

1 **Title: Adjuvants influence the maturation of VRC01-like antibodies during immunization**

2 **Authors:** Maria L. Knudsen^{1#}, Parul Agrawal^{1#}, Anna MacCamy¹, K. Rachael Parks^{1,2}, Matthew
3 D. Gray¹, Brittany N. Takushi¹, Arineh Khechaduri¹, Rhea N. Coler^{2,3,4}, Celia C. LaBranche⁵,
4 David Montefiori⁵, Leonidas Stamatatos^{1,2*}

5 **Affiliations:** ¹Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research
6 Center, Seattle, WA, 98109, USA

7 ²Department of Global Health, University of Washington, Seattle, 98195, WA, USA

8 ³Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle,
9 WA

10 ⁴Department of Pediatrics, University of Washington School of Medicine, Seattle, WA

11 ⁵Division of Surgical Sciences, Duke University, Durham, NC, 27710, USA

12

13 # Equal contribution

14 *Correspondence: lstamata@fredhutch.org; Fred Hutchinson Cancer Research Center, 1100
15 Fairview Ave N, Seattle, WA, 98109. Tel: 206-667-2995

16

17 **ABSTRACT**

18 Once naïve B cells expressing germline VRC01-class B cell receptors become activated by
19 germline-targeting immunogens, they enter germinal centers and undergo affinity maturation.
20 Booster immunizations with heterologous Envs are required for the full maturation of VRC01-
21 class antibodies. Here, we examined whether and how three adjuvants, Poly(I:C), GLA-LSQ, or
22 Rehydragel, that activate different pathways of the innate immune system, influence the rate and
23 type of somatic mutations accumulated by VRC01-class BCRs that become activated by the
24 germline-targeting 426c.Mod.Core immunogen and the heterologous HxB2.WT.Core booster
25 immunogen. We report that although the adjuvant used had no influence on the durability of
26 plasma antibody responses after the prime, it influenced the plasma VRC01 antibody titers after
27 the boost and the accumulation of somatic mutations on the elicited VRC01 antibodies.

28

29 **ONE SENTENCE SUMMARY:** VRC01-class BCRs with different somatic mutations are
30 being selected depending on the adjuvant used during immunization

31 INTRODUCTION

32 Broadly neutralizing HIV-1 antibodies (bnAbs) have been isolated from HIV-1-infected
33 individuals and the structures of diverse bnAbs, as well as those of their epitopes on the HIV-1
34 envelope glycoprotein trimeric spike (Env), have been well characterized (1-3). The epitopes
35 targeted by bnAbs are located on multiple regions of Env, such as its apex (4-9), the CD4-
36 binding site (CD4-BS) (10-19), the interface between the gp120 and gp41 subunits (20-24), the
37 silent face of gp120 (25, 26), and the membrane proximal regions (MPER) of gp41 (along with
38 lipid moieties into which MPER is embedded) (22, 27-34). In addition, some bnAbs recognize
39 clusters of glycan moieties on the gp120 subunit (35-37), while other bnAbs recognize epitopes
40 that contain both glycans and polypeptides (38-48).

41 bnAbs that recognize the same region of Env and share common genetic and structural features
42 are grouped into ‘classes’ (12). The VRC01-class of antibodies recognize an epitope within the
43 CD4-BS, and their heavy chains (HCs) are derived from the VH1-2*02 allele while their light
44 chains (LCs) express 5 amino acid (5 aa) long CDRL3 domains (14-16, 19, 49-53). We note
45 however that, not every Ab formed by the above-association of heavy and light chains targets the
46 CD4-BS (54). They are among the most mutated bnAbs known (55) and can display up to 30
47 percent amino acid sequence divergence, yet they recognize their epitope on diverse Envs with
48 similar angles of approach (14-16). VRC01-class bnAbs protect animals from experimental
49 S/HIV infection (56, 57) and one mAb of that class, VRC01, was recently shown to prevent
50 HIV-1 acquisition from susceptible, circulating primary HIV-1 viruses, in large phase 3 clinical
51 trials (58). Thus, it is expected that VRC01-class bnAbs will be a component of the immune
52 responses elicited by an effective HIV-1 vaccine.

53 Although VRC01-class bnAbs isolated from HIV-1 infected individuals bind diverse
54 recombinant (rec) Envs and potently neutralize HIV-1 viruses from different clades, their
55 unmutated forms do not (15, 59-62). So far, a natural Env (as expressed by a circulating virus)
56 capable of binding the unmutated forms ('germline', gl) of VRC01-class antibodies has not been
57 identified. It is believed that one reason for the lack of elicitation of VRC01-class antibodies
58 through immunization with rec Envs is due to the failure of such proteins to activate naïve B
59 cells that express the unmutated B cell receptor (BCR) precursors of VRC01-class antibodies
60 (60, 62, 63).

61 We and others have designed Env-derived proteins capable of binding unmutated VRC01-class
62 antibodies (60, 62, 64-68). Such constructs are commonly referred to as 'germline-targeting'
63 (63). Germline-targeting proteins have been designed on the backbone of the outer domain of
64 gp120 (60, 64, 65), the gp120 core (expressing both the inner and outer gp120 domains)
65 (426c.Mod.Core) (66, 68, 69), and the entire extracellular portion of the viral Env (GT1.1) (67).
66 A common feature of all such constructs is the elimination of the conserved N-linked
67 glycosylation site at position N276 (Loop D of gp120), because glycans present at this position
68 prevent glVRC01-antibodies/BCRs from binding to Env (70). However, additional obstacles on
69 the HIV-1 Envs, including the lengths of the V1-V3 regions, prevent the engagement of germline
70 VRC01-class BCRs by rec Envs (66, 71).

71 Orthologs of the human VH1-2*02 gene are not expressed in wild type animals such as mice,
72 rats, rabbits, and non-human primates (51), thus the abilities of germline-targeting immunogens
73 to activate naïve B cells expressing glVRC01-class BCRs have so far been evaluated in
74 specifically engineered mice. Indeed, germline-targeting immunogens activate B cells expressing
75 glVRC01-class antibodies *in vivo* (65, 67, 68, 72-78), although by themselves are not capable of

76 guiding the proper maturation of VRC01-class BCRs towards their broadly neutralizing forms,
77 through the accumulation of specific somatic mutations (74, 75). It is hypothesized that
78 following the activation of naïve B cells expressing glVRC01-class BCRs by germline-targeting
79 immunogens, sequential immunizations with diverse (and gradually more native-like rec Envs)
80 will be necessary to achieve this goal (74, 78).

81 Adjuvants alter the magnitude as well as the quality of the immune response (79-81). However,
82 the effect of adjuvant on the selection, expansion, and maturation of VRC01 B cell subclasses
83 has not yet been investigated in detail, although there are some reports suggesting that different
84 adjuvants may select for different HC/LC amino acids (76). As immunogens targeting the
85 unmutated forms of VRC01-class antibodies enter clinical evaluation, identifying the adjuvant
86 that promotes high levels of the appropriate somatic mutations will be important.

87 Here, we investigated how adjuvants affect the magnitude and duration of VRC01 antibody and
88 B cell responses elicited by the 426c.Mod.Core germline-targeting immunogen (66, 69) and
89 whether these responses can be boosted by a heterologous Env that does not recognize glVRC01-
90 class BCRs on its own. To this end, we compared the antibody and B cell responses elicited by
91 426c.Mod.Core when expressed on Ferritin nanoparticles and adjuvanted with Polyinosinic-
92 polycytidylic acid (Poly(I:C)), GLA-LSQ, or Rehydragel. Poly(I:C) is a double-stranded RNA
93 analogue mimicking viral RNA that stimulates endosomal TLR3, GLA-LSQ consists of the
94 TLR4 agonist glucopyranosyl lipid A (GLA) and the saponin QS21 in a lipid formulation, while
95 Rehydragel, an aluminum hydroxide particulate formulation, does not activate known TLR
96 pathways (80). We also investigated whether the adjuvants affect the maturation of VRC01-like
97 B cells following a heterologous booster immunization with HxB2.WT.Core.

98 Our study indicates that long-lasting VRC01-like plasma antibody responses were generated
99 irrespective of the adjuvant used during the prime immunization, but that the titers of plasma
100 VRC01-like antibodies and the number of somatic mutations accumulated in VRC01-like
101 antibodies were influenced by the adjuvant used during the heterologous boost immunization.

102 **RESULTS**

103 **High titers of anti-CD4-binding site antibodies are elicited by a single immunization with**
104 **426c.Mod.Core irrespective of the adjuvant used.**

105 The mouse model we employed here is heterozygous for the human inferred glHC of the VRC01
106 mAb (VRC01^{glHC}) (76). In this model, approximately 80% of B cells express the human transgene
107 and all express mouse LCs (mLCs); ~ 0.1% of which contain 5 aa-long CDRL3s. As a result, ~
108 0.08% of naïve B cells in these mice express VRC01-like BCRs, as compared to ~0.01% in humans
109 (72, 76, 82).

110 To test the effect of the adjuvant on the magnitude of the elicited antibody response, mice were
111 immunized with 426c.Mod.Core Ferritin nanoparticles (24meric) adjuvanted with either Poly(I:C),
112 GLA-LSQ, or Rehydragel. At the peak of the plasma antibody response (2 weeks post-
113 immunization), all animals, irrespective of the adjuvant, generated autologous plasma antibodies,
114 the majority of which targeted the CD4-BS on 426c.Mod.Core (autologous anti-CD4-BS
115 antibodies) (Fig. 1A). At this point, the anti-426c.Mod.Core plasma antibody titers were
116 significantly higher in the GLA-LSQ group than the Rehydragel group ($p \leq 0.05$). However, no
117 significant differences in the relative percentage of plasma antibodies against the CD4-BS of
118 426c.Mod.Core were observed at this time point. All animals, irrespective of the adjuvant used,
119 also developed antibody responses against the heterologous germline-targeting immunogen, eOD-

120 GT8 (76), at this early time point after immunization (**Fig. 1B**). The anti-eOD-GT8 plasma
121 antibody responses exclusively targeted the VRC01 epitope on that protein, as they did not display
122 reactivity to the version of the protein with a mutated VRC01 epitope (eOD-GT8 KO). We
123 concluded that a single immunization with 426c.Mod.Core Ferritin nanoparticles, elicits high titers
124 of autologous anti-CD4-BS antibodies, including antibodies that bind the VRC01 epitope,
125 irrespective of the adjuvant used.

126 **Sustained autologous and heterologous HIV-1 Env antibody responses following a single**
127 **immunization with 426c.Mod.Core.**

128 We next examined whether the longevity of the elicited antibody responses was affected by the
129 adjuvant used. To this end, new groups of animals were immunized, and their responses were
130 determined over a period of 22-23 weeks (**Fig. 2A**). The autologous plasma IgG titers were
131 maintained at high levels over the course of observation (22-23 weeks). At this late timepoint post-
132 immunization, the anti-426c.Mod.Core plasma antibody titers in the GLQ-LSQ and Poly(I:C)
133 groups were not statistically different, although the antibody titers with Poly(I:C) were
134 significantly higher than those in the Rehydragel group ($p \leq 0.05$).

135 We also examined whether the fraction of autologous anti-CD4-BS antibody responses remained
136 constant over time. These responses peaked early following prime immunization (2 weeks post-
137 immunization), but their relative proportions slowly decreased during the period of observation in
138 all groups (**Fig. 2B**). At 22-23 weeks post-immunization, the autologous CD4-BS antibody
139 responses represented ~70% of the total autologous antibodies in the Poly(I:C) group (a drop of
140 24% from their peak value), 64% in the GLA-LSQ group (a drop of 30% from their peak value),
141 and 43% in the Rehydragel group (a drop of 52% from their peak value) (**Fig. 2B**).

142 At the peak of the response, the anti-eOD-GT8 plasma antibody titers were 500-1,500-fold lower
143 than the anti-426c.Mod.Core antibody titers and although the anti-eOD-GT8 titers gradually
144 declined over time, they were always detectable (**Fig. 2A**). The majority of the anti-eOD-GT8
145 antibody responses targeted the VRC01 epitope on that protein for the duration of observation
146 period as the reactivity to the eOD-GT8 KO was minimal (**Fig. 2A**).

147 The VRC01-like antibodies elicited by 426c.Mod.Core in this mouse model recognize
148 heterologous, fully glycosylated wild type gp120 Core proteins (68). These constructs (termed
149 ‘WT Cores’ for simplicity) are not recognized by glVRC01-class antibodies, but once activated
150 by the 426c.Mod.Core, the VRC01-expressing B cells enter the germinal centers where their
151 BCRs accumulate somatic mutations that allow them to bypass N276- and V5- associated
152 glycans on some heterologous WT Core proteins. One of these WT Cores is the HxB2.WT.Core.
153 Indeed, all animals generated durable anti-HxB2.WT.Core antibody responses following a single
154 immunization with the 426c.Mod.Core (**Fig. 2A**), although the peak anti-HxB2.WT.Core
155 responses were lower than those against 426c.Mod.Core. At 2 weeks post-immunization, the
156 anti-HxB2.WT.Core antibody titers were ~88%, ~15% and 92% lower than the anti-
157 426c.Mod.Core titers for Poly(I:C), GLA-LSQ and Rehydragel, respectively. The anti-
158 HxB2.WT.Core plasma antibody titers remained stable for the duration of the observation,
159 irrespective of the adjuvant used, and a fraction of these Ab target the CD4-BS. At week 2 post-
160 immunization, the relative fraction of the plasma antibodies that recognized the CD4-BS on
161 HxB2.WT.Core were ~50% in the Poly(I:C) group, ~ 80% in the GLA-LSQ group, and ~40% in
162 the Rehydragel group (**Fig. 2B**). The relative proportion of these heterologous anti-CD4-BS
163 plasma antibodies remained unchanged over the duration of the observation. Thus, at 23 weeks
164 post immunization, the relative fraction was ~60% in the Poly(I:C) group, ~90% in the GLA-

165 LSQ group, and ~50% in the Rehydragel group. We conclude that a single immunization with
166 426c.Mod.Core Ferritin nanoparticles elicits long-lasting autologous and heterologous anti-CD4-
167 BS antibodies, a fraction of which target the VRC01 epitope.

