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Abstract

Motivation: The virus poses a great threat to human production and life, thus the research and
development of antiviral drugs is urgently needed. Antiviral peptides play an important role in drug
design and development. Compared with the time-consuming and laborious wet chemical experiment
methods, accurate and rapid identification of antiviral peptides using computational methods is
critical. However, it is still challenging to extract effective feature representations from the sequences
for the accurate identification of antiviral peptides.

Results: This study introduces a novel two-step approach, named HybAVPnet, with a hybrid network
architecture to identify antiviral peptides based on neural networks and traditional machine learning
methods. Firstly, eighteen kinds of features are extracted to predict labels and probabilities by the
neural network classifier and LightGBM classifier, respectively. Secondly, the support vector machine
classifier is carried out using the predicted probability of the first step to make the final prediction. The
experimental result shows HybAVPnet can achieve better and more robust performance compared
with the state-of-the-art methods, especially on independent datasets, which makes it useful for the
research and development of antiviral drugs. Meanwhile, it can also be extended to other peptide
recognition problems because of its generalization ability.

Availability and implementation: The predicted model could be downloaded from:
https://github.com/greyspring/HybAVPnet

Contact: gespring@hdu.edu.cn; yp.cai@siat.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

antiviral drugs against various viral pathogens(Saito, et al., 2021).
However, traditional treatments often have severe side effects and do not

1 Introduction I : i L
accurately kill viruses. Meanwhile, antiviral drug development is time-

Viruses have become a great threat to humans and animals because of consuming and laborious which is not effective enough to address the
their high rates of infection and mortality(Calvignac-Spencer, et al., problem(Hollmann, et al., 2021).

2021). Viruses can affect all species for long periods of time due to their In recent years, drug development based on peptides has attracted
genetic variation, diversity of transmission, and efficient survival within wide attention in the industry due to its highly selective, relatively safe,

host cells(Islam and Koirala, 2022). Especially in recent years, the el tolerated and low production costs(Yan, et al., 2022). Antiviral
emergence and re-emergence of the_current coronavirus dlsease.2019 peptides (AVPs), with 8 to 40 amino acids typically(Schaduangrat, et al.,
(COVID-19) and severe acute respiratory syndrome (SARS) Viruses  2019) are a promising resource for the treatment of viral diseases.

have posed a serious threat to human life and society(Heydari, et al., Antiviral peptides can prevent the virus from attaching to or invading the
2021; Mahmud, et al., 2021). Therefore, it is urgent to develop effective
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host cell or interfering with viral replication and are easy to
synthesis(Basith, et al., 2020). Nowadays, there are some collected,
experimentally validated AVP databases(Qureshi, et al., 2015), such as
AVPdb(Qureshi, et al., 2014), HIPdb(Qureshi, et al., 2013), APD3(Wang,
et al., 2016), CAMP(Thomas, et al., 2010) etc. AVPdb is a
comprehensive resource of peptides that have been experimentally
validated for antiviral activities. HIPdb is a specific database of
experimentally validated HIV inhibiting peptides. Parts of AVPs are
collected in the antimicrobial peptide database APD3 and CAMP.

In the past years, many computational tools have been developed to
predict AVPs using machine learning methods. AVPpred is the first
AVP prediction tool developed using support vector machine (SVM)
based on physiochemical properties(Thakur, et al., 2012). Chang KY et
al. employed four peptide features and used random forest (RF) classifier
to identify AVPs(Chang and Yang, 2013). Zarel M et al. employed
pseudo-amino acid composition (PseAAC) and adaboost with J48 as
base classifier to identify antiviral peptides(Zare, et al., 2015). AntiVPP
1.0 selected RF as the final classifier with the new two features relative
frequency (Rfre) of all 20 natural amino acids and residues composition
of peptides (PEP) to assess the antiviral peptides candidates(Beltran
Lissabet, et al., 2019). PEPred-Suite employed an adaptive feature
representation strategy to achieve better and robust performance using a
two-step feature optimization strategy and eight RF models for eight
types of functional peptides, respectively(Wei, et al., 2019). FIRM-AVP
achieved a higher accuracy than other models using the informative
filtered features from the physicochemical and structural properties of
their amino acid sequences(Chowdhury, et al., 2020). Charoenkwan P et
al. also comprehensively summarized the above identified tools of AVPs
from the feature encoding, classifiers, cross-validation and
performance(Charoenkwan, et al., 2021). In addition, deep neural
network methods also were employed to extract the high dimensional
features for the identification of AVPs from the primary sequence(Li, et
al., 2020).

