

Phase variation as a major mechanism of adaptation in *Mycobacterium tuberculosis* complex

Roger Vargas Jr^{1,2*}, Michael J. Luna³, Luca Freschi², Kenan C. Murphy³, Thomas R. Ioerger⁴, Christopher M. Sassetti³, Maha R. Farhat^{2,5*}

⁸ ¹ Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA.

⁹ ² Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.

10 ³ Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical
11 School, Worcester, MA, USA.

12 ⁴Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA.

13 ⁵Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA.

14 *Corresponding authors: roger_vargas@g.harvard.edu, Maha_Farhat@hms.harvard.edu

15 **ABSTRACT**

16 Phase variation induced by insertions and deletions (INDELs) in genomic homopolymeric tracts
17 (HT) can silence and regulate genes in pathogenic bacteria but this process is not characterized in
18 MTBC adaptation. We leverage 31,428 diverse clinical isolates to identify genomic regions
19 including phase-variants under positive selection. Of 87,651 INDEL events that emerge repeatedly
20 across the phylogeny, 12.4% are phase-variants within HTs (0.02% of the genome by length). We
21 estimated the *in-vitro* frameshift rate in a neutral HT at 100x the neutral substitution rate
22 at 1.1×10^{-5} frameshifts/HT/year. Using neutral evolution simulations, we identified 4,098
23 substitutions and 45 phase-variants to be putatively adaptive to MTBC ($P < 0.002$). We
24 experimentally confirm that a putatively adaptive phase-variant alters the expression of *espA*, a
25 critical mediator of ESX-1 dependent virulence. Our evidence supports a new hypothesis that
26 phase variation in the ESX-1 system of MTBC can act as a toggle between antigenicity and
27 survival in the host.

28 **INTRODUCTION**

29 Tuberculosis (TB), caused by pathogens of the *Mycobacterium tuberculosis* complex (MTBC), is
30 a major public health threat causing an estimated 10 million new cases of disease per year (World
31 Health Organization, 2020). Human TB is primarily caused by seven major phylogenetic lineages
32 (L1-L7) also known as *M. tuberculosis* *sensu stricto*, and two more distant human-adapted MTBC
33 lineages L5, L6 are also known as *M. africanum* (Gagneux, 2018). More recently, studies have
34 revealed two new lineages: L8 in Uganda and Rwanda (Ngabonziza et al., 2020) and L9 in East
35 Africa (Coscolla et al., 2021).

36

37 MTBC genomes show no evidence for recombination or horizontal gene transfer. Genomic
38 diversity, including more ancient divergence from the MTBC ancestor and between lineage
39 members, is instead driven predominantly by DNA damage and replication error resulting in
40 chromosomal point mutations. A different mechanism with 100-1000 fold faster kinetics is the
41 development of insertion and deletions in short sequence repeats (SSRs) of 1-7bp nucleotides
42 through mispairing (Van Der Woude and Bäumler, 2004). This slipped-strand mispairing (SSM)
43 occurs with misalignment between repeats on the mother and daughter strands during DNA
44 synthesis resulting in an increase or decrease in the number of repeat units in the newly synthesized
45 strand (Van Der Woude and Bäumler, 2004). These changes can result in frameshifts or alteration
46 in a transcriptional regulatory region leading to phase-variable expression of a protein. Repeats of
47 a single nucleotide, or homopolymeric tracts (HTs), is the simplest form of SSR. SSM within these
48 regions was recently observed in the MTBC resulting in antibiotic tolerance or resistance
49 (Bellerose et al., 2019; Safi et al., 2019; Vargas and Farhat, 2020).

50

51 Of the variants generated by mutation or SSM, the vast majority do not reach appreciable
52 population allele frequencies. The allele frequency spectrum in MTBC supports a high proportion
53 of low-frequency variants, especially singletons consistent with background and/or purifying
54 selection on average across the genome (Gagneux, 2018; Pepperell et al., 2010). In specific
55 regions, variants may arise more than once in parallel (*i.e.*, among bacterial strains that do not share
56 an immediate common ancestor). This is rare under neutral theory or purifying selection but can
57 be observed due to population demographic shifts or due to positive selection (Brynildsrud et al.,
58 2018; Farhat et al., 2013). Parallel evolution has been commonly observed in antibiotic resistance
59 genes and specifically variants that allow the organism to withstand antibiotic killing (Farhat et
60 al., 2013; Gagneux, 2018; Manson et al., 2017). More recently, parallel evolution has been
61 observed in connection with enhanced virulence and transmission (Brynildsrud et al., 2018;
62 Chiner-Oms et al., 2019; Holt et al., 2018; Vargas et al., 2021).

63

64 Here, we leverage a sample of 31,428 geographically diverse clinical isolates that have undergone
65 whole-genome sequencing (WGS) and are representative of the genetic diversity found within the
66 MTBC. These isolates represent more than 30,000 natural evolution experiments of MTBC
67 infecting humans and transmitting to the next host. Using data on these isolates, we infer the
68 number of times each genetic variant has evolved in a parallel fashion within and outside of HTs

69 in the MTBC genome. With simulations, we determine which variants are likely under positive
70 selection. Using precise genome engineering, we functionally validate HT variants measured to be
71 under positive selection that occur in a regulatory region of the MTBC virulence factor *espA*, a
72 gene essential for type VII ESX-1 mediated secretion. The results support that MTBC continues
73 to evolve towards a phenotype of more effective patient-to-patient transmission.

74

75 RESULTS

76

77 Genetic diversity in 31,428 MTBC clinical isolates

78 We curated and processed 33,873 publicly available genomes. For quality control, we excluded
79 1,663 isolates with inadequate sequencing data at $\geq 10\%$ of variable sites curated across the full
80 dataset (**Figure S1A-S2, Materials and Methods**). We excluded an additional 290 isolates
81 because they could not be typed into an MTBC major lineage based on SNV barcode (most
82 commonly because of missing calls at lineage defining sites, **Materials and Methods, Fig. S2**)
83 (Freschi et al., 2021); excluded 35 isolates because they belonged to L7 that was otherwise not
84 well represented, and excluded 457 isolates because they were typed into L4 but not an L4 sub-
85 lineage, the latter needed for computational efficiency of the phylogeny estimation (**Fig. S2**). In
86 the remaining 31,428 isolates, we detected 836,901 single nucleotide variants (SNV) occurring at
87 782,565 genomic sites across the 4.4-Mb MTBC genome (17.7%) (**Figure S1A-S2, Materials**
88 **and Methods**). Of the 782,565 SNV sites, 422,891 (54.04%) were singletons, *i.e.* only a single
89 isolate harbored a minor allele at that site. Additionally, we detected 47,425 INDELs with 27,937
90 (58.9%) being singletons (**Figure S1A, Materials and Methods**).

91

92 For computational efficiency, the 31,428 isolates phylogeny was constructed separately for L1,
93 L2, L3, L4 (split into three subgroups L4A,B,C), L5 and L6 (**Figure S3, Figure S1A-S2,**
94 **Materials and Methods**) (Edwards et al., 2020). We built a multiple sequence alignment of SNV
95 sites and used maximum-likelihood phylogenetic estimation. The phylogenies represented well the
96 global *M. tuberculosis* *sensu stricto* diversity: spanning 2,815 isolates from L1, 8,090 L2, 3,398
97 L3, 5,839 L4A, 6,958 L4B, 4,134 L4C; *M. africanum* was represented by 98 L5 and 96 L6 isolates.
98 The SNV barcode misclassified only 14/31,428 isolates compared with the full phylogenetic
99 reconstruction (**Materials and Methods**). Given the size of the phylogeny that challenged
100 visualization, we computed t-Distributed Stochastic Neighbor Embeddings (t-SNE) of the matrix
101 of pairwise SNP distances (**Figure S4A, Materials and Methods**). We visualized isolates in this
102 t-SNE embedding space labeling isolates by lineage and confirmed good separation between sub-
103 lineages especially at short scales (**Figure S3, S4B-I**). Within-lineage diversity was congruent with
104 expected diversity, including highest diversity within L1, L4 and L6 and lowest diversity within
105 L2 (**Figure S4J**) (Coscolla and Gagneux, 2014).

106

107 Parallel evolution

108 Using maximum likelihood ancestral reconstruction, we computed the number of parallel/repeated
109 arisals of minor allele SNV mutations (homoplasy score or Hs) across the eight phylogenies

110 **(Figure S3, S5A-B, Materials and Methods).** As ancestral reconstruction methods cannot infer
111 INDEL events simultaneously with SNVs, we developed an alternative method (TopDis) to assess
112 separately for INDEL parallel evolution. TopDis relies on observing monophyletic groups
113 harboring the derived allele that are separated in the tree by isolates harboring the reference state
114 **(Figure S5C, Materials and Methods).** We confirmed the accuracy of the TopDis approach by
115 computing TopDis Hs for SNVs and showing they are equal to Hs computed using ancestral
116 reconstruction for most variants **(Figure S1B-C, Figure S6).**

117

118 **Putatively adaptive SNVs**

119 The distribution of homoplasy scores for SNVs was strongly right skewed; 102 SNVs were
120 acquired \geq 100 times **(Materials and Methods, Figure 1A, Table S1, Table S2)** (Manson et al.,
121 2017). Population bottlenecks can increase the rate of parallel evolution observable in a phylogeny,
122 but estimates of effective population size for Mtb over similar time and geographic scales, which
123 have been modeled with constant and exponential growth priors, did not identify evidence for
124 population contraction (O'Neill et al., 2019). Mtb molecular clock rate estimates have also been
125 robust to assumptions of constant vs. exponential population growth under a coalescent model
126 (Menardo et al., 2019). Here, to simulate the expected rate of parallel mutation acquisition under
127 neutral evolution, we ran simulations using a range of estimated molecular clock rates for *M.*
128 *tuberculosis* assuming a constant population size **(Materials and Methods)** (Menardo et al.,
129 2019). We estimated SNVs to arise with Hs \geq 5 with probability <0.002 under these assumptions.
130 In our data Hs \geq 5 was observed for 4,980 (0.49%) of SNV sites **(Figure 1)**. Of the subset of
131 1,525/4,980 with a minor allele frequency $>0.1\%$ **(Figure 1C-D)**, 470 (30.8%) were coding
132 synonymous, 738 (48.4%) were coding non-synonymous, 308 (20.2%) were intergenic, and 9
133 (0.59%) were in non-coding RNA regions. Sites in genomic regions associated with antibiotic
134 resistance represented 13 of the top 30 sites by Hs (>222) **(Figure 1D, Table S1, Table S2)**.

135

136 **Homopolymer tracts demonstrate a high concentration of INDELs**

137 Because INDELs can be generated by SSM or other mutational processes depending on the genetic
138 sequence context, we divided the 46,306 observed INDELs into the following groups: (1) INDELs
139 in HT regions (n=330 in 145 unique HTs), (2) INDELs in more complex SSR of a pattern of 2 to
140 6 base-pairs (bp, n=2,077), and (3) INDELs in other regions of the genome (n=43,899) **(Figure**
141 **1B, Figure S7, Materials and Methods)**. In HTs, the INDEL acquisition rate across the
142 phylogeny normalized by aggregate region length was 9,339.7/kbp, compared to 61.8/kbp in other
143 SSR regions and 16.9/kbp elsewhere on the genome ($P < 1 \times 10^{-100}$ across three tests for
144 difference between Poisson rates). For comparison, the SNV acquisition rate across the genome
145 was 242.6/kbp aggregated from 834,981 SNVs detected genome-wide. Further, 75.2% of the
146 INDELs in HT regions were homoplastic at a score Hs > 1 compared to 25.9% and 10.3% of
147 INDELs called in all SSR regions and non-HT-SSR, respectively **(Figure 1B-C, Figure S7)**.

148

149 **Putatively adaptive INDELs**

150 Of the 46,306 total INDELs observed, the majority or 32,883 (71%) caused frameshifts within
151 open reading frames with a median allele frequency across the sample of 0.003%. The distribution
152 of INDEL acquisitions across the phylogeny was strongly right skewed with 59 mutations acquired
153 independently \geq 100 times (**Figure 1A**, **Table S3**, **Table S4**). Compared with SNVs, a higher
154 relative proportion of INDELs demonstrated $Hs \geq 5$ (1,393/46,306, 3.01%, P -value $< 1 \times 10^{-5}$,
155 Fisher Exact test) (**Figures 1A, 1C**). Of the 655/1,393 INDELs with allele frequency $>0.1\%$,
156 132/655 (20.1%) were in HT regions and 94/352 (26.7%) of the subset that resulted in frameshifts
157 occurred in HT regions (**Figure 1C, Table S4**). A lower proportion of INDELs was found in
158 known antibiotic resistance-associated genes compared to SNVs (16/655 vs 162/1525, P -value =
159 7×10^{-11} , Fisher Exact test) (**Figure 1D, Table S2, S4**). Among the 30 INDELs with the highest Hs
160 (>187), only three occurred in genes associated with antibiotic resistance: *gid* 103delC ($Hs = 202$)
161 did not occur within an SSR or HT region and is known to confer streptomycin resistance (**Table**
162 **S3**) (Coll et al., 2018; Manson et al., 2017), *glpK* nt565-572insC ($Hs = 261$) located within an HT
163 region and previously implicated in multi-drug tolerance (**Figure 1D, Table S3**) (Bellerose et al.,
164 2019; Safi et al., 2019), and *ponA1* nt1878insCCGCCGCCT ($Hs = 397$) located within an SSR
165 region in a gene that contributes to peptidoglycan biosynthesis and alters sensitivity to the
166 antibiotic rifampicin (Farhat et al., 2013).
167

168 Given differences in mutational processes and rates at SSR versus other sites, we studied
169 potentially adaptive INDELs separately by whether or not they occur in SSRs. We used a Hs cutoff
170 of ≥ 5 , similar to SNVs above. Of the 43,899 non-SSR INDELs, 993 (2.3%) demonstrated an Hs
171 ≥ 5 (**Figure 1B**). The INDEL with the highest Hs was a three amino-acid insertion in the putative
172 antigenic protein Rv2823c that was acquired independently 1,534 times affecting 5,093 isolates
173 across members of the six lineages we evaluated (**Table S3**). The INDELs with $Hs \geq 5$ were more
174 likely to affect intergenic regions than INDELs with $Hs < 5$ (257/993, 26% vs. 6,941/42,906, 16%,
175 P -value = 1.5×10^{-14} , Fisher Exact Test).
176

177 While intragenic SSM often introduce frameshifts and disrupt ORFs, phase variation at intergenic
178 sites can also have important effects on gene expression (Van Der Woude and Bäumler, 2004).
179 We compared the general features of intragenic phase variation with INDELs that putatively alter
180 gene expression based on their occurrence within 50bp upstream of MTBC transcriptional start
181 sites (Shell et al., 2015) and within regulatory non-coding RNAs (Gerrick et al., 2018) (2,077 SSR
182 INDELs and 330 HT INDELs). Overall, we identified frameshift INDELs in HT and other SSR
183 (294/330, 89.1% of HT INDELs and 1,190/2,077, 57.3% of other SSR INDELs) in open reading
184 frames. Of non-HT SSR INDELs, 6.2% (128/2,077) putatively affect gene expression, and 47.2%
185 (981/2,077) introduce translational frameshifts (**Figure 1B-C, Figure S8**). A greater proportion of
186 INDELs in HT regions were found in likely regulatory regions 7.6% (25/330) and open reading
187 frames 69.7% (230/330) compared to other SSR INDELs (**Figure 1B-C, Figure S7**). The majority
188 of frameshifting INDELs incur a premature stop codon within the first 3/4th of a gene (570/981,
189 58.1% for SSR INDELs and 117/230, 50.9% for HT INDELs) (**Figure S7**).
190

191 Given the measured high rate of frameshift INDELs in HT regions, the expected rapid kinetics of
192 SSM, and the high rate of INDEL homoplasy across the genome, we experimentally measured the
193 neutral rate of +1 frameshifting in a 7G HT derived from the *glpK* gene in *M. smegmatis*. The
194 measured rate was 3.14×10^{-8} frameshifts/generation (**Materials and Methods**). Assuming that
195 MTBC doubles once per day on average, this corresponds to a rate of 1.14×10^{-5} frameshifts/
196 HT/year [lower bound = 7.96×10^{-6} , upper bound = 1.49×10^{-5}] (**Materials and
197 Methods**). To identify potentially adaptive INDELs that should demonstrate more extreme
198 homoplasy than observed under neutral evolution, we ran simulations of HT evolution respecting
199 the 8 observed Mtb phylogenies (**Figure S8, Materials and Methods**). We estimated the
200 probability of HT accumulating >45 INDELs across the phylogeny at <0.002 under the neutral
201 rate (**Figure S8**). Forty-five HTs had a homoplasy score > 45 (**Figure 1C, Table S5, Table S6**).
202 These putatively adaptive HTs occurred in one aforementioned gene associated with antibiotic
203 resistance, *glpK*, and the remaining were in other genes spanning a range of functions. Two of the
204 three HT regions with the highest Hs occurred in the 3' end of *ppe13* (*Hs* = 2,317 and *Hs* = 771),
205 and located 15bp from the stop codon on the 1,332bp ORF (**Table S3, S5**). Of the 3,088 mutation
206 arisals within these adjacent HTs, 49.5% (1,529/3,088) resulted in a premature stop codon while
207 50.5% (1,559/3,088) resulted in an aberration of the stop codon in the annotated H37Rv gene
208 sequence. Further, 10/45 (22%) of the putatively adaptive HTs occurred in intergenic regions and
209 of these 3/10 occurred within 50bp upstream of a TSS (*Rv3848-espR*, *vapC2-Rv0302*, *espA-ephA*).
210