168 **HXB2.WT.Core boosts autologous and heterologous anti-CD4-BS antibody responses**
169 **primed by 426c.Mod.Core.**

170 We previously reported that immunization with a 7meric nanoparticle form of 426c.Mod.Core
171 (426c.Mod.Core-C4b) adjuvanted with GLA-LSQ elicits VRC01-like antibody responses that
172 are boosted by the heterologous HxB2.WT.Core (also in a 7meric nanoparticle form,
173 HxB2.WT.Core-C4b), when administered 4 weeks after the prime immunogen, i.e., at the peak
174 of the antibody response (65, 68). As a result, the VRC01-like antibodies isolated after this
175 prime-boost immunization schema, have more somatic mutations and enhanced Env-binding
176 affinities than the VRC01-like antibodies isolated after the 426c.Mod.Core prime immunization
177 alone (68). Here, we examined how the anti-CD4-BS antibody responses, and more specifically
178 the VRC01-like antibody responses elicited by the Ferritin nanoparticle form of 426c.Mod.Core,
179 were affected by the adjuvant and by delaying the timing of the boost immunization with
180 HxB2.WT.core Ferritin nanoparticles. To this end, animals were immunized with HxB2.WT.core
181 Ferritin nanoparticles 22-23 weeks after the prime immunization.

182 This boost immunization resulted in increases in the plasma antibody responses against
183 426c.Mod.Core and HxB2.WT.Core in all three groups (**Fig. 2A**). The anti-426c.Mod.Core
184 plasma antibody titers increased by ~3,500 fold in the Poly(I:C) group, and by ~1,500 fold in
185 both the GLA-LSQ and the Rehydragel groups. The anti-HxB2.WT.Core titers increased by
186 ~3,000 fold in the Poly(I:C) group, by ~2,000 fold in the GLA-LSQ group, and by ~1,000 fold in
187 the Rehydragel group. However, the relative proportions of anti-426c.Mod.Core and of anti-

188 HxB2.WT.Core CD4-BS plasma antibodies were lower after the boost immunization than after
189 the prime immunization (**Fig. 2B**). Two weeks following the heterologous boost immunization,
190 the proportions of plasma antibodies targeting the 426c.Mod.Core CD4-BS were ~34% in the
191 Poly(I:C) group and ~41% in the GLA-LSQ group, and no longer apparent in the Rehydragel
192 group. The proportion of antibodies targeting the CD4-BS of the booster antigen
193 HxB2.WT.Core, was ~67% in the Poly(I:C) group, ~54% in the GLA-LSQ group, and ~77% in
194 the Rehydragel group. Interestingly, the VRC01 plasma antibody titers, were boosted in the
195 Poly(I:C) group by ~2,000 fold and in the GLA-LSQ group by ~1,500 fold, but not in the
196 Rehydragel group. We concluded that Rehydragel may not be an optimal adjuvant to boost
197 VRC01 plasma antibody responses elicited by the 426c.Mod.Core germline-targeting
198 immunogen.

199 **The HxB2.WT.Core immunogen does not elicit VRC01-like plasma antibody responses.**

200 The HxB2.WT.Core does not bind gIVRC01 antibodies (68), and it is thus expected that it will
201 not activate naïve B cells expressing gIVRC01-like BCRs. Hence, we hypothesized that the
202 increase in VRC01-like plasma antibody responses observed during the booster immunization
203 with HxB2.WT.Core in the case of the Poly(I:C) and GLA-LSQ adjuvants was not due to the
204 activation of naïve VRC01-like B cells by the HxB2.WT.Core itself, but was due to a boosting of
205 the memory VRC01-like B cells that transitioned to plasma cells secreting plasma antibodies at
206 that stage. These memory VRC01-class B cells initially got activated by 426c.Mod.Core and
207 their BCRs accumulated relevant somatic mutations that allowed them to bind HxB2.WT.Core.
208 To prove this point directly, we immunized mice with HxB2.WT.Core Ferritin nanoparticles
209 adjuvanted with GLA-LSQ and examined the Env-recognition properties of the elicited plasma
210 antibody. High autologous and anti-426c.Mod.Core plasma antibody titers were generated in all

211 animals 2 weeks post immunization (**Supp Fig. 1A**). Between 20 and 70% of the anti-
212 426c.Mod.Core, and between 60 and 80% of the anti-HxB2.WT.Core responses, targeted the
213 corresponding CD4-BS (**Supp Fig. 1B**). Anti-eOD-GT8 plasma antibody responses were
214 generated by 2 of 4 animals and were of lower magnitude than the anti-426c.Mod.Core or anti-
215 HxB2.WT.Core plasma antibody responses (**Supp Fig. 1A**). However, the plasma antibody titers
216 to eOD-GT8 and eOD-GT8 KO were either similar or the anti-eOD-GT8 KO titers were higher
217 than the anti-eOD-GT8 titers (**Supp Fig. 1A**). These observations confirm that HxB2.WT.Core
218 activates B cells that can target epitopes expressed on different Envs, some of which are located
219 within the CD4-BS but is not capable of activating the B cells that produce VRC01 antibodies.
220 This observation also supports the notion that HxB2.WT.Core can activate VRC01-like B cells
221 only when they have accumulated relevant somatic mutations (68).

222 **Characterizing the impact of adjuvants on the maturation of VRC01-like antibodies.**

223 To prove directly that the boost immunization with HxB2.WT.Core led to the expansion of
224 memory B cells expressing VRC01-like BCRs, we isolated such cells at 2 weeks after the prime
225 immunization and two weeks after the boost and sequenced their VH/VL genes.
226 Two weeks after the prime immunization with 426c.Mod.Core Ferritin; 130, 206, and 172 class-
227 switched Env+ B cells were individually isolated from the Poly(I:C), GLA-LSQ, and the
228 Rehydragel group, respectively. 80 (62%), 59 (28%), and 87 (50%) of HCs were successfully
229 sequenced from the Poly(I:C), GLA-LSQ, and Rehydragel groups; of which 95%, 97%, and
230 90%, were derived from VH1-2*02, respectively (**Fig. 3A**). The H35N mutation in CDRH2, that
231 stabilizes the interaction between CDRH1 and CDRH3 on VRC01-class antibodies (76), was
232 enriched by 21%, 81%, and 62%, of the VH1-2*02 HCs isolated from the Poly(I:C), GLA-LSQ,
233 and Rehydragel groups, respectively (**Fig. 3B**). 41 (32%), 65 (32%), and 46 (27%) LCs, were

234 successfully sequenced from the Poly(I:C), GLA-LSQ, and Rehydragel groups, respectively. 19
235 (46%) in the Poly(I:C) group, 52 (80%) in the GLA-LSQ group, and 31 (67%) in the Rehydragel
236 group, contained the characteristic 5 aa-long CDRL3s (**Fig. 3C**). The majority of the 5 aa-long
237 CDRL3s in all adjuvant groups were derived from the mouse 8-30*01 κV gene (**Fig. 3D**), as we
238 previously reported (68). Antibodies expressing the VRC01 HC paired with other mouse LCs
239 were also isolated (from the Poly(I:C) and Rehydragel groups) but only a few of these LCs
240 expressed 5 aa-long CDRL3s (**Fig. 3D**). Within the 8-30*01 LCs, Glu96_{LC}, a key CDRL3 feature
241 of the mature VRC01-class antibodies, was detected in the Poly(I:C) group and more frequently
242 in the GLA-LSQ group, but not in the Rehydragel group (**Fig. 3E,F**). These results suggest that
243 adjuvants may differentially affect the selection of VRC01-like BCRs with particular amino acid
244 mutations in both their HC and LCs.

245 Two weeks following the boost immunization with HxB2.WT.Core, 124 B cells were isolated
246 from the Poly(I:C) group, 248 B cells from the GLA-LSQ group, and 84 B cells from the
247 Rehydragel group. 52 (42%) HCs and 43 (35%) LCs were successfully sequenced from the
248 Poly(I:C) group, 119 (48%) HCs and 116 (47%) LCs from the GLA-LSQ group, and 21 (25%)
249 HCs and 28 (33%) LCs from the Rehydragel group (**Fig. 3A,C**). Majority of the HC sequences
250 (79% in the Poly(I:C) group, 85% in the GLA-LSQ group, and 86% in the Rehydragel group),
251 expressed the VH1-2*02 gene (**Fig. 3A**). Interestingly the fraction of HCs with the H35N
252 mutation in the Poly(I:C) group increased from 21% after the prime to 76% after the boost, while
253 it decreased from 61% after the prime to ~6% after the boost in the Rehydragel group and
254 remained at similar levels in the GLA-LSQ group (**Fig. 3B**). 20 of 43 LCs (47%) in the Poly(I:C)
255 group, 81 of 116 LCs (70%) in the GLA-LSQ group, and 8 of 28 (29%) LCs in the Rehydragel
256 group, contained 5 aa-long CDRL3s (**Fig. 3C**). These frequencies were comparable to those

257 observed after the prime immunization. As expected, the majority of the 5-aa CDRL3s were
258 derived from the mouse 8-30*01 LC V gene (**Fig. 3D**). Noticeably, only the GLA-LSQ group
259 enriched for 5-aa-CDRL3s containing Glu96_{LC} after the boost (19%; **Fig. 3E,F**). These
260 observations are in general agreement with those discussed above, in that the adjuvant influences
261 which somatic mutations are selected by VRC01 BCRs.

262 After the prime immunization, a range of somatic mutations resulting in amino acid changes
263 were observed in both the HCs and LCs (**Fig. 4**) in all three adjuvant groups. The mean numbers
264 of HC amino acid mutations were: 2.3, 2 and 3.3 (**Fig. 4C**) and the mean numbers of LC amino
265 acid mutations were: 1.9, 2.7 and 2.8 (**Fig. 4D**) for the Poly(I:C), GLA-LSQ, and Rehydragel
266 groups respectively, following prime immunization. After the boost immunization, statistically
267 significant increases in both nucleotide (**Fig. 4A**) and amino acid (**Fig. 4C**) mutations in the HCs
268 were observed in the Poly(I:C) and GLA-LSQ groups ($p \leq 0.001$), but not in the Rehydragel
269 group. Similarly, statistically significant increases in both nucleotide (**Fig. 4B**) and amino acid
270 (**Fig. 4D**) mutations in the LCs were observed in the Poly(I:C) ($p < 0.01$) and GLA-LSQ
271 ($p \leq 0.001$) groups but not in the Rehydragel group. Additionally, the mean number of amino acid
272 mutations in the three adjuvant groups differed significantly in the HCs (~8.4, ~6.6, and 2.8), and
273 LCs (~5.5, ~5.4 and 2.2) for Poly(I:C), GLA-LSQ and Rehydragel, respectively. We concluded
274 that Rehydragel may not be an optimal adjuvant for the maturation of VRC01 antibody
275 responses.

276 **Neutralizing properties of the plasma antibody responses after the boost immunization.**

277 Plasma IgG was purified 2 weeks following the boost immunization with HxB2.WT.Core
278 Ferritin from all three adjuvant groups and was first tested against the tier 2, WT 426c virus
279 produced either in 293T or GnTi-/- cells, but neither version was neutralized by any of the

280 samples (**Fig. 6A**). We next tested these samples against a derivative of 426c that lacks 3 NLGS
281 (N276, N460 and N463) (triple mutant, TM) expressed in GnTi-/- cells. The elimination of these
282 NLGS renders the 426c susceptible to neutralization by some glVRC01-class antibodies (62).
283 Ten of eleven samples neutralized this variant. Sample M24 that did not display anti-TM
284 neutralizing activity was derived from the Rehydragel group. To confirm that the neutralizing
285 activity was due to VRC01-like antibodies present in these samples, we tested the neutralizing
286 activities of each sample against a derivative of TM that contains the D279K mutation, which
287 abrogates the neutralizing activity of VRC01-class antibodies (83). In the GLA-LSQ or
288 Rehydragel groups, the neutralizing activities were exclusively due to VRC01-like antibodies. In
289 Poly(I:C) group, the neutralizing activity in one of the three samples (M4) was entirely due to
290 VRC01-like antibodies, while in the remaining two samples (M5 and 6), the anti-TM
291 neutralizing activity was primarily but not exclusively due to VRC01-like antibodies. We
292 concluded that, irrespective of the adjuvant used, this prime-boost immunization schema elicits
293 plasma VRC01-like antibody responses that cannot yet bypass the glycans present in Loop D
294 (N276) and V5 (N460 and N463) on the WT 426c virus but can neutralize this virus when the
295 three NLGS are absent.

296 **Neutralizing properties of monoclonal VRC01-like antibodies isolated after the boost
297 immunization.**

298 To prove directly that VRC01-like antibodies were responsible for the neutralizing activities of
299 plasma-derived polyclonal IgGs, we generated eleven VRC01-like mAbs from mice immunized
300 in the presence of Poly(I:C) or GLA-LSQ, two weeks after the booster immunization with
301 HxB2.WT.Core Ferritin (**Supp Fig. 2**). The mAbs express the human glVRC01HC paired with
302 mouse k8-30*01 LCs expressing 5 aa-long CDRL3. With the exception of mAb MLK-012, they

303 express amino acid mutations in both the HC and LCs. All mAbs recognized 426c.Mod.Core and
304 eOD-GT8, but not their KO versions (**Fig. 5A**). With the exception of MLK-006 and MLK-012,
305 all bound to HxB2.WT.Core but not its KO version. Among the mAbs that bound to
306 HxB2.WT.Core, MLK-005 and MLK-006 displayed the weakest binding, while MLK-009
307 displayed the strongest binding.

308 The seven mAbs that bound to HxB2.WT.Core efficiently were also tested for binding to
309 heterologous WT Cores (**Fig. 5B**). 45_01dG5 Env (clade B) is derived from a virus that
310 circulated in patient 45, from which several VRC01-class antibodies have been isolated
311 (including VRC01) (84). It naturally lacks the 276 NLGS and expresses one NLGS in its V5
312 region (position 470). All seven mAbs bound to this protein, with MLK-009 displaying the
313 slowest off-rate compared to the remaining six mAbs. 45_01dH1 is derived from a virus
314 circulating at a later time point in patient 45 and expresses the N276 NLGS, and, in addition to
315 the N460 NLGS it expresses a second NLGS in V5 (position 476). Although all seven mAbs
316 bound to that Env, they all displayed lower maximum binding and faster off rates than for
317 45_01dG5. Only mAb MLK-009 bound to the QH0692-derived WT core protein (clade B), and
318 minimally bound to the Q168a2-derived WT Core protein (clade A) and 93TH057-derived WT
319 Core protein (clade A/E). The remaining six mAbs did not bind to these proteins.

