

1 **Extinction cascades, community collapse, and recovery across a Mesozoic**
2 **hyperthermal event**

3 Alexander M. Dunhill^{1*}, Karolina Zarzyczny^{1,2,3,4}, Jack O. Shaw^{5,6}, Jed W. Atkinson¹, Crispin
4 T.S. Little^{1,4} and Andrew P. Beckerman⁷

5 ¹School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT,
6 UK, a.dunhill@leeds.ac.uk

7 ²School of Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.

8 ³School of Ocean and Earth Science, National Oceanography Centre, University of
9 Southampton, Waterfront Campus, Southampton, SO14 3ZH, UK

10 ⁴Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD,
11 UK

12 ⁵Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA.

13 ⁶Santa Fe Institute, Santa Fe, NM 87501, USA.

14 ⁷School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Alfred
15 Denny Building, Western Bank, Sheffield, S10 2TN, UK

16

17 **Biotic interactions and community structure are seldom examined in mass extinction**
18 **studies but must be considered if we are to truly understand extinction and recovery**
19 **dynamics at the ecosystem scale. Here, we model shallow marine food web structure**
20 **across the Toarcian extinction event in the Cleveland Basin, UK using a trait-based**
21 **inferential modelling framework. First, we subjected our pre-extinction community to**
22 **extinction cascade simulations in order to identify the nature of extinction selectivity**
23 **and dynamics. Second, we tracked the pattern and duration of the recovery of**
24 **ecosystem structure and function following the extinction event. In agreement with**
25 **postulated scenarios, we found that primary extinctions targeted towards infaunal and**
26 **epifaunal benthic guilds reproduced the empirical post-extinction community. These**
27 **results are consistent with geochemical and lithological evidence of an anoxia/dysoxia**
28 **kill mechanism for this extinction event. Structural and functional metrics show that**

29 **the extinction event caused a switch from a diverse, stable community with high levels**
30 **of functional redundancy to a less diverse, more densely connected, and less stable**
31 **community of generalists. Ecological recovery appears to have lagged behind the**
32 **recovery of biodiversity, with most metrics only beginning to return to pre-extinction**
33 **levels ~7 million years after the extinction event. This protracted pattern supports the**
34 **theory of delayed benthic ecosystem recovery following mass extinctions even in the**
35 **face of seemingly recovering taxonomic diversity.**

36

37 Earth has experienced a number of mass extinction events that have shaped evolutionary
38 history, not only by the dramatic loss of species over relatively short periods of time but also
39 by repeatedly restructuring ecosystems¹. Many mass extinctions have been linked to rapid
40 releases of greenhouse gases into the atmosphere by large igneous province (LIP) volcanism,
41 which led to a cascade of environmental effects, including rapid global warming, ocean anoxia,
42 and ocean acidification². Thus, palaeobiologists have long viewed mass extinctions as the
43 quintessential example of a Court Jester driver of macroevolution, whereby external abiotic
44 environmental pressures act as the predominant driver of macroevolution across long
45 geological timescales³. However, community ecological theory suggests that biotic
46 interactions, and thus Red Queen processes⁴, would have also played a major role during
47 mass extinction events. Many victims of past extinction events were unlikely to have gone
48 extinct as a direct effect of abiotic stress, but probably did so in response to cascading
49 secondary effects via the loss of key prey sources⁵.

50 Macroecological studies of selectivity^{6,7}, functional diversity loss^{8,9}, and recovery^{10,11}
51 indicate that warming-related mass extinctions are associated with latitudinal extinction
52 selectivity^{6,12,13} as well as preferential loss of taxa vulnerable to hypercapnia, anoxia and
53 acidification, and photosymbiotic taxa^{6,13-15}. All of these patterns can be qualitatively linked to
54 one of the aforementioned abiotic effects of LIP eruptions, but it remains incredibly difficult to
55 ascertain the full range of, or relative impact of, abiotic stressors that contributed to a particular
56 mass extinction event.

57 Ecological theory suggests that extinction dynamics are most effectively studied within
58 a community framework where details about interactions among taxa may accentuate or buffer
59 the responses of individual taxa from direct (i.e. primary) and cascading 'secondary'
60 extinctions¹⁶. In fact, many victims of mass extinctions are unlikely to have become extinct as
61 a direct effect of abiotic stress, but probably did so in response to cascading secondary
62 effects⁵. Biotic interactions are seldom considered in mass extinction studies (but see¹⁷⁻¹⁹) as
63 it is very difficult to ascertain consumer-resource and other interactions between long extinct
64 organisms. However, if we are to truly understand mass extinction dynamics, we must quantify
65 such interactions as many prominent extinction patterns, such as the high levels of extinction
66 amongst pelagic predators⁶, are difficult to explain in the absence of extinction cascades
67 through communities²⁰.

68 In addition to the study of mass extinction causality, magnitude, and selectivity,
69 extinction recovery has also become an intensely studied topic over the past decade²¹, driven
70 in part by the desire to understand how long the planet may take to recovery from the current
71 "Sixth Mass Extinction"²². Studies based on taxonomic and functional diversity suggest full
72 ecosystem recovery can take anywhere between 0.7 to 50 million years from the largest mass
73 extinctions^{10,11,23}, but it is possible that ecosystem function could recover despite persistent
74 low levels of biodiversity. Thus, studies of extinction recovery could be greatly improved by
75 adopting a community ecology approach that integrates across biodiversity, community
76 structure and ecosystem function.

77 Here, we utilise a community ecology food web approach to model primary and
78 secondary extinction dynamics and community recovery across the early Toarcian extinction
79 event (ETE; ~183 Ma) from the Cleveland Basin, Yorkshire, UK. Specifically, we use
80 ecological trait data to reconstruct plausible food webs. We then subject these food webs to
81 several primary extinction scenarios that link event characteristics (e.g. dysoxia, acidification,
82 warming) to traits. We use well established ecological modelling tools to evaluate patterns of
83 secondary extinction, ultimately identifying several target traits and species whose sensitivity
84 to the ETE event led to the ensuing post event community structure. Finally, we also look at

85 empirical patterns of recovery from this extinction event, detailing changes in biodiversity,
86 functional groups and community structure.

87 The ETE, is traditionally referred to as a second order extinction event²⁴ (i.e. an
88 extinction event that caused less than 40% generic extinction²⁵) and resulted in the loss of
89 around 26% of marine genera globally²⁶. It is linked to the eruption of the Karoo-Ferrar Large
90 Igneous Province²⁷ which resulted in a globally distributed negative carbon isotope shift^{28,29},
91 hyperthermal warming of up to 13°C in the midlatitudes^{30,31}, prolonged regional ocean dysoxia
92 and anoxia^{26,32-34}, and ocean acidification³⁵.

93 In the Cleveland Basin and in much of the NW Tethyan basins of NW Europe the ETE
94 is coincident with the deposition of finely laminated, organic-rich, black shales which signify
95 persistent dysoxia/anoxia, at shallow depths on the continental shelf, termed the Toarcian
96 Oceanic Anoxic Event (TOAE or Jenkins Event)^{33,36}. The ETE resulted in the loss of around
97 60% of marine species within the Cleveland Basin (87% benthic species extinction)^{24,37}, with
98 post-extinction benthic communities made up of low diversity/high abundance assemblages
99 of hypoxia-tolerant and opportunistic species^{26,34,38,39}. Recovery seems to occur in two pulses
100 and, in total, takes as long as 7 million years in terms of both taxonomic and functional
101 diversity^{37,40}.

102 We use a data set of 38,670 occurrences of 162 species of marine invertebrates, fish,
103 and trace fossils derived from years of detailed field studies^{24,26,41,42} of one of the most
104 expanded Pliensbachian to Toarcian sections in the world to produce a series of community
105 trophic networks (i.e. food webs) (Fig. 1). We aim to ascertain: (i) the most plausible set of
106 traits and species impacted by primary extinction events and the nature of any secondary
107 extinction cascades, that led to the post extinction community structure and diversity; (ii) the
108 likely environmental trigger of the extinction cascades; and (iii) the pattern and duration of
109 ecological recovery in the aftermath of the extinction event.

110

111 **Results and discussion**

112 **The Early Toarcian extinction event**

113 *Empirical data: pre-extinction.*

114 The pre-extinction community is characterised by a diverse assemblage of benthic and pelagic
115 taxa belonging to 48 different trophic guilds (Fig. 1; Fig 2A; see supplementary data for
116 network metrics values for all communities). The community consists of a range of primary
117 consumers (including suspension feeders, deposit feeders, miners, and grazers), intermediate
118 predators (cephalopods, crustaceans, fish, gastropods, scaphopods), and top predators
119 (larger cephalopods). The pre-extinction community is characterised by values of many
120 common network metrics that are well within the bounds for typical modern day marine
121 communities (e.g. connectance, generality, vulnerability, mean/max. trophic level etc.)^{5,39,43}
122 (Fig 2B).

