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Abstract 
Motivation: The virus poses a great threat to human production and life, thus the research and 

development of antiviral drugs is urgently needed. Antiviral peptides play an important role in drug 

design and development. Compared with the time-consuming and laborious wet chemical experiment 

methods, accurate and rapid identification of antiviral peptides using computational methods is 

critical. However, it is still challenging to extract effective feature representations from the sequences 

for the accurate identification of antiviral peptides. 

Results: This study introduces a novel two-step approach, named HybAVPnet, with a hybrid network 

architecture to identify antiviral peptides based on neural networks and traditional machine learning 

methods. Firstly, eighteen kinds of features are extracted to predict labels and probabilities by the 

neural network classifier and LightGBM classifier, respectively. Secondly, the support vector machine 

classifier is carried out using the predicted probability of the first step to make the final prediction. The 

experimental result shows HybAVPnet can achieve better and more robust performance compared 

with the state-of-the-art methods, especially on independent datasets, which makes it useful for the 

research and development of antiviral drugs. Meanwhile, it can also be extended to other peptide 

recognition problems because of its generalization ability. 

Availability and implementation: The predicted model could be downloaded from: 

https://github.com/greyspring/HybAVPnet 

Contact: gespring@hdu.edu.cn; yp.cai@siat.ac.cn   

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

1 Introduction  

Viruses have become a great threat to humans and animals because of 

their high rates of infection and mortality(Calvignac-Spencer, et al., 

2021). Viruses can affect all species for long periods of time due to their 

genetic variation, diversity of transmission, and efficient survival within 

host cells(Islam and Koirala, 2022). Especially in recent years, the 

emergence and re-emergence of the current coronavirus disease 2019 

(COVID-19) and severe acute respiratory syndrome (SARS) viruses 

have posed a serious threat to human life and society(Heydari, et al., 

2021; Mahmud, et al., 2021). Therefore, it is urgent to develop effective 

antiviral drugs against various viral pathogens(Saito, et al., 2021). 

However, traditional treatments often have severe side effects and do not 

accurately kill viruses. Meanwhile, antiviral drug development is time-

consuming and laborious which is not effective enough to address the 

problem(Hollmann, et al., 2021). 

In recent years, drug development based on peptides has attracted 

wide attention in the industry due to its highly selective, relatively safe, 

well tolerated and low production costs(Yan, et al., 2022). Antiviral 

peptides (AVPs), with 8 to 40 amino acids typically(Schaduangrat, et al., 

2019), are a promising resource for the treatment of viral diseases. 

Antiviral peptides can prevent the virus from attaching to or invading the 
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host cell or interfering with viral replication and are easy to 

synthesis(Basith, et al., 2020). Nowadays, there are some collected, 

experimentally validated AVP databases(Qureshi, et al., 2015), such as 

AVPdb(Qureshi, et al., 2014), HIPdb(Qureshi, et al., 2013), APD3(Wang, 

et al., 2016), CAMP(Thomas, et al., 2010) etc. AVPdb is a 

comprehensive resource of peptides that have been experimentally 

validated for antiviral activities. HIPdb is a specific database of 

experimentally validated HIV inhibiting peptides. Parts of AVPs are 

collected in the antimicrobial peptide database APD3 and CAMP. 

In the past years, many computational tools have been developed to 

predict AVPs using machine learning methods. AVPpred is the first 

AVP prediction tool developed using support vector machine (SVM) 