320 In agreement with the above discussed neutralization results obtained with polyclonal plasma
321 IgGs, none of the seven VRC01-like mAbs neutralized the 426c WT virus, irrespective of
322 whether it was produced in 293T or 293 GnTi-/- cells (**Fig. 6B**), but all neutralized the TM virus
323 produced in 293 GnTi-/- cells. The mAbs also neutralized a 426c variant that only lacks the
324 N276 NLGS (SM) when expressed in GnTi-/- cells and four of six mAbs neutralized this virus
325 when expressed in 293T cells (mAbs MLK-002 and MLK-014 did not neutralize this virus).

326 Importantly, gIVRC01 mAb did not neutralize this virus. The fact that all mAbs neutralized the
327 TM virus but only 4 neutralized the SM virus, indicate that the glycans in V5 (N460 and N463)
328 are significant obstacles for the maturing VRC01-like antibodies.

329 Overall, the data strongly suggest that the above immunization schema activates and initiates the
330 maturation of VRC01-like B cells, but that the maturation process is incomplete as the elicited
331 VRC01-like antibodies have not yet accumulated mutations that allow them to accommodate the
332 glycans present on N276. We also note that these mAbs did not neutralize heterologous viruses
333 whose N276 glycosylation site was eliminated by mutagenesis (N276Q) (data not shown). Thus,
334 in addition to the N276-associated glycans, additional steric obstacles are present on
335 heterologous Env that prevented the binding of these immature VRC01-like antibodies.

336 **DISCUSSION**

337 The VRC01 antibody maturation process can be initiated by a single immunization with
338 specifically designed Env-derived germline-targeting immunogens (65, 68, 73, 76, 77, 85). The
339 completion of the maturation process, however, will require booster immunizations with distinct
340 heterologous Envs (74, 78). In the transgenic animal model used here, that expresses the inferred
341 human glHC of VRC01 paired with mLCs expressing 5 aa-long CDRL3 at a frequency of
342 ~0.08%, we and others reported on the incremental, but still incomplete, maturation of VRC01-
343 like antibodies initiated by a prime immunization with a germline-targeting immunogen
344 (426c.Mod.Core or eOD-GT8) followed by booster immunizations with 1-2 heterologous Env-
345 derived proteins (68, 73). In a separate animal model, expressing both the inferred human glHC
346 and human glLC of VRC01, Chen et al., reported on a more extensive maturation of VRC01-like
347 antibodies using nine distinct immunogens administered sequentially that resulted in the isolation

348 of VRC01-like antibodies displaying ~50% neutralizing breadth (74). These observations
349 support the overall ‘germline-targeting’ immunization approach (86) for the elicitation of
350 VRC01 bnAbs and validate the potential of the utilized germline-targeting immunogens to
351 initiate the antibody maturation process (63). It is however important to identify ways to
352 optimize and accelerate this process. Here, we examined whether and how adjuvants may affect
353 the maturation of VRC01-like antibody responses. The three adjuvants evaluated here were
354 chosen because they activate different pathways of the innate response (Poly(I:C) via TLR3 (87,
355 88), GLA-LSQ via TLR4 (89-91), while Rehydragel acts independently of the TLR pathways
356 (92).

357 Our results suggest that long-lived populations of plasma cells, including ones producing
358 VRC01-like antibodies, can be generated by a single administration of the germline-targeting
359 immunogen 426c.Mod.Core, irrespective of the adjuvant used. The fact that immunization with
360 426c.Mod.Core also elicited high and sustained plasma antibody responses against the
361 heterologous HxB2.WT.Core suggests that this germline-targeting immunogen activates B cells
362 that recognize conserved epitopes between these two proteins. A high fraction of these cross-
363 reactive plasma antibodies targeted conserved elements of the CD4-BS. Interestingly the anti-
364 CD4-BS plasma antibody titers (against 426c.Mod.Core or HxB2.WT.Core) decreased over time
365 in all three adjuvant groups, while the total anti-426c.Mod.Core and anti-HxB2.WT.Core plasma
366 antibody titers remained stable. This suggests that the numbers of plasma cells that produce anti-
367 CD4-BS antibodies gradually decreased during the observation period while the numbers of
368 plasma cells that target epitopes outside the CD4-BS gradually increased. A fraction of the anti-
369 CD4-BS plasma antibody responses recognize the VRC01 epitope (expressed on eOD-GT8), and

370 their titers also gradually decreased over the period of observation, in agreement with the overall
371 decrease of the anti-CD4-BS plasma antibody responses.

372 While the plasma antibody responses to epitopes outside the CD4-BS increased by the boost
373 immunization with HxB2.WT.Core, the anti-CD4-BS responses (to HxB2.WT.Core itself and to
374 the prime immunogen 426c.Mod.Core) did not increase. This is not because the CD4-BS is not
375 immunogenic on the HxB2.WT.Core. One possibility is that pre-existing anti-CD4-BS
376 antibodies (elicited by the prime immunogen), bind the CD4-BS on the HxB2.WT.Core
377 immunogen and prevent its recognition by naïve, or memory anti-CD4-BS B cells. That
378 possibility however does not appear to apply to epitopes outside the CD4-BS. Importantly,
379 however, in the case of Poly(I:C) and GLA-LSQ, an increase in plasma VRC01-like antibodies
380 was observed after the boost immunization. This ‘boosting’ of VRC01-like plasma antibody
381 responses suggests that an increase in the number of VRC01-like producing plasma cells took
382 place by the heterologous immunization. The HxB2.WT.Core does not activate germline VRC01
383 B cells, and thus the observed increase in plasma VRC01 antibodies is due to the binding of
384 HxB2.WT Core to B cells expressing VRC01-like BCRs that had been activated by the
385 426c.Mod.Core and had accumulated somatic mutations during the intervening period. The
386 corresponding partially mutated plasma VRC01 antibodies represent a small fraction of the total
387 antibodies in circulation at the time of the HxB2.WT.Core boost and thus do not prevent that
388 protein from binding to VRC01-like B cells. Thus, despite a predominance of B cell responses to
389 epitopes other than the VRC01 epitope on HxB2.WT.Core, boosting of VRC01-like B cells
390 responses was possible in the presence of Poly(I:C) and GLA-LSQ, but not in the presence of
391 Rehydragel. Presently, we do not know why the plasma VRC01-like B cell response were not

392 boosted in the Rehydragel group, but we speculate that is related to the activation of different
393 innate pathways.

394 Importantly, the adjuvant used affected the rate at which activated VRC01-class B cells
395 accumulated somatic mutations in their VH/VL genes. Significantly more nucleotide and amino
396 acid mutations were present in the VRC01-like antibodies isolated after the boost from animals
397 that received immunogens adjuvanted with Poly(I:C) or GLA-LSQ than Rehydragel. It is
398 possible that adjuvants affect the activation of CD4+ T cells that assist B cells in GCs, and/or the
399 adjuvants directly affect these B cells. We expect the above effect to not be specific for VRC01
400 B cells, but to all B cells that became activated by the two immunogens used here.

401 As a result of the different rates of somatic mutations observed in the Rehydragel group and the
402 GLA-LSQ or Ploy(I:C) groups, B cells expressing VRC01-like BCRs with particular amino
403 acids at key positions were selected. Thus, the Glu96_{LC} amino acid was present in VRC01-like B
404 cells found in the Poly(I:C) and GLA-LSQ groups following the prime immunization with
405 426c.Mod.Core Ferritin, but not in the Rehydragel group. Glu96_{LC} is found in all presently
406 known human VRC01-class bnAbs and is the product of affinity maturation (51). It forms
407 hydrogen bonds with the side chain of Asn280 in Loop D and with the backbone amide of
408 Gly459 in V5 and contributes to increased antibody-Env affinity (51, 70). Glu96_{LC} was only
409 present in VRC01-like antibodies generated from the GLA-LSQ group after the boost
410 immunization with HxB2.WT.Core Ferritin. Similarly, a higher frequency of VRC01-like
411 antibodies isolated after the boost immunization expressed N35_{HC} (rather than H) in the case of
412 Poly(I:C) and GLA-LSQ than Rehydragel. The H35N mutation allows for a hydrogen bond
413 formation with N100a in CDRH3, thus improving the HC/LC interaction (76).

414 In sum, our study provides direct evidence that adjuvants influence the activation and maturation
415 of B cells expressing VRC01-like BCRs. As the elicitation of fully matured VRC01-like
416 antibodies requires the accumulation of an extensive number of mutations in both the VH and
417 VL genes (55) and several immunogens have to be administered in a particular sequence to
418 select VRC01 BCRs with particular mutations at each immunization step (74), our study
419 highlights the importance that adjuvants have in the selection of the appropriate mutations.

420

421 **REFERENCES**

- 422 1. D. R. Burton, L. Hangartner, Broadly Neutralizing Antibodies to HIV and Their Role in
423 Vaccine Design. *Annu Rev Immunol* **34**, 635-659 (2016).
- 424 2. J. R. Mascola, B. F. Haynes, HIV-1 neutralizing antibodies: understanding nature's
425 pathways. *Immunological reviews* **254**, 225-244 (2013).
- 426 3. A. P. West, Jr. *et al.*, Structural insights on the role of antibodies in HIV-1 vaccine and
427 therapy. *Cell* **156**, 633-648 (2014).
- 428 4. J. N. Bhiman *et al.*, Viral variants that initiate and drive maturation of V1V2-directed
429 HIV-1 broadly neutralizing antibodies. *Nat Med* **21**, 1332-1336 (2015).
- 430 5. N. A. Doria-Rose *et al.*, Developmental pathway for potent V1V2-directed HIV-
431 neutralizing antibodies. *Nature* **509**, 55-62 (2014).
- 432 6. J. Gorman *et al.*, Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies
433 reveal commonalities that enable vaccine design. *Nat Struct Mol Biol* **23**, 81-90 (2016).
- 434 7. J. S. McLellan *et al.*, Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing
435 antibody PG9. *Nature* **480**, 336-343 (2011).

436 8. M. Pancera *et al.*, Crystal structure of PG16 and chimeric dissection with somatically
437 related PG9: structure-function analysis of two quaternary-specific antibodies that
438 effectively neutralize HIV-1. *J Virol* **84**, 8098-8110 (2010).

439 9. L. M. Walker *et al.*, Broad and potent neutralizing antibodies from an African donor
440 reveal a new HIV-1 vaccine target. *Science* **326**, 285-289 (2009).

441 10. H. B. Gristick *et al.*, Natively glycosylated HIV-1 Env structure reveals new mode for
442 antibody recognition of the CD4-binding site. *Nat Struct Mol Biol* **23**, 906-915 (2016).

443 11. J. Huang *et al.*, Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-
444 Pan Neutralization Breadth. *Immunity* **45**, 1108-1121 (2016).

445 12. P. D. Kwong, J. R. Mascola, Human antibodies that neutralize HIV-1: identification,
446 structures, and B cell ontogenies. *Immunity* **37**, 412-425 (2012).

447 13. M. M. Sajadi *et al.*, Identification of Near-Pan-neutralizing Antibodies against HIV-1 by
448 Deconvolution of Plasma Humoral Responses. *Cell* **173**, 1783-1795 e1714 (2018).

449 14. J. F. Scheid *et al.*, Sequence and structural convergence of broad and potent HIV
450 antibodies that mimic CD4 binding. *Science* **333**, 1633-1637 (2011).

451 15. X. Wu *et al.*, Focused evolution of HIV-1 neutralizing antibodies revealed by structures
452 and deep sequencing. *Science* **333**, 1593-1602 (2011).

453 16. T. Zhou *et al.*, Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the
454 CD4 Supersite in 14 Donors. *Cell* **161**, 1280-1292 (2015).

455 17. C. F. Barbas, 3rd *et al.*, Recombinant human Fab fragments neutralize human type 1
456 immunodeficiency virus in vitro. *Proc Natl Acad Sci U S A* **89**, 9339-9343 (1992).

457 18. H. J. Ditzel *et al.*, Neutralizing recombinant human antibodies to a conformational V2-
458 and CD4-binding site-sensitive epitope of HIV-1 gp120 isolated by using an epitope-
459 masking procedure. *J. Immunol.* **154**, 893-906 (1995).

460 19. J. Umotoy *et al.*, Rapid and Focused Maturation of a VRC01-Class HIV Broadly
461 Neutralizing Antibody Lineage Involves Both Binding and Accommodation of the N276-
462 Glycan. *Immunity* **51**, 141-154 e146 (2019).

463 20. C. Blattner *et al.*, Structural delineation of a quaternary, cleavage-dependent epitope at
464 the gp41-gp120 interface on intact HIV-1 Env trimers. *Immunity* **40**, 669-680 (2014).

465 21. E. Falkowska *et al.*, Broadly neutralizing HIV antibodies define a glycan-dependent
466 epitope on the prefusion conformation of gp41 on cleaved envelope trimers. *Immunity* **40**,
467 657-668 (2014).

468 22. J. Huang *et al.*, Broad and potent neutralization of HIV-1 by a gp41-specific human
469 antibody. *Nature* **491**, 406-412 (2012).

470 23. L. Scharf *et al.*, Antibody 8ANC195 reveals a site of broad vulnerability on the HIV-1
471 envelope spike. *Cell reports* **7**, 785-795 (2014).

472 24. L. Scharf *et al.*, Broadly Neutralizing Antibody 8ANC195 Recognizes Closed and Open
473 States of HIV-1 Env. *Cell* **162**, 1379-1390 (2015).

474 25. T. Schoofs *et al.*, Broad and Potent Neutralizing Antibodies Recognize the Silent Face of
475 the HIV Envelope. *Immunity* **50**, 1513-1529 e1519 (2019).

476 26. T. Zhou *et al.*, A Neutralizing Antibody Recognizing Primarily N-Linked Glycan Targets
477 the Silent Face of the HIV Envelope. *Immunity* **48**, 500-513 e506 (2018).

478 27. F. M. Brunel *et al.*, Structure-function analysis of the epitope for 4E10, a broadly
479 neutralizing human immunodeficiency virus type 1 antibody. *J Virol* **80**, 1680-1687
480 (2006).

481 28. R. M. Cardoso *et al.*, Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical
482 conformation of a highly conserved fusion-associated motif in gp41. *Immunity* **22**, 163-
483 173 (2005).

