

1 **Title Page**

2

3 **Title: Autoantigenic properties of the aminoacyl tRNA synthetase**
4 **family in idiopathic inflammatory myopathies**

5

6 **Authors:** Charlotta Preger MSc^{1,2,3*}, Antonella Notarnicola MD, PhD^{1,2*}, Cecilia Hellström
7 MSc⁴, Edvard Wigren PhD^{1,2,3}, Cátia Fernandes-Cerqueira PhD⁵, Helena Idborg PhD^{1,2},
8 Ingrid E. Lundberg MD, PhD^{1,2}, Helena Persson PhD⁴, Susanne Gräslund PhD^{1,2,3#}, Per-Johan
9 Jakobsson MD, PhD^{1,2#}

10

11 **Affiliations:** ¹Karolinska Institutet, Division of Rheumatology, Department of Medicine
12 Solna, Stockholm, Sweden, ²Karolinska University Hospital, Stockholm, Sweden, ³Structural
13 Genomics Consortium, Karolinska Institutet, Stockholm, Sweden, ⁴KTH Royal Institute of
14 Technology, Department of Protein Science, SciLifeLab, Stockholm, Sweden, ⁵IsoPlexis,
15 Branford, USA

16 **equal contribution and shared first authorship #shared last authorship*

17

18 **Corresponding Author:** Per-Johan Jakobsson, Department of Medicine Solna, Division of
19 Rheumatology, Karolinska Institutet and Karolinska University Hospital, SE-17164
20 Stockholm, Sweden, per-johan.jakobsson@ki.se

21

22 **Declaration of competing interests**

23 I.E. Lundberg has received a research grant from Bristol Myers Squibb and from Astra
24 Zeneca and has served on advisory board of Corbus Pharmaceuticals, Inc., Argenx, Kezaar,
25 Octapharma, Orphazyme, EMD Serono Research & Development Institute, and Janssen. I.E
26 Lundberg has stock shares in Roche and Novartis. The other authors declare no competing
27 interests.

28

1 **ABSTRACT**

2 **Objectives:** Autoantibodies are thought to play a key role in the pathogenesis of idiopathic
3 inflammatory myopathies (IIM). However, up to 40% of IIM patients, even those with clinical
4 manifestations of anti-synthetase syndrome (ASSD), test seronegative to all known myositis-
5 specific autoantibodies (MSAs). We hypothesized the existence of new potential autoantigens
6 among human cytoplasmic aminoacyl tRNA synthetases (aaRS) in patients with IIM.

7 **Methods:** Plasma samples and clinical data from 217 patients with, 50 patients with ASSD,
8 165 without, and two with unknown ASSD status were included retrospectively, as well as
9 serum from 156 age/sex-matched population controls. Samples were screened using a
10 multiplex bead array assay for presence of autoantibodies against a panel of 118 recombinant
11 protein variants, representing 33 myositis-related proteins, including all 19 cytoplasmic aaRS.
12 **Results:** We identified reactivity towards 16 aaRS in 72 of the 217 patients. Twelve patients
13 displayed reactivity against nine novel aaRS. The novel autoantibody specificities were
14 detected in four patients previously seronegative for MSAs and in eight with previously
15 detected MSAs. We also confirmed reactivity to four of the most common aaRS (Jo1, PL12,
16 PL7, and EJ (n=45)) and identified patients positive for anti-Zo, -KS, and -HA (n=10) that
17 were not previously tested. A low frequency of anti-aaRS autoantibodies was detected in
18 controls.

19 **Conclusion:** Our results suggest that most, if not all, cytoplasmic aaRS may become
20 autoantigenic. Autoantibodies against new aaRS may be found in plasma of patients
21 previously classified as seronegative with potential high clinical relevance.

22

23 **Keywords:** autoantibodies, anti-synthetase syndrome, anti-aaRS, idiopathic inflammatory
24 myopathies, aminoacyl tRNA synthetases

25

1 **1. Introduction**

2 Idiopathic inflammatory myopathies (IIM) are characterized by a broad spectrum of clinical
3 manifestations with high mortality and morbidity [1, 2]. Autoantibodies have been identified
4 in more than 50% of patients with IIM, and autoimmunity is thought to play a key role in the
5 pathogenesis of the disease. One sub-group of IIM, named anti-synthetase syndrome (ASSD),
6 is characterized by the presence of autoantibodies targeting aminoacyl transfer(t) RNA
7 synthetases (aaRS), together with specific clinical manifestations such as myositis, interstitial
8 lung disease (ILD), arthritis, mechanic's hand, Raynaud's phenomenon, and fever [3, 4].
9

10 There are nineteen cytoplasmic aaRS in human cells, including the bifunctional EPRS (Glu-
11 ProRS), one for each amino acid [5]. The most common anti-aaRS autoantibody (anti-Jo1),
12 targeting histidyl tRNA synthetase (HisRS), is present in up to 20-30% of IIM patients [3],
13 and up to 90% of patients with IIM and ILD [6, 7]. Besides HisRS, there are seven other
14 identified autoantigens within the aaRS family in IIM/ASSD [8-11]. Of these, only five are
15 included in the most commonly used commercial assays; anti-Jo1, -PL7, -PL12, -EJ, and -OJ
16 (anti-HisRS, -ThrRS, -AlaRS, -GlyRS, and -IleRS, respectively) [8], indicating a possible
17 underrepresentation of the number of positive patients with anti-aaRS autoantibodies. In
18 addition, there is a potential presence of non-identified anti-aaRS autoantibodies targeting one
19 of the other cytoplasmic aaRS proteins.
20

21 A few studies have mentioned additional autoantigens within the human aaRS family,
22 including LysRS (SC), TrpRS (WARS), GlnRS (JS), and SerRS [12-15]. Currently, there is
23 limited data available on the detection of these additional aaRS autoantigens. Moreover, anti-
24 OJ autoantibodies targeting IleRS, one of the members of the intracellular multi-synthetase
25 complex (MSC), have been suggested to potentially target several members of this complex
26 [16, 17], which consists of eight aaRS and three scaffold proteins; aaRS complex interaction
27 proteins (AIMP) 1, -2 and -3 [18].
28

29 In this study, we tested the hypothesis that the entire aaRS family displays autoantigenic
30 properties. In addition, we explored the correlations between clinical manifestations and anti-
31 aaRS autoantibody status within patients with ASSD and IIM.
32

1 **2. Materials and methods**

2 ***2.1 Patients and population controls***

3 Plasma samples from 217 consecutive patients with IIM attending Karolinska University
4 Hospital between 1995 and 2014 were retrospectively identified for this cross-sectional study.
5 Classification of IIM was according to the European League Against Rheumatism/American
6 College of Rheumatology (EULAR/ACR) criteria (probability threshold of 55%) [19]. The
7 2017 European Neuromuscular Centre (ENMC) criteria were applied to classify immune-
8 mediated necrotizing myopathies (IMNM) [20]. Patients were further sub-grouped into ASSD
9 or non-ASSD based on Connors criteria [21], including at least one positive test for any of
10 five anti-aaRS antibodies (anti-Jo1, -PL7, -PL12, -EJ, and -OJ) ever tested by line blot
11 (Euroimmun), immunoprecipitation or ELISA, together with one or more of the following
12 clinical manifestations: ILD, myositis, arthritis, Raynaud's phenomenon, fever, or mechanic's
13 hands. Diagnosis of ILD was based on the American Thoracic Society criteria [22]. High-
14 resolution computed tomography (HRCT) and spirometry data were checked for consistent
15 features of ILD. Cardiac involvement was considered if any of the following events occurred
16 during the disease course: pericarditis, myocarditis, arrhythmia, sinus tachycardia. Cancer
17 diagnosis was assigned to patients if ever confirmed during the follow-up (interval between
18 time of diagnosis and last visit at the Rheumatology Clinic). Smoking status was defined as
19 never/ever smoker. Ethnicity was determined at the first visit by the patient self-reporting, and
20 then each patient's ethnicity has been classified by the responsible physician according to a
21 fixed set of categories. Immunosuppressive treatment was recorded at the time of the plasma
22 sampling. Human leukocyte antigen (HLA)-DRB1 genotyping data was retrieved as
23 previously described [23] for selected patients. For more information see Supplementary
24 Material. The 156 population controls were individuals not affected by rheumatoid arthritis or
25 IIM retrospectively identified from a local biobank, and they were age and sex-matched with
26 the 217 IIM patients on group level (Supplementary Table 1). To control for sample
27 differences between serum and plasma, we compared available plasma and sera from 151
28 patients with IIM (Supplementary Methods, and Supplementary Fig. 1). This study was
29 approved by the Ethics Committee at Karolinska Institutet, Sweden. All patients gave written
30 informed consent.

31

1 **2.2 Recombinant proteins**

2 Two sets of proteins were used in the multiplex bead array assay. The first set consisted of 25-
3 150 amino acid long protein epitope signature tags (PrESTs), with a median of 100 amino
4 acids and were generated within the Human Protein Atlas (www.proteinatlas.org). The
5 PrESTs are produced in *Escherichia coli* (*E. coli*) and have an affinity tag consisting of a
6 hexahistidine tag and an albumin binding protein domain from streptococcal protein G
7 (His₆ABP). All PrESTs represents a protein sequence with low homology to other human
8 proteins [24, 25]. The second set of proteins were produced in *E. coli* with an Avi-tag for site-
9 specific biotinylation as previously described [26]. The amino acid coverage was based on
10 clinical interest and solved crystal structures. The selection of antigens used in this study
11 (Supplementary Data) was based on covering the complete human cytoplasmic aaRS protein
12 family, in combination with other known, and available, myositis-specific autoantigens.

13

14 **2.3 Multiplex bead array assay**

15 Neutravidin or PrESTs was amine coupled onto color-coded magnetic beads (Magplex
16 Luminex Corp.) as previously described [27, 28], and internal controls were included. The
17 next day, biotinylated proteins were added to the neutravidin coupled beads and incubated
18 overnight at 4°C. The following day all beads were pooled, and the volume was adjusted to
19 enable the addition of 500 beads per ID to each sample well in a 384 well plate.

20

21 Plasma or serum was diluted (1:250) in assay buffer (phosphate buffered saline (PBS), 0.05%
22 (v/v) Tween-20, 3% (w/v) bovine serum albumin (BSA), 0.01 mg/ml neutravidin and 0.16
23 mg/ml hexahistidine and albumin binding protein tag (His6ABP)) and incubated for 1 h.
24 Beads and diluted plasma or serum were added to each well, and the plate was incubated for 2
25 h before washing three times with PBS-T (0.05% (v/v) Tween-20). Captured antibodies were
26 fixated to the beads in 0.2 % paraformaldehyde [28] for 10 min before washing three times
27 with PBS-T. Secondary R-Phycoerythrin conjugated Goat F(ab')2 Fragment anti-Human IgG
28 (γ) (H10104, Invitrogen) was added, the plate was incubated for 30 min before washing three
29 times with PBS-T and final addition of PBS-T to each well. The samples were analyzed on
30 FLEXMAP3D (Luminex Corp.), using xPONENT software (Luminex Corp.), recording
31 median fluorescence intensity (MFI).

32

1 **2.4 ELISA**

2 An ELISA was developed to validate the new anti-aaRS findings. Briefly, biotinylated
3 recombinant proteins were added to streptavidin-coated plates. Plasma was diluted and added
4 before adding a horseradish peroxidase-conjugated anti-human IgG antibody and TMB
5 substrate. For more details see Supplementary Methods.

6

7 **2.5 Statistical analysis**

8 The bead array data were processed in R using RStudio. Based on the quality control analysis,
9 the MFI signals were normalized by antigen in the analysis of serum, scaling the 25th
10 percentile of each antigen to a common value. All samples were normalized per sample by
11 transforming the median fluorescence intensity (MFI) values per sample into number of
12 median absolute deviations (MADs) around the sample median for both sample types [28].
13 For reproducibility purposes, the multiplex bead array assay was run twice for plasma.
14 Samples that yielded a higher value than the cut-off in both runs, for any of the included
15 versions of the specific protein, were assigned positive. Four different cut-offs were tested,
16 before selecting 100xMAD (Supplementary Table 2, Supplementary Fig. 2-3).

17

18 Statistical analyses were performed with Statistical Package for the Social Sciences (SPSS,
19 version 22.0, IBM software, USA). Continuous variables with normal distribution were
20 presented as means with standard deviations (SD), while variables that violated normality
21 were presented as medians with inter-quartile range (IQR). Groups were compared using the
22 independent sample t-test and Mann Whitney U tests. Differences in distributions of
23 categorical variables between groups were tested using the chi-square test and Fisher's exact
24 test when appropriate. Agreement between the results obtained by different tests was
25 calculated using Cohen's Kappa coefficient.

26

27 Principal component analysis (PCA) for binary data was performed in R using Rstudio
28 (prcomp) to dimensionally reduce the binary data of clinical manifestations. Variables were
29 centered but not scaled. If a patient was positive for the specific manifestation or phenotype, 1
30 was assigned and 0 was assigned if negative. 140/2449 (5.7%) of the data points were not
31 available (NA). The PCA analysis was done in three different ways assigning NA to either; 0,
32 1 or randomly 0 or 1, to evaluate the that the NA did not affect the analysis (data not shown),
33 and randomly selected 0 or 1 was used. After analysis, the patients were grouped according to
34 ASSD status.

1

2 **3. Results**

3 **3.1 IIM cohort: comparison between ASSD and non-ASSD patients**

4 Demographics, laboratory, and clinical data of the IIM cohort (95% Caucasian), comparing
5 50 patients with ASSD and 165 without ASSD (ASSD status not available for 2/217 patients),
6 is presented in Table 1. Raynaud's phenomenon, arthritis, ILD, and cardiac disease were
7 statistically more frequent in the ASSD group, while dysphagia was more prevalent among
8 the non-ASSD patients (Table 1). Among myositis-specific autoantibodies (MSAs), anti-Jo1
9 reactivity was most frequent in the ASSD group, while anti-TIF1 γ was most common in the
10 non-ASSD group. 69% of patients without ASSD were seronegative for any MSAs.

