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ABSTRACT 36 

The European flat oyster (Ostrea edulis) is a bivalve mollusc that was once widely distributed 37 

in Europe and represented an important food resource for humans for centuries. Populations 38 

of O. edulis experienced a severe decline across their biogeographic range mainly due to 39 

anthropogenic activities and disease outbreaks. To restore the economic and ecological 40 

benefits of European flat oyster populations, extensive protection and restoration efforts are 41 

in place within Europe. In line with the increasing interest in supporting restoration and oyster 42 

farming through the breeding of stocks with enhanced performance, the present study aimed 43 

to evaluate the potential of genomic selection for improving growth traits in a European flat 44 

oyster population obtained from successive mass-spawning events. Four growth-related 45 

traits were evaluated: total weight (TW), shell height (SH), shell width (SW) and shell length 46 

(SL). The heritability of the growth traits was moderate-low, with estimates of 0.45, 0.37, 0.22, 47 

and 0.32 for TW, SH, SW and SL, respectively. A genome-wide association analysis revealed a 48 

largely polygenic genetic architecture for the four growth traits, with two distinct QTLs 49 

detected on chromosome 4. To investigate whether genomic selection can be implemented 50 

in flat oyster breeding at a reduced cost, the utility of low-density SNP panels (down to 100 51 

SNPs) was assessed. Genomic prediction accuracies using the full density panel were high 52 

(>0.83 for all traits). The evaluation of the effect of reducing the number of markers used to 53 

predict genomic breeding values revealed that similar selection accuracies could be achieved 54 

for all traits with 2K SNPs as for a full panel containing 4,577 SNPs. Only slight reductions in 55 

accuracies were observed at the lowest SNP density tested (i.e. 100 SNPs), likely due to a high 56 

relatedness between individuals being included in the training and validation sets during 57 

cross-validation. Overall, our results suggest that the genetic improvement of growth traits in 58 

oysters is feasible. Nevertheless, and although low-density SNP panels appear as a promising 59 

strategy for applying GS at a reduced cost, additional populations with different degrees of 60 

genetic relationship should be assessed to derive estimates of prediction accuracies to be 61 

expected in practical breeding programmes. 62 

 63 

Keywords: Ostrea edulis, oyster, GWAS, Genomic selection, growth, Aquaculture 64 

 65 

1. INTRODUCTION 66 

The European flat oyster (Ostrea edulis) was an abundant native bivalve species and an 67 

important fishery resource in much of Europe up to the 19th century (Pogoda 2019). However, 68 

populations of O. edulis experienced a severe decline across their biogeographic range due to 69 

a range of detrimental factors including overfishing and habitat degradation (Thurstan et al. 70 

2013), the subsequent invasion of non-native species (e.g. slipper limpet, Crepidula fornicata) 71 

(Preston et al. 2020; Helmer et al. 2019) and pathogenic diseases (Robert et al. 1991; Sas et 72 

al. 2020). The continuous decimation of native populations in the Atlantic and Mediterranean 73 

seas led to significant changes in oyster production, which progressively shifted towards 74 

farming (Korringa 1976), and eventually to the cultivation of different species including 75 

Crassostrea angulata (Oelig and Uf 2000) and the non-indigenous Pacific oyster (Crassostrea 76 

gigas) (Grizel and Héral 1991; Walne and Helm 1979). The Pacific oyster was introduced into 77 

Europe for aquaculture purposes owing to its favourable production traits, such as a faster 78 

growth rate and higher resistance to the main diseases affecting C. angulata and O. edulis 79 
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(Renault et al. 1995; Grizel and Héral 1991). Worldwide oyster production is now dominated 80 

by the Pacific oyster (97.7%), while the production of the European flat oyster remains stably 81 

low, constituting just ~0.2% of global production (FAO 2019). Despite the demand for shellfish 82 

continues to increase (Botta et al. 2020), the level of O. edulis production is stagnant. One of 83 

the main factors that hinders the growth of the industry is the lack of a substantial and steady 84 

supply of oyster seed (i.e. juveniles) (see Colsoul et al. (2021) for a review). Hence, the 85 

optimization of oyster larval production in hatcheries and spatting ponds is key for future 86 

European flat oyster aquaculture, as well as for restoration projects, which are also expected 87 

to rely on sustainable sources of juveniles for restocking (Pogoda et al. 2020). Importantly, 88 

the artificial propagation of flat oyster seed will facilitate the application of selective breeding 89 

programmes. Although selective breeding programmes are typically used to improve 90 

aquaculture production, they could also benefit the ecological restoration of O. edulis. If 91 

desirable traits such as disease resistance are found to have a strong genetic component, then 92 

increased resistance to life-limiting diseases – such as bonamiosis (Culloty et al. 2004; Naciri-93 

Graven et al. 1998) – could potentially be achieved while maintaining the adaptive potential 94 

(i.e. genetic diversity) of restored populations. 95 

Selective breeding in oysters has mainly focused on improving meat yield and quality, disease 96 

resistance, survival and growth (Toro and Newkirk, 1990; Allen et al., 1993; Ragone Calvo et 97 

al., 2003; Ward et al., 2005; Dégremont et al., 2015; De Melo et al., 2016; Proestou et al., 98 

2016; Camara et al., 2017; Zhang et al., 2019), with a recent interest in nutritional content 99 

and shell shape (Grizzle et al., 2017; Liu et al., 2019; Meng et al., 2019; Wan et al., 2020; He 100 

et al., 2022). Among these traits, growth is comparatively simple to assess and consequently 101 

select for using phenotypic information. Although the direct comparison of heritability 102 

estimates from different studies is difficult (e.g. due to intrinsic differences between 103 

populations), estimates for growth rate in oysters tend to be moderate (e.g. 0.26 and 0.31 – 104 

De Melo et al. (2016) and Evans and Langdon (2006), respectively). As a result, fast-growing 105 

lines of oysters have been developed for some of the main commercial species, such as the 106 

Pacific (C. gigas) (Zhang et al. 2019), Portuguese (C. angulata) (Vu et al. 2020), American (C. 107 

virginica) (Varney and Wilbur 2020) and Sydney rock (Saccostrea glomerata) (Fitzer et al. 108 

2019) oyster. Initial attempts to genetically improve the European flat oyster O. edulis 109 

resulted in a 23% increase in growth rate compared to an unselected (control) line (Newkirk 110 

and Haley 1982). This striking genetic response was not replicated in a second generation of 111 

selection, possibly due to unintentional inbreeding (Newkirk and Haley 1983). Indeed, even 112 

relatively modest levels of inbreeding have been shown to significantly affect performance 113 

traits in oysters (Evans et al. 2004), highlighting the importance of an adequate management 114 

of genetic diversity in hatchery-derived stocks. Moreover, oysters and bivalves in general, 115 

appear to have a high genetic load (see for a review Plough (2016)) and, therefore, may be 116 

particularly susceptible to inbreeding depression. Hence, the incorporation of genomic tools 117 

into shellfish breeding schemes will be key for balancing genetic gain with population diversity 118 

in order to sustain the long-term progress for traits under selection. 119 

A vast array of genomic tools and resources have become available for genetic research and 120 

breeding applications in oysters. For example, for economically relevant species, 121 

chromosome-level genome assemblies (Peñaloza et al. 2021; Qi et al. 2021; Modak et al. 122 

2021; Li et al. 2021), SNP arrays (Gutierrez et al. 2017; Qi et al. 2017; Lapegue et al. 2014) and 123 

medium-density linkage maps (Gutierrez et al. 2018; Li et al. 2018; Jones et al. 2013; Wang et 124 

al. 2016; Yin et al. 2020) have been produced. These resources have been applied to examine 125 
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the genetic basis of growth (Gutierrez et al. 2018; Jones et al. 2014; He et al. 2021), low salinity 126 

tolerance (McCarty et al. 2021), disease resistance (Gutierrez et al. 2018; Yang et al. 2022) 127 

and nutritional content (Meng et al. 2019). For the European flat oyster, high-quality genomes 128 

have recently been released (Boutet et al. 2022; Gundappa et al. 2022), which along with 129 

available high-throughput genotyping techniques (e.g. SNP arrays and genotype-by-130 

sequencing approaches), provide the opportunity for gaining insight into the genomic 131 

architecture of relevant production traits. Most of the traits of economic importance in 132 

aquaculture species have a polygenic architecture (Zenger et al. 2019). For polygenic traits 133 

(i.e. those controlled by many loci), the application of predictive techniques such as genomic 134 

selection (GS) may enable a faster genetic gain than conventional pedigree-based selection. 135 

GS is a method based on genome-wide markers in which the effect of all loci are 136 

simultaneously used for predicting the estimated breeding values (EBV) of selection 137 

candidates (Meuwissen et al. 2001), and has shown major potential in aquaculture species, 138 

where it can be used to characterise variation within and between large families of potential 139 

breeders. However, commercial application to aquaculture production is largely limited to 140 

the major finfish and crustacean species (e.g. salmonids, Nile tilapia, tropical shrimp) 141 