484 29. T. Muster *et al.*, Cross-neutralizing activity against divergent human immunodeficiency
485 virus type 1 isolates induced by the gp41 sequence ELDKWAS. *J Virol* **68**, 4031-4034
486 (1994).

487 30. T. Muster *et al.*, A conserved neutralizing epitope on gp41 of human immunodeficiency
488 virus type 1. *J Virol* **67**, 6642-6647. (1993).

489 31. G. Stiegler *et al.*, A potent cross-clade neutralizing human monoclonal antibody against a
490 novel epitope on gp41 of human immunodeficiency virus type 1. *AIDS Res Hum*
491 *Retroviruses* **17**, 1757-1765 (2001).

492 32. M. B. Zwick *et al.*, Anti-human immunodeficiency virus type 1 (HIV-1) antibodies 2F5
493 and 4E10 require surprisingly few crucial residues in the membrane-proximal external
494 region of glycoprotein gp41 to neutralize HIV-1. *J Virol* **79**, 1252-1261 (2005).

495 33. M. B. Zwick *et al.*, Broadly neutralizing antibodies targeted to the membrane-proximal
496 external region of human immunodeficiency virus type 1 glycoprotein gp41. *J Virol* **75**,
497 10892-10905 (2001).

498 34. J. H. Lee *et al.*, Antibodies to a conformational epitope on gp41 neutralize HIV-1 by
499 destabilizing the Env spike. *Nature communications* **6**, 8167 (2015).

500 35. D. A. Calarese *et al.*, Antibody domain exchange is an immunological solution to
501 carbohydrate cluster recognition. *Science* **300**, 2065-2071 (2003).

502 36. C. N. Scanlan *et al.*, The broadly neutralizing anti-human immunodeficiency virus type 1
503 antibody 2G12 recognizes a cluster of alpha1-->2 mannose residues on the outer face of
504 gp120. *J Virol* **76**, 7306-7321 (2002).

505 37. A. Trkola *et al.*, Human monoclonal antibody 2G12 defines a distinctive neutralization
506 epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. *J Virol* **70**,
507 1100-1108. (1996).

508 38. M. Bonsignori *et al.*, Staged induction of HIV-1 glycan-dependent broadly neutralizing
509 antibodies. *Science translational medicine* **9**, (2017).

510 39. K. J. Doores *et al.*, Two classes of broadly neutralizing antibodies within a single lineage
511 directed to the high-mannose patch of HIV envelope. *J Virol* **89**, 1105-1118 (2015).

512 40. J. P. Julien *et al.*, Broadly neutralizing antibody PGT121 allosterically modulates CD4
513 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans.
514 *PLoS Pathog* **9**, e1003342 (2013).

515 41. H. Mouquet *et al.*, Complex-type N-glycan recognition by potent broadly neutralizing
516 HIV antibodies. *Proc Natl Acad Sci U S A* **109**, E3268-3277 (2012).

517 42. M. Pancera *et al.*, N332-Directed broadly neutralizing antibodies use diverse modes of
518 HIV-1 recognition: inferences from heavy-light chain complementation of function. *PLoS
519 ONE* **8**, e55701 (2013).

520 43. R. Pejchal *et al.*, A potent and broad neutralizing antibody recognizes and penetrates the
521 HIV glycan shield. *Science* **334**, 1097-1103 (2011).

522 44. L. M. Walker *et al.*, Broad neutralization coverage of HIV by multiple highly potent
523 antibodies. *Nature* **477**, 466-470 (2011).

524 45. L. M. Walker *et al.*, A Limited Number of Antibody Specificities Mediate Broad and
525 Potent Serum Neutralization in Selected HIV-1 Infected Individuals. *PLoS Pathog* **6**, 1-
526 14 (2010).

527 46. L. M. Walker *et al.*, Rapid development of glycan-specific, broad, and potent anti-HIV-1
528 gp120 neutralizing antibodies in an R5 SIV/HIV chimeric virus infected macaque. *Proc
529 Natl Acad Sci U S A* **108**, 20125-20129 (2011).

530 47. N. S. Longo *et al.*, Multiple Antibody Lineages in One Donor Target the Glycan-V3
531 Supersite of the HIV-1 Envelope Glycoprotein and Display a Preference for Quaternary
532 Binding. *J Virol* **90**, 10574-10586 (2016).

533 48. P. L. Moore *et al.*, Evolution of an HIV glycan-dependent broadly neutralizing antibody
534 epitope through immune escape. *Nat Med* **18**, 1688-1692 (2012).

535 49. L. Scharf *et al.*, Structural basis for HIV-1 gp120 recognition by a germ-line version of a
536 broadly neutralizing antibody. *Proc Natl Acad Sci U S A* **110**, 6049-6054 (2013).

537 50. L. Scharf *et al.*, Structural basis for germline antibody recognition of HIV-1
538 immunogens. *eLife* **5**, (2016).

539 51. A. P. West, Jr., R. Diskin, M. C. Nussenzweig, P. J. Bjorkman, Structural basis for germ-
540 line gene usage of a potent class of antibodies targeting the CD4-binding site of HIV-1
541 gp120. *Proc Natl Acad Sci U S A* **109**, E2083-2090 (2012).

542 52. X. Wu *et al.*, Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of
543 Chronic HIV-1 Infection. *Cell* **161**, 470-485 (2015).

544 53. T. Zhou *et al.*, Multidonor Analysis Reveals Structural Elements, Genetic Determinants,
545 and Maturation Pathway for HIV-1 Neutralization by VRC01-Class Antibodies.
546 *Immunity* **39**, 245-258 (2013).

547 54. M. D. Gray *et al.*, Characterization of a vaccine-elicited human antibody with sequence
548 homology to VRC01-class antibodies that binds the C1C2 gp120 domain. *bioRxiv*,
549 2021.2008.2021.457217 (2021).

550 55. F. Klein *et al.*, Somatic Mutations of the Immunoglobulin Framework Are Generally
551 Required for Broad and Potent HIV-1 Neutralization. *Cell* **153**, 126-138 (2013).

552 56. A. B. Balazs *et al.*, Vectored immunoprophylaxis protects humanized mice from mucosal
553 HIV transmission. *Nat Med* **20**, 296-300 (2014).

554 57. M. Shingai *et al.*, Passive transfer of modest titers of potent and broadly neutralizing anti-
555 HIV monoclonal antibodies block SHIV infection in macaques. *J Exp Med* **211**, 2061-
556 2074 (2014).

557 58. L. Corey *et al.*, Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1
558 Acquisition. *N Engl J Med* **384**, 1003-1014 (2021).

559 59. S. Hoot *et al.*, Recombinant HIV Envelope Proteins Fail to Engage Germline Versions of
560 Anti-CD4bs bNAbs. *PLoS Pathog* **9**, e1003106 (2013).

561 60. J. Jardine *et al.*, Rational HIV immunogen design to target specific germline B cell
562 receptors. *Science* **340**, 711-716 (2013).

563 61. A. T. McGuire, J. A. Glenn, A. Lippy, L. Stamatatos, Diverse recombinant HIV-1 Envs
564 fail to activate B cells expressing the germline B cell receptors of the broadly neutralizing
565 anti-HIV-1 antibodies PG9 and 447-52D. *J Virol* **88**, 2645-2657 (2014).

566 62. A. T. McGuire *et al.*, Engineering HIV envelope protein to activate germline B cell
567 receptors of broadly neutralizing anti-CD4 binding site antibodies. *J Exp Med* **210**, 655-
568 663 (2013).

569 63. L. Stamatatos, M. Pancera, A. T. McGuire, Germline-targeting immunogens.
570 *Immunological reviews* **275**, 203-216 (2017).

571 64. J. G. Jardine *et al.*, HIV-1 broadly neutralizing antibody precursor B cells revealed by
572 germline-targeting immunogen. *Science* **351**, 1458-1463 (2016).

573 65. Y. R. Lin *et al.*, HIV-1 VRC01 Germline-Targeting Immunogens Select Distinct Epitope-
574 Specific B Cell Receptors. *Immunity* **53**, 840-851 e846 (2020).

575 66. A. T. McGuire *et al.*, Specifically modified Env immunogens activate B-cell precursors
576 of broadly neutralizing HIV-1 antibodies in transgenic mice. *Nature communications* **7**,
577 10618 (2016).

578 67. M. Medina-Ramirez *et al.*, Design and crystal structure of a native-like HIV-1 envelope
579 trimer that engages multiple broadly neutralizing antibody precursors in vivo. *J Exp Med*
580 **214**, 2573-2590 (2017).

581 68. K. R. Parks *et al.*, Overcoming Steric Restrictions of VRC01 HIV-1 Neutralizing
582 Antibodies through Immunization. *Cell reports* **29**, 3060-3072 e3067 (2019).

583 69. A. T. McGuire *et al.*, HIV antibodies. Antigen modification regulates competition of
584 broad and narrow neutralizing HIV antibodies. *Science* **346**, 1380-1383 (2014).

585 70. T. Zhou *et al.*, Structural basis for broad and potent neutralization of HIV-1 by antibody
586 VRC01. *Science* **329**, 811-817 (2010).

587 71. A. J. Borst *et al.*, Germline VRC01 antibody recognition of a modified clade C HIV-1
588 envelope trimer and a glycosylated HIV-1 gp120 core. *eLife* **7**, (2018).

589 72. R. K. Abbott *et al.*, Precursor Frequency and Affinity Determine B Cell Competitive
590 Fitness in Germinal Centers, Tested with Germline-Targeting HIV Vaccine Immunogens.
591 *Immunity* **48**, 133-146 e136 (2018).

592 73. B. Briney *et al.*, Tailored Immunogens Direct Affinity Maturation toward HIV
593 Neutralizing Antibodies. *Cell* **166**, 1459-1470 e1411 (2016).

594 74. X. Chen *et al.*, Vaccination induces maturation in a mouse model of diverse unmutated
595 VRC01-class precursors to HIV-neutralizing antibodies with >50% breadth. *Immunity* **54**,
596 324-339 e328 (2021).

597 75. P. Dosenovic *et al.*, Anti-HIV-1 B cell responses are dependent on B cell precursor
598 frequency and antigen-binding affinity. *Proc Natl Acad Sci U S A*, (2018).

599 76. J. G. Jardine *et al.*, HIV-1 VACCINES. Priming a broadly neutralizing antibody response
600 to HIV-1 using a germline-targeting immunogen. *Science* **349**, 156-161 (2015).

601 77. D. Sok *et al.*, Priming HIV-1 broadly neutralizing antibody precursors in human Ig loci
602 transgenic mice. *Science* **353**, 1557-1560 (2016).

603 78. M. Tian *et al.*, Induction of HIV Neutralizing Antibody Lineages in Mice with Diverse
604 Precursor Repertoires. *Cell* **166**, 1471-1484 e1418 (2016).

605 79. B. N. Lambrecht, M. Kool, M. A. Willart, H. Hammad, Mechanism of action of clinically
606 approved adjuvants. *Curr Opin Immunol* **21**, 23-29 (2009).

607 80. B. Pulendran, S. A. P, D. T. O'Hagan, Emerging concepts in the science of vaccine
608 adjuvants. *Nat Rev Drug Discov* **20**, 454-475 (2021).

609 81. M. Silva *et al.*, A particulate saponin/TLR agonist vaccine adjuvant alters lymph flow
610 and modulates adaptive immunity. *Sci Immunol* **6**, eabf1152 (2021).

611 82. C. Havenar-Daughton *et al.*, The human naive B cell repertoire contains distinct
612 subclasses for a germline-targeting HIV-1 vaccine immunogen. *Science translational*
613 *medicine* **10**, (2018).

614 83. C. C. LaBranche *et al.*, HIV-1 envelope glycan modifications that permit neutralization
615 by germline-reverted VRC01-class broadly neutralizing antibodies. *PLoS Pathog* **14**,
616 e1007431 (2018).

617 84. R. M. Lynch *et al.*, HIV-1 fitness cost associated with escape from the VRC01 class of
618 CD4 binding site neutralizing antibodies. *J Virol* **89**, 4201-4213 (2015).

619 85. P. Dosenovic *et al.*, Immunization for HIV-1 Broadly Neutralizing Antibodies in Human
620 Ig Knockin Mice. *Cell* **161**, 1505-1515 (2015).

621 86. D. S. Dimitrov, Therapeutic antibodies, vaccines and antibodyomes. *mAbs* **2**, 347-356
622 (2010).

623 87. M. L. Salem, A. N. Kadima, D. J. Cole, W. E. Gillanders, Defining the antigen-specific
624 T-cell response to vaccination and poly(I:C)/TLR3 signaling: evidence of enhanced
625 primary and memory CD8 T-cell responses and antitumor immunity. *J Immunother* **28**,
626 220-228 (2005).

627 88. L. Alexopoulou, A. C. Holt, R. Medzhitov, R. A. Flavell, Recognition of double-stranded
628 RNA and activation of NF-kappaB by Toll-like receptor 3. *Nature* **413**, 732-738 (2001).

629 89. R. N. Coler *et al.*, Development and characterization of synthetic glucopyranosyl lipid
630 adjuvant system as a vaccine adjuvant. *PLoS One* **6**, e16333 (2011).

631 90. A. J. Radtke *et al.*, Adjuvant and carrier protein-dependent T-cell priming promotes a
632 robust antibody response against the Plasmodium falciparum Pfs25 vaccine candidate.
633 *Scientific reports* **7**, 40312 (2017).

634 91. S. G. Reed, D. Carter, C. Casper, M. S. Duthie, C. B. Fox, Correlates of GLA family
635 adjuvants' activities. *Semin Immunol* **39**, 22-29 (2018).

636 92. A. L. Gavin *et al.*, Adjuvant-enhanced antibody responses in the absence of toll-like
637 receptor signaling. *Science* **314**, 1936-1938 (2006).

638 93. S. L. Baldwin *et al.*, Prophylactic efficacy against *Mycobacterium tuberculosis* using
639 ID93 and lipid-based adjuvant formulations in the mouse model. *PLoS One* **16**, e0247990
640 (2021).

641 94. T. Tiller *et al.*, Efficient generation of monoclonal antibodies from single human B cells
642 by single cell RT-PCR and expression vector cloning. *J Immunol Methods* **329**, 112-124
643 (2008).

644 95. X. Brochet, M. P. Lefranc, V. Giudicelli, IMGT/V-QUEST: the highly customized and
645 integrated system for IG and TR standardized V-J and V-D-J sequence analysis. *Nucleic
646 Acids Res* **36**, W503-508 (2008).

