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ABSTRACT 

 

Objectives: The DepMap genome-wide loss of function CRISPR screens offer new insight into 

gene dependencies in HPV(-) head and neck squamous cell carcinoma (HNSCC) cell lines. We 

aimed to leverage this data to guide preclinical studies by cataloging novel targetable 

dependencies that are predicted to offer a useful therapeutic window. We also aimed to identify 

targets potentially representing synthetic lethalities by testing for associations between genetic 

alterations and gene dependency profile. 

Methods: DepMap was queried for gene probability and effect scores in cell lines from 87 

tumors, including 63 HPV(-) HNSCCs plus 24 esophageal squamous cell carcinomas (ESCCs), 

which have comparable etiology, tissue or origin,  and genetic profile to HNSCC. A probability 

score of ≥ 0.5 was used as the threshold for essentiality. Essential genes were selected for 

analysis by 4 criteria: (1) presence in ≥10% cell lines, (2) lack of common essential designation 

by DepMap, (3) lack of predicted dependency in normal cell lineages, and (4) designation as 

druggable by the Drug-Gene Interaction Database. 

Results: The 143 genes meeting selection criteria had a median gene effect score of 0.56. 

Selection criteria captured targets of standard therapeutic agents of HNSCC including TYMS (5-

FU), tubulin genes (taxanes), EGFR (cetuximab), plus additional known oncogenes like PIK3CA 

and ERBB3. Functional classification analysis showed enrichment of tyrosine kinases, 

serine/threonine kinases, RNA-binding proteins, and mitochondrial carriers. 90% of the 143 

dependencies were not known oncogenes in the OncoKB Database. 10% of targets had 

inhibitors previously used in a non-HNSCC phase II trial, including 8 that have not yet been 

tested in cancer. The 13 genes with median gene effect scores greater than of PIK3CA and not 

well-studied in HNSCC were assigned highest priority, including DHRSX, MBTPS1, TDP2, 

FARS2, TMX2, RAB35, CFLAR, GPX4, SLC2A1, TP63, PKN2, MAP3K11, and TIPARP. A 

novel association was found between NOTCH1 mutation and increased TAP1 dependency. 

Conclusions: The DepMap CRISPR screens capture well-studied targets in HNSCC as well as 

numerous genes without known roles in HNSCC or malignancy in general. Several of these 

targets have well-developed inhibitors that provide resources to guide preclinical studies. 

Association of some of the dependencies with known molecular subgroups in HNSCC may 

enhance use of cell line models to guide personalization of therapy. 
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INTRODUCTION 

 

Advanced HPV-negative head and neck squamous cell carcinoma (HPV(-) HNSCC) continues 

to carry a poor prognosis compared to its HPV-positive counterpart1. The emergence of modern 

targeted therapies such as anti-EGFR and anti-PD(L)1 agents has had limited overall impact on 

oncologic outcomes for these patients2. Other recently proposed strategies, including PI3K and 

CDK 4/6 inhibition, have yet to show utility in clinical trials for monotherapy or combination 

therapy, as they may be hampered by prognostic associations with genomic subgroups of 

HPV(-) HNSCC. Though subgroup classification based on genomic alterations or expression 

profiles is common in other cancers, literature on how biomarkers in HPV(-) HNSCC may 

predict immunotherapy response remains sparse. Recent efforts have focused on identifying 

previously unstudied driver genes, but characterization of the genetic and transcriptional 

landscape of HPV(-) HNSCC via the Cancer Genome Atlas and similar projects has not yet led 

to new targets achieving clinical application for this disease3. 

 

Development of targeted therapies requires detailed knowledge of the genetic makeup of tumor 

cells. The DepMap Portal now offers results from pooled genome-wide CRISPR-Cas9 screens 

for 990 cell lines from multiple cancer types, including a large panel of HPV(-) HNSCC models4. 

CRISPR-Cas9 dropout screening offers improved identification of vulnerabilities in cancer due 

to its limited off-target effects. This resource may provide a new window into the molecular 

dependency profile for HPV(-) HNSCC that can lead to preclinical evaluation of new therapeutic 

approaches. While DepMap provides useful visualization tools for exploring the database, 

prioritization of cancer-specific dependencies remains a challenging task for researchers 

interested in evaluating potential drugs in cell lines. We aimed to guide use of cell line models 

for preclinical studies by cataloging recurring, targetable dependencies revealed by DepMap 

that are predicted to offer a cancer-specific therapeutic window. In addition, we aimed to identify 

the subset of targetable dependencies representing potential synthetic lethalities by evaluating 

for associations between the common genetic alterations in the cell lines and their targetable 

dependency profiles. Overall, we sought to propose a target prioritization strategy for cell line 

models of HPV(-) HNSCC that could be applied to any cancer type available in DepMap. 
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METHODS 

 

DepMap  

The DepMap Public 21Q3 CRISPR screening library contains CRISPR-Cas9 knockout data for 

17,387 genes in 990 cell lines1. All HPV-negative head and neck squamous cell carcinoma 

(HNSCC) cell lines annotated in DepMap were selected for analysis (n=63). The size of this 

panel was increased to 87 by adding all 24 cell lines from esophageal squamous cell carcinoma 

(ESCC), which have closely comparable etiology, tissue of origin, and genetic landscape to 

HPV(-) HNSCCs5, 6. DepMap reports a gene probability score as the probability (0-1) that 

knocking out a gene has a true effect on cell line survival, and they use a score > 0.5 to 

designate a gene as essential to a specific cell line. To identify recurring dependencies, we 

used this cutoff to filter for genes essential in at least 10% (8/87) of the cell line models. 