211 Recency estimation of putative adaptive variants

212 We hypothesized that if positive selection is driving parallel evolution of an allele then the ratio of
213 homoplastic instances of that allele divided by the number of isolates carrying the same allele can
214 capture the recency of positive selection. We separated genes into four non-redundant categories:
215 *antigen* genes, *antibiotic resistance* genes, *PE/PPE*, and other genes (**Materials and Methods**).
216 We compared other categories to antibiotic resistance genes, as the selection pressure on variants
217 in the latter only commenced with the introduction of antibiotics for Mtb treatment 70-80 years
218 ago (Ektefaie et al., 2021). We computed a recency ratio (RcR) for the 1208 homoplastic SNVs in
219 coding regions. The RcR displayed a strongly right-skewed distribution as most SNVs have very
220 few independent arisals relative to the number of isolates that harbor the minor allele indicating
221 older selection (**Figure 2A-B, Table S1, Table S2**). As expected, RcR values were highest
222 (indicating more recent evolution) for SNVs in antibiotic resistance regions ($P < 1 \times 10^{-16}$,
223 Mann-Whitney U-test between antibiotic resistance and every other gene category) (**Figure 2C**).
224

225 The RcR for the 388 coding non-HT INDELs (grouping non-HT SSR and non-SSR INDELs
226 together) closely resembled that for SNVs (**Figure S9A-B**). Similar to SNVs, RcR values for non-
227 HT INDELs were higher in antibiotic resistance regions ($P < 0.002$, Mann-Whitney U-test
228 between antibiotic resistance and every other gene category) and median RcR values within gene
229 categories mirrored those for observed for SNVs (**Figure S9C**). This suggests that the mutational
230 or other processes giving rise to non-HT INDELs and selection on them is similar to SNVs.
231

232 The RcR distribution for the 100 coding HT INDELs demonstrated a shift toward higher values
233 than SNVs or non-HT INDELs in every gene category (**Figure 2D-F, Table S3, Table S4**). As
234 INDELs in SSR are uniquely prone to revert to the ancestral sequence, this observation may be
235 related to recent selection for the derived allele, recent selection for reversion to the ancestral allele,
236 or both. Regardless, this observation implies recent selection for INDELs in HT tracts.
237

238 **Frameshifts in a HT upstream *espA* alter transcription**

239 To assess the functional consequence of variation we observed in HTs (**Figure 1B-C, Table S5**),
240 we carried out a genome-wide association with the antibiotic resistance phenotype to 15 antibiotics
241 to uncover any previously unknown associations between frameshift mutations in HTs and
242 resistance to a panel of antibiotics (n= 101-14,537, **Materials and Methods**). Of the 145 HTs
243 studied, 17 were significantly associated with resistance to at least one antibiotic, including the
244 previously known association between convergent frameshifts in the HT of *glpK* and multi-drug
245 resistance (**Figure 3A-B, Table 1**). In addition to *glpK*, frameshifts in the HT of Rv2264c
246 (Hs=138) and *lysX-infC* (Hs=29) were the top three positively associated HTs with multi-drug
247 resistance. The majority of HTs (128/145, 88%) do not, however, appear to potentiate antibiotic
248 resistance. We hypothesized that these regions may be mediating a different form of pathogenic
249 adaptation.
250

251 As mentioned above our top HT and non-HT INDEL hits occurred in *PPE13*, and in a putatively
252 antigenic protein respectively suggesting that they mediate adaptation at the immune or host-
253 pathogen interface. The *PPE13* HT frameshifts are predicted to shorten the protein product by ~5
254 AA, and hence were difficult to evaluate experimentally. We noted that other HTs with high Hs
255 appeared in or near ESX-1 related genes (**Tables S5**). These regions include: (1) The HT between
256 *espA* and *ephA* (ESX1 components that control the rate of secretion) is optimally suited to act as a
257 UP element as a poly-A stretch found ~48bp upstream of one of two putative transcriptional start
258 sites of the *espACD* operon, (Estrem et al., 1999) (**Figure 4A**), ESX1 components that control the
259 rate of secretion (**Figure 3C**), (2) An intragenic HT disrupts the open reading frame of the ESX1-
260 associated *espK* gene (**Figure 3D**), and (3) An HT in the 5' UTR of the ESX1 regulator, *espR*
261 (**Table S5**). To assess the phenotypic consequence of these mutations, we engineered the most
262 abundant +1 HT variant upstream *espACD* operon into the H37Rv genome and assessed the effect
263 of this variant on gene regulation during exponential growth in 7H9 broth (**Figure 4A**). Comparing
264 the transcriptome of this mutant to its isogenic parent, we found only a small number (22) of
265 significantly differentially expressed genes, most prominently a decrease in the expression of *espA*,
266 *espC*, and *espD* (by approximately 40%, log2-fold-changes=-0.7) (**Figure 4B-C**), along with the
267 downstream genes Rv3613c and Rv3612c (**Table S7**). These data verify the functional effect of
268 this intragenic HT INDEL and suggest positive selection for decreased ESX1 activity.
269

270 **Gene-wide mutational density reveals variable ESX and PE/PPE genes**

271 Given the apparent convergence of HT variants on ESX-1 function, we aggregated independent
272 variant arisals at the gene-level to better understand the adaptive landscape of genomic variants in

273 MTBC. Specifically, we aggregated Hs for all variants found within each gene (regardless of
274 frequency) and normalized the resulting score by gene length to obtain the mutational density
275 (**Materials and Methods**). We separated this analysis by SNVs (**Figure 5A, Table S8**) and
276 INDELs (**Figure 5B, Table S9**) because Hs were computed differently for each (**Materials and**
277 **Methods**), and because of the different mechanisms at play in generating each type of diversity.
278 We simulated the number of arisals that occur on each gene using a modified molecular clock rate
279 normalized by gene length to obtain a neutral mutation rate for each gene (**Materials and**
280 **Methods**). We found that a gene has an estimated neutral mutational density ≥ 0.45 with
281 probability <0.002 under these assumptions.
282

283 Among the calculations for SNVs (**Figure 5A, Table S8**), several outlier genes are involved in the
284 acquisition of antibiotic resistance (*gyrA*, *rpoB*, *rpsL*, *gid*, *katG*, *pncA*, *embB*) (Farhat et al., 2013;
285 Manson et al., 2017). Additionally, several outliers belonged to the ESX protein family (*esxL*,
286 *esxO*, *esxN*, *esxM*, *esxW*) which are involved in host-pathogen interactions (Uplekar et al., 2011)
287 and the PE/PPE protein family (*PPE18*, *PPE19*, *PPE59*, *PPE60*) which include antigenic proteins
288 (Brennan, 2017). For INDELs (**Figure 5B, Table S9**), outliers included the antibiotic resistance
289 loci: *pncA*, *gid* (Coll et al., 2018; Manson et al., 2017) and additional members of the PE/PPE
290 family (*PPE13*, *PE-PGRS15*, *PPE57*). Next, we extended this analysis for SNVs & INDELs at the
291 pathway level by aggregating Hs across different gene sets belonging to 410 pathways (**Materials**
292 **and Methods**). The pathway with the most mutational density per SNVs belonged to a
293 *Mycobacterium* virulence operon with Esat6-like proteins (**Figure 5C, Table S10**), while the
294 pathway most enriched for mutational density per INDELs belonged to the CRISPR associated
295 cluster that contains the aforementioned putative antigen Rv2823c (**Figure 5D, Table S11**).
296

297 DISCUSSION

298 As MTBC evolved into a professional pathogen from a saprophytic mycobacterium, it underwent
299 step-wise adaptation to the intracellular environment. This adaptation is thought to comprise
300 genome contraction, expansion of specific gene families especially toxin-antitoxin systems, the
301 type VII secretion systems, and the PE-PPE gene family, as well as gene modification through
302 mutation (Gagneux, 2018). Population genetic studies of MTBC have largely concluded that the
303 modern MTBC genome is under purifying selection with most newly fixed diversity attributable
304 to antibiotic selection pressure (Brynildsrud et al., 2018; Chiner-Oms et al., 2019; Holt et al., 2018;
305 Vargas et al., 2021). It has thus been suggested that MTBC has reached a pathogenic fitness peak
306 (Pepperell et al., 2013). Here, we update this view by analyzing the largest to date collection of
307 MTBC genome sequences characterizing the timing and pattern of genetic variation acquisition
308 across the phylogeny. We find 4,980 SNVs, 993 non-SSR related INDELs, and 45 HT regions to
309 have evolved in a parallel manner with high frequencies suggestive of an adaptive role. Although
310 a subset of this variation can be linked to resistance based on known genetic determinants, the
311 majority has no known association with resistance. Among the highest scoring variants we find
312 proteins that encode putative antigens (*esxL*, *esxW*, *Rv2823c*) (Tak et al., 2021), other PE/PPE
313 proteins (*PPE54* and *PPE18*) (Vargas et al., 2021), toxin-antitoxin bicistrons (*vapC2*, *mazF6*) and

314 ESX-1 system (*espK*, *espA*, *espR*) strongly suggestive of a role in virulence (Garces et al., 2010).
315 The highest scoring variants also heavily overrepresent intergenic regions (20%, 22%, and 26% of
316 putatively adaptive SNVs, non-SSM INDELs, and HTs respectively) even though intergenic
317 regions constitute only 10% of the genome by length. Putatively adaptive transcriptional variants
318 appear to converge with protein variants in impacting ESX-1 function. We identify a substantial
319 proportion of putatively adaptive variation to be acquired recently and on par with acquisition of
320 resistance related variants, suggesting that modern MTBC continues to refine its virulence
321 strategies likely in the context of a dynamic host environment.

322

323 Phase variation was recently recognized to mediate MTBC drug-tolerance through frameshifts in
324 the glycerol kinase gene *glpK* that likely act by altering the metabolic state of the cell (Bellerose
325 et al., 2019; Safi et al., 2019). In other bacterial pathogens, phase variation can alter antibiotic
326 efficacy and the immunogenicity of cell surface proteins through altered transcription, translation
327 and/or the creation of protein diversity (Van Der Woude and Bäumler, 2004). Here, we take a
328 genome-wide approach to assess the frequency and impact of phase variation in MTBC. We
329 measure the frequency of INDEL acquisition in HTs at 38x the rate observed for SNVs in clinical
330 isolates. Based on *in vitro* measurements, we estimate the frameshift rate under expected neutral
331 conditions at 1.1×10^{-5} frameshifts/HT/year, ~100x the rate previously reported MTBC SNV
332 acquisitions (Walker et al., 2013). The discrepancy between the *in vitro* and observed event rate
333 in HTs in clinical isolates is likely attributable to INDEL reversions. Remarkably despite the
334 undercounting of INDEL events in HTs, more than 12% of all INDEL events observed in the
335 MTBC clinical isolate phylogeny occur in an HT region. We find a few examples of frequent SSM
336 in non-HT SSR regions, *e.g.*, in *ponA1*, a gene previously identified to modulate growth in the
337 presence of the drug rifampicin (Farhat et al., 2013). However, we measure a substantially lower
338 rate of INDELs in the latter regions compared with HTs (**Figure 1B**, **Figure S7**). Using a GWAS
339 approach, we discover a subset of frameshifts in HTs to be associated with antibiotic resistance.
340 These include genes of unknown function Rv3413c and Rv2264c as well as an HT upstream of
341 lysyl-tRNA synthetase *lysX*. This gene is conditionally essential for bacterial growth *in vivo*, its
342 higher expression correlates positively with virulence in clinical isolates, and in *M. avium hominis*
343 *lysX* mutants associate with resistance to cationic antimicrobials and increased inflammatory
344 response after macrophage infection (Kirubakar et al., 2020; Montoya-Rosales et al., 2017; Sassetti
345 and Rubin, 2003). Hence the frameshifts in the HT upstream of *lysX* may plausibly affect both
346 antibiotic resistance and virulence in MTBC.

347

348 Multiple different pressures may differentially select for variants related to ESX-1 activity. This
349 secretion system influences virulence and antigenicity in MTBC (Garces et al., 2010; Lim et al.,
350 2022) by controlling the secretion of the immunodominant antigens ESAT-6 (*esxA*) and CFP-10
351 (*esxB*) (Covert et al., 2001; Guinn et al., 2004; Hsu et al., 2003), stimulating the innate immune
352 response and cytokine secretion (Pandey et al., 2009, p. 2; Stanley et al., 2007), and promoting the
353 intracellular growth of the pathogen (Lewis et al., 2003; Stanley et al., 2003). Through modulating
354 the immune response, as well as cellular permeability (Garces et al., 2010), ESX-1 function may

355 also influence antibiotic activity or resistance (Torres Ortiz et al., 2021). Indeed, we identified
356 phase variants that truncate *espK*, an ESX-1 associated gene that when disrupted *in vitro* promotes
357 bacterial growth (DeJesus et al., 2017) to associate with resistance. In contrast, INDELs that reduce
358 the expression of the *espACD* operon were not associated with the resistant phenotype, suggesting
359 that another host-derived pressure may be responsible for selecting these variants. These indels
360 might be expected to reduce bacterial fitness, as deletion of *espA* abrogates secretion of ESAT-6
361 and CFP-10 and attenuates growth in mice to a similar degree as deletion of the ESX-1 locus
362 (Fortune et al., 2005). However, lower levels of ESX-1 function could also result in reduced
363 antigen presentation and/or cytokine production, thus aiding immune evasion (Clemmensen et al.,
364 2017). We thus hypothesize that multiple modes of phase variation tune ESX-1 activity to optimize
365 growth, survival, or transmission. These states may influence antibiotic susceptibility through
366 modulation of growth and membrane permeability, or by altering the local environment. These
367 hypotheses are testable in *in vivo* experimental systems.

368
369 This analysis is not without limitations. First is our inability to functionally validate all novel
370 associations due to the time and resources needed to manipulate Mtb genetically *in vitro*. Instead,
371 we provide a proof of concept validation of transcriptional regulation for one HT candidate in the
372 transcriptional start site of *espA*. Second is our inability to assess adaptive INDELs in non-HT SSR
373 regions as they vary in their sequence composition and the expected rate of SSM, thus challenging
374 our ability to simulate neutral evolution in these regions. Similarly, it is difficult to account for the
375 reversibility of INDELs in SSR regions, and it is possible that some homoplasic variants represent
376 a combination of mutation and reversion, as opposed to two distinct arisals. Regardless, the
377 reported Hs values still represent the number of independent mutational events observable at a site.
378 In this work, we also make the assumption that SNV mutation rates are homogeneous outside of
379 SSR regions. We recognize that many forces likely determine the neutral mutation rate across the
380 genome including GC content, repetitive sequence, and transcription coupled repair to name a few
381 factors. Driving both extremes of evolutionary rates are forces of positive and purifying selection
382 respectively that shape the genome. The approach we take in simulating neutral evolution is only
383 a useful approximation to gauge the very extreme rates of evolution. It is likely that regions with
384 seemingly borderline rates of Hs may also have functional consequences, and at the other extreme
385 are genes under purifying selection that are beyond the scope of this work.

386
387 In summary, in this work we present evidence that MTBC genomes are strongly and regionally
388 shaped by positive selection not only to modulate the resistance phenotype but likely also virulence
389 mechanisms. We hypothesize that phase variation in ESX-1 system of MTBC can act as a toggle
390 between antigenicity and survival in the host. The ongoing regional evolution of MTBC suggests
391 that the host environment in MTBC infection is dynamic, including potentially opposing forces
392 that shape transmissibility and survival in host. Overall the insights gained in this analysis can
393 inform vaccine design and host and pathogen-directed therapy against MTBC that have recently
394 been expanded to include ESX-1 targeting compounds (Cole, 2016).

395

396 **MATERIALS AND METHODS**

397

398 **Sequence Data**

399 We initially downloaded raw Illumina sequence data for 33,873 clinical isolates from NCBI
400 (Benson et al., 2000). We identified the BioSample for each isolate and downloaded all of the
401 associated Illumina sequencing runs. Isolates had to meet the following quality control measures
402 for inclusion in our study: (i) at least 90% of the reads had to be taxonomically classified as
403 belonging to MTBC after running the trimmed FASTQ files through Kraken (Wood and Salzberg,
404 2014) and (ii) at least 95% of bases had to have coverage of at least 10x after mapping the
405 processed reads to the H37Rv reference genome (Genbank accession: NC_000962).

406

407 **Illumina Sequencing FastQ Processing and Mapping to H37Rv**

408 The raw sequence reads from all sequenced isolates were trimmed with version 0.20.4 Prinseq
409 (settings: -min_qual_mean 20) (Schmieder and Edwards, 2011) and then aligned to H37Rv with
410 version 0.7.15 of the BWA mem algorithm using the -M settings (Li and Durbin, 2009). The
411 resulting SAM files were then sorted (settings: SORT_ORDER = coordinate), converted to BAM
412 format, and processed for duplicate removal with version 2.8.0 of Picard
413 (<http://broadinstitute.github.io/picard/>) (settings: REMOVE_DUPLICATES = true,
414 ASSUME_SORT_ORDER = coordinate). The processed BAM files were then indexed with
415 Samtools (Li et al., 2009). We used Pilon (settings: --variant) on the resulting BAM files to
416 generate VCF files that contained calls for all reference positions corresponding to H37Rv from
417 pileup (Walker et al., 2014).

418

419 **Empirical Score for Difficult-to-Call Regions**

420 We assessed the congruence in variant calls between short-read Illumina data and long-read
421 PacBio data for a set of isolates that underwent sequencing with both technologies (Marin et al.,
422 2022). Using 31 isolates for which both Illumina and a complete PacBio assembly were available,
423 we evaluated the empirical base-pair recall (EBR) of all base-pair positions of the H37Rv reference
424 genome. For each sample, the alignments of each high confidence genome assembly to the H37Rv
425 genome were used to infer the true nucleotide identity of each base pair position. To calculate the
426 empirical base-pair recall, we calculated what percentage of the time our Illumina based variant
427 calling pipeline, across 31 samples, confidently called the true nucleotide identity at a given
428 genomic position. If Pilon variant calls did not produce a confident base call (*Pass*) for the position,
429 it did not count as a correct base call. This yields a metric ranging from 0.0–1.0 for the consistency
430 by which each base-pair is both confidently and correctly sequenced by our Illumina WGS based
431 variant calling pipeline for each position on the H37Rv reference genome. An H37Rv position
432 with an EBR score of x% indicates that the base calls made from Illumina sequencing and mapping
433 to H37Rv agreed with the base calls made from the PacBio *de novo* assemblies in x% of the
434 Illumina-PacBio pairs. We masked difficult-to-call regions by dropping H37Rv positions with an
435 EBR score below 0.9 (or 90%) as part of our variant calling procedure. Full details on the data and
436 methodology can be found elsewhere (Vargas et al., 2021).