647 96. J. Snijder *et al.*, An Antibody Targeting the Fusion Machinery Neutralizes Dual-Tropic
648 Infection and Defines a Site of Vulnerability on Epstein-Barr Virus. *Immunity* **48**, 799-
649 811 e799 (2018).

650 97. C. C. LaBranche *et al.*, Determinants of CD4 independence for a human
651 immunodeficiency virus type 1 variant map outside regions required for coreceptor
652 specificity. *J Virol* **73**, 10310-10319. (1999).

653

654 **FUNDING**

655 This work was supported by grants P01 AI138212, 2R01 AI104384, R01 AI104384 and contract
656 #HHSN272201800004C from the National Institutes of Health.

657

658 **AUTHOR CONTRIBUTIONS**

659 Conceptualization: LS, MLK, PA

660 Methodology: LS, MLK, PA

661 Validation: LS, MLK, PA

662 Formal analysis: MLK, PA, DM

663 Investigation: MLK, PA, AM, K.R.P, M.D.G, B.N.T, AK, RNC

664 Writing – Original Draft: LS, MLK, PA

665 Writing – Review Editing: All

666 Visualization: MLK, PA

667 Supervision: LS

668 Project Administration: LS

669 Funding Acquisition: LS

670

671 **COMPETING INTERESTS**

672 The authors declare no competing interests. Patent US 2018/0117140 “Engineered and

673 Multimerized Human Immunodeficiency Virus Envelope Glycoproteins and Uses Thereof” was

674 awarded to LS.

675

676 **DATA AND MATERIAL AVAILABILITY**

677 All materials and reagents will be available. In certain cases, appropriate MTAs will need to be
678 signed.

679

680

681

682 **FIGURE LEGENDS**

683 **Figure 1. Ab responses at 2 weeks following 426c.Mod.Core Ferritin immunization.** Mice (*n*
684 = 5 per group) were immunized with 426c.Mod.Core Ferritin with either Poly(I:C), GLA-LSQ,
685 or Rehydragel. Mice were bled at 2 weeks post-immunization and plasma was assayed by ELISA
686 for binding against 426.Mod.Core (**A**) and eOD-GT8 (**B**) (full lines), as well as corresponding
687 antigens with CD4-BS or VRC01 epitope knock-out (KO) (dotted lines). Figure legend indicates
688 individual mouse, and percentage in parentheses indicates percent of response binding to CD4-
689 BS. Pre-bleed samples from all animals (pool) was used as an internal control.

690 **Figure 2. Ab responses following 426c.Mod.Core Ferritin prime and HXB2.WT.Core**
691 **Ferritin boost immunization.** Mice were primed with 426c.Mod.Core Ferritin at week 0 and
692 boosted with HXB2.WT.Core Ferritin at week 22 (Poly(I:C) and GLA-LSQ groups), or week 23
693 (Rehydragel group). Mice were bled at the time points indicated in (A), and plasma was assayed
694 for binding against the proteins listed in the legend by ELISA. Black dotted line indicates the
695 time of the booster immunization. (**A**) endpoint titers against the indicated proteins over time.
696 (**B**) percentage of anti-CD4-BS against 426c.Mod.Core (red), HXB2.WT.Core (blue) and VRC01
697 epitope on eOD-GT8 (green) at the indicated times with the indicated adjuvants. Each dot
698 represents an animal.

699 **Figure 3. VH/VL sequence analysis from antibodies developed after the prime and boost**
700 **immunizations.** Pie charts indicate VH (**A,B**) and VL (**C-F**) gene usage from individually sorted
701 B cells 2 weeks post immunization with 426c.Mod.Core (Prime) and 2 weeks post immunization
702 with HXB2.WT.Core (Boost). The number of VH and VL sequences analyzed is shown in the
703 middle of each pie chart. (**A**) VH-gene usage, (**B**) VHs with the H35N mutation. (**C**) aa length of
704 the CDRL3 domains in the VL, (**D**) VL-gene usage. Shades of grey/black slices represent non 5

705 aa-long CDRL3s, k8-30*01 VLs are represented in pink while non k8-30*01 VLs with 5 aa long
706 CDRL3s are indicated in blue, (E) Presence or absence of Glu96_{LC} within the LC sequences with
707 5 aa-long CDRL3 domains, (F) Logo plots represent 5 aa-long CDRL3 sequences in the 8-30*01
708 VKs.

709

710 **Figure 4. Number of nucleotide and amino acid changes in VRC01-like antibodies**
711 **generated after the prime and after the boost immunizations.** (A) number of nucleotide and
712 (B) amino acid changes in the HC, and (C) number of nucleotide and (D) amino acid changes in
713 the LC, of paired sequences isolated after the prime and boost immunizations with the indicated
714 adjuvants. Significance was calculated using one-way ANOVA (Tukey's multiple comparisons
715 test). (*) ≤ 0.05 ; (**) ≤ 0.01 and (***) ≤ 0.001 .

716 **Figure 5. Binding properties of VRC01-like mAbs generated after the boost immunization.**
717 (A) Four VRC01-like mAb isolated from the Poly(I:C) group and seven VRC01-like mAbs
718 isolated from the GLA-LSQ group were evaluated against the indicated soluble monomeric
719 Envs. (B) those mAbs that displayed anti-HxB2.WT.Core reactivity were evaluated against the
720 indicated five heterologous WT Cores. Information on these mAbs is provided in **Supplemental**
721 **Figure 2.** Dotted lines indicate end of association and dissociation phases.

722 **Figure 6. Neutralizing activities of plasma IgG and VRC01-like mAbs.**
723 (A) IgG was isolated from plasma collected 2 weeks following the booster immunization with
724 HxB2.WT.Core from the indicated adjuvant groups and was evaluated for the presence of
725 neutralizing antibodies against the WT 426c virus and the 426c virus whose Env lacks three
726 NLGS (N276, N460 and N463), TM, and against its variant with the D279K mutation that
727 abrogates the neutralizing activity of VRC01 antibodies. Viruses were expressed in 293 GnTi-/-

728 cells. The WT 426c virus was also expressed in 293T cells. Values represent IC₅₀ neutralization
729 values in µg/ml. Neutralization IC50 values of these same viruses with the mature VRC01 mAb
730 are included. Bold values indicate samples displaying neutralizing activity. **(B)** VRC01-like
731 mAbs isolated after the boost immunization with HxB2.WT.Core from the Poly(I:C) (mAb
732 MLK-002) and GLA-LSQ (all other mAbs) groups (**see Figure 5 for binding information**)
733 were evaluated against the same viruses as the plasma samples as well as against the 426c variant
734 whose Env only lacks the N276 NLGS (SM) expressed in 293T and 293 GnTi-/- cells. Values
735 represent IC50 neutralization values in mg/ml. Neutralization IC50 values of these same viruses
736 with the mature and germlineVRC01 mAbs are included. Bold values indicate neutralizing
737 activity of VRC01 antibodies.

738

739

740

741

742

743

744

745

746

747

748

749

750

751 **SUPPLEMENT MATERIAL**

752 **MATERIALS and METHODS**

753 **Recombinant HIV-1 Envelope proteins**

754 Recombinant HIV-1 envelope proteins (rec Envs) were expressed by transient transfection in
755 HEK 293-F cells and then purified directly from conditioned media as we previously described
756 (66). The “CD4-BS knockout” (KO) versions of rec Envs contain the D279A, D368R and
757 E370A mutations (D279A/DREA). In the case of eOD-GT8, the KO version contains the D368R
758 mutation and the amino acids DWRD at positions 276-279 were substituted by NFTA. Purified
759 Env proteins were aliquoted in PBS and stored frozen in -20°C until further use. Ferritin
760 nanoparticles expressing 426c.Mod.Core and HxB2.WT.Core were produced and purified as
761 previously described (68). They were stored at 4°C. Tetramers of Avi-tagged eOD-GT8 and of
762 eOD-GT8 KO were generated as previously reported (68).

763 **Adjuvants**

764 Polyinosinic-polycytidylic acid (Poly(I:C)) was obtained from InvivoGene. GLA-LSQ was
765 provided by the Infectious Disease Research Institute (IDRI) and liposomal formulations of GLA
766 were prepared as previously published (93). Rehydragel was provided by the NIAID.

767 **Mice and Immunizations**

768 Knock-in mice expressing the inferred germline HC of the human VRC01 Ab (VRC01^{gIH}) and
769 endogenous mouse LCs (76) were bred and kept at the Fred Hutchinson Cancer Research Center.
770 Mice were 6-12 weeks old at the initiation of experiments. Proteins and adjuvants were diluted in
771 PBS and administered intramuscularly with 50 µl in each hind leg in the gastrocnemius muscle
772 (total volume 100 µl/mouse). Env antigens were administered at 50 (GLA-LSQ groups) or 60 µg
773 (Poly(I:C) and Rehydragel groups), and adjuvants at 60 µg for Poly(I:C), 50 µl GLA-LSQ

774 (containing 5 µg TLR4 agonist and 2 µg Saponin for GLA-LSQ), and 100 µg for Rehydragel.

775 Blood was collected by the retroorbital route into tubes containing 25 µl citrate-phosphate-

776 dextrose solution (Sigma-Aldrich). Terminal bleeds were collected by cardiac puncture into

777 tubes containing 100 µl citrate-phosphate-dextrose solution. Organs were harvested into cold

778 IMDM media (Gibco).

779 **Organ processing**

780 Spleens and lymph nodes were first mashed through 70-µm-pore-size nylon cell strainers

781 (Falcon) to obtain a single cell suspension. Cells from lymph nodes were then washed twice with

782 PBS, while splenocytes were first treated with Red Blood Cell Lysing Buffer Hybri-Max

783 (Sigma-Aldrich) for 1.5-2 min followed by two washes with PBS. Cells were resuspended in

784 FBS supplemented with 10% DMSO and frozen in a Mr. Frosty Freezing Container (Thermo

785 Fisher Scientific) at -80°C overnight, then moved to liquid nitrogen for storage until use.

786 **Single B cell sorting**

787 Splenocytes or lymph node cells were thawed and first stained with Fc-block (2.4G2; BD

788 Biosciences), 1 pmol Gb phycoerythrin (PE)-DyLight (DL)650 (PE-Decoy) and 3 pmol Gb

789 allophycocyanin (APC)-DL755 (APC-Decoy) diluted in fluorescence-activated cell sorting

790 (FACS) buffer (2% FBS, 1 mM EDTA in PBS). PE-Decoy and APC-Decoy were made by first

791 combining streptavidin-PE (SA-PE) or streptavidin APC (SA-APC) (Prozyme) with a DL NHS

792 ester (650 or 755; Thermo Fisher Scientific). 1 pmol eOD-GT8-PE tetramer and 3 pmol eOD-

793 GT8 KO-APC tetramers were added to the cells and incubated on ice for 25 mins. Samples were

794 then washed and incubated with anti-PE and anti-APC MicroBeads (both Miltenyi Biotec) after

795 which decoy- and tetramer-positive cells were enriched by putting the samples through magnetic

796 LS columns positioned on a QuadroMACS separator (all from Miltenyi Biotec) (19). Non-bound

797 cells present in the flow-through were collected to use as controls. After a wash, samples (both
798 bound and non-bound fractions) were incubated with Fixable Viability Dye eFluor 506
799 (eBioscience, ThermoFisher Scientific) and the following Abs diluted in Brilliant Stain Buffer
800 (BD Biosciences): Anti-IgG1-fluorescein isothiocyanate (FITC; A85-1), anti-IgG2b-FITC (R12-
801 3; both from BD Biosciences), anti-IgG2c-FITC (polyclonal; Bio-Rad), anti-IgG3-FITC (R40-
802 82; BD Biosciences), anti-IgD-PerCP-Cy5.5 (11-26c.2a; BioLegend), anti-CD3-Brilliant Violet
803 (BV)510 (145-2C11), anti-CD4-BV510 (RM4-5), anti-Gr-1-BV510 (RB6-8C5; all from BD
804 Biosciences), anti-F4/80-BV510 (BM8), anti-IgM-BV605 (RMM-1; both from BioLegend), anti-
805 CD19-BV650 (1D3), anti-B220-BV786 (RA3-6B2; both BD Biosciences). Samples were
806 washed and resuspended in FACS buffer, AccuCheck Counting Beads (Thermo Fisher
807 Scientific) were added, and the samples were then evaluated on a FACSAria II (BD
808 Biosciences). Stained UltraComp eBeads (Thermo Fisher Scientific) were used for compensating
809 voltages. Non-bound cells collected in the enrichment step described above were used for setting
810 up gates. Samples were single cell-sorted into 96-well skirted plates (Eppendorf) and stored at -
811 80°C until further processing. 20 µl lysis buffer per well (20 U Rnase out, SSIV buffer, 6.25 µM
812 DTT (all from Thermo Fisher Scientific), 0.3% Igepal) was added either immediately before
813 sorting cells, or after thawing plates for further processing.

814 **VH/VL gene sequencing**

815 Amplification and sequencing of the antibody VH/VL genes was performed as we previously
816 described (65, 68, 76). Briefly, cDNA was generated by adding 6 µl per well of a mix containing
817 Random Primers, 3.3 mM dNTPs, 200 U Superscript IV Reverse Transcriptase (all from Thermo
818 Fisher Scientific) and with PCR program 42°C 10 min, 25°C 10 min, 50°C 60 min, 94°C 5 min.
819 cDNA was amplified and sequenced by two rounds of PCR using primers listed in

820 **Supplemental Table 1** using PCR program: 94°C 5 min, 50 × (94°C 30 sec; X°C for 30 sec (X
821 being the corresponding annealing temperature of the primers) and 72°C for 55 sec), and 72°C
822 10 min. All reactions were performed in a 40 µl volume with 2.4 U HotStarTaq Plus DNA
823 Polymerase (Qiagen), 0.24 µM of a 5' primers pool, 0.24 µM of a 3' primer pool (all from
824 Integrated DNA Technologies), 0.35 mM dNTPs. Aliquots from each well were subjected to
825 agarose gel electrophoresis, which were then treated with ExoSAP-IT PCR Product Cleanup
826 Reagent (Applied Biosystems, Thermo Fisher Scientific) and sequenced by Sanger sequencing
827 using the primers indicated in **Supplemental Table 1**, as previously reported (76, 94). VH and
828 VL sequences were analyzed using the Geneious software (Biomatters, Ltd.) and the online
829 IMGT/V-QUEST tool (95). To calculate numbers of nucleotide and amino acid mutations,
830 sequenced HC and LC pairs were aligned against the VH regions of the VRC01 gH knocked-in
831 sequence and LC reference sequences obtained from IMGT/V-QUEST, respectively, using
832 sequences starting from CDR1 to CDR3.