based on physiochemical properties(Thakur, et al., 2012). Chang KY et 

al. employed four peptide features and used random forest (RF) classifier 

to identify AVPs(Chang and Yang, 2013). Zare1 M et al. employed 

pseudo-amino acid composition (PseAAC) and adaboost with J48 as 

base classifier to identify antiviral peptides(Zare, et al., 2015). AntiVPP 

1.0 selected RF as the final classifier with the new two features relative 

frequency (Rfre) of all 20 natural amino acids and residues composition 

of peptides (PEP) to assess the antiviral peptides candidates(Beltran 

Lissabet, et al., 2019). PEPred-Suite employed an adaptive feature 

representation strategy to achieve better and robust performance using a 

two-step feature optimization strategy and eight RF models for eight 

types of functional peptides, respectively(Wei, et al., 2019). FIRM‑AVP 

achieved a higher accuracy than other models using the informative 

filtered features from the physicochemical and structural properties of 

their amino acid sequences(Chowdhury, et al., 2020). Charoenkwan P et 

al. also comprehensively summarized the above identified tools of AVPs 

from the feature encoding, classifiers, cross-validation and 

performance(Charoenkwan, et al., 2021). In addition, deep neural 

network methods also were employed to extract the high dimensional 

features for the identification of AVPs from the primary sequence(Li, et 

al., 2020). 

Although the existing methods achieved good performance (Pang, et 

al., 2021; Timmons and Hewage, 2021), they are not satisfactory for 

drug development. There are a lot of factors that may improve the model 

performance, such as unbiased training samples, effective features, 

model architecture and interpretability, etc.(Agarwal and Gabrani, 2021) 

In this work, we proposed a novel hybrid network architecture for 

antiviral peptides identification, named HybAVPnet. To learn the 

effective features, HybAVPnet is consisted of a two-layer prediction 

models which are mixed of traditional machine learning models and deep 

learning models. In the first layer, two neural network and one group of 

LightGBM classifiers were employed to extract the different aspects of 

features using one-hot coding, composition, autocorrelation, and profile 

for amino acid sequences(Yan, et al., 2021). For the second layer, all the 

probability and label outputs of the first layer were fed into SVM 

classifier to obtain the final prediction(Vukovic, et al., 2022). The 

experimental results showed that HybAVPnet could achieve competitive 

advantages compared with the existing methods. 

2 Material and Methods 

Datasets 

In order to compare our model with other models, we use two groups of 

datasets from AVPpred. One dataset contains 604 AVPs with 

experimentally validated antiviral activities and 452 non-AVPs proved to 

be invalid, which is divided into training and testing subsets, named 

training set T544P + 407N (544 positive and 407 negative samples) and 

testing set V60P + 45N (60 positive and 45 negative samples). The another 

dataset consists of 604 effective AVPs and 604 non-experimental 

negative peptides from AntiBP2(Lata, et al., 2010), which is also divided 

into training and testing subsets, named training set T544P + 544N (544 

positive and 544 negative samples) and testing set V60P + 60N (60 positive 

and 60 negative samples). The sequences of AVPs and non-AVPs were 

statistically analyzed and the amino acid frequency distribution of the 

datasets was shown in Figure1. It clearly showed that the frequency of 

amino acid "W" in the positive samples was high. However, there are no 

obvious rules for the distribution of other amino acids. 

 

Fig. 1. Amino acid frequency distribution of AVPs and non-AVPs. The blue and red 

bars represent the amino acid frequency distribution of antiviral peptides and non-

antiviral peptides respectively. 

Feature Representation 

Considering the composition, frequency, physical and chemical proper-

ties of the sequence and other information, many features were extracted 

from the amino acid sequence (Liu, 2019). Among of them, three kinds 

of features were extracted based on amino acid composition: Basic Kmer 

(kmer), Distance-based Residue (DR) and Distance Pair (DP)(Liu, et al., 

2017). Four kinds of features were generated according to autocorrela-

tion: auto covariance (feature-AC), auto-cross covariance (ACC), cross 

covariance (feature-CC), and physicochemical distance transformation 

(PDT)(Jing, et al., 2019). Based on pseudo amino acid composition 

(PseAAC) and frequency profile, we extracted four and seven kinds of 

features respectively(Muthu Krishnan, 2018). In total, there are 18 kinds 

of features which were listed in Table 1. Furthermore, all the features 

were also input into the neural network to explore the potential relation-

ships between them. In addition, one-hot encoding method in natural 

language processing was employed to extract the high dimensional fea-

tures into the neural network structure(Okada, et al., 2019). 