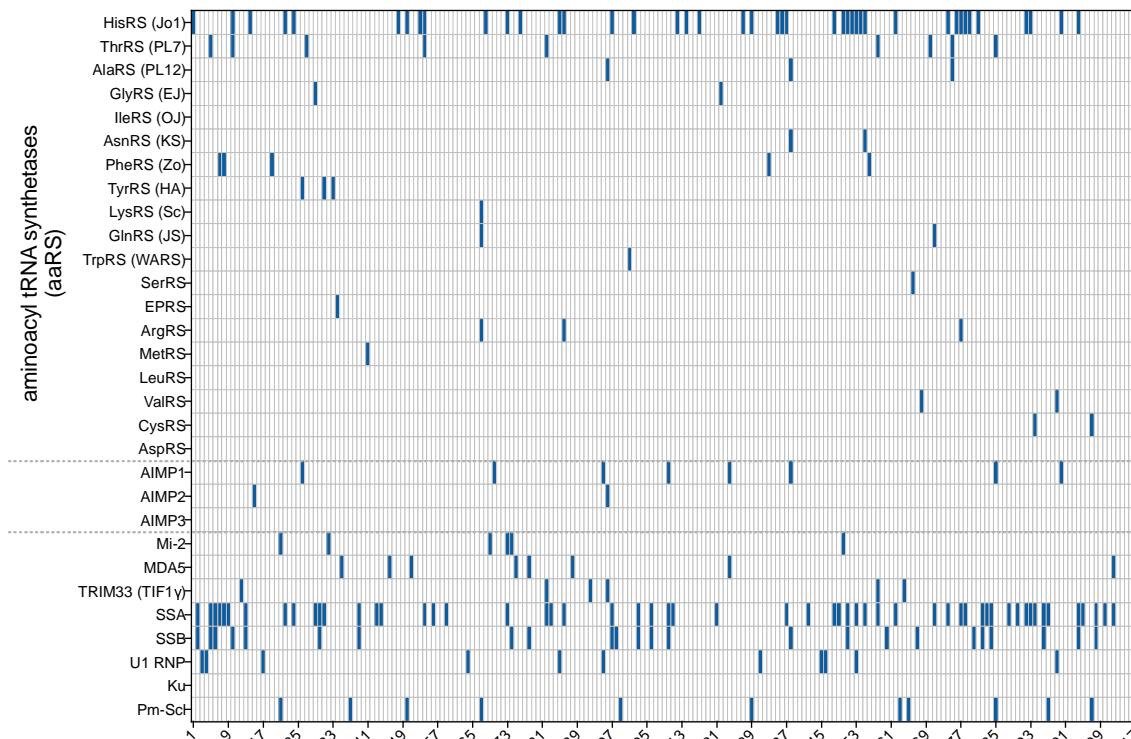
11

12 **Table 1**

13 Demographic data of the 217 patients with IIM included in the study, 50 with ASSD, 165 without ASSD, and
14 two with unknown ASSD status.

	IIM (n=217)	ASSD (n=50)	Non-ASSD (n=165)	p-value*
Age at diagnosis, mean years (SD)	56.6 (15.2)	50.6 (15.6)	58.3 (14.6)	0.001
Sex, n (%) women	137 (63.1)	34 (68.0)	101 (61.2)	NS
IIM subgroup, n (%)				0.0001
No myositis	1 (0.5)	1 (2.0)	0 (0.0)	
PM, n (%)	99 (45.6)	37 (74.0)	62 (37.6)	
DM, n (%)	75 (34.6)	9 (18.0)	64 (38.8)	
ADM, n (%)	5 (2.3)	1 (2.0)	4 (2.4)	
sIBM, n (%)	31 (14.3)	0 (0.0)	31 (18.8)	
IMNM**, n (%)	4 (1.8)	0 (0.0)	4 (2.4)	
Ethnicity, n (%) White	206 (94.9)	49 (98.0)	155 (93.9)	NS
Disease duration, median years (IQR)	0 (3)	0 (3)	0 (3)	NS
Follow-up duration, mean years (SD)	11.2 (7.8)	12.4 (8.6)	11 (7.5)	NS
Dead during follow-up, n (%)	92 (42.4)	17 (34.0)	73 (44.2)	NS
Age at death, mean (SD)	75 (10.9)	73.1 (12.5)	75.7 (10.6)	NS
Autoantibodies				
anti-Jo1, n (%)	45 (20.7)	45 (90)	0 (0.0)	0.0001
anti-PL7, n (%)	2 (0.9)	2 (4.0)	0 (0.0)	0.055
anti-PL12, n (%)	1 (0.5)	1 (2.0)	0 (0.0)	NS
anti-EJ, n (%)	1 (0.5)	1 (2.0)	0 (0.0)	NS
anti-OJ, n (%)	1 (0.5)	1 (2.0)	0 (0.0)	NS

anti-Mi-2, n (%)	5 (2.3)	0 (0.0)	5 (3.1)	NS
anti-SRP, n (%)	7 (3.2)	0 (0.0)	7 (4.3)	NS
anti-MDA5 n (%)	14 (6.5)	0 (0.0)	14 (8.6)	0.02
anti-TIF1 γ , n (%)	23 (10.6)	0 (0.0)	22 (13.6)	0.003
anti-SSA***, n (%)	63 (29)	25 (50.0)	38 (23.2)	0.0001
anti-SSB, n (%)	9 (4.1)	1 (2.0)	8 (4.9)	NS
anti-U1RNP, n (%)	19 (8.8)	6 (12.0)	13 (7.9)	NS
anti-Ku, n (%)	2 (0.9)	0 (0.0)	2 (1.2)	NS
anti-Pm-Scl***, n (%)	20 (9.2)	3 (6.5)	17 (10.5)	NS
Seronegative (no MSAs), n (%)	115 (53)	0 (0.0)	114 (69.1)	0.0001
<hr/>				
Clinical manifestations				
Other autoimmune disease, n (%)	45 (20.7)	10 (20.0)	35 (21.0)	NS
Cancer, n (%)	59 (27.2)	9 (18.0)	48 (29.1)	NS
Muscle involvement, n (%)	216 (99.5)	49 (98.0)	165 (100)	NS
Myopathic weakness, n (%)	201 (92.6)	44 (88.0)	155 (95.7)	NS
Muscle enzyme elevation, n (%)	198 (91.2)	45 (91.8)	151 (94.4)	NS
Myopathic EMG, n (%)	137 (63.1)	29 (72.5)	106 (74.6)	NS
Pathological muscle biopsy, n (%)	169 (77.9)	38 (80.9)	129 (82.7)	NS
Skin involvement, n (%)	106 (48.8)	24 (48.0)	80 (48.5)	NS
Raynaud's phenomenon, n (%)	56 (25.8)	21 (42.0)	35 (21.2)	0.04
Arthritis, n (%)	56 (25.8)	29 (58.0)	27 (17.0)	0.0001
ILD, n (%)	69 (31.8)	39 (79.6)	30 (18.9)	0.0001
Cardiac involvement, n (%)	19 (8.8)	10 (21.3)	9 (6.0)	0.004
Dysphagia, n (%)	108 (49.8)	13 (26.5)	93 (57.4)	0.0001
Smoking, n (%)	110 (50.7)	24 (57.1)	85 (64.4)	NS
Treatment at time of sample, n (%)	99 (45.6)	25 (51)	74 (45.4)	NS

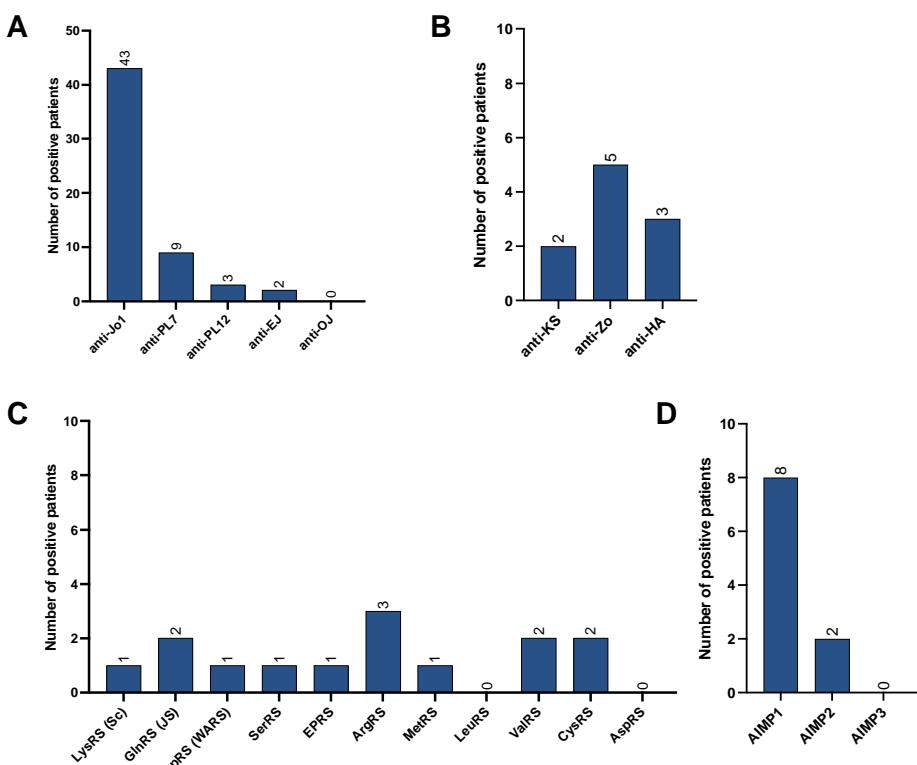

1 IIM, idiopathic inflammatory myopathies; ASSD, anti-synthetase syndrome; PM, polymyositis; DM,
 2 dermatomyositis; ADM, amyopathic dermatomyositis; sIBM, sporadic inclusion body myositis; IMNM,
 3 immune-mediated necrotizing myopathy; Jo1, HisRS; PL7, ThrRS; PL12, AlaRS; EJ, GlyRS; OJ, IleRS; Mi-2,
 4 chromatin organization modifier helicase (CHD) 3 and 4; SRP, signal recognition particle; MDA5, interferon-
 5 induced helicase C domain-containing protein 1; TIF1 γ , E3 ubiquitin-protein ligase TRIM33; SSA, Ro52
 6 (tripartite motif containing 21 (TRIM21)) and Ro60 (TROVE domain family member 2); SSB, Sjogren
 7 syndrome antigen B; U1RNP, small nuclear ribonucleoprotein U1 subunit 70; Ku, X-ray repair cross
 8 complementing (XRCC) 6; Pm-Scl, polymyositis-scleroderma overlap syndrome-associated antigen 75
 9 (exosome component 9) and 100 (exosome component 10); MSA, myositis-specific autoantibodies; EMG,
 10 electromyography; ILD, interstitial lung disease.

11 Disease duration = interval between the time of diagnosis and the time of sampling; follow-up duration =
 12 interval between the time of diagnosis and the time of the last recorded visit at the Rheumatology Unit,

1 Karolinska University Hospital, Sweden. Patients with unknown data were not included in the table nor the
2 comparison for each information. * the reported p-value is for comparisons between the ASSD and the non-
3 ASSD group of patients (information on ASSD status was not available for two patients, excluded from the two
4 groups). ** all patients with IMNM tested positive for anti-HMGCR antibodies. *** with regards to anti-SSA
5 antibodies, information on reactivity to the individual Ro52 (TRIM21) or Ro60 (TROVE2) was not available for
6 all patients and therefore not reported. The same applied to Pm-Scl where the commercial test included both Pm-
7 Scl 75 and Pm-Scl 100 but information regarding the separate antigens was not available.
8

9 **3.2 Autoantibodies detected in the multiplex bead array assay**

10 In the IIM cohort, autoantibodies against all cytoplasmic aaRS proteins except three (IleRS
11 (OJ), LeuRS, and AspRS) were detected (Fig. 1). Autoantibodies against any of the aaRS
12 were present in one-third (n=72, 33%), and of these, seven patients were positive for two and
13 one patient for three anti-aaRS antibodies (Supplementary Table 3). Nine patients from the
14 non-ASSD group were positive for anti-Jo1, -PL7, -PL12, or -EJ (Supplementary Table 4). In
15 addition, we detected reactivities to other MSA antigens (MDA5, Mi-2, and TIF1 γ), myositis-
16 associated autoantibody (MAA) antigens (SSA (Ro52 (TRIM21)), SSB, U1RNP, and Pm-
17 Scl), and to AIMP-1 and AIMP-2, two of the MSC scaffold proteins (Fig. 1 and Fig. 2D,
18 Supplementary Table 5).


19
20 **Fig 1.** Autoantibody reactivities for IIM patients. Reactivity against a panel of 30 antigens for 217 IIM patients
21 as assessed by the multiplex bead array assay. Each column represents one patient, (patient 1-217), and each row

1 represents one potential autoantigen. Reactivity was assigned positive (blue) if the criteria as defined in the
2 method section were met for at least one of the included versions of a particular protein antigen. All cytoplasmic
3 aaRS proteins are displayed above the dotted gray lines, the AIMP proteins are in between dotted lines, and
4 below are the additional myositis-related proteins included in the study. With regards to anti-SSA reactivities, all
5 56 IIM positive patients were reactive against Ro52 (TRIM21) and none against Ro60 (TROVE2), using
6 100xMADs as a cut-off.

7

8 Autoantibodies towards nine aaRS (LysRS, GlnRS, TrpRS, SerRS, EPRS, ArgRS, MetRS,
9 ValRS, and CysRS), not previously associated with IIM/ASSD were detected in 12 patients
10 (Fig. 2C, Table 2). Of these, four were in the seronegative group, *i.e.*, not presenting any other
11 MSAs, while eight had previously tested positive for MSAs (anti-Jo1 (n=3), -MDA5 (n=2), -
12 Mi2 in combination with -TIF1 γ (n=1) -TIF1 γ (n=1) and -SRP (n=1), Table 2). Of these eight,
13 we could confirm anti-Jo1 autoantibodies in two of three patients but not the other previously
14 reported MSAs (Table 2). Reactivities to known aaRS autoantigens in ASSD, not previously
15 tested in this cohort, were found in 10 individuals: AsnRS (KS, n=2), PheRS (Zo, n=5), and
16 TyrRS (HA, n=3) (Fig. 2B, Table 2). In addition, we identified patients with multiple
17 reactivities, both with known and potential novel anti-aaRS as well as other MSAs
18 (Supplementary Table 3).

19

20

1 **Fig 2.** IIM patients positive for autoantibodies against aaRS and AIMP using the multiplex bead array assay.
2 Patients with autoantibodies targeting; **(A)** the five aaRS autoantigens usually tested for in the clinic, **(B)** known
3 ASSD-associated aaRS autoantigens usually not tested for in clinical settings, and **(C)** the remaining eleven
4 human cytoplasmic aaRS not previously associated to IIM/ASSD as autoantigens. **(D)** Patients positive for
5 AIMP (1-3), the three scaffold proteins that are part of the multi-synthetase complex (MSC).