123

124 *Empirical data: post-extinction.*

125 The ETE causes a reduction in richness from 48 to 21 trophic guilds (Fig. 1; Fig 2A) and drove
126 disproportionate losses amongst infaunal, large, highly motile, and predatory benthic guilds
127 (~80% benthic species extinction^{24,37}). Post-extinction benthic assemblages were dominated
128 by low-diversity/high-abundance communities of very small, epifaunal, suspension-feeding
129 bivalves, most notably the presumably low-oxygen-tolerant opportunistic species *Bositra*
130 *buchii* and *Pseudomytiloides dubius*³⁴. Although previous research has suggested that pelagic
131 taxa were also affected by the ETE⁴⁴ (including high mortality amongst pelagic faunas and
132 cephalopods migrating away from the Cleveland Basin in response to high temperatures and
133 low food supply), at the structural level, pelagic elements of the community appear much less
134 affected.

135 The severe benthic losses at the guild level are in contrast to global studies of mass
136 extinctions which have postulated that, although species losses are typically severe, mass
137 extinctions rarely cause global guild-level extinction^{8,45}. However, the loss of >50% of guilds
138 in this local, mid-latitude setting is in keeping with regional studies of extinction across the
139 ETE^{24,26,37,46-49}, that have shown species and guild-level losses to be much higher in the mid
140 latitudes (i.e. NW Tethys and NE Panthalassan margin) than globally^{6,45}. The post-extinction

141 benthic assemblage is dominated by a low-diversity/high-abundance community of small-
142 bodied, epifaunal, suspension feeders with apparent selectivity against larger benthic taxa
143 with more active modes of life. Together with lithological and geochemical evidence, this
144 strongly supports the theory of a dysoxia/anoxia driven extinction in the Cleveland Basin⁴¹.

145 Overall community connectivity (i.e. connectance) increased after the ETE (Fig. 2B)
146 which also corresponds with an increase in generality, vulnerability, and maximum trophic
147 level within the community (Fig. 2B-E). Together with a reduction in the number of linear chains
148 within the food web (S1), the levels of omnivory (S2) and both apparent (S4) and direct
149 competition (S5) (Fig. 3A-D) this suggests that the post-extinction community consists of fewer
150 guilds that are more generalistic in their feeding habits and thus taxa are more closely linked
151 to one another via consumer-resource interactions than taxa in the pre-extinction community.
152 Selective extinction of benthic taxa, which are predominantly lower- and intermediate-level
153 consumers, led to the food web becoming taller and thinner (i.e. fewer linear chains) with more
154 restricted energy flows, fewer lower-level consumers, and increased predation pressure on
155 the remaining lower trophic level taxa (i.e. increased vulnerability). This also led to reduced
156 direct completion (S5) as benthic predators disappear from the community and reduced
157 apparent competition (i.e. predator choice; S4) as the extinction wiped out the majority of the
158 benthic guilds such that pelagic predators had fewer prey options.

159 The post-extinction community also displays lower levels of omnivory as the
160 intermediate consumers in the benthic realm go extinct, meaning that top predators are now
161 feeding across fewer trophic levels. This pattern of densely connected, species-poor
162 communities of opportunists/generalists is consistent with evidence from palaeoecological
163 interpretations of the fossil record (i.e. low-diversity/high-abundance communities of
164 opportunistic species)^{34,37} and other instable post-mass extinction food webs reconstructed
165 from the fossil record^{18,19,50}.

166 This post extinction community bears a broadly similar structure to that of modern low-
167 diversity communities dominated by generalists⁴³. Although there is some empirical evidence
168 that higher connectance leads to higher community robustness (i.e. more stable communities

169 that are less likely to collapse)^{51,52}, the taller, thinner web with reduced omnivory values of the
170 post-extinction web suggests instability as energy flows are contingent on very specific
171 pathways and presents a rivet-hypothesis scenario where the removal of a few well-connected
172 guilds could lead to wholesale ecosystem collapse^{52,53}. The removal of intermediate
173 consumers (i.e. benthic crustaceans, gastropods, scaphopods) increases the vulnerability of
174 the few remaining species of primary consumers in the benthic realm as they continue to be
175 predated by a similar number of pelagic higher level consumers (i.e. cephalopods) as seen in
176 the pre-extinction community. This change in the tiering “pyramid” suggest community-level
177 patterns reflect patterns seen in the global ecosystem in the aftermath of mass extinction
178 events that have strong bottom-water dyoxia/anoxia drivers¹¹ as well as communities in
179 present-day deoxygenated areas⁵⁴.

180

181 *Extinction dynamics*

182 We simulated, with replication, 13 different primary extinction scenarios (see Methods). Each
183 of these scenarios generated unique signatures of primary and secondary extinction. All
184 scenarios with identical starting guild richness (i.e. 48) were terminated when the simulations
185 reached the post-extinction richness of 21. We calculated multiple structural metrics and a
186 True Skill Statistic (TSS)⁵⁵ to compare the simulated post-extinction events to the actual post-
187 extinction event.

188 Three of the simulated extinction scenarios produced communities that were much
189 more similar to the empirical post-extinction community than the random primary extinction
190 scenario (Fig. 4A). According to the TSS scores, primary extinction selectivity based on
191 tiering, with strongest extinction selectivity against infaunal taxa, gave by far the closest
192 replication of the empirical post-extinction community (Fig. 4A). Targeting generality was the
193 second most plausible scenario. The other 10 were largely indistinguishable from random (Fig
194 4a).

195 *Focus: tiering.* The similarities between the empirical post-extinction community and
196 the simulated extinction scenario based on primary extinction selectivity against infaunal and

197 benthic taxa suggests that the strongest extinction selectivity was placed upon taxa living
198 within the sediment or on the seabed in the benthic realm. This pattern matches (i) the
199 empirical data where the majority of extinction occurs within the benthic realm (with almost all
200 infaunal guilds disappearing) and (ii) an anoxia/dysoxia kill mechanism dictating that bottom
201 waters would contain less oxygen than sea surface layers with the capacity for continuous gas
202 exchange with the atmosphere. This result is in line the lithological evidence for anoxia/dysoxia
203 (i.e. organic-rich black shales) within the Cleveland Basin³⁸ and provides confidence that our
204 method is performing well.

205 Extinction simulations based on tiering (with extinction selectivity infaunal>pelagic)
206 also produced the closest matches to the empirical post extinction community in terms of
207 community structure and dynamics in 3 out of 13 of the metrics used (i.e. vulnerability, mean
208 trophic level, S1: number of linear chains). Extinction selectivity based on tiering also produced
209 the closest to the post-extinction community in terms of vulnerability when extinction selectivity
210 was reversed (i.e. pelagic>infaunal), but this was only marginally better than extinction
211 selectivity based on tiering (infaunal>pelagic) (Fig 4). Simulations based on extinction
212 selectivity against tiering from infaunal to pelagic also produced relatively close matches to
213 the empirical community in all other metrics apart from generality (Fig. 4).

214 *Focus: generality.* Scenarios with primary extinction selection based on generality (i.e.
215 the number of resource connections per guild) more closely replicate the post-extinction
216 community than random primary extinction selection with selectivity based both ways (i.e. high
217 to low and low to high) producing almost equally good matches to the empirical data (Fig. 4A).
218 This is likely because extinction selectivity was strongest in the benthic realm, which was made
219 up of taxa that either (i) were primary consumers (i.e. bivalves, brachiopods, crinoids) and only
220 fed upon the basal node of the food web (i.e. low generality) or (ii) were intermediate
221 consumers (i.e. crustaceans, gastropods) that had a broad trophic niche and were feeding
222 upon multiple primary and secondary consumer nodes (i.e. high generality).

223 Simulations based on selection on generality produced less accurate results than
224 tiering in general, but provided the closest match to the empirical post-extinction community

225 in terms of generality, maximum trophic level (when extinction selectivity is high>low) and
226 diameter, betweenness, S2: omnivory (when extinction selectivity is low>high) (Fig. 4). These
227 results add confidence to the TSS results which show that extinction selectivity was strongest
228 in the benthic realm (where taxa of lowest and highest generality are found) in which the effects
229 of dysoxia/anoxia would be strongest felt.