Machine Learning Approaches 

HybAVPnet identifies antiviral peptides by integrating several machine 

learning methods, i.e. Light Gradient Boosting Machine (LightGBM), 

SVM, Convolutional Neural Networks (CNN), and Bidirectional Long 

Short Term Memory (Bi-LSTM) (Dai, et al., 2021). 
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Table 1. 18 kinds of feature representation methods based on protein 

primary sequences 

Category Feature 

Amino acid  Basic Kmer (kmer) 

composition Distance-based Residue(DR) 

 Distance Pair(DP) 

Autocorrelation Auto covariance(feature-AC) 

 Auto-cross covariance(ACC) 

 Cross covariance(feature-CC) 

 Physicochemical distance transformation(PDT) 

Pseudo amino  
Parallel correlation pseudo amino acid composition(PC-

PseAAC) 

acid composition Series correlation pseudo amino acid composition(SC-PseAAC) 

 
General parallel correlation pseudo amino acid composition(PC-

PseAAC-General) 

 
General series correlation pseudo amino acid composition(SC-

PseAAC-General) 

 
Select and combine the n most frequent amino acids according 

to their Frequencies(Top-n-gram) 

Profile-based 

features 

Profile-based Physicochemical distance transformation(PDT-

Profile) 

 Distance-based Top-n-gram(DT) 

 Profile-based Auto covariance(AC-PSSM) 

 Profile-based Cross covariance(CC-PSSM) 

 Profile-based Distance-based Top-n-gram(PSSM-DT) 

 Profile-based Auto-cross covariance(ACC-PSSM) 

 

In the first layer of HybAVPnet, LightGBM is chosen as the predictor, 

which is a gradient boosting framework. The LightGBM is based on 

decision tree algorithms and supports efficient parallel training, with the 

advantages of faster training speed, lower memory consumption, better 

accuracy, distributed support, and rapid processing of massive data. 

SVM is a binary classifier, widely used in the supervised machine 

learning tasks. It is trying to find the best separated hyperplane in the 

feature spaces, and maximizes the interval between positive and negative 

samples on the training set, which makes it different from the perceptron. 

SVM performs effective in high dimensional spaces. And its kernel can 

be specified to solve the different problems. CNN (CNN1D) is a kind of 

feed forward neural network with convolution calculation. It is one of the 

representative algorithms of deep learning. CNN1D is widely used in 

sequence models. LSTM is a form of Recurrent Neural Network (RNN), 

which can take into account the relationship between front and back. So 

it is often used in sequence model. Bi-LSTM is a combination of forward 

LSTM and backward LSTM. 

Computational Model 

The framework of the whole model HybAVPnet is shown in Figure2, 

which is composed of three sub models: Neural Network1, LightGBM 

and Neural Network2.  

 

 

Fig. 2. The HybAVPnet model architecture. 

 

Considering that amino acid sequence has its related characteristics, 

we adopt a series of feature extraction methods to obtain a total of 18 

kinds of features. Each kind of features are trained and predicted through 

LightGBM predictor and Neural Network2 to obtain the initial predicted 

results. Meanwhile, the amino acid sequence is vectorized according to 

the specific one-hot coding form, and trained and predicted by the Neural 

Network1 (Figure 3). 

HybAVPnet consists of two parts, of which the first part includes three 

sub-models. The first sub-model unifies the protein sequences with 

different lengths into a certain length. Then, the sequences are vectorized 

according to the specific one-hot coding form. The coded vectors are 

inputted into Neural Network1 (Figure 3) to obtain its classification 

probabilities and classification labels. The second sub model inputs the 

extracted 18 kinds of features into the LightGBM classifier for training 

and classification, and achieves the 18 dimensional classification 

probabilities and classification labels. The third sub model also inputs 18 

kinds of features into Neural Network 2 similar to Neural Network1 

(omitting the Embedding layer) for training and classification, and gets 

the 18 dimensional classification probabilities and classification labels. 