(Lillehammer et al. 2020; Boudry et al. 2021; Zenger et al. 2019). Studies into the feasibility of 142 

applying genomic selection schemes in oyster breeding programmes have shown that for 143 

growth (Vu et al. 2021b; Gutierrez et al. 2018), edibility (Vu et al. 2021b), low salinity tolerance 144 

(McCarty et al. 2021), and disease resistance traits (Vu et al. 2021b; Gutierrez et al. 2020), 145 

greater genetic gains could be achieved through GS compared to traditional breeding. 146 

Nevertheless, the practical application of GS as a selection strategy will likely depend on how 147 

cost-effective it is compared to pedigree-based methods. The development of feasible 148 

alternatives for reducing genotyping costs, such as using affordable low-density genotyping 149 

tools that yield similar accuracies than higher-density panels, will be critical for the potential 150 

of GS to be realized by oyster breeding programmes. 151 

In line with the increasing interest in supporting oyster culture and restoration through the 152 

breeding of stocks with enhanced performance, the overall aim of this study was to evaluate 153 

the potential of GS for the genetic improvement of growth and growth-related 154 

(morphometric) traits in the European flat oyster. First, the heritability of total weight, shell 155 

length, shell width and shell height was estimated for a hatchery-derived population 156 

genotyped using a ~15K SNP array. Second, a genome-wide association (GWAS) analysis was 157 

conducted to dissect the genetic architecture of the measured traits. Last, to evaluate 158 

whether GS may be an effective and cost-effective strategy for improving traits associated 159 

with oyster growth, the accuracy of genomic predictions using reduced density SNP marker 160 

panels was assessed.  161 

 162 

2. MATERIALS AND METHODS 163 

2.1 Field experiment 164 

The European flat oyster population used in this study was generated in a UK-based hatchery 165 

(Sea Salter Morecombe hatchery) by mass spawning of approximately 40 broodstock parents 166 

over several spawning events. The resulting F1 generation was then deployed to Lochnell 167 

oysters (56.494° N, 5.459° W) and grown for six months in ortac grow-out cages. Animals were 168 

then transferred to the Institute of Marine Sciences at the University of Portsmouth (UK), and 169 

maintained in a flow-through system until deployment. During this holding period, ~1,000 170 
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randomly selected oysters were individually tagged and their first phenotype measurements 171 

recorded (see ‘Phenotypes’ section below). Prior to deployment, animals were cleaned of 172 

fouling, washed in fresh water and dried. Embossed plastic tags with unique identifier codes 173 

were attached to their shell with epoxy resin glue. Animals were returned to aquaria within 174 

the hour. Oysters were placed in Aquamesh® cages (L 0.55 m x W 0.55 m x D 0.4 m) (GT 175 

Products Europe Ltd) at a density of 200 oysters per cage, and deployed 1 metre below 176 

floating pontoons at Port Hamble Marina (MDL) in the River Hamble (50.861° N, 1.312° W) in 177 

January 2019. Mortalities were documented monthly and dead oysters – i.e. those with 178 

empty or gaping shells – were removed from the experiment. General disease status was 179 

assessed on subsets of oysters throughout the experiment by histology and in situ 180 

hybridisation using an adaptation of available methods (Fabioux et al. 2004; Montagnani et 181 

al. 2001). In addition, the presence of Bonamia ostreae, a protozoan parasite that causes a 182 

lethal infection of flat oyster haemocytes (Pichot et al. 1979), was assessed by qPCR following 183 

Robert et al. (2009). The prevalence of B. ostreae infections was negligible; hence disease 184 

status had a minor influence on the assessment of growth traits in the experimental 185 

population. After 10 months of growth under field conditions, gill tissue was dissected from 186 

individuals alive at the end of the study and preserved in molecular grade absolute ethanol 187 

(Fisher Scientific) for genetic analysis. 188 

 189 

2.2 Phenotypes 190 

Four growth-associated traits were measured at three time points over the course of 10 191 

months: total weight (TW, the weight of an individual oyster including the shell), shell length 192 

(SL, the maximum distance between the anterior and posterior margins), shell height (SH, the 193 

maximum distance between the hinge to the furthermost edge), and shell width (SW, the 194 

maximum distance at the thickest part of the two shell valves) (Figure 1). Weight was 195 

recorded in grams up to one decimal place. Shell measurements were taken with traceable 196 

digital callipers (Fisher Scientific) with 0.02 mm precision. Oysters were cleaned and defouled 197 

before measurements were taken. 198 

 199 

 200 

Figure 1. Nomenclature of the growth-related morphometric traits measured in this study. 201 

 202 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2022. ; https://doi.org/10.1101/2022.06.10.495672doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.10.495672
http://creativecommons.org/licenses/by-nd/4.0/


6 
 

2.3 DNA extraction 203 

Total DNA was isolated from gill tissue following a CTAB (cetyltrimethylammonium bromide)-204 

based extraction protocol (details in Gutierrez et al. (2017)). The integrity of the extracted 205 

DNA was assessed by agarose gel electrophoresis, while DNA quality was verified on a 206 

Nanodrop ND-1000 (Thermo Fisher Scientific) spectrophotometer by checking the 260/280 207 

and 260/230 ratios. All samples had 260/280 and 260/230 values ≥1.85 and ≥1.96, 208 

respectively. 209 

 210 

2.4 SNP genotyping and Quality Control 211 

Whole-genome genotyping of ~15K SNPs was carried out by IdentiGEN (Dublin, Ireland) using 212 

the combined-species Affymetrix Axiom oyster SNP-array (Gutierrez et al. 2017). Signal 213 

intensity files were imported to the Axiom analysis Suite v4.0.3.3 software for quality control 214 

(QC) assessment and genotype calling. Genotypes were generated using the default 215 

parameter settings for diploid species, resulting in 11,808 SNPs typed for 870 individuals. To 216 

assess the reproducibility of genotype calls, five DNA samples from the same individual were 217 

genotyped independently on three different arrays, and their genotype concordance 218 

evaluated through an identity-by-state (IBS) analysis. The genotype concordance rate among 219 

replicates was 99.7%, demonstrating a high reproducibility of the genotyping assays. The 220 

flanking region of these markers were mapped to the O. edulis chromosome-level genome 221 

assembly (Gundappa et al. 2022). Of the 11,808 SNPs, 10,025 had uniquely mapping probes 222 

and were retained for downstream analysis. A total of 1,539 markers (15.4%) were 223 

monomorphic in the population under study. QC was conducted using Plink v2.0 (Chang et al. 224 

2015). SNP variants were retained for further analysis if they had a call rate >95% and a minor 225 

allele frequency (MAF) >0.05. These filters removed 4,391 SNPs (leaving a total of 5,634 SNPs), 226 

of which the majority were filtered out based on the MAF threshold (i.e. were monomorphic 227 

or near-monomorphic in this population). Given that significant sub-clustering was detected 228 

in the data (Figure S2), possibly due to a high variance in the reproductive success of 229 

broodstock parents and/or temporal variation in spawning, a k-means clustering method was 230 

used to assign individuals into groups. Deviations from Hardy-Weinberg Equilibrium (HWE) 231 

were tested separately in each of the three genetic clusters identified by the analysis. SNP 232 

markers showing significant deviations (HWE p-value < 1e-10) in two of the three clusters 233 

were excluded from the analysis. Sample QC included removing individual oysters with a 234 

missingness above 5% and high heterozygosity (i.e. more than three median absolute 235 

deviations from median). Finally, a principal component analysis (PCA) was performed using 236 

a set of ~3.5K SNPs for which no pair of markers within a window of 200 kb had a 𝑟2 >0.5. The 237 

top five PCs, which explain 47% of the variance (considering 20 PCs), were fitted in the model 238 

to account for the effect of population structure. The final dataset comprised 840 samples 239 

genotyped at 4,577 genome-wide SNPs.  240 

 241 

2.5 Genetic parameter estimation 242 

Genetic parameters for growth-related traits were estimated by fitting the following 243 

univariate linear mixed model in GEMMA v0.95alpha (Zhou and Stephens 2012): 244 

(1)    𝑦 =  𝜇 + 𝑿𝑏 + 𝒁𝑢 + 𝑒 245 
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Where y is the vector of observed phenotypes; μ is the overall mean of the phenotype in the 246 

population; b is the vector of fixed effects to be fitted (the first five principal components 247 

were included as covariates); 𝐮 is the vector of the additive genetic effects; 𝑿 and 𝒁 are the 248 

corresponding incidence matrices for fixed and additive effects, respectively; and 𝑒 is a vector 249 

of residuals. The following distributions were assumed: 𝐮~𝐍(𝟎, 𝐆𝝈𝒖
𝟐) and 𝐞~𝐍(𝟎, 𝐈𝝈𝒆