DepMap also reports a gene effect score as the effect size of knocking out a gene on cell line 

survival, with a negative value representing a stronger dependency. For simplification, the 

inverse was taken of all gene effect scores in this report such that a more positive value 

represents a stronger dependency. To reduce false positives, scores are corrected using 

CERES, a computational method accounting for copy-number-specific effects and variable 

sgRNA activity. The scores are finally scaled such that the median gene effect score for non-

essential genes across all cell lines in DepMap is 0 and the median for essential genes is 1. In 

our analysis, genes with the highest median gene effect scores in the 87 cell line models were 

assigned the highest priority for further study. 

 

Common essential and core fitness genes 

 

We used two sources to exclude dependencies that are shared by normal tissue and thus would 

not provide a useful therapeutic window. First, DepMap designates “common essential” genes 

as dependencies that are present across >90% of all 990 cancer cell lines7. Second, we 

identified genes that were dependencies across 3/5 normal cell lineages in prior pooled loss-of-

function CRISPR screens8. Common essential and core fitness genes were therefore excluded 

due to the increased likelihood of causing toxicity to normal tissue. 

 

DGIdb 
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Potential targetability of gene products was evaluated using the Drug Gene Interaction 

Database (DGIdb), which aggregates data from multiple sources for existing and potential drug-

gene interactions9. DGIdb designates genes in the “druggable genome” if a drug-gene 

interaction exists or if the gene belongs in one of 42 potentially targetable gene categories, such 

as kinases and ion channels. To best identify targetable dependencies, genes not part of the 

“druggable genome” were excluded from analysis.  

 

Open Targets 

 

To characterize the status of drug development for genes of interest, the list was crossed with 

the Open Targets Platform, which integrates publicly available datasets to curate approved or 

investigational drugs known to directly act on gene products10. Clinical trial phase and disease 

indications were collected for genes selected in our analysis. Gene targets with an “existing 

clinical agent” were defined as having an inhibitor studied in a previous or current Phase II trial 

for any disease indication, which indicates the presence of an established safety profile. Genes 

with an existing clinical agent in head and neck cancer were identified in the prioritization 

pipeline. 

 

OncoKB 

 

The OncoKB database annotates genes as oncogenes or tumor suppressor genes based on 

their inclusion in various sequencing panels, the Sanger Cancer Gene Census, or Vogelstein et. 

al11-13. OncoKB is the most inclusive database of cancer-related genes. To validate the filtration 

steps in this pipeline, OncoKB was used to screen the gene list for well-studied targets in 

cancer.  

 

DAVID Gene Functional Classification Tool 

 

DAVID Bioinformatics Resources is an open database that integrates biological data and 

analytical tools for functional annotation of genes and pathways14. The DAVID Gene Functional 

Classification Tool was used to classify gene lists into functionally related groups based off 14 

functional annotation sources, including gene ontology terms (GO)15. Significant enrichment of a 

group within our gene list was defined using a kappa similarity threshold of 0.3 and similarity 
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term overlap of 4. We therefore used DAVID to summarize recurring functional classifications in 

our pipeline.  

 

Identification and prioritization of targetable dependencies 

 

We describe the prioritization pipeline for targetable dependencies in HPV(-) HNSCC cell line 

models utilizing the data sources listed above. DepMap was queried for gene probability and 

effect scores in cell lines from 87 tumors, including 63 HPV(-) HNSCCs and 24 ESCCs. A gene 

probability score of ≥ 0.5 was used as the threshold for essentiality for a specific cell line. 

Targetable dependencies were identified using four criteria: (1) Essential in ≥ 10% cell lines, (2) 

lack of common gene essential designation by DepMap, (3) lack of dependency in CRISPR 

screens of normal human cell lineages, and (4) designation as potentially targetable by DGIdb. 

Targetable dependencies were further prioritized for consideration of further study using these 

criteria: (1) Lack of an existing clinical agent in HNSCC, (2) median gene effect score greater 

than that of PIK3CA (0.57), which is a well-studied oncogene in HNSCC with the weakest 

dependency in our analysis.  

