-697) less than 0.53 Å, suggesting that both TSH and CG stabilize the
127 receptor active conformation through a common mechanism, including stabilizing the
128 conformation of the conserved p10 region²⁶. Interestingly, the TSHR ECD is rotated by
129 additional ~12° to the upright position relative to the ECD of the active LHCGR structure (Fig.
130 3a).

131
132 **TSH-mediated TSHR activation**
133 To fully understand TSH-induced TSHR activation, we attempted to solve the inactive structure
134 of TSHR. Through numerous trials, we were only able to obtain a 5.46 Å structure of TSHR in
135 the presence of a blocking antibody K1-70, isolated from a patient with hypothyroidism²⁷, and
136 a small molecule antagonist Org 274179-0²⁸ (Extended Data Fig. 5). The relatively low
137 resolution of the density map prevented accurate modeling of detailed structures of TSHR and
138 Org 274179-0, but is sufficient for us to place the ECD, the TMD as well as the ScFv fragment
139 of K1-70 (Fig. 3b), which was able to block TSHR activation by TSH^{8,29}. The ScFv of K1-70
140 appeared to bind to the distal N-terminal region of the TSHR ECD (LRR1-7) as reported by
141 the previous X-ray crystal structure²⁹, with overlapping areas with the TSH binding interface
142 (Extended Data Fig. 3e), thus blocking TSH binding (Extended Data Fig. 3f). Structure
143 comparison of the TSHR-K1-70 complex with the inactive LHCGR structure reveals that the
144 ECD of TSHR has a ~8.6° rotation away from the membrane layer relative to the ECD of the
145 inactive LHCGR (Fig. 3c). In this position, the ScFv fragment of K1-70 does not clash with the
146 membrane layer (Fig. 3d). In contrast, superposition of the ECD of the active TSHR to that of
147 the inactive TSHR reveals that the L3 β loop of TSH will still clash with the membrane layer
148 (Fig. 3e), in an analogous manner to CG binding to LHCGR, despite that the TSHR ECD is

149 rotated ~8.6° from the membrane layer. Structure comparison of the active and inactive TSHR
150 reveals that TSH binding induces a ~38° rotation of the ECD from the inactive position to the
151 active upright conformation (Fig. 3f). These results thus highlight the common mechanism for
152 glycoprotein hormones to activate their receptors by pushing the ECD to rotate away from the
153 membrane layer to the upright active conformation.

154

155 In addition to the push model of TSHR activation, its ECD is also pulled by the hinge region,
156 in which residues 382-390 adopt a short α -helix (Fig. 2a, Extended Data Fig. 1d) to interact
157 with TSH in a manner similar to what has been proposed for FSH-FSHR⁷ and CG-LHCGR⁶.
158 The region of 382-390 contains a negative residue D386 and two tyrosine residues, which
159 could be sulfonated⁷. The negative charge property of this region has been proposed to
160 interact with the positive charge region of R54 from the TSH beta chain (Extended Data Fig.
161 3g). Individual mutations of D386, Y385 and Y387 result in a 5-10 fold reduction of TSH
162 activation potency, and an 80-fold reduction in combined mutated receptors (Fig. 3h, Extended
163 Data Table 2), supporting the common pull mechanism for glycoprotein hormone to activate
164 their receptors. Together, TSH-mediated TSHR activation shares a similar “push and pull”
165 model that has been proposed for CG-induced LHCGR activation (Fig. 3g). Interestingly,
166 shortening the hinge loop by deleting 104 loop residues (291-394) resulted in a constitutively
167 active receptor (Extended Data Fig. 3h), suggesting that the flexible hinge loop could prevent
168 the ECD from adopting the active conformation in the apo receptor.

169

170 **Autoantibody-mediated TSHR activation**

171 To uncover the mechanism of autoantibody-induced TSHR activation, we solved the structures
172 of TSHR bound to the small molecule allosteric agonist ML-109 and an ScFv fragment of M22,
173 a human monoclonal autoantibody to the TSHR from a patient with Graves' disease³⁰. This
174 ScFv also exhibited potent activity to activate TSHR, with similar efficacy and potency of TSH
175 (Fig. 4a). The structure was determined to a global resolution of 2.78 Å, and local refinement
176 of the M22_ScFv-TSHR ECD subcomplex yielded a map at a resolution of 2.39 Å (Extended
177 Data Fig. 6). The clear density map that allows the placement of M22_ScFv and cholesterol
178 molecules into the TSHR-Gs complex (Fig. 4b, Extended Data Fig. 2b, 2c, Table 1). The
179 M22_ScFv-TSHR binding interface is similar to the previous structure of M22 binding to a

180 TSHR ECD fragment (residues 1-260) that contain LRR1-10³¹. In the full-length TSHR
181 complex, the M22_ScFv-TSHR binding interface is extended to the LRR11-12 region that is
182 part of the hinge region near the TMD interface (Fig. 4c). The total buried surface area by the
183 M22_ScFv binding is 1419 Å². Superposition of the TSHR ECD from the M22_ScFv bound
184 structure with the inactive ECD structure reveals that the heavy chain of M22_ScFv will clash
185 with the membrane layer (Fig 4d), consistent with the push model of the TSHR activation.
186 However, interaction with the hinge regions was not observed, thus antibody-mediated TSHR
187 activation is not mediated through a pull mechanism as seen by activation with the
188 endogenous hormone such as TSH and CG. It is likely that M22_ScFv binding has a larger
189 interface with TSHR, thus pulling by the hinge region is not required for M22-mediated
190 activation. Indeed, mutations in the hinge region (D386G, Y385G and Y387G) affect TSH
191 activation but not antibody-mediated activation (Fig. 4e, Extended Data Table 2).

192

193 **TSHR activation by an allosteric agonist**

194 In both TSH- and M22- bound TSHR structures, the small molecule allosteric agonist ML-109
195 was added to stabilize the complex. ML-109 is known to stimulate thyroid function in human
196 thyrocytes and mice¹⁴. Consistently, ML-109 activated TSHR with full efficacy (Extended Data
197 Fig. 7a) and was able to synergistically act with TSH and M22 on TSHR (Extended Data Fig.
198 7b, 7c). The density map for the ML-109 in the M22_ScFv-bound complex is clear for defining
199 the binding mode (Fig. 5a) and is thus used for our presentation below. ML-109 binds to a
200 large pocket formed by TM helices 3-7 within the top half of the TMD (Fig. 5b, 5c). In addition,
201 the long ECL2 together with ECL3 and the P10 loop form the open entry of the pocket for ML-
202 109 to dock into (Fig. 5c). The interactions of ML-109 with TSHR are almost exclusively
203 hydrophobic (Fig. 5d, 5e), with the phenyl-acetamide sitting at the top entry of the pocket to
204 interact with M572 from ECL2. The central phenyl-methoxy group is packed between M572
205 from ECL2 on one side and I640 from TM6 on the other side. The quinazolinyl group binds to
206 the bottom of the pocket with its hydroxyl pointed to V586 from TM5. The methyl benzyl group
207 interacts with I648 from TM6 and M572 from ECL2. Consistently, mutations at these residues
208 resulted in the reduction of the activation potency of ML-109 to TSHR (Fig. 5f, Extended Data
209 Fig. 7d, 7e, Table 2).

210

211 ML-109 is a TSHR-specific allosteric agonist that is not active for LHCGR and FSHR¹⁴.
212 Structure comparison of ML-109 bound TSHR with Org43553 bound LHCGR reveals very
213 similar pocket and ligand binding modes between these two structures ([Extended Data Fig.](#)
214 [7f](#)). The major difference is a 2.2 Å inward shift of LHCGR at the residue A593 from the C-
215 terminal end of TM6 relative to that of TSHR ([Extended Data Fig. 7f](#)). This inward shift has
216 caused steric collisions of A589 and A592 from TM6 of LHCGR with the central phenyl-
217 methoxy group and the bottom quinazolinyl group of ML109, thus excluding ML-109 from
218 binding to LHCGR.

219

220 **Discussion**

221 In this paper, we reported three structures of TSHR bound to its natural hormone TSH,
222 synthetic allosteric agonist ML-109, autoimmune disease antibodies M22 and K1-70 from
223 patients with Graves' disease and hypothyroidism^{27,30}, respectively. Analyses of these
224 structures reveal that TSH binding to TSHR induces a 38° rotation of its ECD toward the
225 upright active position, analogous to a 45° rotation seen in the CG-LHCGR structure. Similarly,
226 the upright active conformation of the TSH-TSHR structure is further stabilized by interactions
227 of the bound TSH with a hinge helix from the receptor. Together, these observations highlight
228 the universal mechanism of “push and pull” for activation of glycoprotein hormone receptors.

229

230 TSHR is a unique GPCR with a large ECD that has numerous autoantibodies from patients
231 with Graves' disease and hypothyroidism. The structures of TSHR bound with M22 and K1-
232 70 provide the first glimpse into the mechanism for activation and inhibition of a G protein-
233 coupled receptor by autoantibodies. Based on the structure observations, M22-mediated
234 TSHR activation appears to act through three combined mechanisms: 1) by destabilizing the
235 inactive conformation as the M22 binding mode to the inactive TSHR clashes with the
236 membrane layer, thus its binding would induce rotation of its ECD to the upright position; 2)
237 by binding site close to the ECD-TMD interface, thus stabilizing the upright active conformation;
238 and 3) by enlarging the binding interface from LRR2 to LRR12, thus alleviating the requirement
239 of the pull from the hinge loop region. In contrast, the blocking antibody K1-70 binds to the far
240 distal N-terminal LRR 1-7, which overlaps TSH binding but is compatible with the inactive ECD
241 conformation that is similar to the inactive LHCGR structure, thus providing the mechanistic

242 explanation for the blocking activity of K1-70. Together, these structures provide a basis for
243 antibody-mediated activation and inhibition of TSHR, which is highly relevant to human
244 diseases associated with the imbalance of thyroid hormones.

245

246 Our structures also reveal the binding mode of the TSHR small molecule allosteric agonist
247 ML-109, which is docked into the TMD pocket that is mostly conserved in the glycoprotein
248 hormone receptors, with a similar binding mode to Org43553 seen in the LHCGR structure.
249 However, the ML-109 binding pocket in TSHR is distinct from the Org43553 binding pocket in
250 LHCGR, particularly the inward shift of the C-terminal end of TM6, which causes clashes of
251 LHCGR with ML-109, therefore providing the basis for the selectivity of ML-109 for TSHR.

252

253 One of the most intriguing aspects of TSHR is its tendency to be prone to active and inactive
254 mutations that are highly associated with hyperthyroidism and hypothyroidism^{10,32}. The
255 locations of these active mutations are spread across in the TSHR TMD, with rich distribution
256 within the TM6 region ([Extended Data Fig. 8](#)), suggesting that the dynamic of TM6 is key to
257 TSHR activation. In agree with this notion, mutations of I640A and A644F above also resulted
258 in high levels of constitutive activation. Both of these mutations are from TM6 and modeling of
259 these two mutations suggests that they affect the packing and stability of TM6 ([Extended Data](#)
260 [Fig. 7e, Table 2](#)), thus highlighting the important role of TM6 in the receptor activation.

261

262 In summary, the structures of TSHR with endogenous hormone TSH and small molecule
263 agonist ML-109 reveal the mechanism of hormone and agonist induced receptor activation.
264 The structures with the activating antibody M22 and the blocking antibody K1-70 also uncover
265 the basis of how TSHR can be up- or down-regulated by autoantibodies, thus providing a basis
266 for antibody drug discovery targeting this therapeutically important receptor. In addition, the
267 large numbers of cholesterols surrounding the TSHR TMD provide a mechanistic explanation
268 for the long-historic observations that TSHR is preferentially located in cholesterol-rich lipid
269 rafts for its signaling.

270

271

272 **Method**

273 **Constructs**

274 Human TSHR (full-length TSHR with residues 21-764, except residues 317-366 were removed)
275 was cloned with an N-terminal FLAG and C-terminal His8 tags using homologous
276 recombination (CloneExpress One Step Cloning Kit, Vazyme). Additional mutation S281I was
277 designed to form TSHR-Gs complexes. The native signal peptide was replaced with the
278 haemagglutinin (HA) to increase protein expression. The M22 and K1-70 antibodies were
279 modified into ScFv epitopes, and cloned into pFastBac with a GP67 signal peptide and C-
280 terminal His8 tag. A dominant-negative bovine Gas construct was generated based on mini-
281 Gs³³. Additionally, three mutations (G226A, A366S and L272D) were also incorporated by site-
282 directed mutagenesis to decrease the affinity of nucleotide-binding and increase the stability
283 of Gαβγ complex³⁴. All the three G-protein components, including rat Gβ1 and bovine Gγ2,
284 were cloned into a pFastBac vector, respectively.