𝟐). 250 

Where 𝝈𝒖
𝟐  and 𝝈𝒆

𝟐 are the additive genetic and residual variance, respectively, 𝐆 is the 251 

genomic relationship matrix and 𝐈 is the identity matrix. The heritability of growth-related 252 

traits was estimated as the ratio of the additive genetic variance to the total phenotypic 253 

variance. 254 

Bivariate animal linear models were implemented to estimate the genetic (co)variance 255 

between TW, SL, SH and SW. Each bivariate analysis was fitted with the same top 5 PCs 256 

mentioned above. Subsequently, genetic correlations among traits were measured as the 257 

ratio of the covariance of two traits to the square root of the product of the variance for each 258 

trait. Phenotypic correlations between traits were calculated using the Pearson correlation 259 

coefficient. 260 

 261 

2.6 Genome-wide association study (GWAS) 262 

To identify SNPs in the flat oyster genome correlated with variation in growth-related traits, 263 

a GWAS was performed by implementing the same model described previously in the GEMMA 264 

software. SNPs were considered significant at the genome-wide level if their likelihood ratio 265 

test P-values surpassed a conservative Bonferroni-corrected significance threshold (α/4,577 266 

= 1.09e-5). To derive a threshold for chromosome-wide (suggestive) significance, α was 267 

divided by the average number of SNPs per chromosome (α/457 = 1.09e-4). The single-marker 268 

P-values obtained from GEMMA were plotted against their chromosome location using the R 269 

package qqman v 0.1.4 (Turner 2017). To assess the inflation of the association statistics, the 270 

genomic control coefficient lambda λGC was calculated following (Devlin and Roeder 1999). 271 

Candidate genes were searched within 100 kb of the most significant SNP loci using BEDOPS 272 

v2.4.26 (Neph et al. 2012). 273 

 274 

2.7 Genomic Prediction 275 

To evaluate the accuracy of genomic selection, a 5-fold cross validation approach - animals 276 

split into training (80%) and validation (20%) sets - was used on a population of 840 oysters 277 

genotyped for 4,577 informative SNP markers. To reduce stochastic effects arising from 278 

individual sampling, each analysis was repeated 10 times. For each replicate, animals were 279 

randomly partitioned into five subsets (each subset contained 168 individuals).  TW, SL, SH 280 

and SW phenotypes recorded in individuals allocated to one of the subsets (validation set) 281 

were masked. The breeding values of the validation set were then predicted based on the 282 

information from the remaining four subsets (training sets) using model (1). The model was 283 

fitted using the AIREMLF90 module from BLUPF90. The accuracy of genomic predictions was 284 

calculated as follows:  285 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑟𝑔𝐸𝐵𝑉,𝑦

ℎ
  286 

 287 
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where rgEBV,y is the correlation between the predicted and the actual phenotypes of the 288 

validation set, while ℎ is the square root of the heritability of the trait estimated as described 289 

above. 290 

 291 

2.8 Evaluation of the effect of SNP density on genomic predictions 292 

To assess the effect of SNP density on the accuracy of genomic predictions of growth-related 293 

traits, SNP panels of varying sizes were randomly sampled from the final pool of QC-filtered 294 

array markers (n = 4,577 SNPs). Panels of the following densities were evaluated: 4K, 3K, 2K, 295 

1K, 500, 400, 300, 200 and 100 SNPs. To build the lower-density panels, markers were 296 

randomly sampled from the full QC-filtered SNP dataset in proportion to chromosome lengths 297 

using the R package CVrepGPAcalc v1.0 (Tsairidou 2019; Tsairidou et al. 2020). To account for 298 

sampling bias, 10 SNP panels were generated for each of the SNP densities. The average 299 

genomic prediction accuracies of the different low-density panels were compared against the 300 

equivalent accuracy values obtained with the full panel. 301 

 302 

2.9 Data Availability 303 

The phenotype data used in the current study can be found in Mendeley Data, 304 

https://doi.org/10.17632/sdtjyys7gr.1. 305 

 306 

3. Results and discussion  307 

3.1 Growth traits and heritability  308 

Improvement of growth rate is typically one of the first traits to be included as a selection 309 

target in breeding programmes across many farmed species. In this study, oyster growth rate 310 

was assessed in a hatchery-derived oyster population that was translocated to a growing site 311 

and monitored for 10 months. The experimental population had a lower genome-wide 312 

heterozygosity (Ho=0.27; He=0.22) compared to the values reported by (Vera et al., 2019) 313 

(Ho>0.31) for a diverse set of flat oyster populations genotyped with the same array. An 314 

overall mortality of 14% was observed during the field trial, among which the majority (36%) 315 

occurred during a summer month (July). At the end of the experimental period, the O. edulis 316 

population had the following growth means and standard deviations: +15.7 g (SD = 5.8), 50.8 317 

mm (SD = 7.3), 12.9 mm (SD = 2.3) and 45.8 mm (SD = 8.9), for TW, SH, SW, SL, respectively 318 

(Table 1). The phenotypic correlation was found to be the highest (𝑟 > 0.8) between two pairs 319 

of traits: (i) TW and SH, and (ii) TW and SL (Figure 2).  320 

 321 

 322 

 323 

 324 

 325 

 326 
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Table 1. Summary statistics of the phenotypic data (SD: Standard deviation; CV: coefficient of 327 

variation). 328 

Trait Unit Mean Min Max SD CV (%) 

Total weight g 15.7 4.0 38.5 5.8 36.8 

Shell height mm 50.8 22.9 76.1 7.3 14.4 

Shell width mm 12.9 6.5 27.7 2.3 18.2 

Shell length mm 45.8 22.2 94.4 8.9 19.5 

 329 

 330 

 331 

 332 

Figure 2. Distribution and magnitude of the phenotypic correlations between growth-related 333 

traits in Ostrea edulis. Pearson’s correlation between traits (above the diagonal), histogram 334 

of trait distribution (diagonal) and scatterplots comparing two traits (below the diagonal). TW 335 

(total weight), SH (shell height), SW (shell width) and SL (shell length). *** indicates p-values 336 

<0.001. 337 

 338 

 339 

 340 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2022. ; https://doi.org/10.1101/2022.06.10.495672doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.10.495672
http://creativecommons.org/licenses/by-nd/4.0/


10 
 

For the European oyster population under study, the heritability estimates of these growth-341 

related traits were in the moderate range of 0.22 (for SW) to 0.45 (for TW) (Table 2). 342 

Consistent with similar studies carried out in related oyster species (Xu et al. 2017; Vu et al. 343 

2020), heritability estimates based on SNP markers were higher for total weight than for 344 

growth-related morphometric traits (i.e. shell height, shell width and shell length). The 345 

estimation of heritability for total weight (herein referred to as TW) was similar to those 346 

reported for nine- month-old Portuguese oysters (ℎ2 = 0.45) and a two-year old Pacific oyster 347 

strain (ℎ2 = 0.42) (Vu et al. 2021b; Xu et al. 2017). Total weight, as measured in this study, is 348 

a composite phenotype made up of the animal's shell and soft tissue weights, in addition to 349 

the weight of any pallial fluid - thus is not a direct reflection of meat yield. Nevertheless, in C. 350 

angulata, a positive genetic correlation (0.63) has been found between TW and soft tissue 351 

weight (Vu et al. 2021b), suggesting that selecting for TW - a trait easier to measure - could 352 

lead to improvements in meat yields. Such indirect improvements of correlated traits have 353 

been reported in a Portuguese oyster line selected only for harvest weight. While the 354 

achieved average selection response for total weight at harvest was 5.8% per generation, 355 

genetic gains were also observed for soft tissue weight, with indirect gains reaching a 1.2% 356 

increase per generation (Vu et al. 2020). For the shell-related traits examined in this study 357 

(SH, SW and SL), heritability estimates were in line with previous studies (Gutierrez et al. 2018; 358 

Yuehuan et al. 2017), and ranged from 0.22 to 0.37. Traditionally, the focus on shell 359 

morphometric traits was to improve oyster growth. Nevertheless, in recent years, oyster shell 360 

shape is increasingly being viewed as an attractive goal for selective breeding due to its 361 

growing importance for consumers (Mizuta and Wikfors 2019).  The perceived attractiveness 362 

of an oyster shell can be represented as a secondary trait derived from a ratio between 363 

primary (shell dimension) traits, such as the shell width index (Kube et al. 2011). Given that 364 

significant heritable variation was observed for the three examined morphometric traits, 365 

strategies for homogenizing particular shell shapes may be feasible in O. edulis.  366 

 367 

 368 

Table 2. Estimates of heritability (ℎ2) and standard error on the diagonal and pairwise genetic 369 

correlations (below the diagonal) for growth-related traits in a European flat oyster 370 

population. 371 

Trait Total weight Shell height Shell width Shell length 

Total weight 0.45 (0.06) 
   