 

Associations between common genetic alterations and targetable dependencies 

 

To identify common genetic alterations which may confer unique vulnerabilities in cell line 

models, we aggregated a list of genes with frequent and significant genetic alterations in HPV(-) 

HNSCC from two review articles3, 16. The Cancer Cell Line Encyclopedia (CCLE) includes a 

detailed genetic characterization of human cancer models, including all 87 cell lines used in this 

analysis17. The CCLE was queried for the presence of relevant alterations, depending on their 

classification as an oncogene or tumor suppressor in the review articles. Genes with alterations 

in ≥ 10% cell lines in our pipeline were included in the associations analysis. Associations 

between common genetic alterations and targetable dependencies were defined using two-

sample t-tests comparing the median gene effect score between cell lines with the genetic 

alteration and without the genetic alteration18. Significant associations were defined using filter 

conditions of p < 0.05 and Cohen's d effect size ≥ 1. 
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RESULTS  

 

Identification of targetable dependencies in cell line models of HNSCC 

 

All HPV-negative head and neck squamous cell carcinoma (HNSCC) cell lines annotated in 

DepMap were selected for analysis (n=63). The size of this panel was increased to 87 by 

adding all 24 cell lines from esophageal squamous cell carcinoma (ESCC), which have closely 

comparable etiology, tissue of origin, and genetic landscape to HPV(-) HNSCCs6, 19. Starting 

with the 17,387 genes targeted in across the DepMap CRISPR screens, the gene probability 

score cutoff used by DepMap to designate genes as essential to survival (>0.5)20 indicated 5123 

genes to be essential in at least one of the 87 cell lines (Figure 1). From these 5123 genes, a 

subset of 1001 was selected based on prediction by the Drug-Gene Interaction Database that 

their protein products are therapeutically targetable.9 The 1001 genes were visualized as points 

on a scatter plot showing the percentage of cell lines that consider a gene essential (x-axis) and 

the median gene effect score in those cell lines (y-axis) (Figure 1A). A high frequency of genes 

is clustered at the low and high ends of the y-axis. This analysis provided a large list of 

potentially targetable dependencies in HNSCC cell lines that are listed in Supplementary Table 

1. 

 

To prioritize among the 1001 targetable dependencies, we considered the following features: (1) 

the percentage of cell lines that consider a gene to be essential (2) the median strength of 

dependency in those cell lines, and (3) whether the dependency is shared by nonmalignant 

cells. First, we sought to remove gene dependencies that are shared by normal tissue and thus 

would not provide a useful therapeutic window. The 1924 dependencies that are present across 

>90% of all 990 cancer cell lines in DepMap have been designated as “common essential” 

genes, which are predicted to lack specificity to cancer, and 160 such common essential genes 

were present in the list of 1001 targetable dependencies for HNSCC. These genes had a 

median gene effect score of 1.28 (IQR: 1.00-1.79), which is consistent with the scaling of 

DepMap gene effect scores to set 1.0 as the median for all common essential dependencies. To 

further assess for dependencies shared by normal tissue, we identified genes that were 

dependencies across multiple normal cell lineages in prior pooled loss-of-function CRISPR 

screens [2015]. Of the 1580 such “core fitness” genes designated in this prior study, 190 were 

present in the gene list of targetable dependencies. The 190 core fitness genes had a median 

gene effect score of 0.92 (IQR: 0.61-1.44), and 114 of them also appeared on the list of 
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common essential genes. Presence of this large overlap provided cross-validation of these two 

independent approaches for excluding targets likely to have high toxicity. Both groups together 

comprised 303 unique genes, which are labelled in Figure 1A. The median gene effect scores 

of these dependencies are shown to be significantly stronger than that of the remaining gene 

dependencies (Figure 1B). Next, we considered the rarest gene dependencies, which 

comprised a large cluster of genes (n=555) appearing in ≤ 10% of the cell line panel (Figure 

1A). These gene dependencies had significantly weaker median effect scores than others in the 

pipeline (Figure 1B), and outliers in the group with higher median effect scores were interpreted 

as likely arising from stochastic effects due to the small sample sizes (< 8 cell lines). The 

relative weakness of these 587 gene dependencies plus their rarity in the cell line panel led us 

to exclude them. Excluding rare dependencies along with the targets with high likelihood of 

causing toxicity left 143 genes that were prioritized for further analysis, and the complete 

pipeline leading to this gene list is summarized in Figure 2. These 143 genes are visualized in 

Figure 3, where a moderately strong positive relationship was apparent between frequency of 

essentiality and median gene effect score (Spearman’s ρ = 0.63). The 143 genes are described 

in Supplementary Table 2, where they are ranked primarily by frequency of essentiality and 

secondarily by median gene effect score.  

 

We analyzed this list of targetable dependencies for presence of known oncogenes designated 

in the OncoKB database. Overall, 17% (24/143) of the genes appeared in the OncoKB database 

of cancer-related genes, where 10% (14/143) were designated as well-established oncogenes: 

EGFR, PIK3CA, ERBB2, ERBB3, CDK6, TP63, IGF1R, RAB35, KLF5, FGF19, CDK8, PTPN1, 

PRKACA, and RPS6KA4. In addition, the pipeline captured the molecular targets of cytotoxic 

drugs used in HNSCC, including thymidylate synthetase (target of 5-FU) and tubulin (target of 

taxanes).21 Despite the limitations of in vitro CRISPR loss-of-function screening, many well-

studied targets in head and neck cancer were readily identifiable in the proposed pipeline. 

