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Abstract

Histological imaging and molecular profiling of human tissues both offer information-rich
characterizations of biological structure and function. Each of these modalities has been
used to characterize the organization and dysregulation of a variety of tissues and cell
types. While large-scale studies of each modality in isolation have been conducted, it
remains largely unknown the extent to which these two views of a tissue relate to one
another. Understanding how cellular states are encoded in cellular morphology would
increase the utility and interpretability of imaging data; conversely, understanding the
state of the cells within histology images would give deeper insights into the types and
states of cells that constitute these tissue samples. To this end, we jointly analyzed
13,360 human tissue samples with paired bulk gene expression profiles and histology im-
ages across 935 donors from the Genotype and Tissue Expression (GTEx) Consortium v8
study. This analysis reveals relationships among gene expression and cellular morphology
through shared sources of expression and morphological heterogeneity both within and
between tissue types. We describe shared sources of variation including cell-type het-
erogeneity, sample ischemic time, and donor health and demographics. We find specific
correlated effects in both morphology and transcription linked to specific donor charac-
teristics, such as their use of mechanical ventilation. This paired understanding adds
value to each data modality on their own by enabling a more precise characterization of
the alternative modality in the absence of those data.

1 Introduction

Histology images have been used for many purposes in the biological and medical sciences,
from studying the basic biology of cellular morphology in the lab (Nedzved et al., [2000;
Phoulady et al.l [2016; [Sornapudi et al., 2018) to identifying and diagnosing cancerous tu-
mors in the clinic (Ciresan et al., [2013; |Aratjo et al.l 2017 |Aresta et al., [2019). Recently,
computational approaches have become essential tools for analyzing high-resolution his-
tology images (Fuchs and Buhmann, [2011; Komura and Ishikawal 2018; |Gratz et al., [2020;
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Barisoni et al.,[2020)). While these approaches initially relied on hand-crafted image features,
there has been a recent push to apply modern machine learning methods that automatically
extract salient features of the data (Van Valen et al., 2016; Moen et al. 2019).

In 2012, the computational vision community developed representations of images es-
timated using deep neural networks (DNNs) that outperformed representations based on
hand-crafted features on important downstream tasks, including classification, prediction,
and clustering for community benchmarks (Krizhevsky et al., [2012)). A major downside
of DNN-based models, which often have thousands or millions of parameters, is the need
for large sample sizes in order to perform inference. Moreover, with a few notable excep-
tions (Gundersen et al., |2019; |Ash et al 2021} Fu et al., [2020), the methods developed for
histology image analysis have focused on prediction and classification rather than unsuper-
vised characterization of the variation among the images or image features (Ciresan et al.,
2013; Aratjo et al., 2017} |Aresta et al., 2019; Fuchs and Buhmann, [2011)).

Advances in machine learning and computer vision (Krizhevsky et al., 2017 |He et al.,
2016; |[Kingma and Bal 2014), along with the development of large-scale histology and pathol-
ogy image collections (GTEx Consortium et al., 2017, 2020; Network et al., 2012]), have cat-
alyzed huge strides in automated classification and diagnosis of diseased tissues by applying
machine learning to histology images. For example, machine learning systems can lever-
age huge databases of histology images to classify tissues as tumorous or benign, identify
dermatological diseases, and segment and identify cell types in tissues (Beck et al., [2011;
Bejnordi et al., |2017; Kothari et al., |2013). In parallel, the rise of large-scale molecular
profiling of tissue samples has provided a distinct and complementary window into the bi-
ological processes of healthy and diseased tissues (GTEx Consortium et al. 2017, 2020)).
Gene expression studies in particular have provided valuable insights into cellular function
in both healthy and diseased tissues (GTEx Consortium et al., 2020; ICGC/TCGA Pan-
Cancer Analysis of Whole Genomes Consortium et al., [2020). However, it remains largely
unknown how these molecular-level features relate to the morphology of a tissue sample.
Understanding this relationship could improve disease diagnosis and suggest more effective
interventions using only inspection of these images. Furthermore, a characterization of this
relationship could also reduce the need for molecular profiling when histology images contain
signatures of the relevant molecular markers. Overall, it would be beneficial to treat these
modalities as complementary to one another — understanding what information is jointly
encoded in both and what information is exclusively encoded in one or the other. This joint
understanding could be a crucial step toward piecing together a comprehensive picture of
the state of a tissue sample.

Several lines of work have used dimension reduction techniques to study the associa-
tions between genomic measurements and cellular morphology. A handful of studies have
specifically focused on studying joint variation in cancer cells. One approach leveraged data
from The Cancer Genome Atlas (TCGA) to identify clusters of glioblastoma subtypes that
showed distinct morphology characteristics and molecular features (Cooper et al., [2012).
Another effort studied the relationship between histology images and expression in TCGA,
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identifying correlation between image features and expression of a set of genes that are
known to be linked to cancer patient outcomes (Subramanian et al., [2018). Another line of
work identified imaging biomarkers associated with immune cell infiltration in thyroid tissue
from healthy patients (Barry et al.l 2018).

Two recent studies used variations of canonical correlation analysis (CCA) (Hotelling,
1992) to examine the associations between bulk gene expression and histology image features
in GTEx v6 data. The first, which is called ImageCCA, identifies joint variation between
gene expression profiles and image features (Ash et al. 2021)). To generate image features,
ImageCCA applied a convolutional autoencoder (CAE) to produce a low-dimensional em-
bedding for each image. Examining the factors estimated using ImageCCA, the authors
found several shared patterns between the data modalities related to tissue type. Further-
more, the ImageCCA analysis identified image morphology QTLs (imQTLs), or associations
between donors’ genotypes and paired image features, in the GTEx v6 data. The authors
also applied their method to data from two separate studies in The Cancer Genome Atlas
(TCGA) (Weinstein et al., 2013). A gene set enrichment analysis on the estimated factors
revealed substantial covariation between expression and images features associated with ex-
tracellular processes and cell-type heterogeneity in TCGA.