Finally, the obtained 74 dimensional vector datasets are concatenated 

and put into SVM classifier as training set for the final classification. 

The network architecture of Neural Network 2 is similar to the Neural 

Network 1. Neural Network 2 omits the embedding layer and inputs 18 

features directly into the convolution layer. Through the above steps, we 

obtained a series of initial prediction results. Considering that the factors 

of predicted probability may have a great impact on the final results, 

both the probabilities and labels are inputted into the next layer of the 

network architecture. Therefore, a total of 74 dimensional data from the 

classification probability and classification labels of three sub models is 

used as the training set for the next classifier. 

In the last layer, some machine learning classifiers are evaluated to 

find the optimal solution, here we focuses on SVM, LightGBM, Bayes, 

Decision tree, KNN. Through the comparative experiments, SVM is 

selected as the final classifier. 
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Fig. 3. The Neural Network 1 structure. Firstly, each protein sequence is unified the 

same lengths and encoded by one-hot coding. Then the coded features are imported into 

neural network as a training set. Through the embedding layer, each vector is converted 

into 64 dimensions (embedding (input_ dimensions = 26, output_ dimensions = 64, 

input_length = 1000)). Then the vectors are inputted into Conv1d (filters = 32, 

kernel_size = 1, activation ='relu', strings = 1)). Finally, the outputs of Conv1d are 

imported into Bi-LSTM layer (bidirectional (LSTM (64, return_sequences = true)). Then, 

the network obtains the predicted labels and probabilities through two fully connected 

layers. For the Neural Network 2, we directly import the data into convolution layer and 

omit the embedding layer. 

Performance Evaluation 

In the experiments, the following metrics were employed to verify the 

prediction performance of HybAVPnet, including Receiver Operating 

Characteristic curve (ROC), Sensitivity (Sn), Specificity (Sp), Accuracy 

(Acc), and the Matthews correlation coefficient (MCC)(Mei, et al., 2020). 

Five-fold cross-validation and independent test were conducted to 

evaluate the model on different datasets. 
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Where TP, FP, TN and FN indicate the number of true positives, false 

positives, true negatives, and false negatives respectively. 

Table 2. Comparison of HybAVPnet with existing methods on five-fold 

cross-validation and independent test datasets. The bold fonts indicate 

the best results. 

Data set Model Acc Sn Sp MCC 

 AVPpred 85.0 82.2 88.2 0.70 

 Chang et al’s method 85.1 86.6 83.0 0.70 

T544P+407N AntiVPP 1.0 - - - - 

 DeepPhy 88.0 85.5 79.7 0.65 

 DeepEvo 83.5 84.6 82.1 0.66 

 HybAVPnet 93.08 90.82 96.2 0.86 

 AVPpred 90.0 89.7 90.3 0.80 

 Chang et al’s method 91.5 89.0 94.1 0.83 

T544P+544N AntiVPP 1.0 - - - - 

 DeepPhy 88.5 88.0 89.0 0.77 

 DeepEvo 90.1 89.3 90.8 0.80 

 HybAVPnet 95.83 94.17 97.34 0.92 

 AVPpred 85.7 88.3 82.2 0.71 

 Chang et al’s method 89.5 91.7 86.7 0.79 

V60P+45N AntiVPP 1.0 - - - - 

 DeepPhy 80 83.3 75.6 0.59 

 DeepEvo 87.60 90.00 84.40 0.75 

 HybAVPnet 93.27 95.00 90.91 0.86 

 AVPpred 92.5    93.3 91.7 0.85 

 Chang et al’s method 93.0    91.7 95.0 0.87 

V60P+60N AntiVPP 1.0 93    87 97 0.87 

 DeepPhy 89.2 88.3 90 0.78 

 DeepEvo 93.30 96.70 90.00 0.87 

 HybAVPnet 96.61 95.00 98.28 0.93 

 