Although the existing methods achieved good performance (Pang, et
al., 2021; Timmons and Hewage, 2021), they are not satisfactory for
drug development. There are a lot of factors that may improve the model
performance, such as unbiased training samples, effective features,
model architecture and interpretability, etc.(Agarwal and Gabrani, 2021)
In this work, we proposed a novel hybrid network architecture for
antiviral peptides identification, named HybAVPnet. To learn the
effective features, HybAVPnet is consisted of a two-layer prediction
models which are mixed of traditional machine learning models and deep
learning models. In the first layer, two neural network and one group of
LightGBM classifiers were employed to extract the different aspects of
features using one-hot coding, composition, autocorrelation, and profile
for amino acid sequences(Yan, et al., 2021). For the second layer, all the
probability and label outputs of the first layer were fed into SVM
classifier to obtain the final prediction(Vukovic, et al., 2022). The
experimental results showed that HybAVPnet could achieve competitive
advantages compared with the existing methods.

2 Material and Methods

Datasets

In order to compare our model with other models, we use two groups of
datasets from AVPpred. One dataset contains 604 AVPs with
experimentally validated antiviral activities and 452 non-AVPs proved to

be invalid, which is divided into training and testing subsets, named
training set T54P * 407N (544 positive and 407 negative samples) and
testing set V80 * 4N (60 positive and 45 negative samples). The another
dataset consists of 604 effective AVPs and 604 non-experimental
negative peptides from AntiBP2(Lata, et al., 2010), which is also divided
into training and testing subsets, named training set T°#" * 54N (544
positive and 544 negative samples) and testing set V% *N (60 positive
and 60 negative samples). The sequences of AVPs and non-AVPs were
statistically analyzed and the amino acid frequency distribution of the
datasets was shown in Figurel. It clearly showed that the frequency of
amino acid "W" in the positive samples was high. However, there are no
obvious rules for the distribution of other amino acids.

I

T60p+45n

i |

T544p+407n

T60p+60n

Fig. 1. Amino acid frequency distribution of AVPs and non-AVPs. The blue and red
bars represent the amino acid frequency distribution of antiviral peptides and non-

antiviral peptides respectively.

Feature Representation

Considering the composition, frequency, physical and chemical proper-
ties of the sequence and other information, many features were extracted
from the amino acid sequence (Liu, 2019). Among of them, three kinds
of features were extracted based on amino acid composition: Basic Kmer
(kmer), Distance-based Residue (DR) and Distance Pair (DP)(Liu, et al.,
2017). Four kinds of features were generated according to autocorrela-
tion: auto covariance (feature-AC), auto-cross covariance (ACC), cross
covariance (feature-CC), and physicochemical distance transformation
(PDT)(Jing, et al., 2019). Based on pseudo amino acid composition
(PseAAC) and frequency profile, we extracted four and seven kinds of
features respectively(Muthu Krishnan, 2018). In total, there are 18 kinds
of features which were listed in Table 1. Furthermore, all the features
were also input into the neural network to explore the potential relation-
ships between them. In addition, one-hot encoding method in natural
language processing was employed to extract the high dimensional fea-
tures into the neural network structure(Okada, et al., 2019).

Machine Learning Approaches

HybAVPnet identifies antiviral peptides by integrating several machine
learning methods, i.e. Light Gradient Boosting Machine (LightGBM),
SVM, Convolutional Neural Networks (CNN), and Bidirectional Long
Short Term Memory (Bi-LSTM) (Dal, et al., 2021).
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Table 1. 18 kinds of feature representation methods based on protein
primary sequences

Category Feature

Amino acid Basic Kmer (kmer)

composition Distance-based Residue(DR)
Distance Pair(DP)

Autocorrelation Auto covariance(feature-AC)

Auto-cross covariance(ACC)
Cross covariance(feature-CC)
Physicochemical distance transformation(PDT)

Parallel correlation pseudo amino acid composition(PC-

PseAAC)

Pseudo amino

acid composition Series correlation pseudo amino acid composition(SC-PseAAC)
General parallel correlation pseudo amino acid composition(PC-
PseAAC-General)

General series correlation pseudo amino acid composition(SC-
PseAAC-General)

Select and combine the n most frequent amino acids according
to their Frequencies(Top-n-gram)

Profile-based Profile-based Physicochemical distance transformation(PDT-
features Profile)

Distance-based Top-n-gram(DT)

Profile-based Auto covariance(AC-PSSM)
Profile-based Cross covariance(CC-PSSM)
Profile-based Distance-based Top-n-gram(PSSM-DT)

