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ABSTRACT

The European flat oyster (Ostrea edulis) is a bivalve mollusc that was once widely distributed
in Europe and represented an important food resource for humans for centuries. Populations
of O. edulis experienced a severe decline across their biogeographic range mainly due to
anthropogenic activities and disease outbreaks. To restore the economic and ecological
benefits of European flat oyster populations, extensive protection and restoration efforts are
in place within Europe. In line with the increasing interest in supporting restoration and oyster
farming through the breeding of stocks with enhanced performance, the present study aimed
to evaluate the potential of genomic selection for improving growth traits in a European flat
oyster population obtained from successive mass-spawning events. Four growth-related
traits were evaluated: total weight (TW), shell height (SH), shell width (SW) and shell length
(SL). The heritability of the growth traits was moderate-low, with estimates of 0.45,0.37, 0.22,
and 0.32 for TW, SH, SW and SL, respectively. A genome-wide association analysis revealed a
largely polygenic genetic architecture for the four growth traits, with two distinct QTLs
detected on chromosome 4. To investigate whether genomic selection can be implemented
in flat oyster breeding at a reduced cost, the utility of low-density SNP panels (down to 100
SNPs) was assessed. Genomic prediction accuracies using the full density panel were high
(>0.83 for all traits). The evaluation of the effect of reducing the number of markers used to
predict genomic breeding values revealed that similar selection accuracies could be achieved
for all traits with 2K SNPs as for a full panel containing 4,577 SNPs. Only slight reductions in
accuracies were observed at the lowest SNP density tested (i.e. 100 SNPs), likely due to a high
relatedness between individuals being included in the training and validation sets during
cross-validation. Overall, our results suggest that the genetic improvement of growth traits in
oysters is feasible. Nevertheless, and although low-density SNP panels appear as a promising
strategy for applying GS at a reduced cost, additional populations with different degrees of
genetic relationship should be assessed to derive estimates of prediction accuracies to be
expected in practical breeding programmes.

Keywords: Ostrea edulis, oyster, GWAS, Genomic selection, growth, Aquaculture

1. INTRODUCTION

The European flat oyster (Ostrea edulis) was an abundant native bivalve species and an
important fishery resource in much of Europe up to the 19t century (Pogoda 2019). However,
populations of O. edulis experienced a severe decline across their biogeographic range due to
a range of detrimental factors including overfishing and habitat degradation (Thurstan et al.
2013), the subsequent invasion of non-native species (e.g. slipper limpet, Crepidula fornicata)
(Preston et al. 2020; Helmer et al. 2019) and pathogenic diseases (Robert et al. 1991; Sas et
al. 2020). The continuous decimation of native populations in the Atlantic and Mediterranean
seas led to significant changes in oyster production, which progressively shifted towards
farming (Korringa 1976), and eventually to the cultivation of different species including
Crassostrea angulata (Oelig and Uf 2000) and the non-indigenous Pacific oyster (Crassostrea
gigas) (Grizel and Héral 1991; Walne and Helm 1979). The Pacific oyster was introduced into
Europe for aquaculture purposes owing to its favourable production traits, such as a faster
growth rate and higher resistance to the main diseases affecting C. angulata and O. edulis
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80  (Renault et al. 1995; Grizel and Héral 1991). Worldwide oyster production is now dominated
81 by the Pacific oyster (97.7%), while the production of the European flat oyster remains stably
82 low, constituting just ~0.2% of global production (FAO 2019). Despite the demand for shellfish
83  continues to increase (Botta et al. 2020), the level of O. edulis production is stagnant. One of
84  the main factors that hinders the growth of the industry is the lack of a substantial and steady
85  supply of oyster seed (i.e. juveniles) (see Colsoul et al. (2021) for a review). Hence, the
86  optimization of oyster larval production in hatcheries and spatting ponds is key for future
87  European flat oyster aquaculture, as well as for restoration projects, which are also expected
88  to rely on sustainable sources of juveniles for restocking (Pogoda et al. 2020). Importantly,
89 the artificial propagation of flat oyster seed will facilitate the application of selective breeding
90 programmes. Although selective breeding programmes are typically used to improve
91 aquaculture production, they could also benefit the ecological restoration of O. edulis. If
92 desirable traits such as disease resistance are found to have a strong genetic component, then
93 increased resistance to life-limiting diseases — such as bonamiosis (Culloty et al. 2004; Naciri-
94  Graven et al. 1998) — could potentially be achieved while maintaining the adaptive potential
95 (i.e. genetic diversity) of restored populations.