 

Functional classification of targetable dependencies  

 

To further classify the dependencies into functionally relevant groups that may not be well-

studied in cancer, the Gene Functional Classification Tool from DAVID Bioinformatics 

Resources was utilized. This analysis captured five enriched clusters based on similarities in 

their functional annotations, representing serine/threonine kinases, tyrosine kinases, 

mitochondrial carriers, RNA splicing proteins, and transmembrane proteins, shown in Table 1. 
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Serine/threonine kinases had the strongest enrichment score and were well represented in our 

pipeline. A subgroup of these serine/threonine kinases including MAP3K11/MLK3, 

MAP4K2/GCK, and RPS6KA4/MSK2 are involved in the ERK/MAPK signaling pathway, which 

is an emerging target in HNSCC22. Furthermore, PKN2 and PAK2 are two other serine-

threonine kinases with strong dependencies that have not been previously evaluated as driver 

genes in HNSCC. Tyrosine kinases are the second most enriched group in the gene list and 

include well-studied targets: EGFR, ERBB2, ERBB3, TYRO3, and IGF1R. Mitochondrial 

transporters are also enriched, but demonstrated relatively weak dependencies and were only 

essential to a mean 12% of cell lines. Lastly, a notable group of RNA splicing proteins were 

found in the list of targetable dependencies, including HNRNPA1, ELAVL1, ZRANB2, RBM5, 

RBM10, and the well-studied PTBP1. Altered regulation of RNA splicing is an emerging driver of 

cancer, and preclinical studies on pharmacologic modulation have focused on exploiting 

vulnerabilities in cancer cells with altered splicing machinery23. Aside from PTBP1, the role of 

these specific dependencies in HNSCC is unknown and warrants further investigation. In 

addition to well-studied targets in head and neck cancer, recurring functional classifications with 

emerging roles in cancer were found among the targetable dependencies generated in our 

pipeline. 

 

Pharmacologic approaches to target the prioritized dependencies 

 

We aimed to characterize the current status of drug development for the 143 dependencies in 

the prioritized list. Towards this end, we used the Open Targets database to find the most 

advanced status of an inhibitor in HNSCC and other diseases. Notably, 12 of the dependencies 

in our gene list have inhibitors previously studied in a HNSCC phase II trial. These were 

generally stronger and recurring dependencies, with a mean gene effect score of 0.72 and 

frequency of dependency in cell lines of 47%. Seven of these dependencies have an inhibitor in 

a phase II/III trial but have yet to achieve approval. To explore the possibility of repurposing 

existing non-HNSCC agents for use in HNSCC cell lines, we also sought to identify 

dependencies with an existing “clinical inhibitor,” which are drugs that have reached a phase II 

clinical trial in other cancers or non-malignant diseases. Table 2 shows the current status of 

drug development for 14 dependencies with clinical inhibitors that have yet to be used clinically 

in HNSCC, including 8 with FDA approved inhibitors: EGLN1, P2RY6, PCSK9, UGCG, 

IMPDH1, HCRTR1, GANAB, TNFRSF8/CD30. Overall, 7 genes have been previously targeted 

in a phase II cancer trial, and they may be more readily repurposed for trials in HNSCC due to 
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known safety and efficacy in cancer: PCSK9, IMPDH1, TNFRSF8/CD30, BIRC2, ITGB1, 

MAP3K11 and LDHA. Of these, the integrin subunit ITGB1 was essential to the greatest 

percentage of cell lines (48%) and had the strongest median gene effect score (0.56). While 

inhibitors targeting integrin adhesion receptors have not provided clinical utility in trials for other 

cancers, this data suggests that there may exist a sub-population in HPV-negative head and 

neck cancer that may benefit if appropriately identified. Of the genes targeted only in non-

cancer trials, MAP3K11 demonstrated the most robust dependency (0.61). MAP3K11 encodes 

the serine/threonine kinase MLK3, which has recently been a promising target in preclinical 

studies of breast and ovarian cancer24. These studies used CEP-1347, a small molecule 

inhibitor of MLK3 whose safety in humans was demonstrated in a large-scale phase III clinical 

trial in Parkinson’s disease. In conclusion, a small cohort of dependencies in cell line models 

have been clinically targeted in non-HNSCC diseases, demonstrating a safety profile in humans 

and making them promising candidates for repurposed inhibitor studies. 

 

Identifying prioritized dependencies with highest median gene effect scores  

 

We next sought to find targetable dependencies with the highest median gene effect scores and 

most likely to be a useful candidate for future studies. To establish a meaningful cutoff for 

median gene effect score, we referenced Leemans et al. for well-established and targetable 

oncogenes in HPV(-) HNSCC, which included EGFR and PIK3CA25. PIK3CA was found to have 

the lower median gene effect score (0.57), which we used as a threshold for assigning highest 

priority to genes. While an inhibitor for PIK3CA has yet to reach FDA approval for HNSCC, it 

remains a well-known driver of disease, and genes with higher median gene effect scores than 

PIK3CA are more likely to be clinically useful. Overall, 19 dependencies were as strong or 

stronger than PIK3CA in our cell line panel, which are visualized on a scatter plot in Figure 3B. 