3 Results and Discussion 

3.1. Comparison with the Existing Methods 

Five-fold cross-validation was involved to evaluate the model in the 

training datasets T544P + 407N, T544P + 544N and the testing datasets V60P + 45N, 

V60P + 60N. The experimental results show that HybAVPnet performs 

significantly better than other models in T544P + 407N, T544P + 544N, V60P + 45N 

and V60P + 60N datasets. In the dataset V60P + 60N, HybAVPnet is slightly 

lower than DeepEvo by 1.7% on sensitivity. DeepPhy and DeepEvo are 

two different dual-channel deep neural network ensemble models of 

DeepAvp method.To sum up, HybAVPnet achieves the best performance 

compared with other existing models in terms of evaluation on cross-

validation and testing datasets as shown in Table 2. Compared with other 

direct classification models, the classification method combining initial 

prediction maybe obtain better performance, such as DeepAvp and 

HybAVPnet. On the datasets T544P + 407N and V60P + 45N, the performances 

of most predicting models are not good except for our method 

HybAVPnet.  
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Table3. Comparison of three sub models and joint model in two 

independent test datasets. The bold fonts indicate the best results. 

Dataset Model Acc Sn Sp MCC 

 LightGBM 89.42 91.67 86.36 0.78 

V60P+45N Neural Network 2 88.27 94.67 83.48 0.78 

 Neural Network 1 75.58 86.00 61.36 0.49 

 HybAVPnet 93.27 95.00 90.91 0.86 

 LightGBM 94.92 95.00 94.83 0.90 

V60P+60N Neural Network 2 94.75 93.33 96.21 0.90 

 Neural Network 1 85.59 85.67 85.52 0.71 

 HybAVPnet 96.61 95.00 98.28 0.93 

3.2. Ablation Experiments 

In the selection of sub-model combinations, ablation experiments were 

conducted to determine the best combination. The SVM classifier is 

adopted as the last layer for each model. 

Four different models are analyzed with LightGBM, Neural Netwok 1, 

Neural Network 2, and the fused model HybAVPnet. The average values 

of the evaluated indicators for the five experiments are taken as the final 

experimental results. The final results of the ablation experiments are 

shown in Table 3. It can be found that the results of the fused model 

HybAVPnet are better than other models whether on the testing set 

V60P+45N or V60P + 60N after parameter optimization of SVM. 

It can be seen from Table 3 that in the testing set V60P + 45N, 

HybAVPnet performs better than other models in all evaluated indicators. 

However, in the testing set V60P + 60N, compared with the LightGBM 

model, HybAVPnet leads it by 1.69% in accuracy, 3.45% in terms of 

specificity, 0.03% in terms of MCC, and the same in terms of sensitivity. 

Therefore, the combined output results of the three sub-models are 

chosen as the final experimental results for the input of the next SVM 

classifier. The final experiments prove that the predicted probability has 

an important impact on the final classified evaluation. So we choose to 

integrate the predicted probabilities and the predicted labels into the final 

model. The results prove the fused model may have a strong sense of 

discrimination in the identification of antiviral peptides. 

3.3. Comparison with the Different Classifiers 

After the pre-classification of the three sub-models in the first step, 74 

dimensional initial predicted results were used as the new training set. In 

the selection of the classifier in the second step as shown in Table 4, a 

few of traditional machine learning classifiers were adopted to analyze 

their performance using SVM, Random Forest, LightGBM, Bayes, 

Decision tree, and KNN classifiers on V60P+45N and V60P + 60N datasets.  

From Table 4, we can see that on the testing set V60p+ 45n, the 

performance of SVM and KNN is much better than other classifiers. 