96  Selective breeding in oysters has mainly focused on improving meat yield and quality, disease

97  resistance, survival and growth (Toro and Newkirk, 1990; Allen et al., 1993; Ragone Calvo et

98 al.,, 2003; Ward et al., 2005; Dégremont et al., 2015; De Melo et al., 2016; Proestou et al.,

99  2016; Camara et al., 2017; Zhang et al., 2019), with a recent interest in nutritional content
100  and shell shape (Grizzle et al., 2017; Liu et al., 2019; Meng et al., 2019; Wan et al., 2020; He
101  etal., 2022). Among these traits, growth is comparatively simple to assess and consequently
102  select for using phenotypic information. Although the direct comparison of heritability
103  estimates from different studies is difficult (e.g. due to intrinsic differences between
104  populations), estimates for growth rate in oysters tend to be moderate (e.g. 0.26 and 0.31 —
105 De Melo et al. (2016) and Evans and Langdon (2006), respectively). As a result, fast-growing
106  lines of oysters have been developed for some of the main commercial species, such as the
107  Pacific (C. gigas) (Zhang et al. 2019), Portuguese (C. angulata) (Vu et al. 2020), American (C.
108  virginica) (Varney and Wilbur 2020) and Sydney rock (Saccostrea glomerata) (Fitzer et al.
109  2019) oyster. Initial attempts to genetically improve the European flat oyster O. edulis
110  resulted in a 23% increase in growth rate compared to an unselected (control) line (Newkirk
111 and Haley 1982). This striking genetic response was not replicated in a second generation of
112 selection, possibly due to unintentional inbreeding (Newkirk and Haley 1983). Indeed, even
113  relatively modest levels of inbreeding have been shown to significantly affect performance
114  traits in oysters (Evans et al. 2004), highlighting the importance of an adequate management
115  of genetic diversity in hatchery-derived stocks. Moreover, oysters and bivalves in general,
116  appear to have a high genetic load (see for a review Plough (2016)) and, therefore, may be
117  particularly susceptible to inbreeding depression. Hence, the incorporation of genomic tools
118  into shellfish breeding schemes will be key for balancing genetic gain with population diversity
119  in order to sustain the long-term progress for traits under selection.

120 A vast array of genomic tools and resources have become available for genetic research and
121 breeding applications in oysters. For example, for economically relevant species,
122 chromosome-level genome assemblies (Pefaloza et al. 2021; Qi et al. 2021; Modak et al.
123 2021; Liet al. 2021), SNP arrays (Gutierrez et al. 2017; Qi et al. 2017; Lapegue et al. 2014) and
124  medium-density linkage maps (Gutierrez et al. 2018; Li et al. 2018; Jones et al. 2013; Wang et
125 al. 2016; Yin et al. 2020) have been produced. These resources have been applied to examine
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126  the genetic basis of growth (Gutierrez et al. 2018; Jones et al. 2014; He et al. 2021), low salinity
127  tolerance (McCarty et al. 2021), disease resistance (Gutierrez et al. 2018; Yang et al. 2022)
128  and nutritional content (Meng et al. 2019). For the European flat oyster, high-quality genomes
129  have recently been released (Boutet et al. 2022; Gundappa et al. 2022), which along with
130 available high-throughput genotyping techniques (e.g. SNP arrays and genotype-by-
131  sequencing approaches), provide the opportunity for gaining insight into the genomic
132 architecture of relevant production traits. Most of the traits of economic importance in
133 aquaculture species have a polygenic architecture (Zenger et al. 2019). For polygenic traits
134 (i.e. those controlled by many loci), the application of predictive techniques such as genomic
135  selection (GS) may enable a faster genetic gain than conventional pedigree-based selection.
136 GS is a method based on genome-wide markers in which the effect of all loci are
137  simultaneously used for predicting the estimated breeding values (EBV) of selection
138 candidates (Meuwissen et al. 2001), and has shown major potential in aquaculture species,
139  where it can be used to characterise variation within and between large families of potential
140  breeders. However, commercial application to aquaculture production is largely limited to
141  the major finfish and crustacean species (e.g. salmonids, Nile tilapia, tropical shrimp)
142  (Lillehammer et al. 2020; Boudry et al. 2021; Zenger et al. 2019). Studies into the feasibility of
143  applying genomic selection schemes in oyster breeding programmes have shown that for
144  growth (Vuetal. 2021b; Gutierrez et al. 2018), edibility (Vu et al. 2021b), low salinity tolerance
145  (McCarty et al. 2021), and disease resistance traits (Vu et al. 2021b; Gutierrez et al. 2020),
146  greater genetic gains could be achieved through GS compared to traditional breeding.
147  Nevertheless, the practical application of GS as a selection strategy will likely depend on how
148  cost-effective it is compared to pedigree-based methods. The development of feasible
149  alternatives for reducing genotyping costs, such as using affordable low-density genotyping
150 tools that yield similar accuracies than higher-density panels, will be critical for the potential
151  of GSto be realized by oyster breeding programmes.