6

7 **Table 2**

8 Brief characteristics of the patients with IIM who were positive for the new aaRS autoantibody specificities not
9 previously tested in this cohort. **Upper part:** IIM patients (n=12) testing positive for anti-aaRS autoantibodies
10 other than the eight usually described. **Lower part:** IIM patients (n=10) testing positive for autoantibodies anti-
11 KS, -HA, and -Zo in this study. Previously known autoantibody status, smoking status, and clinical
12 manifestations are included. The autoantigen for the specific autoantibody is stated in the table.

Patients with IIM (n=12) positive for novel anti-aaRS autoantibodies

Patient	Clinical subgroup	Known antibody positivity	aaRS detected in this study	Smoking status	HLA-DRB1 Allele1/Allele2	Clinical manifestations	Validated by ELISA
34	non-ASSD	seroneg	EPRS	yes	*03/*15	PM	Suppl. Fig. 6
41	non-ASSD	seroneg	MetRS	yes	*03/*07	PM	Fig. 4
67	non-ASSD	seroneg	LysRS, GlnRS and ArgRS	yes	*03/*04	DM, mechanic's hands	Suppl. Fig. 7
86	ASSD	HisRS (Jo1)	HisRS (Jo1) and ArgRS	na	*03/*09	DM, mechanic's hands, ILD, arthritis, cancer	
101	non-ASSD	MDA5	TrpRS (WARS)	na	*03/*04	PM, arthritis	Suppl. Fig. 6
166	non-ASSD	Mi-2 and TIF1g	SerRS	na	*04/*15	DM, ILD, DM skin features, dysphagia, cancer	Suppl. Fig. 6
168	ASSD	HisRS (Jo1)	ValRS	yes	*08/*14	PM	Fig. 4
171	non-ASSD	MDA5	GlnRS	yes	*01/*03	PM	
177	ASSD	HisRS (Jo1)	HisRS (Jo1) and ArgRS	yes	na	Muscle weakness ⁺ , ILD	
194	non-ASSD	TIF1g	CysRS	yes	*01/*03	DM, cancer	Suppl. Fig. 6
199	non-ASSD	SRP ⁺⁺	ValRS	yes	*04/*15	PM	

207 non-ASSD seroneg CysRS no *03/*13 PM

Patients with IIM (n=10) positive for anti-aaRS autoantibodies previously not tested for

Patient	Clinical subgroup	Known antibody positivity	aaRS detected in this study	Smoking status	Clinical manifestations	Validated by ELISA
7	non-ASSD	seroneg	PheRS (Zo)	yes	PM	
8	non-ASSD	seroneg	PheRS (Zo)	yes	PM, ILD	Suppl. Fig. 8
19	non-ASSD	seroneg	PheRS (Zo)	yes	PM, Raynaud's, dysphagia	
26	non-ASSD	seroneg	TyrRS (HA)	na	sIBM, Raynaud's	
31	non-ASSD	seroneg	TyrRS (HA)	yes	DM, DM skin features, arthritis, Raynaud's, dysphagia	
33	non-ASSD	TIF1g and HGMCR	TyrRS (HA)	no	DM, DM skin features, ILD, Raynaud's, cancer, dysphagia	Suppl. Fig. 8
133	non-ASSD	TIF1g	PheRS (Zo)	yes	DM, DM skin features, cardiac involvement, dysphagia, cancer	
138	non-ASSD	seroneg	AlaRS (PL12) and AsnRS (KS)	yes	PM, calcinosis, dysphagia	Suppl. Fig. 10
155	ASSD	HisRS (Jo1)	HisRS (Jo1) and AsnRS (KS)	yes	DM, DM skin features, ILD, cancer, dysphagia	
156	non-ASSD	SRP ⁺⁺	PheRS (Zo)	yes	DM, DM skin features, calcinosis,	

1 **Upper part:** Seven of these twelve patients were selected for validation using ELISA and the result are shown in
 2 the figure stated in the last column. **Lower part:** Three of the ten patients were selected for validation using
 3 ELISA and the results are shown in the figure stated in the last column. HLA-DRB1 data was only included for
 4 the 12 IIM patients in the upper part of the table. aaRS, aminoacyl tRNA synthetase; ASSD, anti-synthetase
 5 syndrome; PM, polymyositis; DM, dermatomyositis; HMGCR, 3-hydroxy-3-methylglutaryl-coenzyme A
 6 reductase; ILD, interstitial lung disease; MDA5, interferon-induced helicase C domain-containing protein 1; Mi-
 7 2, chromatin organization modifier helicase (CHD) 3 and 4; sIBM, sporadic inclusion body myositis; na, not
 8 available; seroneg, previously no myositis specific autoantibodies detected; Suppl., supplementary; SRP, signal

1 recognition particle; TIF1 γ , E3 ubiquitin-protein ligase TRIM33. Smoking status = yes (ever smoker,) no (never
2 smoker). DM skin features = any of periungual erythema, Gottron's sign, Gottron's papules, V-sign, shawl sign,
3 erythroderma, periorbital edema, heliotrope rash. ⁺muscle weakness based on manual muscle test-8 (MMT-8)
4 below 80 and/or impaired muscle endurance by myositis functional index-2; patient 177 did not fulfill European
5 League Against Rheumatism/American College of Rheumatology (EULAR/ACR) criteria for the classification
6 of idiopathic inflammatory myopathies. ⁺⁺SRP was not included in the multiplex bead array assay.

7

8 In the population controls (PC), 32/156 (20.5%) displayed reactivity against any of the
9 included antigens (Supplementary Fig. 4), and 15 (9.6%) individuals were reactive to any of
10 the nineteen aaRS, with the highest frequency of HA (n=4), ArgRS (n=3), CysRS (n=2), and
11 LeuRS (n=2) (Table 3, Supplementary Fig. 4). Of the nine novel anti-aaRS reactivities found
12 in the IIM cohort, we detected reactivity in PC against five: LysRS (n=1), SerRS (n=1), EPRS
13 (n=1), ArgRS (n=3), CysRS (n=2). Reactivity against Mi-2 (n=9), MDA5 (n=2), SSA (n=5),
14 SSB (n=5) and Pm-Scl (n=2) was also detected. To control for sample discrepancies, 151/217
15 patients with IIM were analyzed using both serum and plasma, and 134/151 (89%) agreed
16 (Supplementary Fig. 5).

17

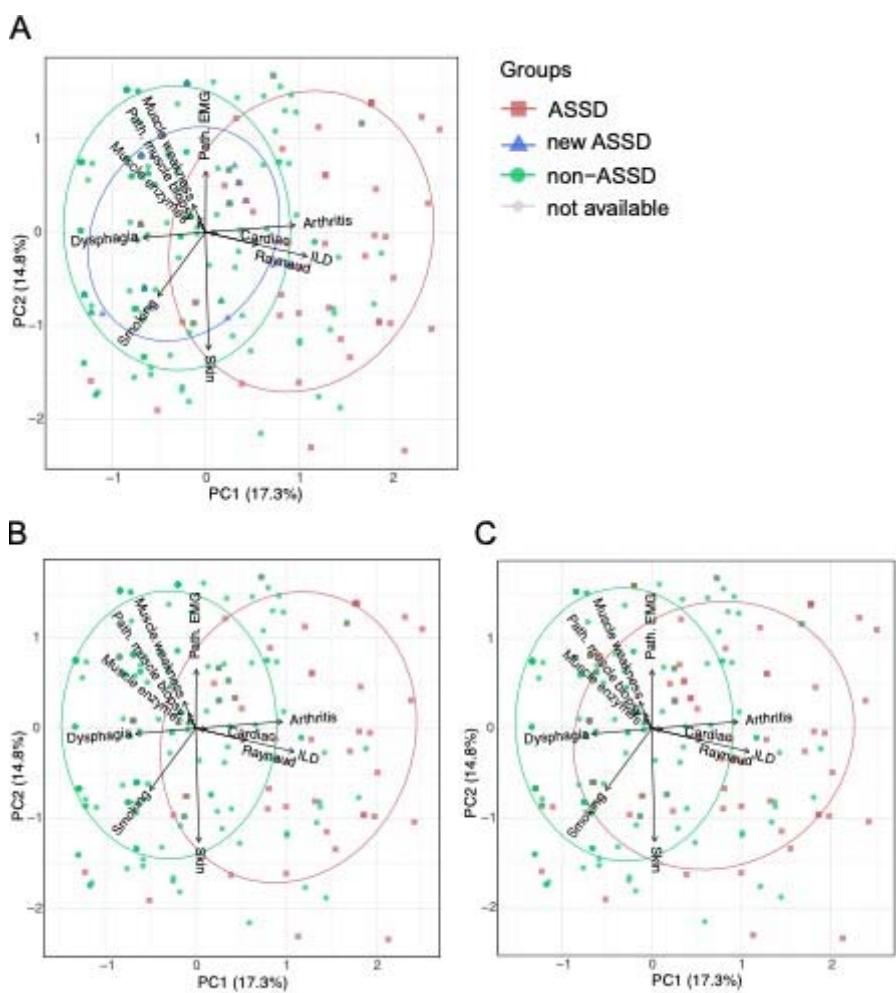
18 **Table 3**

19 Number of individuals with reactivity against aaRS in 217 IIM and 156 PC. The autoantigen for the specific
20 autoantibody is stated in the table.

Antigen	Reactive 217 IIM	Reactive 156 PC
	n (%)	n (%)
HisRS (Jo1)	43 (19.8)	1 (0.6)
ThrRS (PL7)	9 (4.1)	0 (0.0)
AlaRS (PL12)	3 (1.4)	0 (0.0)
GlyRS (EJ)	2 (0.9)	0 (0.0)
IleRS (OJ)	0 (0.0)	0 (0.0)
AsnRS (KS)	2 (0.9)	1 (0.6)
PheRS (Zo)	5 (2.3)	0 (0.0)
TyrRS (HA)	3 (1.4)	4 (2.6)
LysRS (Sc)	1 (0.5)	1 (0.6)
GlnRS (JS)	2 (0.9)	0 (0.0)
TrpRS (WARS)	1 (0.5)	0 (0.0)
SerRS	1 (0.5)	1 (0.6)
EPRS	1 (0.5)	1 (0.6)
ArgRS	3 (1.4)	3 (1.9)
MetRS	1 (0.5)	0 (0.0)
LeuRS	0 (0.0)	2 (1.3)
ValRS	2 (0.9)	0 (0.0)

CysRS	2 (0.9)	2 (1.3)
AspRS	0 (0.0)	0 (0.0)

1 aaRS, aminoacyl tRNA synthetase; IIM, Idiopathic inflammatory myopathies; PC, population control.


2

3 Clinical manifestations of the 22 patients with autoantibodies against novel aaRS and
4 previously not tested aaRS are summarized in Table 2. Myositis was diagnosed in all patients
5 with anti-HA, -Zo, or -KS (n=10), while ILD affected three. Arthritis was reported by one
6 patient with anti-HA antibodies. The three anti-HA and one anti-Zo positive patients had
7 Raynaud's phenomenon. None presented with mechanic's hands. All patients with novel
8 aaRS (n=12) had either muscle weakness and/or muscle enzyme elevation. Electromyography
9 showed myopathic changes in 7/9 patients and muscle biopsy was consistent with myositis in
10 8/12 patients. Out of eight patients with pathological muscle biopsy, all presented widespread
11 up-regulation of major histocompatibility complex class I (MHC-I), five with perivascular
12 and/or endomysial inflammatory infiltrates even invading non-necrotic muscle fibers and two
13 with perifascicular atrophy. The patient with anti-SerRS antibody reactivity had perifascicular
14 necrosis, which has been proposed to be specific for ASSD [29-31] (missing information in
15 5/8 pathological muscle biopsies). None of the patients suffered from Raynaud's
16 phenomenon. Two of the three patients with ILD, of which one also displayed arthritis and
17 mechanic's hands, had previously tested positive for anti-Jo1 autoantibodies. Of the 12
18 patients with novel anti-aaRS, only three had negative anti-nuclear antibodies (ANA) by
19 indirect immunofluorescence (IIF), while six presented with ANA positivity and
20 homogeneous, nucleolar, or granular pattern (information not available for three patients).

21

22 According to Connors criteria [21], the 22 IIM patients described above could be re-classified
23 as having ASSD. After including these in the previous classified ASSD group, we ended up
24 with 68 patients with ASSD and 147 with non-ASSD. The frequencies of clinical
25 manifestations in the two groups were the same as in the analysis reported in Table 1.
26 Principal component analysis of the clinical manifestations did not show any clear
27 differentiation between the two groups, and the 22 patients with newly detected anti-aaRS
28 reactivities were closer to the non-ASSD group (Fig. 3).

29

1

2 **Fig. 3.** Principal component analysis (PCA) of clinical manifestations and phenotypes. Analysis based on the
3 binary data of the variables; muscle involvements (pathological muscle biopsy, muscle enzymes elevation,
4 pathological EMG, and muscle weakness), skin involvement, Raynaud's phenomenon, Arthritis, interstitial lung
5 disease (ILD), cardiac involvement, dysphagia, and smoking. Scores plots PC1 vs PC2 are shown, each dot
6 represents one patient and the contribution of each variable to PC1 and PC2 are included. Some dots are
7 overlapping represented by the change of color intensity. Grouping is based on (A) ASSD classification, ASSD
8 (n=50, red), non-ASSD (n=147, green), not available ASSD status (n=2, gray), patients with a new ASSD
9 classification after this study (n=18, blue). (B) Patients are grouped based on ASSD status from clinical
10 information (before this study) ASSD (n=50, red), non-ASSD (n=165, green), and not available ASSD status
11 (n=2, gray). (C) Patients grouped based on ASSD status after reclassifying 22 patients into the ASSD group
12 ASSD (n=68, red), non-ASSD (n=147, green), and not available ASSD status (n=2, gray). Demographic data is
13 according to Table 1. The analysis indicates no clear differentiation between groups in scores plot of PC1 vs
14 PC2.