230 *Focus: motility.* The only other simulated extinction scenarios that produced close
231 matches to the empirical post-extinction community in terms of structure and dynamics were
232 based on motility (with extinction selectivity non-motile>fast; which produced the closest match
233 for connectance, mean degree, system omnivory index, S4: apparent competition, and S5:
234 direct competition; Fig. 4). This suggests that motility also had a strong bearing on extinction
235 selectivity across the ETE, with non-motile taxa being more highly prone to extinction than
236 motile taxa. Whilst it is evident that the ETE sees the elimination of almost all the motile
237 benthos in the Cleveland Basin, there are also catastrophic losses amongst the non-motile to
238 facultatively motile benthos with the post-extinction community being dominated by 2 to 3 non-
239 motile and facultatively motile taxa with low-oxygen requirements, similarly to modern day low-
240 oxygen ecosystems³⁸. However, simulation scenarios of primary extinction selection based on
241 motility perform no better than random primary selection scenarios in regard to guild
242 occupancy in the post-extinction community, thus suggesting that other traits (i.e. tiering) were
243 more important in determining primary extinction vulnerability.

244 *Focus: other possibilities.* Interestingly, some traits that have previously been identified
245 as key determinants of extinction across hyperthermal events, i.e. body size and
246 calcification^{14,56}, did not produce simulated post-extinction communities that were a closer
247 match to the empirical post-extinction communities than random selection (Fig. 4). This
248 suggests that the main extinction driver (i.e. dysoxia/anoxia) was not selective based on body
249 size to the same degree as selectivity based on tiering and/or motility. The lack of apparent
250 primary extinction selection based on calcification also suggests that ocean acidification was
251 not a major extinction driver across the ETE in the Cleveland Basin.

252

253 **Ecosystem recovery following the ETE**

254 *Early recovery.* The early recovery interval sees an increase in richness as a number of guilds
255 return that were absent from the basin during the post-extinction interval. This return of guilds
256 is associated with the re-oxygenation of the benthic realm (Fig. 2A). However, despite the
257 return of some species occupying motile benthic and infaunal guilds, the majority of new
258 species occupy guilds that were also present during the immediate post-extinction interval (i.e.
259 surficial suspension feeders and pelagic predators). The lower stratigraphic sections from the
260 early recovery interval are characterised by abundant *Dacromya ovum*, a shallow infaunal,
261 low oxygen tolerant, mining bivalve. It has been hypothesised that *D. ovum* may have been
262 able to survive epifaunally before oxygenation improved within the sediment and then
263 subsequently acted as an ecosystem engineer that catalysed the re-oxygenation of the
264 sediment via bioirrigation³⁸. *D. ovum* is representative of the first infaunal guild to reappear,
265 some 1 million years after the extinction event^{38,39}, and is then followed by subsequent shallow
266 and deep infaunal taxa by the end of the early recovery interval. Whilst the epifaunal
267 community is still dominated by sessile or facultatively mobile taxa, oxygenation of bottom
268 waters is further indicated by the return of motile predatory and grazing guilds (i.e. gastropods
269 and echinoids) as well as the establishment of a greater diversity of soft-bodied epifaunal
270 grazing and infaunal mining guilds (i.e. trace fossils).

271 Metrics of food web structure suggest that ecosystem recovery is also well underway
272 in the early recovery interval. This period sees connectance and generality returning to lower
273 pre-extinction levels, in-line with increased guild diversity (Fig. 2B and D). Despite a significant
274 recovery of guild diversity and some structural metrics returning towards pre-extinction levels,
275 full ecosystem recovery does not appear to have happened in the early recovery interval. This
276 is evidenced by a paucity of infaunal tiering and motile benthos, as compared to the pre-
277 extinction interval and several of the structural metrics and motifs remain at similar levels to
278 the post-extinction interval rather than starting to return to pre-extinction levels. For example,
279 maximum trophic level and vulnerability (Fig. 2C and E) remain very high and all the food web
280 motifs remain at levels closer to the post-extinction interval than the pre-extinction interval

281 (Fig. 3). This suggests that the early recovery community is still tall, thin and top-heavy with
282 somewhat restricted energy flows consisting of a diverse assemblage of pelagic predators
283 feeding on a still relatively depauperate assemblage of lower-level consumers. This pattern is
284 in contrast to some previous models of ecosystem recovery following mass extinctions that
285 postulate that more-basal trophic levels recovered more quickly than upper trophic levels¹⁰.
286 Instead, this pattern supports the hypothesis of delayed benthic ecosystem recovery following
287 mass extinctions even in the face of seemingly recovering taxonomic diversity¹¹.

288

289 *Late recovery.* The late recovery interval witnesses a further increase in guild richness and
290 sees all the structural metrics and motifs return, or start to return, to levels seen in the pre-
291 extinction community (Figs. 2 and 3). Although many of the taxa are different (at species level)
292 to those of pre-extinction community, the majority of pre-extinction guilds are re-occupied by
293 the late recovery interval. Connectance, generality, and vulnerability (Fig. 2B, D-E) are now at
294 levels comparable to the pre-extinction community, as are levels of omnivory (S2) and
295 apparent (S4) and direct (S5) competition (Fig. 3B-D). This suggests that intraguild diversity
296 and functional redundancy is recovering – the reconstructed network indicates a greater
297 number of predators are feeding upon a greater number of prey species thus increasing
298 competition for prey and predator choice simultaneously. The recovery of lower and
299 intermediate-level consumers in the benthic realm drove an increase in the number of linear
300 chains and omnivory, although these metrics are still distinctly lower than the levels seen in
301 the pre-extinction community (Fig. 3A-B).

302 Together with a further rise in maximum trophic level, these changes in the late
303 recovery phase suggests that the overall shape of the food web still remains much taller and
304 thinner than in the pre-extinction community (Fig. A and Fig 3A). Although the increase in the
305 number of linear chains in the late recovery as compared to the early recovery suggests that
306 food web shape could be starting to return towards pre-extinction levels with the greater
307 diversity of benthic guilds, it may also be a result of changing ecosystem structure brought
308 about by the progression of the Mesozoic Marine Revolution (MMR)⁵⁷. The late recovery

309 interval contains a much more diverse array of benthic predators from groups that were
310 supposedly key drivers of the MMR, such as decapod crustaceans⁵⁸, gastropods⁵⁹ and
311 echinoderms⁶⁰ and such changes in benthic community composition may be driving some of
312 the stepwise increase in maximum trophic level through the system, which deviates from the
313 common pattern of perturbation before return to pre-extinction levels as seen in most of the
314 other structural metrics and motifs (Figs 2 and 3).

315

316 **Conclusions**

317 The ETE is characterised by marked changes in community structure and function from a
318 diverse, stable community where each key ecological function is performed by a number of
319 species/guilds to a less diverse, more densely connected and less stable community of
320 generalistic “disaster taxa”³⁹ in which nodes (i.e., species/guilds) are more interdependent
321 than in the pre-extinction community. This change from a diverse pre-extinction ecosystem
322 with high degrees of functional redundancy to a contrasting post-extinction community where
323 key functions are performed by single guilds is representative of a “rivet hypothesis”⁶¹ or a
324 “skeleton crew hypothesis”^{8,45} model in which the subsequent loss of any “rivet” or “crew
325 member” may cause the system to collapse.

326 Our extinction cascade simulations suggest that primary extinction targeted towards
327 infaunal and epifaunal benthic taxa as well as less motile guilds and extreme generalists or
328 specialists best explain post-extinction community structure and function. These conclusions
329 agree with lithological and geochemical evidence for an anoxia/dysoxia kill mechanism which
330 would primarily target benthic organisms (i.e. sessile suspension feeders or generalist
331 predators) as well as taxa classified as specialists (i.e. those only feeding on a single prey
332 source which is predominantly the basal node of the food web) which are mostly benthic
333 suspension feeders. Despite significant increases in biodiversity during the early recovery
334 interval, most structural and functional metrics suggest ecosystem recovery to pre-extinction
335 levels took at least 7 million years (i.e. until the late recovery interval). However, some metrics
336 suggest that either full recovery had not happened even by the late recovery interval or

337 ecosystem structure and function had re-equilibrated to a different state in the Middle Jurassic
338 and perhaps represents ecological regime shifts associated with the MMR^{57,62}.

339

340 **Methods**

341 **Dataset.** Fossil occurrence data is obtained from a compilation of field data sets^{24,26,42,63-65}.
342 The study interval extends from the upper Pliensbachian to the upper Toarcian of the
343 Cleveland Basin (North Yorkshire, UK; Fig 1.) and provides a high resolution data set across
344 the ETE. The data set consists of 38,670 specimens of 162 pelagic and benthic
345 macroinvertebrate species together with occurrences of fish and trace fossils. The data set
346 was subset into four broad time periods; pre-extinction (*margaritatus-tenuicostatum* zones of
347 the Staithes Sandstone Formation, Penny Nab and Kettleness Members of the Cleveland
348 Ironstone Formation and Grey Shales Member of the Whitby Mudstone Formation), post-
349 extinction (*serpentinum-commune* subzones of the Mulgrave Shale and Alum Shale Members
350 of the Whitby Mudstone Formation), early recovery (upper *bifrons*-lower *levesquei* zones of
351 the Alum Shale, Peak Mudstone and Fox Cliff Siltstone Members of the Whitby Mudstone
352 Formation), and late recovery (upper *levesquei* zone of the Grey and Yellow Sandstone
353 Members of the Blea Wyke Sandstone Formation) (Fig. 1).