285

286 **Expression and purification of Nb35**

287 Nanobody-35 (Nb35) with a C-terminal His6 tag, was expressed and purified as previously
288 described¹⁸. Nb35 was purified by nickel affinity chromatography (Ni Smart Beads 6FF,
289 SMART Lifesciences), followed by size-exclusion chromatography using a HiLoad 16/600
290 Superdex 75 column and finally spin concentrated to 5 mg/ml.

291

292 **Expression and purification of M22_ScFv and K1-70_ScFv**

293 Purification of M22_ScFv and K1-70_ScFv were conducted similar as ScFv16 as previously
294 described³⁵ with a subtle change. Briefly, secreted M22_ScFv and K1-70_ScFv from
295 baculovirus-infected Hi5 insect cells (Invitrogen) were purified using nickel affinity and size
296 exclusion chromatography. The Ni-NTA eluted samples were collected and applied to a HiLoad
297 Superdex 200, 10/60 column (GE Healthcare). The monomeric peak fractions were
298 concentrated to 8 mg/mL and fast-frozen by liquid nitrogen.

299

300 **Complex expression and purification**

301 TSHR, Gas, Gβ1 and Gγ2 were co-expressed in Sf9 insect cells (Invitrogen) using the Bac-
302 to-Bac baculovirus expression system (ThermoFisher). Cell pellets were thawed and lysed in

303 20 mM HEPES, pH 7.4, 100 mM NaCl, 10% glycerol, 5 mM MgCl₂ and 5 mM CaCl₂
304 supplemented with Protease Inhibitor Cocktail, EDTA-Free (TargetMol). The TSH-TSHR-Gs
305 complex was formed in membranes by the addition of 0.5 µM TSH (Thyrogen, the TSH is a
306 recombinant protein expressed from CHO cells with natural human sequence, and is a product
307 used in clinics.), 10 µM ML-109 (TargetMol), 10 µg/mL Nb35 and 25 mU/mL apyrase. The
308 suspension was incubated for 1.5 h at room temperature. The membrane was then solubilized
309 using 0.5% (w/v) n-dodecyl β-D-maltoside (DDM, Anatrace), 0.1% (w/v) cholesterol
310 hemisuccinate (CHS, Anatrace) and 0.1%(w/v) sodium cholate for 2 h at 4 °C. The supernatant
311 was collected by centrifugation at 80,000 × g for 40 min and then incubated with M1 anti-Flag
312 affinity resin for 2 h at 4 °C. After batch binding, the resin was loaded into a plastic gravity flow
313 column and washed with 10 column volumes of 20 mM HEPES, pH 7.4, 100 mM NaCl, 10%
314 glycerol, 2 mM MgCl₂, 2 mM CaCl₂, 0.01% (w/v) DDM, 0.002%(w/v) CHS, and 0.002%(w/v)
315 sodium cholate, 0.05 µM TSH and 5 µM ML-109, further washed with 10 column volumes of
316 same buffer plus 0.1%(w/v) digitonin, and finally eluted using 0.2 mg/mL Flag peptide. The
317 complex was then concentrated using an Amicon Ultra Centrifugal Filter (MWCO 100 kDa)
318 and injected onto a Superdex200 10/300 GL column (GE Healthcare) equilibrated in the buffer
319 containing 20 mM HEPES, pH 7.4, 100 mM NaCl, 2 mM MgCl₂, 2 mM CaCl₂, 0.05 (w/v)
320 digitonin, 0.0005% (w/v) sodium cholate, 0.01 µM TSH and 1 µM ML-109. For M22_cFv bound
321 complex, 1 µM M22_ScFv was added for complex formation and 0.1 µM M22_ScFv for the
322 following procedures. The complex fractions were collected and concentrated for electron
323 microscopy experiments, respectively.

324

325 **K1-70_ScFv-TSHR complex expression and purification**

326 *Sf9* insect cells were infected with TSHR baculovirus and cultured for 48 h at 27 °C before
327 collection. Cell pellets were thawed and lysed in 20 mM HEPES, pH 7.4, 100 mM NaCl, 10%
328 glycerol, supplemented with Protease Inhibitor Cocktail, EDTA-Free. The purification
329 procedures were similar to the M22_ScFv-TSHR-Gs complex, a small molecular antagonist
330 Org 274179-0 was also in the purification buffer with 10 µM concentration.

331

332 **cAMP response assay**

333 The full-length TSHR (21–764) and mutants were cloned into pcDNA6.0 vector (Invitrogen)

334 with a FLAG tag at its N-terminus. CHO-K1 cells (ATCC, #CCL-61) were cultured in Ham's F-
335 12 Nutrient Mix (Gibco) supplemented with 10% (w/v) fetal bovine serum. Cells were
336 maintained at 37 °C in a 5% CO₂ incubator with 200,000 cells per well in a 12-well plate. Cells
337 were grown overnight and then transfected with 1 µg TSHR constructs by FuGENE® HD
338 transfection reagent in each well for 24 h. cAMP accumulation was measured using the
339 LANCE cAMP kit (PerkinElmer) according to the manufacturer's instructions. The transfected
340 cells were seeded onto 384-well plates with 2500 cells each well, and then incubated with
341 ligands for 30 min at 37 °C, then Eu and Uligh were added separately before cAMP levels
342 were measured. Fluorescence signals were measured at 620 and 665 nm by an Envision
343 multilabel plate reader (PerkinElmer). Datas were analyzed using Graphpad Prism7.0, the
344 three-parameter, nonlinear regression equation in Prism suite was used in fitting.
345 Experiments were performed at least three times, the detail information were attached in the
346 figure legends, each experiment conducted in triplicate. Datas were presented as
347 means ± SEM.

348

349 **Detection of surface expression of TSHR mutants**

350 The cell seeding and transfection followed the same method as the cAMP response assay.
351 After 24 h of transfection, cells were washed once with PBS and then detached with 0.2% (w/v)
352 EDTA in PBS. Cells were blocked with PBS containing 5% (w/v) BSA for 15 min at room
353 temperature before incubating with primary anti-Flag antibody (diluted with PBS containing 5%
354 BSA at a ratio of 1:150, Sigma) for 1 h at room temperature. Cells were then washed three
355 times with PBS containing 1% (w/v) BSA and then incubated with anti-mouse Alexa-488-
356 conjugated secondary antibody (diluted at a ratio of 1:1,000, Invitrogen) at 4 °C in the dark for
357 1 h. After another three times of washing, cells were collected, and fluorescence intensity was
358 quantified in a BD Accuri C6 flow cytometer system (BD Biosciences) through a BD Accuri C6
359 software1.0.264.21 at excitation 488 nm and emission 519 nm. Approximately 10,000 cellular
360 events per sample were collected and data were normalized to the wild type TSHR.
361 Experiments were performed at least three times, datas were presented as means ± SEM.

362

363 **Cryo-EM grid preparation and data collection**

364 For the preparation of cryo-EM grids, 3 µL of the purified protein at 20 mg/mL for the TSH-

365 TSHR-Gs complex, 30 mg/mL for the M22_ScFv-TSHR-Gs complex and 20 mg/mL for the
366 K1-70-TSHR complex, were applied onto a glow-discharged holey carbon grid (Quantifoil
367 R1.2/1.3). Grids were plunge-frozen in liquid ethane using Vitrobot Mark IV (Thermo Fischer
368 Scientific). Frozen grids were transferred to liquid nitrogen and stored for data acquisition.

369

370 Cryo-EM imaging of the TSH-TSHR-Gs complex was performed on a Titan Krios at 300 kV in
371 Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica, Chinese
372 Academy of Sciences (Shanghai China), and cryo-EM imaging of the M22_ScFv-TSHR-Gs
373 complex and K1-70-TSHR complexes were performed on a Titan Krios at 300 kV in the
374 Advanced Center for Electron Microscopy at Shanghai Institute of Materia Medica, Chinese
375 Academy of Sciences (Shanghai China).

376

377 A total of 14,965 movies for the TSH-TSHR-Gs complex was collected with a Gatan K3 Summit
378 direct electron detector with a Gatan energy filter (operated with a slit width of 20 eV) (GIF) at
379 a pixel size of 1.071 Å using the SerialEM software³⁶. The micrographs were recorded in
380 counting mode at a dose rate of about 22 e/Å²/s with a defocus ranging from -1.2 to -2.2 μm.
381 The total exposure time was 3 s and intermediate frames were recorded in 0.083 s intervals,
382 resulting in a total of 36 frames per micrograph.

383

384 A total of 6,911 movies for the M22_ScFv-TSHR-Gs complex and 5,938 movies for the K1-70-
385 TSHR, were collected by a Gatan K3 Summit direct electron detector with a Gatan energy
386 filter (operated with a slit width of 20 eV) (GIF) at a pixel size of 0.824 Å and 1.04 Å using the
387 EPU software. The micrographs were recorded in counting mode with a defocus ranging from
388 -1.2 to -2.2 μm. The total exposure time was 3.33 s and intermediate frames were recorded in
389 0.104 s intervals, resulting in a total of 36 frames per micrograph.

390

391 **Image processing and map construction**

392 Dose-fractionated image stacks were aligned using MotionCor2.1³⁷. Contrast transfer function
393 (CTF) parameters for each micrograph were estimated by Gctf³⁸. For the TSH-TSHR-Gs
394 complex, particle selections for 2D and 3D classifications were performed using RELION-3.1³⁹.
395 Automated particle picking yielded 15,576,249 particles that were subjected to 3 rounds

396 reference-free 2D classification to discard poorly defined particles, producing 2,396,330
397 particles. The map of the LHCGR-Gs-Nb35-CG-Org43553 complex (EMDB-31597) was used
398 as initial reference for 3D classification, resulting in two subsets with ECD and TSH. The
399 selected subsets were performed 3 rounds 3D classification to remove particles without clear
400 ECD. The well-defined subsets were subsequently subjected to 3D refinement and Bayesian
401 polishing. The final particles were performed non-uniform refinement in CryoSPARC⁴⁰ and
402 generated a map with an indicated global resolution of 3.04 Å with 751,617 particle projections
403 at a Fourier shell correlation of 0.143. DeepEMhancer was used for generated a sharpen map
404 to observation on the TSH and TSHR-hinge region.

405

406 For the M22_ScFv-TSHR-Gs complex, the cryo-EM data analysis was performed in
407 CryoSPARC⁴⁰. Automated particle picking yielded 2,699,981 particles that were subjected to
408 reference-free 2D classification to discard poorly defined particles, producing 931,674
409 particles. The well-defined subsets were further subjected to 2 rounds hetero-refinement and
410 a 3D classification for remove the particles without ECD. The particles were subsequently
411 subjected to non-uniform refinement. The global refinement map shows an indicated
412 resolution of 2.96 Å at a Fourier shell correlation of 0.143.

413

414 For the K1-70-TSHR complex, automated particle picking yielded 6,988,946 particles that
415 were subjected to 4 rounds reference-free 2D classification to discard poorly defined particles.
416 The LHCGR map (EMDB-31599) low-pass filtered to 60 Å was used as the initial reference
417 for hetero-refinement, resulting in two well-defined subsets. The selected subsets were
418 performed additional 3D classification, resulting a well-defined subset, which were
419 subsequently subjected to non-uniform refinement. The final refinement generated a map with
420 an indicated global resolution of 5.46 Å with 52,479 particle projections at a Fourier shell
421 correlation of 0.143.