Compared with KNN, SVM achieves 2.5%, 2%, 3.18% and 0.05 higher 

respectively in Acc, Sn, Sp and MCC. On the testing set V60p+ 60n, SVM 

performs better than other relatively good classifiers Bayes and KNN by 

0.34% and 0.51% in Acc respectively, and similarly well in Sn and MCC. 

While in Sp, SVM achieves better performances than Bayes and KNN by 

0.69% and 0.35% respectively.  

Table 4. Comparison of the different classifiers. The bold fonts indicate 

the best results. 

Data set Model Acc Sn Sp MCC 

 SVM 93.27 95.00 90.91 0.86 

V60P+45N Random Forest 85.58 93.33 75.00  0.70 

 LightGBM 81.73 86.67 75.00 0.62 

 Naive Bayes 80.96 97.66 58.19 0.63 

 Decision Tree 81.15 87.00 73.18 0.61 

 KNN 90.77 93.00 87.73 0.81 

 SVM 96.61 95.00 98.28 0.93 

V60P+60N Random Forest 95.25 94.67 95.86 0.91 

 LightGBM 87.29 78.33 96.55 0.76 

 Naive Bayes 96.27 95.00 97.59 0.93 

 Decision Tree 87.97 89.00 86.89 0.76 

 KNN 96.10 95.00 97.93 0.93 

 

 

Fig. 4. Receiver Operating Characteristic (ROC) and Precision Recall (PR) curve of 

(a) V60P+45N and (b) V60P+60N datasets. 

 

Furthermore, Receiver operating characteristic (ROC) curve and 

Precision-Recall (PR) curve are drawn to evaluate the performance of 

each methods for intuitive comparison, as shown in Figure 4. AUC 

represents the area under the ROC curve, which is plotted the true 

positive rate against false positive rate. AUPR stands for the area under 

PR curve that is plotted precision against recall. On the independent 

datasets V60P+45N and V60P + 60N, SVM can obtain the best balance in 

performances compared with Random Forest, LightGBM, Bayes, 

Decision tree and KNN classifiers, and is selected as the last layer 

classifier.. 
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Fig. 5 The t-distributed stochastic neighborhood embedding (t-SNE) visualization of 

(a) V60P + 45N and (b) V60P + 60N datasets. The blue dot represents the distribution of non-

antiviral peptides, and the orange dot represents the distribution of antiviral peptides. 

3.4. Visual Analysis 

To better interpret the feature representation between the sub models, we 

adopted t-distributed stochastic neighborhood embedding (t-SNE) to 

visualize and compare the feature space distribution on V60P+45N and 

V60P+60N datasets(Kobak and Linderman, 2021).  

In the experiment of t-SNE, the LightGBM, Neural Network 1, Neural 

Network 2 and HybAVPnet are compared to demonstrate the distribution 

of the new features in the two-dimensional feature space. As shown in 

Figure 5, the new feature distribution in HybAVPnet is the most efficient 

and effective compared with other three models to discriminate AVPs 

from non-AVPs. 

4 Conclusion 

Due to their advantages and good performance, antiviral peptides have 

potential wide applications in the development of antiviral drugs. To this 

end, some computational models have been developed to quickly and 

accurately identify AVPs. In this work, we present a novel hybrid 

network tool named HybAVPnet to identify AVPs. HybAVPnet takes 

full advantage of traditional machine learning models and deep learning 

models to obtain the effective feature representation of amino acid 

sequences at sequential, structural, and evolutionary levels. Experimental 

results demonstrated our proposed HybAVPnet model could achieve 

more discriminative power for the prediction of AVPs and could be 

easier to separate the positive samples and negative samples. 

Furthermore, a serial of comparative experiments showed the 

consistently stability and robustness of HybAVPnet from the five-fold 

cross-validation and independent test. We except that HybAVPnet can 

help the development of antiviral peptide drugs and the treatment of 

related diseases for researches. In the future, we will strive to develop 

predictive models for various therapeutic peptides to better serve 

precision medicine. 
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