833 **VH/VL cloning and antibody expression**

834 DNA products from the 1st round of PCR were used as templates for gene-specific PCR to
835 amplify the gene of interest and add ligation sites to allow for insertion of the DNA fragment
836 into the human IgG1 vectors: ptt3 for κ light chain (96) and PMN 4-341 for γ heavy chain (23).
837 Each gene-specific PCR reaction consisted of 0.5 µl of each 10 µM 5' and 3' primer, 22.5 µl
838 Accuprime Pfx Supermix (Thermo Fisher Scientific) and 1.5 µl of 1st round PCR product. The
839 gene-specific PCR product was then infused into cut IgG1 vector in a 2.5 µl volume reaction
840 containing 12.5 ng of cut vector, 50 ng of insert, 0.5 µl of 5× Infusion enzyme (Takara Bio).
841 Competent *E. coli* cells were transformed with the entire reaction and plated onto ampicillin agar

842 plates. Colonies were picked and grown in LB broth containing ampicillin, and DNA was
843 extracted and purified using QIAprep Spin Miniprep Kit (Qiagen). 293E cells were then
844 transfected with equal amounts of HC and LC DNA as well as 293F transfection reagent
845 (Millipore Sigma) and grown for 5-7 days, at which time Abs were purified from cell
846 supernatants using Pierce Protein A agarose beads (Thermo Fisher Scientific). Abs were eluted
847 with 0.1 M Citric Acid into 1 M Tris buffer followed by buffer exchange into PBS using an
848 Amicon centrifugal filter (Millipore Sigma).

849 **Purification of IgG from mouse plasma**

850 IgGs were purified from mouse plasma using Protein G HP-Ab Spin Trap columns (GE
851 Healthcare Life Sciences) according to the manufacturer's protocol. Eluted antibodies were
852 buffer-exchanged into PBS using Amicon Ultra-4 centrifugal filter units (30K, Merck Millipore
853 Ltd.).

854 **ELISA**

855 384 well ELISA plates (Thermo Fisher Scientific) were coated with 0.1 μ M his/avi-tagged
856 protein (426c.Mod.Core, 426c.Mod.Core KO, HXB2.WT.Core, HXB2.WT.Core KO, eOD-GT8,
857 eOD-GT8-KO) diluted in 0.1 M sodium bicarbonate, at room temperature (RT) overnight. Plates
858 were then washed four times with wash buffer (PBS plus 0.02% Tween20) using a microplate
859 washer (BioTek) and incubated with block buffer (10% milk, 0.03% Tween20 in PBS) for 1-2h
860 at 37°C. Plates were washed, mouse plasma added, and serially diluted (1:3) in block buffer.
861 After 1h incubation at 37°C, plates were washed, and horse radish peroxidase-conjugated goat
862 anti-mouse IgG (BioLegend) was added and incubated for 1h at 37°C. After a final wash,
863 SureBlue Reserve TMB Microwell Peroxidase Substrate (KPL Inc.) was added to the plates for 5
864 mins. The reaction was stopped with 1 N H₂SO₄, and the optical density (OD) was read at 450

865 nm with a SpectraMax M2 Microplate reader (Molecular Devices). The average OD of blank
866 wells from the same plate were subtracted from all wells before analysis.

867 **Biolayer interferometry**

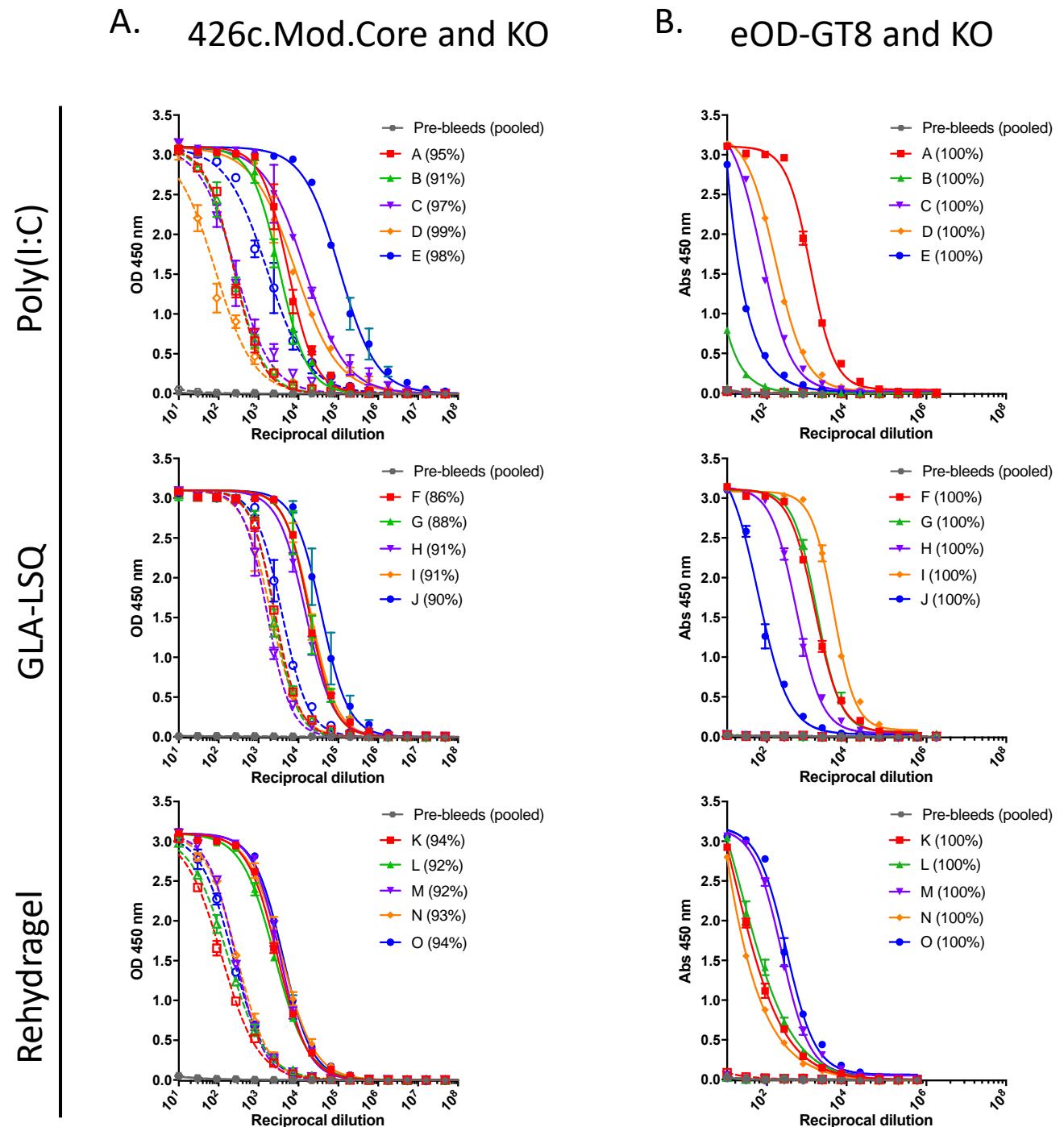
868 Biolayer interferometry (BLI) assays were performed on the Octet Red instrument (ForteBio) as
869 previously described (65, 68). Briefly, anti-human IgG FC capture biosensors (ForteBio) were
870 used to immobilize mAbs (20 μ g/ μ l in PBS) for 5 min, followed by baseline interference reading
871 for 60 s in kinetics buffer (PBS, 0.01% BSA, 0.02% Tween-20, 0.005% NaN₃). Sensors were
872 then immersed into wells containing Env Core monomers (2 μ M) diluted in kinetics buffer for
873 300 s (association phase) and another 300 s (dissociation phase). All measurements were
874 corrected by subtracting the signal obtained from simultaneous tracing of the corresponding Env
875 using an irrelevant IgG Abs in place of the mAbs tested. Curve fitting was performed using the
876 Data analysis software (ForteBio).

877 **TZM-bl neutralization assay**

878 Plasma IgG and individual mAbs were tested for neutralization against a panel of selected HIV-1
879 pseudoviruses using TZM-bl target cells, as previously described (97). Germline and mature
880 VRC01 mAbs were used as controls in every assay.

881 **Statistics**

882 For pairwise comparisons between two groups, the unpaired *t*-test was used. For comparisons
883 between three or more groups, the ANOVA test was used for *a priori* analyses, followed by
884 Tukey's or Sidak's multiple comparison's test for post hoc analyses. A *P* value of ≤ 0.05 was
885 considered statistically significant. Statistical analyses were carried out using the GraphPad
886 Prism software (GraphPad Software).


887

888 **SUPPLEMENTARY FIGURE LEGENDS**

889 **Supplementary Figure 1. Plasma antibody responses elicited by HXB2.WT.Core. (A)** Mice
890 were immunized with HXB2.WT.Core Ferritin adjuvanted with GLA-LSQ, and the plasma
891 antibody responses were evaluated 2 weeks later against the indicated Env proteins (closed
892 symbols) and their corresponding CD4-BS KO versions (open symbols). Each symbol represents
893 one mouse, and lines connect data from the same mouse. **(B)** Percentages of plasma antibodies
894 binding to the CD4-BS of the indicated proteins (derived from the results in panel **(A)**).
895 Horizontal lines represent mean values of the indicated groups.

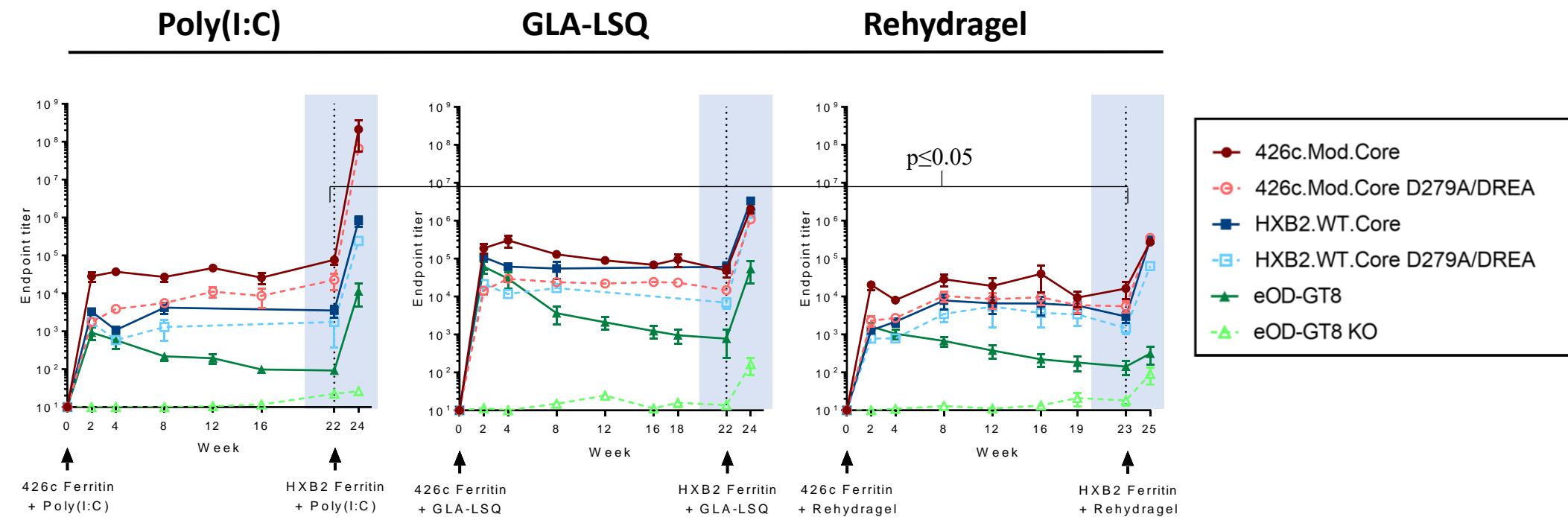

896 **Supplementary Figure 2. Information on the VRC01-like mAbs isolated following the boost**
897 **immunization with HxB2.WT.Core.** Eleven VRC01-like mAbs were generated from animals
898 in the Poly(I:C) and GLA-LSQ groups following their immunization with the HxB2.WT.Core
899 Ferritin. The Env-recognition properties of these mAbs is presented in **Figure 5**. Their
900 neutralizing potentials are presented in **Table 1B**.