354

355 **Defining organism ecologies, feeding interactions and trophic guilds.** Modes of life were
356 defined for each fossil species based on the ecological traits defined in the Bambach ecospace
357 model⁶⁶ (i.e. motility, tiering, and feeding). Ecological traits were assigned based on
358 interpretations in the published literature which are largely based on functional morphology
359 and information from extant relatives. Information on the body size of each species was also
360 recorded by summarising mean specimen sizes from the section into a categorical
361 classification. The following ecological characteristics were recorded for each fossil species;
362 motility (fast, slow, facultative, non-motile), tiering (pelagic, erect, surficial, semi-infaunal,
363 shallow infaunal, deep infaunal), feeding (predator, suspension feeder, deposit feeder, mining,
364 grazer), and size: gigantic (>500 mm), very large (>300-500mm), large (>100-300mm),

365 medium (>50-100mm), small (>10-50mm), tiny (\leq 10mm). Size categories are defined by the
366 longest axis of the fossil, estimates of tracemaker size from trace fossils based on literature
367 accounts, or by extrapolating the total length for belemnites from the preserved guard using
368 established approaches^{67,68}. A single node for primary producers was added to each food web
369 to ensure that primary consumers were not considered as primary producers in the
370 reconstructions. Feeding interactions were then modelled between organisms based on an
371 inferential model which assigns the possibility of encounter and consumption of prey items
372 using rules defined by inferred ecological foraging traits (i.e., motility, feeding, tiering, and size;
373 Fig. 5). Trophic guilds were defined by unique combinations of ecological and foraging traits
374 (see Supplementary Materials for a full list of trophic guilds and their defining characteristics)
375 which correspond to groups of organisms that have the same predation/prey rules dictating
376 their interactions in the model and are thus akin to trophic species often used in the
377 reconstruction of modern food webs^{19,69}. Food webs were produced for each broad time
378 interval (i.e. pre-extinction, post-extinction, early recovery, and late recovery) at both the
379 species and trophic guild level. Further palaeoecological data, which is used to inform the
380 extinction cascade simulations, was also assigned to each trophic species/guild in the food
381 web. This data included motility (fast, slow, facultative, non-motile), tiering (pelagic, epifaunal,
382 infaunal), size (gigantic, very large, large, medium, small, tiny), and calcification (heavy,
383 moderate, light).

384 **Quantifying community structure and function.** Community network structural metrics of
385 size (i.e., richness), connectance (C), maximum trophic level, generality (i.e., in-degree, or
386 number of prey) and vulnerability (i.e., out-degree, or number of predators) as well as the
387 network motifs S1 (i.e. number of linear chains), S2 (i.e. omnivory), S4 (i.e. apparent
388 competition), and S5 (i.e. direct competition) were calculated to track changes in community
389 structure and function across the extinction and through the recovery interval. Food web
390 communities were built, visualised and analysed using the R package *PFIM*.

391 **Simulating extinction cascades.** Extinction cascades were simulated by subjecting guilds in
392 the pre-extinction community to primary extinction scenarios based on ecological and trophic

393 traits that correspond to known vulnerabilities linking the traits to hypothesised mass extinction
394 drivers of anoxia, thermal stress, acidification. For each replicate, we catalogued the timing
395 and identity of all primary extinctions and any secondary extinctions arising when a guild lost
396 all of its resources. The extinction cascades were stopped when the diversity of the simulated
397 post-extinction community reached 21 species and thus equalled that of the empirical post-
398 extinction community.

399 We explored 13 different scenarios. Simulations were run with primary extinctions
400 selected (i) randomly, (ii/iii) by body size (large to small/small to large), (iv/v) by tiering (infaunal
401 to pelagic/pelagic to infaunal), (vi/vii) by motility (fast to non-motile/non-motile to fast), (viii/ix)
402 calcification (heavy to light/light to heavy), (x/xi) generality (low to high/high to low), and (xii/xiii)
403 vulnerability (low to high/high to low).

404 We implemented the modelling using the cheddar package in R⁷⁰ using the
405 *RemoveNodes()* function with the 'cascade' method of for secondary extinctions. We
406 generated 50 replicates for each scenario by sampling among guilds from within each traits'
407 levels in the sequence. For example, tiering has six levels (see above) and we randomised
408 the primary extinction sequence of each guild within each of these levels.

409 Simulated post-extinction food webs were then compared to the empirical post-
410 extinction community using three approaches. First, we compared nine structural metrics
411 between the empirical post-extinction web and the simulated networks. Second, we compared
412 the frequency of four motifs (S1: number of linear chains; S2: number of omnivory motifs; S4:
413 number of apparent competition motifs; S5: number of direct competition motifs) between the
414 empirical post-extinction web and the simulated networks. Third, we used a True Skill
415 Statistic⁵⁵ (TSS/classification-misclassification table/confusion matrix: true positive, true
416 negative, false positive, false negative) to compare the guild-node level similarities of
417 position/identity between the empirical post-extinction web and the simulated networks. All
418 metric calculations were made with functions coded using the *PFIM* package for R.

419 We combined the inference from all three of these comparisons to identify the most
420 plausible set of primary extinction and associated secondary extinction scenarios (e.g. which

421 trait sequence) that could deliver a community that most closely resembles the post-extinction
422 community.

423

424 **Data availability**

425 Contact authors for access to data.

426

427 **Code availability**

428 PFIM is currently under publication, contact authors for access to code.

429

430 **References**

431 1 Hull, P. M. & Darroch, S. A. F. Mass extinctions and the structure and function of
432 ecosystems. *The Paleontological Society Papers* **19**, 115-156,
433 doi:doi:10.1017/S1089332600002710 (2013).

434 2 Wignall, P. B. Large igneous provinces and mass extinctions. *Earth-Science Reviews*
435 **53**, 1-33, doi:https://doi.org/10.1016/S0012-8252(00)00037-4 (2001).

436 3 Barnosky, A. D. Distinguishing the effects of the Red Queen and Court Jester on
437 Miocene mammal evolution in the northern Rocky Mountains. *Journal of Vertebrate
438 Paleontology* **21**, 172-185, doi:10.1671/0272-
439 4634(2001)021[0172:DTEOTR]2.0.CO;2 (2001).

440 4 Van Valen, L. A new evolutionary law. *Evolution Theory* **1** (1973).

441 5 Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and robustness of
442 marine food webs. *Marine Ecology Progress Series* **273**, 291-302,
443 doi:doi:10.3354/meps273291 (2004).

444 6 Dunhill, A. M., Foster, W. J., Azaele, S., Sciberras, J. & Twitchett, R. J. Modelling
445 determinants of extinction across two Mesozoic hyperthermal events. *Proceedings of
446 the Royal Society B: Biological Sciences* **285**, doi:10.1098/rspb.2018.0404 (2018).

447 7 Payne, J. L. *et al.* Extinction intensity, selectivity and their combined macroevolutionary
448 influence in the fossil record. *Biology Letters* **12**, doi:10.1098/rsbl.2016.0202 (2016).

449 8 Foster, W. J. & Twitchett, R. J. Functional diversity of marine ecosystems after the Late
450 Permian mass extinction event. *Nature Geosci* **7**, 233-238, doi:10.1038/ngeo2079
451 (2014).

452 9 Pimiento, C. *et al.* The Pliocene marine megafauna extinction and its impact on
453 functional diversity. *Nature Ecology & Evolution* **1**, 1100-1106, doi:10.1038/s41559-
454 017-0223-6 (2017).

455 10 Chen, Z. Q. & Benton, M. J. The timing and pattern of biotic recovery following the end-
456 Permian mass extinction. *Nature Geoscience* **5**, 375-383, doi:10.1038/ngeo1475
457 (2012).

458 11 Song, H., Wignall, P. B. & Dunhill, A. M. Decoupled taxonomic and ecological
459 recoveries from the Permo-Triassic extinction. *Science Advances* **4**, eaat5091,
460 doi:10.1126/sciadv.aat5091 (2018).

461 12 Reddin, C. J., Kocsis, Á. T. & Kiessling, W. Climate change and the latitudinal
462 selectivity of ancient marine extinctions. *Paleobiology* **45**, 70-84,
463 doi:10.1017/pab.2018.34 (2018).

464 13 Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent
465 hypoxia explains biogeography and severity of end-Permian marine mass extinction.
466 *Science* **362**, eaat1327, doi:10.1126/science.aat1327 (2018).