15

1 **3.3 Measurement of agreement**

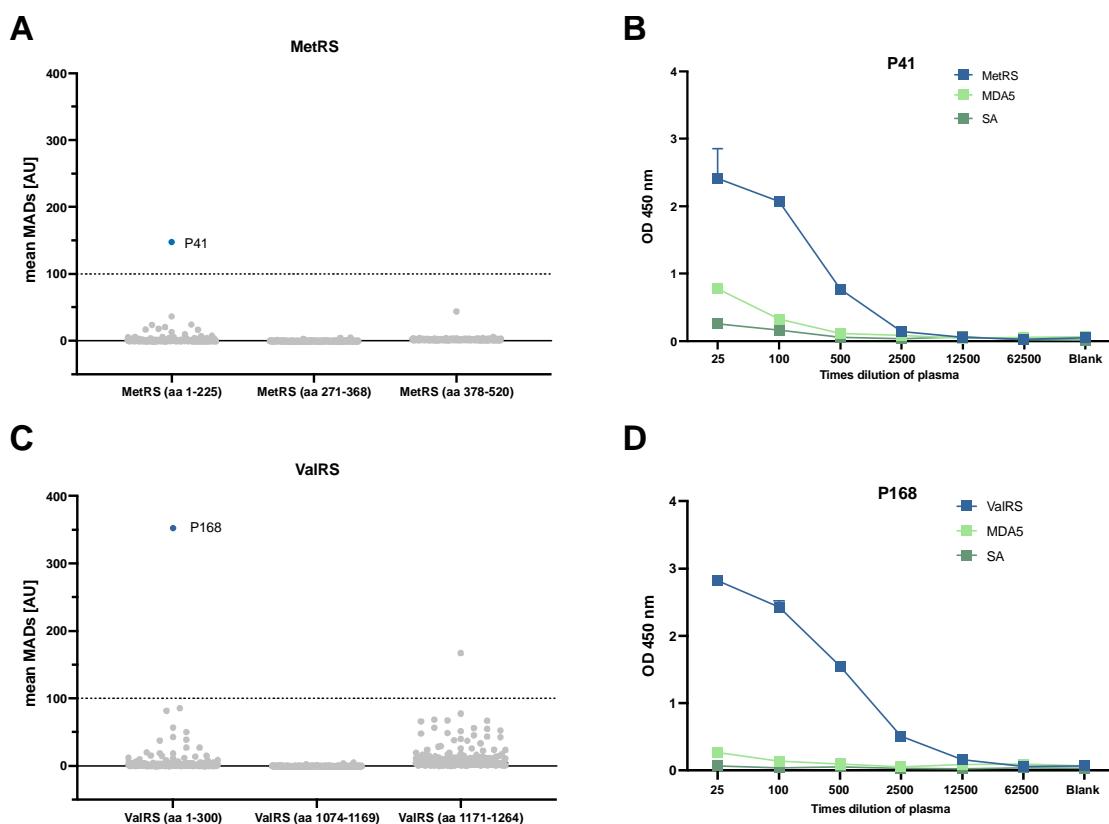
2 The antibody results obtained from this study were compared with those previously known
3 and used to stratify the IIM cohort in ASSD and non-ASSD groups (Supplementary Fig. 2-3)
4 by calculating the kappa coefficient (Table 4). 45/50 previously known anti-synthetase
5 autoantibodies could be detected in this study, all except for four anti-Jo1 and one anti-OJ
6 (Supplementary Fig. 2).

7

8 **Table 4**

9 Measurement of agreement between this study and previously known antibody status. The comparison was done
10 using the total number of positive patients for myositis-specific autoantibodies and Cohen's kappa coefficient.

	Known positivity, n	Positivity detected in current study, n	Kappa coefficient	p-value
Anti-Jo1	45	43	0.91	0.0001
Anti-PL7	2	9	0.39	0.0001
Anti-PL12	1	3	0.49	0.014
Anti-EJ	1	2	0.66	0.0001
Anti-OJ	1	0	/	/
Anti-Mi-2	5	6	-0.027	NS
Anti-MDA5	14	8	0.52	0.0001
Anti-TIF1 γ	23	6	0.31	0.0001


11 Jo1, HisRS; PL7, ThrRS; PL12, AlaRS; EJ, GlyRS; OJ, IleRS; Mi-2, chromatin organization modifier helicase
12 (CHD) 3 and 4; SRP, signal recognition particle; MDA5, interferon-induced helicase C domain-containing
13 protein 1; TIF1 γ , E3 ubiquitin-protein ligase TRIM33.

14

15 **3.4 ELISA validation**

16 To validate the findings of new anti-aaRS autoantibody reactivities in IIM, one patient
17 representing each new autoantigen was selected, and an ELISA method was developed. We
18 could confirm all but one (GlnRS) autoantibody reactivity (Fig. 4 and Supplementary Fig. 6-
19 11).

1

2

3 **Fig. 4.** Validation of bead array assay results with ELISA. Mean MADs from the bead array assay showing
4 patients with reactivity against (A) MetRS and (C) ValRS. Patient (P) 41 showed reactivity against the N-
5 terminal part of MetRS (aa 1-225) and P168 against the N-terminal part of ValRS (aa 1-300) (blue). The
6 distribution of the other 216 patients for each antigen is shown in gray. The dotted gray line represents the cut-
7 off at 100xMADs. Antibody reactivity against MetRS (aa 1-225) and ValRS (aa 1-300) were measured by
8 ELISA and absorbance values (450 nm) obtained for (B) P41 and (D) P168 are shown (blue). MDA5 (light
9 green) was used as a control protein and streptavidin (SA, green) represents the background signal. A plasma
10 sample from an MDA5 positive patient was used as a control for protein-specific background (Supplementary
11 Fig. 11). The plasma samples were diluted in a five-fold dilution series from 25 times to 62500 times. MADs,
12 median absolute deviations; OD, optical density; P, patient; SA, streptavidin.

13

14 4 Discussion

15 In this study, a well-characterized IIM cohort and population controls were screened for
16 autoantibody reactivities against the entire family of cytoplasmic aminoacyl-tRNA
17 synthetases (aaRS). Our results indicate that all cytoplasmic aaRS but two display
18 autoantigenic properties in patients with IIM.

19

1 Myositis-specific autoantibodies (MSAs) represent a fundamental diagnostic tool, helping to
2 identify different IIM subgroups characterized by distinct clinical manifestations and
3 histopathological features as well as to predict disease prognosis [32]. However, more than
4 40% of IIM patients test negative for the commonly tested, generally described MSAs [10],
5 indicating a possibility to identify yet unknown autoantigens.

6

7 Here, we explored if patients with IIM test positive for autoantibodies against any of the
8 cytoplasmic aaRS, using a multiplex bead array assay. To increase the possibility of detecting
9 new autoantigens, we included different versions of the same aaRS, either full-length or
10 truncated versions, to allow for detection of autoantibodies targeting both conformational
11 dependent and -independent epitopes. We found that more than one-third of the IIM cohort
12 tested positive for any anti-aaRS antibody, independently of previous autoantibody status. We
13 could detect autoantibodies against 16/19 cytoplasmic aaRS, including nine aaRS proteins
14 that, to our knowledge, have never been described as autoantigens in IIM before or have only
15 been reported in occasional individuals [12-15]. Importantly, reactivities against these novel
16 proteins were identified in patients previously classified as seronegative for MSAs.

17

18 For anti-Jo1, -PL12, -PL7, -EJ, and -OJ, we could confirm previously known anti-aaRS
19 antibodies in 45/50 patients, missing only four anti-Jo1 and one anti-OJ reactivities. The low
20 kappa coefficient for anti-PL12, -PL7, and -EJ could be explained by new reactivities found
21 in this study, not previously detected, or tested for. As explained above, the inclusion of
22 several antigens from the same protein might increase the possibility to detect autoantibodies.
23 Moreover, limitations with conventional methods used in the clinic have been noted. For
24 example, anti-aaRS antibodies may be negative in line blot [33], but can show a cytoplasmic
25 ANA pattern by IIF as aaRS are located mainly in the cytoplasm [5, 34].

26

27 Thirteen patients had co-existence of anti-aaRS antibodies, or anti-aaRS antibodies together
28 with other MSAs. This is of particular interest as anti-aaRS autoantibodies are usually
29 described as mutually exclusive [8-11]. Since the sequence similarities between the aaRS
30 proteins are low (Supplementary Table 3), it is unlikely that the multiple reactions are due to
31 cross-reactivity [35, 36]. Nevertheless, studies have suggested that autoantibodies from the
32 same individual could target several members of the multi-synthetase complex (MSC) [16,
33 17, 37]. Here, we found one patient, P67, with autoantibodies targeting three MSC members
34 (ArgRS, GlnRS, and LysRS) corroborating this hypothesis.

1

2 There are, to our knowledge, only a limited number of studies available investigating the
3 presence of anti-aaRS autoantibodies in population controls, particularly regarding the rarer
4 anti-aaRS autoantibodies [38-40]. Our study gives additional insight into this. Autoantibodies
5 targeting aaRS and other autoantigens were observed at low frequencies, as expected in
6 control cohorts [41]. However, the relatively high frequency of reactive subjects in the PC
7 with the rarer anti-aaRS was a surprise (Table 3). The fact that we used population controls
8 that might have other autoimmune diseases could explain some of the reactivities. Recent
9 studies reported a relatively high prevalence of anti-Zo, -KS, and -HA in a broad spectrum of
10 ILD patterns [42], and ILD has been reported as the primary clinical feature of anti-KS
11 patients [43]. In our cohort, ten patients with IIM were identified with these autoantibodies,
12 and ILD was reported only in three. Patient selection, in our study from a rheumatology
13 clinic, may explain these differences. Notably, anti-HA antibodies were found at a higher
14 frequency in PC than in the IIM cohort (2.6 vs. 1.4%). The exact meaning of this result needs
15 further investigation, and the low frequencies of the rare anti-aaRS autoantibodies found in
16 both IIM and PC should be further validated in larger cohorts. Still, our study highlights the
17 importance of including population controls in research, but also in clinical routines to define
18 appropriate cut-offs.

19

20 Twelve patients were identified with new anti-aaRS autoantibodies. Two-thirds of these were
21 HLA-DRB1*03 positive and current or previous smokers, in line with the known association
22 between HLA-DRB1*03 haplotype, smoking, and anti-aaRS antibodies [44-47]. The ANA-
23 positivity, without cytoplasmic pattern, reported in 6/12 patients could be explained by the co-
24 existents of other MSA or MAA. When investigating the clinical and histopathological
25 features of the 12 patients with novel anti-aaRS autoantibodies, we could not verify the
26 typical characteristics of ASSD, neither in clinical nor histopathological features. However,
27 this small group of patients and the fact that five of these autoantibodies were also found in
28 PC, makes it difficult to draw conclusions regarding their potential association with ASSD.
29 Similarly, anti-TrpRS autoantibodies, although previously detected in patients with
30 autoimmune diseases,[14] have not been suggested as a serological marker for ASSD since
31 the related clinical phenotype was more similar to rheumatoid arthritis than ASSD [16, 48].
32 Nevertheless, all IIM patients with novel anti-aaRS antibodies presented with muscle
33 involvement.

34

1 The novel anti-aaRS autoantibodies were mostly found in the non-ASSD group and in four
2 who were previously known as seronegative. Even though some co-existence of anti-aaRS
3 autoantibodies was found, the majority of anti-aaRS positive individuals only had one
4 detectable anti-aaRS autoantibody. For individuals previously known as seropositive, with
5 novel anti-aaRS autoantibodies detected here (n=8), the previous autoantibody positivity
6 could only be verified in two individuals. The possible reason for these discrepancies are
7 discussed in the paragraph below.

8

9 The limitations of this study include the following. Firstly, with the study design used here, it
10 is not possible to conclude if the novel aaRS autoantigens are specific for IIM or not. Both
11 TrpRS and SerRS have previously been suggested as autoantigens in other diseases [13, 14].
12 Also, the new reactivities were detected in a low frequency in IIM patients, and some also in
13 controls, and confirmation in larger cohorts is needed. Secondly, some samples were retrieved
14 after the patient started immune-modulating treatment, which could affect the presence and
15 detection of autoantibodies [49, 50]. Thirdly, we did not cover the full-length protein of all
16 autoantigens, indicating that we may have some false negatives. For example, anti-OJ
17 reactivity in patient P95 could not be confirmed in this study, in which only shorter protein
18 versions of IleRS were included. Fourthly, sample collection did not always match the
19 timepoint for MSA detection in clinic, and for some patients, data were missing. This could
20 explain why some patients presented discordant results. Finally, to minimize the risk of false
21 positives, we decided to use a high cut-off for all antigens, even though this means a higher
22 risk for false negatives.

23

24 In conclusion, our results suggest autoantigenic properties for the cytoplasmic aaRS family, as
25 well as the AIMP proteins, and we hypothesize that in a larger cohort, all aaRS might be
26 found autoantigenic. However, to infer how specific these novel autoantibodies are for IIM, or
27 for distinct clinical phenotypes, these results need to be tested in another large study. There
28 are still remaining seronegative patients left in our cohort, and we suggest to use more
29 multiplex assays in research comprising additional proteins to explore and investigate new
30 potential autoantigens. Combining serological, clinical, and histopathological findings makes
31 it possible to define more homogeneous groups in IIM to achieve an improved understanding
32 of the pathophysiology behind the muscular and extra-muscular manifestations and aim at a
33 more personalized treatment. Here, we also found low frequencies of the novel and previously
34 described anti-aaRS autoantibodies in population controls. For several of the anti-aaRS

1 autoantibodies, frequencies were similar between IIM patients and controls, and this study
2 emphasizes the importance to include population controls in screening for new
3 autoantibodies.

4

5 **Acknowledgements**

6 We thank Julia Norkko for the help with sample collection from the biobank. We also thank
7 the SciLifeLab facilities Autoimmunity and Serology Profiling and Human Antibody
8 Therapeutics (Drug Discovery and Development) for experimental assistance and use of their
9 instrumentation and infrastructure.

10

11 **Abbreviations**

12 aaRS, aminoacyl transfer (t) RNA synthetase(s); ADM, amyopathic dermatomyositis; ANA,
13 anti-nuclear antibodies; ASSD, anti-synthetase syndrome; BSA, bovine serum albumin; DM,
14 dermatomyositis; EMG, electromyography; ENMC, European Neuromuscular Centre;
15 EULAR/ACR, European League Against Rheumatism/American College of Rheumatology;
16 His₆ABP, hexahistidine and albumin binding protein tag; HLA, human leukocyte antigen;
17 HRTC, high-resolution computed tomography; IIF, indirect immunofluorescence; IIM,
18 idiopathic inflammatory myopathies; ILD, interstitial lung disease; IQR, inter-quartile range,
19 IMNM, immune-mediated necrotizing myopathy; MAA, myositis-associated autoantibodies;
20 MADs, median absolute deviations; MFI, median fluorescence intensity; MHC, major
21 histocompatibility complex; MSA, myositis-specific autoantibodies; MSC, multi-synthetase
22 complex; PBS, phosphate buffered saline; PC, population control; PCA, principal component
23 analysis; PM, polymyositis; PrEST, protein epitope signature tag; sIBM, sporadic inclusion
24 body myositis; SD, standard deviation.