422

423 **Model building and refinement**

424 For the TSH-TSHR-Gs and M22_ScFv-TSHR-Gs complexes, the structure of LHCGR-Gs-
425 Nb35-CG-Org43553 (PDB code: 7FIH), the structure of TSHR-ECD-M22 (PDB code: 3G04)
426 were used as the start for model rebuilding and refinement against the electron microscopy

427 map. For the K1-70_ScFv-TSHR complex, the AlphaFold model of TSHR and the structure of
428 TSHR-ECD-K1-70 (PDB code: 2XWT) were used as the start for model rebuilding and
429 refinement against the electron microscopy map. The model was docked into the electron
430 microscopy density map using Chimera⁴¹, followed by iterative manual adjustment and
431 rebuilding in COOT⁴² and ISOLDE⁴³. Real space and reciprocal space refinements were
432 performed using Phenix programs⁴⁴. The model statistics were validated using MolProbity⁴⁵.
433 The final refinement statistics were validated using the module “comprehensive validation
434 (cryo-EM)” in Phenix. The final refinement statistics are provided in **Extended Data Table 1**.
435 Structural figures were prepared in ChimeraX⁴⁶ and PyMOL (<https://pymol.org/2/>).

436

437 **Construction of membraned TSHR**

438 TSHR was firstly oriented by the Orientations of Proteins in Membranes server⁴⁷. Then, the
439 structure was inserted in 100 Å * 100 Å 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine
440 (POPC) membrane according to CHARMM-GUI server⁴⁸.

441

442 **Acknowledgments**

443 The cryo-EM data were collected at the Cryo-Electron Microscopy Research Center and
444 Advanced Center for Electron Microscopy, Shanghai Institute of Materia Medica (SIMM). The
445 authors thank the staff at the SIMM Cryo-Electron Microscopy Research Center and Advanced
446 Center for Electron Microscopy for their technical support. This work was partially supported
447 by Ministry of Science and Technology (China) grants (2018YFA0507002 to H.E.X.); Shanghai
448 Municipal Science and Technology Major Project (2019SHZDZX02 to H.E.X.); Shanghai
449 Municipal Science and Technology Major Project (H.E.X.); CAS Strategic Priority Research
450 Program (XDB37030103 to H.E.X.); the National Natural Science Foundation of China
451 (32130022 to H.E.X., 32171187 to Y.J., 82121005 to H.E.X. and Y.J.); CAMS Innovation Fund
452 for Medical Sciences (2021-I2M-1-003 to S.Z.); CAMS Innovation Fund for Medical Sciences
453 (2021-CAMS-JZ004 to S.Z.); Tsinghua University-Peking University Center for Life Sciences
454 (045-61020100121 to S. Z.); National Science & Technology Major Project “Key New Drug
455 Creation and Manufacturing Program” of China (2018ZX09711002 to H.J.); Science and
456 Technology Commission of Shanghai Municipal (20431900100 to H.J.); Jack Ma Foundation
457 (2020-CMKYGG-05 to H.J.).

458

459 **Author contributions:**

460 J.D. designed the expression constructs, purified the TSHR proteins, prepared the final
461 samples for negative stain, performed cryo-EM grid preparation and data collection,
462 conducted functional studies, and participated in map calaulations, figure and manuscript
463 preparation; P.X. performed cryo-EM data calculations, model building, and participated in
464 figure preparation; X.L. helped conceived the project, supplied the TSH hormone and Org
465 274179-0; Q.Y. participated in cryo-EM data calculations, Y-J.J participated in functional
466 studies, X.H. participated in figure preparation; H.J. and X.C. supervised X.H. in figure
467 preparation; Y.J. supervised the studies, and participated in manuscript preparation; S.Z.
468 helped conceived the project, and supervised X.L. and Y. Jin; H.E.X. conceived and
469 supervised the project, analyzed the structures, and wrote the manuscript with inputs from all
470 authors.

471

472 **Competing Interests:** The authors declare no competing interests.

473

474 **Data availability:**

475 The density maps and structure coordinates have been deposited to the Electron Microscopy
476 Database (EMDB) and the Protein Data Bank (PDB) with accession number of EMD-33491,
477 PDB ID 7XW5 for the TSH-TSHR-Gs complex; EMD-33492 and 7XW6 for the M22-TSHR-Gs
478 complex; EMD-33493 and 7XW7 for the K1-70-TSHR complex.

479

480 1 Dietrich, J. W., Landgrafe, G. & Fotiadou, E. H. TSH and Thyrotropic Agonists: Key Actors in Thyroid
481 2 Homeostasis. *J Thyroid Res* **2012**, 351864, doi:10.1155/2012/351864 (2012).

482 2 Tuncel, M. Thyroid Stimulating Hormone Receptor. *Mol Imaging Radionucl Ther* **26**, 87-91,
483 doi:10.4274/2017.26.suppl.10 (2017).

484 3 Allgeier, A. *et al.* The human thyrotropin receptor activates G-proteins Gs and Gq/11. *J Biol Chem*
485 **269**, 13733-13735 (1994).

486 4 Maenhaut, C. *et al.* Ontogeny, Anatomy, Metabolism and Physiology of the Thyroid in *Endotext*
487 (eds K. R. Feingold *et al.*) (2000).

488 5 Fan, Q. R. & Hendrickson, W. A. Structural biology of glycoprotein hormones and their receptors.
489 *Endocrine* **26**, 179-188, doi:10.1385/endo:26:3:179 (2005).

490 6 Duan, J. *et al.* Structures of full-length glycoprotein hormone receptor signalling complexes.
491 *Nature*, doi:10.1038/s41586-021-03924-2 (2021).

492 7 Jiang, X. *et al.* Structure of follicle-stimulating hormone in complex with the entire ectodomain of
493 its receptor. *Proc Natl Acad Sci U S A* **109**, 12491-12496, doi:10.1073/pnas.1206643109 (2012).

494 8 Morshed, S. A. & Davies, T. F. Graves' Disease Mechanisms: The Role of Stimulating, Blocking, and
495 Cleavage Region TSH Receptor Antibodies. *Horm Metab Res* **47**, 727-734, doi:10.1055/s-0035-
496 1559633 (2015).

497 9 Rapoport, B. & McLachlan, S. M. TSH Receptor Cleavage Into Subunits and Shedding of the A-
498 Subunit; A Molecular and Clinical Perspective. *Endocr Rev* **37**, 114-134, doi:10.1210/er.2015-1098
499 (2016).

500 10 Kopp, P. The TSH receptor and its role in thyroid disease. *Cell Mol Life Sci* **58**, 1301-1322,
501 doi:10.1007/pl00000941 (2001).

502 11 Dechairo, B. M. *et al.* Association of the TSHR gene with Graves' disease: the first disease specific
503 locus. *Eur J Hum Genet* **13**, 1223-1230, doi:10.1038/sj.ejhg.5201485 (2005).

504 12 Taylor, P. N. *et al.* Global epidemiology of hyperthyroidism and hypothyroidism. *Nat Rev
505 Endocrinol* **14**, 301-316, doi:10.1038/nrendo.2018.18 (2018).

506 13 Neumann, S. & Gershengorn, M. C. Small molecule TSHR agonists and antagonists. *Ann Endocrinol
507 (Paris)* **72**, 74-76, doi:10.1016/j.ando.2011.03.002 (2011).

508 14 Neumann, S. *et al.* Small-molecule agonists for the thyrotropin receptor stimulate thyroid function
509 in human thyrocytes and mice. *Proc Natl Acad Sci U S A* **106**, 12471-12476,
510 doi:10.1073/pnas.0904506106 (2009).

511 15 Chazenbalk, G. D. *et al.* Evidence that the thyrotropin receptor ectodomain contains not one, but
512 two, cleavage sites. *Endocrinology* **138**, 2893-2899, doi:10.1210/endo.138.7.5259 (1997).

513 16 Chen, C. R., Salazar, L. M., McLachlan, S. M. & Rapoport, B. Deleting the Redundant TSH Receptor
514 C-Peptide Region Permits Generation of the Conformationally Intact Extracellular Domain by
515 Insect Cells. *Endocrinology* **156**, 2732-2738, doi:10.1210/en.2015-1154 (2015).

516 17 Ozcabi, B. *et al.* Testotoxicosis: Report of Two Cases, One with a Novel Mutation in LHCGR Gene.
517 *J Clin Res Pediatr Endocrinol* **7**, 242-248, doi:10.4274/jcrpe.2067 (2015).

518 18 Rasmussen, S. G. *et al.* Crystal structure of the beta2 adrenergic receptor-Gs protein complex.
519 *Nature* **477**, 549-555, doi:10.1038/nature10361 (2011).

520 19 Latif, R., Ando, T., Daniel, S. & Davies, T. F. Localization and regulation of thyrotropin receptors
521 within lipid rafts. *Endocrinology* **144**, 4725-4728, doi:10.1210/en.2003-0932 (2003).

522 20 Latif, R., Ando, T. & Davies, T. F. Lipid rafts are triage centers for multimeric and monomeric
523 thyrotropin receptor regulation. *Endocrinology* **148**, 3164-3175, doi:10.1210/en.2006-1580 (2007).

524 21 A., Q. R. F. a. W. Structural Biology of Glycoprotein Hormones and their Receptors. (2005).

525 22 Smits, G. *et al.* Glycoprotein hormone receptors: determinants in leucine-rich repeats responsible
526 for ligand specificity. *EMBO J* **22**, 2692-2703, doi:10.1093/emboj/cdg260 (2003).

527 23 Pierce, J. G. & Parsons, T. F. Glycoprotein hormones: structure and function. *Annu Rev Biochem*
528 50, 465-495, doi:10.1146/annurev.bi.50.070181.002341 (1981).

529 24 A. J. Lapthorn, D. C. H. s. Crystal structure of human chorionic gonadotropin. (1994).

530 25 Fox, K. M., Dias, J. A. & Van Roey, P. Three-dimensional structure of human follicle-stimulating
531 26 hormone. *Mol Endocrinol* 15, 378-389, doi:10.1210/mend.15.3.0603 (2001).

532 26 Bruser, A. *et al.* The Activation Mechanism of Glycoprotein Hormone Receptors with Implications
533 26 in the Cause and Therapy of Endocrine Diseases. *J Biol Chem* 291, 508-520,
534 26 doi:10.1074/jbc.M115.701102 (2016).

535 27 Evans, M. *et al.* Monoclonal autoantibodies to the TSH receptor, one with stimulating activity and
536 27 one with blocking activity, obtained from the same blood sample. *Clin Endocrinol (Oxf)* 73, 404-
537 27 412, doi:10.1111/j.1365-2265.2010.03831.x (2010).

538 28 van Koppen, C. J. *et al.* Mechanism of action of a nanomolar potent, allosteric antagonist of the
539 28 thyroid-stimulating hormone receptor. *Br J Pharmacol* 165, 2314-2324, doi:10.1111/j.1476-
540 28 5381.2011.01709.x (2012).

541 29 Sanders, P. *et al.* Crystal structure of the TSH receptor (TSHR) bound to a blocking-type TSHR
542 29 autoantibody. *J Mol Endocrinol* 46, 81-99, doi:10.1530/JME-10-0127 (2011).

543 30 Sanders, J. *et al.* Human monoclonal thyroid stimulating autoantibody. *Lancet* 362, 126-128,
544 30 doi:10.1016/s0140-6736(03)13866-4 (2003).

545 31 Sanders, J. *et al.* Crystal structure of the TSH receptor in complex with a thyroid-stimulating
546 31 autoantibody. *Thyroid* 17, 395-410, doi:10.1089/thy.2007.0034 (2007).

547 32 Kleinau, G. & Vassart, G. TSH Receptor Mutations and Diseases in *Endotext* (eds K. R. Feingold
548 32 *et al.*) (2000).

549 33 Carpenter, B., Nehme, R., Warne, T., Leslie, A. G. & Tate, C. G. Structure of the adenosine A(2A)
550 33 receptor bound to an engineered G protein. *Nature* 536, 104-107, doi:10.1038/nature18966
551 33 (2016).

552 34 Liang, Y. L. *et al.* Dominant Negative G Proteins Enhance Formation and Purification of Agonist-
553 34 GPCR-G Protein Complexes for Structure Determination. *ACS Pharmacol Transl Sci* 1, 12-20,
554 34 doi:10.1021/acsptsci.8b00017 (2018).

555 35 Maeda, S., Qu, Q., Robertson, M. J., Skiniotis, G. & Kobilka, B. K. Structures of the M1 and M2
556 35 muscarinic acetylcholine receptor/G-protein complexes. *Science* 364, 552-557,
557 35 doi:10.1126/science.aaw5188 (2019).

558 36 Mastronarde, D. N. Automated electron microscope tomography using robust prediction of
559 36 specimen movements. *J Struct Biol* 152, 36-51, doi:10.1016/j.jsb.2005.07.007 (2005).