Building off of ImageCCA, a second CCA-based approach was developed that simulta-
neously extracts salient image features and identifies their association with gene expression
profiles (Gundersen et al., 2019). This method — called deep probabilistic canonical corre-
lation analysis (DPCCA) — jointly fits an image autoencoder and CCA model. Applying
DPCCA to the GTEx v6 data, the authors found that many of the latent factors were driven
by differences between tissue types, in contrast to results using the two-stage approach of
ImageCCA. A QTL analysis using the DPCCA latent variables as phenotypes revealed sev-
eral imQTLs. While both of these studies reveal important links between gene expression,
image morphology, and genotypes, they rely on the limited GTEx v6 data. As convolutional
autoencoders are known to require large sample sizes to achieve reasonable out-of-sample
performance because of the large numbers of parameters, we are interested in applying these
approaches to much larger paired imaging and gene expression datasets.

To do this, we consider the GTEx v8 data, which contain six times the number of paired
gene expression and histology image samples compared to GTEx v6 (GTEx Consortium
et al.l 2020). The GTEx v8 data contain 13,360 paired expression profiling and histology
samples in 55 tissues from 935 donors. The unprecedented size of this multi-modal dataset
offers an opportunity to study how molecular characteristics of tissue samples relate to the
complex morphology observed in images of those same tissues. A joint “multi-view” analysis
of these two modalities makes it possible to understand each view better, as well as to provide
insights into the system that are difficult or impossible to identify when using only a single
view. Thus, we aim to analyze shared biological variation in the GTEx v8 sample with
paired histology images and bulk gene expression profiling; we also leverage the available
genotype data for each donor.

This paper proceeds as follows. First, we present a joint analysis of the GTEx v8 histol-
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ogy images and expression profiles using latent variable models that uncover the sources of
shared variation between the two paired data modalities. We then examine the biological
origins of some of the most dominant sources of variation, including cell-type heterogene-
ity and tissue type. We also analyze technical variation in the data modalities, including
ischemic time and patient ventilator status, and how these covariates affect the relation-
ship between morphology and expression. Leveraging the genotype data, we find a number
of quantitative trait loci that describe associations between certain genotype variants and
image morphology. Using modality imputation methods, we show that our approaches are
able to reveal biological insights using one data modality that were previously available only
through access to the other data modality.

2 Results

We examined the relationship between tissue histology and molecular features using the
GTEx v8 data. To this end, we fit dimension reduction methods on the paired histology
image and bulk gene expression samples, and we used the lower-dimensional representations
of these methods to explore different sources of variation: i) which gene expression patterns
are associated with tissue morphology patterns; ii) whether there are any genetic variants
that are jointly associated with tissue histology and gene expression; and iii) how biological
and technical covariates affect the shared variation of the two data modalities.

2.1 The GTEx v8 data include joint observations of genotype, bulk gene
expression, and histology images across diverse healthy human tissues

The GTEx v8 dataset contains paired measurements on 13,360 samples across three modali-
ties: histology images, RNA-seq bulk gene expression profiles, and genotypes. The GTEx v8
data, which come from 935 donors, span 55 distinct healthy human tissues . The
v8 data contain over six times as many paired observation samples as the previous GTEx
v6 data, which had 2221 paired samples across 499 individuals.

The imaging data were collected from tissue slices fixed to slides and stained with hema-
toxylin and eosin (H&E). Raw images used inconsistent magnification, but in general were
taken with either 20x apparent magnification, resulting in around 0.25 microns per pixel,
or 40x apparent magnification, resulting in around 0.50 microns per pixel. Each image was
post-processed to have a size of 1000 x 1000 pixels. These imaging data exist to ensure that
each of the RNA-sequencing samples was from healthy tissue (Carithers et al., 2015), as the
goal of GTEx was to survey and sequence non-diseased tissues from postmortem donors.
Only solid tissue samples were imaged, restricting our paired sample data to 39 tissues.
The tissue slices for imaging and for bulk RNA-sequencing were harvested from adjacent
locations in the tissue of interest. For our analyses, we assume that these paired slices to
represent the same section of tissue.
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The bulk RNA-sequencing data were measured in transcripts-per-million (TPM). As in
earlier work, we log-transformed and z-scored the RNA-seq data for our analyses ,
. The genotype data was based genotype calls from OMNI SNP arrays. Variants with a
minor allele frequency (MAF) of < 1% were excluded. The donor demographic information
and medical history were ascertained using postmortem surveys of next-of-kin

et a, 2015).

Paired expression/image samples in GTEx v8
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Figure 1: Makeup of the GTEx v8 dataset. (a) Counts of the number of samples
and tissue types with paired measurements of image morphology and gene expression. The
GTEx v8 dataset contains 13,360 samples with joint data modalities, which is over six times
as many samples as the GTEx v6 data. (b) Number of paired samples for each tissue type.

2.2 Separability of tissue types

We first sought to understand the major sources of variation within the imaging and gene
expression data. To do this, we fit dimension-reduction methods to each: for the imaging
data, we fit a convolutional autoencoder (CAE) (Masci et al., |2011) followed by dimension
reduction using UMAP (McInnes et al.| [2018]) on the CAE embeddings; for the gene ex-
pression data, we fit UMAP directly on the log-transformed and z-scored gene expression
values (Figure 2). We found that tissue type is the driving factor of variation in the gene
expression data. The UMAP embedding of the expression data easily separated the sam-
ples by the tissue types ) Meanwhile, the embedding for the image data did not
show a clear division among the tissue types ) Some tissues, such as testis and
mammary gland, showed strong within-tissue coherence in the projection of the images, but
most tissue types did not show strong within-tissue clustering. However, examining rela-
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tionships across tissues, we observed that some tissues with similar visual appearances —
such as skeletal muscle, heart, and thyroid — were well-mixed in the embedding. For both
data modalities, we computed the adjusted Rand index (ARI) for a K-means clustering to
quantify the clustering of tissues in the two-dimensional UMAP embedding ); we
find that tissues cluster well in the gene expression data (ARI 0.64) whereas there is poor
tissue clustering in the image feature projection (ARI 0.19).