25 A list of all proteins used in this study and abbreviations thereof are available in
26 Supplementary Data.

27

28 **Author contributions**

29 All authors have read and approved on the final version to be published
30 Charlotta Preger: Conceptualization, Data Curation, Methodology, Investigation, Formal
31 analysis, Visualization, Writing – Original draft, Writing – Review & Editing. Antonella
32 Notarnicola: Conceptualization, Data Curation, Investigation, Formal analysis, Visualization,
33 Writing – Original draft, Writing – Review & Editing. Cecilia Hellström: Data Curation,
34 Methodology, Investigation, Formal analysis, Writing – Review & Editing. Edvard Wigren:

1 Investigation, Formal analysis, Writing - Review & Editing. Cátia Fernandes-Cerdeira:
2 Conceptualization, Writing – Review & Editing. Helena Idborg: Formal analysis, Writing –
3 Review & Editing. Ingrid E. Lundberg: Conceptualization, Investigation, Funding acquisition,
4 Supervision, Resources, Writing – Review & Editing. Helena Persson: Conceptualization,
5 Resources, Supervision, Writing – Review & Editing. Susanne Gräslund: Conceptualization,
6 Funding acquisition, Resources, Supervision, Writing – Review & Editing. Per-Johan
7 Jakobsson: Conceptualization, Supervision, Funding acquisition, Writing – Review &
8 Editing.

9

10 **Data Availability**

11 The data underlying this article will be made available on request.

12

13 **Funding**

14 The research leading to these results has received funding support from the Structural
15 Genomics Consortium, a registered charity (number 1097737), that receives funds from
16 AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation,
17 Eshelman Institute for Innovation, Genome Canada, Innovative Medicines Initiative
18 (EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen, Merck KGaA Darmstadt Germany,
19 MSD, Novartis Pharma AG, Ontario Ministry of Economic Development and Innovation,
20 Pfizer, São Paulo Research Foundation-FAPESP, Takeda, and Wellcome [106169/ZZ14/Z],
21 <https://www.thescg.org/>, <http://www.ultra-dd.org>.

22 The Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant agreement No
23 875510. The JU receives support from the European Union's Horizon 2020 research and
24 innovation programme and EFPIA and Ontario Institute for Cancer Research, Royal
25 Institution for the Advancement of Learning McGill University, Kungliga Tekniska
26 Högskolan, Diamond Light Source Limited.

27 Swedish Rheumatism Association (Reumatikerförbundet) (R-932009, R-940595), Swedish
28 Research Council (Vetenskapsrådet) (2020-01378), Heart- and Lung foundation (Hjärt-
29 Lungfonden), King Gustaf V and Queen Victoria's Freemason foundation (Konung Gustaf
30 V:s och Drottning Victorias Frimurarestiftelse), King Gustaf V 80 year foundation (Stiftelsen
31 Konung Gustaf V:s 80-årsfond), and Region Stockholm (ALF project), KID-grant Karolinska
32 Institutet n° K24008722.

33

34 **Disclaimer**

1 This communication reflects the views of the authors and neither IMI nor the European
2 Union, EFPIA or any Associated Partners are liable for any use that may be made of the
3 information contained herein.

4

5

6 **References**

7 [1] Johnson C, Pinal-Fernandez I, Parikh R, Paik J, Albayda J, Mammen AL, et al.
8 Assessment of Mortality in Autoimmune Myositis With and Without Associated Interstitial
9 Lung Disease. *Lung.* 2016;194(5):733-7.

10 [2] Dobloug GC, Svensson J, Lundberg IE, Holmqvist M. Mortality in idiopathic
11 inflammatory myopathy: results from a Swedish nationwide population-based cohort study.
12 *Ann Rheum Dis.* 2018;77(1):40-7.

13 [3] Barsotti S, Lundberg IE. Myositis an evolving spectrum of disease. *Immunol Med.*
14 2018;41(2):46-54.

15 [4] Love LA, Leff RL, Fraser DD, Targoff IN, Dalakas M, Plotz PH, et al. A new
16 approach to the classification of idiopathic inflammatory myopathy: myositis-specific
17 autoantibodies define useful homogeneous patient groups. *Medicine (Baltimore).*
18 1991;70(6):360-74.

19 [5] Kwon NH, Fox PL, Kim S. Aminoacyl-tRNA synthetases as therapeutic targets. *Nat*
20 *Rev Drug Discov.* 2019;18(8):629-50.

21 [6] Vencovsky J, Alexanderson H, Lundberg IE. Idiopathic Inflammatory Myopathies.
22 *Rheum Dis Clin North Am.* 2019;45(4):569-81.

23 [7] Richards TJ, Eggebeen A, Gibson K, Yousem S, Fuhrman C, Gochuico BR, et al.
24 Characterization and peripheral blood biomarker assessment of anti-Jo-1 antibody-positive
25 interstitial lung disease. *Arthritis Rheum.* 2009;60(7):2183-92.

26 [8] Hamaguchi Y, Fujimoto M, Matsushita T, Kaji K, Komura K, Hasegawa M, et al.
27 Common and distinct clinical features in adult patients with anti-aminoacyl-tRNA synthetase
28 antibodies: heterogeneity within the syndrome. *PLoS One.* 2013;8(4):e60442.

29 [9] Betteridge Z, McHugh N. Myositis-specific autoantibodies: an important tool to
30 support diagnosis of myositis. *J Intern Med.* 2016;280(1):8-23.

31 [10] Betteridge Z, Tansley S, Shaddick G, Chinoy H, Cooper RG, New RP, et al.
32 Frequency, mutual exclusivity and clinical associations of myositis autoantibodies in a
33 combined European cohort of idiopathic inflammatory myopathy patients. *J Autoimmun.*
34 2019;101:48-55.

1 [11] Zhao L, Su K, Liu T, Sun D, Jiang Z. Myositis-specific autoantibodies in adults with
2 idiopathic inflammatory myopathy: correlations with diagnosis and disease activity. Clin
3 Rheumatol. 2021;40(3):1009-16.

4 [12] Witt LJ, Curran JJ, Strek ME. The Diagnosis and Treatment of Antisynthetase
5 Syndrome. Clin Pulm Med. 2016;23(5):218-26.

6 [13] Howard OM, Dong HF, Yang D, Raben N, Nagaraju K, Rosen A, et al. Histidyl-tRNA
7 synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine
8 receptors on T lymphocytes and immature dendritic cells. J Exp Med. 2002;196(6):781-91.

9 [14] Paley EL, Alexandrova N, Smelansky L. Tryptophanyl-tRNA synthetase as a human
10 autoantigen. Immunol Lett. 1995;48(3):201-7.

11 [15] McGrath ER, Doughty CT, Amato AA. Autoimmune Myopathies: Updates on
12 Evaluation and Treatment. Neurotherapeutics. 2018;15(4):976-94.

13 [16] Vulsteke JB, Satoh M, Malyavantham K, Bossuyt X, De Langhe E, Mahler M. Anti-
14 OJ autoantibodies: Rare or underdetected? Autoimmun Rev. 2019;18(7):658-64.

15 [17] Muro Y, Yamano Y, Yoshida K, Oto Y, Nakajima K, Mitsuma T, et al. Immune
16 recognition of lysyl-tRNA synthetase and isoleucyl-tRNA synthetase by anti-OJ antibody-
17 positive sera. J Autoimmun. 2021;122:102680.

18 [18] Hyeon DY, Kim JH, Ahn TJ, Cho Y, Hwang D, Kim S. Evolution of the multi-tRNA
19 synthetase complex and its role in cancer. J Biol Chem. 2019;294(14):5340-51.

20 [19] Lundberg IE, Tjarnlund A, Bottai M, Werth VP, Pilkington C, de Visser M, et al. 2017
21 European League Against Rheumatism/American College of Rheumatology Classification
22 Criteria for Adult and Juvenile Idiopathic Inflammatory Myopathies and Their Major
23 Subgroups. Arthritis Rheumatol. 2017;69(12):2271-82.

24 [20] Allenbach Y, Mammen AL, Benveniste O, Stenzel W, Immune-Mediated Necrotizing
25 Myopathies Working G. 224th ENMC International Workshop:: Clinico-sero-pathological
26 classification of immune-mediated necrotizing myopathies Zandvoort, The Netherlands, 14-
27 16 October 2016. Neuromuscul Disord. 2018;28(1):87-99.

28 [21] Connors GR, Christopher-Stine L, Oddis CV, Danoff SK. Interstitial lung disease
29 associated with the idiopathic inflammatory myopathies: what progress has been made in the
30 past 35 years? Chest. 2010;138(6):1464-74.

31 [22] Travis WD, Costabel U, Hansell DM, King TE, Jr., Lynch DA, Nicholson AG, et al.
32 An official American Thoracic Society/European Respiratory Society statement: Update of
33 the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am
34 J Respir Crit Care Med. 2013;188(6):733-48.

1 [23] Mack SJ, Cano P, Hollenbach JA, He J, Hurley CK, Middleton D, et al. Common and
2 well-documented HLA alleles: 2012 update to the CWD catalogue. *Tissue Antigens*.
3 2013;81(4):194-203.

4 [24] Berglund L, BJORLING E, Jonasson K, Rockberg J, Fagerberg L, Al-Khalili Szigyarto C,
5 et al. A whole-genome bioinformatics approach to selection of antigens for systematic
6 antibody generation. *Proteomics*. 2008;8(14):2832-9.

7 [25] Nilsson P, Paavilainen L, Larsson K, Odling J, Sundberg M, Andersson AC, et al.
8 Towards a human proteome atlas: high-throughput generation of mono-specific antibodies for
9 tissue profiling. *Proteomics*. 2005;5(17):4327-37.

10 [26] Preger C, Wigren E, Ossipova E, Marks C, Lengqvist J, Hofstrom C, et al. Generation
11 and validation of recombinant antibodies to study human aminoacyl-tRNA synthetases. *J Biol
12 Chem*. 2020;295(41):13981-93.

13 [27] Drobin K, Nilsson P, Schwenk JM. Highly multiplexed antibody suspension bead
14 arrays for plasma protein profiling. *Methods Mol Biol*. 2013;1023:137-45.

15 [28] Pin E, Sjöberg R, Andersson E, Hellström C, Olofsson J, Jernbom Falk A, et al.
16 Array-Based Profiling of Proteins and Autoantibody Repertoires in CSF. In: Santamaría E,
17 Fernández-Irigoyen J, editors. *Cerebrospinal Fluid (CSF) Proteomics: Methods and Protocols*.
18 New York, NY: Springer New York; 2019. p. 303-18.

19 [29] Cerbelli B, Pisano A, Colafrancesco S, Pignataro MG, Biffoni M, Berni S, et al. Anti-
20 aminoacyl-tRNA synthetase-related myositis and dermatomyositis: clues for differential
21 diagnosis on muscle biopsy. *Virchows Arch*. 2018;472(3):477-87.

22 [30] Mescam-Mancini L, Allenbach Y, Hervier B, Devilliers H, Mariampillay K, Dubourg
23 O, et al. Anti-Jo-1 antibody-positive patients show a characteristic necrotizing perifascicular
24 myositis. *Brain*. 2015;138(Pt 9):2485-92.

25 [31] Uruha A, Suzuki S, Suzuki N, Nishino I. Perifascicular necrosis in anti-synthetase
26 syndrome beyond anti-Jo-1. *Brain*. 2016;139(Pt 9):e50.

27 [32] McHugh NJ, Tansley SL. Autoantibodies in myositis. *Nat Rev Rheumatol*.
28 2018;14(5):290-302.

29 [33] Tansley SL, Li D, Betteridge ZE, McHugh NJ. The reliability of immunoassays to
30 detect autoantibodies in patients with myositis is dependent on autoantibody specificity.
31 *Rheumatology (Oxford)*. 2020;59(8):2109-14.

32 [34] Bossuyt X, De Langhe E, Borghi MO, Meroni PL. Understanding and interpreting
33 antinuclear antibody tests in systemic rheumatic diseases. *Nat Rev Rheumatol*.
34 2020;16(12):715-26.

1 [35] Guo M, Schimmel P, Yang XL. Functional expansion of human tRNA synthetases
2 achieved by structural inventions. *FEBS Lett.* 2010;584(2):434-42.

3 [36] Francklyn CS, Mullen P. Progress and challenges in aminoacyl-tRNA synthetase-
4 based therapeutics. *J Biol Chem.* 2019;294(14):5365-85.

5 [37] Targoff IN, Trieu EP, Miller FW. Reaction of anti-OJ autoantibodies with components
6 of the multi-enzyme complex of aminoacyl-tRNA synthetases in addition to isoleucyl-tRNA
7 synthetase. *The Journal of Clinical Investigation.* 1993;91(6):2556-64.

8 [38] Damoiseaux J, Vulsteke JB, Tseng CW, Platteel ACM, Piette Y, Shovman O, et al.
9 Autoantibodies in idiopathic inflammatory myopathies: Clinical associations and laboratory
10 evaluation by mono- and multispecific immunoassays. *Autoimmun Rev.* 2019;18(3):293-305.

11 [39] Satoh M, Chan EK, Ho LA, Rose KM, Parks CG, Cohn RD, et al. Prevalence and
12 sociodemographic correlates of antinuclear antibodies in the United States. *Arthritis Rheum.*
13 2012;64(7):2319-27.

14 [40] Betteridge Z, Gunawardena H, North J, Slinn J, McHugh N. Anti-synthetase syndrome:
15 a new autoantibody to phenylalanyl transfer RNA synthetase (anti-Zo) associated with
16 polymyositis and interstitial pneumonia. *Rheumatology (Oxford).* 2007;46(6):1005-8.

17 [41] Neiman M, Hellstrom C, Just D, Mattsson C, Fagerberg L, Schuppe-Koistinen I, et al.
18 Individual and stable autoantibody repertoires in healthy individuals. *Autoimmunity.*
19 2019;52(1):1-11.

20 [42] Moll SA, Platenburg M, Platteel ACM, Vorselaars ADM, Janssen Bonas M,
21 Roodenburg-Benschop C, et al. Prevalence of Novel Myositis Autoantibodies in a Large
22 Cohort of Patients with Interstitial Lung Disease. *J Clin Med.* 2020;9(9).