467 14 Clapham, M. E. & Payne, J. L. Acidification, anoxia, and extinction: A multiple logistic
468 regression analysis of extinction selectivity during the Middle and Late Permian.
469 *Geology* **39**, 1059-1062, doi:10.1130/g32230.1 (2011).

470 15 Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. Paleophysiology
471 and end-Permian mass extinction. *Earth and Planetary Science Letters* **256**, 295-313,
472 doi:<https://doi.org/10.1016/j.epsl.2007.02.018> (2007).

473 16 Jacob, U. *et al.* The role of body size in complex food webs: a cold case. *Advances in
474 Ecological Research* **45**, 181-223, doi:<https://doi.org/10.1016/B978-0-12-386475-8.00005-8> (2011).

476 17 Roopnarine, P. D. Extinction cascades and catastrophe in ancient food webs.

477 *Paleobiology* **32**, 1-19, doi:10.1666/05008.1 (2006).

478 18 Roopnarine, P. D. & Angielczyk, K. D. Community stability and selective extinction

479 during the Permian-Triassic mass extinction. *Science* **350**, 90-93,

480 doi:10.1126/science.aab1371 (2015).

481 19 Roopnarine, P. D., Angielczyk, K. D., Wang, S. C. & Hertog, R. Trophic network models

482 explain instability of Early Triassic terrestrial communities. *Proceedings of the Royal*

483 *Society of London B: Biological Sciences* **274**, 2077-2086,

484 doi:10.1098/rspb.2007.0515 (2007).

485 20 Vermeij, G. J. Ecological avalanches and the two kinds of extinction. *Evolutionary*

486 *Ecology Research* **6**, 315-337 (2004).

487 21 Hull, P. Life in the Aftermath of Mass Extinctions. *Current Biology* **25**, R941-R952,

488 doi:<http://dx.doi.org/10.1016/j.cub.2015.08.053> (2015).

489 22 Barnosky, A. D. *et al.* Has the Earth's sixth mass extinction already arrived? *Nature*

490 **471**, 51-57, doi:10.1038/nature09678 (2011).

491 23 Atkinson, J. W. & Wignall, P. B. How quick was marine recovery after the end-Triassic

492 mass extinction and what role did anoxia play? *Palaeogeography, Palaeoclimatology,*

493 *Palaeoecology* **528**, 99-119, doi:<https://doi.org/10.1016/j.palaeo.2019.05.011> (2019).

494 24 Little, C. T. & Benton, M. J. Early Jurassic mass extinction: A global long-term event.

495 *Geology* **23**, 495-498, doi:[https://doi.org/10.1130/0091-7613\(1995\)023%3C0495:EJMEAG%3E2.3.CO;2](https://doi.org/10.1130/0091-7613(1995)023%3C0495:EJMEAG%3E2.3.CO;2) (1995).

496 25 Sepkoski, J. J. in *Global Events and Event Stratigraphy in the Phanerozoic: Results of*

497 *the International Interdisciplinary Cooperation in the IGCP-Project 216 "Global*

498 *Biological Events in Earth History"* (ed Otto H. Walliser) 35-51 (Springer Berlin

500 Heidelberg, 1996).

501 26 Danise, S., Twitchett, R. J., Little, C. T. S. & Clémence, M.-E. The Impact of Global

502 Warming and Anoxia on Marine Benthic Community Dynamics: an Example from the

503 Toarcian (Early Jurassic). *PLoS ONE* **8**, e56255, doi:10.1371/journal.pone.0056255
504 (2013).

505 27 Percival, L. M. E. *et al.* Globally enhanced mercury deposition during the end-
506 Pliensbachian extinction and Toarcian OAE: A link to the Karoo–Ferrar Large Igneous
507 Province. *Earth and Planetary Science Letters* **428**, 267-280,
508 doi:<https://doi.org/10.1016/j.epsl.2015.06.064> (2015).

509 28 Them II, T. R. *et al.* High-resolution carbon isotope records of the Toarcian Oceanic
510 Anoxic Event (Early Jurassic) from North America and implications for the global
511 drivers of the Toarcian carbon cycle. *Earth and Planetary Science Letters* **459**, 118-
512 126, doi:<http://dx.doi.org/10.1016/j.epsl.2016.11.021> (2017).

513 29 Kemp, D. B., Selby, D. & Izumi, K. Direct coupling between carbon release and
514 weathering during the Toarcian oceanic anoxic event. *Geology* **48**, 976-980,
515 doi:10.1130/G47509.1 (2020).

516 30 Dera, G. & Donnadieu, Y. Modeling evidences for global warming, Arctic seawater
517 freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event.
518 *Paleoceanography* **27**, doi:doi:10.1029/2012PA002283 (2012).

519 31 Bailey, T. R., Rosenthal, Y., McArthur, J. M., van de Schootbrugge, B. & Thirlwall, M.
520 F. Paleoceanographic changes of the Late Pliensbachian–Early Toarcian interval: a
521 possible link to the genesis of an Oceanic Anoxic Event. *Earth and Planetary Science
522 Letters* **212**, 307-320, doi:[https://doi.org/10.1016/S0012-821X\(03\)00278-4](https://doi.org/10.1016/S0012-821X(03)00278-4) (2003).

523 32 Them, T. R. *et al.* Thallium isotopes reveal protracted anoxia during the Toarcian (Early
524 Jurassic) associated with volcanism, carbon burial, and mass extinction. *Proceedings
525 of the National Academy of Sciences* **115**, 6596-6601, doi:10.1073/pnas.1803478115
526 (2018).

527 33 Jenkyns, H. The early Toarcian (Jurassic) anoxic event-stratigraphic, sedimentary, and
528 geochemical evidence. *American Journal of Science* **288**, doi:10.2475/ajs.288.2.101
529 (1988).

530 34 Caswell, B. A. & Coe, A. L. Primary productivity controls on opportunistic bivalves
531 during Early Jurassic oceanic deoxygenation. *Geology* **41**, 1163-1166,
532 doi:10.1130/G34819.1 (2013).

533 35 Trecalli, A., Spangenberg, J., Adatte, T., Föllmi, K. B. & Parente, M. Carbonate
534 platform evidence of ocean acidification at the onset of the early Toarcian oceanic
535 anoxic event. *Earth and Planetary Science Letters* **357**, 214-225,
536 doi:<https://doi.org/10.1016/j.epsl.2012.09.043> (2012).

537 36 Wignall, P. B., Newton, R. J. & Little, C. T. S. The timing of paleoenvironmental change
538 and cause-and-effect relationships during the early Jurassic mass extinction in Europe.
539 *American Journal of Science* **305**, 1014-1032, doi:10.2475/ajs.305.10.1014 (2005).

540 37 Caswell, B. A., Coe, A. L. & Cohen, A. S. New range data for marine invertebrate
541 species across the early Toarcian (Early Jurassic) mass extinction. *Journal of the
542 Geological Society* **166**, 859-872, doi:10.1144/0016-76492008-0831 (2009).

543 38 Caswell, B. A. & Dawn, S. J. Recovery of benthic communities following the Toarcian
544 oceanic anoxic event in the Cleveland Basin, UK. *Palaeogeography,
545 Palaeoclimatology, Palaeoecology* **521**, 114-126,
546 doi:<https://doi.org/10.1016/j.palaeo.2019.02.014> (2019).

547 39 Caswell, B. A. & Frid, C. L. J. Marine ecosystem resilience during extreme
548 deoxygenation: the Early Jurassic oceanic anoxic event. *Oecologia* **183**, 275-290,
549 doi:10.1007/s00442-016-3747-6 (2017).

550 40 Atkinson, J. W., Little, C. T. & Dunhill, A. M. Long duration of benthic ecological
551 recovery from the early Toarcian mass extinction event in the Cleveland Basin, North
552 Yorkshire, UK. **in prep** (2020).

553 41 Danise, S., Twitchett, R. J. & Little, C. T. S. Environmental controls on Jurassic marine
554 ecosystems during global warming. *Geology* **43**, 263-266, doi:10.1130/g36390.1
555 (2015).

556 42 Howarth, M. K. The Jet Rock Series and the Alum Shale Series of the Yorkshire coast.
557 *Proceedings of the Yorkshire Geological Society* **33**, 381-422,
558 doi:<https://doi.org/10.1144/pygs.33.4.381> (1962).

559 43 Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory:
560 the role of connectance and size. *Proceedings of the National Academy of Sciences
561 USA* **99**, 12917-12922, doi:<https://doi.org/10.1073/pnas.192407699> (2002).

562 44 Caswell, B. A. & Coe, A. L. The impact of anoxia on pelagic macrofauna during the
563 Toarcian Oceanic Anoxic Event (Early Jurassic). *Proceedings of the Geologists'
564 Association* **125**, 383-391, doi:<https://doi.org/10.1016/j.pgeola.2014.06.001> (2014).