To find novel targets, we next excluded the 6 genes that already have a clinical inhibitor in 

HNSCC, which are described separately in Supplemental Table 2. This addition to the 

prioritization pipeline is depicted in Figure 3A and captured a list of 13 genes most likely to be 

clinically valuable. Two of these dependencies FARS2 and DHRSX have not been previously 

investigated in cancer. Other dependencies were found to be implicated in various hallmarks of 

cancer26. CFLAR (CASP8 and FADD like apoptosis regulator) and TDP2 (tyrosyl-DNA 

phosphodiesterase 2) are involved in resisting cell death27, 28. TP63 (Tumor Protein 63), 

MAP3K11 (mitogen-activated protein kinase kinase kinase 11), PKN2 (protein kinase N2), 

Rab35 (member RAS oncogene family) and TIPARP (TCDD-inducible poly-ADP-ribose 
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polymerase) are involved in sustaining proliferative signaling, invasion and metastasis29-33.  

SLC2A1 (solute carrier family 2 member 1), GPX4 (glutathione peroxidase 4), TMX2 

(thioredoxin related transmembrane protein 2) and MBTPS1 (membrane bound transcription 

factor peptidase, site 1) are involved in regulating cellular energetics34-37. These findings support 

the capacity of our filtration pipeline to enrich for therapeutic targets with potential roles in 

cancer based on median gene effect score. These targetable dependencies should be 

prioritized for further investigation. 

 

Associations between common genetic alterations and targetable gene dependencies 

 

Genetic alterations known to cause cancer may confer unique vulnerabilities which may be 

compelling therapeutic targets. To this end, we aimed to discover associations between 

druggable dependencies and known molecular alterations in head and neck cancer. The 

purpose of this analysis was to identify dependencies in subgroups of HNSCC with known driver 

mutations and copy number alterations. To identify common genetic alterations, we aggregated 

a list of genes with frequent and significant alterations in HPV(-) HNSCC from two review 

articles.13,14 The CCLE was queried for the presence of these alterations, depending on their 

classification as an oncogene or tumor suppressor in the review articles. Genes with alterations 

in ≥ 10% cell lines in our pipeline were used in the associations analysis: PIK3CA, CDKN2A, 

NOTCH1, FAT1, TP53, and EGFR. The inclusion of mutations or copy number alterations is 

shown in Figure 3A, and significant associations between a mutation and a dependency are 

highlighted in Figure 3B.  

  

Mutations and copy number alterations were available for only 48 cell-lines. FAT1 deletion is 

over-represented in their association with respective gene dependency. FAT1 is frequently 

mutated in cancer and is known to activate various signaling pathways through protein-protein 

interactions and is involved in sustaining proliferative signaling, activating invasion and 

metastasis38. Recent studies show that FAT1 over-expression suppressed the migration and 

invasion capability of HNSCC cells and non-synonymous FAT1 mutations were associated with 

poor disease-free survival in HNSCC patients39. The genes associated with FAT1 include 

MBTPS1, TMX2, ADAMTS7, ARTN, CSF3, IMPDH1, ZRANB2 and ADAM1 are novel and 

warrant further investigation.   
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Mutation data was available for 87 cell-lines. Associating them with gene dependency revealed 

positive self-association between PIK3CA mutation and PIK3CA gene dependency, which has 

been well-studied in HNSCC. The PIK3CA activating mutations E545K and H1047R are 

commonly observed in HNSCC that leads to PI3K overactivity and considered a predictive 

biomarker for treatment selection40. TP53 mutation which results in its loss of tumor suppressor 

activity in HNSCC41 was observed to be negatively associated with its down-stream effector 

protein PAK2 (p21 activated kinase 2). Wild type p53 prevents Cdc42/Rac1 dependent cell 

effects that control actin cytoskeletal dynamics and cell movement42. Cdc42/Rac1 activates 

PAK2 by tyrosine phosphorylation43. PAK2 is shown to upregulates c-Myc expression, which, in 

turn, transcriptionally activates and induces pyruvate kinase M2 (PKM2) expression, resulting in 

reduced aerobic glycolysis, proliferation, and chemotherapeutic resistance of HNSCC cells44. A 

positive novel association was also observed between NOTCH1 mutation and TAP1 gene which 

requires further investigation. Thus, association of dependency profiles with known molecular 

subgroups enhances the application of cell line models to the development of personalized 

therapeutics. 

 
DISCUSSION  
 
In this study, we developed a comprehensive methodology for prioritizing cancer-specific 

vulnerabilities based on potential targetability, strength of dependency, frequency of 

dependency, lack of dependency in normal cells, and lack of prior clinical study in a specific 

disease. When applied to 87 models of HPV(-) HNSCC available in DepMap, our methodology 

identified 143 targetable dependencies, including 13 genes designated as highest yield for 

future preclinical inhibitor studies. We propose a cancer-specific prioritization strategy that may 

guide researchers seeking to identify clinically useful dependencies in other cancer types. 