560 37 Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for improved
561 37 cryo-electron microscopy. *Nat Methods* 14, 331-332, doi:10.1038/nmeth.4193 (2017).

562 38 Zhang, K. Gctf: Real-time CTF determination and correction. *J Struct Biol* 193, 1-12,
563 38 doi:10.1016/j.jsb.2015.11.003 (2016).

564 39 Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination.
565 39 *J Struct Biol* 180, 519-530, doi:10.1016/j.jsb.2012.09.006 (2012).

566 40 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid
567 40 unsupervised cryo-EM structure determination. *Nat Methods* 14, 290-296,
568 40 doi:10.1038/nmeth.4169 (2017).

569 41 Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and analysis.
570 41 *J Comput Chem* 25, 1605-1612, doi:10.1002/jcc.20084 (2004).

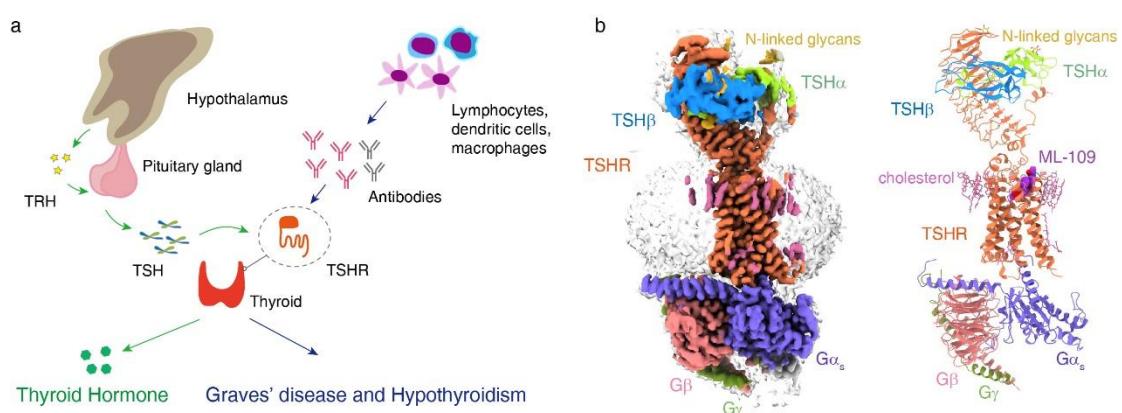
571 42 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta Crystallogr D Biol
572 42 Crystallogr* 60, 2126-2132, doi:10.1107/S0907444904019158 (2004).

573 43 Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution

574 44 electron-density maps. *Acta Crystallogr D Struct Biol* **74**, 519-530,
 575 doi:10.1107/S2059798318002425 (2018).

576 44 Adams, P. D. *et al.* PHENIX: a comprehensive Python-based system for macromolecular structure
 577 solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213-221, doi:10.1107/S0907444909052925 (2010).

578 45 Chen, V. B. *et al.* MolProbity: all-atom structure validation for macromolecular crystallography.
 579 *Acta Crystallogr D Biol Crystallogr* **66**, 12-21, doi:10.1107/S0907444909042073 (2010).


580 46 Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers, educators, and
 581 developers. *Protein Sci*, doi:10.1002/pro.3943 (2020).

582 47 Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM
 583 web server: resources for positioning of proteins in membranes. *Nucleic Acids Res* **40**, D370-376,
 584 doi:10.1093/nar/gkr703 (2012).

585 48 Jo, S. *et al.* CHARMM-GUI 10 years for biomolecular modeling and simulation. *J Comput Chem*
 586 **38**, 1114-1124, doi:10.1002/jcc.24660 (2017).

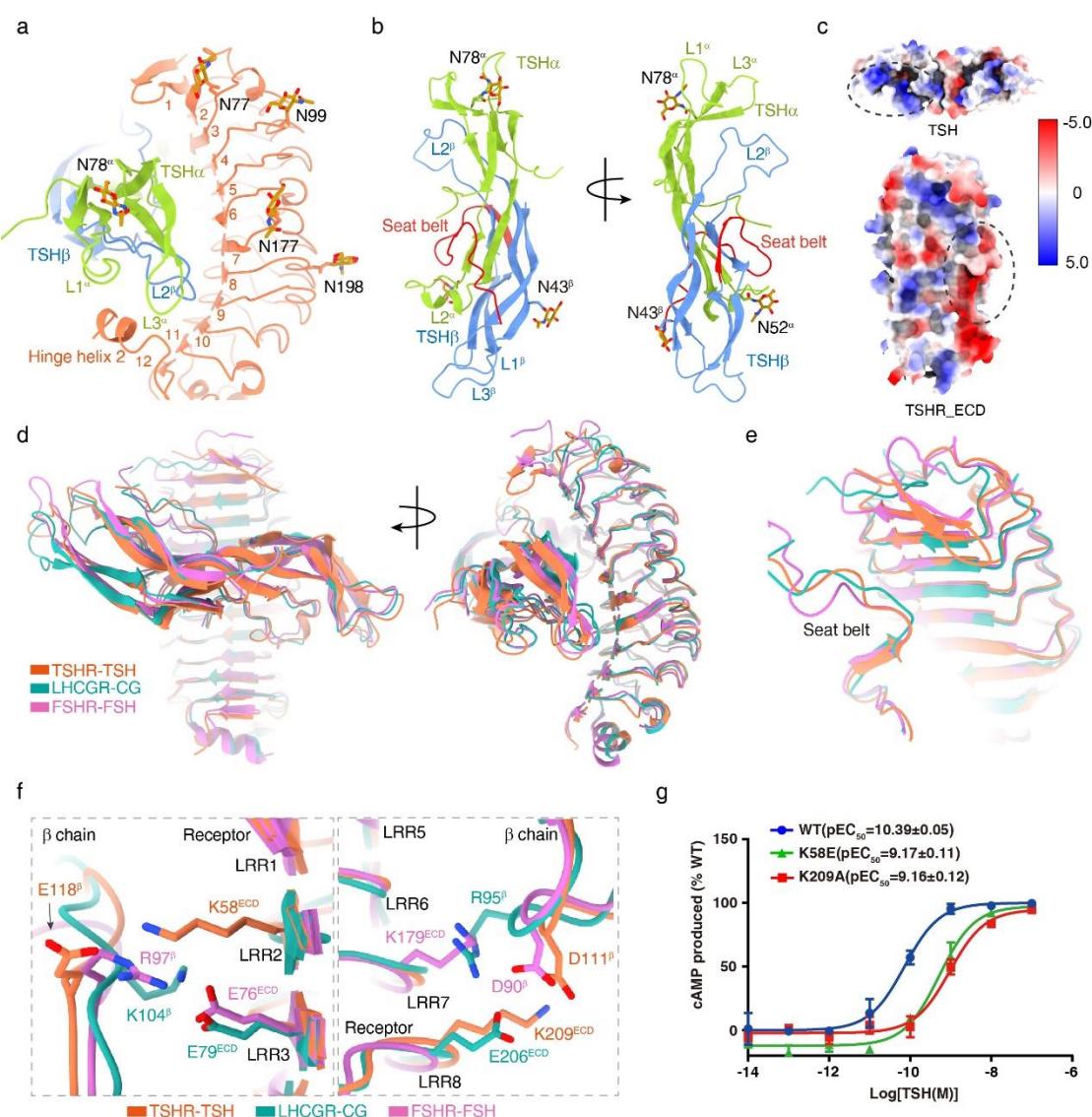

587

Figure 1

Figure 1. Cryo-EM structure of the TSH-TSHR-Gs complex. a, Schematic diagram of TSHR physiology. **b**, Cryo-EM density (left panel) and ribbon presentation (right panel) of the TSH-TSHR-Gs complex.

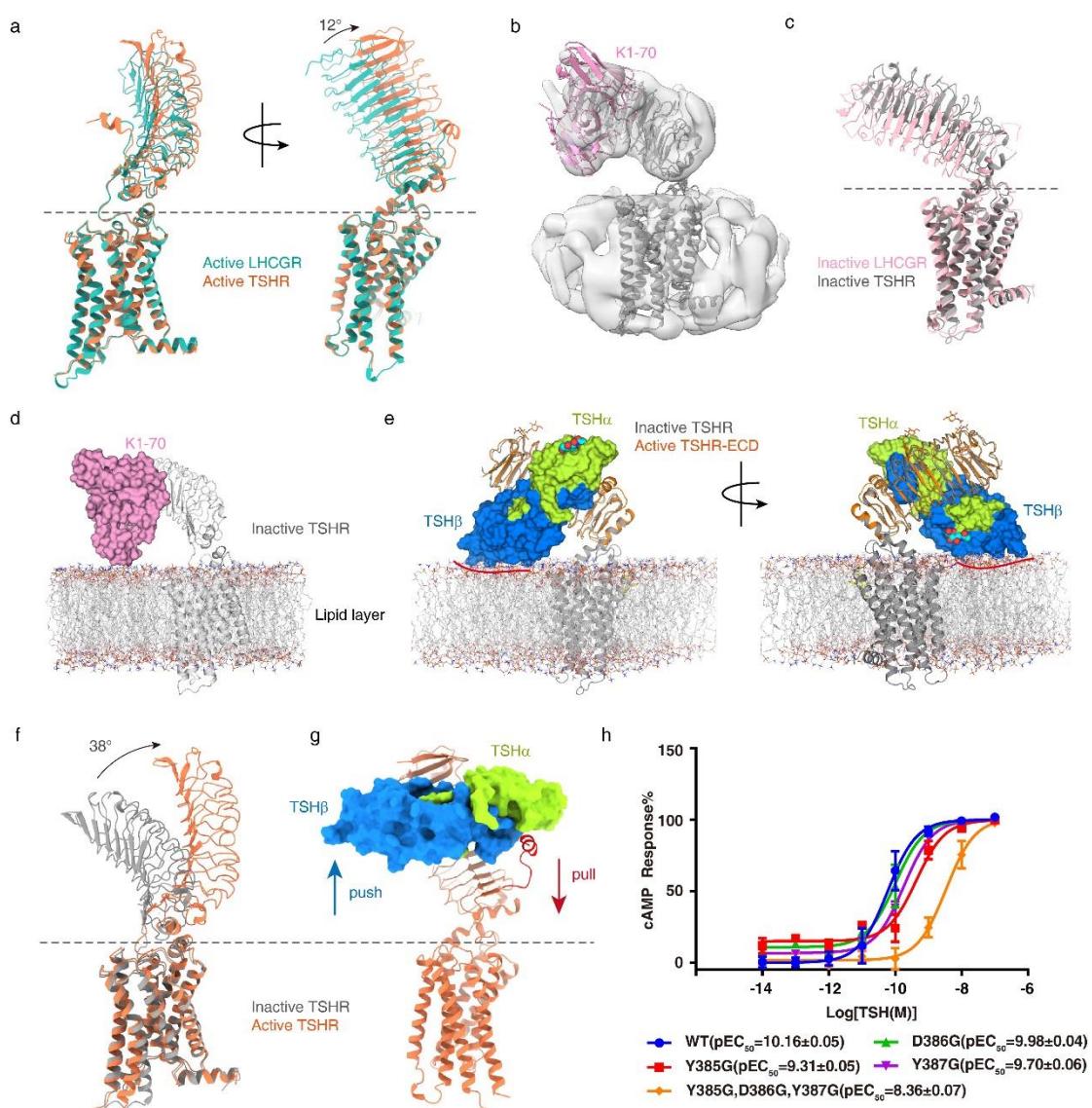

Figure 2

Figure 2. Hormone specificity and interactions between TSH and TSHR. **a**, The interface of the TSHR ECD with TSH α and TSH β subunits. The density map of the extended C-terminus of hinge helix is shown in pink. **b**, Structure of TSH α and TSH β subunits, the TSH β C-terminal “seat belt” is highlighted in red and N-linked glycans are highlighted in sphere. **c**, Surface charge distribution of TSH and TSHR-ECD, the charge complementary interactions are highlighted in black circles. **d-f**, Structural comparison of the TSH-TSHR complex with the CG-LHCGR complex (PDB code: 7FIH) and FSH-FSHR complex (PDB code: 4AY9), the oval receptor ECD structures comparison in two views (**d**), seat belt comparison (**e**), detail interactions comparison (**f**). **g**, Concentration-response

curves for point mutants in TSHR ECD. Data are shown as the mean \pm s.e.m. from three independent measurements. WT, wild type.