To further quantify the extent to which tissue type is encoded in the imaging and gene
expression data, we fit a multi-layer perceptron (MLP) classifier to each modality, using
the gene expression profiles and autoencoder embeddings as input. We then measured their
performance on a set of held-out samples. We found that the gene expression tissue classifier
performed well, with an average accuracy of 97%, while the classifier for the images achieved
38% accuracy ) Moreover, the confusion matrix for the expression data showed
little error (Figure 3p). In contrast, the confusion matrices for the classifier revealed several
commonly misclassified tissues in the image data (Figure 3c). For example, the two types of
skin tissue were frequently misclassified as one another. Together, these results suggest that
gene expression data includes variation associated with tissue type, while the morphological
features from our CAE embedding broadly fail to distinguish tissue types.
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Figure 2: Low-dimensional embeddings of gene expression and histology image
data. (a) Two-dimensional UMAP embedding of the gene expression profiles. Points (sam-
ples) are colored by their tissue types (colors correspond to those shown in . (b)
Two-dimensional UMAP embedding of the convolutional autoencoder histology image rep-
resentation. The border of each image is colored according to its tissue type. (c) Adjusted
Rand index computed on a K-means clustering of each UMAP embedding.

2.3 Joint analysis of gene expression and image data

Next, we sought to explore the patterns of variation that are shared between the image and
gene expression data modalities. To do this, we fit probabilistic inter-battery factor analysis
(IBFA), which identifies axes of variation that are shared between two data modalities, as
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Figure 3: Predicting tissue type using data from the two modalities. (a) Test accu-
racy of a model predicting tissue type from gene expression profiles (left bar) and histology
image features (right bar). For histology images, we use the autoencoder embeddings as the
input to the classifier. Vertical ticks show the 95% confidence intervals for ten-fold cross-
validation. (b) Confusion matrix for predicting tissue type from gene expression profiles.
The cell in row ¢ and column j shows the fraction of samples whose true tissue type is tissue
i that were predicted as tissue j. (c) Same as (b), but for predictions using autoencoder
embeddings of histology images.

well as variation that is unique to each data modality. We fit IBFA using the autoencoder’s
image features and gene expression profiles. The IBFA model provides a lower-dimensional
representation (here, we use 50 dimensions to approximately follow previous work (Ash et al.
2021}; |Gundersen et al.l |2019)) of each sample that takes into account the variation present
in each modality.

Examining the IBFA shared latent variables, we found that many of them were driven by
differences between tissue types. For example, latent dimension 21 appeared to be largely
driven by ovary tissue samples (Figure 5h). Furthermore, we examined whether variation in
the expression of certain genes contributed more to this latent variable than others. Using
a gene set enrichment analysis (GSEA), we found an enrichment of genes with substantial
contribution to this factor involved in estrogen response, including AGR2 and TFF3
ure 5b) (Salmans et all [2013; Hoellen et al. [2016). These results suggest that there are
substantial shared signals between the two data modalities, echoing prior work (Gundersen
et al., 2019).

We then examined tissue type separation in the three types of IBFA latent variables:
shared, image-specific, and gene expression-specific. To do this, we fit a multilayer percep-
tron (MLP) classifier for each set of latent variables using the tissue type as the response,
and we computed the predictive test accuracy for a set of held-out samples. We found that
tissue type was well predicted using the shared latent variables and expression-specific latent
variables, while accuracy was much lower for the image-specific latent variables )
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Interestingly, prediction accuracy on held-out samples was higher for the image-specific IBFA
latent variables than the prediction accuracy using the complete set of image features, as
presented in the previous section. This suggests that a joint analysis of the shared and
modality-specific variation between the two modalities might capture more biological signal

than analyzing each data modality alone.

00" ZExpression

a b c

Image-specific variation Shared variation Gene-specific variation Tissue prediction

Shared

Figure 4: Shared variation between gene expression and histology image features
captured by an IBFA model. Low-dimensional representation of each of the IBFA
model’s latent variable types, capturing (a) image-specific variation, (b) variation shared
between the modalities, and (c) gene expression-specific variation. (d) Test set accuracy of
a model predicting tissue type from each of these latent variables. Vertical ticks show 95%
confidence intervals.

2.4 Joint associations with GTEx donor and sample covariates

In addition to exploring the relationship between histology image features and gene expres-
sion, there is a need to understand how this relationship varies across donors with varying
medical health characteristics and samples with varying technical quality. To assess the
paired datasets’ associations with observation covariates, we leveraged the set of donor- and
sample-level metadata collected as part of the GTEx project. The donor-level metadata
include characteristics such as donor demographics and medical histories, and the sample-
level metadata include attributes related to sample quality and molecular information. For
each metadata variable, we fit a multivariate linear regression model using the IBFA shared
latent variables as covariates and the metadata variable as the response. We then measured
the relationship between each latent variable and the metadata covariate using R? of each
regression model.

The most highly-associated donor-level covariates were demographic variables, such as
sex (Figure 6p). Other associations were related to a donor’s overall tissue recovery and
tissue health, such as ischemic time. At the donor level, ischemic time measures the interval
length between between actual death, presumed death, or cross clamp application, and the
start of the GTEx collection procedure. For the sample-level metadata, variables related to
technical sample characteristics — such as the rRNA rate, or the fraction of all reads aligned
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Figure 5: Tissue-type separation within the IBFA shared latent variables. (a) For
one IBFA component (latent variable 23), the top row shows the five images with the most
extreme positive estimated values for this component, and the bottom row shows the five
images with the most extreme negative values. This component is likely related to heart and
ovary tissue. (b) Top Hallmark pathways from a gene set enrichment analysis (GSEA) on
the genes with nonzero loadings for this component. The top pathway is related to estrogen
response.

to ribosomal RNA regions (Conesa et al) 2016) and the RNA integrity number (Schroeder’
2006) — showed the strongest associations (Figure 6p).