437

438 Variant Calling

439 SNP Calling: To prune out low-quality base calls that may have arisen due to sequencing or
440 mapping error, we dropped any base calls that did not meet any of the following criteria: (i) the
441 call was flagged as *Pass* by Pilon, (ii) the mean base quality at the locus was >20 , (iii) the mean
442 mapping quality at the locus was >30 , (iv) none of the reads aligning to the locus supported an
443 insertion/deletion (indel), (v) a minimum coverage of 20 reads at the position, and (vi) at least 75%
444 of the reads aligning to that position supported 1 allele (using the *INFO.QP* field which gives the
445 proportion of reads supporting each base weighted by the base and mapping quality of the reads,
446 *BQ* and *MQ* respectively, at the specific position). A base call that did not meet all filters (i) – (vi)
447 was inferred to be low-quality/missing (**Figure S2**).

448 INDEL Calling: To prune out low-quality INDEL variant calls, we dropped any INDEL that did
449 not meet any of the following criteria: (i) the call was flagged as *Pass* by Pilon, (ii) the maximum
450 length of the variant was 10bp, (iii) the mean mapping quality at the locus was >30 , (iv) a minimum
451 coverage of 20 reads at the position, and (v) at least 75% of the reads aligning to that position
452 supported the INDEL allele (determined by calculating the proportion of total reads *TD* aligning
453 to that position that supported the insertion or deletion, *IC* and *DC* respectively). A variant call
454 that met filters (i), (iii), and (iv) but not (ii) or (v) was inferred as a high-quality call that did not
455 support the INDEL allele. Any variant call that did not meet all filters (i), (iii), and (iv) was inferred
456 as low-quality/missing.

457

458 Lineage Typing and Classifying Isolates into Groups

459 After excluding 1663/33873 isolates that had missing calls $> 10\%$ SNP sites , we determined the
460 global lineage of each isolate ($N = 32210$) using base calls from Pilon-generated VCF files and
461 a 95-SNP lineage-defining diagnostic barcode (**Figure S2**) (Freschi et al., 2021). We further
462 excluded 290 isolates that had no lineage call or more than one lineage call (low-quality calls at
463 lineage-defining SNP sites or a rare SNP call characterized as monophyletic for another lineage in
464 the SNP barcode), and 35 isolates that had L7 lineage calls (**Figure S2**). Our remaining 31885
465 isolates were typed as: L1 (2815), L2 (8090), L3 (3398), L4 (17388), L5 (98), L6 (96). We aimed
466 to cluster isolates into groups of no more than 8,000 isolates based on lineage & sub-lineage to
467 achieve feasible phylogeny construction runtimes so we further divided L4 isolates based on sub-
468 lineage calls. We excluded 457 isolates that were typed as L4 but did not have any sub-lineage
469 calls. We analyzed the sub-lineage calls of the remaining 16931 L4 isolates and grouped isolates
470 according to sub-lineages that were located next to each other on the L4 phylogeny (Freschi et al.,
471 2021). We grouped the L4 isolates into three groups: L4A (sub-lineages 4.1.x & 4.2.2.x, $N =$
472 5839), L4B (sub-lineage 4.2.1.2.x, $N = 6958$), and L4C (sub-lineage 4.2.1.1.x, $N = 4134$) where
473 .x is a place-holder for any further resolution on the sub-lineage call under the hierarchical lineage
474 typing scheme (Freschi et al., 2021).

475

476 SNP Genotypes Matrix

477 A schematic diagram outlining the following steps is given in **Figure S2**. First, we detected SNP
478 sites at 899,035 H37Rv reference positions (of which 64,950 SNPs were not biallelic) among our
479 global sample of 33,873 isolates. We constructed a 899,035x33,873 genotypes matrix (coded as
480 0:A, 1:C, 2:G, 3:T, 9:Missing) and filled in the matrix for the allele supported at each SNP site
481 (row) for each isolate, according to the *SNP Calling* filters outlined above. If a base call at a
482 specific reference position for an isolate did not meet the filter criteria that allele was coded as
483 *Missing*. We excluded 20,360 SNP sites that had an EBR score <0.90, another 9,137 SNP sites
484 located within mobile genetic element regions (e.g. transposases, intergrases, phages, or insertion
485 sequences) (Comas et al., 2010; Vargas et al., 2021), then 31,215 SNP sites with missing calls in
486 >10% of isolates, and 2,344 SNP sites located in overlapping genes (coding sequences). These
487 filtering steps yielded a genotypes matrix with dimensions 835,979x33,873. Next, we excluded
488 1,663 isolates with missing calls in >10% of SNP sites yielding a genotypes matrix with
489 dimensions 835,979x32,210 (Coll et al., 2018). We used an expanded 96-SNP barcode to type the
490 global lineage of each isolate in our sample (Freschi et al., 2021). We further excluded 325 isolates
491 that either did not get assigned a global lineage, assigned to more than one global lineage, or were
492 typed as lineage 7. We then excluded 41,760 SNP sites from the filtered genotypes matrix in which
493 the minor allele count = 0 which resulted in a 794,219x31,885 matrix. To provide further MTBC
494 lineage resolution on the lineage 4 isolates, we required an MTBC sub-lineage call for each lineage
495 4 isolate. We excluded 457 isolates typed as global lineage 4 but had no further sub-lineage calls
496 and then again excluded 11,654 SNP sites from the filtered genotypes matrix in which the minor
497 allele count=0. The genotypes matrix used for downstream analysis had dimensions
498 782,565x31,428, representing 782,565 SNP sites across 31,428 isolates (**Figure S2**). The global
499 lineage (L) breakdown of the 31,428 isolates was: L1=2,815, L2=8,090, L3=3,398, L4=16,931,
500 L5=98, L6=96.

501

502 **INDEL Genotypes Matrix**

503 We detected 53,167 unique INDEL variants within 50,576 H37Rv reference positions among our
504 global sample of 33,873 isolates. We constructed a 53,167x33,873 genotypes matrix (coded as
505 1:high quality call for the INDEL allele, 0:high quality call not for the INDEL allele, 9:Missing)
506 and filled in the matrix according to whether the INDEL allele was supported for each INDEL
507 variant (row) for each isolate, according to the *INDEL Calling* filters outlined above. If a variant
508 call at the reference position for an INDEL variant did not meet the filter criteria that call was
509 coded as *Missing*. We excluded 2,006 INDELs that had an EBR score <0.90, another 694 INDELs
510 located within mobile genetic element regions, then 207 INDELs located in overlapping genes
511 (coding sequences). These filtering steps yielded a genotypes matrix with dimensions
512 50,260x33,873. Next, we excluded any isolate that was dropped while constructing the SNP
513 genotypes matrix to retain the same 31,428 isolates as described above. Finally, we excluded 2,835
514 INDELs in which the alternate allele count=0. The genotypes matrix used for downstream analysis
515 had dimensions 47,425x31,428 (**Figure S1A**).

516

517 **Phylogeny Construction**

518 To generate the phylogenies, we first merged the VCF files of the isolates in each group (L1, L2,
519 L3, L4A, L4B, L4C, L5, L6) with bcftools (Li et al., 2009). We then removed repetitive, antibiotic
520 resistance and low coverage regions (Freschi et al., 2021). We generated a multi-sequence FASTA
521 alignment from the merged VCF file with vcf2phylip (version 1.5,
522 <https://doi.org/10.5281/zenodo.1257057>). We constructed the phylogenetic trees with IQ-TREE
523 (Nguyen et al., 2015). For all groups, we used the *mset* option to restrict model selection to GTR
524 models (-mset GTR), and specified 1000 bootstrap replicates for both ultrafast bootstrap and
525 SH-aLRT algorithms to compute support values (-bb 1000 -alrt 1000). To construct
526 phylogenies for groups L1, L2, L3, L4A, L4B & L4C, we specified the substitution model as
527 GTR+F+I+R (-m GTR+F+I+R). To construct phylogenies for groups L5 & L6, we implemented
528 the automatic model selection with ModelFinder Plus (-m MFP) (Kalyaanamoorthy et al., 2017).
529 The runtimes to construct the phylogenies were: L1 (2 days, 1.5 hours), L2 (63 days, 9 hours), L3
530 (11 days, 20 hours), L4A (6 days, 11 hours), L4B (6 days, 18 hours), L4C (2 days, 18 hours), L5
531 (4 minutes), L6 (2.5 minutes). Upon closer inspection of the phylogenies, we observed that a
532 handful of isolates (14/31428) were misclassified based on the SNP barcode. The misclassified
533 isolates belonged to the following groups: L1 (3), L2 (4), L3 (2), L4A (1), L4B (0), L4C (4), L5
534 (0), L6 (0). The small number of mistyped isolates did not affect our inferences so we kept these
535 phylogenies for downstream analyses.
536

537 **Assessment of Parallel Evolution for SNVs**

538 To quantify the number of independent arisals for each SNV, we used the SNP genotypes matrix
539 in conjunction with the phylogenies for each isolate group (**Figure S1B**). We used an ancestral
540 reconstruction approach to quantify the number of times each SNV arose independently within
541 each phylogeny using SNPPar (**Figure S5B**) with options: --sorting intermediate --
542 no_all_calls ----no_homoplasic (Edwards et al., 2020). We parsed the SNPPar
543 output files all_muation_events.tsv and node_sequences.fasta to check each
544 mutation reported in the mutation events table against the inferred sequences at the nodes of the
545 phylogeny and the isolates sequences. Mutations that were not found in the sequences were
546 discarded, the number of reported mutation events not located between inferred node/isolate
547 sequences is broken down by phylogeny as follows: L1 (447), L2 (2472), L3 (392), L4A (839),
548 L4B (1177), L4C (559), L5 (2), L6 (3). We then parsed the filtered *muation events* tables
549 corresponding to each isolate group and counted the number of times each unique SNV in our
550 dataset was inferred to have arisen, counting only the number of times that the major allele
551 (ancestor call) mutated toward the minor allele (derived call) for each SNV (**Figure S5B**). This
552 yielded a *homoplasy score* or an estimate for the number of independent arisals for each SNV
553 across all 31,428 isolates (**Table S1**, **Table S2**). We note that 1,920/836,901 SNVs in our SNP
554 genotypes matrix had a *homoplasy score* = 0, this was likely due error in the ancestral
555 reconstructions, or may have been the result of sub-setting isolates into groups before running
556 ancestral reconstruction (i.e. if an SNV is fixed in isolates belonging to one of the phylogenies but

557 not called in any other isolates, no mutation event would be reported). These SNVs were dropped
558 from downstream analysis.

559

560 **Assessment of Parallel Evolution for INDELS**

561 To quantify the number of independent arisals for each INDEL, we developed a simple method to
562 count the number of times each a given allele “breaks” the phylogenies (**Figure S5C**). If a given
563 minor/alternate allele is observed in two separate parts of a phylogeny, then we can assume that
564 this allele arose twice in pool of isolates used to construct the tree. If the minor/alternate allele is
565 observed in three separate parts of the phylogeny, then we assume that the allele arose
566 independently three times. We extended this idea to count the total number of times a given
567 minor/alternate allele arises within a phylogeny. To do this we specify a minor/alternate allele of
568 interest and code the phylogeny tips (according to whether the corresponding isolates harbor the
569 allele) as follows: minor/alternate allele = 1, major/reference allele = 0, low quality call = 9. We
570 create a vector from the coded phylogeny tips and then count the number of times each consecutive
571 string of 1’s appears in the vector. These consecutive 1’s (“1 blocks”) must be separated by 0’s on
572 either side, and the number of 0’s required in between the strings of 1’s is controlled by the *spacer*
573 parameter. If *spacer* = 1, then only one 0 is required in between 1 blocks to count different arisals.
574 If *spacer* = 2, then two 0’s are required between 1 blocks to count them as separate arisals (**Figure**
575 **S5C**). We allowed the presence of 9’s in the 1 blocks as long as a 1 was present in the block. As
576 an example, suppose a phylogeny of 15 isolates had tips coded as [0,0,1,1,0,1,0,0,0,1,1,1,0,0,0] for
577 a given allele. If *spacer* = 1, then [0,0,1,1,0,1,0,0,0,1,1,1,0,0,0] would correspond to three 1 blocks
578 and we would infer three independent arisals or a *homoplasy score* = 3. If *spacer* = 2, then
579 [0,0,1,1,0,1,0,0,0,1,1,1,0,0,0] would correspond to two 1 blocks and we would infer two
580 independent arisals or a *homoplasy score* = 2. Higher values of the *spacer* parameter yield more
581 conservative estimates for *homoplasy score* calculations.

582

583 We calculated a *homoplasy score* by counting these topology disruptions (TopDis) or “blocks” for
584 SNVs using the SNP genotypes matrix in conjunction with the phylogenies for each isolate group
585 to assess the number of independent arisals for each mutation observed, coding the tips as 1 if they
586 carried the minor allele for each SNV (**Figure S5C**, **Figure S1C**). We computed these *homoplasy*
587 *scores* for different values of the *spacer* parameter (1-6) to assess the congruence of these estimates
588 with the *homoplasy scores* computed from the ancestral reconstructions (**Figure S6**). The results
589 were concordant between both methods, although TopDis appeared to overestimated the
590 *homoplasy score* for some SNVs with *spacer* = 1 and *spacer* = 2 (**Figure S6A-B**). These results
591 validated our approach for computer *homoplasy scores* using TopDis. To compute the *homoplasy*
592 *scores* for INDELS, we conservatively chose *spacer* = 4 at which point the *homoplasy score* for
593 each SNV computed from TopDis appeared to be equal or less than the *homoplasy score* computed
594 from SNPPar (**Figure S6D**). To quantify the number of independent arisals for each INDEL, we
595 used the INDEL genotypes matrix in conjunction with the phylogenies for each isolate group as
596 input to TopDis with *spacer* = 4 (**Figure S1D**), coding the tips as 1 if they carried the alternate
597 allele for each INDEL (**Figure S5C**). We note that 1,119/47,425 indels had *homoplasy score* = 0,

598 this may have been the result of sub-setting isolates into groups before running TopDis (i.e. if an
599 INDEL is fixed in isolates belonging to one of the phylogenies but not called in any other isolates,
600 no “block” would be observed) or if the INDEL alternate allele was only present at the ends of the
601 coded phylogeny tips vector. These INDELS were dropped from downstream analysis.

602

603 Homoplasy Simulations for SNVs & INDELS

604 We aimed to assess the frequency with which a specific mutation would repeatedly arise by chance
605 given the phylogenies used to related the isolates in our dataset. We assumed a constant population
606 size model which has previously been used to estimate the molecular clock rate of Mtb (Menardo
607 et al., 2019). Menardo et al. estimated the molecular clock rate for Mtb using a Bayesian
608 phylogenetic approach under two different coalescent priors, (1) constant population size and (2)
609 exponential population growth, for 21 datasets of Mtb strains that showed stronger temporal signal
610 than expected by chance by preforming a date randomization test on the corresponding
611 phylogenies (Menardo et al., 2019). They found that 14/21 datasets rejected the constant
612 population size model, however the results were only moderately influenced by the tree prior and
613 their molecular clock estimates were robust different demographic models.

614

615 We converted the phylogeny branches to time and assumed that neutral mutations arise on the
616 genome according to a Poisson distribution. To simulate the expected number of arisals (H_s) for
617 neutral point mutations in our dataset, we simulated mutations on the branches of the eight
618 phylogenies that relate all of the isolates in our sample. First, we extracted the branch lengths (b)
619 from each tree along with the length of the SNP concatenate (l) used to construct each tree s . Then,
620 for each branch i for each tree s : (1) we drew a molecular clock rate $\mu_i \sim U(0.3, 0.6)$ (assuming a
621 neutral rate of 0.5 SNPs/genome/year (Vargas et al., 2021; Walker et al., 2013), (2) we converted
622 the branch length to years $t_i = (b_i \times l_s) / \mu_i$, (3) we assumed neutral point mutations accrued
623 according to the molecular clock and drew the rate according to $\nu_i \sim U(0.3, 0.6)$, (4) we assumed
624 that neutral mutations on the genome follow a Poisson distribution and calculated λ for each branch
625 as $\lambda_i = t_i \times \nu_i$, (5) we drew the number of mutations expected to occur on b_i as $n_i \sim Pois(\lambda_i)$, (6)
626 assuming that neutral mutations occur anywhere along the 4Mbp genome of Mtb with equal
627 likelihood, we randomly chose n_i positions between 1-4,000,000 to simulate the positions where
628 each mutation occurred.

629

630 We repeated this process for all branches across all trees and kept track of the number of times
631 each position between 1-4,000,000 was selected to approximate H_s for each position. This resulted
632 in an approximate H_s for each position that was selected at least once (number of times each
633 position was selected) and a distribution of the number of positions for increasing values of H_s .
634 Lastly, we repeated all of the steps above 100 times to get the probability that a neutral mutation
635 arises at a specific position $\geq H_s$ by taking the median (for each H_s) across 100 simulations. This
636 then gave us a proportion of genome positions that were homoplastic by chance ($H_s \geq 2$). By
637 taking the median across 100 simulations for increasing values of H_s , we observed that $P(H_s \geq$
638 $5) < 0.002$ and used $H_s = 5$ as a threshold for assessing which SNVs were unlikely to have arisen

639 repeatedly by chance alone. As neutral insertions and deletions generated by non-SSM
640 mechanisms are expected to occur more rarely than SNVs, we conservatively used this threshold
641 to further analyze INDELS in non-HT and non-SSR genomic regions that were unlikely to have
642 repeatedly arisen by chance.