Figure 1

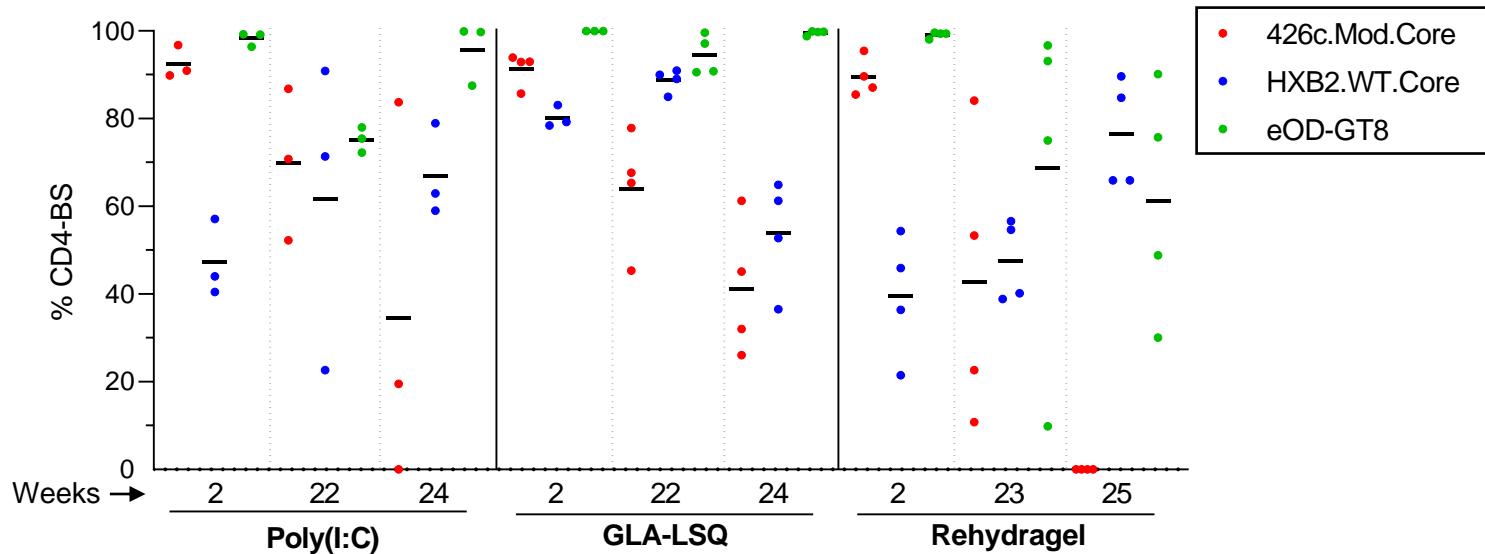
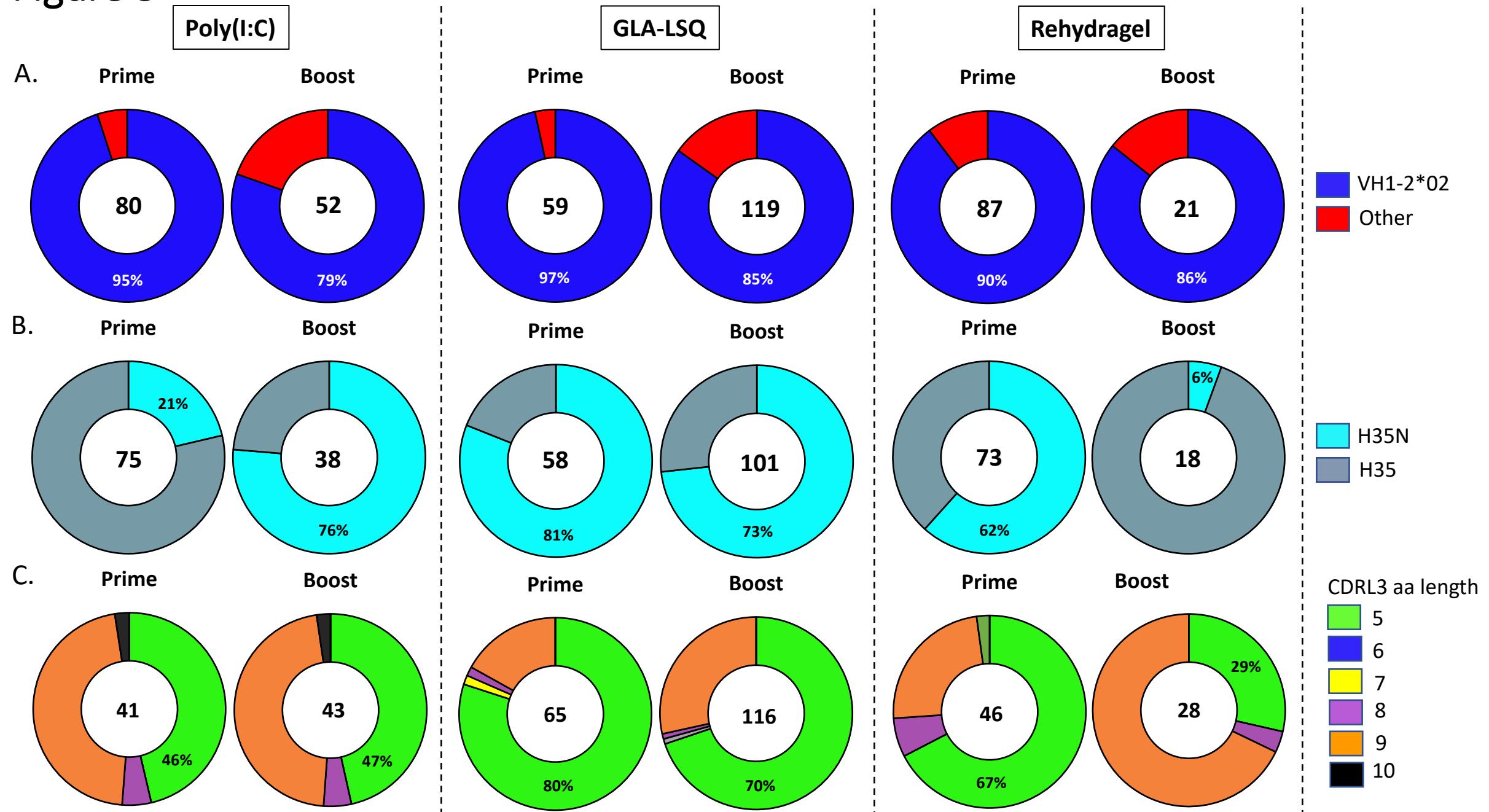
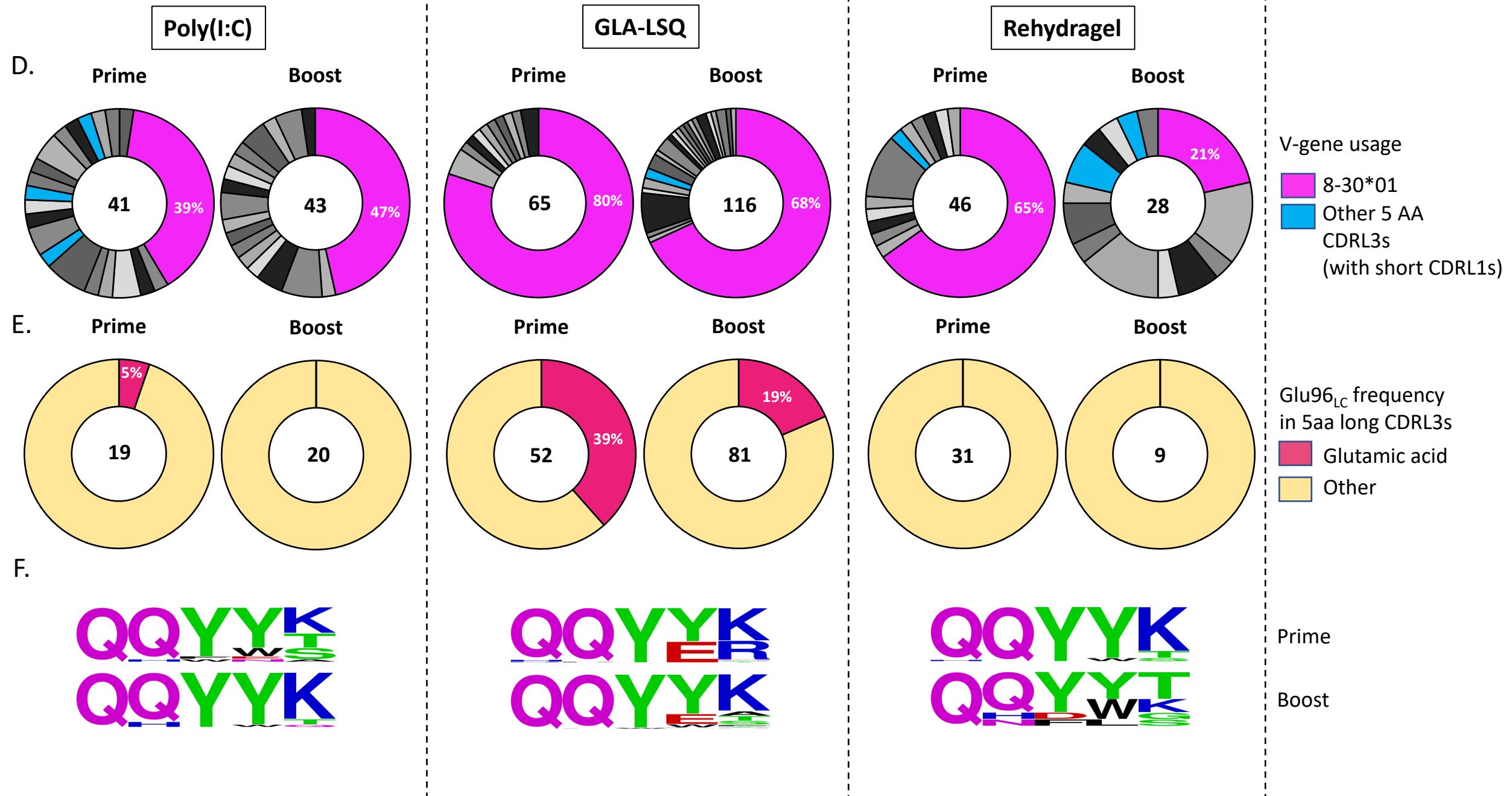


Figure 2

A.

B.

Figure 3

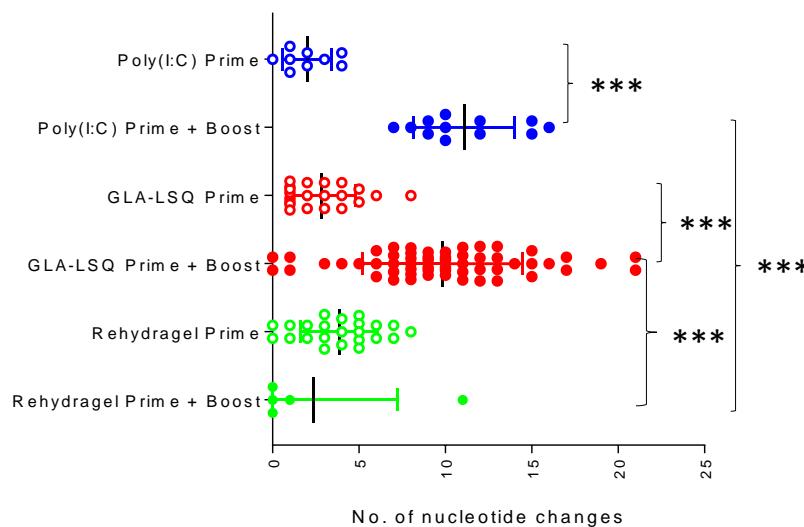
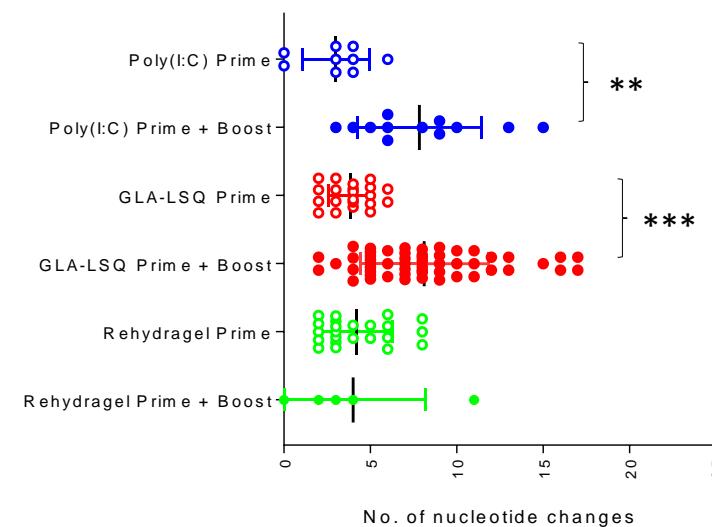
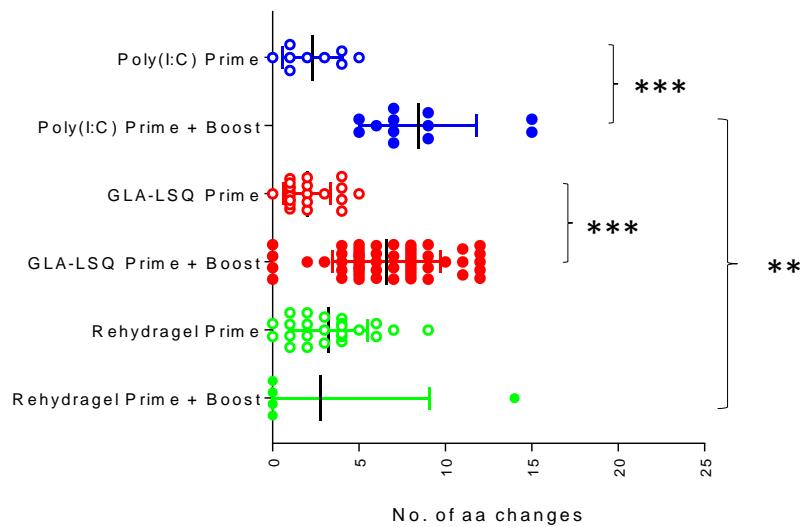

Figure 3 (contd.)

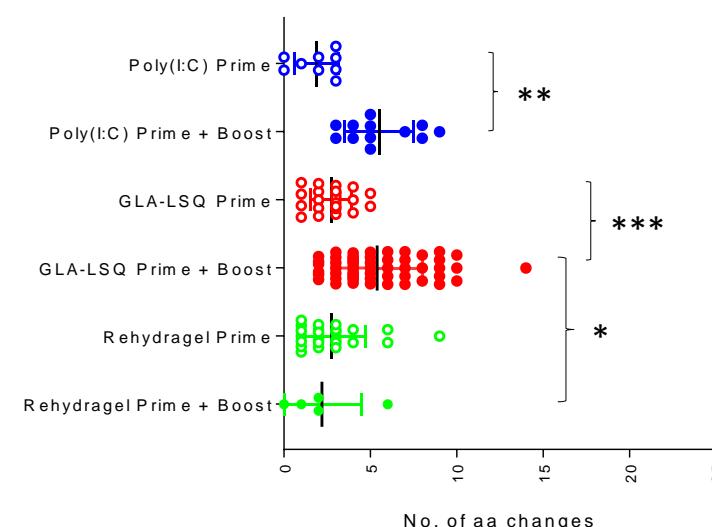
Figure 4


A.