Profile-based Auto-cross covariance(ACC-PSSM)

In the first layer of HybAVPnet, LightGBM is chosen as the predictor,
which is a gradient boosting framework. The LightGBM is based on
decision tree algorithms and supports efficient parallel training, with the
advantages of faster training speed, lower memory consumption, better
accuracy, distributed support, and rapid processing of massive data.
SVM is a binary classifier, widely used in the supervised machine
learning tasks. It is trying to find the best separated hyperplane in the
feature spaces, and maximizes the interval between positive and negative
samples on the training set, which makes it different from the perceptron.
SVM performs effective in high dimensional spaces. And its kernel can
be specified to solve the different problems. CNN (CNN1D) is a kind of
feed forward neural network with convolution calculation. It is one of the
representative algorithms of deep learning. CNN1D is widely used in
sequence models. LSTM is a form of Recurrent Neural Network (RNN),
which can take into account the relationship between front and back. So
it is often used in sequence model. Bi-LSTM is a combination of forward
LSTM and backward LSTM.

Computational Model

The framework of the whole model HybAVPnet is shown in Figure2,
which is composed of three sub models: Neural Network1, LightGBM
and Neural Network2.
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Fig. 2. The HybAVPnet model architecture.

Considering that amino acid sequence has its related characteristics,
we adopt a series of feature extraction methods to obtain a total of 18
kinds of features. Each kind of features are trained and predicted through
LightGBM predictor and Neural Network2 to obtain the initial predicted
results. Meanwhile, the amino acid sequence is vectorized according to
the specific one-hot coding form, and trained and predicted by the Neural
Network1 (Figure 3).

HybAVPnet consists of two parts, of which the first part includes three
sub-models. The first sub-model unifies the protein sequences with
different lengths into a certain length. Then, the sequences are vectorized
according to the specific one-hot coding form. The coded vectors are
inputted into Neural Network1 (Figure 3) to obtain its classification
probabilities and classification labels. The second sub model inputs the
extracted 18 kinds of features into the LightGBM classifier for training
and classification, and achieves the 18 dimensional classification
probabilities and classification labels. The third sub model also inputs 18
kinds of features into Neural Network 2 similar to Neural Network1
(omitting the Embedding layer) for training and classification, and gets
the 18 dimensional classification probabilities and classification labels.
Finally, the obtained 74 dimensional vector datasets are concatenated
and put into SVM classifier as training set for the final classification.

The network architecture of Neural Network 2 is similar to the Neural
Network 1. Neural Network 2 omits the embedding layer and inputs 18
features directly into the convolution layer. Through the above steps, we
obtained a series of initial prediction results. Considering that the factors
of predicted probability may have a great impact on the final results,
both the probabilities and labels are inputted into the next layer of the
network architecture. Therefore, a total of 74 dimensional data from the
classification probability and classification labels of three sub models is
used as the training set for the next classifier.

In the last layer, some machine learning classifiers are evaluated to
find the optimal solution, here we focuses on SVM, LightGBM, Bayes,
Decision tree, KNN. Through the comparative experiments, SVM is
selected as the final classifier.
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Fig. 3. The Neural Network 1 structure. Firstly, each protein sequence is unified the
same lengths and encoded by one-hot coding. Then the coded features are imported into
neural network as a training set. Through the embedding layer, each vector is converted
into 64 dimensions (embedding (input_ dimensions = 26, output_ dimensions = 64,
input_length = 1000)). Then the vectors are inputted into Convld (filters = 32,
kernel_size = 1, activation ="relu’, strings = 1)). Finally, the outputs of Conv1d are
imported into Bi-LSTM layer (bidirectional (LSTM (64, return_sequences = true)). Then,
the network obtains the predicted labels and probabilities through two fully connected
layers. For the Neural Network 2, we directly import the data into convolution layer and

omit the embedding layer.

Performance Evaluation

In the experiments, the following metrics were employed to verify the
prediction performance of HybAVPnet, including Receiver Operating
Characteristic curve (ROC), Sensitivity (Sn), Specificity (Sp), Accuracy

(Acc), and the Matthews correlation coefficient (MCC)(Mei, et al., 2020).

Five-fold cross-validation and independent test were conducted to
evaluate the model on different datasets.

N
Sp=——
TN + FP

TP

n=——
TP +FN
TP+TN

“TP+TN +FP+FN
MCC TP-TN—FP-FN

J(TP+FP)-(TP+FN)-(TN +FP)-(TN +FN)

Acc

Where TP, FP, TN and FN indicate the number of true positives, false
positives, true negatives, and false negatives respectively.