Shell height 0.99 0.37 (0.06) 
  

Shell width 0.96 0.90 0.22 (0.05) 
 

Shell length 0.95 0.93 0.88 0.32 (0.06) 

 372 

 373 

 374 

 375 
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3.2 Genome-wide association analysis for growth-related traits  376 

A GWAS of ~4.5K SNPs passing the filtering criteria were genotyped on 840 oysters with 377 

phenotypic records to gain insight into the genetic basis of growth rate variation in O. edulis. 378 

Three of the four examined traits showed association signals surpassing the genome-wide 379 

level of significance (Figure 3). The genomic inflation factor lambda of the GWAS analysis were 380 

close to the desired value (λ=1) (see Figure S1), indicating that population structure was 381 

adequately accounted for by the model. For TW, the GWAS identified two putative 382 

quantitative trait loci (QTLs) on chromosome 4 associated with the trait. The presence of two 383 

separate QTLs is supported by the low linkage disequilibrium observed between the most 384 

significant SNPs at each locus (pairwise 𝑟2 < 0.1). An additional 13 suggestive loci were also 385 

identified, of which nine were located in the vicinity of the two abovementioned genome-386 

wide hits and four were found on chromosome 1 (Table S1). The SNP showing the strongest 387 

association with TW (AX-169174635) explained 3% of the phenotypic variance. This lead SNP 388 

was also found to be significantly associated with SH and SW. For SL, no SNP reached a 389 

genome-wide significance level, although a few of the same markers showing associations 390 

with TW, SH and SW surpassed the threshold for suggestive significance. The complete 391 

overlap of GWAS hits across the different traits suggests a high degree of shared genetic 392 

control among them, consistent with the high positive genetic correlations observed (Table 393 

2). Overall, the GWAS results indicate that growth-related traits in O. edulis are influenced by 394 

many small-effect loci, exhibiting a polygenic architecture, but that two regions on 395 

chromosome 4 may have a moderate effect on these traits. 396 

The marker showing the most significant association with TW, SH and SW is located in the 397 

exon of a gene annotated as a N4BP2 (NEDD4 Binding Protein 2)-like protein (Gene ID: 398 

FUN_017843; Gundappa et al. 2022). The predicted protein product of this gene contains an 399 

AAA domain, hence can bind and hydrolyse ATP (Lupas and Martin 2002). Proteins with these 400 

domains have been shown to be involved in several mechanical cell processes, including 401 

protein folding. Further characterization of this N4BP2-like protein would help better 402 

understand the genetic component of growth variation in oysters. Nevertheless, considering 403 

that the candidate allele on N4BP2 explained a small percentage of the phenotypic variance, 404 

independent oyster populations should first be evaluated to confirm the validity of the 405 

association signal. A second genome-wide significant association – detected only in the TW 406 

GWAS – was located in the exon of an uncharacterized gene (FUN_018833) whose product 407 

shares a high sequence identity (>90%) with similarly uncharacterized proteins in C. gigas and 408 

C. virginica (NCBI accession numbers XP_011433755 and XP_022325737, respectively). 409 

Additional genes within the two genomic regions (+/- 100 kb) showing significant associations 410 

with flat oyster growth traits are shown in Table S2. Given that the SNPs identified in this 411 

study had a small effect on the traits in question, GS would be an effective approach for 412 

increasing genetic gains from selection. 413 

 414 
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 415 

Figure 3. Manhattan plots of the GWAS for growth-related traits in a European flat oyster 416 

population. Solid lines indicates the threshold value for genome-wide significance. Dashed 417 

lines indicate the threshold for a suggestive (chromosome-level) significance. 418 

 419 

 420 
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3.3 Genomic selection 421 

The incorporation of genetic markers into breeding programmes requires a previous 422 

understanding of the genetic architecture of the targeted trait(s). In the O. edulis population 423 

under study, the genetic contribution to the observed variation in growth-related traits was 424 

largely polygenic in nature. For the improvement of polygenic traits, genomic selection has 425 

been shown to be superior to alternative marker-aided selection due to genome-wide 426 

markers capturing a higher proportion of the genetic variation in a trait compared to 427 

individual QTL-targeted markers. Consequently, by means of applying GS, higher predictions 428 

have been achieved for several production traits in a wide range of commercially important 429 

aquaculture species (reviewed in Houston et al. (2020)). Despite GS not yet being widely 430 

operational in oyster breeding programmes (Boudry et al. 2021), studies have demonstrated 431 

the potential of incorporating genome-wide information into selection schemes in these taxa. 432 

In the Pacific oyster, Gutierrez et al. (2018) showed that prediction accuracies for growth-433 

traits increased 25-30% when the genetic merit of individuals was estimated from SNP 434 

markers using the Genomic Best Linear Unbiased Prediction (GBLUP) model (VanRaden 2008) 435 

compared to a classical pedigree-based approach (PBLUP). Similar results were reported in 436 

the Portuguese oyster, as prediction accuracies increased 7-42% for growth-related traits 437 

when EBVs obtained by GBLUP were compared to those obtained by PBLUP (Vu et al. 2021a). 438 

Since the flat oyster population under study derived from a mass-spawning event, the 439 

pedigree structure was unknown. Therefore, comparisons between pedigree and genome 440 

based methods for estimating breeding values (e.g. GBLUP and Bayesian approaches) could 441 

not be performed.  442 

One of the major barriers of implementing GS is the high number of markers required to 443 

accurately predict EBVs and the cost of genotyping these markers (Goddard and Hayes 2007). 444 

Therefore, the design of a strategy to reduce the cost of genotyping is critical for the extensive 445 

adoption of genomic prediction approaches in aquaculture breeding programmes. One such 446 

strategy involves genotyping the minimum number of markers required to achieve maximal 447 

accuracy, which by definition is equal to that obtained with a full panel of markers. As shown 448 

by Kriaridou et al. (2020) for different aquaculture species, the use of low-density SNP panels 449 

has the potential to achieve similar EBV accuracies as when using medium density genotype 450 

datasets of around 7-14K SNPs. The authors estimated that only 1,000 to 2,000 SNPs are 451 

required to achieve maximal accuracy. These results were shown to be consistent across a 452 

range of traits (e.g. disease resistance, growth) and species (e.g. Pacific oyster, Atlantic 453 

salmon) showing robustness to differences in family structure, genotyping approach, trait 454 

heritability and the underlying genetic architecture. In agreement with these findings, 455 

maximal accuracy was attained herein for all the assessed growth-related traits at a minimum 456 

density of 2K SNPs, with only a slight decline in accuracy observed at the lower densities 457 

evaluated (Figure 4A). Consequently, a reduction in the costs of applying GS for improving 458 

growth traits in O. edulis can be achieved by means of exploiting low-density SNP panels. 459 

Although low-density panels might not accurately capture the genetic resemblance among 460 

individuals within a population, and therefore show reduced genetic variance estimations and 461 

EBV predictions when compared with high density panels, their use has been widely 462 

evaluated and suggested for different aquaculture species and traits. Furthermore, studies 463 

have shown that low-density panels can achieve higher accuracies than the classical pedigree-464 

based approach, being a feasible alternative to identify candidates with the highest genetic 465 

merit. For example, in rainbow trout (Oncorhynchus mykiss) Vallejo et al. (2018) showed that 466 
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at least 200 SNPs could exceed PBLUP accuracies for bacterial cold water disease resistance. 467 

Whilst Al-Tobasei et al. (2021) found a similar trend when using between 500-1000 SNPs for 468 

fillet yield traits. To date, the utilization of low-density panels to decrease the cost of genomic 469 

evaluations has also been tested in several aquaculture species, including Atlantic salmon 470 

(Salmo salar) (Correa et al. 2017; Tsai et al. 2016), rainbow trout (Yoshida et al. 2018; Al-471 

Tobasei et al. 2021), and Nile tilapia (Oreochromis niloticus) (Barría et al. 2021; Yoshida et al. 472 

2019), suggesting that the development of cost-effective strategies for applying GS will be key 473 

for shaping modern aquaculture breeding programs. 474 

 475 
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 476 

Figure 4. Evaluation of the effect of SNP density on genomic predictions of growth related 477 

traits in a European flat oyster population. (A) Percentage of the maximum genomic 478 

prediction accuracy achieved using different lower density SNP panels. Values were 479 

calculated by dividing the mean accuracy (averaged over ten replicates) estimated at each 480 

nominal SNP density by the accuracy obtained using the full SNP dataset. (B) Average genomic 481 

prediction accuracy values obtained for oyster growth traits at different panel densities. 482 

 483 
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 Although our results highlight the possibility of reducing the genotyping costs associated with 484 

genomic prediction approaches, caution should be taken as even for the smallest marker 485 

density (i.e. 100 SNPs), prediction accuracies (averaged over 10 replicates) were high and 486 

close to the value obtained with the full marker panel. By using only 100 SNPs the estimated 487 

decrease in the accuracy of genomic breeding values (GEBVs) was of 5% for SL, 7% for TW and 488 