2.4.1 Ischemic time

Motivated by the associations with ischemic time in our exploratory analysis, we began
a more focused study of the association between the shared latent variables and ischemic
time. Rather than quantify the association with ischemic time across all tissues as before,
here, we examined each tissue’s marginal association with ischemic time. We found that the
association strength varied by tissue, although most tissues showed substantial associations
with ischemic time (Figure 7h). Focusing on one tissue in particular — heart tissue from
the left ventricle — we found that ischemic time was most associated with latent dimension
35 ) Visualizing the images with values on both extremes of this factor showed
visible differences between the healthy and necrotic samples ) These results
suggest that RNA decay and tissue necrosis are jointly encoded in expression and image
shared latent factors, and that those shared decay signals align well with sample ischemic
time across tissues (Carithers et al.| [2015).
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Figure 6: Associations between the IBFA latent variables shared between gene ex-
pression and image features, and GTEx metadata. (a) Associations between shared
latent variables and donor-level metadata. Each bar shows the R? value from a regression
model fit using the IBFA shared latent variables as the covariates and the corresponding
metadata variable as the response. Bars are colored by the category of metadata variable.
(b) Same as (a), but for sample-level metadata. Variable descriptions are in

2.4.2 Donor ventilator status signal in shared variation

We next sought to explore the association between gene expression, tissue morphology, and
variables related to patient medical history. In particular, we examined whether donors
who were on a ventilator at the time of death showed different morphological and gene
expression characteristics compared to donors who were not on a ventilator. To do so, we
quantified the association between each IBFA shared component and the donors’ binary
ventilator status. More precisely, for each tissue type, we fit a logistic regression model with
the shared components as covariates and the ventilator status as the outcome.

We found that one shared component (latent variable 38) showed a substantial differ-
ence between these two groups of donors in lung tissue ) Furthermore, examining
the contribution of each gene’s expression to this component, we found enrichment of genes
related to hyporia and ozxidative phosphorylation ) One of the top genes in this
component, AQP2, has been observed to be disturbed following mechanical ventilation (Sun:
. Another gene, ABHD2, was observed to correlate with risk for chronic ob-
structive pulmonary disease (COPD) (Liu et al. 2015). Moreover, we observed that the
images of lung tissue from patients with ventilation showed different coloration and orga-
nizational patterns compared to the donors without ventilation (Figure 8b). These results
suggest specific, reproducible damage done to lungs as a result of ventilation; moreover, the
signal associated with ventilation shows up in both gene expression and imaging data in
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Figure 7: Association between sample ischemic time and shared IBFA component
for samples from the left ventricle. (a) Scatterplot of one IBFA joint latent variable (LV
35) and each sample’s ischemic time for samples from the heart’s left ventricle. Each point is
plotted as the corresponding histology images. (b) Histology images of the samples with the
highest values (top row) and lowest values (bottom row) on this IBFA shared component.

lung tissues.

2.5 Image morphology QTL analysis: Incorporating genotype data

In addition to analyzing the shared morphological and transcriptional signals of these sam-
ples, we also examined these phenotypes’ associations with each donor’s genotype. Quantita-
tive trait loci (QTL) are regulatory associations between a genetic variant and a quantative
trait; the focus of GTEx has been the identification of expression QTLs (eQTLs) and splicing
QTLs (sQTLs) across healthy tissues (GTEx Consortium et al., 2017). QTLs have provided
valuable information about gene function and regulation (GTEx Consortium et al., 2017,
2020; Rockman and Kruglyak, 2006, in particular in the analysis and interpretation of the
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Figure 8: Shared IBFA component captures donor ventilator status. (a) Shared
IBFA component value (component 38) for lung tissue samples from donors who were on a
ventilator at the time of death (right) and those who were not (left). (b) Top row shows
lung histology images from donors who were on a ventilator, with the five highest values for
this component. Bottom row shows lung images from donors who were not on a ventilator,
with the five lowest values for this component. (c) Gene set enrichment analysis on the set
of genes with nonzero loadings for this component. The top Hallmark pathways are hypozia
and oxidative phosphorylation.

cellular mechanisms of genetic variants associated with disease (Cookson et al., 2009; |Albert|
and Kruglyak, |2015). However, associations between genotype and morphological features
of human tissues (image morphology QTLs, or imQTLs) have been far less studied, with a
few notable exceptions (Ash et al. 2021; |(Gundersen et al., [2019; Barry et al., 2018]).

To investigate these relationships, we conducted an imQTL analysis to discover asso-
ciations between the donors’ genotypes and histology image features. For each tissue, we
selected a subset of image features and genetic variants to test for association using sparse
CCA and known eQTLs from GTEx (Methods). Then, we tested for association between
each variant and image feature in each tissue using a linear regression model as implemented
in the MatrixEQTL R package . We found 68 imQTL associations across
six tissues (FDR < 0.1), suggesting we are indeed able to use these GTEx v8 data to identify
imQTLs.

As an example, the imQTLs included an association between image feature 1007 and
genetic variant rs10008860 in esophageal mucosa tissue samples (FDR < 0.1; .
Examining the esophageal mucosa histology images for each of these genotypes did not im-
mediately reveal any visual differences between them; however, a more thorough analysis by
a trained pathologist could be beneficial. This variant regulates the gene AFAP1 and the
long noncoding RNA AFAP1-AS1, which are expressed in a handful of tissues, including
esophagus. Moreover, these two genes have been observed to be associated with abnormali-
ties and disease in esophageal tissue (Wu et al., 2013]).
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Figure 9: imQTL between morphology image feature and genetic variant
rs10008860 in esophageal mucosa tissue. (a) boxplot with the number of minor al-
leles (x-axis) versus the image feature expression value (y-axis); (b) same figure but with
thumbnails of the images for each sample, with jitter.

2.6 Sparse and dense shared components

To further explore the relationship between the image and expression datasets, we applied a
matrix decomposition method that provides a mix of both sparse and dense factors, called
SFAmix (Gao et al.,[2013)). Since SFAmix decomposes a single matrix — unlike IBFA, which
jointly models two data matrices — we concatenated the expression matrix and the image
autoencoder embeddings according to their matching samples. We normalized each dataset
separately and fit the model with 1000 components.