152  In line with the increasing interest in supporting oyster culture and restoration through the
153  breeding of stocks with enhanced performance, the overall aim of this study was to evaluate
154 the potential of GS for the genetic improvement of growth and growth-related
155  (morphometric) traits in the European flat oyster. First, the heritability of total weight, shell
156  length, shell width and shell height was estimated for a hatchery-derived population
157  genotyped using a ~15K SNP array. Second, a genome-wide association (GWAS) analysis was
158 conducted to dissect the genetic architecture of the measured traits. Last, to evaluate
159  whether GS may be an effective and cost-effective strategy for improving traits associated
160  with oyster growth, the accuracy of genomic predictions using reduced density SNP marker
161  panels was assessed.

162
163 2. MATERIALS AND METHODS

164 2.1 Field experiment

165 The European flat oyster population used in this study was generated in a UK-based hatchery
166  (Sea Salter Morecombe hatchery) by mass spawning of approximately 40 broodstock parents
167  over several spawning events. The resulting F1 generation was then deployed to Lochnell
168  oysters (56.494° N, 5.459° W) and grown for six months in ortac grow-out cages. Animals were
169 then transferred to the Institute of Marine Sciences at the University of Portsmouth (UK), and
170  maintained in a flow-through system until deployment. During this holding period, ~1,000

4
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171  randomly selected oysters were individually tagged and their first phenotype measurements
172 recorded (see ‘Phenotypes’ section below). Prior to deployment, animals were cleaned of
173  fouling, washed in fresh water and dried. Embossed plastic tags with unique identifier codes
174  were attached to their shell with epoxy resin glue. Animals were returned to aquaria within
175  the hour. Oysters were placed in Aquamesh® cages (L 0.55 m x W 0.55 m x D 0.4 m) (GT
176  Products Europe Ltd) at a density of 200 oysters per cage, and deployed 1 metre below
177  floating pontoons at Port Hamble Marina (MDL) in the River Hamble (50.861° N, 1.312° W) in
178  January 2019. Mortalities were documented monthly and dead oysters — i.e. those with
179  empty or gaping shells — were removed from the experiment. General disease status was
180 assessed on subsets of oysters throughout the experiment by histology and in situ
181  hybridisation using an adaptation of available methods (Fabioux et al. 2004; Montagnani et
182  al. 2001). In addition, the presence of Bonamia ostreae, a protozoan parasite that causes a
183  lethal infection of flat oyster haemocytes (Pichot et al. 1979), was assessed by gPCR following
184  Robert et al. (2009). The prevalence of B. ostreae infections was negligible; hence disease
185  status had a minor influence on the assessment of growth traits in the experimental
186  population. After 10 months of growth under field conditions, gill tissue was dissected from
187  individuals alive at the end of the study and preserved in molecular grade absolute ethanol
188  (Fisher Scientific) for genetic analysis.

189
190 2.2 Phenotypes

191  Four growth-associated traits were measured at three time points over the course of 10
192  months: total weight (TW, the weight of an individual oyster including the shell), shell length
193  (SL, the maximum distance between the anterior and posterior margins), shell height (SH, the
194  maximum distance between the hinge to the furthermost edge), and shell width (SW, the
195 maximum distance at the thickest part of the two shell valves) (Figure 1). Weight was
196 recorded in grams up to one decimal place. Shell measurements were taken with traceable
197  digital callipers (Fisher Scientific) with 0.02 mm precision. Oysters were cleaned and defouled
198  before measurements were taken.

Shell Shell Shell
length width height
(SL) (SW) (SH)

199
200

201  Figure 1. Nomenclature of the growth-related morphometric traits measured in this study.

202
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203 2.3 DNA extraction

204  Total DNA was isolated from gill tissue following a CTAB (cetyltrimethylammonium bromide)-
205 based extraction protocol (details in Gutierrez et al. (2017)). The integrity of the extracted
206 DNA was assessed by agarose gel electrophoresis, while DNA quality was verified on a
207  Nanodrop ND-1000 (Thermo Fisher Scientific) spectrophotometer by checking the 260/280
208 and 260/230 ratios. All samples had 260/280 and 260/230 values >1.85 and 2>1.96,
209  respectively.