SW, and 10% for SH (Figure 4A). These values highly exceed those reported in the literature 489 

for aquaculture species, where reductions >20% were estimated for panels with 100 SNPs 490 

compared to a complete dataset (Kriaridou et al. 2020). The relative stability of GEBVs 491 

observed across different marker densities (Figure 4B) is likely explained by the underlying 492 

genetic structure of the dataset. For this study, 40 potential parents were placed in the same 493 

tank and spawned during successive events. The genetic analysis of the progeny revealed that 494 

the population was dominated (70% of the sample size; n=589) by a group of highly related 495 

individuals (Figures S2-S3), suggesting there was a large variance in reproductive success 496 

among breeders, as previously reported in mass spawning of oysters (Lallias et al. 2010). In 497 

the context of GS, the inclusion of highly related animals in the training and validation sets 498 

results in only a small number of markers being required to capture the haplotype effects, as 499 

related animals share longer haplotypes (Hickey et al. 2014). The fact that in the current study 500 

animals grouped in the reference and validation data sets were highly related would have 501 

likely increased the accuracy of predicted gEBV, even when animals are genotyped at low 502 

density, as also shown by Fraslin et al. (2022) in Atlantic salmon. Moreover, since the high 503 

accuracies predicted in the flat oyster population could have also been affected by factors 504 

such as a low effective population size (Lee et al., 2017) and the observed structure (Werner 505 

et al. 2020), additional populations with different genetic background should be assessed to 506 

obtain estimates to be expected in practical breeding programs. Future work focused on 507 

evaluating the extent to which low-density panels and alternative strategies (e.g. genotype 508 

imputation) can be used to reduce genotyping costs will be key for the cost-effective 509 

exploitation of GS by oyster breeding programmes. 510 

 511 

4. Conclusion 512 

Growth-related traits in O. edulis had moderate-low heritability estimates, ranging from 0.22 513 

(for SW) to 0.45 (for TW). High genetic correlations were identified between all traits (>0.9); 514 

hence, TW - a trait easier to measure - can potentially be used as a proxy phenotype for 515 

improving the three examined morphometric traits (SH, SW and SL). The GWAS results 516 

revealed that growth traits were largely polygenic, but with two distinct QTLs on chromosome 517 

4 reaching genome-wide significance. Prediction accuracies were high for all traits (>0.83), 518 

with minimal differences observed when comparing estimates obtained using different 519 

marker densities. Altogether, these results suggest that the high prediction accuracies found 520 

in this study could have been influenced by the uneven family structure of the experimental 521 

population. Although low-density SNP panels appear as a promising cost-effective GS 522 

strategy, additional populations with different degrees of genetic relationship should be 523 

assessed to derive estimates of prediction accuracies to be expected in practical breeding 524 

programmes in oysters. 525 

 526 

 527 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2022. ; https://doi.org/10.1101/2022.06.10.495672doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.10.495672
http://creativecommons.org/licenses/by-nd/4.0/


17 
 

5. Acknowledgments 528 

The authors acknowledge funding from the Biotechnology and Biological Sciences Research 529 

Council (BBSRC), including Institute Strategic Programme grants (BBS/E/D/20002172, 530 

BBS/E/D/30002275 and BBS/E/D/10002070), a grant within the AquaLeap project 531 

(BB/S004181/1), funding from Blue Marine Foundation and National Fish and Wildlife 532 

Foundation (NFWF). The authors would also like acknowledge MDL Port Hamble Marina for 533 

allowing positioning of oyster cages within the Marina, and thank Eric Harris-Scott, Matthew 534 

Sanders, Monica Fabra, Tim Regan and Zenaba Khatir for their invaluable help with setup and 535 

sampling of the field experiment.  536 

 537 

6. References 538 

Al-Tobasei, R., Ali, A., Garcia, A.L.S., Lourenco, D., Leeds, T., and Salem, M. (2021). Genomic 539 
predictions for fillet yield and firmness in rainbow trout using reduced-density SNP panels. 540 
BMC Genom. 22:92. doi: 10.1186/s12864-021-07404-9. 541 

Allen, S.K., Gaffney, P.M., and Ewart, J.W. (1993). Genetic Improvement of the Eastern Oyster for 542 
Growth and Disease Resistance in the Northeast. Northeastern Regional Aquaculture Center. 543 
210 544 

Barría, A., Benzie, J.A.H., Houston, R.D., De Koning, D.J., and de Verdal, H. (2021). Genomic Selection 545 
and Genome-wide Association Study for Feed-Efficiency Traits in a Farmed Nile Tilapia 546 
(Oreochromis niloticus) Population. Front. Genet. 12: 737906. doi: 547 
10.3389/fgene.2021.737906. 548 

Botta, R., Asche, F., Borsum, J.S., and Camp, E.V. (2020). A review of global oyster aquaculture 549 
production and consumption. Mar. Policy 117:103952. doi: 10.1016/j.marpol.2020.103952.  550 

Boudry, P., Allal, F., Aslam, M.L., Bargelloni, L., Bean, T.P., Brard- Fudulea, S., et al. (2021). Current 551 
status and potential of genomic selection to improve selective breeding in the main 552 
aquaculture species of International Council for the Exploration of the Sea (ICES) member 553 
countries. Aquac. 20:100700. doi: 10.1016/j.aqrep.2021.100700.  554 

Boutet, I., Alves Monteiro, H.J., Takeuchi T, Bonnivard, E., Farhat, S., Riso, R., Salaun, B., Andersen, 555 
A., Toullec, J-Y., Lallier, F., Flot, J.F., Guiglielmoni, N., Guo, X., Allam, B., Espinoza E., 556 
Marbouty, M.,  Koszul, R., and  Tanguy, A. (2022) Chromosomal assembly of the flat oyster 557 
(Ostrea edulis L.) genome as a new genetic resource for aquaculture. Evolutionary 558 
applications. XX-XX-XX 559 

Camara, M.D., Yen, S., Kaspar, H.F., Kesarcodi-Watson, A., King, N., Jeffs, A.G., et al. (2017). 560 
Assessment of heat shock and laboratory virus challenges to selectively breed for ostreid 561 
herpesvirus 1 (OsHV-1) resistance in the Pacific oyster, Crassostrea gigas. Aquaculture 469, 562 
50-58. doi: 10.1016/j.aquaculture.2016.11.031. 563 

Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., and Lee, J.J. (2015). Second-564 
generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4:7. doi: 565 
10.1186/s13742-015-0047-8.  566 

Colsoul, B., Boudry, P., Pérez-Parallé, M.L., Bratoš Cetinić, A., Hugh-Jones, T., Arzul, I., et al. (2021). 567 
Sustainable large-scale production of European flat oyster (Ostrea edulis) seed for ecological 568 
restoration and aquaculture: a review. Rev. Aquac. 13, 423-1468. doi: 10.1111/raq.12529.  569 

Correa, K., Bangera, R., Figueroa, R., Lhorente, J.P, and Yáñez, J.M. (2017). The use of genomic 570 
information increases the accuracy of breeding value predictions for sea louse (Caligus 571 
rogercresseyi) resistance in Atlantic salmon (Salmo salar). Genet. Sel. Evol. 49:15. doi: 572 
10.1186/s12711-017-0291-8.  573 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2022. ; https://doi.org/10.1101/2022.06.10.495672doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.10.495672
http://creativecommons.org/licenses/by-nd/4.0/


18 
 

Culloty, S.C., Cronin, M.A., and Mulcahy, M.F. (2004). Potential resistance of a number of 574 
populations of the oyster Ostrea edulis to the parasite Bonamia ostreae. Aquaculture 237, 575 
41-58. doi: 10.1016/j.aquaculture.2004.04.007.  576 

De Melo, C.M., Durland, E., and Langdon, C. (2016). Improvements in desirable traits of the Pacific 577 
oyster, Crassostrea gigas, as a result of five generations of selection on the West Coast, USA. 578 
Aquaculture 460, 105- 115. doi: 10.1016/j.aquaculture.2016.04.017. 579 

Dégremont, L., Nourry, M., and Maurouard, E. (2015). Mass selection for survival and resistance to 580 
OsHV-1 infection in Crassostrea gigas spat in field conditions: response to selection after 581 
four generations. Aquaculture 446, 111-121. doi: 10.1016/j.aquaculture.2015.04.029. 582 

Devlin, B., and Roeder, K. (1999). Genomic control for association studies. Biometrics 55, 997-1004. 583 
doi: 10.1111/j.0006-341x.1999.00997.x.  584 

Evans, F., Matson, S., Brake, J., and Langdon, C. (2004). The effects of inbreeding on performance 585 
traits of adult Pacific oysters (Crassostrea gigas). Aquaculture 230, 89-98. doi: 586 
10.1016/j.aquaculture.2003.09.023. 587 