643
644 We modified the process above to simulate neutral mutational density for each gene. For each gene
645 of length l , we normalized the mutation rate ν_i to account for gene length by multiplying it by l_i/L
646 where L is the length of the genome (4Mbp). Then we simulated mutations that occur on each
647 branch across all phylogenies and added each mutation to a count to calculate number of mutations
648 (independent arisals) that occurred in g_i under neutrality. We repeat this process 100 times for
649 each gene g_i to get an average number of neutral mutations that arise in each gene g_i across 100
650 simulations and divide by the gene length l_i to get the neutral mutational density for g_i . The
651 neutral mutation densities across all genes ranged from 0.42-0.45, the mean mutational density
652 was 0.44, and the 99.8th percentile of mutational densities across genes was 0.449.

653
654 **Media**

655 *Mycobacterium tuberculosis* H37Rv and *Mycobacterium smegmatis* were both grown in 7H9 broth
656 with 0.05% Tween 80, 0.2% glycerol, and OADC (oleic acid-albumin-dextrose-catalase; Becton,
657 Dickinson); transformants were selected on 7H10 plates with 0.5% glycerol and OADC. When
658 needed, the following supplements were added: kanamycin (25 μ g/ml), hygromycin (50 μ g/ml),
659 anhydrotetracycline (aTc).

660
661 **Recombineering Single Nucleotide espA Mutant**

662 Mtb harboring pKM402 (Ioerger et al., 2013) and pKM427 (Murphy, 2021) were grown in 30 ml
663 7H9 media containing OADC, 0.2% glycerol, 0.05% Tween 80, and 25 μ g/ml kanamycin. Atc was
664 added to a final concentration of 500 ng/ml at OD ~0.4. Electroporation was performed as
665 described (Murphy, 2021) using 2 ug espA target oligo
666 (GGCCTACAGTCTGGCTGTCATGCTGGCCGATGTCAACAGTTTTCATGCTAACGCA
667 GATCGTCAGTTTGAGTCGTGAAGACGG) and 200 ng hygR repair oligo
668 (CGGTCCAGCAGCCGGGGCGAGAGGTAGCCCCACCCGCGGTGGTCCTCGACGGTCGC
669 CGCG). Candidate clones were expanded in into 4 mL 7H9-OADC-Tween with 50 μ g/mL
670 hygromycin. The upstream region of Rv3616 was amplified by PCR using the following primers:
671 GACCGGGATGTAGGTCAAGTC and GCTAGGTGTTAGCGGACGCG. The PCR product
672 was sequenced with GCTAGGTGTTAGCGGACGCG as a primer to confirm the presence of
673 the mutation.

674
675 **RNA Extraction**

676 10 mL of WT and mutant H37Rv were grown at 37°C in 7H9-OADC-Tween to an OD ~0.6.
677 Immediately prior to harvesting RNA, 40 mL of guanidine isothiocyanate buffer was added to the
678 culture (5 M guanidine isothiocyanate, 0.5 % N-lauryl sarcosine, 25mM Tri-Sodium citrate, 0.1 M
679 beta -mercaptoethanol, 0.5% Tween, pH = 7.0). Bacteria were collected by centrifugation at 4,000

680 rpm for 10 minutes at 4°C, resuspended in 500 uL of Trizol reagent, and lysed bylysing matrix B
681 (MP Bio) and bead beating three times at 6.5 M/s for 45 seconds. After centrifugation, 100 uL of
682 chloroform was added to the supernatant, inverted several times, and incubated at room
683 temperature for 3 minutes. Samples were then centrifuged at 10,000 x g at 4°C for 15 minutes.
684 RNA was then extracted using Zymo Research Direct-zol RNA Miniprep Plus Kit. Samples were
685 processed according to manufacturer's instructions, including 15 minute on-column DNase
686 digestion. After eluting in 50 uL, an additional DNase digestion was performed using NEB RNase-
687 free DNase I, bringing the total volume of the reaction up to 100 uL. Samples were incubated at
688 37°C for 2 hours. 100 uL of the reaction was then added to 400 uL of Trizol reagent, to which 500
689 uL of ethanol was then added. RNA extraction with Direct-zol kit was repeated as before, but this
690 time skipping the on-column DNase digestion. Samples were eluted in 50 uL of water and the
691 concentration of each sample was determined via NanoDrop.
692

693 The RNA extracted from the *espA* mutant was sequenced on an Illumina 4000 in paired-end mode,
694 with a read-length of 2x150 bp. Two runs were performed, and 3 replicates each for the *espA*
695 mutant (+1 bp insertion in homopolymer) and wild-type (*M. tuberculosis* H37Rv) were collected
696 on each run. The reads were mapped to the H37Rv genome (Genbank accession NC_000962.2)
697 using BWA (v0.7.12), and read counts for each ORF (open reading frame) were tabulated. The R
698 package DeSeq (Love et al., 2014) was used to analyze the counts and identify differentially
699 expressed genes as genes with an adjusted P-value < 0.05 (after multiple-tests correction). DeSeq
700 internally normalizes the count data by computing scaling factors for each dataset. The model was
701 fit with 2 covariates, strain and run, and the statistical analysis was based on the strain coefficient
702 (as contrast), to evaluate the average effect of the *espA* mutant on the counts for each gene relative
703 to the WT samples from the same run.
704

705 **RNAseq Library Preparation**

706 250ng of total RNA was processed using the Illumina Ribo-Zero Plus rRNA Depletion Kit and
707 NEBNext® Ultra II Directional RNA Library Prep Kit for Illumina. Adaptor ligated DNA was
708 PCR enriched for 9 cycles according to the protocol using indexed primers from NEBNext
709 Multiplex Oligos for Illumina. Samples were purified using SPRIselect Beads at each clean-up
710 step. Prepared libraries were diluted to equal concentrations and pooled at a concentration of 30
711 nM. Samples were processed on an Illumina HiSeq 4000 machine with a 2 x 150 basepair
712 sequencing configuration.
713

714 **Plasmid Construction**

715 A homopolymer frameshifting reporter was constructed from a hygromycin resistant pDE43-
716 MCtH vector, which is a version of pDE43-MCK with a swapped antibiotic marker (Addgene
717 plasmid #49523; (Kim et al., 2013)). Using Gibson assembly, the homopolymer sequence from
718 *glpK* (Rv3696c) along with 79 basepairs of flanking sequence (40 basepairs preceding, and 39
719 basepairs following, the homopolymer) was fused to an out-of-frame kanamycin resistance
720 cassette, such that the addition of a single nucleotide insertion would produce an in-frame

721 kanamycin resistance gene, all of which is driven by a P16 mycobacterial-specific promoter (a gift
722 from Dirk Schnappinger).

723

724 Fluctuation Analysis

725 *Mycobacterium smegmatis* harboring the homopolymer-frameshifting reporter was thawed from
726 glycerol stock and grown in 4 mL 7H9-OADC-Tween to an OD ~1.0. This culture was split and
727 diluted into 20 parallel cultures, each with an OD = 0.01. These cultures were rotated at 37°C for
728 ~20 hours. Total bacterial numbers were determined by plating on 7H10 plates with OADC and
729 0.5% glycerol. To enumerate frameshifted mutants, entirety of each culture was plated on 7H10
730 with 25 ug/mL kanamycin. Plates were incubated at 37°C for 4-5 days prior to counting colonies.
731 In a subset of kanamycin resistant colonies, frameshifts were verified by PCR with the following
732 primers: GCTCGAATTCACTGGCCATGCATC) and GATCCTGGTATCGGTCTGCGATTG. The PCR product was then sequenced using GATCCTGGTATCGGTCTGCGATTG as a primer.
733 After accounting for the proportion of kanamycin resistant colonies that contained a frameshifted
734 homopolymer (20/28), the mutation rate was calculated as described by (Gillet-Markowska et al.,
735 2015, p.).

736

737 Homoplasy Simulations for INDELs in a Homopolymer Tract

738 Similar to the simulations for point mutations, we assumed that frameshift mutations arise within
739 the HT according to a Poisson distribution and assign frameshift mutations (insertions and
740 deletions) to the branches of our phylogenies by drawing from a Poisson distribution with lambda
741 modified by the length of each branch and the experimentally derived mutation rate for frameshifts
742 within an HT (Figure S8). To simulate the number of expected number of arisals (Hs) for
743 frameshift mutations (FS) within homopolymeric tracts (HT), we simulated frameshifts for a 7bp
744 HT on the branches of the eight phylogenies that related all of the isolates in our sample. We
745 calculated a frameshift rate for neutral frameshifts in a HT using the lower and upper bound
746 mutation rates reported from the *Mycobacterium smegmatis* fluctuation analysis 2.18×10^{-8} and
747 4.09×10^{-8} mutation rates/cell/division (Materials and Methods). We note that Mtb doubles
748 once every 24 hours in liquid culture (Gill et al., 2009). We added stochasticity to the doubling
749 time by incorporating a term $x_{time} \sim Exp(\lambda = \frac{1}{10})$ and calculated doublings per day as $24/(24 +$
750 $x_{time})$. We converted these mutation rates to units of FS/HT/year as follows:

751 $(mut\ rate/cell/division)(doublings/day)(days/year)(74\% \ glpK\ mutations\ HT\ FS)$

752

- 753 • $(2.18 \times 10^{-8})(24/(24 + x_{time}))(365) \sim (7.96 \times 10^{-6})(24/(24 + x_{time}))$
- 754 • $(4.09 \times 10^{-8})(24/(24 + x_{time}))(365) \sim (1.49 \times 10^{-5})(24/(24 + x_{time}))$

755 to get the lower bound (FS_{lower}) and upper bound (FS_{upper}) FS/HT/year neutral rates,
756 respectively.

757

758 As with simulations for point mutations, we extracted all of the branch lengths (b) from each tree
759 along with the length of the SNP concatenate (l) used to construct each tree s . Then, for each
760 branch i for each tree s : (1) we drew a molecular clock rate $\mu_i \sim U(0.3, 0.6)$ (assuming a neutral

761 rate of 0.5 SNPs/genome/year (Vargas et al., 2021; Walker et al., 2013), (2) we converted the
762 branch length to years $t_i = (b_i \times l_s) / \mu_i$, (3) we drew $x_{time} \sim Exp(\lambda = \frac{1}{10})$ and calculated FS_{lower}
763 and FS_{upper} , (4) we drew a FS neutral mutation rate according to $\nu_i \sim U(FS_{lower}, FS_{upper})$, (5) we
764 assumed that neutral FS in the HT follow a Poisson distribution and calculated λ for each branch
765 as $\lambda_i = t_i \times \nu_i$, (6) we drew the number of FS expected to occur within HT on b_i as $n_i \sim Pois(\lambda_i)$,
766 (7) we ran a Bernoulli trial with $p = 0.5$ to assign n_i as an insertion (+) or deletion (-) on b_i (**Figure**
767 **S8**) and assigned an INDEL genotype to each branch ($+n_i = +1, +2, +3 = 1\text{bp}, 2\text{bp}, 3\text{bp insertions}$)
768 and ($-n_i = -1, -2, -3 = 1\text{bp}, 2\text{bp}, 3\text{bp deletions}$), (8) we assigned a genotype to each phylogeny tip
769 based on the sum of genotypes for each root-tip path to construct a vector of genotypes for tips in
770 each phylogeny (**Figure S8**), (9) we computed Hs using TopDis (**Materials and Methods**) for
771 each unique INDEL genotype in the vector for each phylogeny (i.e. $Hs(-1) = 2, Hs(+1) = 2, Hs(+2) = 2$ for the example phylogeny in **Figure S8**), (10) we aggregate Hs across all types
772 of INDELs and for all eight phylogenies to get the Hs score for INDELs in the HT for a single
773 simulation ($Hs(\text{all INDELs in HT}) = 6$ for phylogeny in **Figure S8**), (11) we repeat the steps
774 above 1,000 times to get the probability that neutral INDELs arise in a 7bp HT $\geq Hs$ by taking the
775 99.8th percentile from the distribution of Hs (all INDELs in HT) across all simulations which yields
776 45 INDELs within a HT and conclude that variation within HTs with ≥ 45 INDEL arisals in our
777 dataset are unlikely to be neutral.
778

779
780 **Homopolymeric Tract and Short Sequence Repeat Regions**
781 We used the H37Rv reference genome to search for positions that corresponded to homopolymeric
782 tracts and short sequence repeats in the Mtb genome. As phase variation has been documented
783 with repeat units that consist between 1–7 nucleotides (Van Der Woude and Bäumler, 2004), we
784 first classified regions with a single nucleotide repeated ≥ 7 times as homopolymeric tracts (HT)
785 given the recent association in antibiotic tolerance (Safi et al., 2019; Vargas and Farhat, 2020)
786

787 We scanned the genome for HTs at least 7bp in length and found 145 HT regions to cover 1,024bp
788 or 0.023% of the genome (**Table S6**). Next, we searched the genome for regions in which a repeat
789 unit, with any combination of nucleotides between 2–6bp, repeated at least 3 consecutive times
790 (permutating four nucleotides for a 7bp unit yields too many possibilities to hold into memory).
791 We classified these regions as short sequence repeats (SSR) and found them to cover 99,665bp or
792 2.26% of the genome.
793

794 **Association between Frameshifts in HTs and Antibiotic Resistance**
795 In order to study the potential associations between the presence/absence of frameshift INDELs
796 (relative to H37Rv) in specific HTs and antibiotic resistance, we used a publicly available dataset
797 of antibiotic resistance phenotypic data ([https://github.com/farhat-lab/resdata-
798 ng/blob/master/resistance_data/summary_tables/resistance_summary.txt](https://github.com/farhat-lab/resdata-ng/blob/master/resistance_data/summary_tables/resistance_summary.txt)) (Gröschel et al., 2021).
799 We determined the associations using a linear mixed model as implemented in GEMMA (Zhou
800 and Stephens, 2012), allowing a maximum missingness of 1% (-miss parameter) and a minimum

801 minor allele frequency of 1% (-maf parameter). In order to correct for population structure, we
802 used a matrix of all SNP differences between the isolates tested. Finally, p-values were corrected
803 for multiple testing using the Bonferroni method. For each test between frameshifts in a particular
804 HT and antibiotic, we ensured we had ≥ 100 resistant isolates to that antibiotic in our sample.
805

806 Gene Sets

807 Every gene on H37Rv was classified into one of six non-redundant gene categories according to
808 the following criteria (Vargas et al., 2021): (i) genes identified as belonging to the PE/PPE family
809 of genes unique to pathogenic mycobacteria, though to influence immunopathogenicity and
810 characterized by conserved proline-glutamate (PE) and proline-proline-glutamate (PPE) motifs at
811 the N protein termini (Brennan and Delogu, 2002; Comas et al., 2010; Phelan et al., 2016) were
812 classified as *PE/PPE* (n = 167), (ii) genes flagged as being associated with antibiotic resistance
813 (Farhat et al., 2013) were classified into the *Antibiotic Resistance* category (n = 28), (iii) genes
814 encoding a CD4⁺ or CD8⁺ T-cell epitope (Comas et al., 2010; Coscolla et al., 2015) (but not already
815 classified as a PE/PPE or Antibiotic Resistance gene) were classified as an *Antigen* (n = 257), (iv)
816 genes required for growth *in vitro* (Sassetti et al., 2003) and *in vivo* (Sassetti and Rubin, 2003) and
817 not already placed into a category above were classified as *Essential* genes (n = 682), (v) genes
818 flagged as transposases, integrases, phages or insertion sequences were classified as *Mobile*
819 *Genetic Elements* (Comas et al., 2010) (n = 108), (vi) any remaining genes not already classified
820 above were placed into the *Non-Essential* category (n = 2752).
821

822 t-SNE Visualization

823 To construct the t-SNE plots that captured the genetic relatedness of the 31,428 isolates in our
824 sample, we first constructed a pairwise SNP distance matrix. To efficiently compute this using our
825 782,565 x 31,428 genotypes matrix, we binarized the genotypes matrix and used sparse matrix
826 multiplication implemented in Scipy to compute five 31,428 x 31,428 similarity matrices (Virtanen
827 et al., 2020). We constructed a similarity matrix for each nucleotide (*A*, *C*, *G*, *T*) where row *i*,
828 column *j* of the similarity matrix for nucleotide *x* stored the number of *x*'s that isolate *i* and isolate
829 *j* shared in common across all SNP sites. The fifth similarity matrix (*N*) stored the number of SNP
830 sites in which neither isolate *i* and isolate *j* had a missing value. The pairwise SNP distance matrix
831 (*D*) was then computed as $\mathbf{D} = \mathbf{N} - (\mathbf{A} + \mathbf{C} + \mathbf{G} + \mathbf{T})$. *D* had dimensions 31,428 x 31,428 where
832 row *i*, column *j* stored the number of SNP sites in which isolate *i* and isolate *j* disagreed. We used
833 *D* as input into a t-SNE algorithm implemented in Scikit-learn (Pedregosa et al., 2011) (settings:
834 perplexity = 200, n_components = 2, metric = “precomputed”, n_iter = 1000, learning_rate =
835 2,500) to compute the embeddings for all 31,428 isolates in our sample. We used these embeddings
836 to visualize the genetic relatedness of the isolates in two dimensions and colored isolates (points
837 on the t-SNE plot) by lineage group (**Figure S4**, **Figure 3A**). For visualizing specific mutations,
838 isolates were colored according to whether or not the alternate (mutant) allele was called (**Figure**
839 **3B-D**).
840

841 **Pathway Definitions**

842 We used SEED (Overbeek et al., 2013) subsystem annotation to conduct pathway analysis and
843 downloaded the subsystem classification for all features of *Mycobacterium tuberculosis* H37Rv
844 (id: 83332.1) (Vargas et al., 2021). We mapped all of the annotated features from SEED to the
845 annotation for H37Rv. Due to the slight inconsistency between the start and end chromosomal
846 coordinates for features from SEED and our H37Rv annotation, we assigned a locus from H37Rv
847 to a subsystem if both the start and end coordinates for this locus fell within a 20 base-pair window
848 of the start and end coordinates for a feature in the SEED annotation (Vargas et al., 2021). We
849 only included pathways that were composed of at least two genes.