Examining the resulting latent factors, we find that the majority of the factors (97%)
are found to be sparse. Moreover, we examined the level of sparsity for each feature in
the loadings matrix, and we found that loadings vectors corresponding to histology images
tend to be much more sparse than those for gene expression ) This observation
suggests that the shared variation between these two modalities is largely driven by many
genes’ expression levels, but tends to be specific to certain image features.

To further understand what signal the sparse and dense components capture, we com-
puted the associations between the latent factors and the metadata information. We per-
formed a similar analysis as in Section but here we examine the associations separately
for sparse and dense components. We find that the dense components tend to be most as-
sociated with characteristics related to technical variation and tissue health, such as time of
chest incision and ischemic time (Figure 10c). Meanwhile, the sparse components tend to
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Figure 10: Combinations of sparse and dense components found by SFAmix.
(a) Loadings values for a sample sparse component (left) and dense component (right).
(b) Density plot showing the fraction of zeros in the components corresponding to each
feature. Densities are split by whether the feature is gene expression or an image feature.
(c) Associations between GTEx metadata and SFAmix dense components. (d) Associations
between GTEx metadata and SFAmix sparse components.

be highly associated with demographic information such as sez, race, and age (Figure 10d).
These results suggest that the sparse and dense factors — which capture variation in a small
number of features and a large number of features, respectively — are encoding complemen-
tary sources of variation in these data modalities.

Finally, we investigated whether the SFAmix factors are associated with the genotype of
the corresponding samples by performing a QTL analysis. Specifically, we treated the sparse
factors as a composite phenotype representing variation in gene expression and histology
images. We then ran an analysis similar to our imQTL experiment (Section. Specifically,
we tested for association between each gene variant and latent factor in each tissue using
MatrixEQTL (Shabalin, [2012). We found 1,826 associations across eight tissues (FDR
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< 0.1). This is substantially more associations than we found in our imQTL analysis —
which only tested for associations with image features — suggesting that factors that jointly
capture gene expression and histology information could be promising for identifying QTLs.

3 Discussion

In this study, we present an analysis of shared variation in gene expression and histology
images in a large sample of human tissues from the GTEx v8 project. Our analysis focused
on understanding the expression signatures associated with morphological features, as well
as the donor and sample characteristics that are related to these signatures.

In general, we found that tissue type is a major driver of variation in both of these
modalities, but gene expression contains extensive tissue-specific signal beyond that con-
tained in the image features. However, we also saw substantial variation among image
features and gene expression within tissue types. This variation was associated with tech-
nical, environmental, and biological factors, including sample ischemic time in liver tissue,
donor ventilation status at the time of death in lung tissue, and an image morphology QTL
in esophageal mucosa tissue.

While it is evident from our analysis that image morphology and gene expression contain
both shared and complementary information, there remain challenges for fully articulating
the relationship between them. A crucial future step will be to identify the specific image
features associated with various gene expression and genotype features. This type of analysis
could be able to identify cell types, tissue structures, and tissue shapes that are related to
specific expression phenotypes. We attempted such an analysis in this study by fitting a
model to predict pixel-wise expression levels of specific genes within held-out images (Sup-
plement Section . However, we were unable to achieve consistent accuracy. One solution
would be to collect spatially-resolved gene expression data to triangulate the relationship
between image morphology and gene expression in order to develop a mapping function
between the two data types.

Joint analyses of morphology and molecular features shed light on each modality: mor-
phology can inform us about gene function, and genomic data can inform us about the
function of morphological structures. We envision this type of joint analysis being impor-
tant in future studies of cellular organization and function, and disease.
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5 Methods

5.1 Code availability

Code for analyses and data processing is available here: https://github.com/andrewcharlesjones/
gtex_image_analysisl

5.2 Data
5.2.1 Gene expression

We used the GTEx version 8 (v8) gene expression dataset. Specifically, the transcript per
million (TPM) measurements were accessed from the file
GTEx_Analysis_2017-06-05_v8 RSEMv1.3.0_transcript_tpm.gct in the dbGaP public repos-
itory. For all analyses, we used the 20,000 most variable genes. For each gene, we log-
transformed, mean-centered, and standardized the data by dividing by its sample standard
deviation.

5.2.2 Images

The GTEx v8 histology image dataset is composed of images of tissue slices fixed to slides
and stained with hematoxylin and eosin (H&E). Raw images were provided in SVS format.
The images used inconsistent magnification, but in general were taken with either 20x ap-
parent magnification (approximately 0.25 microns per pixel) or 40x apparent magnification
(approximately 0.50 microns per pixel). The images were imported using the Python in-
terface for the OpenSlide library and then split into 1000 x 1000 pixel tiles. A tile was
considered for selection if the mean gray values of itself and the immediately adjacent tiles
(above, below, left, and right) were each below (darker than) 180 out of 255. Because of
the intractable file size of the full-resolution images, tile selection was actually performed on
the 16x lower resolution version of the image, and the region in the full-resolution image
corresponding to the selected tile was extracted.
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For the convolutional autoencoder analysis, images were further downsampled to create
512 x 512 versions of each image (see below for details).

5.2.3 Sample- and donor-level covariates

The GTEx data contains several metadata related to the samples and the donors. We use
123 donor-level covariates and 37 sample-level covariates.