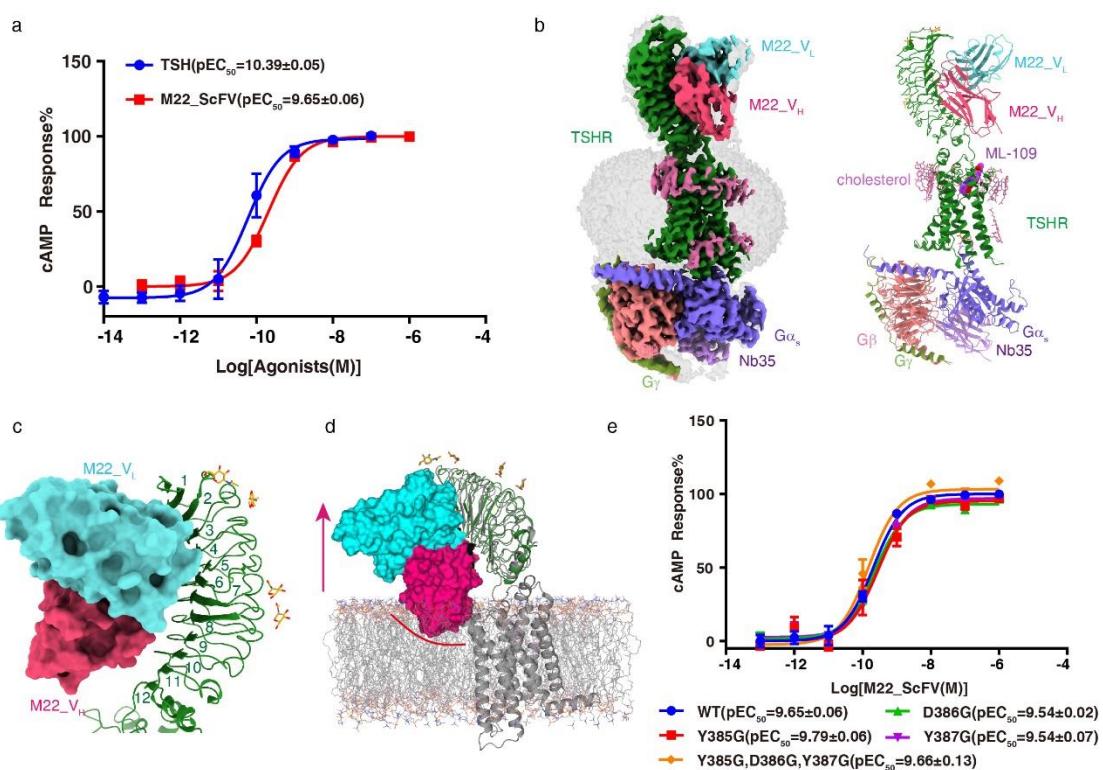

Figure 3

Figure 3. Basis for TSH-mediated TSHR activation. **a**, Structural comparison of the active full-length TSHR and LHCGR, the ECD rotation angle was measured at the C α atom of residue V87 and I281 from TSHR and D84 from LHCGR. **b**, EM density and ribbon presentation of K1-70_ScFv-TSHR. **c**, Comparison of inactive full-length TSHR and LHCGR, the ECD rotation angle was measured at the C α atom of residue V87 and S281 from TSHR and K109 from LHCGR. **d**, The putative model of K1-70_ScFv-TSHR in the membrane layer, K1-70_ScFv is shown in surface. **e**, The putative model of TSH interacts with inactive TSHR in the membrane layer, TSH is shown in surface and two N-linked glycans are shown in sphere, the clash of TSH β with the membrane layer is marked with a red box. **f**, 38° rotation angle for the inactive TSHR. **g**, Schematic of the TSH interaction with TSHR, indicating 'push' and 'pull' directions. **h**, cAMP Response% versus Log[TSH(M)] for various genotypes.

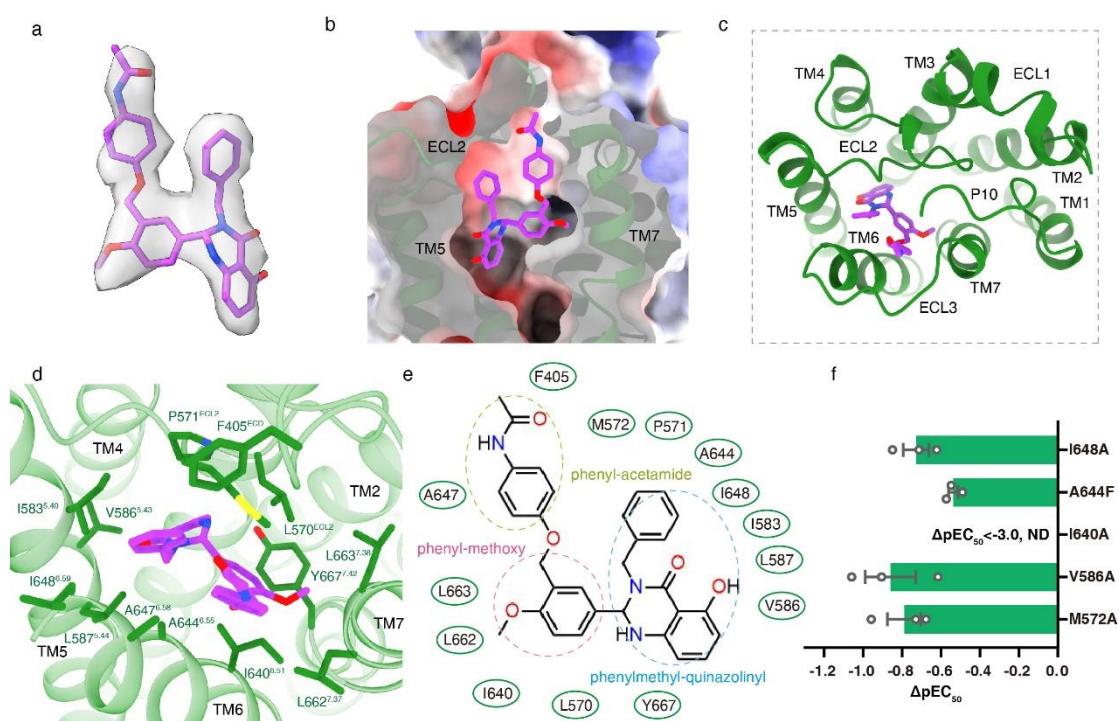

a red line. **f**, Structural comparison of the active and inactive TSHR, the ECD rotation angle was measured at the C α atom of residue N74 and S281 from inactive TSHR and N74 from active TSHR. **g**, The Schematic diagram of TSH-induced TSHR activation. **h**, Concentration-response curves for point mutants in hinge helix 2. Data are shown as the mean \pm s.e.m. from three independent measurements. WT, wild type.