565 45 Dunhill, A. M., Foster, W. J., Sciberras, J. & Twitchett, R. J. Impact of the Late Triassic
566 mass extinction on functional diversity and composition of marine ecosystems.
567 *Palaeontology* **61**, 133-148, doi:[10.1111/pala.12332](https://doi.org/10.1111/pala.12332) (2018).

568 46 Aberhan, M. Opening of the Hispanic Corridor and Early Jurassic bivalve biodiversity.
569 *Geological Society, London, Special Publications* **194**, 127-139,
570 doi:[10.1144/gsl.sp.2002.194.01.10](https://doi.org/10.1144/gsl.sp.2002.194.01.10) (2002).

571 47 Fursich, F. T., Berndt, R., Scheuer, T. & Gahr, M. Comparative ecological analysis of
572 Toarcian (Lower Jurassic) benthic faunas from southern France and east-central
573 Spain. *Lethaia* **34**, 169-199, doi:[10.1111/j.1502-3931.2001.tb00048.x](https://doi.org/10.1111/j.1502-3931.2001.tb00048.x) (2001).

574 48 Röhl, H.-J., Schmid-Röhl, A., Oschmann, W., Frimmel, A. & Schwark, L. The Posidonia
575 Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by
576 sea level and palaeoclimate. *Palaeogeography, Palaeoclimatology, Palaeoecology*
577 **165**, 27-52, doi:[https://doi.org/10.1016/S0031-0182\(00\)00152-8](https://doi.org/10.1016/S0031-0182(00)00152-8) (2001).

578 49 Martindale, R. C. & Aberhan, M. Response of macrobenthic communities to the
579 Toarcian Oceanic Anoxic Event in northeastern Panthalassa (Ya Ha Tinda, Alberta,
580 Canada). *Palaeogeography, Palaeoclimatology, Palaeoecology* **478**, 103-120,
581 doi:[http://dx.doi.org/10.1016/j.palaeo.2017.01.009](https://doi.org/10.1016/j.palaeo.2017.01.009) (2017).

582 50 Huang, Y. *et al.* Ecological dynamics of terrestrial and freshwater ecosystems across
583 three mid-Phanerozoic mass extinctions from northwest China. *Proceedings of the*
584 *Royal Society B* **288**, 20210148, doi:<https://doi.org/10.1098/rspb.2021.0148> (2021).

585 51 Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model
586 food webs. *Philosophical Transactions of the Royal Society B* **364**, 1711-1723,
587 doi:<https://doi.org/10.1098/rstb.2008.0219> (2009).

588 52 Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss
589 in food webs: robustness increases with connectance. *Ecology Letters* **5**, 558-567,
590 doi:<https://doi.org/10.1046/j.1461-0248.2002.00354.x> (2002).

591 53 Bernhardt, J. R. & Leslie, H. M. Resilience to climate change in coastal marine
592 ecosystems. *Annual Review of Marine Science* **5**, 371-392, doi:[10.1146/annurev-marine-121211-172411](https://doi.org/10.1146/annurev-marine-121211-172411) (2013).

594 54 Levin, L. A. & Gage, J. D. Relationships between oxygen, organic matter and the
595 diversity of bathyal macrofauna. *Deep Sea Research Part II: Topical Studies in*
596 *Oceanography* **45**, 129-163, doi:[https://doi.org/10.1016/S0967-0645\(97\)00085-4](https://doi.org/10.1016/S0967-0645(97)00085-4)
597 (1998).

598 55 Allouche, o., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution
599 models: prevalence, kappa and the true skill statistic (TSS). *Journal of Applied Ecology*
600 **43**, 1223-1232, doi:[doi:10.1111/j.1365-2664.2006.01214.x](https://doi.org/10.1111/j.1365-2664.2006.01214.x) (2006).

601 56 Payne, J. L., Bush, A. M., Heim, N. A., Knope, M. L. & McCauley, D. J. Ecological
602 selectivity of the emerging mass extinction in the oceans. *Science* **353**, 1284-1286,
603 doi:[10.1126/science.aaf2416](https://doi.org/10.1126/science.aaf2416) (2016).

604 57 Vermeij, G. J. The Mesozoic Marine Revolution: Evidence from Snails, Predators and
605 Grazers. *Paleobiology* **3**, 245-258, doi:<https://doi.org/10.1017/S0094837300005352>
606 (1977).

607 58 Schweitzer, C. E. & Feldmann, R. M. The Decapoda (Crustacea) as predators on
608 Mollusca through geologic time. *Palaios* **25**, 167-182,
609 doi:<https://doi.org/10.2110/palo.2009.p09-054r> (2010).

610 59 Ferrari, M., Little, C. & Atkinson, J. Upper Toarcian (Lower Jurassic) marine gastropods
611 from the Cleveland Basin, England: systematics, palaeobiogeography and contribution
612 to biotic recovery from the early Toarcian extinction event. *Special Papers in*
613 *Palaeontology*, doi:10.1002/spp2.1322 (2020).

614 60 Baumiller, T. K. *et al.* Post-Paleozoic crinoid radiation in response to benthic predation
615 preceded the Mesozoic marine revolution. *Proceedings of the National Academy of*
616 *Sciences* **107**, 5893-5896, doi:10.1073/pnas.0914199107 (2010).

617 61 Walker, B. H. Biodiversity and Ecological Redundancy. *Conservation Biology* **6**, 18-23,
618 doi:<https://doi.org/10.1046/j.1523-1739.1992.610018.x> (1992).

619 62 Harper, E. M. in *Predator—Prey Interactions in the Fossil Record* (eds P.H. Kelley,
620 M. Kowalewski, & T.A. Hansen) 433-455 (Springer, 2003).

621 63 Atkinson, J. W., Little, C. T. S. & Dunhill, A. M. Long duration of benthic ecological
622 recovery from the early Toarcian mass extinction event in the Cleveland Basin, North
623 Yorkshire, UK. *Palaeogeography Palaeoclimatology Palaeoecology* **in prep.** (2020).

624 64 Howarth, M. K. Domerian of the Yorkshire Coast. *Proceedings of the Yorkshire*
625 *Geological Society* **30**, 147-175, doi:10.1144/pygs.30.2.147 (1955).

626 65 Martin, K. D. A re-evaluation of the relationship between trace fossils and dysoxia.
627 *Journal of the Geological Society, London, Special Publications* **228**, 141-156,
628 doi:10.1144/GSL.SP.2004.228.01.08 (2004).

629 66 Bambach, R. K., Bush, A. M. & Erwin, D. H. Autecology and the filling of ecospace:
630 Key metazoan radiations. *Palaeontology* **50**, 1-22, doi:10.1111/j.1475-
631 4983.2006.00611.x (2007).

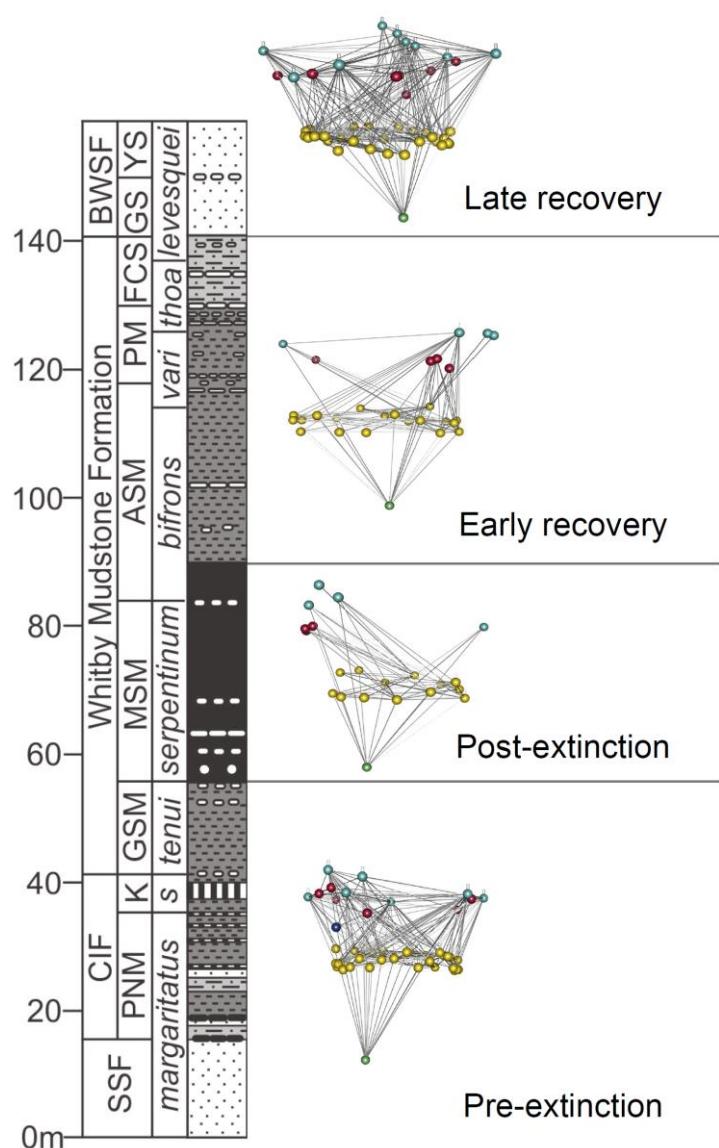
632 67 Klug, C., Schweigert, G., Fuchs, D. & Dietl, G. First record of a belemnite preserved
633 with beaks, arms and ink sac from the Nusplingen Lithographic Limestone
634 (Kimmeridgian, SW Germany). *Lethaia* **43**, 445-456,
635 doi:<https://doi.org/10.1111/j.1502-3931.2009.00203.x> (2010).