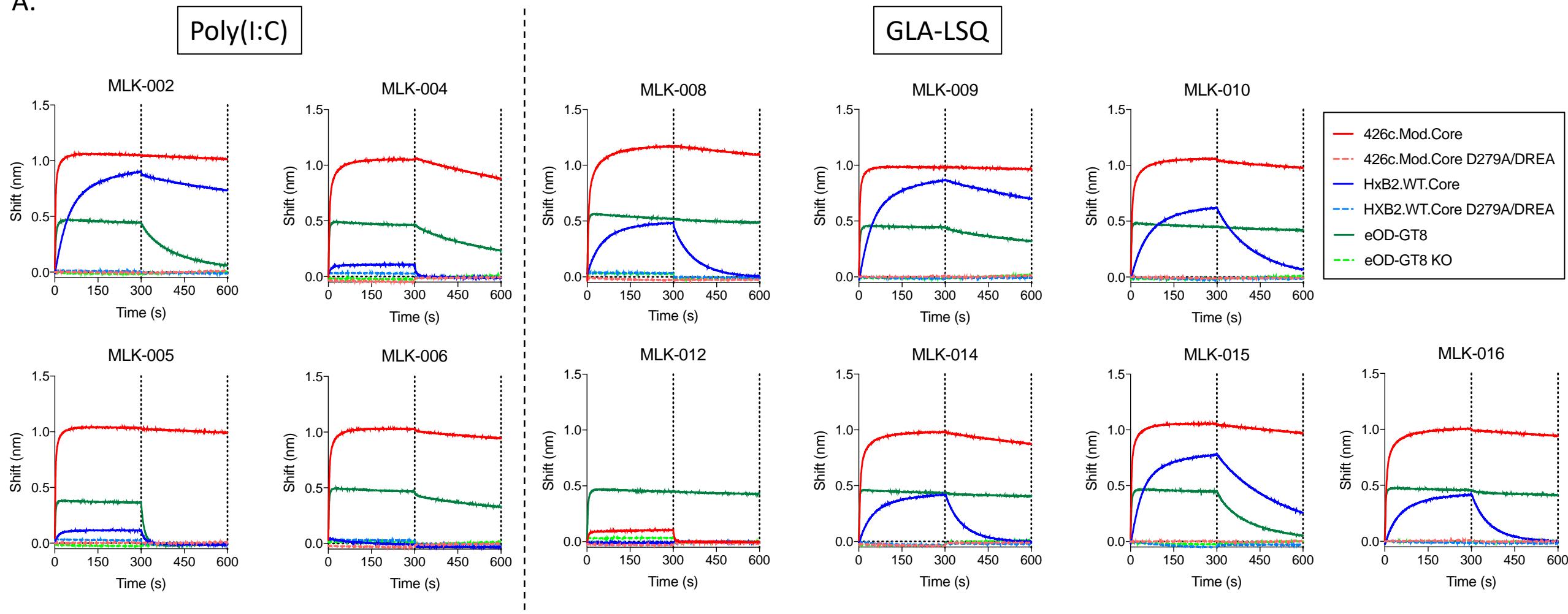
VH1-2*02 Heavy Chains



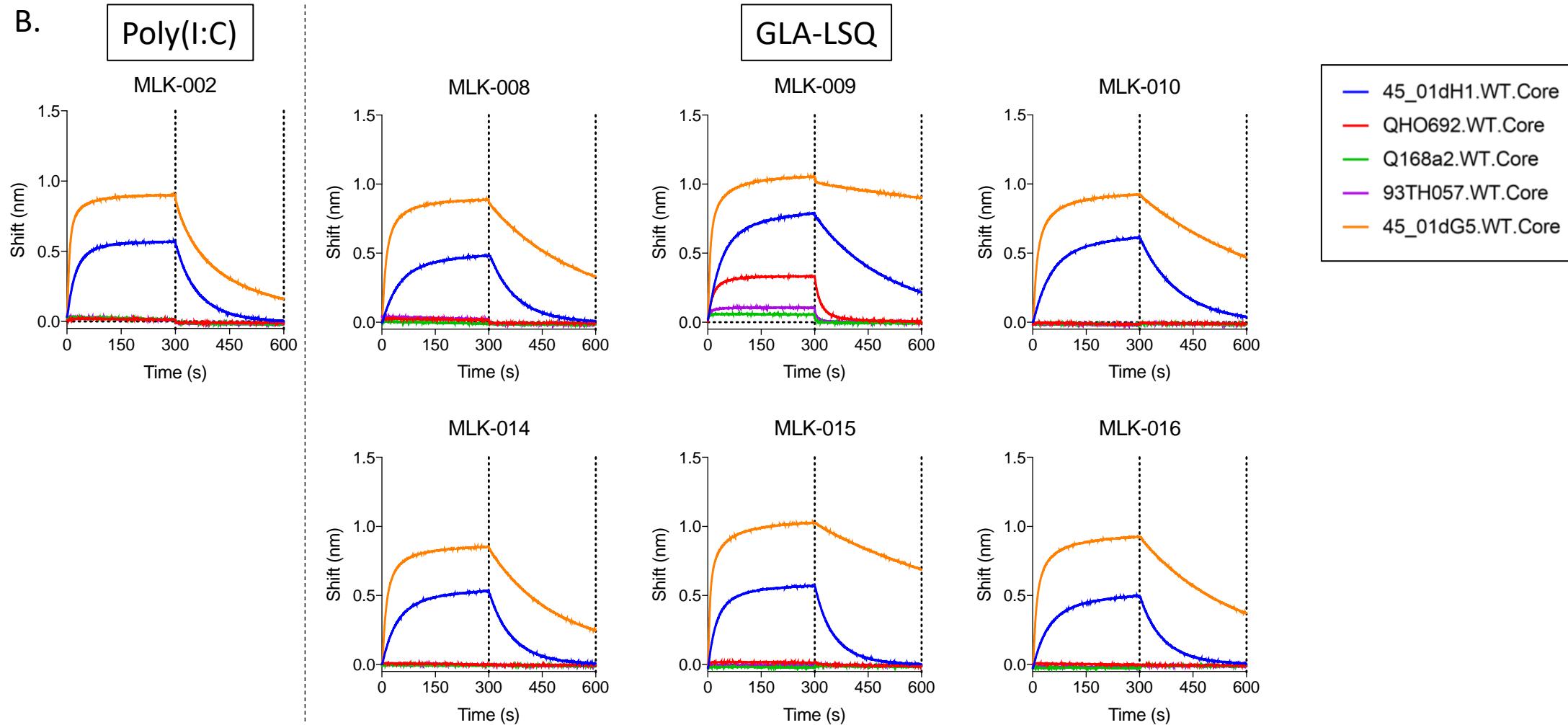
B.


5 aa CDR3 Light Chains

C.



D.


Figure 5

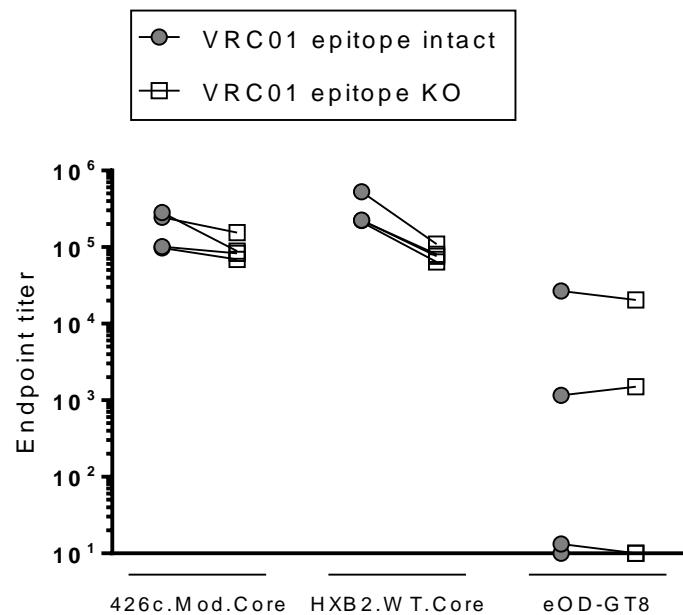
A.

Figure 5 (contd.)

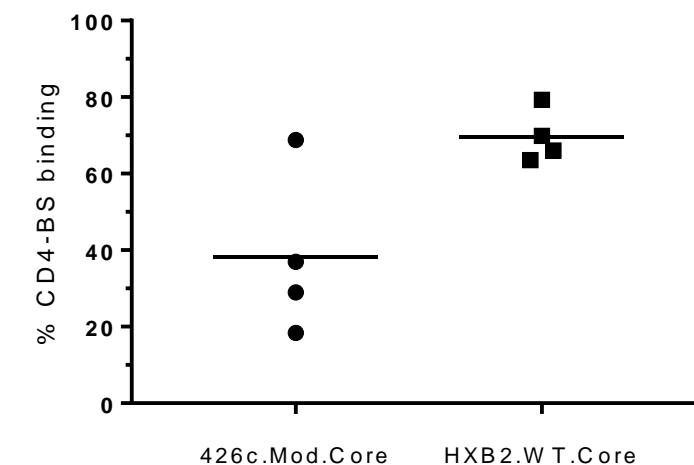
B.

Figure 6**(A)**

Mouse	Adjuvant	WT 426c 293T	WT426c GnTi-/-	TM GnTi-/-	TM.D279K GnTi-/-
M4	Poly(I:C)	>100	>100	0.92	>100
M5		>100	>100	0.79	88.27
M6		>100	>100	0.84	88.09
M13	GLA-LSQ	>100	>100	3.53	>100
M14		>100	>100	1.83	>100
M15		>100	>100	0.39	>100
M16		>100	>100	0.14	>100
M21	Rehydragel	>98.5	>98.5	0.84	>98.50
M22		>84.5	>84.5	0.48	>84.50
M23		>72	>72	6.08	>72.00
M24		>81.9	>81.9	>81.9	>81.90
mVRC01		2.47	0.18	<0.005	>10.00


(B)

mAb	Adjuvant	WT 426c 293T	WT 426c GnTi-/-	TM GnTi-/-	SM 293T	SM GnTi-/-
MLK-002	Poly(I:C)	>51.85	>51.85	<0.02	>17.33	1.724
MLK-008	GLA-LSQ	>50	>50	<0.02	7.13	0.20
MLK-009	GLA-LSQ	>50	>50	<0.02	NT	NT
MLK-010	GLA-LSQ	>50	>50	<0.02	2.748	0.13
MLK-014	GLA-LSQ	>50	>50	0.05	>16.67	0.26
MLK-015	GLA-LSQ	>21	>21	<0.01	2.89	0.06
MLK-016	GLA-LSQ	>50	>50	<0.02	10.52	0.17
mVRC01		1.77	0.17	<0.0023	0.38	0.05
gVRC01		>50	>50	0.78	>33.33	0.81


Supplementary data

Supplemental Figure 1

A.

B.

Supplemental Figure 2.

mAb code	HC, #aa changes	LC, #aa changes	HC V-gene	HC J-gene	LC V-gene	LC J-gene	Adjuvant
MLK-002	15	8	Homsap IGHV1-2*02 F	HomsapIGHJ1*01 F	MusmusIGKV8-30*01 F	MusmusIGKJ1*01 F	Poly(I:C)
MLK-004	9	2	Homsap IGHV1-2*02 F	HomsapIGHJ1*01 F	MusmusIGKV8-30*01 F	MusmusIGKJ1*01 F	
MLK-005	7	3	Homsap IGHV1-2*02 F	HomsapIGHJ1*01 F	MusmusIGKV8-30*01 F	MusmusIGKJ1*01 F	
MLK-006	5	4	Homsap IGHV1-2*02 F	HomsapIGHJ1*01 F	MusmusIGKV8-30*01 F	MusmusIGKJ1*01 F	
MLK-008	8	4	Homsap IGHV1-2*02 F	HomsapIGHJ1*01 F	MusmusIGKV8-30*01 F	MusmusIGKJ2*01 F	GLA-LSQ
MLK-009	11	5	Homsap IGHV1-2*02 F	HomsapIGHJ1*01 F	MusmusIGKV8-30*01 F	MusmusIGKJ2*01 F	
MLK-010	8	6	Homsap IGHV1-2*02 F	HomsapIGHJ1*01 F	MusmusIGKV8-30*01 F	MusmusIGKJ2*01 F	
MLK-012	0	0	Homsap IGHV1-2*02 F	HomsapIGHJ1*01 F	MusmusIGKV8-30*01 F	MusmusIGKJ2*01 F	
MLK-014	7	2	Homsap IGHV1-2*02 F	HomsapIGHJ1*01 F	MusmusIGKV8-30*01 F	MusmusIGKJ2*01 F	
MLK-015	9	3	Homsap IGHV1-2*02 F	HomsapIGHJ1*01 F	MusmusIGKV8-30*01 F	MusmusIGKJ2*01 F	
MLK-016	7	4	Homsap IGHV1-2*02 F	HomsapIGHJ1*01 F	MusmusIGKV8-30*01 F	MusmusIGKJ2*01 F	

Supplemental Table 1

PCR Step	Annealing temp.	Primer name	5'-3' sequence	Reference
Igκ 1st	50°C	Forward		Tiller et al. J Immunol Met 2009
		5' L-Vκ_3	TGCTGCTGCTCTGGGTTCCAG	
		5' L-Vκ_4	ATTWTCAGCTTCCTGCTAAC	
		5' L-Vκ_5	TTTGCTTCTGGATTYCAG	
		5' L-Vκ_6	TCGTGTTKCTSTGGTTGTCTG	
		5' L-Vκ_6,8,9	ATGGAATCACAGRCYCWG	
		5' L-Vκ_14	TCTTGTGCTCTGGTTYCCAG	
		5' L-Vκ_19	CAGTTCCCTGGGGCTTGTGTT	
		5' L-Vκ_20	CTCACTAGCTTCTCCTC	
		Reverse		
		3' mCκ	GATGGTGGGAAGATGGATA	
			AGTT	
Igκ 2nd	45°C	Forward		
		5' mVκappa *	GAYATTGTGMTSACMCARWCTMCA	
		Reverse		
		3' BsiWI P-mJK01	GCCACCGTACGTTGATTCCAGCTTGGT	
		3' BsiWI P-mJK02	GCCACCGTACGTTTATTCCAGCTTGGTC	
		3' BsiWI P-mJK03	GCCACCGTACGTTTATTCCAACTTGTC	
		3' BsiWI P-mJK04	GCCACCGTACGTTCAGCTCCAGCTTGGTC	
IgH 1st	56°C	Forward		-
		5' Mouse Leader	CTCTTCCTCCTGTCAGTAAC	
		Reverse		
		3' KI Rev	GAAGGGTGACCAGGGTGCC	
IgH 2nd	60°C	Forward		Jardine et al. Science 2015
		5' gIVRC01 *	CAGGTGCAGCTGGTGCAGTCTGG	
		Reverse		
		3' KI Rev	TGAGGAGACGGTGACCAGGGTGCC	