Figure 4

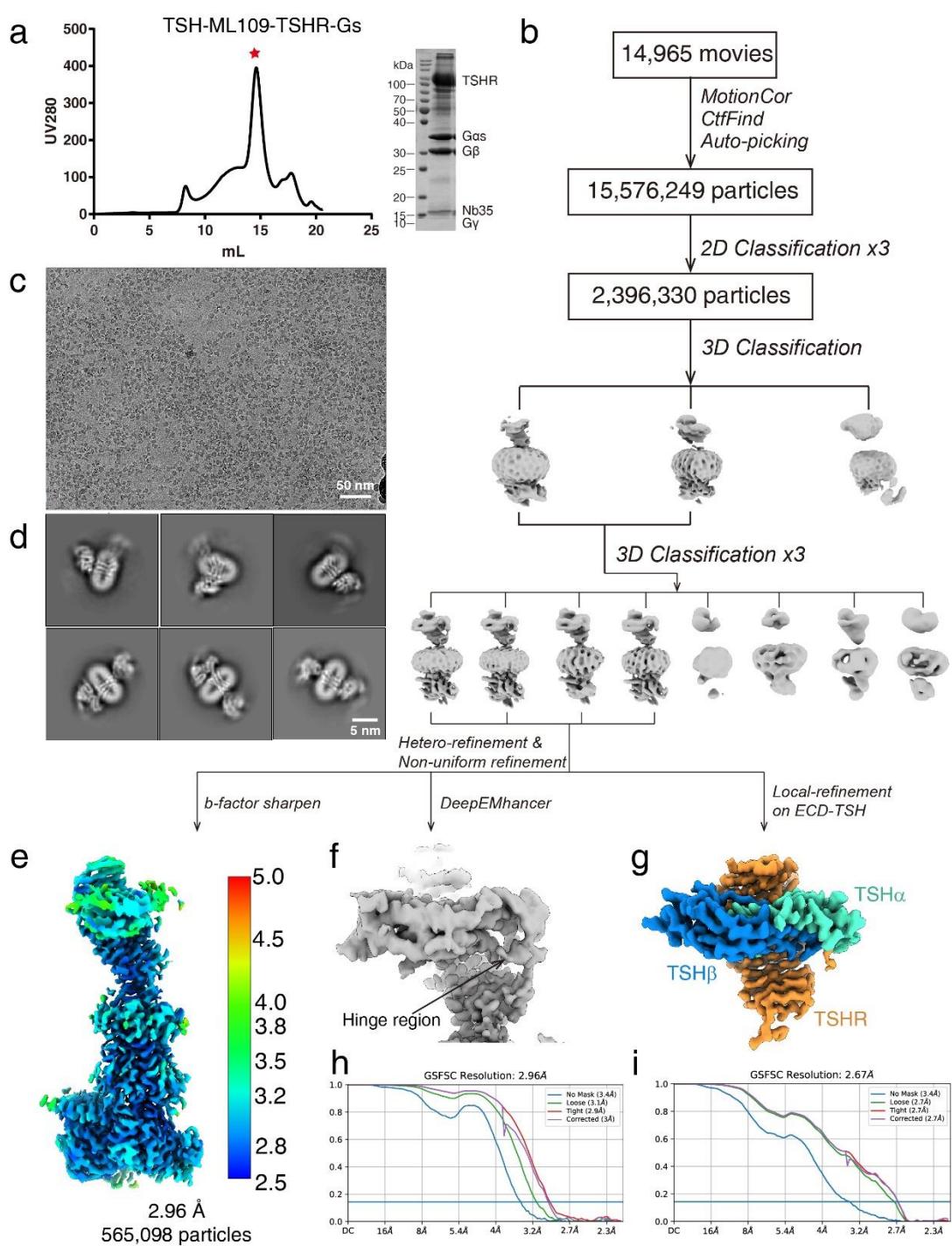
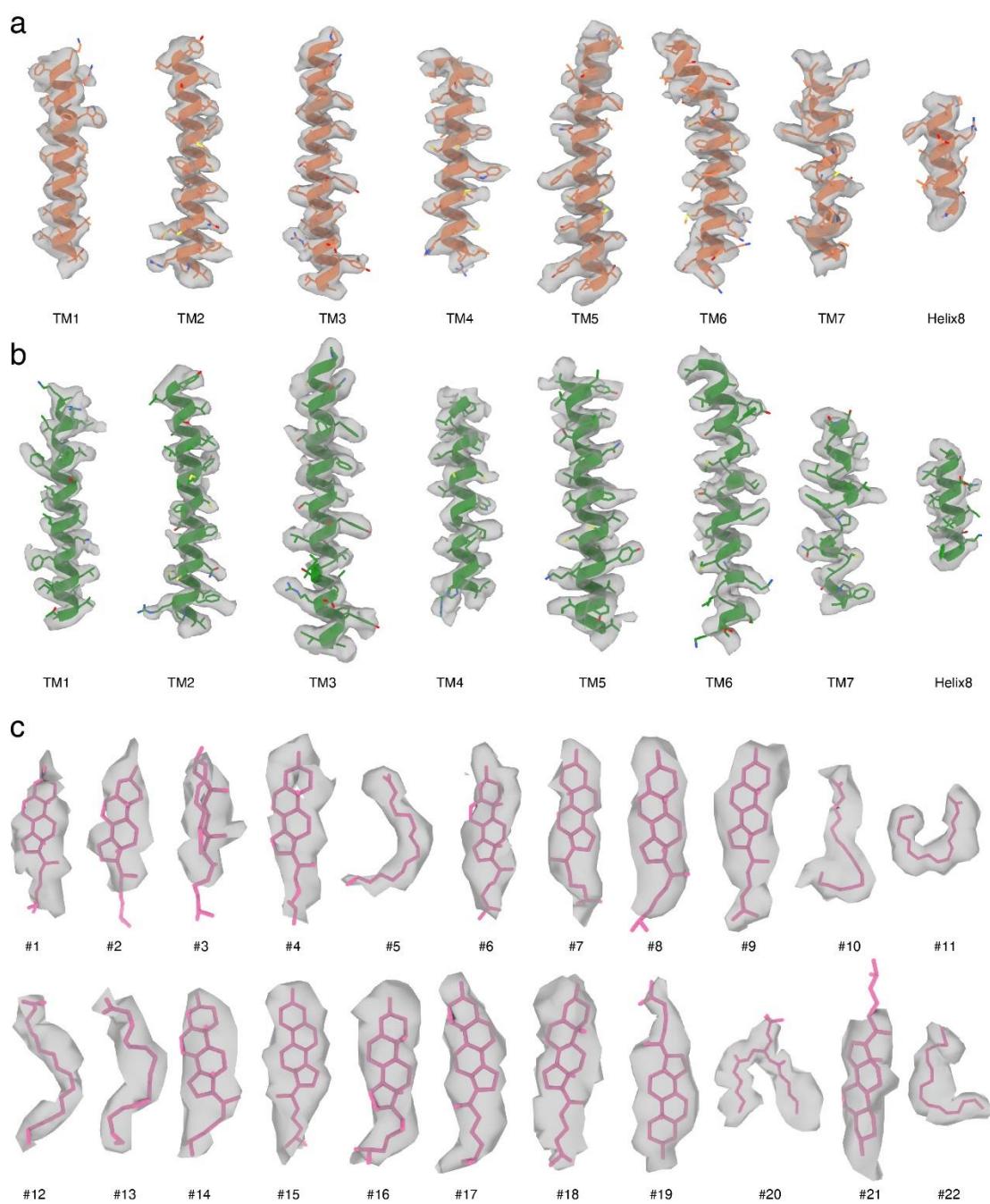
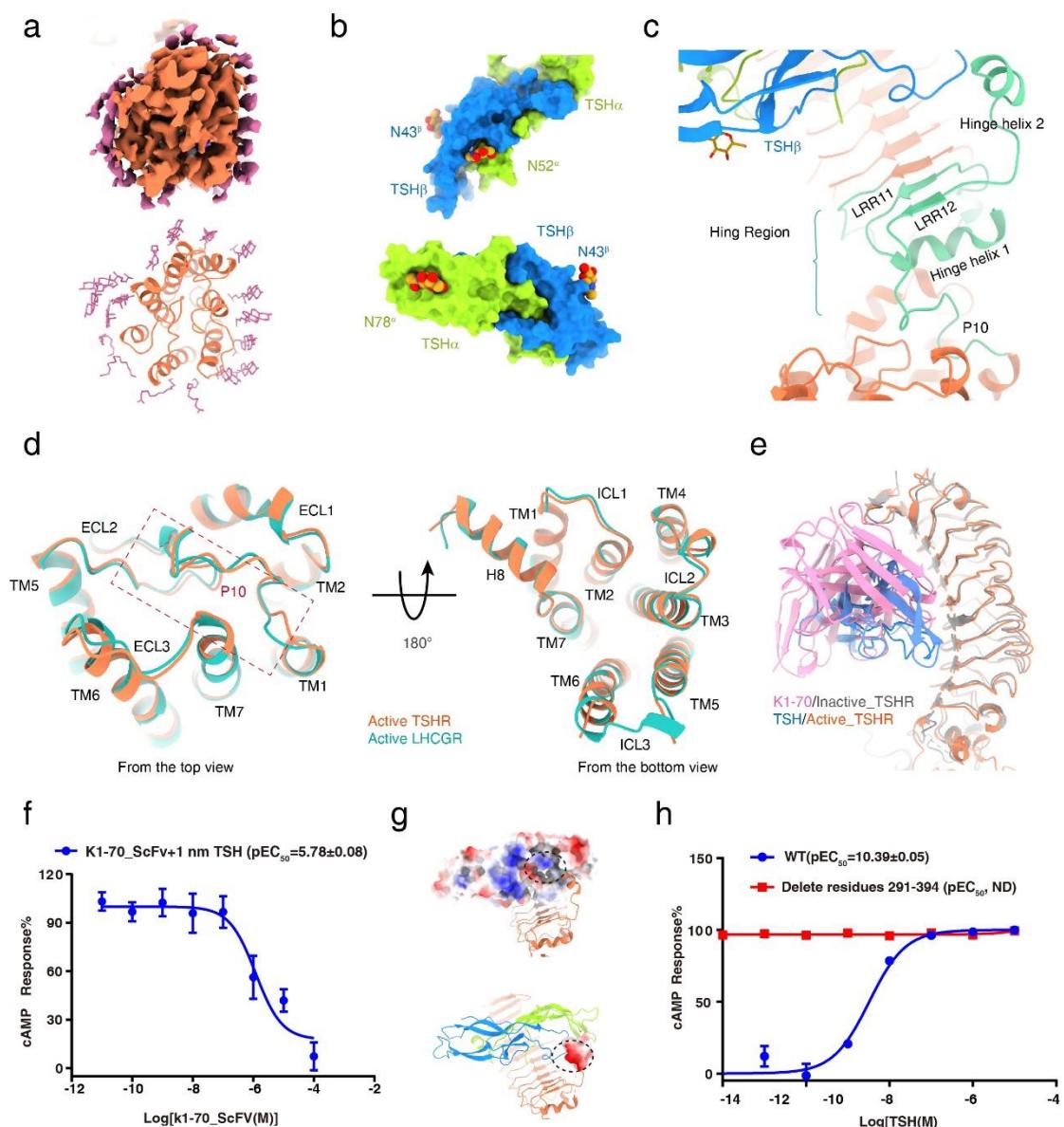

Figure 4. Basis for M22_ScFv mediated TSHR activation. **a**, Concentration-response curves for TSH and M22_ScFv induced TSHR activation. Data are shown as the mean \pm s.e.m. from three independent measurements. WT, wild type. **b**, Cryo-EM density (left panel) and ribbon presentation (right panel) of the M22_ScFv-TSHR-Gs complex. **c**, The interface of the M22_ScFv with TSHR ECD. M22_ScFv is shown in surface. **d**, The putative model of M22_ScFv interacts with inactive TSHR in the membrane layer, M22_ScFv is shown in surface and the clash of the heavy chain with the membrane layer is marked with a red line. **e**, Concentration-response curves for point mutants in hinge helix 2. Data are shown as the mean \pm s.e.m. from three independent measurements. WT, wild type.

Figure 5

Figure 5. Basis for TSHR activation by ML-109. **a**, The EM density of ML-109. **b-c**, The binding pocket of ML-109 in TSHR, from the front view (**b**) and top view (**c**). **d**, Detail interactions between ML-109 and TSHR. **e**, Structure of ML-109 and schematic representation of ML-109-TSHR interactions. **f**, Effects of different pocket mutations on the efficacy of ML-109-induced cAMP accumulation. Data are shown as the $\Delta pEC_{50} \pm$ s.e.m. from three independent measurements.


Extended Data Fig. 1

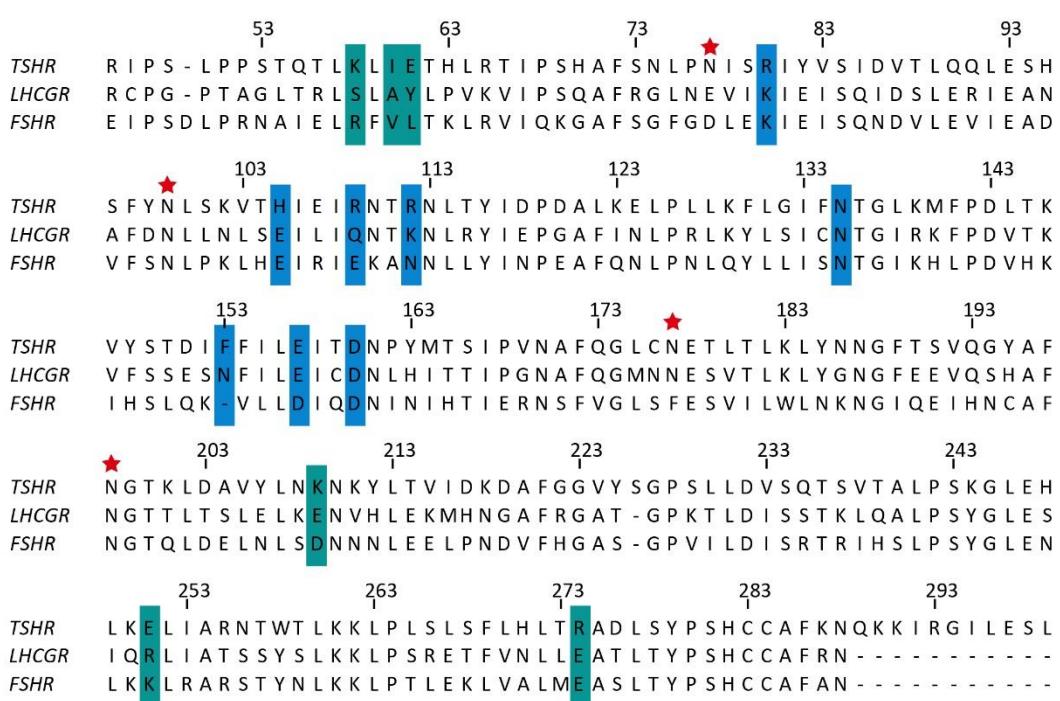
Extended Data Fig. 1 Cryo-EM images and single-particle reconstruction of the TSH-TSHR-Gs complex. **a**, Size-exclusion chromatography elution profile and SDS-PAGE of the TSH-TSHR-Gs complex. Red star indicates the monomer peak of the complex. **b-d**, Cryo-EM micrograph, reference-free 2D class averages, and flowchart of cryo-EM data analysis of the TSH-TSHR-Gs complex. **e**, Cryo-EM map of the TSH-TSHR-Gs complex


colored by local resolutions from 2.5 Å (blue) to 5.5 Å (red). **f**, The density map of TSH-TSHR ECD subcomplex from DeepEMhancer analysis. **g**, The density map of TSH-TSHR ECD subcomplex from local refinement. **h, i**, The “Gold-standard” Fourier shell correlation (FSC) curve indicates that the overall resolution of the electron density map of the TSH-TSHR-Gs complex is 2.96 Å, and the local resolution of the electron density map of the TSH-TSHR ECD subcomplex is 2.67 Å.

Extended Data Fig. 2

Extended Data Fig. 2 Cryo-EM image density maps with all transmembrane helices, and H8. a, TSHR TMD density maps in TSH-TSHR-Gs complex; b, TSHR TMD density maps in M22_ScFv-TSHR-Gs complex. c, Cholesterol and lipid density maps in M22_ScFv-TSHR-Gs complex.