636 68 Reitner, J. & Urlichs, M. Echte Weichteilbelemniten aus dem Untertoarcium
637 (Posidonienschifer) Südwestdeutschlands. *Neues Jahrbuch für Geologie und*
638 *Paläontologie* **165**, doi:10.23689/fidgeo-2557 (1983).

639 69 Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. *Nature* **404**,
640 180, doi:10.1038/35004572 (2000).

641 70 Hudson, L. N. *et al.* Cheddar: analysis and visualisation of ecological communities in
642 R. *Methods in Ecology and Evolution* **4**, 99-104, doi:doi:10.1111/2041-210X.12005
643 (2013).

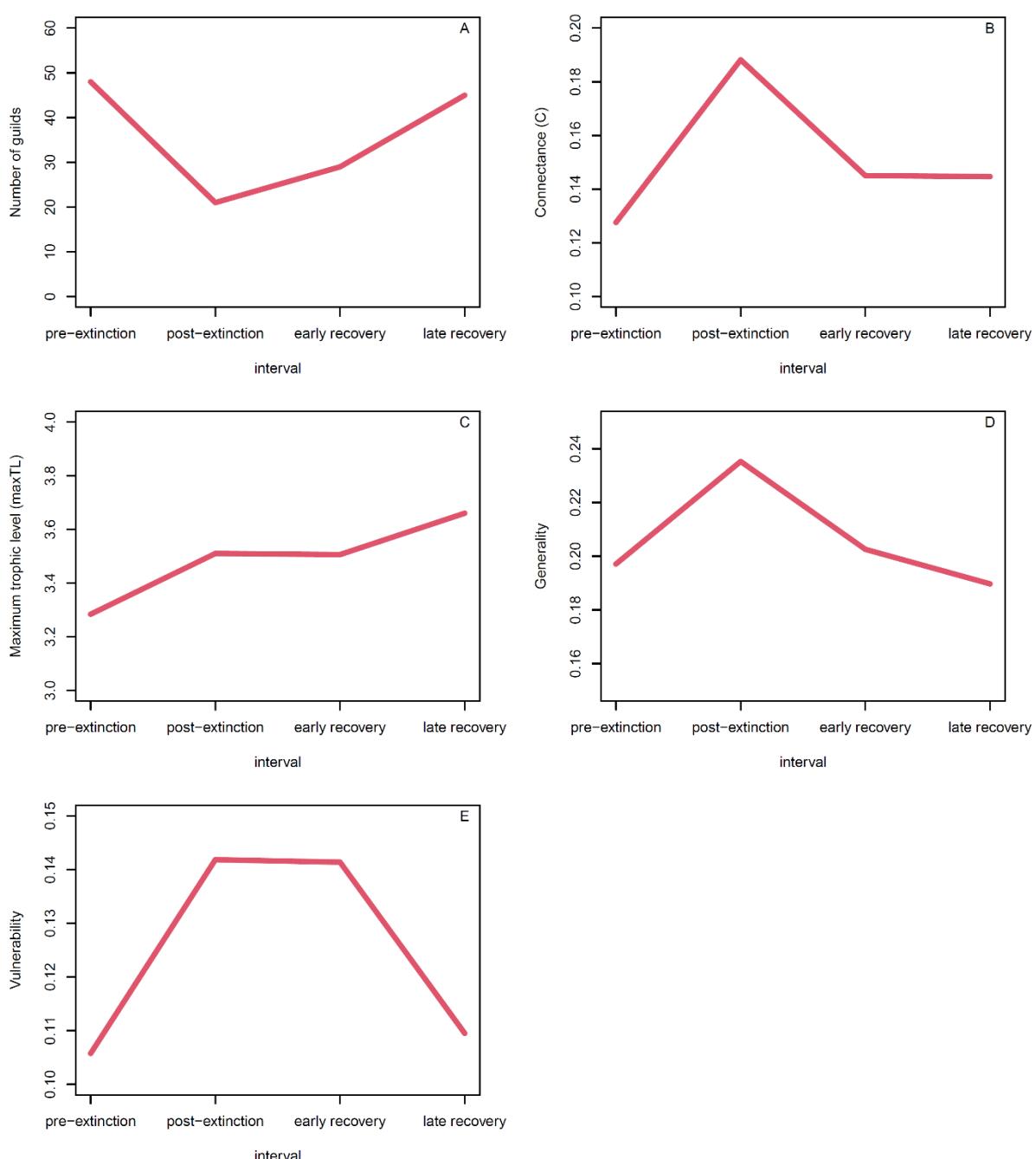
644


645 **Acknowledgements**

646 The authors thank the Palaeontological Association for the provision of an Undergraduate
647 Research Bursary (PA-UB01703) to K. Zarzyczny, J. Atkinson, C. Little and A. Dunhill which
648 funded the data collection and initial pilot analysis of this work. We thank the Palaeo@Leeds
649 group for ongoing feedback on this work.

650

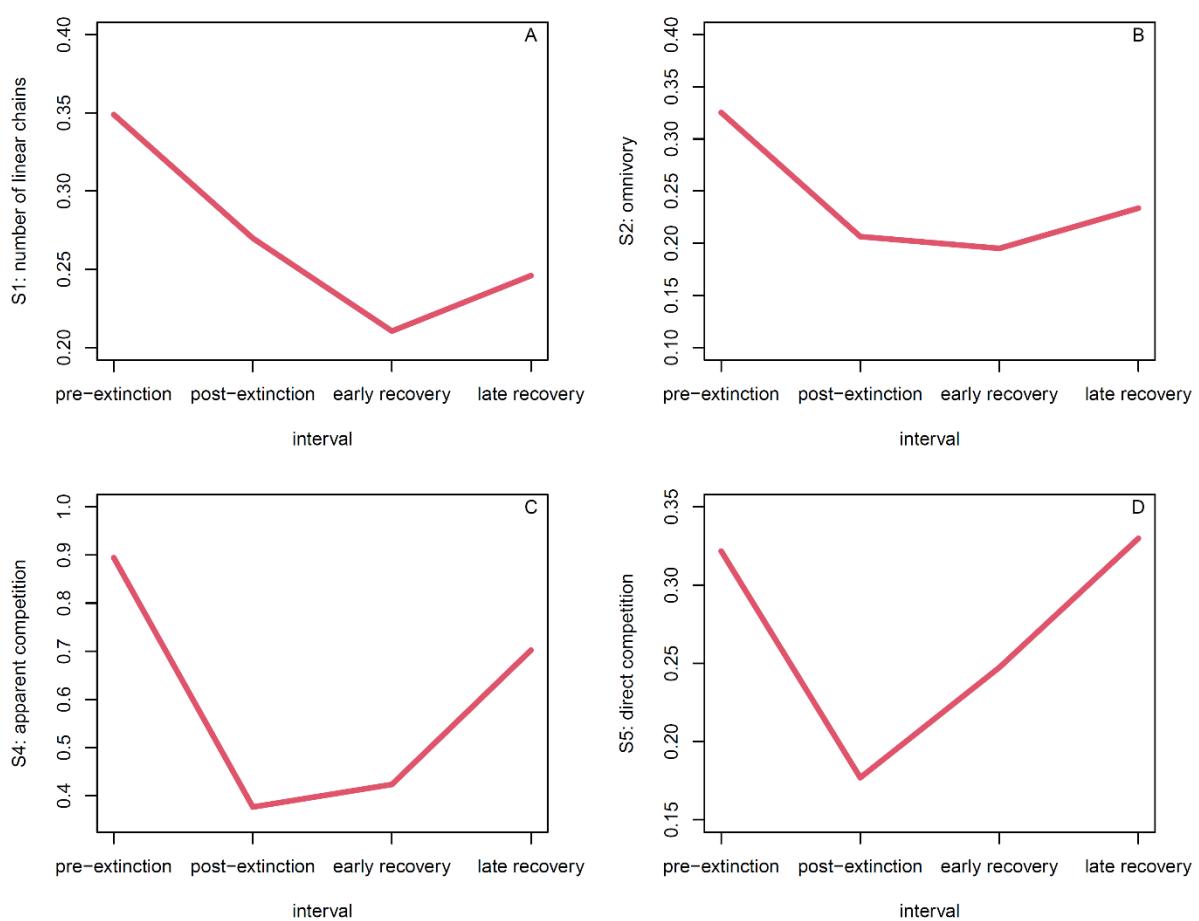
651 **Author information**


652 A. Dunhill devised the project. K. Zarzyczny, J. Atkinson, C. Little and A. Dunhill collected the
653 data. A. Dunhill, A. Beckerman, J. Shaw and K. Zarzyczny performed the analysis. A. Dunhill
654 lead the write up and all authors contributed to editing and improving the manuscript.