5.3 Metadata variable codes

SEX

HGHT

TRCHSTIND

DTHVNT

DTHRFG

SMRRNANM

SMGNSDTC

SMSPLTRD

SMRIN

LDACC

Biological sex
Height

Time of chest incision
(minutes)

Donor on a ventila-
tor immediately prior to
death

Body refrigerated

Intronic Rate: The frac-
tion of reads that map
within introns

Genes Detected: Total
number of genes with
at least 5 exon mapping
reads

Split Reads: The num-
ber of reads that span
an exon-exon boundary

RIN Number
Laboratory, Data Anal-

ysis and Coordinating
Center

LBHBSAB

DTHRFGD

TRDNISCH

DTHHRDY

SMRRNART

SMEXNCRT

SMTRSCPT

SMALTALG

SMEXPEFF

Hepatitis B surface an-
tibody

Number of hours in re-
frigeration

Total ischemic time

Hardy scale

rRNA Rate: Ratio of all
reads aligned to rRNA
regions to total reads
Exonic Rate: The frac-
tion of reads that map
within exons
Transcripts  Detected:
Total number of tran-
scripts with at least 5
exon mapping reads
Alternative Aligments:
duplicate read entries
providing  alternative
coordinates

Expression Profiling Ef-
ficiency: Ratio of exon
reads to total reads
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5.3.1 Human Protein Atlas data

The Human Protein Atlas (HPA) is a Swedish-based research consortium that has generated
large-scale profiles of protein activity across many tissues and using many different measure-
ment technologies (Uhlén et al., 2015). We leveraged the “Tissue Atlas” portion of the
HPA database, which provides images with spatially localized protein expression estimates
across many proteins and human tissues. This is achieved through an immunohistochemical
staining process. We downloaded the HPA images using the HPAanalyze R package (Tran
et al., 2019), which provides an interface with the HPA online portal.

5.4 Image autoencoder

We trained a convolutional autoencoder using the GTEx histology image data using the
DCGAN architecture (Radford et al. 2015). We modified the architecture to accept 128 x 128
images as input. To train the autoencoder, we randomly sampled a 128 x 128 patch of each
image on each epoch, and fed a batch of these patches as input. The model was fit in Pytorch
using a mean-squared (reconstruction) error and the Adam optimizer (Paszke et al., 2019
Kingma and Baj 2014).

Once the model was fit, we extracted the activations from the inner-most bottleneck
layer for each image — this resulted in a 1024-length vector representation of each image.

5.5 Tissue prediction

To assess the extent to which tissue type is encoded in each data modality, we performed a
classification analysis with each data type, using a multilayer perceptron with one hidden
layer as the classifier (using the Scikit-learn software (Pedregosa et al., 2011)). For gene
expression, we used the TPM data as the covariates, and each tissue’s corresponding tissue
type as the response. For histology images, we used the autoencoder embeddings as the
covariates and the tissue type as the response. We measured the classification performance
using the prediction accuracy on a held-out test dataset. We repeated this multiple times
through 5-fold cross-validation. We performed a similar analysis to assess the extent to which
each CCA method (ImageCCA, PCCA, and DPCCA) captured tissue type in its canonical
components. For each method, we extracted the canonical variables (i.e., the latent variable
representation) for each sample, and used these as the covariates in the classification analysis.

5.6 Ischemic time analysis

e Multiple analyses were performed to assess the extent to which ischemic time is encoded
in each dataset.

e First, we performed a regression analysis to assess the overall level of association be-
tween each data type and ischemic time in each tissue. Specifically, for each tissue,
we ran two linear regression analyses: one in which we regressed ischemic time on
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the tissue’s gene expression measurements, and another regressing ischemic time onto
the tissue’s histology image representation. For the image representation, we used the
autoencoder latent representation. We measured the regression performance by com-
puting the Pearson correlation between predicted ischemic time and true ischemic time
in a held-out test dataset.

e Second, we performed a more focused analysis on the pancreas tissue data. We first fit
a convolutional autoencoder (identical to the one above) on the pancreas data alone.
Then, after performing PCA on the latent representations, we correlated each PC with
the samples’ ischemic times. Finally, we fit a CCA model using pancreas data alone,
and ran a GSEA analysis on the fitted CCA gene coefficients.

5.7 ImageCCA

We ran ImageCCA using the code available at https://github.com/daniel-munro/imageCCA,
swapping out the ImageCCA autoencoder architecture for the DCGAN128 architecture as
described above. ImageCCA uses sparse CCA as implemented by the PMA package in R
(Witten et al.l 2009). We set the imageCCA hyperparameters as A, = 0.1 and A, = 0.1,
where A\, and )\, are the parameters controlling the sparsity penalty for the expression and
image data, respectively.

5.8 IBFA

IBFA, which is closely related to canonical correlation analysis (CCA), models two datasets
X2 Xt with paired samples as being generated from a small set of shared latent variables
z°® that explain variation in both, as well as two sets of latent variables z¢, z® that explain
variation unique to each dataset. The dimensionalities of the latent variables z*, z%, and
z’ are kg, ko, and ky, respectively, where kg, kq, ky < min(p, ¢). For simplicity, we assume
ks = kq = kp in our experiments. Assume that, without loss of generality, X¢ and X
correspond to the image and datasets, respectively. Specifically, if x{' is the ¢th image sample,
and xg’ is the corresponding expression sample, PCCA assumes the following generative
model for i =1,...,n:

x{|z°, 2% ~ Np(A%z] + Wz, o21)

x0|25, 20 ~ Ny(A'z + WP2!, o2T)

25,28, 70 ~ N;(0,1)

7 1

The latent variables {z;}",; are compressed, low-dimensional representations of each
sample that capture information from both the image and expression feature spaces. Ad-
ditionally, {z¢}?_, and {z%}?"_, capture low-dimensional variation that is specific to images
and expression, respectively. The loadings matrices A € RF*? and A’ € R¥*4 capture the
linear relationship between the shared latent space and each dataset. Similarly W@ € R*¥*P
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n

- J

Figure 11: Graphical model for IBFA.

and WP € R¥*4 capture the relationship between the view-specific latent spaces and their
respective datasets.

e Probabilistic inter-battery factor analysis (IBFA) (Klami et al. 2013) is an extension
of the more well-known probabilistic canonical correlation analysis (PCCA) (Bach
and Jordan, 2005). In each of these methods, two datasets with paired samples are
represented by a small set of latent variables shared by each. IBFA further includes
two extra sets of latent variables that are specific to each dataset.

e The generative model for IBFA is as follows

x7|z*, 2" ~ N,(A°Z§ + Wz¢, o°T)
x0|25, 20 ~ Ny(A’z + WP2! o%T)

17

z,z¢ zé’ ~ Ni(0,1)

)

e We perform inference in this model using a mean-field variational approximation. In
particular, we approximate the posterior p(z;, z¢ zl-’|x?, x?) with a fully factorized ap-

177
proximation:
q(z, 28, 27) = q(23)q(2f)q(2)).