 

CRISPR screening has been leveraged as a powerful tool for understanding complex gene 

functions and identifying genetic dependencies with a high degree of precision. DepMap 

provides a large map of vulnerabilities found in cancer cell models using CRISPR loss-of-

function, which may be helpful for understanding their roles in diverse biological processes and 

their potential as druggable targets in cancer. The sensitivity of this pipeline was demonstrated 

by capture of targets of standard therapeutic agents including thymidylate synthase, tubulin, and 

EGFR, in addition to other well-known oncogenes in HNSCC like PIK3CA, ERBB3, and CDK6 

among the list of 143 targetable dependencies. Targeted therapies for many of these 

oncogenes are already in ongoing trials for HNSCC, including PIK3CA inhibitors like buparlisib, 
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alpelisib, BKM120 and BYL719 [NCT04338399, NCT04997902, NCT01816984, NCT02537223] 

and CDK6 inhibitors palbociclib and abemaciclib [NCT04966481, NCT04169074, 

NCT03356223, NCT03356587]. Overall, 83% of the dependencies identified were not known 

cancer genes in the OncoKB database and may represent novel vulnerabilities in cancer cell 

models. Functional classification analysis revealed significant representation of proteins 

associated with different mechanisms in tumorigenesis suggesting potential biologic relevance, 

including tyrosine kinases, serine/threonine kinases, RNA-binding proteins, and mitochondrial 

carriers. Furthermore, proteins that have been previously targeted in other cancers or 

nonmalignant diseases are well-represented in our pipeline, indicating prior safe use in humans. 

This subset of dependencies provides readily available drugs that can be repurposed for study 

in HPV(-) HNSCC cell line models. Of these, the serine/threonine kinase MAP3K11/MLK3 was 

the only target with a median gene effect score greater than PIK3CA, a well-studied oncogene 

in HNSCC and a useful benchmark for determining potential clinical usefulness. The MLK3 

inhibitor CEP-1347 has been shown to be safe in a large-scale phase III trial for Parkinson’s 

disease and may be a promising candidate for study in HNSCC. Overall, these findings support 

the robustness of this prioritizing pipeline to capture well-studied targets in HNSCC and other 

clinically relevant targets with established safety profiles.  

 

Identification of genes for which tumor cells shown addiction is a promising approach for 

discovery of molecular targeted therapy. We used the strength of addiction, represented by 

median gene effect score, to prioritize 13 dependencies that were as strong as the oncogene 

PIK3CA in our pipeline but have not been previously studied in HNSCC. Two of these 

dependencies, FARS2 and DHRSX, have not been implicated in any cancer. FARS2 encodes 

mitochondrial phenylalanyl-tRNA synthetase45 and DHRSX encodes a non-classical secretory 

protein shown to regulate autophagy during cellular starvation46.  

 

Besides these, another 11 genes that have been studied to varying degrees in cancer were 

identified and may be clinically valuable in HNSCC based on our unbiased analysis. Here, we 

describe the known roles in cancer of these genes, in addition to the descriptions provided in 

Table 3. To begin, CFLAR is an anti-apoptotic protein often over-expressed in HNSCC47 and 

known to block necroptosis, thereby triggering resistance to anticancer agents. Its degradation 

induces apoptosis in many head and cancer cells27, 48. TDP2 is 5′-tyrosyl DNA 

phosphodiesterase that repairs DNA double-strand breaks, preventing apoptosis and potentially 

conferring chemoresistance28. TP63 is predominantly expressed as the ΔNp63α variant and has 
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been shown to inhibit the proapoptotic p53-related protein p73, suppress p16/INK4A 

expression, and induce EGFR expression49, thereby increasing cell survival and proliferation29. 

MAP3K11 or MLK3 is a serine/threonine-protein kinase shown to regulate cell proliferation, 

migration, and invasion independent of EGF signaling30, and MLK3 inhibition has been 

proposed to enhance the effects of EGFR inhibition. We previously discussed MLK3 as the 

strongest dependency with a clinical inhibitor previously used for a non-HNSCC disease, 

making it an accessible target for preclinical study in HNSCC. PKN2 is another serine/threonine-

protein kinase that functions as effectors of Rho GTPases and is an essential regulator of both 

entry into mitosis (G2/M progression) and exit from cytokinesis50., inhibiting PKN2 expression 

results in decreased colony formation, invasion and migration in HNSCC cells31. Rab35 is 

associated with the Rho family of GTPases and localized in both plasma membrane and 

endosomes. It is involved in vesicular membrane trafficking, actin dynamics and regulation of 

the PI3K pathway32, 51. TIPARP or PARP7 is a mono-ADP-ribosylating protein that modifies 

multiple transcription factors33 and negatively regulates microtubule stability, thereby inhibiting 

cancer cell growth and motility52. SLC2A1 or GLUT1 is a membrane protein that facilitates the 

basal uptake of glucose for most metabolic pathways to meet the energy demand of cells and 

has been observed to be upregulated in HNSCC34, 53. GPX4 is involved in glutathione 

metabolism, protects cells against oxidative damage, and inhibits ferroptosis35, 54. Accordingly, 

increased GPX4 expression has been shown to sensitize HNSCC cancer cells to various 

anticancer drugs36, 54. TMX2 also protect cells against oxidative damage and its inhibition 

resulted in decreased mitochondrial respiratory reserve capacity and compensatory increased 

glycolytic activity55. Lastly, MBTPS1 or site-1 protease catalyzes the proteolytic activation of 

transcription factor sterol regulatory element-binding proteins56 and the cyclic AMP-dependent 

activating transcription factor 656. It is involved in regulation of many metabolic pathways 

including glycolysis, citric acid cycle and fatty acid biosynthesis37.  