850

851 **SNV and INDEL Mutational Density Calculation for Genes and Pathways**

852 The homoplasy scores for all SNVs within each gene were aggregated to approximate all SNV
853 mutation events (independent arisals) that occurred within the gene body then normalized by the
854 gene length to calculate SNV mutational diversity for each gene (**Figure 5A, Table S8**). The
855 homoplasy scores for all INDELs were computed similarly to approximate all INDEL mutation
856 events then normalized by the gene length to calculate INDEL mutational diversity for each gene
857 (**Figure 5B, Table S9**). When normalizing by gene length for both SNV and INDEL calculations,
858 we removed positions with low Empirical Base Pair Recall scores (N=169,630), and excluded SNP
859 sites: (A) missing calls in > 10% of isolates (N=31,215), (B) located in overlapping genes
860 (N=933) (**Figure S2**). Further, we excluded genes that had an aggregate homoplasy score = 0 (no
861 reported mutation events) and genes that were classified as Mobile Genetic Element for each set
862 of computations (SNVs & INDELs). Next, we repeated our analysis at the level of pathways for
863 SNVs (**Figure 5C, Table S10**) and INDELs (**Figure 5D, Table S11**) by aggregating mutations
864 events occurring across genes belonging to each pathway and normalizing by the concatenate of
865 the gene lengths. We again excluded positions with low Empirical Base Pair Recall scores
866 (N=169,630), and excluded SNP sites: (A) missing calls in > 10% of isolates (N=31,215), (B)
867 located in overlapping genes (N=933) when normalizing by the concatenate of gene lengths.

868

869 **Data Analysis and Variant Annotation**

870 Data analysis was performed using custom scripts run in Python and interfaced with iPython (Pérez
871 and Granger, 2007). Statistical tests were run with Statsmodels (Seabold and Perktold, 2010) and
872 Figures were plotted using Matplotlib (Hunter, 2007). Numpy (Van Der Walt et al., 2011),
873 Biopython (Cock et al., 2009) and Pandas (McKinney, 2010) were all used extensively in data
874 cleaning and manipulation. Functional annotation of SNPs was done in Biopython using the
875 H37Rv reference genome and the corresponding genome annotation. For every SNP variant called,
876 we used the H37Rv reference position provided by the Pilon (Walker et al., 2014) generated VCF
877 file to determine the nucleotide and codon positions if the SNP was located within a coding
878 sequence in H37Rv. We extracted any overlapping CDS region and annotated SNPs accordingly,
879 each overlapping CDS regions was then translated into its corresponding peptide sequence with
880 both the reference and alternate allele. SNPs in which the peptide sequences did not differ between
881 alleles were labeled synonymous, SNPs in which the peptide sequences did differ were labeled

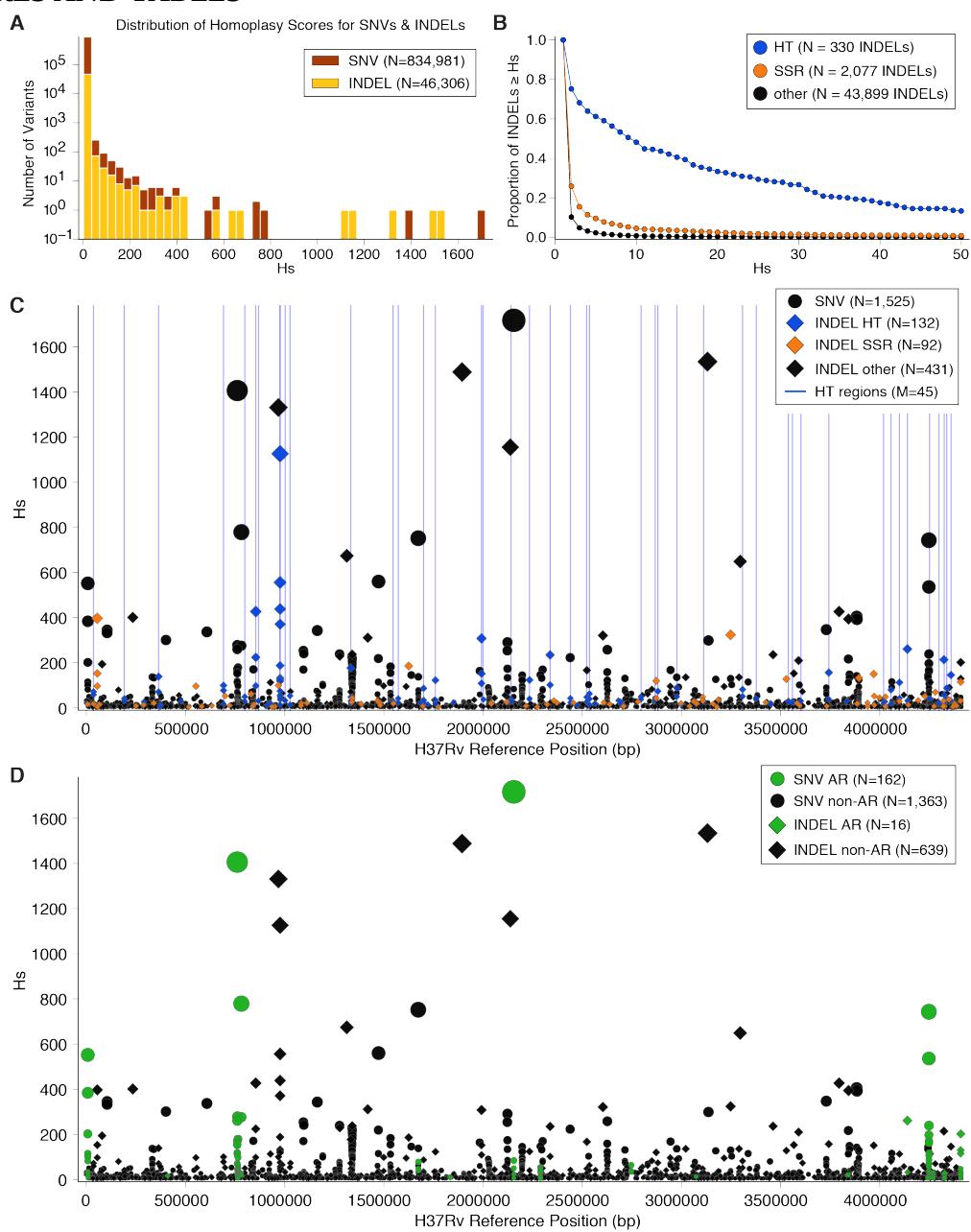
882 non-synonymous and if there were no overlapping CDS regions for that reference position, then
883 the SNP was labeled intergenic. Functional annotation of indels was also done in Biopython using
884 the H37Rv reference genome and the corresponding genome annotation. For every indel variant
885 called, we used the H37Rv reference position provided by the Pilon generated VCF file to
886 determine the nucleotide and codon positions if the indel was located within a coding sequence in
887 H37Rv. An indel variant was classified as in-frame if the length of the indel allele was divisible
888 by three, otherwise it was classified as a frameshift.
889

890 **DATA AND MATERIALS AVAILABILITY**

891 Mtb sequencing data was collected from NCBI and is publicly available (**Materials and**
892 **Methods**). All packages and software used in this study have been noted in the **Materials and**
893 **Methods**. Custom scripts written in python version 2.7.15 were used to conduct all analyses and
894 interfaced via Jupyter Notebooks. All scripts and notebooks will be uploaded to a GitHub
895 repository upon acceptance of this manuscript for publication.
896

897 **AUTHOR CONTRIBUTIONS**

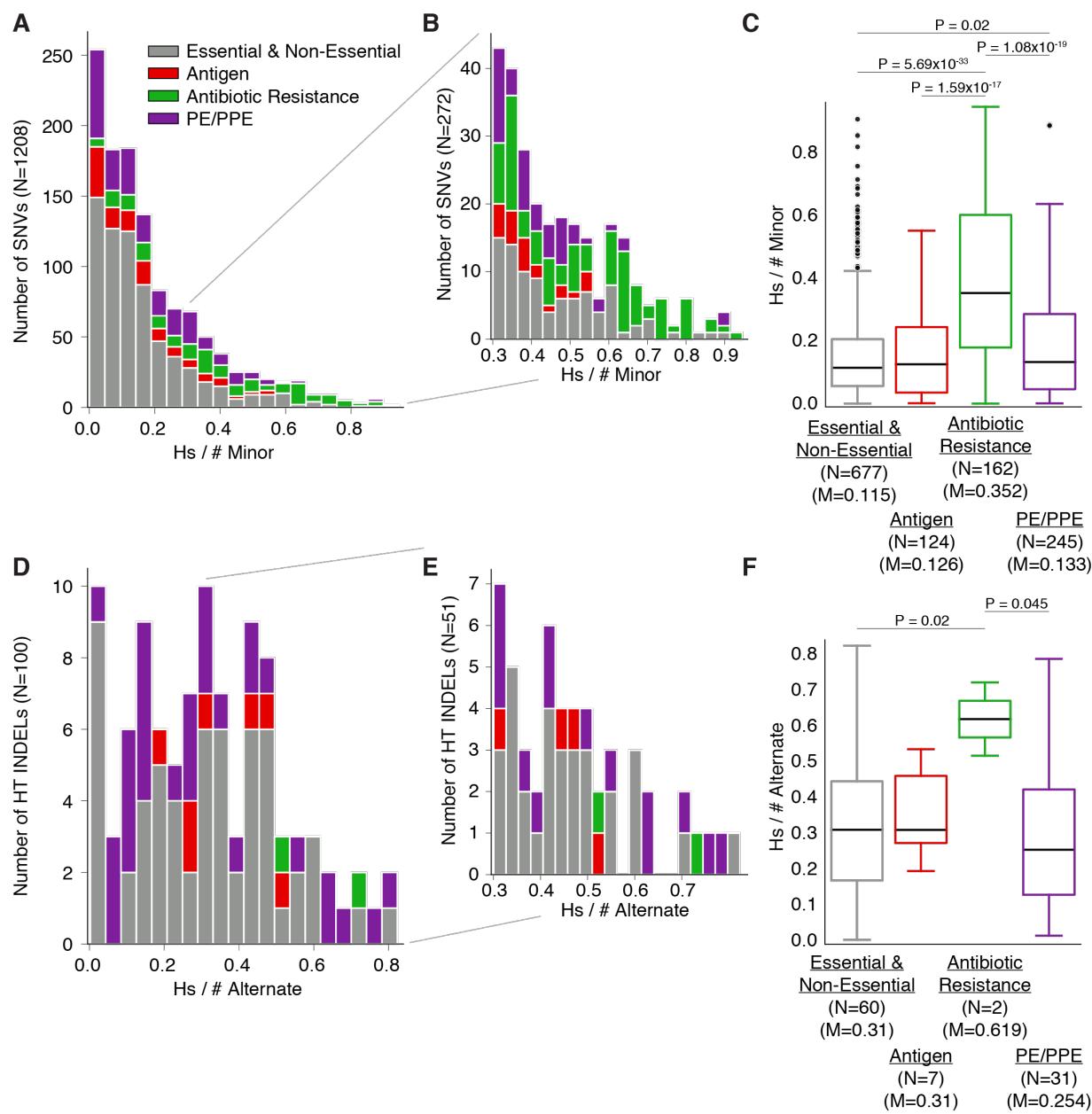
898 R.V.J., and M.R.F. conceived the idea for the study. M.L., C.S., and K.M. conceived the idea for
899 the fluctuation analysis and contributed to the fluctuation analysis. M.R.F., and C.S. supervised
900 the project. R.V.J. performed data acquisition, data curation, and data analysis. M.L. carried out
901 fluctuation analysis experiments. L.F. curated data and performed the GWAS analysis. M.L., and
902 T.I. carried out differential expression experiments and analysis for *espA* mutants. R.V.J. and
903 M.R.F. wrote the first draft. M.R.F. and C.S. critically reviewed the drafts. All authors reviewed
904 the draft and assisted in the manuscript preparation.
905


906 **ACKNOWLEDGEMENTS**

907 We thank the members of the Farhat lab for helpful discussions and comments on the research
908 project and manuscript. R.V.J. was supported by the National Science Foundation Graduate
909 Research Fellowship under Grant No. DGE1745303. M.F. was supported by NIH NIAID R01
910 AI55765. Portions of this research were conducted on the O2 High Performance Compute
911 Cluster, supported by the Research Computing Group, at Harvard Medical School.
912