Table 2. Comparison of HybAVPnet with existing methods on five-fold
cross-validation and independent test datasets. The bold fonts indicate
the best results.

Data set Model Acc Sn Sp MCC
AVPpred 85.0 822 88.2 0.70
Chang et al’s method ~ 85.1 86.6 83.0 0.70
ToHPHON AntiVPP 1.0 - - - -
DeepPhy 88.0 85.5 79.7 0.65
DeepEvo 83.5 84.6 82.1 0.66
HybAVPnet 93.08 90.82  96.2 0.86
AVPpred 90.0 89.7 90.3 0.80
Chang et al’s method ~ 91.5 89.0 94.1 0.83
To4prsHN AntiVPP 1.0 - - - -
DeepPhy 88.5 88.0 89.0 0.77
DeepEvo 90.1 89.3 90.8 0.80
HybAVPnet 9583 9417 9734  0.92
AVPpred 85.7 88.3 82.2 0.71
Chang et al’s method ~ 89.5 91.7 86.7 0.79
VOOPHN AntiVPP 1.0 - - - -
DeepPhy 80 83.3 75.6 0.59
DeepEvo 87.60  90.00 8440  0.75
HybAVPnet 93.27  95.00  90.91 0.86
AVPpred 92.5 93.3 91.7 0.85
Chang et al’s method ~ 93.0 91.7 95.0 0.87
VOOPHOON AntiVPP 1.0 93 87 97 0.87
DeepPhy 89.2 88.3 90 0.78
DeepEvo 9330  96.70  90.00  0.87
HybAVPnet 96.61 95.00 9828  0.93

3 Results and Discussion

3.1 Comparison with the Existing Methods

Five-fold cross-validation was involved to evaluate the model in the
training datasets T3P + 407N T544P +544N gand the testing datasets V6P * 4N,
VOP 6N The experimental results show that HybAVPnet performs
significantly better than other models in T544P + 407N 5447 + 544N 'y/60P + 45N
and V&% * 60N datasets. In the dataset V& * N HybAVPnet is slightly
lower than DeepEvo by 1.7% on sensitivity. DeepPhy and DeepEvo are
two different dual-channel deep neural network ensemble models of
DeepAvp method.To sum up, HybAVPnet achieves the best performance
compared with other existing models in terms of evaluation on cross-
validation and testing datasets as shown in Table 2. Compared with other
direct classification models, the classification method combining initial
prediction maybe obtain better performance, such as DeepAvp and
HybAVPnet. On the datasets T>*7* 4™ and V&% * 4N the performances
of most predicting models are not good except for our method
HybAVPnet.
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Table3. Comparison of three sub models and joint model in two
independent test datasets. The bold fonts indicate the best results.

Dataset Model Acc Sn Sp MCC
LightGBM 89.42 91.67 86.36 0.78
\/60PHaEN Neural Network 2 88.27 94.67 83.48 0.78
Neural Network 1~ 75.58 86.00 61.36 0.49
HybAVPnet 93.27 95.00 90.91 0.86
LightGBM 94.92 95.00 94.83 0.90
\/E0PHGON Neural Network 2~ 94.75 93.33 96.21 0.90
Neural Network 1~ 85.59 85.67 85.52 0.71
HybAVPnet 96.61 95.00 98.28 0.93
3.2. Ablation Experiments

In the selection of sub-model combinations, ablation experiments were
conducted to determine the best combination. The SVM classifier is
adopted as the last layer for each model.

Four different models are analyzed with LightGBM, Neural Netwok 1,
Neural Network 2, and the fused model HybAVPnet. The average values
of the evaluated indicators for the five experiments are taken as the final
experimental results. The final results of the ablation experiments are
shown in Table 3. It can be found that the results of the fused model
HybAVPnet are better than other models whether on the testing set
\/80P+4SN o \/60P + 60N after parameter optimization of SVM.

It can be seen from Table 3 that in the testing set V& * 45N,

HybAVPnet performs better than other models in all evaluated indicators.

However, in the testing set V& * 5N compared with the LightGBM
model, HybAVPnet leads it by 1.69% in accuracy, 3.45% in terms of
specificity, 0.03% in terms of MCC, and the same in terms of sensitivity.
Therefore, the combined output results of the three sub-models are
chosen as the final experimental results for the input of the next SVM
classifier. The final experiments prove that the predicted probability has
an important impact on the final classified evaluation. So we choose to
integrate the predicted probabilities and the predicted labels into the final
model. The results prove the fused model may have a strong sense of
discrimination in the identification of antiviral peptides.