Evans, S., and Langdon, C. (2006). Effects of genotype × environment interactions on the selection of 588 
broadly adapted Pacific oysters (Crassostrea gigas). Aquaculture 261, 522-534. doi: 589 
10.1016/j.aquaculture.2006.07.022.  590 

Fabioux, C., Huvet, A., Lelong, C., Robert, R., Pouvreau, S., Daniel, J.Y., et al. (2004). Oyster vasa-like 591 
gene as a marker of the germline cell development in Crassostrea gigas. Biochem. Biophys. 592 
Res. Commun. 320, 592-598. doi: 10.1016/j.bbrc.2004.06.009.  593 

FAO (2019). Cultured Aquatic Species Information Programme. Ostrea edulis, edited by F.F. Division. 594 
Fitzer, S.C., McGill, R.A.R., Torres Gabarda, S., Hughes, B., Dove, M., O'Connor, W., et al. (2019). 595 

Selectively bred oysters can alter their biomineralization pathways, promoting resilience to 596 
environmental acidification. Glob. Chang. Biol. 25, 4105-4115. doi: 10.1111/gcb.14818.  597 

Fraslin, C., Yáñez, J.M., Robledo, D., and Houston, R.D. (2022). The impact of genetic relationship 598 
between training and validation populations on genomic prediction accuracy in Atlantic 599 
salmon. Aquaculture Reports 23, 101033. doi: doi.org/10.1016/j.aqrep.2022.101033. 600 

Goddard, M.E., and Hayes,  B.J. (2007). Genomic selection. J. Anim. Breed. Genet. 124, 323-330. doi: 601 
10.1111/j.1439-0388.2007.00702.x. 602 

Grizel, H., and Héral, M. (1991). Introduction into France of the Japanese oyster (Crassostrea gigas). 603 
ICES Mar. Sci. Symp. 47, 399- 403. doi: 10.1093/icesjms/47.3.399.  604 

Grizzle, R.E., Ward, K.M., Peter, C.R., Cantwell, M., Katz, D., and Suvillan, J. (2017). Growth, 605 
morphometrics, and nutrient content of farmed eastern oysters, Crassostrea virginica 606 
(Gmelin), in New Hampshire, USA. Aquac. Res. 48, 1525-1537. doi: 10.1111/are.12988. 607 

Gundappa, M. K., Peñaloza, C., Regan, T., Boutet, I., Tanguy, A., Houston, R. D., Bean, T. B., & 608 
Macqueen, D. J. (2022). A chromosome level reference genome for European flat oyster 609 
(Ostrea edulis L.). Evolutionary applications. XX-XX-XX 610 

Gutierrez, A.P., Matika, O., Bean, T.P., and Houston, R.D. (2018). Genomic Selection for Growth 611 
Traits in Pacific Oyster (Crassostrea gigas): Potential of Low-Density Marker Panels for 612 
Breeding Value Prediction. Front. Genet. 9:391. doi: 10.3389/fgene.2018.00391.  613 

Gutierrez, A.P., Symonds, J., King, N., Steiner, K., Bean, T.P., and Houston, R.D. (2020). Potential of 614 
genomic selection for improvement of resistance to ostreid herpesvirus in Pacific oyster 615 
(Crassostrea gigas). Anim. Genet. 51, 249-257. doi: 10.1111./age.12909.  616 

Gutierrez, A.P., Turner, F., Gharbi, K., Talbot, R., Lowe, N.R., Peñaloza, C., et al. (2017). Development 617 
of a Medium Density Combined-Species SNP Array for Pacific and European Oysters 618 
(Crassostrea gigas and Ostrea edulis). G3(Bethesda) 7, 2209-2218. doi: 619 
10.1534/g3.117.041780.  620 

He, X., Li, C., Qi, H., Meng, J., Wang, W., Wu, F., et al. (2021). A genome-wide association study to 621 
identify the genes associated with shell growth and shape-related traits in Crassostrea gigas. 622 
Aquaculture 543:736926. doi: 10.1016/j.aquaculture.2021.736926.  623 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2022. ; https://doi.org/10.1101/2022.06.10.495672doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.10.495672
http://creativecommons.org/licenses/by-nd/4.0/


19 
 

He, X., Wu, F., Qi, H., Meng, J., Wang, W., Liu, M., et al. (2022). Whole-genome resequencing reveals 624 
the single nucleotide polymorphisms associated with shell shape in Crassostrea gigas. 625 
Aquaculture 547:737502. doi: 10.1016/j.aquaulture.2021.737502. 626 

Helmer, L., Farrell, P., Hendy, I., Harding, S., Robertson, M., and Preston, J. (2019). Active 627 
management is required to turn the tide for depleted Ostrea edulis stocks from the effects 628 
of overfishing, disease and invasive species. PeerJ 7:e6431. doi: 10.7717/peerj.6431.  629 

Hickey, J.M., Dreisigacker, S., Crossa, J., Hearne, S., Babu, R., Prasanna, B.M., et al. (2014). Evaluation 630 
of Genomic Selection Training Population Designs and Genotyping Strategies in Plant 631 
Breeding Programs Using Simulation. Crop Sci. 54, 1476-1488. doi: 632 
10.2135/cropsci2013.03.0195.  633 

Houston, R.D., Bean, T.P., Macqueen, D.J., Gundappa, M.K., Jin, Y.H., Jenkins, T.L., et al. (2020). 634 
Harnessing genomics to fast-track genetic improvement in aquaculture. Nat. Rev. Genet. 21: 635 
389-409. doi: 10.1038/s41576-020-0227-y.  636 

Jones, D.B., Jerry, D.R., Khatkar, M.S., Moser, G., Raadsma, H.W., Taylor J.J., et al. (2014). 637 
Determining genetic contributions to host oyster shell growth: Quantitative trait loci and 638 
genetic association analysis for the silver-lipped pearl oyster, Pinctada maxima. Aquaculture 639 
434, 367-375. doi: 10.1016/j.aquaculture.2014.08.040.  640 

Jones, D.B., Jerry, D.R., Khatkar, M.S., Raadsma, H.W., and Zenger, K.R. (2013). A high-density SNP 641 
genetic linkage map for the silver-lipped pearl oyster, Pinctada maxima: a valuable resource 642 
for gene localisation and marker-assisted selection. BMC Genom. 14:810. doi: 10.1186/1471-643 
2164-14-810.  644 

Korringa, P. (1976). Farming the flat oyster of the genus Ostrea. Amsterdam: ElsevierScientific.  645 
Kriaridou, C., Tsairidou, S., Houston, R.D., and Robledo, D. (2020). Genomic Prediction Using Low 646 

Density Marker Panels in Aquaculture: Performance Across Species, Traits, and Genotyping 647 
Platforms. Front Genet. 11:124. doi: 10.3389/fgene.2020.00124.  648 

Kube, P., Cunningham, M., Dominik, S., Parkinson, S., Finn, B., Henshall, J., et al. (2011). 649 
Enhancement of the Pacific Oyster Selective Breeding Program. Australia: FRDC and Seafood 650 
CRC.  651 

Lallias, D., Taris, N., Boudry, P., Bonhomme, F., and Lapègue, S. (2010). Variance in the reproductive 652 
success of flat oyster Ostrea edulis L. assessed by parentage analyses in natural and 653 
experimental conditions. Genet. Res. 92, 175-187. doi: 10.1017/S0016672310000248 654 

Lapegue, S., Harrang, E., Heurtebise, S., Flahauw, E., Donnadieu, C., Gayral, P., et al. (2014). 655 
Development of SNP-genotyping arrays in two shellfish species. Mol. Ecol. Resour. 14, 820-656 
830. doi: 10.1111/1755-0998.12230. 657 

Lee, S.H., Clark, S., and van der Werf, J.H.J. (2017). Estimation of genomic prediction accuracy from 658 
reference populations with varying degrees of relationship. PLoS One 12(12), e0189775. doi: 659 
10.1371/journal.pone.0189775. 660 

Li, A., Dai, H., Guo, X., Zhang, Z., Zhang, K., Wang, C., et al. (2021). Genome of the estuarine oyster 661 
provides insights into climate impact and adaptive plasticity. Commun. Biol. 4:1287. doi: 662 
10.1038/s42003-021-02823-6. 663 

Li, C., Wang, J., Song, K., Meng, J., Xu, F., Li, L., et al. (2018). Construction of a high-density genetic 664 
map and fine QTL mapping for growth and nutritional traits of Crassostrea gigas. BMC 665 
Genom. 19:626. doi: 10.1186/s12864-018-4996-z. 666 