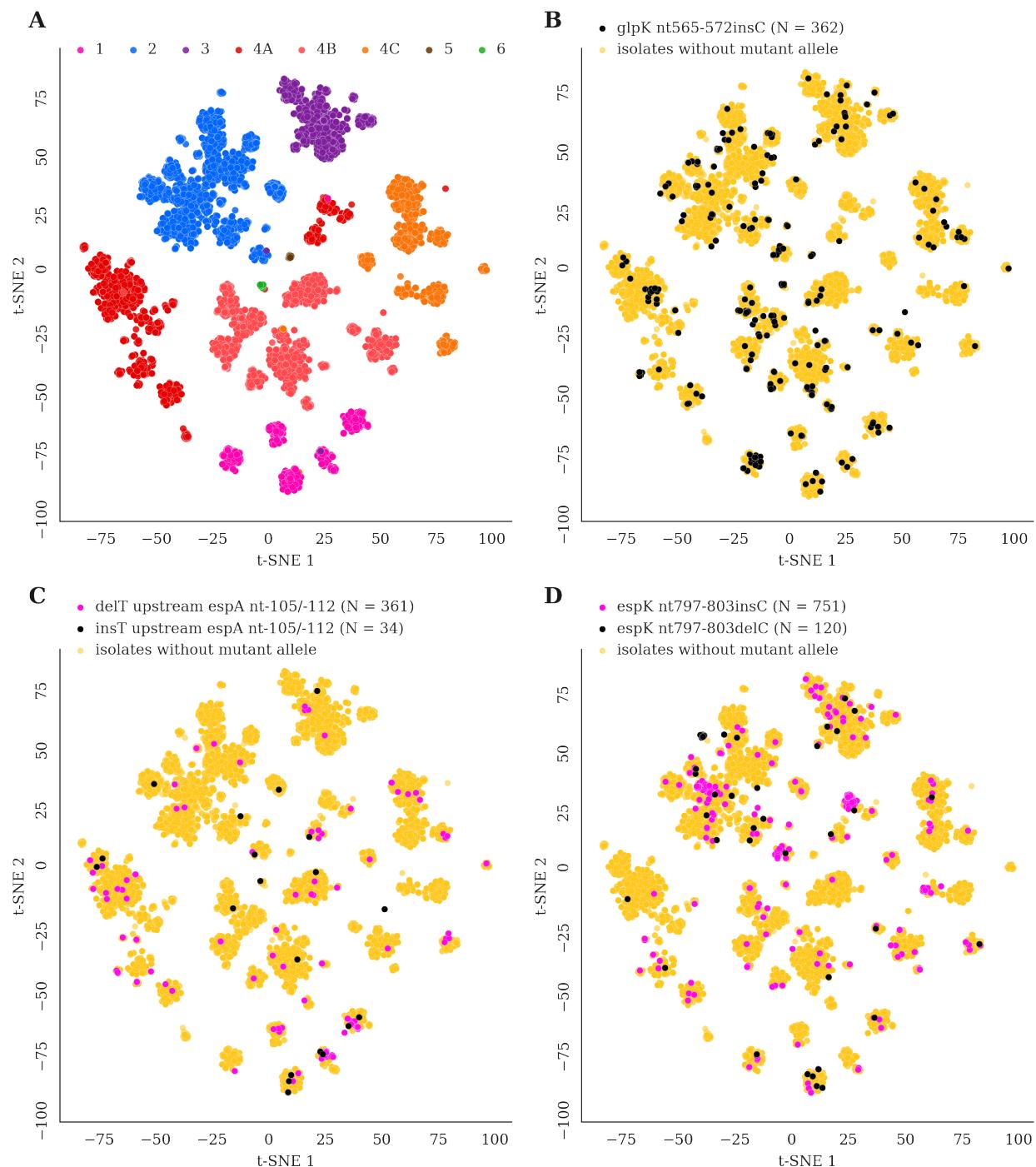
913 **COMPETING INTERESTS**

914 The authors declare that they have no competing interests.

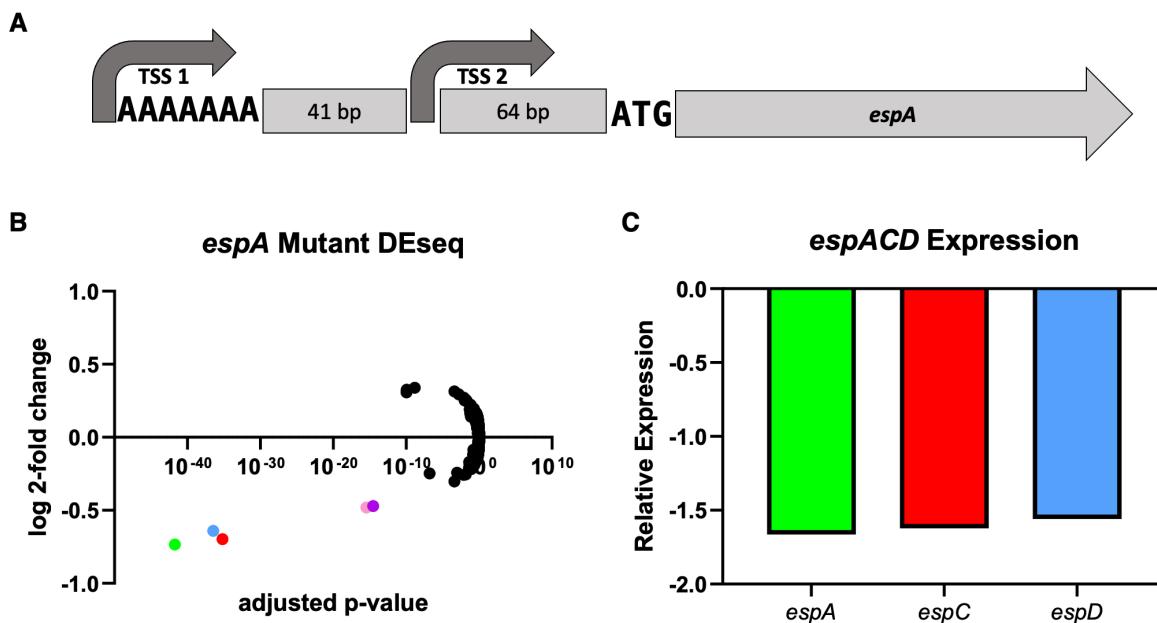

915 **FIGURES AND TABLES**

916

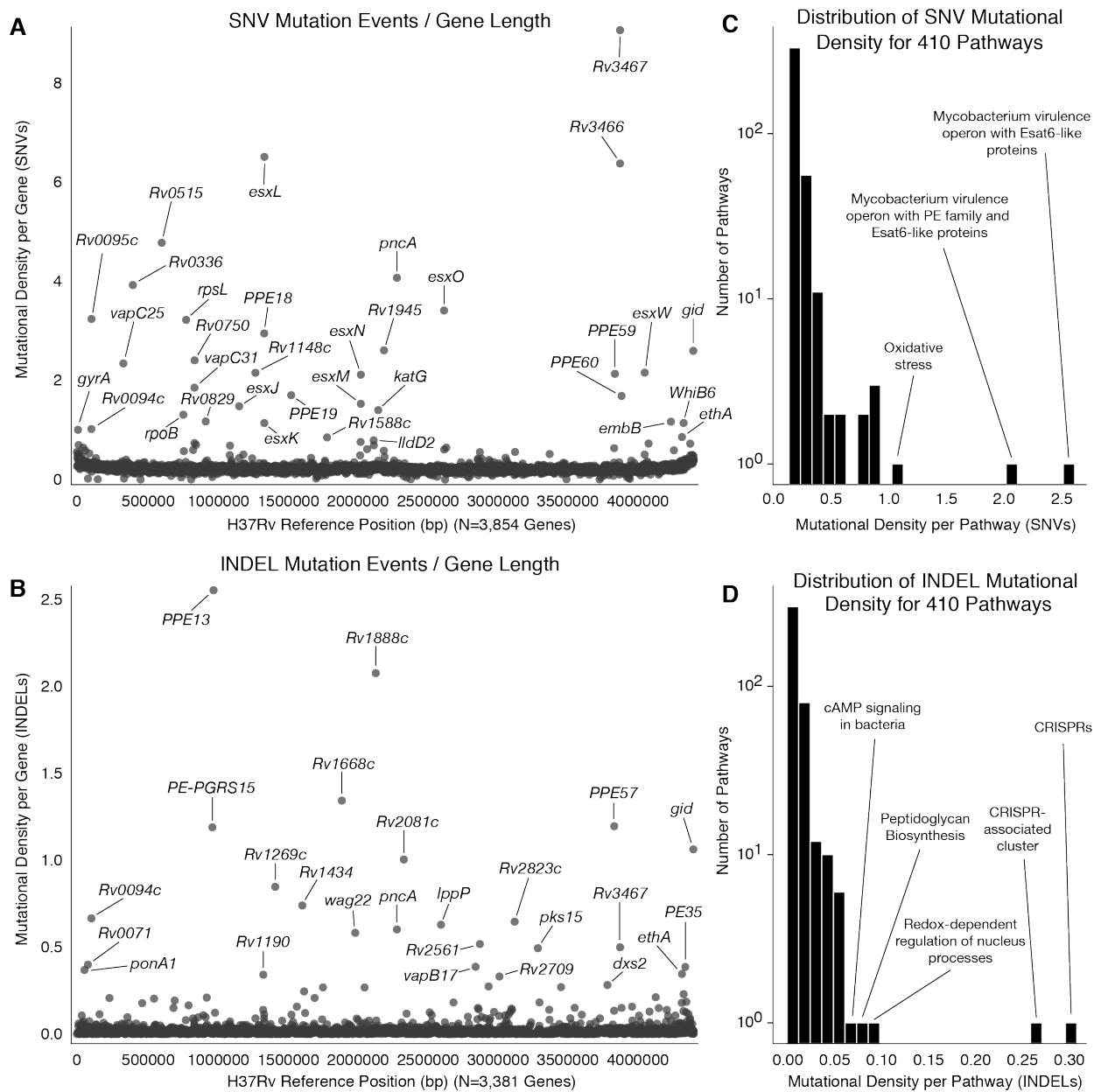
917


918 **Figure 1. Parallel evolution of SNVs and INDELS.** (A) The distribution of homoplasy scores for 919834,981 SNVs and 46,306 INDELS. 0.49% of SNVs have a homoplasy score ≥ 5 ($P < 0.002$) and 9203.01% of INDELS have a homoplasy score ≥ 5 . (B) Proportion of INDELS with $Hs \geq x$ for varying 921 values of x , split into sets according to whether INDEL occurs within HT, SSR or other region of the 922 genome. (C-D) Homoplasy score (Hs) for 1,525 SNVs and 655 INDELS with homoplasy score ≥ 5 923 and minor (SNVs)/alternate (INDELS) allele frequency $> 0.1\%$ among 31,428 isolates, plotted against 924 position on the genome. Bubble size corresponds to Hs. (C) INDELS broken down by whether they 925 occur within an HT, SSR or other region of the genome. HTs with a cumulative Hs score > 45 (across 926 INDELS occurring within HT) are indicated by blue bars. (D) Variants colored in green occur within 927 loci that have been associated with Antibiotic Resistance.

928


929

930 **Figure 2. Recency Ratio for SNVs and HT INDELs.** (A-B) The distribution of the ratio of 931(homoplasy score) to (# of isolates harboring the minor allele) for 1,208/1,525 SNVs (Figure 1C) that 932occur in coding regions. (C) Breaking these SNV recency ratios down by gene category reveals higher 933ratios overall for antibiotic resistance genes when compared to other gene categories. (D-E) The 934distribution of the ratio of (homoplasy score) to (# of isolates harboring the alternate allele) for 100/655 935INDELs (Figure 1C) that occur in HT and coding regions. (F) Breaking these INDEL ratios down by 936gene category reveals higher ratios overall for antibiotic resistance genes when compared to other gene 937categories, however the only two INDELs in this gene category were found in the HT of *glpK*. N = 938number of alleles, M = median Rcr


939
940

941 **Figure 3. Genetic map confirms homoplastic variants.** (A) The t-SNE plot serves as a genetic
 942 similarity map, isolates are colored according to which group they belong to (L1, L2, L3, L4A,
 943 L4B, L4C, L5, L6). (B-D) Isolates are labeled if they harbor a given mutant allele (N = # of isolates
 944 that harbor the mutant allele). These mutations within HTs (*glpK nt565-572insC*, *delT upstream*
 945 *espA nt-105/-112*, *insT upstream espA nt-105/-112*, *espK nt797-803insC* and *espK nt797-803delC*)
 946 are detected in isolates belonging to different clusters, confirming that these mutations must have
 947 arisen independently in different genetic backgrounds.

948
949

950 **Figure 4. A single basepair deletion within the *espA* homopolymer results in decreased *espA* expression.** (A) Schematic showing location of 7 basepair homopolymer Upstream of *Rv3616c*.
951 A highly variable, 7 basepair adenine repeat 105 basepairs upstream of the translational start site
952 for *Rv3616c* (*espA*), which forms an operon with downstream genes *espCD*. Upstream of *Rv3616c*,
953 two transcriptional start sites have been identified. The longer of which sits along the
954 homopolymeric stretch, the other is found another 41 basepairs downstream of the homopolymer.
955 A single basepair deletion in the poly-A tract results in a ~2-fold decrease in *espACD* expression.
956 (B) A volcano plot highlighting the results of an RNAseq experiment comparing a recombined
957 *espA* homopolymer mutant to WT H37Rv. Results are pooled from 2 independent experiments
958 consisting of at least 3 biological replicates each. *espA* (green), *espC* (red), and *espD* (blue) are
959 highlighted. Also highlighted *Rv3612c* (purple) and *Rv3613c* (pink), two genes immediately
960 downstream of *espACD*. (C) Relative expression levels of the *espACD* operon in the mutant *espA*
961 strain compared to WT H37Rv.
962

963

964

965

966

967

968

969

970

971

972

973

974

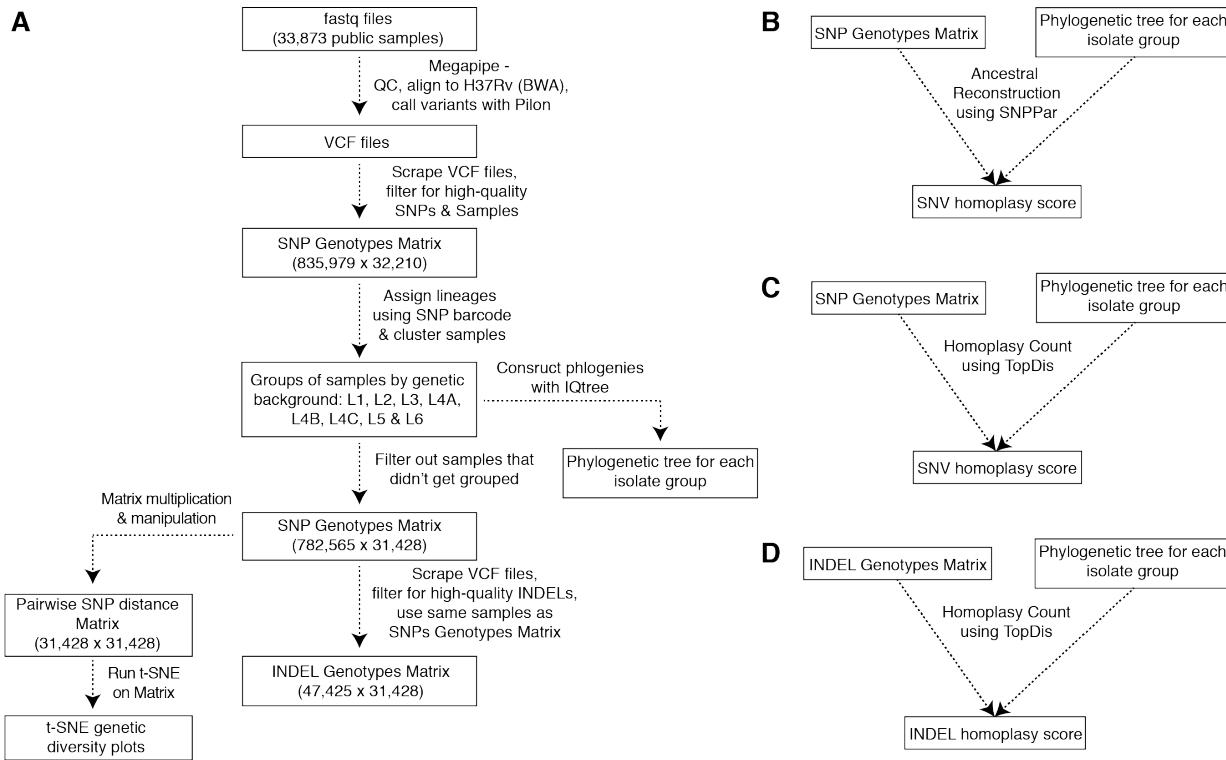
975

9/6

Figure 5. SNV and INDEL mutational density per gene. (A) The homoplasy scores for all SNVs within each gene were aggregated to approximate all SNV mutation events (independent arisals) that occurred within the gene body then normalized by the gene length (**Materials and Methods**). **Table S8** contains the calculations for each gene as well as columns for *# SNVs*, *Synonymous Homoplasy Score*, and *Non-Synonymous Homoplasy Score*. (B) A similar computation was carried out for INDELs in which homoplasy scores for all INDELs within each gene were aggregated and normalized by gene length (**Materials and Methods**). **Table S9** contains the calculations for each gene as well as *# INDELs*, *Inframe Homoplasy Score*, and *Frameshift Homoplasy Score*. (C) Homoplasy scores for all SNVs were aggregated at the level of pathways then normalized by the gene lengths for each gene set (**Table S10, Materials and Methods**). (D) Homoplasy scores for all INDELs were aggregated at the level of pathways then normalized by the gene lengths for each gene set (**Table S11, Materials and Methods**).

Gene Symbol	HT H37Rv coords	Hs	drug	S (FS/WT)	R (FS/WT)	OR 95% CI (Fisher Exact Test)	-log10(bonf p-val)	*other antibiotics
<i>Rv2264c</i>	2536625-2536632	138	STR	4341 (968/3373)	2101 (985/116)	29.59 (24.1-36.33)	90.3	AMK, CAP, EMB, INH, KAN, MXF, OFX, PZA, RFB, RIF
<i>lysX-infC</i>	1852176-1852183	29	MXF	3243 (22/3221)	338 (49/289)	24.82 (14.8-41.64)	67.6	AMK, CAP, CYS, EMB, ETA, INH, KAN, OFX, PZA, RFB, RIF, STR
<i>glpK</i>	4139183-4139190	282	RIF	10.89k (50/10840)	3868 (172/3696)	10.09 (7.35-13.85)	66.6	EMB, ETA, INH, PZA, RFB, RIF, STR
<i>Rv3413c</i>	3832356-3832363	39	KAN	3077 (5/3072)	577 (35/542)	39.68 (15.48-101.72)	34.0	AMK, CAP, EMB, INH, RIF, STR
<i>Rv2177c-aroG</i>	2440187-2440194	69	PZA	9018 (174/8844)	1804 (121/1683)	3.65 (2.88-4.64)	27.5	CAP, EMB, ETA, INH, RIF
<i>PE_PGRS25</i>	1572680-1572687	68	PZA	9018 (345/8673)	1804 (178/1626)	2.75 (2.28-3.32)	25.2	EMB, INH, RIF
<i>bioF2</i>	36470-36477	140	EMB	9307 (1395/7912)	2394 (558/1836)	1.72 (1.54-1.93)	19.8	INH, PZA, RFB, RIF
<i>vapC2-Rv0302</i>	364498-364505	216	PZA	9018 (153/8865)	1804 (97/1707)	3.29 (2.54-4.27)	18.8	EMB, ETA, INH, RIF
<i>Rv1373</i>	1546465-1546472	58	RIF	10890 (204/10686)	28 (21/3847)	0.29 (0.18-0.45)	6.2	CFX, EMB, INH, MXF, RIF
<i>Rv3192</i>	3559990-3559997	55	EMB	9307 (25/9282)	2394 (31/2363)	4.87 (2.87-8.27)	8.1	RIF
<i>Rv0759c-Rv0760c</i>	854252-854261	776	EMB	9307 (8483/824)	2394 (2272/122)	1.81 (1.49-2.2)	6.8	AMK, CAP, INH, KAN, PZA, RIF
<i>lipR</i>	3450182-3450189	40	EMB	9307 (18/9289)	2394 (21/2373)	4.57 (2.43-8.58)	4.7	INH
<i>Rv1894c</i>	2141408-2141415	72	RFB	431 (5/426)	607 (43/564)	6.5 (2.55-16.54)	3.3	PZA
<i>Rv0694-Rv0695</i>	794672-794679	8	MXF	3243 (0/3243)	338 (2/336)	N/A	3.0	
<i>espK</i>	4358979-4358986	192	PZA	9018 (177/8841)	1804 (65/1739)	1.87 (1.4-2.49)	2.8	INH, MXF
<i>PE_PGRS31</i>	2001789-2001796	57	INH	9.844k (79/9765)	4693 (72/4621)	1.93 (1.4-2.66)	2.4	
<i>mshD-phoT</i>	912694-912701	27	CAP	3611 (0/3611)	663 (3/660)	N/A	2.4	