210
211 2.4 SNP genotyping and Quality Control

212 Whole-genome genotyping of ~15K SNPs was carried out by IdentiGEN (Dublin, Ireland) using
213  the combined-species Affymetrix Axiom oyster SNP-array (Gutierrez et al. 2017). Signal
214  intensity files were imported to the Axiom analysis Suite v4.0.3.3 software for quality control
215 (QC) assessment and genotype calling. Genotypes were generated using the default
216  parameter settings for diploid species, resulting in 11,808 SNPs typed for 870 individuals. To
217  assess the reproducibility of genotype calls, five DNA samples from the same individual were
218 genotyped independently on three different arrays, and their genotype concordance
219  evaluated through an identity-by-state (IBS) analysis. The genotype concordance rate among
220 replicates was 99.7%, demonstrating a high reproducibility of the genotyping assays. The
221 flanking region of these markers were mapped to the O. edulis chromosome-level genome
222 assembly (Gundappa et al. 2022). Of the 11,808 SNPs, 10,025 had uniquely mapping probes
223  and were retained for downstream analysis. A total of 1,539 markers (15.4%) were
224  monomorphicin the population under study. QC was conducted using Plink v2.0 (Chang et al.
225  2015). SNP variants were retained for further analysis if they had a call rate >95% and a minor
226 allele frequency (MAF) >0.05. These filters removed 4,391 SNPs (leaving a total of 5,634 SNPs),
227  of which the majority were filtered out based on the MAF threshold (i.e. were monomorphic
228  or near-monomorphic in this population). Given that significant sub-clustering was detected
229 in the data (Figure S2), possibly due to a high variance in the reproductive success of
230  broodstock parents and/or temporal variation in spawning, a k-means clustering method was
231  used to assign individuals into groups. Deviations from Hardy-Weinberg Equilibrium (HWE)
232 were tested separately in each of the three genetic clusters identified by the analysis. SNP
233 markers showing significant deviations (HWE p-value < 1e-10) in two of the three clusters
234  were excluded from the analysis. Sample QC included removing individual oysters with a
235  missingness above 5% and high heterozygosity (i.e. more than three median absolute
236  deviations from median). Finally, a principal component analysis (PCA) was performed using
237  aset of ~¥3.5K SNPs for which no pair of markers within a window of 200 kb had a r2>0.5. The
238  top five PCs, which explain 47% of the variance (considering 20 PCs), were fitted in the model
239  to account for the effect of population structure. The final dataset comprised 840 samples
240 genotyped at 4,577 genome-wide SNPs.

241
242 2.5 Genetic parameter estimation

243  Genetic parameters for growth-related traits were estimated by fitting the following
244  univariate linear mixed model in GEMMA v0.95alpha (Zhou and Stephens 2012):

245 1) y=u+Xb+Zu+e
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246 Where y is the vector of observed phenotypes; uis the overall mean of the phenotype in the
247  population; b is the vector of fixed effects to be fitted (the first five principal components
248  were included as covariates); u is the vector of the additive genetic effects; X and Z are the
249  corresponding incidence matrices for fixed and additive effects, respectively; and e is a vector
250  of residuals. The following distributions were assumed: u~N(0,Go?2) and e~N(0,Ig?2).
251  Where o2 and o2 are the additive genetic and residual variance, respectively, G is the
252  genomic relationship matrix and I is the identity matrix. The heritability of growth-related
253  traits was estimated as the ratio of the additive genetic variance to the total phenotypic
254  variance.

255  Bivariate animal linear models were implemented to estimate the genetic (co)variance
256  between TW, SL, SH and SW. Each bivariate analysis was fitted with the same top 5 PCs
257 mentioned above. Subsequently, genetic correlations among traits were measured as the
258  ratio of the covariance of two traits to the square root of the product of the variance for each
259 trait. Phenotypic correlations between traits were calculated using the Pearson correlation
260  coefficient.

261
262 2.6 Genome-wide association study (GWAS)

263 To identify SNPs in the flat oyster genome correlated with variation in growth-related traits,
264  a GWAS was performed by implementing the same model described previously in the GEMMA
265  software. SNPs were considered significant at the genome-wide level if their likelihood ratio
266  test P-values surpassed a conservative Bonferroni-corrected significance threshold (o/4,577
267 = 1.09e-5). To derive a threshold for chromosome-wide (suggestive) significance, a was
268  divided by the average number of SNPs per chromosome (a/457 = 1.09e-4). The single-marker
269  P-values obtained from GEMMA were plotted against their chromosome location using the R
270  package qqgman v 0.1.4 (Turner 2017). To assess the inflation of the association statistics, the
271  genomic control coefficient lambda AGC was calculated following (Devlin and Roeder 1999).
272  Candidate genes were searched within 100 kb of the most significant SNP loci using BEDOPS
273 v2.4.26 (Neph et al. 2012).