Lillehammer, M., Bangera, R., Salazar, M., Vela, S., Erazo, E.C., Suarez, A., et al. (2020). Genomic 667 
selection for white spot syndrome virus resistance in whiteleg shrimp boosts survival under 668 
an experimental challenge test. Sci. Rep. 10:20571. doi: 10.1038/s41598-020-77580-3.  669 

Liu, S., Li, L., Zhang, S., Wang, W., Yang, J., and Zhang, G. (2019). Heritability estimates for nutritional 670 
quality-related traits of the Pacific oyster, Crassostrea gigas. J. World Aquacult. Soc. 50, 738-671 
748. doi: 10.1111/jwas.12588.  672 

Lupas, A.N., and Martin, J. (2002). AAA proteins. Curr. Opin. Struct. Biol. 12, 746-753. doi: 673 
10.1016/s0959-440x(02)00388-3. 674 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2022. ; https://doi.org/10.1101/2022.06.10.495672doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.10.495672
http://creativecommons.org/licenses/by-nd/4.0/


20 
 

McCarty, A.J., Allen, Jr., S.K., and Plough, L.V. (2022). Genome-wide analysis of acute low salinity 675 
tolerance in the eastern oyster Crassostrea virginica and potential of genomic selection for 676 
trait improvement. G3 (Bethesda) 12:jkab368. doi: 10.1093/g3journal/jkab368.  677 

Meng, J., Song, K, Li, C., Liu, S., Shi, R., Li, B., et al. (2019). Genome-wide association analysis of 678 
nutrient traits in the oyster Crassostrea gigas: genetic effect and interaction network. BMC 679 
Genom. 20:625. doi: 10.1186/s12864-019-5971-z. 680 

Meuwissen, T.H., Hayes, B.J., and Goddard, M.E. (2001). Prediction of total genetic value using 681 
genome-wide dense marker maps. Genetics 157, 1819-1829. doi: 682 
10.1093/genetics/157.4.1819.  683 

Mizuta, D.D., and Wikfors, G.H. (2019). Seeking the perfect oyster shell: a brief review of current 684 
knowledge. Rev. Aquac. 11, 586-602. doi: 10.1111/raq.12247.  685 

Modak, T.H., Literman, R., Puritz, J.B., Johnson, K.M., Roberts, E.M., Proestou, D., et al. (2021). 686 
Extensive genome-wide duplications in the eastern oyster (Crassostrea virginica). Philos. 687 
Trans. R. Soc. Lond., B, Biol. Sci. 376:20200164. doi: 10.1098/rstb.2020.0164.  688 

Montagnani, C., Le Roux, F., Berthe, F., and Escoubas, J.M. (2001). Cg-TIMP, an inducible tissue 689 
inhibitor of metalloproteinase from the Pacific oyster Crassostrea gigas with a potential role 690 
in wound healing and defense mechanisms(1). FEBS Lett. 500, 64-70. doi: 10.1016/s0014-691 
5793(01)02559-5.  692 

Naciri-Graven, Y., Martin, A.G., Baud, J.P., Renault, T., and Gérard, A. (1998). Selecting the flat oyster 693 
Ostrea edulis (L.) for survival when infected with the parasite Bonamia ostreae. J. Exp. Mar. 694 
Biol. Ecol. 224, 91-107. doi: 10.1016/S0022-0981(97)00171-8.  695 

Neph, S., Kuehn, M.S., Reynolds, A.P., Haugen, E., Thurman, R.E., Johson A.K., et al. (2012). BEDOPS: 696 
high-performance genomic feature operations. Bioinformatics 28, 1919-1920. doi: 697 
10.1093/bioinformatics/bts277.  698 

Newkirk, G.F., and Haley, L.E. (1982). Progess in Selection for Growth Rate in the European Oyster 699 
Ostrea edulis. Marine Ecology Progress Series 10, 3. 700 

Newkirk, G.F., and Haley, L.E. (1983). Selection for growth rate in the European oyster, Ostrea edulis: 701 
Response of second generation groups. Aquaculture 33, 149-155. doi: 10.1016/0044-702 
8486(83)90396-4.  703 

Oelig, and G. Uf, (2000). Present Status of the French Aquaculture. Aquaculture Science 48 (2):243-704 
248. 705 

Peñaloza, C., Gutierrez, A.P., Eöry, L., Wang, S., Guo, X., Archibald, A.L., et al. (2021). A chromosome-706 
level genome assembly for the Pacific oyster Crassostrea gigas. GigaScience 10:giab020. doi: 707 
10.1093/gigascience/giab020.  708 

Pichot, Y., Comps, M., Tige, G., Grizel, H., and Rabouin, M.A. (1979). Recherches sur Bonamia ostreae 709 
gen. n., sp. n., parasite nouveau de l' huitre plate Ostrea edulis L. [France]. Rev. Trav. Inst. 710 
Peches Marit. 43, 131-140.  711 

Plough, L.V. (2016). Genetic load in marine animals: a review. Curr. Zool. 62, 567-579. doi: 712 
10.1093/cz/zow096.  713 

Pogoda, B. (2019). Current Status of European Oyster Decline and Restoration in Germany. 714 
Humanities 8:9. doi: 10.3390/h8010009.  715 

Pogoda, B., Boudry, P., Bromley, C., Cameron, T.C., Colsoul, B., Donnan, D.W., et al. (2020). NORA 716 
moving forward: Developing an oyster restoration network in Europe to support the Berlin 717 
Oyster Recommendation. Aquat. Conserv. 30, 2031-2037. doi: 10.1002/aqr.3447. 718 

Preston, J., Fabra, M., Helmer, L., Johnson, E., Harris-Scott, E., and Wendy, I.W. (2020). Interactions 719 
of larval dynamics and substrate preference have ecological significance for benthic 720 
biodiversity and Ostrea edulis Linnaeus, 1758 in the presence of Crepidula fornicata. Aquat. 721 
Conserv.: Mar. Freshw. Ecosyst. 30, 2133-2149. doi: 10.1002/aqc.3446 722 

Proestou, D.A., Vinyard, B.T., Corbett, R.J., Piesz, J., Allen, S.K., Small J.M., et al. (2016). Performance 723 
of selectively-bred lines of eastern oyster, Crassostrea virginica, across eastern US estuaries. 724 
Aquaculture 464:17-27. doi: 10.1016/j.aquaculture.2016.06.012.  725 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2022. ; https://doi.org/10.1101/2022.06.10.495672doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.10.495672
http://creativecommons.org/licenses/by-nd/4.0/


21 
 

Qi, H., Li, L., and Zhang, G. (2021). Construction of a chromosome-level genome and variation map 726 
for the Pacific oyster Crassostrea gigas. Mol. Ecol. Resour. 21, 1670-1685. doi: 727 
10.1111/1755-0998.13368.  728 

Qi, H., Song, K., Li, C., Wang, W., Li, B., Li, L., et al. (2017). Construction and evaluation of a high-729 
density SNP array for the Pacific oyster (Crassostrea gigas). PLoS One 12:e0174007. doi: 730 
10.1371/journal.pone.0174007.  731 

Ragone Calvo, L.M., Calvo, G.W., and Burreson, E.M. (2003). Dual disease resistance in a selectively 732 
bred eastern oyster, Crassostrea virginica, strain tested in Chesapeake Bay. Aquaculture 220, 733 
69-87. doi: 10.1016/S0044-8486(02)00399-X.  734 

Renault, T., Cochennec, N., and Grizel, H. (1995). Bonamia ostreae, parasite of the European flat 735 
oyster, Ostrea edulis, does not experimentally infect the Japanese oyster, Crassostrea gigas. 736 
Bull. Eur. Ass. Fish Pathol. 15:78. 737 

Robert, M., Garcia, C., Chollet, B., Lopez-Flores, I., Ferrand, S., François, C., et al. (2009). Molecular 738 
detection and quantification of the protozoan Bonamia ostreae in the flat oyster, Ostrea 739 
edulis. Mol. Cell. Probes 23, 264-271. doi: 10.1016/j.mcp.2009.06.002.  740 

Robert, R., Borel, M., Pichot, Y., and Trut, G. (1991). Growth and mortality of the European oyster 741 
Ostrea edulis in the Bay of Arcachon (France). Aquat. Living Resour. 4, 265-274. doi: 742 
10.1051/alr:1991028. 743 

Sas, H., Deden, B., Kamermans, P., zu Ermgassen, P.S.E., Pogoda B., Preston, J., et al. (2020). Bonamia 744 
infection in native oysters (Ostrea edulis) in relation to European restoration projects. Aquat. 745 
Conserv.: Mar. Freshw. Ecosyst. 30, 2150-2162. doi: 10.1002/aqc.3430.  746 

Thurstan, R.H., Hawkins, J.P., Raby, L., and Roberts, C.M. (2013). Oyster (Ostrea edulis) extirpation 747 
and ecosystem transformation in the Firth of Forth, Scotland. J. Nat. Conserv. 21, 253-261. 748 
doi: 10.1016/j.jnc.2013.01.004.  749 