655

656 **Figure 1.** Stratigraphic column of the Pliensbachian-Toarcian (Lower Jurassic) of the
657 Cleveland Basin at Ravenscar (North Yorkshire, UK) showing community food webs for pre-
658 extinction, post-extinction, early recovery and late recovery intervals. Lithostrat column
659 abbreviations need explanation. SSF = Staithes Sandstone Fomration; CIF = Cleveland
660 Ironstone Formation; BWSF = Blea Wyke Sandstone Formation; PNM = Penny Nab Member;
661 K = Kettleness Member; GSM = Grey Shales Member; MSM = Mulgrave Shales Member;
662 ASM = Alum Shales Member; PM = Peak Mudstone Member; Fox Cliff Sandstone Member =
663 ; GS = Grey Sandstone Member; YS = Yellow Sandstone Member; *s* = *spinatum*; *vari* =
664 *variabilis*; *thoa* = *thouarsense*.

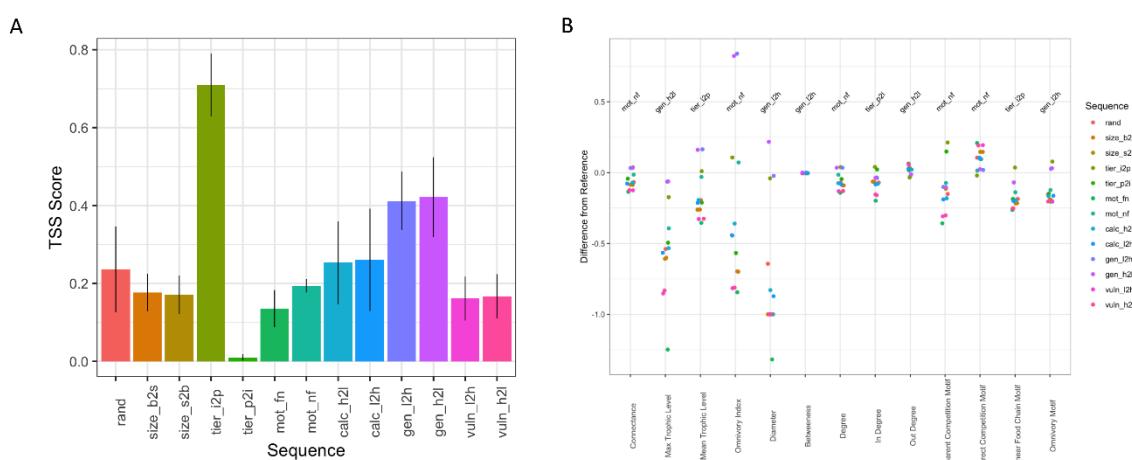
665



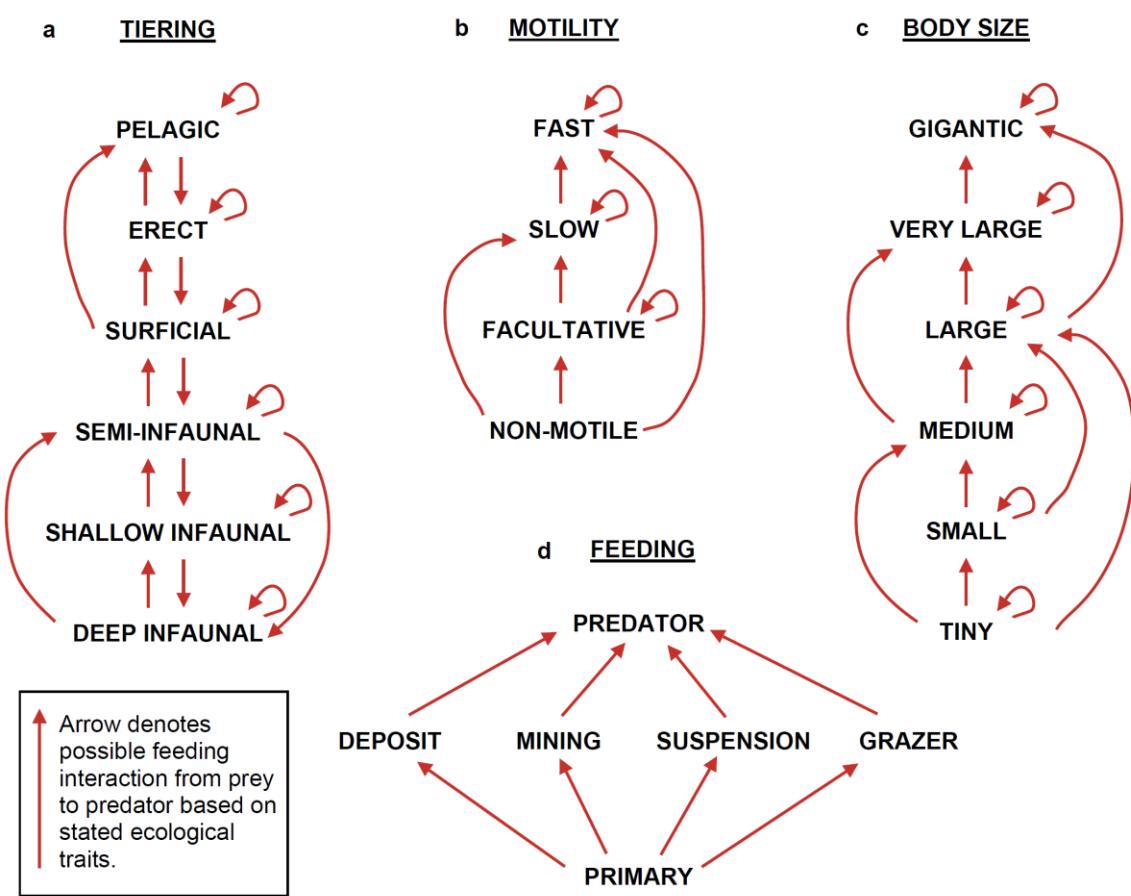
666 **Figure 2.** Structural food web metrics across the four intervals of the ETE; (A) guild richness;

667 (B) connectance (C); (C) maximum trophic level (MaxTL); (D) generality; (E) Vulnerability.

668


669

670 **Figure 3.** Functional food web motifs across the four intervals of the ETE; (A) S1: number of
671 linear chains; (B) S2: number of omnivory motifs; S4: number of apparent competition motifs;
672 (D) S5: number of direct competition motifs.


673

674

675 **Figure 4.** Results of secondary extinction cascade simulations showing similarity between
676 simulated and empirical pre-extinction food web structure and function via; (A) True Skills
677 Statistic showing the similarity in node presence/absence between simulated scenarios and
678 empirical post-extinction community; (B) similarity in structural food web metrics and food web
679 motifs between simulated scenarios and empirical post-extinction community (see Table 1 for
680 sequence definitions).

681

682

683 **Figure 5.** Trait-based feeding rules that parameterise PFIM for reconstructing empirical food
684 webs across all intervals.

685

Table 1. Definitions of extinction cascade simulation sequences.

Sequence	Definition
rand	Primary extinctions targeted in a random fashion
size_b2s	Primary extinctions targeted at larger guilds
size_s2b	Primary extinctions targeted at smaller guilds
tier_i2p	Primary extinctions targeted at infaunal > epifaunal > pelagic guilds
tier_p2i	Primary extinctions targeted at pelagic > epifaunal > infaunal guilds
mot_fn	Primary extinction targeted at most motile guilds
mot_nf	Primary extinction targeted at least motile guilds
calc_h2l	Primary extinction targeted at most heavily calcified guilds
calc_l2h	Primary extinction targeted at least heavily calcified guilds
gen_l2h	Primary extinction targeted at specialist guilds
gen_h2l	Primary extinction targeted at generalist guilds
vuln_l2h	Primary extinction targeted at least heavily predated guilds
vuln_h2l	Primary extinction targeted at most heavily predated guilds