 

Given the propensity of mutations and copy number variations to drive HNSCC, we investigated 

common genetic alterations to identify significant associations with the targetable dependencies 

from our pipeline. This led us to identify novel associations of FAT1 alteration with both 

increased MBTPS1 and TMX2 dependencies, which were both in our final list of 13 highest 

priority genes, and NOTCH1 mutation with increased TAP1 dependency. No known biologic 

connections could be made between these associations. Confirmatory in-vitro studies are 

necessary to further evaluate target efficacy in these molecular subgroups. These findings 

demonstrate the ability of our pipeline to enrich for dependencies found in only a subset of 
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HPV(-) HNSCC cell line models. Identification of genetic subgroups that offer selective 

vulnerabilities may help improve therapeutic potential in future studies using the targets 

proposed in this pipeline.  

 

A limitation of using cell lines is that they do not consider components of the tumor 

microenvironment during the in vitro screening process.  Nonetheless, our study used DepMap 

based CRISPR-Cas9 screen and provided a systematic unbiased framework that effectively 

ranks oncogenic targets for further therapeutic targets development.  

 

CONCLUSION 

 

The DepMap genome-wide loss of function CRISPR screens offer new insight into gene 

dependencies in cancer that not been previously identified. In this report, we present a strategy 

for prioritizing cancer-specific vulnerabilities most likely to offer a useful therapeutic window in 

cell line models. When applied to HPV(-) HNSCC, DepMap CRISPR screens capture well-

studied targets in HNSCC in addition to 13 novel targets which had fitness effects as strong as 

the oncogene PIK3CA. We also demonstrate associations between the strength of these 

dependencies and the presence of common genetic alterations.Collectively, this study provides 

a catalog of gene dependencies that may be explored as potential therapeutic targets in HPV(-) 

HNSCC and a target prioritization strategy which can be readily applied to other cancer types. 
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Figure 1:  
 
 

 
 

Figure 1: Identification of targetable dependencies in HNSCC. (A) Schematic overview, and (B) Percentage of cell lines with essentiality compared with median gene effect 
of all targetable dependencies (n = 1001).  
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Figure 2:  
 

 
 
Figure 2: Prioritized dependencies with highest median gene effect scores: (A) Schematic overview, and (B) List of genes (n = 19) with median gene effect greater than 
that of PIK3CA (0.57).  
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Figure 3:  
 
 
(A)            (B) 
 

Gene 
name Putative role 

% with 
mutatio
n in 
TCGA 

% with 
CNA in 
TCGA 

# Cell 
lines 
with 
mutation 

Included 
in 
analysis? 

PIK3CA oncogene 18.4 20.9 11 Yes 
CDKN2
A tumor suppressor 22.1 30.3 22 Yes 

NOTCH
1 tumor suppressor 17.8 2.1 7 Yes 

FAT1 tumor suppressor 22.5 7.3 18 Yes 
TP53 mixed 71.5 1.4 77 Yes 
EGFR oncogene 3.7 10.7 4 No 
      

 
 
 
 
 
 
 
Figure 3: Association between median gene effect score and mutations in cell line models of HNSCC : (A) Known mutations in HNSCC found in > 10% of cell lines, and 
(B) Comparison with median gene effect score, with significant associations highlighted in red. A positive effect size represents increased dependency when the mutation is 
present. 
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Table 1. Functional groups enriched among the 143 prioritized dependencies. 
 
 

Functional 
classification 

Enrichment 
score Genes (Median gene effect score) 

Mean of 
median gene 

effect 
scores 

Mean of % cell 
lines with 

essentiality 

Serine/threonine 
kinase 3.24 

MAP3K11 (0.61), PKN2 (0.58), MARK2 (0.55), 
PAK2 (0.52), CDK8 (0.46), MAP4K2 (0.45), 
RPS6KA4 (0.42) 

0.51 22% 

Tyrosine kinase 2.93 EGFR (0.60), ERBB2 (0.59), ERBB3 (0.55), 
IGF1R (0.54), TYRO3 (0.49) 0.55 38% 

Mitochondrial 
carrier 1.35 SLC25A33 (0.47), SLC25A1 (0.44), MTCH2 

(0.41), SLC25A25 (0.39) 0.43 12% 

RNA-binding 
protein 1.26 

RBM10 (0.54), PTBP1 (0.53), ELAVL1 (0.49), 
HNRNPA1 (0.47), ZRANB2 (0.47), RBM5 
(0.47) 

0.49 35% 

Transmembrane 
protein 1.56 SSR2 (0.52), TM2D1 (0.52), ODR4 (0.51), 

KCNK7 (0.47) 0.5 30% 
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Table 2. Prioritized gene products with clinical inhibitors not well-studied for HNSCC. “Clinical inhibitor” defined as an inhibitor that reached phase II trial for any disease 
indication.  
 