977

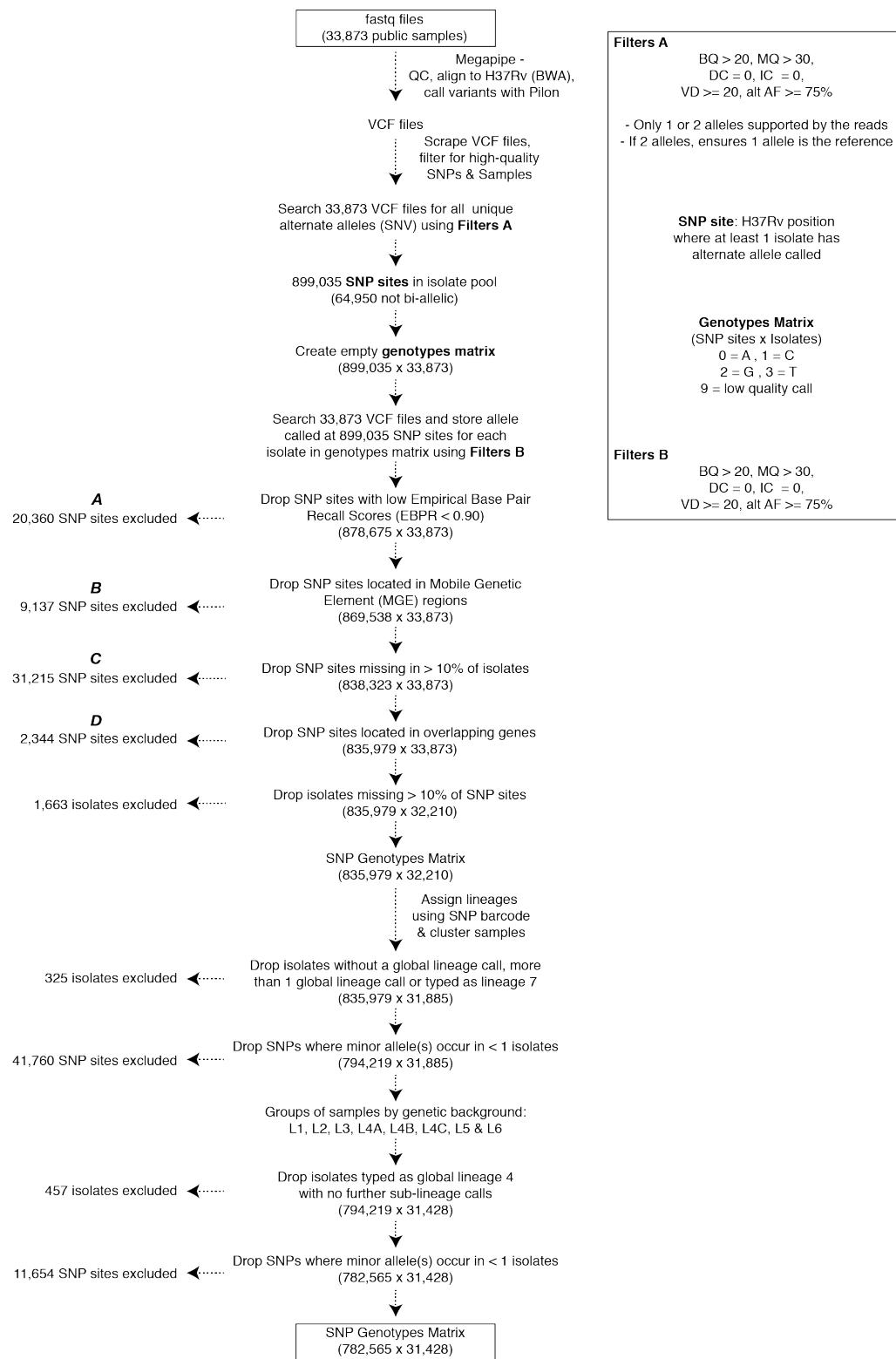

978 **Table 1. HTs with significant association with antibiotic resistance.** Associations between
 979 frameshift variants in HTs and resistance to antibiotics. Variants in 17 HT regions were
 980 significantly associated with resistance to at least one antibiotic at the Bonferroni corrected
 981 threshold (**Methods**). S: number of isolates susceptible, R: number of isolates resistant, FS:
 982 number of isolates that harbor a frameshift, WT: number of isolates with wild type state. *For HTs
 983 associated with resistance to more than one antibiotic, details for the most significant association
 984 are reported while other antibiotics are listed in the last column. AMK: Amikacin, CAP:
 985 Capreomycin, CYS: Cycloserine, EMB: Ethambutol, ETA: Ethionamide, INH: Isoniazid, KAN:
 986 Kanamycin, MXF: Moxifloxacin, OFX: Ofloxacin, PZA: Pyrazinamide, RFB: Rifabutin, RIF:
 987 Rifampicin, STR: Streptomycin

988 **SUPPLEMENTARY DATA**

989

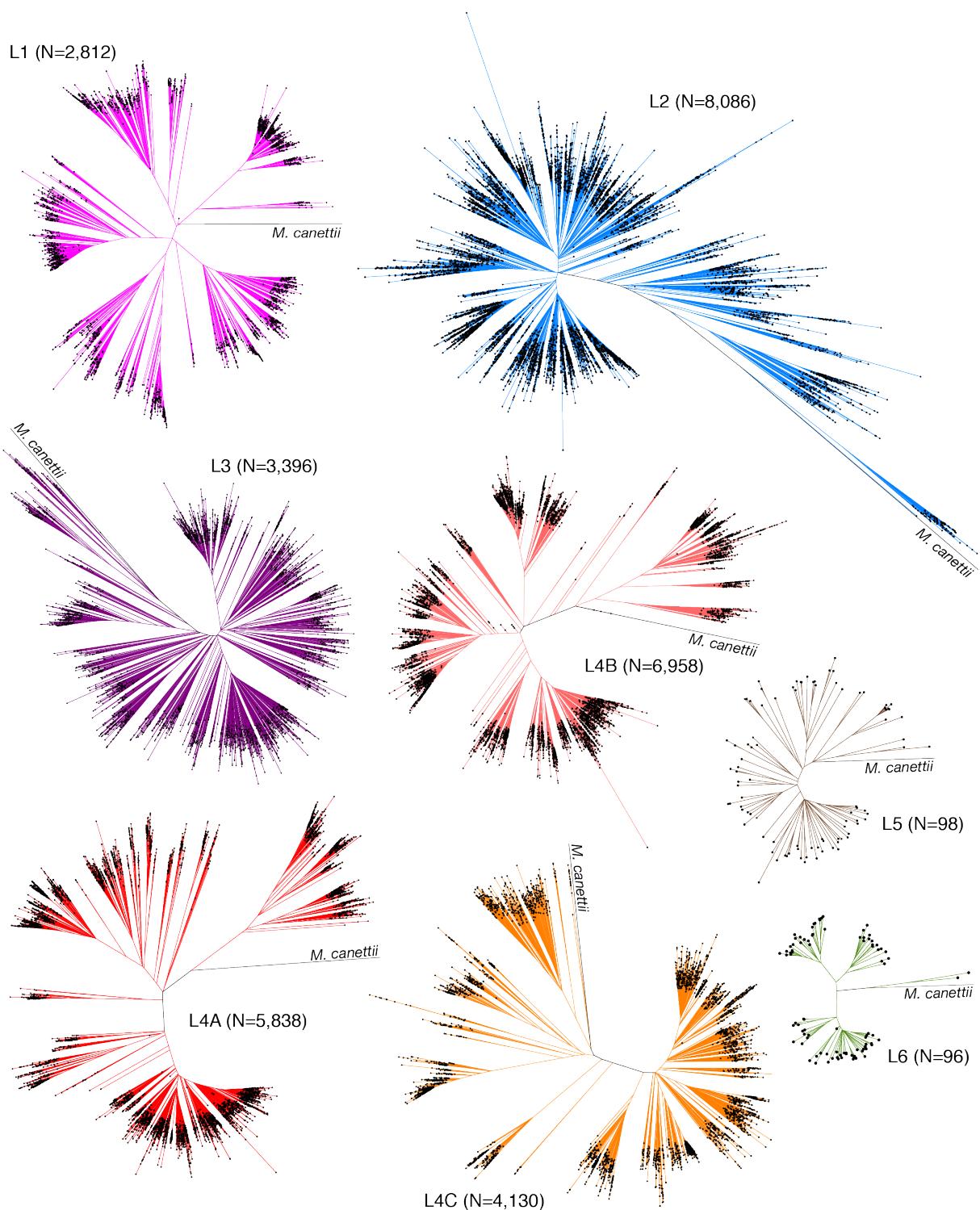
990 **SUPPLEMENTARY FIGURES**

991

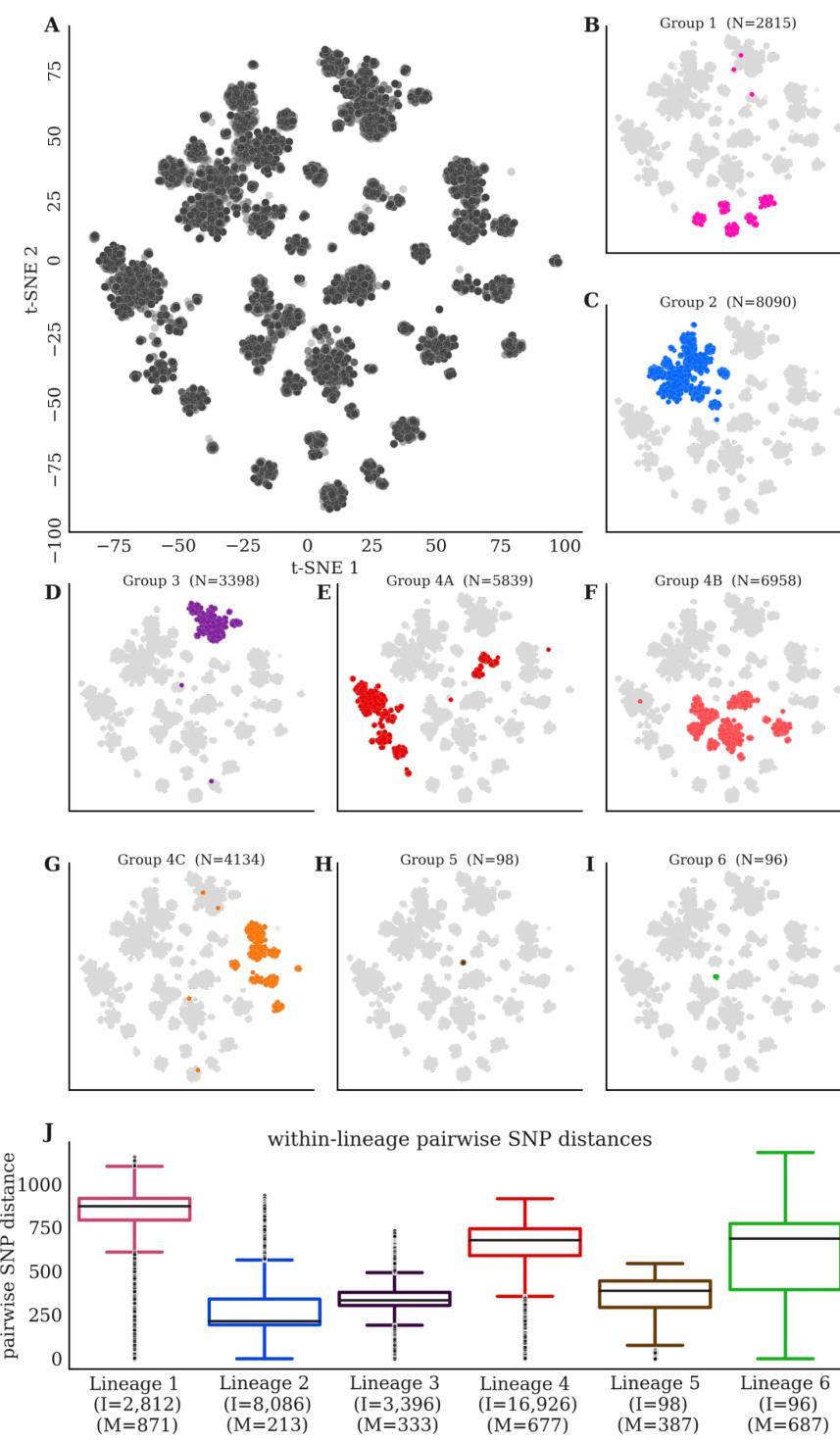


992

993


994 **Figure S1. Project Workflow.** (A) We processed 33,873 public sequences. After quality-control
995 steps removed low-quality SNP sites and isolates, and we removed isolates that did not get
996 classified into one of eight lineage groups (L1, L2, L3, L4A, L4B, L4C, L5, L6) we constructed a
997 782,565x31,428 SNP genotypes matrix (Figure S2). We used this SNP genotypes matrix to
998 construct a pairwise SNP distance matrix which was then used as an input into a t-SNE algorithm.
999 We scraped the VCF files for 31,428 isolates in the SNP genotypes matrix to construct a
1000 47,425x31,428 INDEL genotypes matrix. We constructed a phylogeny for each lineage group
1001 (**Materials and Methods**). (B) Homoplasy Scores for SNVs were computed using SNPPar with
1002 the SNP genotypes matrix and phylogenies as input. (C) Homoplasy Scores for SNVs were
1003 computed using TopDis with the SNP genotypes matrix and phylogenies as input. (D) Homoplasy
1004 Scores for INDELs were computed using TopDis with the INDEL genotypes matrix and
1005 phylogenies as input.

1006


1007
1008

1009 **Figure S2. Constructing the SNP genotypes matrix.** A schematic diagram outlining the steps
1010 described in **Materials and Methods/SNP Genotypes Matrix** and relevant QC filters; from
1011 downloading public sequences to creating the final SNP genotypes matrix.

1012
1013
1014
1015
1016

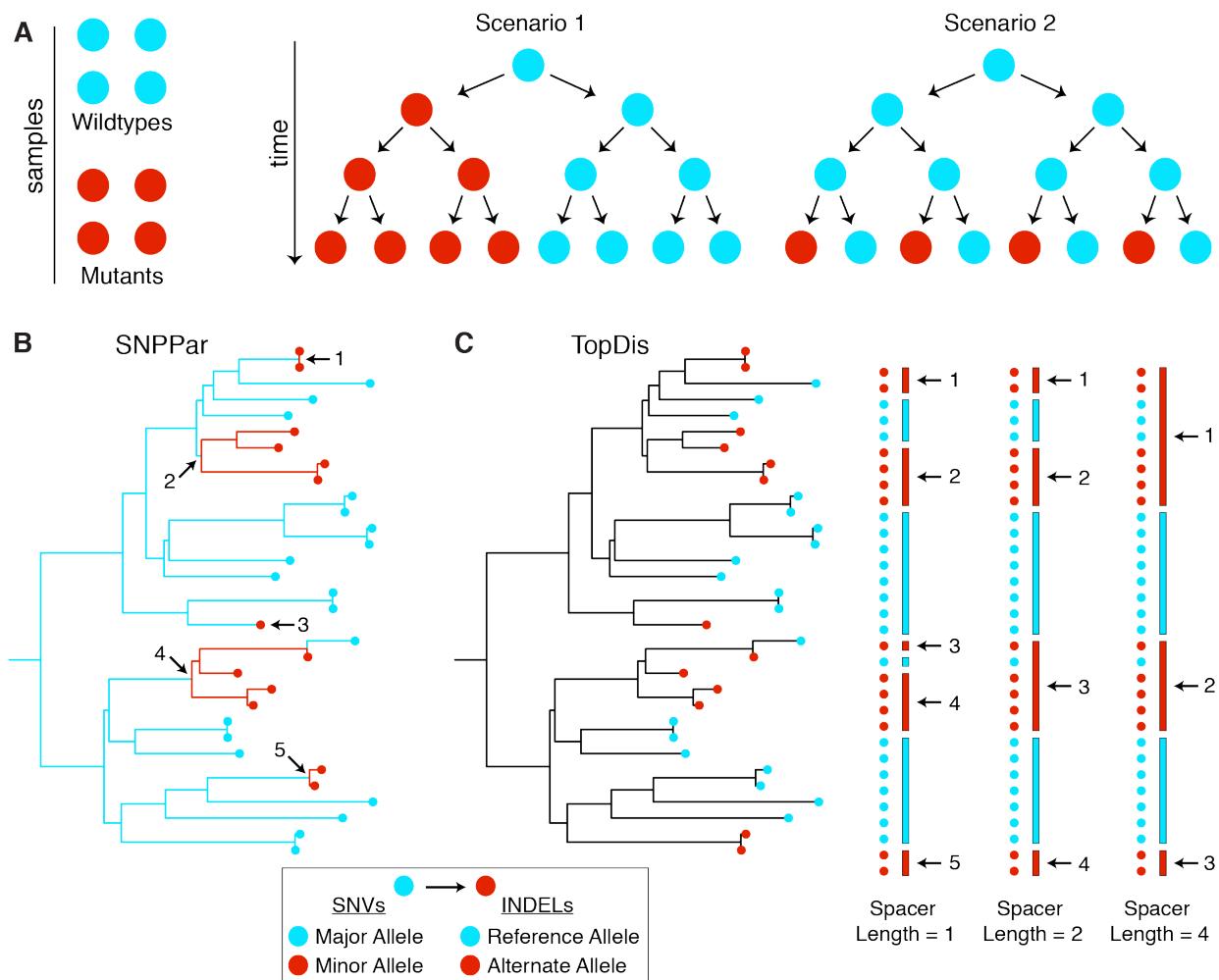
Figure S3. Maximum likelihood phylogenies for 31,428 isolates. We separated 31,428 isolates into eight groups by genetic background and constructed eight separate phylogenies. Misclassified isolates were pruned from the phylogenies for visualization (14 isolates total: L1(3), L2(4), L3(2), L4A(1), L4C(4)) (N = # of isolates).