Toro, J.E., and Newkirk, G.F. (1990). Divergent selection for growth rate in the European oyster 750 
Ostrea edulis: response to selection and estimation of genetic parameters. Mar. Ecol. Prog. 751 
Ser. 62, 219-227. doi: 10.3354/meps062219. 752 

Tsai, H.Y., Hamilton, A., Tinch, A.E., Guy, D.R., Bron, J.E., Taggart, J.B., et al. (2016). Genomic 753 
prediction of host resistance to sea lice in farmed Atlantic salmon populations. Genet. 48:47. 754 
doi: 10.1186/s12711-016-0226-9.  755 

Tsairidou, S., 2019 CVrepGPAcalc. https://github.com/SmaragdaT/CVrep/tree/master/CVrepGPAcalc 756 
[Accessed March 15, 2020]. 757 

Tsairidou, S., Hamilton, A., Robledo, D., Bron, J.E., and Houston, R.D. (2020). Optimizing Low-Cost 758 
Genotyping and Imputation Strategies for Genomic Selection in Atlantic Salmon. G3 759 
(Bethesda) 10, 581-590. doi: 10.1534/g3.119.400800.  760 

Turner, S. (2018). qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. 761 
Journal of Open Source Software, 3(25), 731. https://doi.org/10.21105/joss.00731 762 

Vallejo, R.L., Silva, R.M.O., Evenhuis, J.P., Gao, G., Liu, S., Parsons, J.E., et al. (2018). Accurate 763 
genomic predictions for BCWD resistance in rainbow trout are achieved using low-density 764 
SNP panels: Evidence that long-range LD is a major contributing factor. J Anim Breed Genet. 765 
doi: 10.1111/jbg.12335. 766 

VanRaden, P.M. (2008). Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 91, 4414-767 
4423. doi: 10.3168/jds.2007-0980.  768 

Varney, R.L., and Wilbur, A.E. (2020). Analysis of genetic variation and inbreeding among three lines 769 
of hatchery-reared Crassostrea virginica broodstock. Aquaculture 527:735452. doi: 770 
10.1016/j.aquaculture.2020.735452. 771 

Vera, M., Pardo, B.G., Cao, A., Vilas, R., Fernández, C., Blanco, A., et al. (2019). Signatures of selection 772 
for bonamiosis resistance in European flat oyster (Ostrea edulis): New genomic tools for 773 
breeding programs and management of natural resources. Evolutionary applications 12(9), 774 
1781-1796. doi: 10.1111/eva.12832. 775 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2022. ; https://doi.org/10.1101/2022.06.10.495672doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.10.495672
http://creativecommons.org/licenses/by-nd/4.0/


22 
 

Vu, S.V., Gondro, C., Nguyen, N.T.H., Gilmour, A.R., Tearle, R., Knibb, W., et al. (2021a). Prediction 776 
Accuracies of Genomic Selection for Nine Commercially Important Traits in the Portuguese 777 
Oyster (Crassostrea angulata) Using DArT-Seq Technology. Genes 12:210. doi: 778 
10.3390/genes12020210.  779 

Vu, S.V., Knibb, W., Gondro, C., Subramanian, S., Nguyen, N.T.H.,Alam, M., et al. (2021b). Genomic 780 
Prediction for Whole Weight, Body Shape, Meat Yield, and Color Traits in the Portuguese 781 
Oyster Crassostrea angulata. Front. Genet. 12:661276. doi: 10.3389/fgene.2021.661276. 782 

Vu, S.V., Knibb, W., Nguyen, N.T.H., Vu, I.V., O'Connor, W., Dove, M., et al. (2020). First breeding 783 
program of the Portuguese oyster Crassostrea angulata demonstrated significant selection 784 
response in traits of economic importance. Aquaculture 518:734664. doi: 785 
10.1016/j.aquaculture.2019.734664.  786 

Walne, P.R., and Helm, M.M. (1979). Introduction of Crassostrea gigas into the United Kingdom, 787 
(Cambridge, MIT Press), 83-105.  788 

Wan, S., Li, Q., Yu, H., Liu, S., and Kong, L. (2020). Estimating heritability for meat composition traits 789 
in the golden shell strain of Pacific oyster (Crassostrea gigas). Aquaculture 516:734532. doi: 790 
10.1016/j.aquaculture.2019.734532.  791 

Wang, J., Li, L., and Zhang, G. (2016). A High-Density SNP Genetic Linkage Map and QTL Analysis of 792 
Growth-Related Traits in a Hybrid Family of Oysters (Crassostrea gigas × Crassostrea 793 
angulata) Using Genotyping-by-Sequencing. G3 (Bethesda) 6,1417-1426. doi: 794 
10.1534/g3.116.026971. 795 

Ward, R.D., Thompson, P.A., Appleyard, S.A., Swan, A.A., and Kube, P.D. (2005). "Sustainable Genetic 796 
Improvement of Pacific Oysters in Tasmania and South Australia", in: FRDC Project 2000/206. 797 
CSIRO Marine and Atmospheric Research. 798 

Werner, C.R., Gaynor, R.C., Gorjanc, G., Hickey, J.M., Kox, T., Abbadi, A., et al. (2020). How 799 
population structure impacts genomic selection accuracy in cross-validation: implications for 800 
practical breeding. Front. Plant Sci. 11: 592977. doi: 10.3389/fpls.2020.592977.  801 

Xu, L., Li, Q., Yu, H., and Kong, L. (2017). Estimates of Heritability for Growth and Shell Color Traits 802 
and Their Genetic Correlations in the Black Shell Strain of Pacific Oyster Crassostrea gigas. 803 
Mar. Biotechnol. (NY) 19, 421-429. doi: 10.1007/s10126-017-9772-6.  804 

Yang, B., Zhai, S., Zhang, F., Wang, H., Ren, L., Li, Y., et al. (2022). Genome-wide association study 805 
toward efficient selection breeding of resistance to Vibrio alginolyticus in Pacific oyster, 806 
Crassostrea gigas. Aquaculture 548:737592. doi: 10.1016/k.aquaculture.2021.737592.  807 

Yin, X., Arias-Pérez, A., Kitapci, T.H., and Hedgecock, D. (2020). High-Density Linkage Maps Based on 808 
Genotyping-by-Sequencing (GBS) Confirm a Chromosome-Level Genome Assembly and 809 
Reveal Variation in Recombination Rate for the Pacific Oyster Crassostrea gigas. G3 810 
(Bethesda) 10, 4691-4705. doi: 10.1534/g3.120.401728.  811 

Yoshida, G.M., Bangera, R., Carvalheiro, R.,  Correa, K., Figueroa, R., Lhorente J.P., et al. (2018). 812 
Genomic Prediction Accuracy for Resistance Against Piscirickettsia salmonis in Farmed 813 
Rainbow Trout. G3 (Bethesda) 8, 719-726. doi: 10.1534/g3.117.300499.  814 

Yoshida, G.M., Lhorente, J.P., Correa, K., Soto, J., Salas, D., and Yañez, J.M. (2019). Genome-Wide 815 
Association Study and Cost-Efficient Genomic Predictions for Growth and Fillet Yield in Nile 816 
Tilapia (Oreochromis niloticus). G3 (Bethesda) 9, 2597-2607. doi: 10.1534/g3.119.400116.  817 

Yuehuan, Z., Wu, X., Qin, Y., Xiao, S., Ma, H., Li, J., et al. (2017). Sustained response to selection of 818 
growth traits to the third generation for two strains of Kumamoto oyster Crassostrea 819 
sikamea. Journal of Fishery Sciences of China 24, 1161-1167. doi: 820 
10.3724/SP.J.1118.2017.16350. 821 

Zenger, K.R., Khatkar, M.S., Jones, D.B., Khalilisamani, N., Jerry, D.R., and Raadsma, H.W. (2019). 822 
Genomic Selection in Aquaculture: Application, Limitations and Opportunities With Special 823 
Reference to Marine Shrimp and Pearl Oysters. Front. Genet. 9:693. doi: 824 
10.3389/fgene.2018.00693.  825 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2022. ; https://doi.org/10.1101/2022.06.10.495672doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.10.495672
http://creativecommons.org/licenses/by-nd/4.0/


23 
 

Zhang, J., Li, Q., Xu, C., and Han, Z. (2019). Response to selection for growth in three selected strains 826 
of the Pacific oyster Crassostrea gigas. Aquaculture 503:34-39. doi: 827 
10.1016/j.aquaculture.2018.12.076.  828 

Zhou, X., and Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association 829 
studies. Nat. Genet. 44, 821-824. doi: 10.1038/ng.2310.  830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 844 

 845 

 846 

 847 

 848 

 849 

 850 

 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 

 861 

 862 

 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2022. ; https://doi.org/10.1101/2022.06.10.495672doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.10.495672
http://creativecommons.org/licenses/by-nd/4.0/