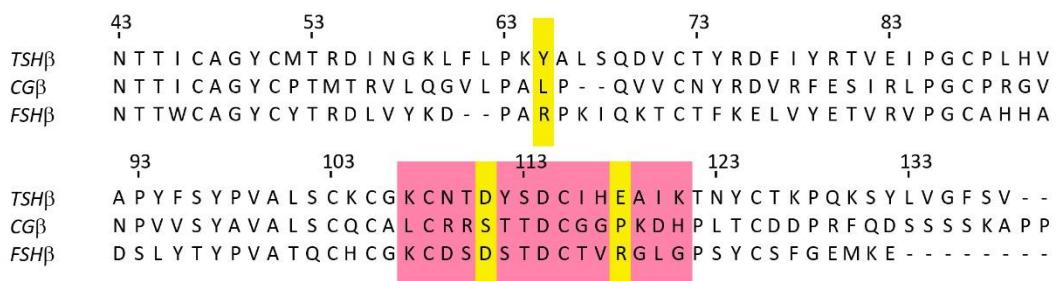
Extended Data Fig. 3

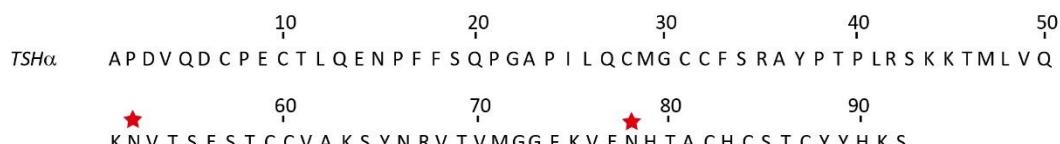


Extended Data Fig. 3 Structural features of TSHR in TSH-TSHR-Gs complex. **a**, Cryo-EM density (top panel) and ribbon presentation (bottom panel) of cholesterol molecules around the TSHR TMD in the TSH-TSHR-Gs complex. **b**, Surface representation of TSH α and TSH β subunits, the three N-linked glycans are shown in sphere. **c**, Ribbon presentation of hinge region in TSHR. **d**, Structure comparison of active TSHR and active LHCGR TMD, top view (c) and bottom view (d). **e**, Structure alignment of TSH-TSHR ECD and K1-70-TSHR ECD. The binding interface of TSH overlaps with K1-70_ScFv. **f**, Concentration-response curves for TSHR cAMP accumulation with K1-70_ScFv and 1 nm

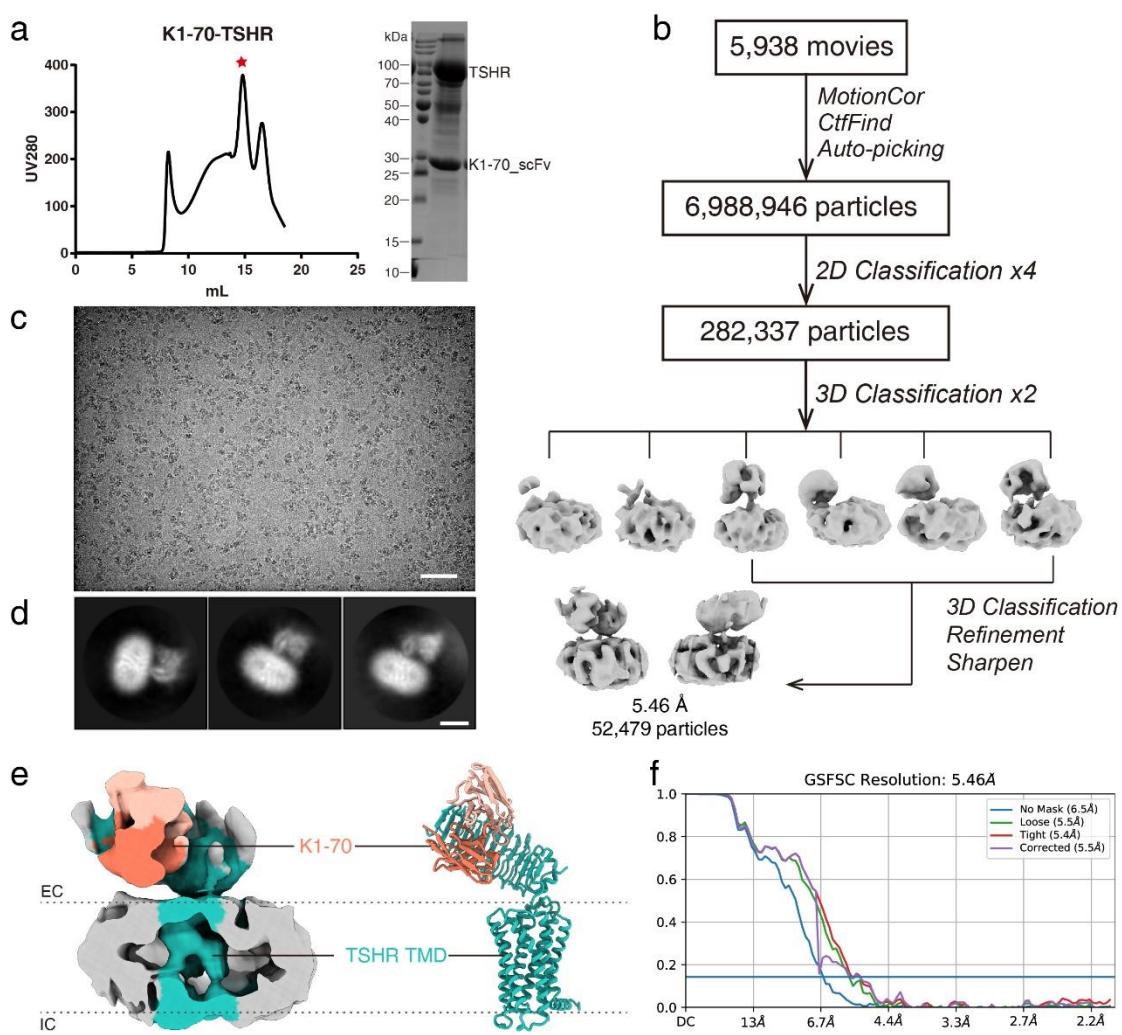
TSH. **g**, The positively charged pockets in TSH and negatively charged hinge helix 1 surface are highlighted in black circles. **h**, Concentration-response curves for TSHR hinge loop deletion. Data from three independent experiments are presented as the mean \pm s.e.m.

Extended Data Fig. 4

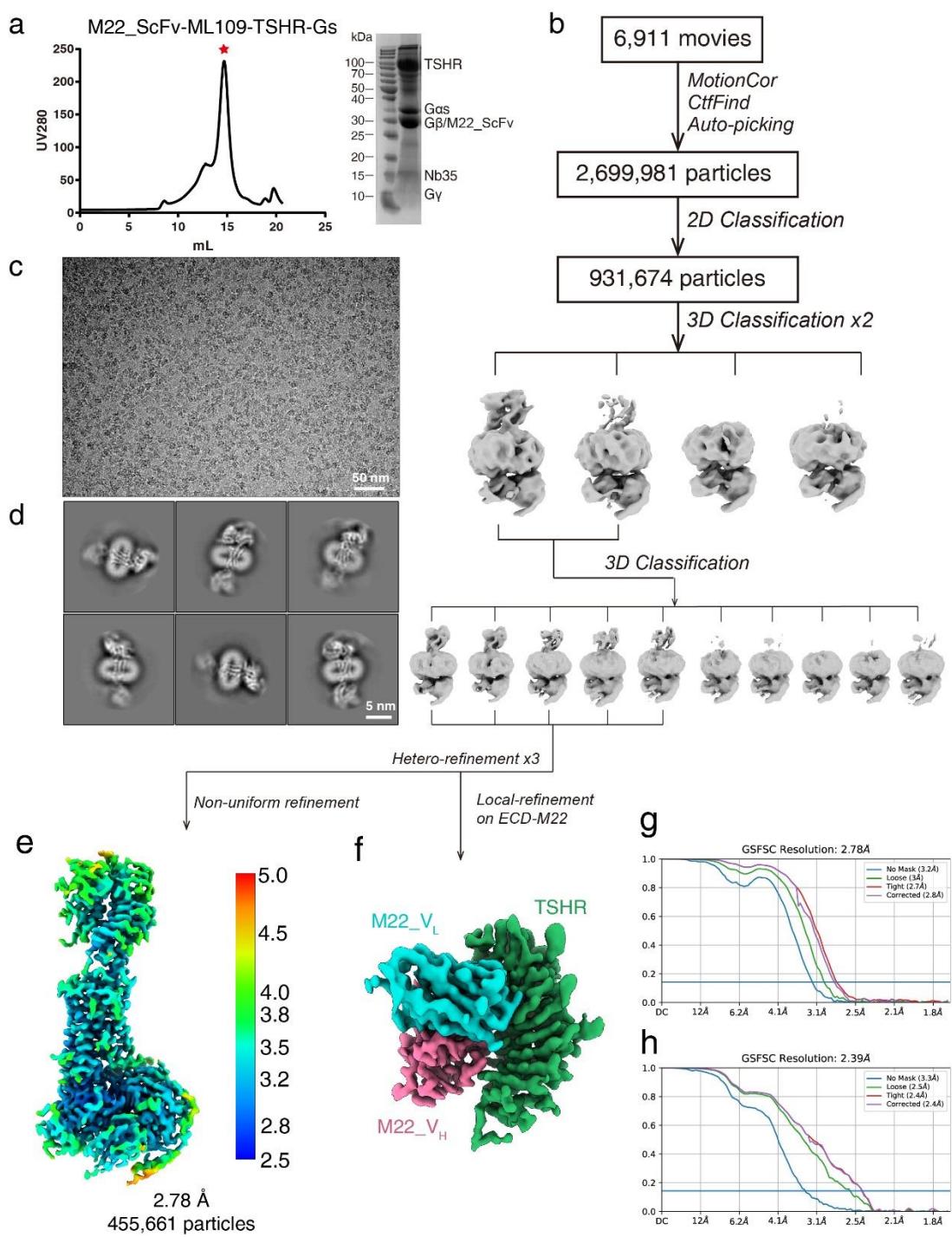

a


b

c

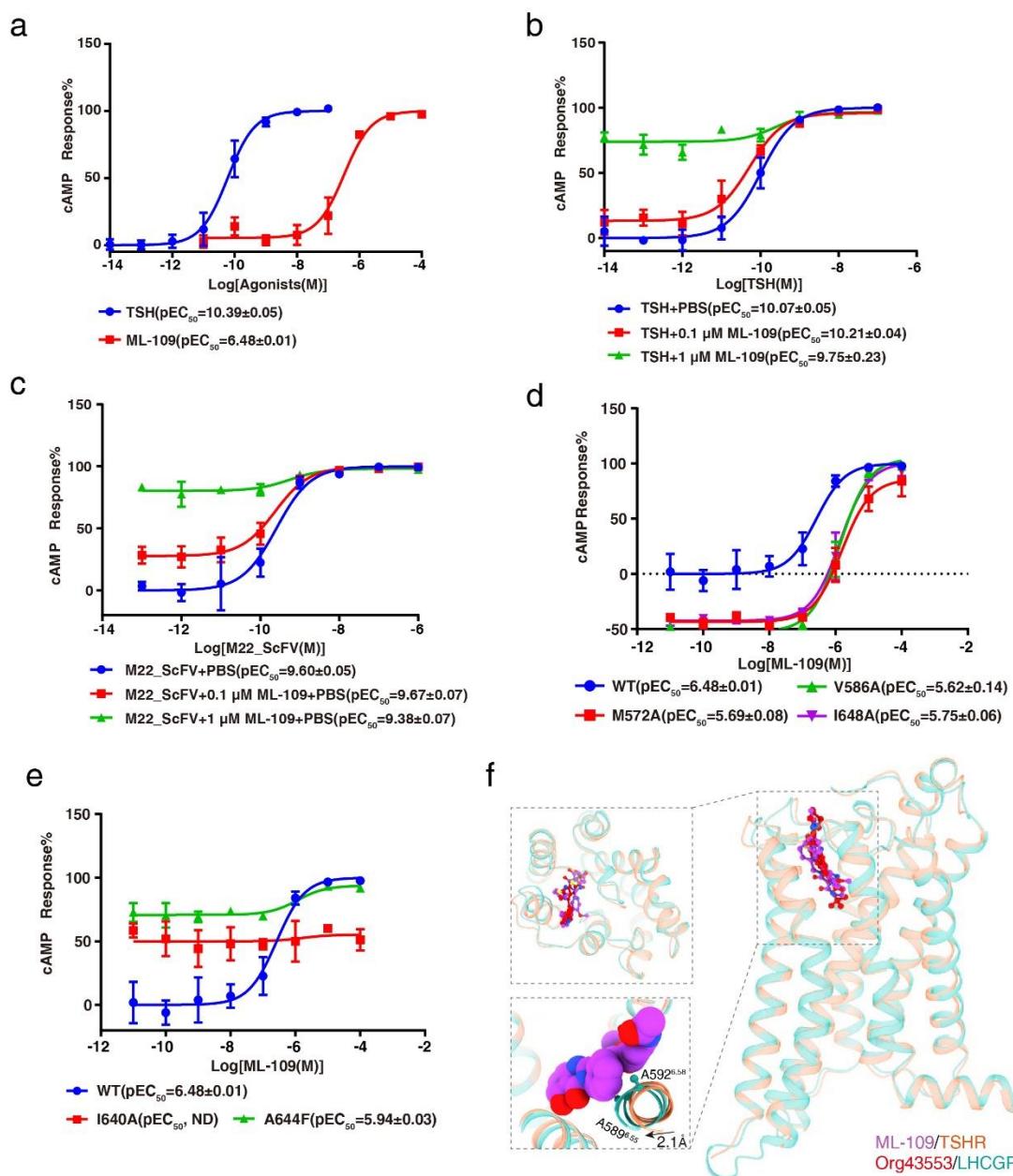

d

Extended Data Fig. 4 Sequence alignment of glycoprotein hormones and related receptors. a, Sequences alignment of human TSHR, LHCGR and FSHR in the region of the hormone-binding domain. Residues interact with TSH labeled in light sea green and residues that determine TSH-TSHR specificity were labeled in light sea green. b,


Sequences alignment of human TSHR, LHCGR and FSHR in the region of the P10 fragments. P10 is shown in green. **c**, Sequences alignment of human TSH, CG and FSH β subunit. The may interface of TSH β interacted with TSHR are highlighted in red, residues that determine TSH-TSHR specificity were labeled in yellow. **d**, The α -subunit sequence of glycoprotein hormones. Structure resolved N-linked glycans are highlighted with red stars.