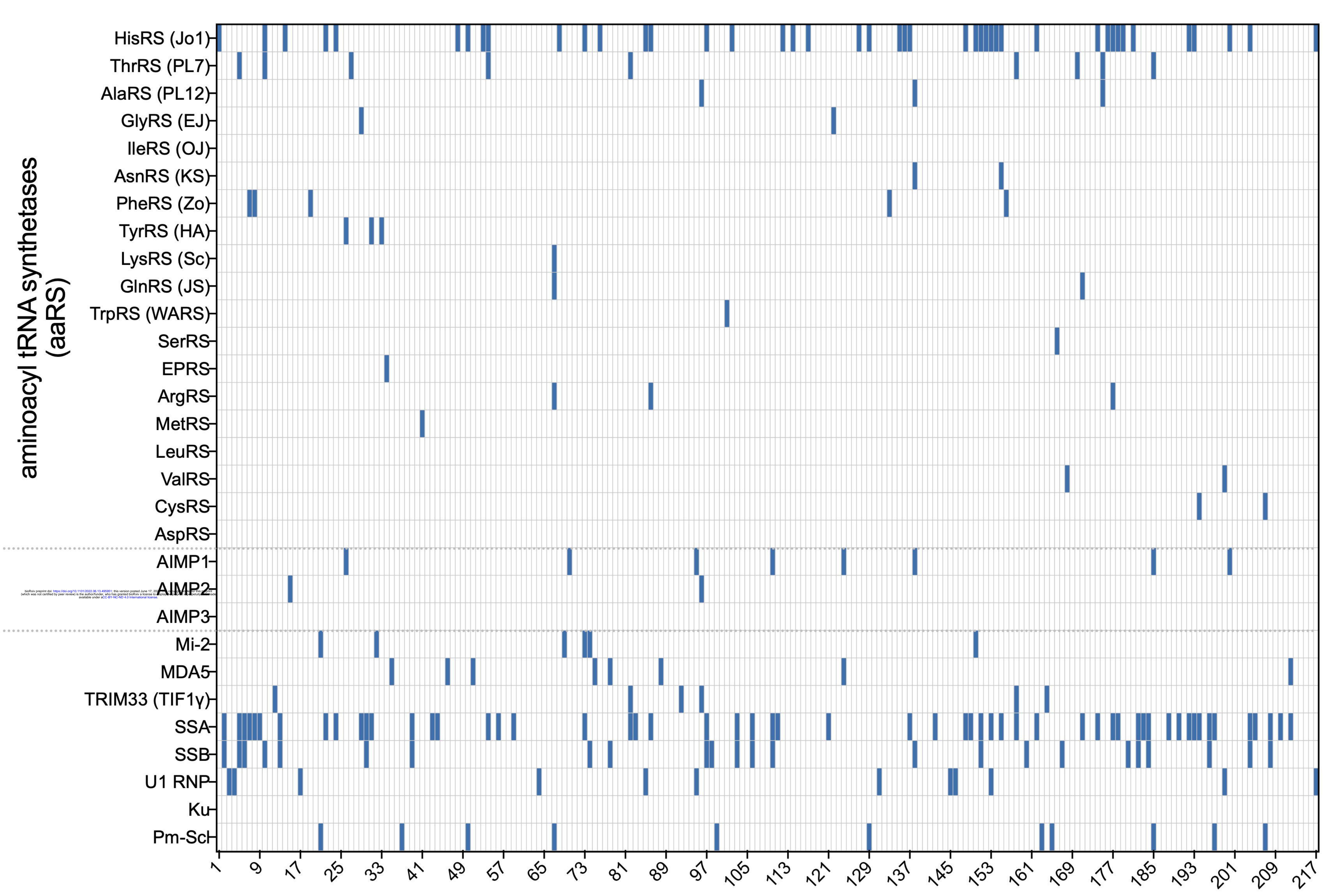
23 [43] Ge Y, Li S, Li S, He L, Lu X, Wang G. Interstitial lung disease is a major
24 characteristic of anti-KS associated ant-synthetase syndrome. *Ther Adv Chronic Dis.*
25 2020;11:2040622320968417.

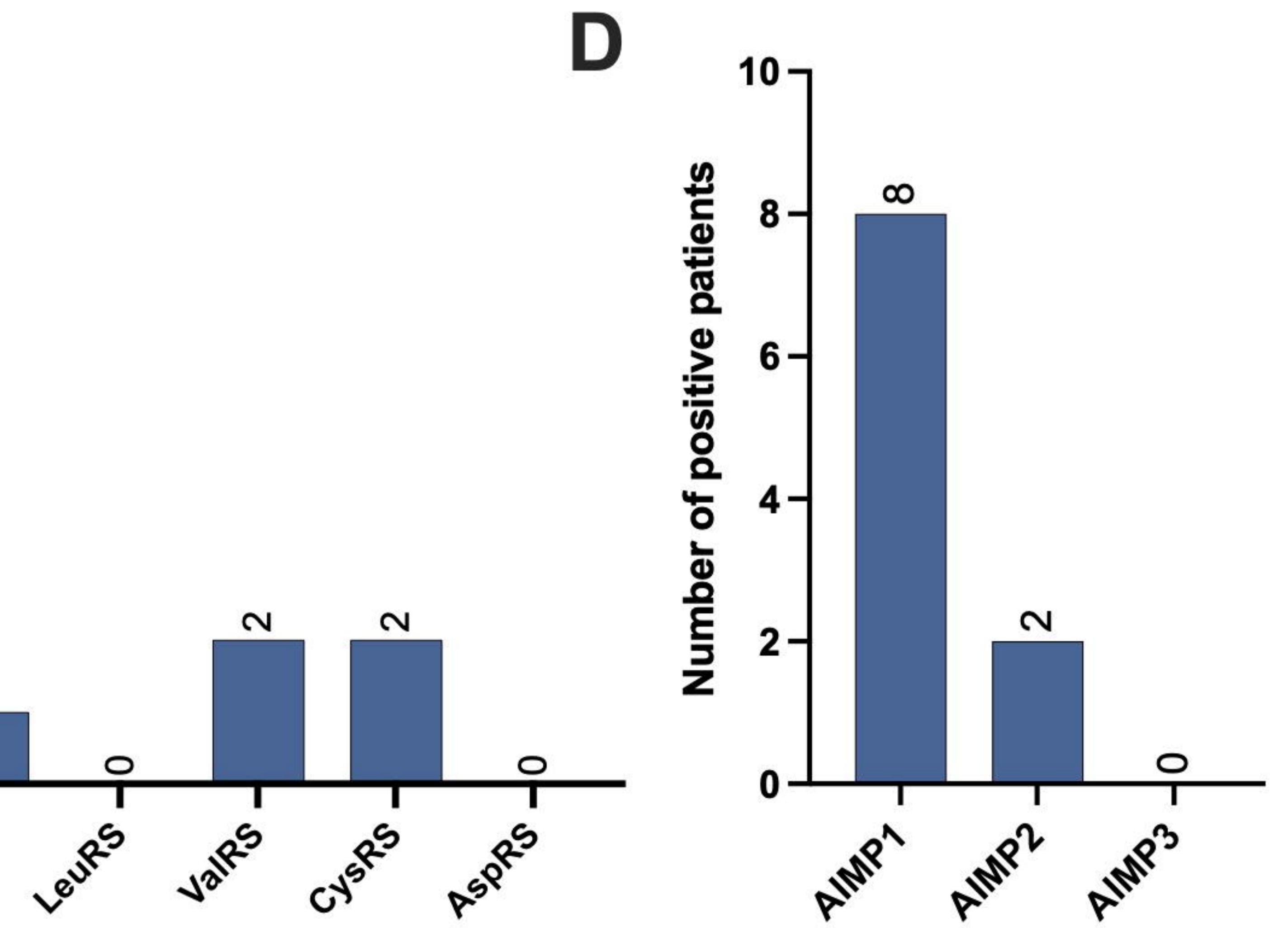
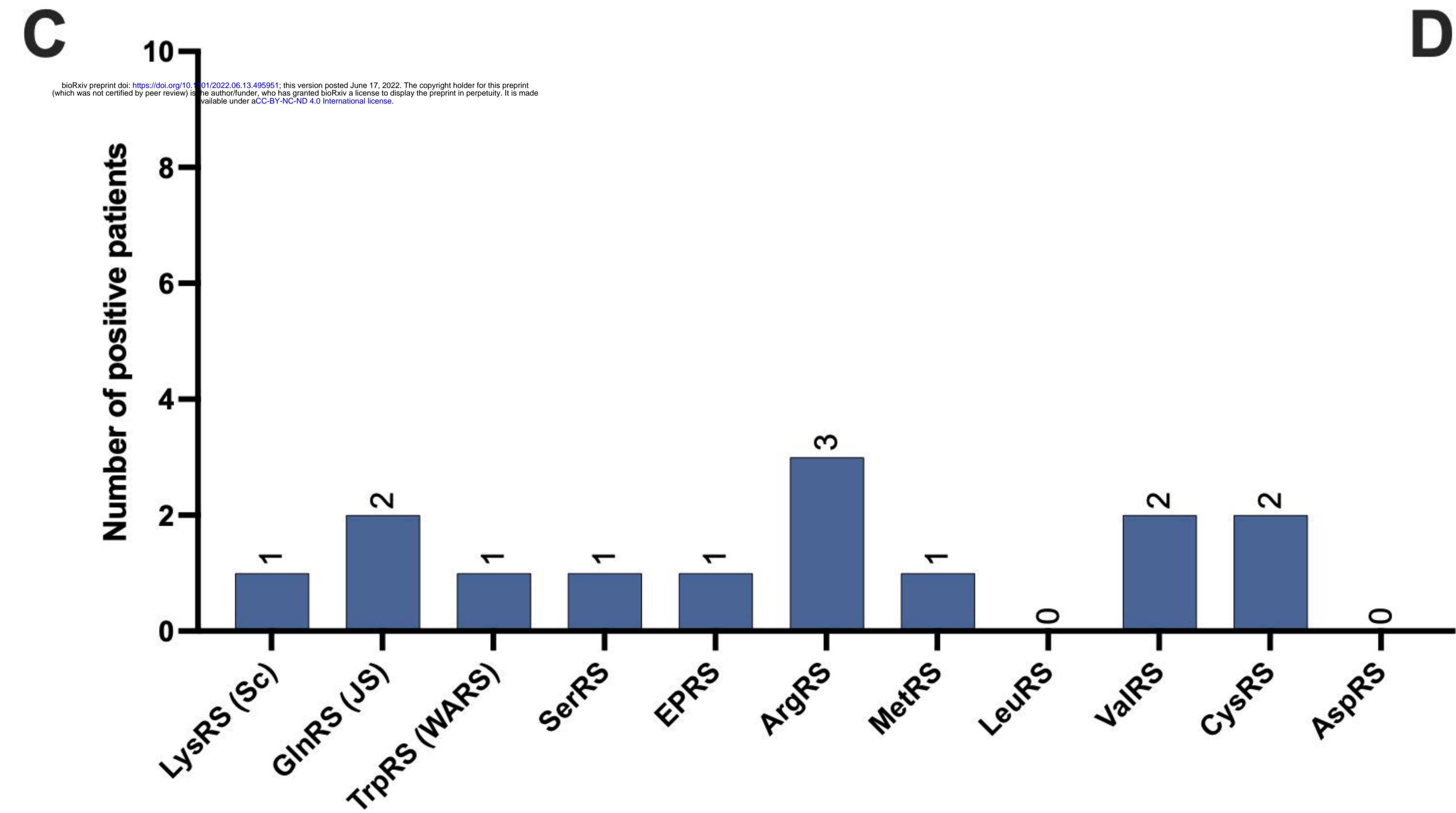
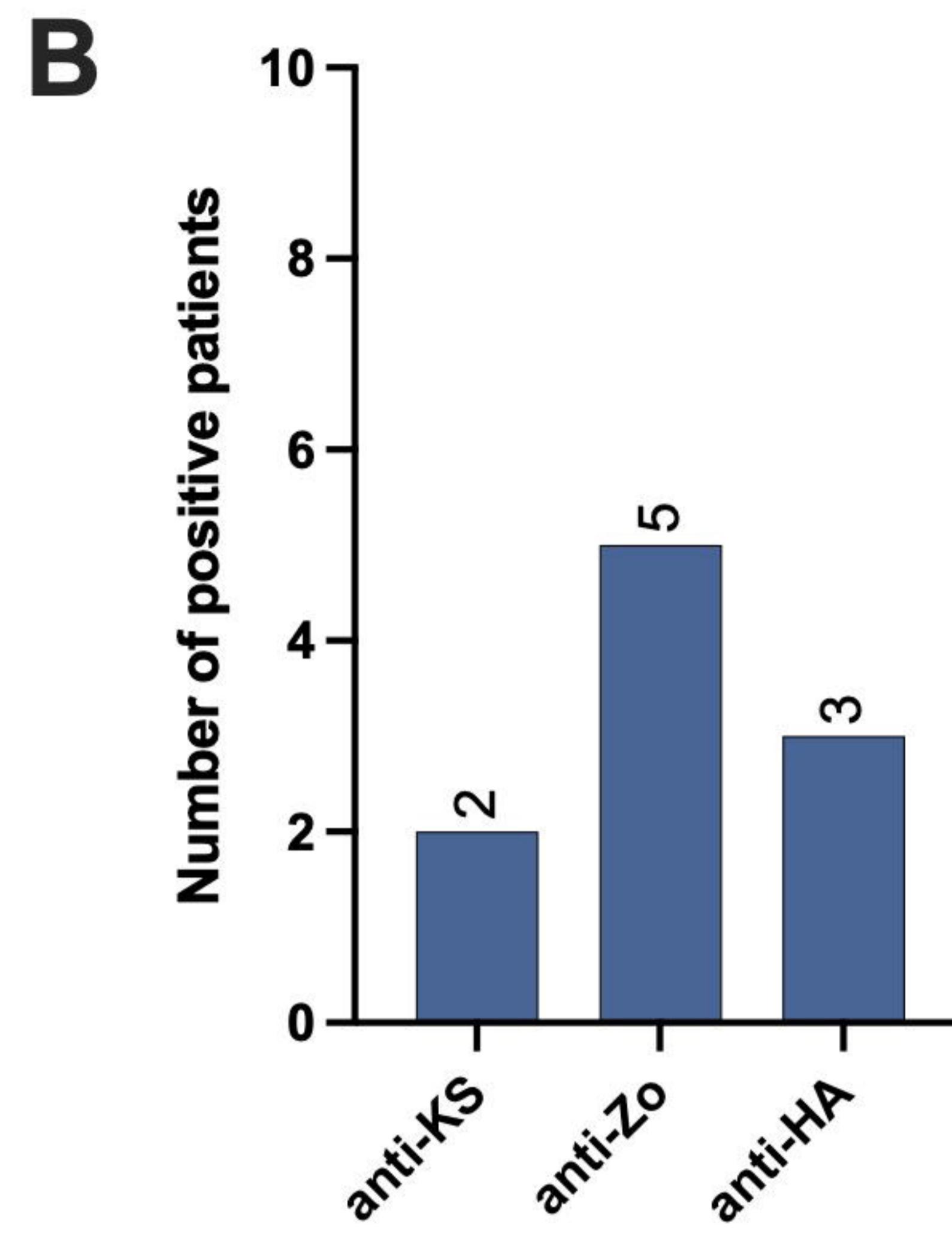
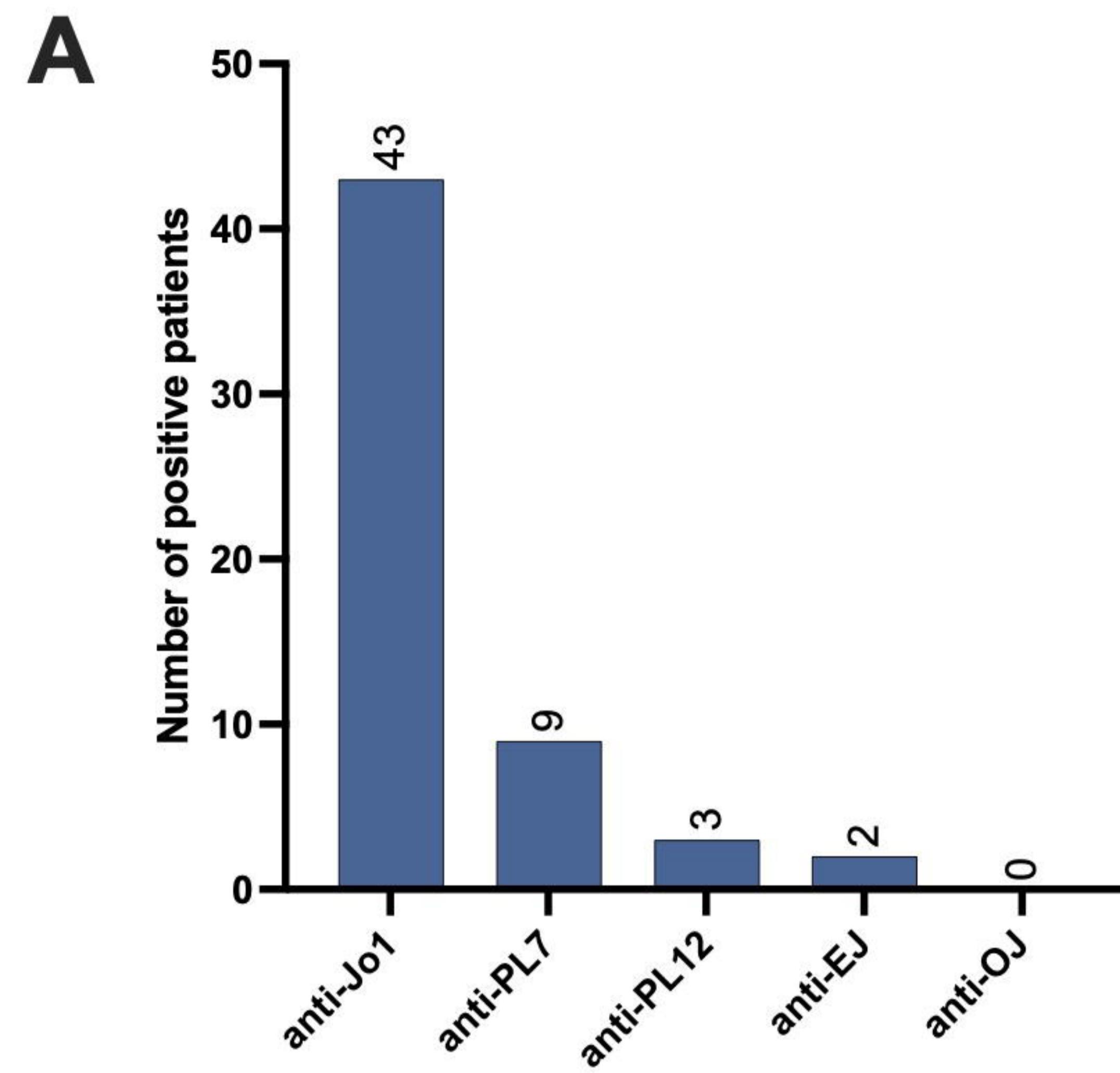
26 [44] Arnett FC, Targoff IN, Mimori T, Goldstein R, Warner NB, Reveille JD.
27 Interrelationship of major histocompatibility complex class II alleles and autoantibodies in
28 four ethnic groups with various forms of myositis. *Arthritis Rheum.* 1996;39(9):1507-18.