274
275 2.7 Genomic Prediction

276  To evaluate the accuracy of genomic selection, a 5-fold cross validation approach - animals
277  split into training (80%) and validation (20%) sets - was used on a population of 840 oysters
278  genotyped for 4,577 informative SNP markers. To reduce stochastic effects arising from
279  individual sampling, each analysis was repeated 10 times. For each replicate, animals were
280 randomly partitioned into five subsets (each subset contained 168 individuals). TW, SL, SH
281  and SW phenotypes recorded in individuals allocated to one of the subsets (validation set)
282  were masked. The breeding values of the validation set were then predicted based on the
283  information from the remaining four subsets (training sets) using model (1). The model was
284  fitted using the AIREMLF90 module from BLUPF90. The accuracy of genomic predictions was
285  calculated as follows:

TgEBV,y

286 Accuracy = N

287
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288  where rgesv,y is the correlation between the predicted and the actual phenotypes of the
289  validation set, while h is the square root of the heritability of the trait estimated as described
290 above.

201

292 2.8 Evaluation of the effect of SNP density on genomic predictions

293  To assess the effect of SNP density on the accuracy of genomic predictions of growth-related
294  traits, SNP panels of varying sizes were randomly sampled from the final pool of QC-filtered
295  array markers (n = 4,577 SNPs). Panels of the following densities were evaluated: 4K, 3K, 2K,
296 1K, 500, 400, 300, 200 and 100 SNPs. To build the lower-density panels, markers were
297  randomly sampled from the full QC-filtered SNP dataset in proportion to chromosome lengths
298  using the R package CVrepGPAcalc v1.0 (Tsairidou 2019; Tsairidou et al. 2020). To account for
299  sampling bias, 10 SNP panels were generated for each of the SNP densities. The average
300 genomic prediction accuracies of the different low-density panels were compared against the
301 equivalent accuracy values obtained with the full panel.

302
303 2.9 Data Availability

304 The phenotype data used in the current study can be found in Mendeley Data,
305  https://doi.org/10.17632/sdtjyys7gr.1.

306
307 3. Results and discussion
308 3.1 Growth traits and heritability

309 Improvement of growth rate is typically one of the first traits to be included as a selection
310 targetin breeding programmes across many farmed species. In this study, oyster growth rate
311  was assessed in a hatchery-derived oyster population that was translocated to a growing site
312  and monitored for 10 months. The experimental population had a lower genome-wide
313  heterozygosity (Ho=0.27; He=0.22) compared to the values reported by (Vera et al., 2019)
314 (Ho>0.31) for a diverse set of flat oyster populations genotyped with the same array. An
315  overall mortality of 14% was observed during the field trial, among which the majority (36%)
316  occurred during a summer month (July). At the end of the experimental period, the O. edulis
317  population had the following growth means and standard deviations: +15.7 g (SD = 5.8), 50.8
318 mm (SD =7.3),12.9 mm (SD = 2.3) and 45.8 mm (SD = 8.9), for TW, SH, SW, SL, respectively
319 (Table 1). The phenotypic correlation was found to be the highest (r > 0.8) between two pairs
320  of traits: (i) TW and SH, and (ii) TW and SL (Figure 2).

321
322
323
324
325

326
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327 Table 1. Summary statistics of the phenotypic data (SD: Standard deviation; CV: coefficient of
328  variation).

Trait Unit Mean Min Max SD CV (%)
Total weight g 15.7 4.0 38.5 5.8 36.8
Shell height mm 50.8 22.9 76.1 7.3 14.4
Shell width mm 12.9 6.5 27.7 23 18.2
Shell length mm 45.8 22.2 94.4 8.9 19.5
329
330
331
T™W SH Sw SL
*kk *k%k *k%
0.82 0.69 082 |3
*kk *%%
0.58 078 | £
*xk%
'&' ’ 064 | =
3 + % -
332

333  Figure 2. Distribution and magnitude of the phenotypic correlations between growth-related
334  traits in Ostrea edulis. Pearson’s correlation between traits (above the diagonal), histogram
335  of trait distribution (diagonal) and scatterplots comparing two traits (below the diagonal). TW
336 (total weight), SH (shell height), SW (shell width) and SL (shell length). *** indicates p-values
337 <0.001.