Gene 
symbol Gene name 

% Cell lines 
with  

essentiality 

Median 
gene effect 

score 

Most advanced 
status of 
inhibitor 

Approved indications Approved agents Phase II/III trials for other diseases Phase II/III agents 

EGLN1 egl-9 family hypoxia 
inducible factor 1 9 0.51 Approved Chronic kidney disease Roxadustat Myelodysplastic syndrome, numerous 

non-malignant diseases 
Vadadustat, 
Daprodustat, others 

P2RY6 pyrimidinergic receptor 
P2Y6 11 0.5 Approved Dry eye syndrome Diquafosol - - 

PCSK9 proprotein convertase 
subtilisin/kexin type 9 11 0.48 Approved Hypercholesterolemia, 

Cardiovascular disease 
Evolocumab, 
Alirocumab 

Non-small cell lung cancer (NSCLC), 
numerous non-malignant diseases - 

UGCG UDP-glucose ceramide 
glucosyltransferase 15 0.49 Approved Niemann-Pick disease, 

Gaucher disease Miglustat, Eliglustat Other glycogen storage diseases, 
cystic fibrosis, HIV Lucerastat 

IMPDH1 inosine monophosphate 
dehydrogenase 1 22 0.49 Approved AML, non-malignant 

diseases 
Mycophenolate mofetil, 
Thioguanine, Ribavirin 

Other types of leukemia and 
lymphoma, non-malignant diseases - 

HCRTR1 hypocretin receptor 1 14 0.46 Approved Insomnia Suvorexant, 
Lemborexant Other sleep disorders Almorexant, 

Daridorexant, Filorexant 

GANAB glucosidase II alpha 
subunit 10 0.45 Approved Type 2 diabetes Acarbose, miglitol - - 

TNFRSF8 TNF receptor superfamily 
member 8 10 0.41 Approved Lymphomas Brentuximab vedotin Other types of leukemia and 

lymphoma - 

LTB4R2 leukotriene B4 receptor 2 11 0.53 Phase III - - Bullous pemphigoid Nomacopan 

BIRC2 baculoviral IAP repeat 
containing 2 29 0.5 Phase II - - Ovarian cancer Birinapant 

ITGB1 integrin subunit beta 1 48 0.56 Phase II - - Renal cell carcinoma, pancreatic 
carcinoma, melanoma, NSCLC Volociximab, ATN-161 

MAP3K11 mitogen-activated protein 
kinase kinase kinase 11 25 0.61 Phase II - - Parkinson disease CEP-1347 

LDHA lactate dehydrogenase A 11 0.47 Phase II - - NSCLC, adrenal cortical carcinoma, 
hyperoxaluria  

Nedosiran, AT-101 
(Gossypol) 

PTPN1 
protein tyrosine 
phosphatase non-
receptor type 1 

11 0.41 Phase II - - Type 2 diabetes Ertiprotafib, 
Trodusquemine 
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Table 3: Functions of prioritized genes with highest median gene effect scores. 
 

Gene 
symbol 

Protein 
name 

Designation in 
OncoKB 

Description 
Mechanistic 

study in 
HNSCC? 

% Cell lines 
with 

essentiality  

Median 
gene effect 

score  

DHRSX DHRSX - 
Oxidoreductase involved in positive regulation of 
autophagy. 

No 40 0.67 

MBTPS1 S1P - 
Proprotein convertase involved in lipid 
biosynthesis and protein quality control. 

No 74 0.76 

TDP2 TDP2 - 
Phosphodiesterase involved in DNA repair, 
prevents DNA damage in cancer cells. 

No 16 0.62 

FARS2 FARS2 - 
Mitochondrial phenylalanyl-tRNA synthetase 
overexpressed in many cancer types. 

No 68 0.59 

TMX2 TMX2 - 
Oxidoreductase in the ER involved with protein 
folding and redox regulation.  

No 37 0.58 

RAB35 Rab35 Oncogene 
GTPase involved in membrane trafficking and 
activates PI3K-AKT signaling. 

No 22 0.62 

CFLAR c-FLIP - 
Negative regulator of apoptosis and is structurally 
like caspase-8. 

No 51 0.59 

GPX4 GPX4 - Oxidoreductase involved in ferroptosis. Yes 36 0.82 

SLC2A1 GLUT1 - Glucose transporter. Yes 51 0.67 

TP63 p63 
Oncogene or 

TSG 
Transcription factor regulates stratified epithelial 
growth and homeostasis. 

Yes 48 0.6 

PKN2 PRK2 - 
Serine/threonine kinase required for cell cycle 
progression and cell migration. 

No 36 0.58 

MAP3K11 MLK3 - 
Serine/threonine kinase involved in apoptosis 
and cell migration. 

No 25 0.61 

TIPARP PARP7 Not Specified 
ADP-ribose transferase involved in innate 
immunity and microtubule stability. 

Yes 38 0.68 
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