29 [45] Goldstein R, Duvic M, Targoff IN, Reichlin M, McMenemy AM, Reveille JD, et al.
30 HLA-D Region genes associated with autoantibody responses to histidyl-transfer RNA
31 synthetase (Jo-1) and other translation-related factors in myositis. *Arthritis Rheum.*
32 1990;33(8):1240-8.

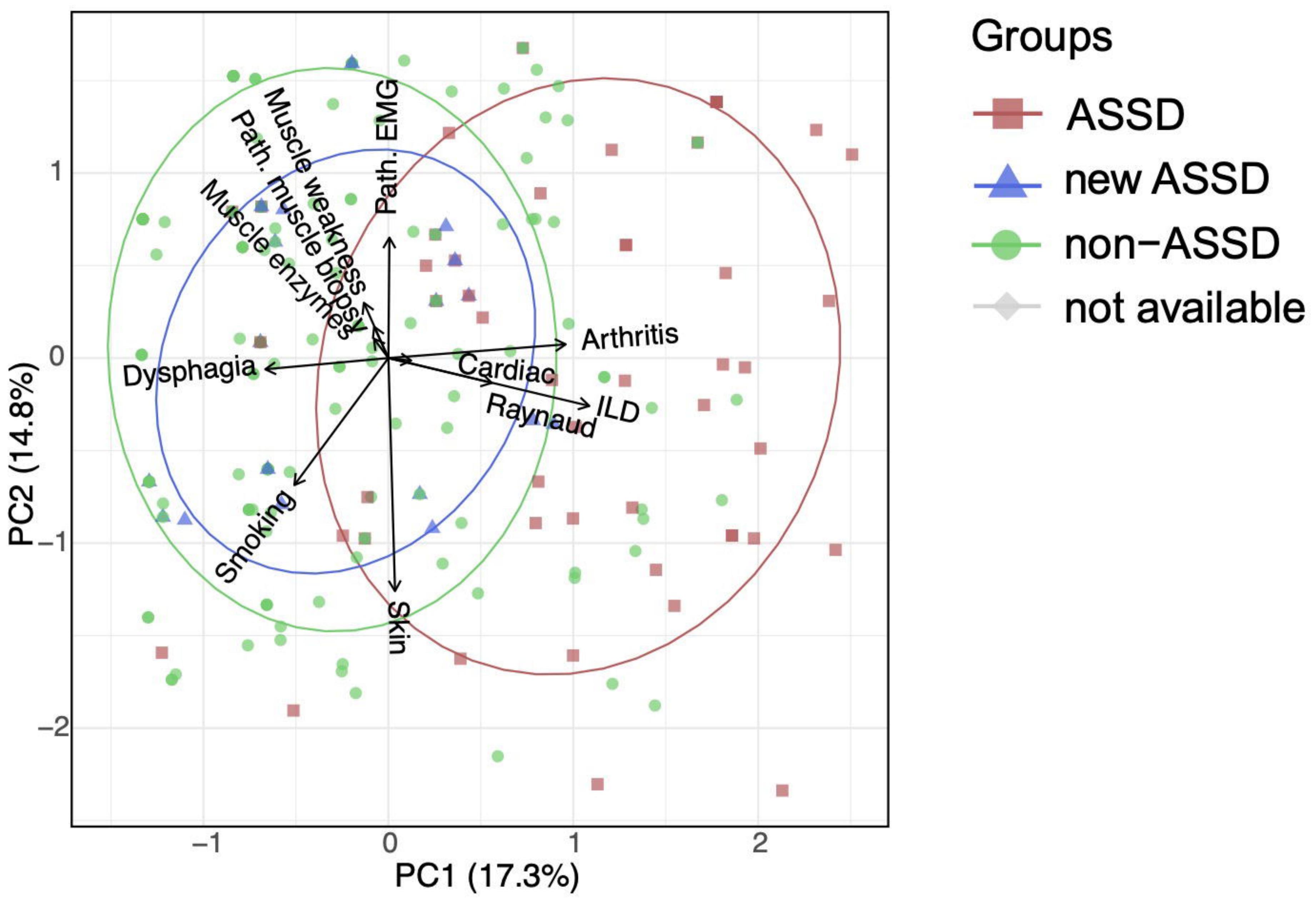
33 [46] O'Hanlon TP, Carrick DM, Arnett FC, Reveille JD, Carrington M, Gao X, et al.
34 Immunogenetic risk and protective factors for the idiopathic inflammatory myopathies:

1 distinct HLA-A, -B, -Cw, -DRB1 and -DQA1 allelic profiles and motifs define
2 clinicopathologic groups in caucasians. Medicine (Baltimore). 2005;84(6):338-49.

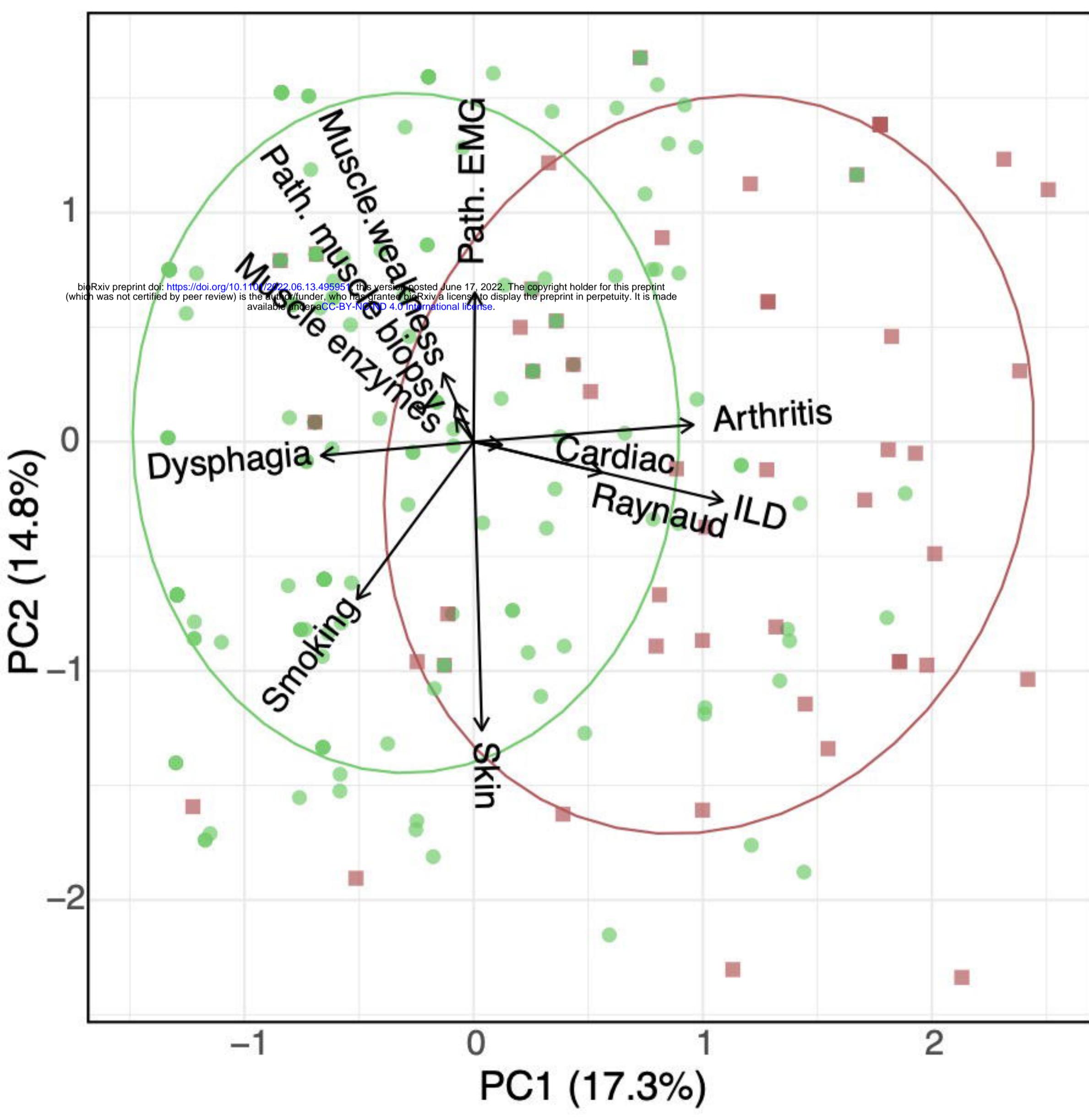

3 [47] Chinoy H, Adimulam S, Marriage F, New P, Vincze M, Zilahi E, et al. Interaction of
4 HLA-DRB1*03 and smoking for the development of anti-Jo-1 antibodies in adult idiopathic
5 inflammatory myopathies: a European-wide case study. Ann Rheum Dis. 2012;71(6):961-5.