338
339
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341  For the European oyster population under study, the heritability estimates of these growth-
342 related traits were in the moderate range of 0.22 (for SW) to 0.45 (for TW) (Table 2).
343  Consistent with similar studies carried out in related oyster species (Xu et al. 2017; Vu et al.
344  2020), heritability estimates based on SNP markers were higher for total weight than for
345  growth-related morphometric traits (i.e. shell height, shell width and shell length). The
346  estimation of heritability for total weight (herein referred to as TW) was similar to those
347  reported for nine- month-old Portuguese oysters (h?=0.45) and a two-year old Pacific oyster
348  strain (h? =0.42) (Vu et al. 2021b; Xu et al. 2017). Total weight, as measured in this study, is
349 a composite phenotype made up of the animal's shell and soft tissue weights, in addition to
350 the weight of any pallial fluid - thus is not a direct reflection of meat yield. Nevertheless, in C.
351 angulata, a positive genetic correlation (0.63) has been found between TW and soft tissue
352  weight (Vu et al. 2021b), suggesting that selecting for TW - a trait easier to measure - could
353 lead to improvements in meat yields. Such indirect improvements of correlated traits have
354  been reported in a Portuguese oyster line selected only for harvest weight. While the
355 achieved average selection response for total weight at harvest was 5.8% per generation,
356  genetic gains were also observed for soft tissue weight, with indirect gains reaching a 1.2%
357 increase per generation (Vu et al. 2020). For the shell-related traits examined in this study
358  (SH, SW and SL), heritability estimates were in line with previous studies (Gutierrez et al. 2018;
359  Yuehuan et al. 2017), and ranged from 0.22 to 0.37. Traditionally, the focus on shell
360 morphometric traits was to improve oyster growth. Nevertheless, in recent years, oyster shell
361 shape is increasingly being viewed as an attractive goal for selective breeding due to its
362  growing importance for consumers (Mizuta and Wikfors 2019). The perceived attractiveness
363  of an oyster shell can be represented as a secondary trait derived from a ratio between
364  primary (shell dimension) traits, such as the shell width index (Kube et al. 2011). Given that
365  significant heritable variation was observed for the three examined morphometric traits,
366  strategies for homogenizing particular shell shapes may be feasible in O. edulis.

367
368

369 Table 2. Estimates of heritability (h?) and standard error on the diagonal and pairwise genetic
370  correlations (below the diagonal) for growth-related traits in a European flat oyster
371  population.

Trait Total weight Shell height Shell width Shell length

Total weight 0.45 (0.06)

Shell height 0.99 0.37 (0.06)
Shell width 0.96 0.90 0.22 (0.05)
Shell length 0.95 0.93 0.88 0.32 (0.06)
372
373
374
375
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376 3.2 Genome-wide association analysis for growth-related traits

377 A GWAS of ~4.5K SNPs passing the filtering criteria were genotyped on 840 oysters with
378  phenotypic records to gain insight into the genetic basis of growth rate variation in O. edulis.
379  Three of the four examined traits showed association signals surpassing the genome-wide
380 level of significance (Figure 3). The genomic inflation factor lambda of the GWAS analysis were
381 close to the desired value (A=1) (see Figure S1), indicating that population structure was
382 adequately accounted for by the model. For TW, the GWAS identified two putative
383  quantitative trait loci (QTLs) on chromosome 4 associated with the trait. The presence of two
384  separate QTLs is supported by the low linkage disequilibrium observed between the most
385  significant SNPs at each locus (pairwise r2< 0.1). An additional 13 suggestive loci were also
386 identified, of which nine were located in the vicinity of the two abovementioned genome-
387  wide hits and four were found on chromosome 1 (Table S1). The SNP showing the strongest
388  association with TW (AX-169174635) explained 3% of the phenotypic variance. This lead SNP
389  was also found to be significantly associated with SH and SW. For SL, no SNP reached a
390 genome-wide significance level, although a few of the same markers showing associations
391  with TW, SH and SW surpassed the threshold for suggestive significance. The complete
392  overlap of GWAS hits across the different traits suggests a high degree of shared genetic
393  control among them, consistent with the high positive genetic correlations observed (Table
394  2). Overall, the GWAS results indicate that growth-related traits in O. edulis are influenced by
395 many small-effect loci, exhibiting a polygenic architecture, but that two regions on
396 chromosome 4 may have a moderate effect on these traits.