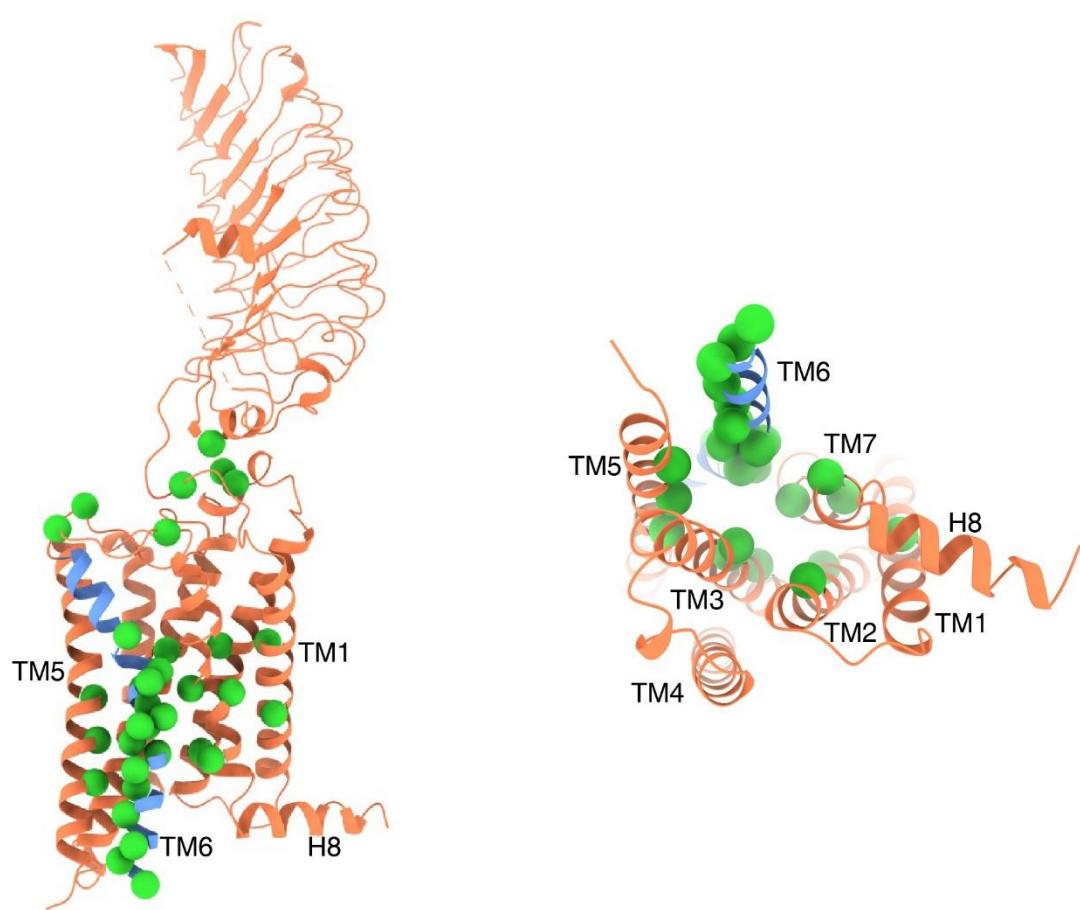
Extended Data Fig. 5

Extended Data Fig. 5 Cryo-EM image and single-particle reconstruction of the K1-70_ScFv-TSHR complex. a, Size-exclusion chromatography elution profile and SDS-PAGE of the K1-70_ScFv-TSHR complex. Red star indicates the monomer peak of the two complex. **b-d**, Cryo-EM micrograph, reference-free 2D class averages, and flowchart of cryo-EM data analysis of the K1-70_ScFv-TSHR complex. **e**, K1-70_ScFv-TSHR complex map and model. **f**, The “Gold-standard” Fourier shell correlation (FSC) curves indicate that the overall resolution of the K1-70_ScFv-TSHR complex is 5.46 Å.


Extended Data Fig. 6

Extended Data Fig. 6 Cryo-EM images and single-particle reconstruction of the M22_ScFv-TSHR-Gs complex. a, Size-exclusion chromatography elution profiles and SDS-PAGEs of the M22_ScFv-TSHR-Gs complex. Red star indicates the monomer peak of the complex. **b-d**, Cryo-EM micrograph, reference-free 2D class averages, and flowchart

of cryo-EM data analysis of the M22_ScFv-TSHR-Gs. **e**, Cryo-EM map of the M22_ScFv-TSHR-Gs complex colored by local resolutions from 2.5 Å (blue) to 5.0 Å (red). **f**, Cryo-EM map of the M22_ScFv-TSHR ECD subcomplex from local refinement. **g, h**, The “Gold-standard” Fourier shell correlation (FSC) curves indicate that the overall resolution of the electron density map of the M22_ScFv-TSHR-Gs complex is 2.78 Å, and the local resolution of the electron density map of the M22_ScFv-TSHR ECD subcomplex is 2.39 Å.


Extended Data Fig. 7

Extended Data Fig. 7 The binding pocket of ML-109 in the top half of the TMD. a-e
 Concentration-response curves for TSH, M22_ScFv and ML-109-induced TSHR activation. Data from three independent experiments are presented as the mean \pm s.e.m. TSH and ML-109 induced TSHR activation, respectively (a); TSH plus ML-109 induced TSHR activation (b); M22_ScFv plus ML-109 induced TSHR activation (c);

ML-109 alone induced mutated TSHR activation (**d-e**). **f**, Structure comparison of ML-109 binding pocket in the TSH-TSHR-Gs complex with Org43553 binding pocket in the CG-LHCGR-Gs complex.

Extended Data Fig. 8

Extended Data Fig. 8 Constitutively active mutations in TSHR. The constitutively active mutations are highlighted in green spheres.

Extended Data Table 1: Cryo-EM data collection, refinement and validation statistics.

	TSHR-Gs-Nb35-	TSHR-TSH	TSHR-Gs-Nb35-	TSHR-M22	TSHR
	TSH-ML109	(EMDB-xxxx)	M22-ML109	(EMDB-xxxx)	
	(EMDB-xxxx)	(PDB xxxx)	(EMDB-xxxx)	(PDB xxxx)	
	(PDB xxxx)		(PDB xxxx)		
Data collection and processing					
Magnification	46,685		60,680		48,077
Voltage (kV)	300		300		300
Electron exposure (e ⁻ /Å ²)	70		50		50
Defocus range (μm)	-1.2 to -2.2		-1.2 to -2.2		-1.2 to -2.2
Pixel size (Å)	1.071		0.824		1.04
Symmetry imposed	C1		C1		C1
Initial particle images (no.)	15,576,249		2,699,981		
Final particle images (no.)	565,098		455,661		
Map resolution (Å)	2.96	2.67	2.78	2.39	5.46
FSC threshold	0.143	0.143	0.143	0.143	0.143
Map resolution range (Å)	2.5 - 5.0		2.4 - 6.0		4.0-7.0
Refinement					
Initial model used (PDB code)	7FIH		7FIH		AlphaFold-TSHR
Map sharpening <i>B</i> factor (Å ²)	-123.8		-117.9		
Model composition					
Non-hydrogen atoms	11,739		12,893		3,923
Protein residues	1,397		1,555		794
Ligands	1		1		0
Lipids	21		22		0
NAG	7		4		0
B factors (Å²)					
Protein	82.41		134.58		549.08
Ligand	92.74		24.31		-
R.m.s. deviations					
Bond lengths (Å)	0.016		0.016		0.001
Bond angles (°)	1.598		1.595		0.441
Validation					
MolProbity score	0.92		1.35		0.77
Clashscore	0.51		0.23		0.88
Poor rotamers (%)	0.00		0.10		0.00
Ramachandran plot					
Favored (%)	96.37		95.40		98.60
Allowed (%)	3.63		4.60		1.40
Disallowed (%)	0.00		0.00		0.00

Extended Data Table 2: Ligands-induced activation on wild type and TSHR with site-directed mutations. Data represent mean pEC_{50} ($pEC_{50} \pm SEM$), E_{max} ($E_{max} \pm SEM$), E_{min} ($E_{min} \pm SEM$). Experiments were performed in triplicate. Statistical differences between WT and mutations were determined by One-way ANOVA (and nonparametric). The E_{min} and E_{max} of TSHR mutants were normalized by WT receptor within each individual experiment, with the basal activity for WT as zero, while the fitted E_{max} of WT as 100, * $P<0.05$, ** $P<0.01$, *** $P<0.001$ versus WT.

	Constructs	pEC_{50}	E_{min}	E_{max}
TSH	WT	10.39 \pm 0.05	0	100
	K58E	9.17 \pm 0.11**	3.13 \pm 2.53	94.89 \pm 3.31
	K209A	9.17 \pm 0.12**	-2.09 \pm 0.41	99.62 \pm 0.16
	Y385G	9.33 \pm 0.08**	16.80 \pm 1.26	102.58 \pm 1.75
	D386G	9.96 \pm 0.04**	7.57 \pm 2.81	102.94 \pm 3.39
	Y387G	9.79 \pm 0.03**	4.64 \pm 1.06	102.61 \pm 3.38
	Y385G,D386G,Y387G	8.46 \pm 0.06**	0.44 \pm 0.79	104.35 \pm 4.62
	Deletion of residues 291-394	ND	ND	ND
TSH+PBS	WT	10.07 \pm 0.05	0	100
TSH+0.1 μ m ML-109		10.21 \pm 0.04	24.38 \pm 6.31	99.21 \pm 1.61
TSH+1 μ m ML-109		9.75 \pm 0.23	85.85 \pm 6.91	101.37 \pm 2.38
M22_ScFv	WT	9.65 \pm 0.06	0	100
	Y385G	9.79 \pm 0.05	-2.47 \pm 0.75	101.53 \pm 1.29
	D386G	9.54 \pm 0.02	-5.30 \pm 7.99	101.47 \pm 3.32
	Y387G	9.54 \pm 0.07	-4.40 \pm 3.52	95.76 \pm 2.19
	Y385G,D386G,Y387G	9.66 \pm 0.13	6.60 \pm 5.94	96.38 \pm 1.19
M22_ScFv+PBS	WT	9.60 \pm 0.05	0	100
M22_ScFv +0.1 μ m ML-109		9.67 \pm 0.07	33.94 \pm 4.32	102.14 \pm 1.67
M22_ScFv +1 μ m ML-109		9.38 \pm 0.07	85.74 \pm 2.79	101.5 \pm 1.82
ML-109	WT	6.48 \pm 0.01	0	100
	V586A	5.69 \pm 0.08**	-34.98 \pm 4.29	90.31 \pm 2.37
	M572A	5.62 \pm 0.14**	-41.56 \pm 5.48	92.96 \pm 6.45
	I648A	ND	ND	ND
	I640A	5.94 \pm 0.03**	72.30 \pm 2.60	98.75 \pm 4.02
	A644F	5.75 \pm 0.06**	-36.39 \pm 3.16	103.47 \pm 2.57