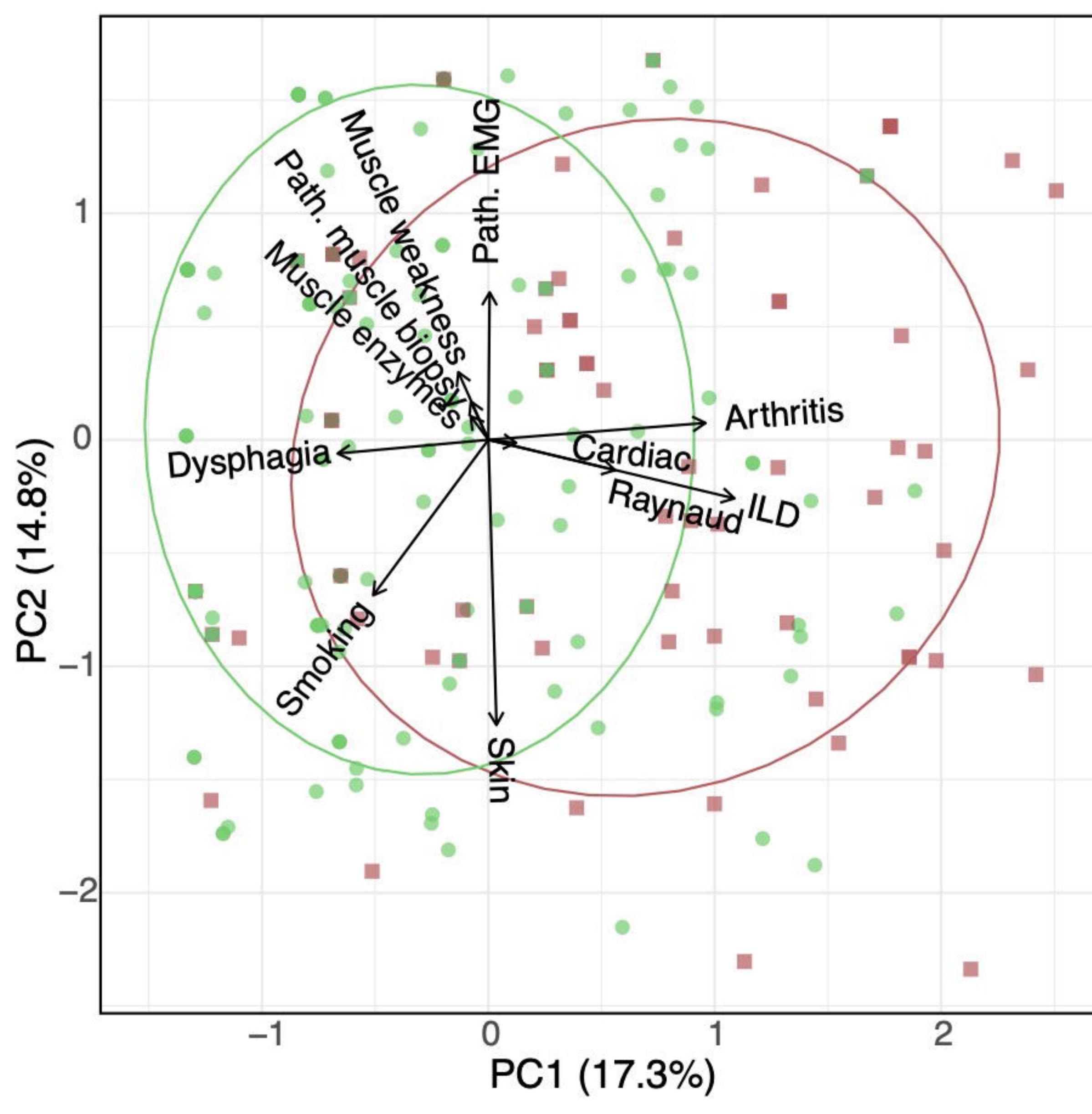




6 [48] Jiang L, Jones J, Yang X-L. Human diseases linked to cytoplasmic aminoacyl-tRNA
7 synthetases. Biology of Aminoacyl-tRNA Synthetases. The Enzymes2020. p. 277-319.

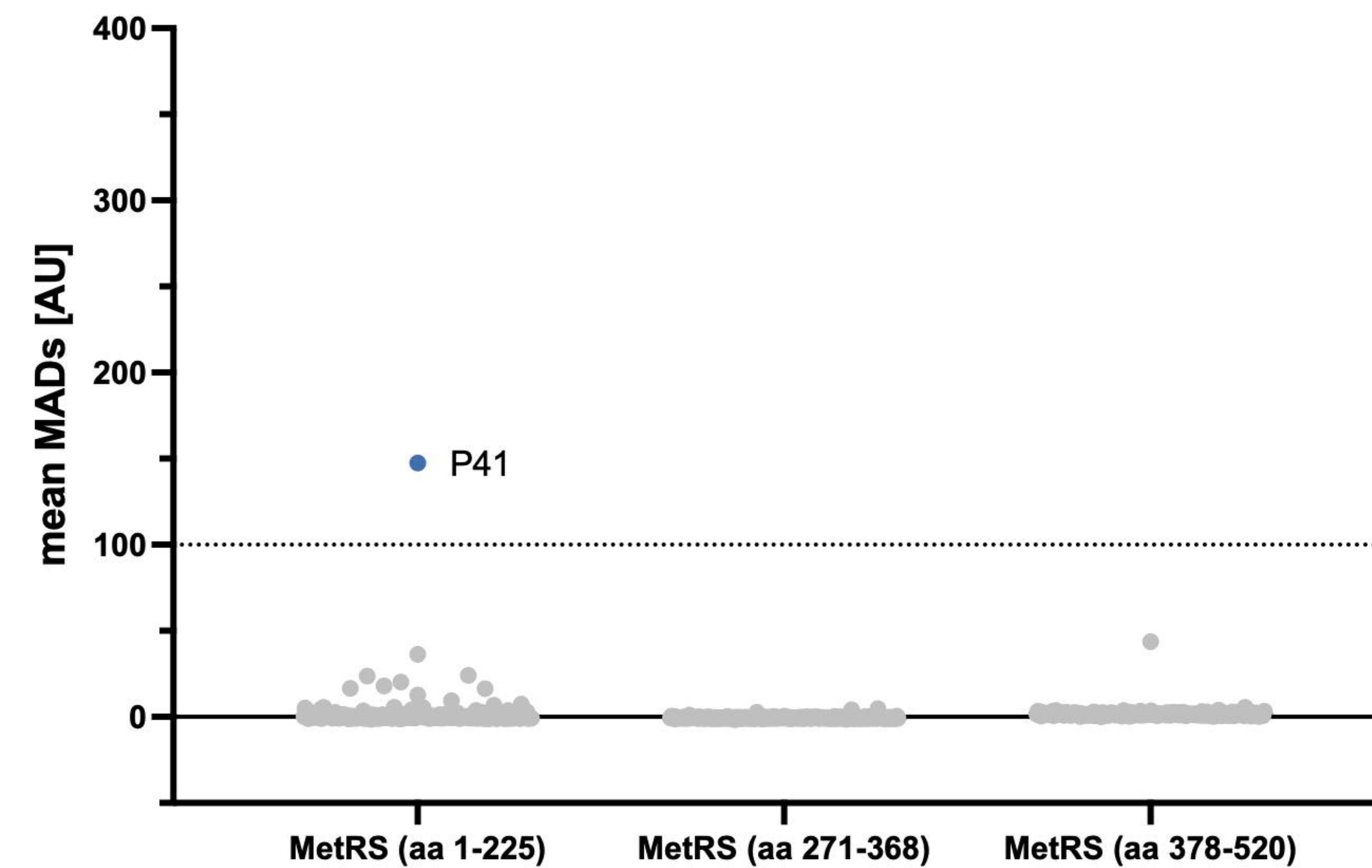
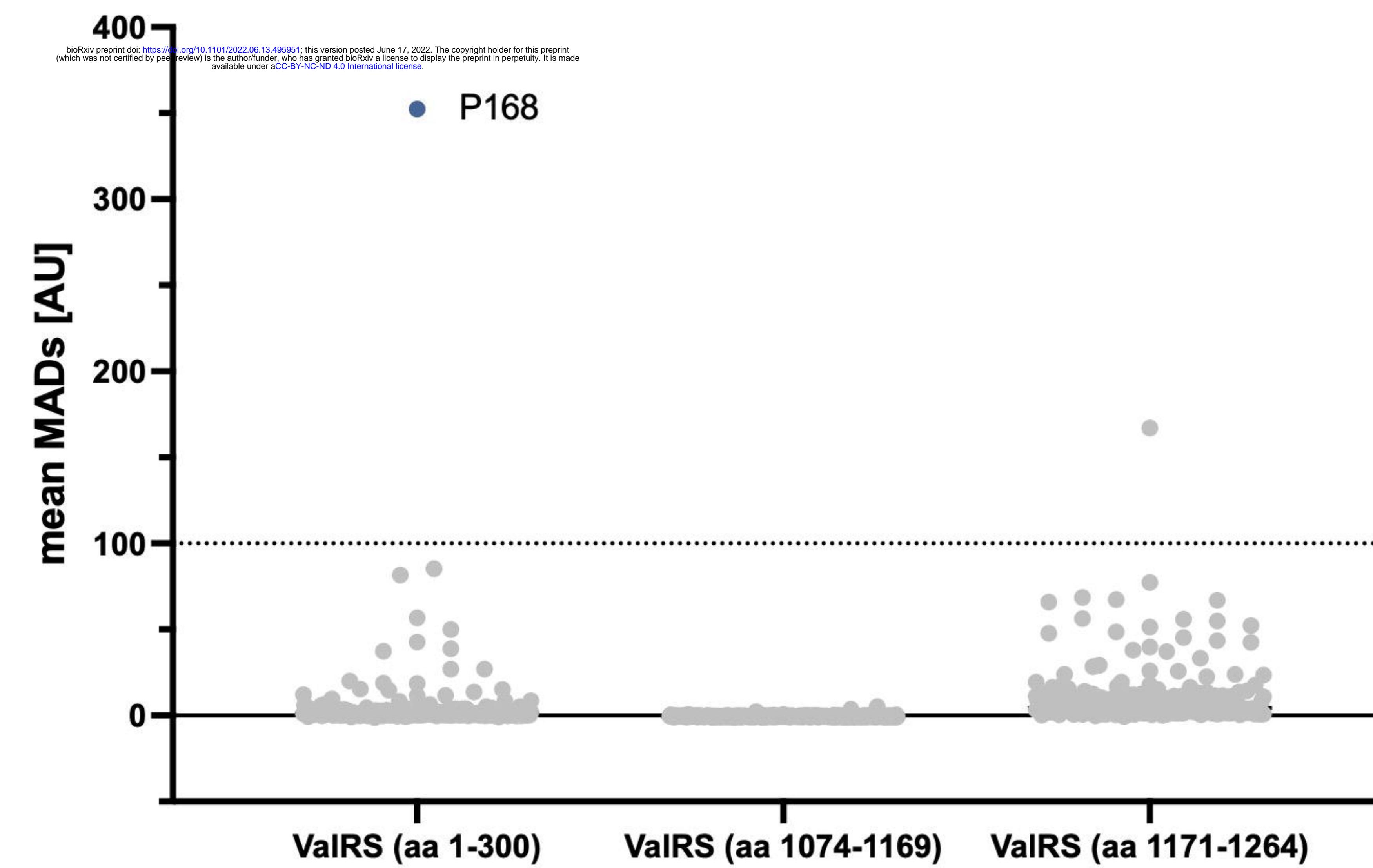
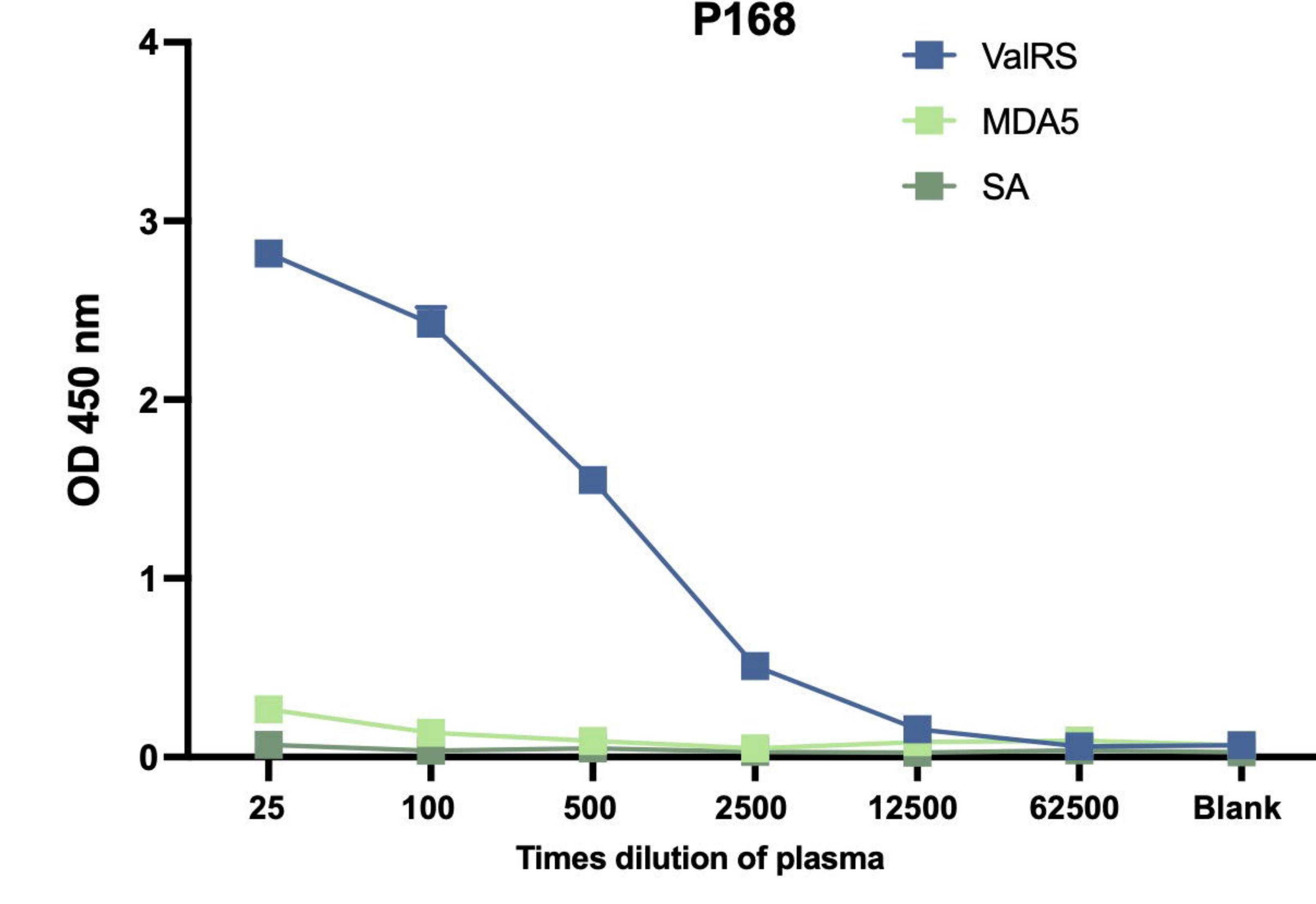
8 [49] Aggarwal R, Oddis CV, Goudeau D, Koontz D, Qi Z, Reed AM, et al. Autoantibody
9 levels in myositis patients correlate with clinical response during B cell depletion with
10 rituximab. Rheumatology (Oxford). 2016;55(6):991-9.


11 [50] Muro Y, Sugiura K, Hoshino K, Akiyama M. Disappearance of anti-MDA-5
12 autoantibodies in clinically amyopathic DM/interstitial lung disease during disease remission.
13 Rheumatology (Oxford). 2012;51(5):800-4.

14




A

B

C

A**MetRS****B****P41****C****ValRS****D****P168**