397 The marker showing the most significant association with TW, SH and SW is located in the
398 exon of a gene annotated as a N4BP2 (NEDD4 Binding Protein 2)-like protein (Gene ID:
399 FUN_017843; Gundappa et al. 2022). The predicted protein product of this gene contains an
400 AAA domain, hence can bind and hydrolyse ATP (Lupas and Martin 2002). Proteins with these
401 domains have been shown to be involved in several mechanical cell processes, including
402  protein folding. Further characterization of this N4BP2-like protein would help better
403  understand the genetic component of growth variation in oysters. Nevertheless, considering
404  that the candidate allele on N4BP2 explained a small percentage of the phenotypic variance,
405 independent oyster populations should first be evaluated to confirm the validity of the
406  association signal. A second genome-wide significant association — detected only in the TW
407 GWAS — was located in the exon of an uncharacterized gene (FUN_018833) whose product
408  shares a high sequence identity (>90%) with similarly uncharacterized proteins in C. gigas and
409 C. virginica (NCBI accession numbers XP_011433755 and XP_022325737, respectively).
410  Additional genes within the two genomic regions (+/- 100 kb) showing significant associations
411  with flat oyster growth traits are shown in Table S2. Given that the SNPs identified in this
412  study had a small effect on the traits in question, GS would be an effective approach for
413  increasing genetic gains from selection.

414
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416  Figure 3. Manhattan plots of the GWAS for growth-related traits in a European flat oyster
417  population. Solid lines indicates the threshold value for genome-wide significance. Dashed
418 lines indicate the threshold for a suggestive (chromosome-level) significance.
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421 3.3 Genomic selection

422  The incorporation of genetic markers into breeding programmes requires a previous
423  understanding of the genetic architecture of the targeted trait(s). In the O. edulis population
424  under study, the genetic contribution to the observed variation in growth-related traits was
425 largely polygenic in nature. For the improvement of polygenic traits, genomic selection has
426  been shown to be superior to alternative marker-aided selection due to genome-wide
427  markers capturing a higher proportion of the genetic variation in a trait compared to
428 individual QTL-targeted markers. Consequently, by means of applying GS, higher predictions
429  have been achieved for several production traits in a wide range of commercially important
430 aquaculture species (reviewed in Houston et al. (2020)). Despite GS not yet being widely
431  operational in oyster breeding programmes (Boudry et al. 2021), studies have demonstrated
432  the potential of incorporating genome-wide information into selection schemes in these taxa.
433  In the Pacific oyster, Gutierrez et al. (2018) showed that prediction accuracies for growth-
434  traits increased 25-30% when the genetic merit of individuals was estimated from SNP
435  markers using the Genomic Best Linear Unbiased Prediction (GBLUP) model (VanRaden 2008)
436 compared to a classical pedigree-based approach (PBLUP). Similar results were reported in
437  the Portuguese oyster, as prediction accuracies increased 7-42% for growth-related traits
438  when EBVs obtained by GBLUP were compared to those obtained by PBLUP (Vu et al. 2021a).
439  Since the flat oyster population under study derived from a mass-spawning event, the
440  pedigree structure was unknown. Therefore, comparisons between pedigree and genome
441  based methods for estimating breeding values (e.g. GBLUP and Bayesian approaches) could
442  not be performed.