We chose each of the variational distributions to be spherical Gaussians:

q(2}) = q(2f) = q(2) = Ni(0,1)

5.9 Metadata association analysis

We conducted a series of linear regression analyses to evaluate the association of the joint
phenotype with sample- and subject-level covariates.
Let n be the number of samples. For each covariate y € R", we fit the regression model

y=2ZB+e e~N(0,0%),
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where Z* € R™*¥ is a matrix of the shared latent variables, and 8 € RF is a vector of
coefficients.

We assessed the strength of the linear regression fit using the R? value, which is computed
as
(yi — 2°B)?
RP=1-=

(i —¥)?

e -

)

where B is a vector of the estimated regression coefficients, and ¥ is the mean value of the
response variable.

5.10 Spatial expression prediction

We trained a convolutional neural network (CNN) to predict the expression value for a given
gene at each location in a histology image. Specifically, we used the histology images as input
to the CNN, and we used the bulk RNA-seq expression of a given gene as the label. Similar
to the autoencoder analysis above, we randomly sampled each image to a 128 x 128 crop on
each epoch (but note that all crops had the same bulk gene expression label). We trained
the CNN with mean-squared error loss and the Adam optimizer. To predict the expression
pattern spatially across a test image, we cropped the image into hundreds of overlapping
128 x 128 tiles, and obtained the CNN’s predicted expression value for each tile. By pasting
together these predicted values, we created a heatmap of the spatially-resolved expression
predictions for each image.

5.11 Gene set enrichment analysis

We performed two types of gene set enrichment analysis (GSEA): a hypergeometric test
and a permutation-based test. To run GSEA on the coefficients of ImageCCA — which are
sparse and contain only a small number of which are nonzero — we ran a hypergeometric test
for each gene set. Specifically, for each gene set, we tested whether the nonzero coefficients
were enriched in that set compared to all other sets. We implemented the hypergeometric
test using the R package Piano (Varemo et al., 2013). Significance values were corrected
using an FDR procedure. To run GSEA on the gene-wise coefficients of PCCA and DPCCA
— which are not sparse — we ran a permutation test for each gene set. Specifically, for each
gene set, the genes were ranked by their coefficient values, and this ranking was compared
to many permuted rankings in order to estimate the enrichment level of that gene set near
the top or bottom of the ranked list. We implemented the permutation test using the R
package fgsea (Korotkevich et al., 2019)). We used two classes of gene sets, both provided
by MSigDB (Liberzon et al. 2015): the Hallmark gene sets and the GO Biological Process
gene sets.
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Supplementary Figure 1: Associations between IBFA latent variables and sample-level meta-
data. Each cell represents the R? value for each univariate relationship. The color bar on
the left represents the category of each metadata variable.

6 Supplementary material

6.1 Metadata associations
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Supplementary Figure 2: Associations between IBFA latent variables and donor-level meta-
data. Each cell represents the R? value for each univariate relationship. The color bar on
the left represents the category of each metadata variable.
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6.2 Image QTL hits