3.3. Comparison with the Different Classifiers

After the pre-classification of the three sub-models in the first step, 74
dimensional initial predicted results were used as the new training set. In
the selection of the classifier in the second step as shown in Table 4, a
few of traditional machine learning classifiers were adopted to analyze
their performance using SVM, Random Forest, LightGBM, Bayes,
Decision tree, and KNN classifiers on VéP+4N and \/80P * 6N datasets.
From Table 4, we can see that on the testing set V&%* 4" the
performance of SVM and KNN is much better than other classifiers.
Compared with KNN, SVM achieves 2.5%, 2%, 3.18% and 0.05 higher
respectively in Acc, Sn, Sp and MCC. On the testing set V&%* & S\vM
performs better than other relatively good classifiers Bayes and KNN by

0.34% and 0.51% in Acc respectively, and similarly well in Sn and MCC.

While in Sp, SVM achieves better performances than Bayes and KNN by
0.69% and 0.35% respectively.

Table 4. Comparison of the different classifiers. The bold fonts indicate
the best results.

Data set Model Acc Sn Sp MCC
SVM 93.27 95.00 90.91 0.86

\/60PrasN Random Forest  85.58 93.33 75.00 0.70
LightGBM 81.73 86.67 75.00 0.62

Naive Bayes 80.96 97.66 58.19 0.63
Decision Tree ~ 81.15 87.00 73.18 0.61
KNN 90.77 93.00 87.73 0.81

SVM 96.61 95.00 98.28 0.93
\/60P+EON Random Forest  95.25 94.67 95.86 0.91
LightGBM 87.29 78.33 96.55 0.76
Naive Bayes 96.27 95.00 97.59 0.93
Decision Tree ~ 87.97 89.00 86.89 0.76

KNN 96.10 95.00 97.93 0.93
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Fig. 4. Receiver Operating Characteristic (ROC) and Precision Recall (PR) curve of

(@) VoOP+¥N and (b) VoP*5N datasets.

Furthermore, Receiver operating characteristic (ROC) curve and
Precision-Recall (PR) curve are drawn to evaluate the performance of
each methods for intuitive comparison, as shown in Figure 4. AUC
represents the area under the ROC curve, which is plotted the true
positive rate against false positive rate. AUPR stands for the area under
PR curve that is plotted precision against recall. On the independent
datasets V60P+45N and \/80P + 6N S\/M can obtain the best balance in
performances compared with Random Forest, LightGBM, Bayes,
Decision tree and KNN classifiers, and is selected as the last layer
classifier..
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(@) (b)

Fig. 5 The t-distributed stochastic neighborhood embedding (t-SNE) visualization of
(@) VO 45N and (b) VO * N datasets. The blue dot represents the distribution of non-

antiviral peptides, and the orange dot represents the distribution of antiviral peptides.

3.4. Visual Analysis

To better interpret the feature representation between the sub models, we
adopted t-distributed stochastic neighborhood embedding (t-SNE) to
visualize and compare the feature space distribution on V&N and
\/BOP+6ON gatasets(Kobak and Linderman, 2021).

In the experiment of t-SNE, the LightGBM, Neural Network 1, Neural
Network 2 and HybAVPnet are compared to demonstrate the distribution
of the new features in the two-dimensional feature space. As shown in
Figure 5, the new feature distribution in HybAVPnet is the most efficient
and effective compared with other three models to discriminate AVPs
from non-AVPs.

4 Conclusion

Due to their advantages and good performance, antiviral peptides have
potential wide applications in the development of antiviral drugs. To this
end, some computational models have been developed to quickly and
accurately identify AVPs. In this work, we present a novel hybrid
network tool named HybAVPnet to identify AVPs. HybAVPnet takes
full advantage of traditional machine learning models and deep learning
models to obtain the effective feature representation of amino acid
sequences at sequential, structural, and evolutionary levels. Experimental
results demonstrated our proposed HybAVPnet model could achieve
more discriminative power for the prediction of AVPs and could be
easier to separate the positive samples and negative samples.
Furthermore, a serial of comparative experiments showed the
consistently stability and robustness of HybAVPnet from the five-fold
cross-validation and independent test. We except that HybAVPnet can
help the development of antiviral peptide drugs and the treatment of
related diseases for researches. In the future, we will strive to develop
predictive models for various therapeutic peptides to better serve

precision medicine.
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