443  One of the major barriers of implementing GS is the high number of markers required to
444  accurately predict EBVs and the cost of genotyping these markers (Goddard and Hayes 2007).
445  Therefore, the design of a strategy to reduce the cost of genotyping is critical for the extensive
446  adoption of genomic prediction approaches in aquaculture breeding programmes. One such
447  strategy involves genotyping the minimum number of markers required to achieve maximal
448  accuracy, which by definition is equal to that obtained with a full panel of markers. As shown
449 by Kriaridou et al. (2020) for different aquaculture species, the use of low-density SNP panels
450 has the potential to achieve similar EBV accuracies as when using medium density genotype
451  datasets of around 7-14K SNPs. The authors estimated that only 1,000 to 2,000 SNPs are
452  required to achieve maximal accuracy. These results were shown to be consistent across a
453  range of traits (e.g. disease resistance, growth) and species (e.g. Pacific oyster, Atlantic
454  salmon) showing robustness to differences in family structure, genotyping approach, trait
455  heritability and the underlying genetic architecture. In agreement with these findings,
456  maximal accuracy was attained herein for all the assessed growth-related traits at a minimum
457  density of 2K SNPs, with only a slight decline in accuracy observed at the lower densities
458  evaluated (Figure 4A). Consequently, a reduction in the costs of applying GS for improving
459  growth traits in O. edulis can be achieved by means of exploiting low-density SNP panels.
460  Although low-density panels might not accurately capture the genetic resemblance among
461  individuals within a population, and therefore show reduced genetic variance estimations and
462  EBV predictions when compared with high density panels, their use has been widely
463  evaluated and suggested for different aquaculture species and traits. Furthermore, studies
464  have shown that low-density panels can achieve higher accuracies than the classical pedigree-
465 based approach, being a feasible alternative to identify candidates with the highest genetic
466  merit. For example, in rainbow trout (Oncorhynchus mykiss) Vallejo et al. (2018) showed that
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at least 200 SNPs could exceed PBLUP accuracies for bacterial cold water disease resistance.
Whilst Al-Tobasei et al. (2021) found a similar trend when using between 500-1000 SNPs for
fillet yield traits. To date, the utilization of low-density panels to decrease the cost of genomic
evaluations has also been tested in several aquaculture species, including Atlantic salmon
(Salmo salar) (Correa et al. 2017; Tsai et al. 2016), rainbow trout (Yoshida et al. 2018; Al-
Tobasei et al. 2021), and Nile tilapia (Oreochromis niloticus) (Barria et al. 2021; Yoshida et al.
2019), suggesting that the development of cost-effective strategies for applying GS will be key
for shaping modern aquaculture breeding programs.
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Figure 4. Evaluation of the effect of SNP density on genomic predictions of growth related
traits in a European flat oyster population. (A) Percentage of the maximum genomic
prediction accuracy achieved using different lower density SNP panels. Values were
calculated by dividing the mean accuracy (averaged over ten replicates) estimated at each
nominal SNP density by the accuracy obtained using the full SNP dataset. (B) Average genomic
prediction accuracy values obtained for oyster growth traits at different panel densities.
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484 Although our results highlight the possibility of reducing the genotyping costs associated with
485  genomic prediction approaches, caution should be taken as even for the smallest marker
486  density (i.e. 100 SNPs), prediction accuracies (averaged over 10 replicates) were high and
487  close to the value obtained with the full marker panel. By using only 100 SNPs the estimated
488  decrease in the accuracy of genomic breeding values (GEBVs) was of 5% for SL, 7% for TW and
489  SW, and 10% for SH (Figure 4A). These values highly exceed those reported in the literature
490 for aquaculture species, where reductions >20% were estimated for panels with 100 SNPs
491 compared to a complete dataset (Kriaridou et al. 2020). The relative stability of GEBVs
492  observed across different marker densities (Figure 4B) is likely explained by the underlying
493  genetic structure of the dataset. For this study, 40 potential parents were placed in the same
494  tankand spawned during successive events. The genetic analysis of the progeny revealed that
495  the population was dominated (70% of the sample size; n=589) by a group of highly related
496 individuals (Figures S2-S3), suggesting there was a large variance in reproductive success
497  among breeders, as previously reported in mass spawning of oysters (Lallias et al. 2010). In
498  the context of GS, the inclusion of highly related animals in the training and validation sets
499  results in only a small number of markers being required to capture the haplotype effects, as
500 related animals share longer haplotypes (Hickey et al. 2014). The fact that in the current study
501 animals grouped in the reference and validation data sets were highly related would have
502 likely increased the accuracy of predicted gEBV, even when animals are genotyped at low
503 density, as also shown by Fraslin et al. (2022) in Atlantic salmon. Moreover, since the high
504  accuracies predicted in the flat oyster population could have also been affected by factors
505 such as a low effective population size (Lee et al., 2017) and the observed structure (Werner
506 et al. 2020), additional populations with different genetic background should be assessed to
507 obtain estimates to be expected in practical breeding programs. Future work focused on
508 evaluating the extent to which low-density panels and alternative strategies (e.g. genotype
509 imputation) can be used to reduce genotyping costs will be key for the cost-effective
510 exploitation of GS by oyster breeding programmes.

511
512 4. Conclusion

513  Growth-related traits in O. edulis had moderate-low heritability estimates, ranging from 0.22
514  (for SW) to 0.45 (for TW). High genetic correlations were identified between all traits (>0.9);
515 hence, TW - a trait easier to measure - can potentially be used as a proxy phenotype for
516  improving the three examined morphometric traits (SH, SW and SL). The GWAS results
517 revealed that growth traits were largely polygenic, but with two distinct QTLs on chromosome
518 4 reaching genome-wide significance. Prediction accuracies were high for all traits (>0.83),
519  with minimal differences observed when comparing estimates obtained using different
520 marker densities. Altogether, these results suggest that the high prediction accuracies found
521 in this study could have been influenced by the uneven family structure of the experimental
522  population. Although low-density SNP panels appear as a promising cost-effective GS
523  strategy, additional populations with different degrees of genetic relationship should be
524  assessed to derive estimates of prediction accuracies to be expected in practical breeding
525  programmes in oysters.

526

527
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