SNP Image feature|beta |p-value |FDR |[tissue rsid
chr12_30579577_C_G_b38 9 0.135 |3.55e-10|0.001|Brain Cortex rs34836571
chr12_30579892_A_G_b38 9 0.135 |3.55e-10|0.001 |Brain Cortex rs73075778
chr12_30582993_A_G_b38 9 0.135 [3.55e-10]0.001|Brain Cortex rs11614872
chr12_30583690_A_G_b38 9 0.135 [3.55e-10{0.001|Brain Cortex rs73075781
chr12_30586152_T_C_b38 9 0.135 [3.55e-10{0.001|Brain Cortex rs7961681
chr12_30615299_CCAGT_C_b38|9 0.131 |3.21e-09|0.006 | Brain Cortex r$35547058
chr12_30626410_C_T_b38 9 0.138 |6.61e-09|0.006 |Brain Cortex rs73077865
chr12_30633444_T_C_b38 9 0.138 [6.61e-09]0.006|Brain Cortex rs17486840
chr12_30655998_T_C_b38 9 0.138 [6.61e-09(0.006 | Brain Cortex rsb5957969
chr12_30656385_C_T_b38 9 0.138 [6.61e-09]0.006 | Brain Cortex rs73077870
chr12_30658245_G_T_b38 9 0.138 [6.61e-09|0.006 | Brain Cortex rs4931358
chr12_30662569_T_A _b38 9 0.138 |6.61e-09|0.006 |Brain Cortex rs73077877
chr12_30676443_C_A b38 9 0.138 [6.61e-09]0.006|Brain Cortex rs17560141
chr12_30678475_C_G_b38 9 0.138 [6.61e-09]0.006 | Brain Cortex rs73077884
chr12_30683436_T_C_b38 9 0.138 [6.61e-09]0.006 | Brain Cortex rs73077887
chr12_30689456_C_T_b38 9 0.138 [6.61e-09|0.006 | Brain Cortex rs11608803
chr12_30693773_C_T_b38 9 0.138 |6.61e-09|0.006 | Brain Cortex rs73077893
chr12_30614207_G_C_b38 9 0.127 |7.06e-09|0.006 |Brain Cortex rs3850959
chr11.67518604_T_C_b38 1 0.166 [3.02e-09[0.009|Skin Sun Exposed Lower leg|rs682208
chr2.196254354_T_G_b38 1 0.117 |4.86e-10|0.021|Skin Sun Exposed Lower leg|rs4372925
chr2_196205718_G_T_b38 1 -0.115]1.48e-09]0.03 |Skin Sun Exposed Lower leg|rs1455815
chr2.196252433_G_C_b38 1 0.11 |3.02e-09|0.03 |Skin Sun Exposed Lower leg|rs4850689
chr2.196253298_T_C_b38 1 0.11 |3.02e-09|0.03 |Skin Sun Exposed Lower leg|rs1869796
chr2.196216491_T_C_b38 1 -0.113]3.47¢-09]0.03 |Skin Sun Exposed Lower leg|rs6707519
chr2_196250030_A_G_b38 1 0.107 [6.64e-09]0.049|Skin Sun Exposed Lower leg|rs4850687
chr2.196254354_T_G_b38 1 0.117 [4.86e-10]0.013|Skin Sun Exposed Lower leg|rs4372925
chr2.196205718_G_T_b38 1 -0.115|1.48e-09|0.019|Skin Sun Exposed Lower leg|rs1455815
chr2.196252433_G_C_b38 1 0.11 |3.02e-09|0.019|Skin Sun Exposed Lower leg|rs4850689
chr2.196253298_T_C_b38 1 0.11 |3.02e-09|0.019|Skin Sun Exposed Lower leg|rs1869796
chr2.196216491_T_C_b38 1 -0.113]3.47e-09]0.019|Skin Sun Exposed Lower leg|rs6707519
chr2_196250030_A_G_b38 1 0.107 |6.64e-09|0.03 |Skin Sun Exposed Lower leg|rs4850687
chr2.196254354_T_G_b38 1 0.117 [4.86e-10]0.02 |Skin Sun Exposed Lower leg|rs4372925
chr2.196205718_G_T_b38 1 -0.115|1.48e-09|0.028 |Skin Sun Exposed Lower leg|rs1455815
chr2.196252433_G_C_b38 1 0.11 |3.02e-09|0.028|Skin Sun Exposed Lower leg|rs4850689
chr2.196253298_T_C_b38 1 0.11 [3.02¢-09]0.028|Skin Sun Exposed Lower leg|rs1869796
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SNP Image feature|beta |p-value |[FDR |tissue rsid
chr2.196216491_T_C_b38 |1 -0.113]3.47e-09]0.028 |Skin Sun Exposed Lower leg|rs6707519
chr2.196250030_A_G_b38 |1 0.107 [6.64e-09]0.045|Skin Sun Exposed Lower leg|rs4850687
chr2.196254354_T_G_b38 |1 0.117 [4.86e-10]0.029|Skin Sun Exposed Lower leg|rs4372925
chr2_196205718_.G_T_b38 |1 -0.115|1.48e-09|0.041 |Skin Sun Exposed Lower leg|rs1455815
chr2.196252433_G_C_b38 |1 0.11 |3.02e-09|0.041|Skin Sun Exposed Lower leg|rs4850689
chr2.196253298 T_C_b38 |1 0.11 |3.02e-09|0.041|Skin Sun Exposed Lower leg|rs1869796
chr2.196216491_T_C_b38 |1 -0.113]3.47e-09]0.041 |Skin Sun Exposed Lower leg|rs6707519
chr2_196250030_A_G_b38 |1 0.107 |6.64e-09|0.065|Skin Sun Exposed Lower leg|rs4850687
chr19_3766809_-C_T_b38 919 -0.001{5.26e-09|0.078|Stomach rsb5927187
chr19_3766579_G_A b38 919 -0.001|9.19e-09(0.078 |Stomach r$56363913
chr19_3766809_C_T_b38 919 -0.001|5.26e-09|0.113 |Stomach rsb5927187
chr19_3766579_G_A b38 919 -0.001]9.19¢-09|0.113|Stomach rsb6363913
chr9_37749476_C_CAG_b38|661 0.007 [8.68e-09]0.196| Thyroid rs60084650
chr9_37749476_C_CAG_b38|661 0.007 |8.68e-09(0.397| Thyroid rs60084650
chr9_37749476_C_CAG_b38|661 0.007 |8.68e-09|0.546 | Thyroid rs60084650
chr9_37749476_C_CAG_b38|661 0.007 |8.68e-09|0.059| Thyroid rs60084650
chr1_48587261_T_C_b38 280 0.008 [8.24e-09(0.283|Muscle Skeletal rs2803277
chr4_7967867_G_A_b38 1007 0.0 [4.58e-09|0.092 |Esophagus Mucosa rs10008860
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6.3 “Painting” expression onto images

Given that we found several clear relationships between gene expression and morphological
features, we asked whether we could infer a dense spatial labeling of gene expression on a
tissue sample from histology images alone. In other words, given an image of a tissue sample
without the corresponding gene expression measurement, can we infer the spatial layout of
the expression of a gene across the tissue slice?

6.3.1 Dense spatial labeling of gene expression

To test this, we fit a convolutional neural network to predict the bulk expression measure-
ment for each gene from the corresponding histology image. Specifically, we split up each
image into smaller, overlapping tiles, and trained the CNN to predict the corresponding
expression value from these tiles. Then, passing the tiles of a test image through the fitted
CNN provides a dense predicted label of a gene’s expression values across the image.

Given that our expression measurements were bulk RNA-seq samples that were did not
contain any spatial information, it is impossible to verify our predictions with this data
alone, and we thus show our experiments as a proof-of-concept. Nevertheless, we found that
the CNN was able to identify large morphological structures and map these onto expression
patterns. For example, in Thyroid tissue, we found the predicted location of expression of
FOXE1 to correlate with the location of cells (Supplementary Figure 3]).

Histological image

Predicted expression

Supplementary Figure 3: Predictions from a CNN trained to localize expression patterns
within individual histology images.

6.3.2 Validating with Human Protein Atlas data

To attempt to validate this proof-of-concept, we tested the CNN on a dataset with spa-
tially labeled expression. In particular, we leveraged data from the Human Protein Atlas
(HPA) (Uhlén et all 2015]), which contains measurements of spatially localized protein ex-
pression. For this test, we again fit the CNN on thyroid data from GTEx for the gene INHA.
Here, we used grayscale images in order to account for color differences between the GTEx
images and HPA images. We then computed spatially localized predictions for a sample
from the HPA.
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We find that the predictions generally resemble the ground truth of protein expression
(Supplementary Figure 4)). We suspect that recent advancements in spatial gene expression
profiling could further enhance this analysis (Stahl et al., [2016; Rodriques et al., 2019).

100

200

GTEx

300

400

0 100 200 300 400 500

Prediction

100

HPA
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Supplementary Figure 4: Predicting INHA expression in thyroid tissues spatially using the
Human Protein Atlas data.
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