1017

1018

1019

1020


1021

1022

1023

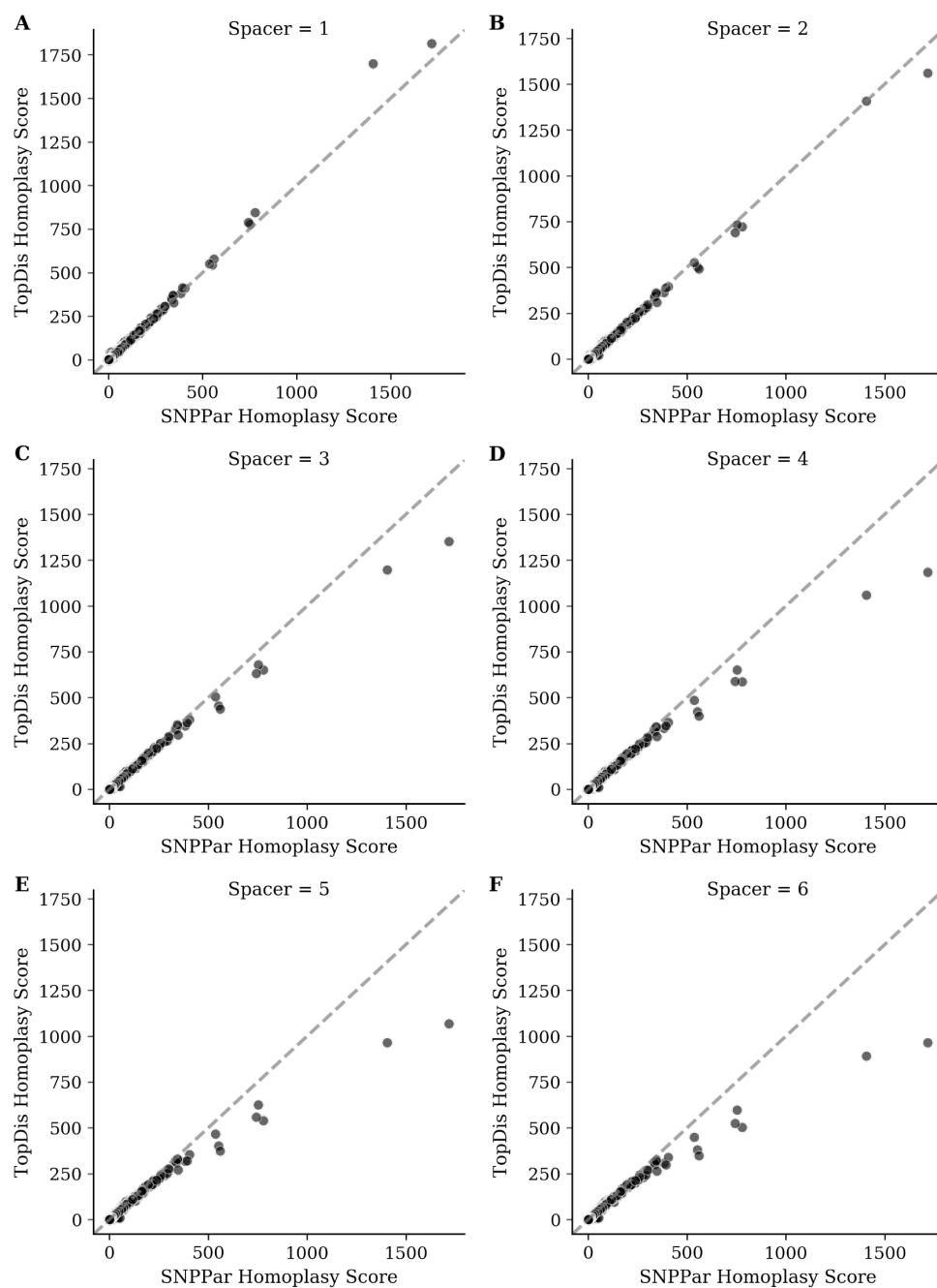
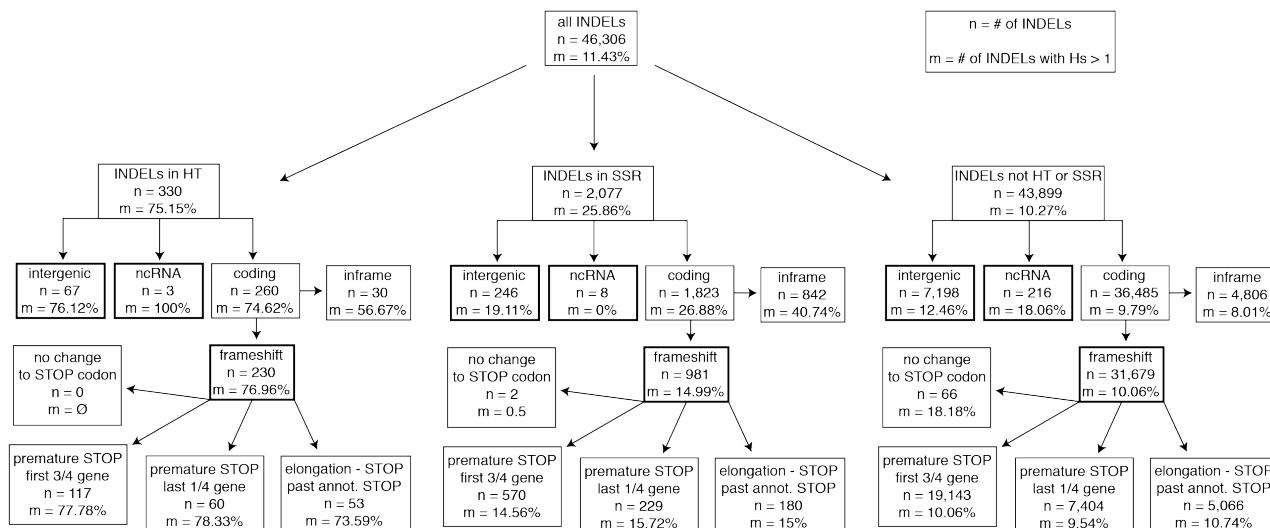
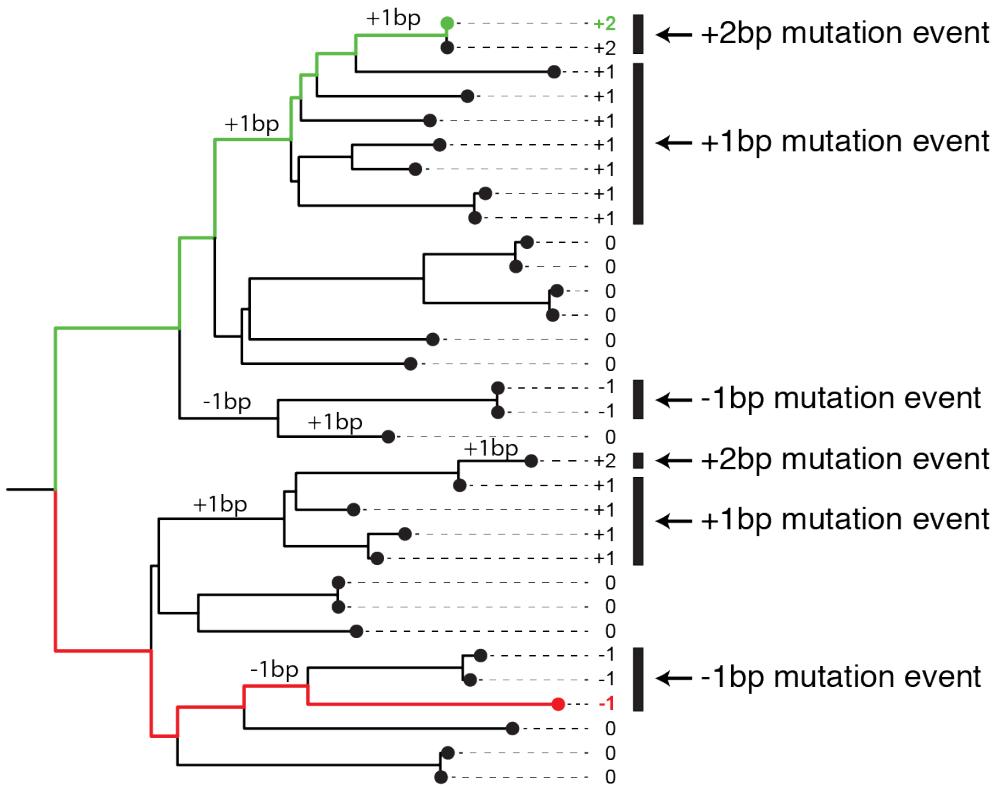

1024

Figure S4. Genetic distance between 31,428 samples separates lineages. (A) t-SNE plots of pairwise SNP distance across the global sample of 31,428 clinical isolates and 782,565 SNP sites. (B-I) Isolates in the t-SNE colored by lineage/sub-lineage (L1, L2, L3, L4A, L4B, L4C, L5, L6) (N = # of isolates). (J) Pairwise SNP distances between each pair of isolates within each lineage L1-L6. The 14/31,328 misclassified isolates were removed prior to computing the distribution of pairwise distances for these barplots (N = # of isolates, M = median of pairwise SNP distances).


1025
1026

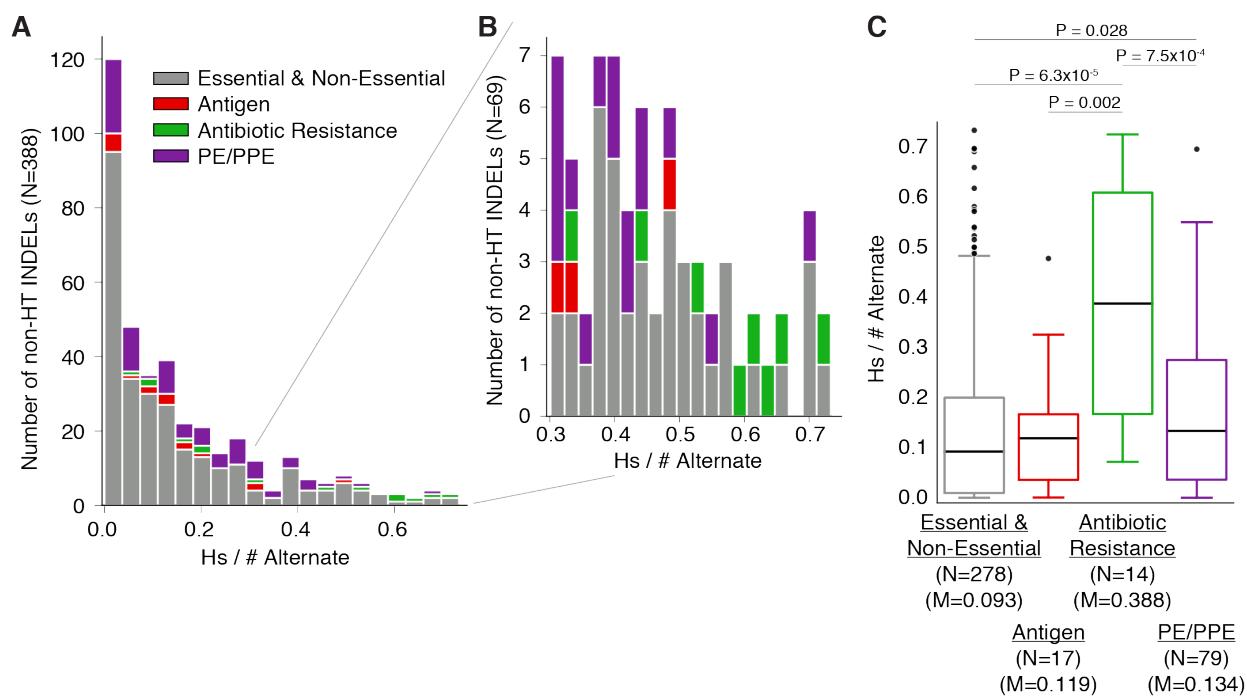
1027 **Figure S5. SNPPar and TopDis methods for computing homoplasy scores.** Phylogenies are
1028 required to discern how many times a given mutation arose within a pool of samples. (A) In
1029 scenario 1, the mutation arose once in an ancestor while in scenario 2 the mutation arose
1030 independently on four occasions which providing much stronger evidence that this mutation was
1031 a target of positive selection. (B) SNPPar is the ancestral reconstruction program we used to infer
1032 where SNV mutations occurred on the trees and consequently how many times a mutation *arose*
1033 in the tree. (C) TopDis is our own method of counting the number of *mutation events* for a given
1034 variant. TopDis includes a parameter (Spacer Length) that controls how conservatively we count
1035 a single independent mutation given the topology of the tree (Materials and Methods).

1036
1037


1038 **Figure S6. Homoplasy scores from SNPPar vs. TopDis.** We calculated homoplasy scores for all
1039 836,901 SNVs in our dataset using SNPPar (Figure S5B) and TopDis (Figure S5C). TopDis takes
1040 in a parameter (Spacer) which calculates more conservative estimates for the number of
1041 independent arisals for larger values (Figure S5C, Materials and Methods). (A-F) We compare
1042 homoplasy scores obtained from SNPPar to those obtained from TopDis for different values of
1043 Spacer (1, 2, 3, 4, 5, 6). The two methods obtain similar estimates for the number of independent
1044 arisals across the phylogenies, with TopDis yielding lower estimates than SNPPar for larger values
1045 of the Spacer parameter. We conservatively chose TopDis Spacer = 4 for INDEL homoplasy score
1046 calculations.

1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057

Figure S7. Functional breakdown of INDELs for HT, SSR & other regions of the genome.


We detected 46,306 INDEL genotypes in our sample, of these 11.43% were homoplastic (Hs > 1) and independently arose more than once in our sample. Breaking down INDELs by whether they occur in HT regions, SSR regions or other regions of the genome reveals a substantially higher proportion of INDELs that are homoplastic in HT regions (75.15%) than in SSR regions (25.86%) and other regions (10.27%). Further breakdown of INDELs by functional impact shows a high proportion of homoplastic variants among frameshifts detected within HT regions (76.96%) relative to frameshifts in SSR regions (14.99%) and frameshifts in other regions (10.06%).

1058
1059

Figure S8. Simulations for frameshifts in HT regions under neutrality. A schematic demonstrating how simulations of neutral frameshift mutations in a HT were carried out using the phylogenies generated from our sample (**Methods**). Briefly, (1) 1-bp frameshift mutations were simulated on the branches of a given phylogeny, (2) INDEL genotypes were assigned for each tip (the green path results in a 2-bp insertion resulting from two 1-bp frameshift insertions in the HT occurring along the path from the root to the tip, the red path results in a 1-bp deletion at the tip), (3) TopDis is used to calculate Hs for each unique INDEL genotype represented at the tips: $Hs(+2bp) = 2$, $Hs(+1bp) = 2$, $Hs(-1bp) = 2$, (4) Hs is aggregated for all genotypes across all phylogenies to get a cumulative Hs for a HT, $Hs(HT) = 6$ for example above. This process is repeated 1000 times to create a null distribution of Hs (HT) under neutrality for the phylogenies used in our analyses.

1071

1072
1073
1074 **Figure S9. Recency Ratio for non-HT INDELs.** (A-B) The distribution of the ratio of
1075 (homoplasy score) to (# of isolates harboring the alternate allele) for 388/655 INDELs (Figure
1076 1C) that occur in non-HT (SSR & other) and coding regions. (C) Breaking these INDEL ratios
1077 down by gene category reveals higher ratios overall for antibiotic resistance genes when compared
1078 to other gene categories. N = number of alleles, M = median Rcr
1079

1080 **SUPPLEMENTARY TABLES**

1081

H37Rv Position	Ref	Alt	Minor	Gene Symbol	Gene Coord	AA change	Homoplasy Score	# Minor	RcR
2155168	C	G	G	<i>katG</i>	944	S315T	1717	8066	0.21
761155	C	T	T	<i>rpoB</i>	1349	S450L	1406	5706	0.25
781687	A	G	G	<i>rpsL</i>	128	K43R	779	3509	0.22
1673425	C	T	T	<i>Rv1482c-fabG1</i>			752	2660	0.28
4247429	A	G	G	<i>embB</i>	916	M306V	743	2102	0.35
1473246	A	G	G	<i>Rrs</i>	1401		560	1452	0.39
7582	A	G	G	<i>gyrA</i>	281	D94G	552	844	0.65
4247431	G	A	A	<i>embB</i>	918	M306I	536	1208	0.44
3883626	A	G	G	<i>Rv3466</i>	102	P34P	405	9033	0.05
3884906	A	G	A	<i>Rv3467</i>	943	E315K	393	6211	0.06
7570	C	T	T	<i>gyrA</i>	269	A90V	384	596	0.64
3730411	G	A	A	<i>PPE54</i>	6525	G2175 G	347	7494	0.05
105060	G	A	A	<i>Rv0095c</i>	156	D52D	345	2066	0.17
1164571	A	G	G	<i>PE8-Rv1041c</i>			343	7811	0.04
608037	A	C	C	<i>Rv0515</i>	1487	H496P	337	5235	0.06
105063	G	A	A	<i>Rv0095c</i>	153	F51F	333	2080	0.16
401678	C	A	A	<i>Rv0336</i>	1487	P496H	301	1796	0.17
3136335	G	A	A	<i>Rv2828c-vapC22</i>			299	3907	0.08
2123145	C	T	T	<i>lldD2</i>	7	V3I	291	1953	0.15
761110	A	T	T	<i>rpoB</i>	1304	D435V	279	802	0.35
781822	A	G	G	<i>rpsL</i>	263	K88R	276	843	0.33
761139	C	T	T	<i>rpoB</i>	1333	H445Y	260	429	0.61
2626600	G	A	A	<i>esxP-Rv2348c</i>			258	5158	0.05
1094538	T	G	G	<i>PE_PGRS17-Rv0979c</i>			254	1357	0.19
2122395	C	T	T	<i>lldD2</i>	757	V253M	254	10090	0.03
1096633	T	G	T	<i>PE_PGRS18-mprA</i>			241	1212	0.2
1276588	C	G	G	<i>Rv1148c</i>	1161	A387A	239	12568	0.02
4248003	A	G	G	<i>embB</i>	1490	Q497R	239	490	0.49
1339399	C	T	T	<i>PPE18</i>	51	Y17Y	226	2416	0.09
2439204	A	G	G	<i>pknL-Rv2177c</i>			223	1004	0.22

1082

1083

1084

1085

1086

1087

1088

Table S1. SNVs with the 30 highest homoplasy scores. The # Minor column contains the number of isolates harboring the minor allele in our sample of 31,428 isolates. The recency ratio (RcR = Homoplasy Score / # Minor) is given in the rightmost column. **Table S2** lists all 1,525 SNVs with homoplasy score ≥ 5 and minor allele frequency $> 0.1\%$ and the breakdown of mutation arisals by lineage.

1089 **Table S2. Homoplasy scores for 1,525 SNVs.** A full version of **Table S1.** Homoplasy scores for
1090 1,525 SNVs with homoplasy score ≥ 5 and minor allele frequency $> 0.1\%$ computed from the
1091 ancestral reconstruction method (SNPPar). The *Homoplasy Score* column contains the number of
1092 inferred independent arisals aggregated across all of the phylogenies. The *# Minor* column contains
1093 the number of isolates harboring the minor allele in our sample of 31,428 isolates. The *Homoplasy*
1094 *Score / # Minor* contains the ratio of these two columns. Columns *L1, L2, L3, L4A, L4B, L4C, L5,*
1095 *L6* correspond to number independent arisals broken down by phylogeny. (Excel spreadsheet)
1096

H37Rv Position	Ref	Alt	Gene Symbol	Gene Coord	Codon Position	Homoplasy Score	# Alternate	RcR	Repeat Region
3131469	T	TTGTCGGCGA	<i>Rv2823c</i>	305	102	1534	5093	0.3	No
1894300	G	GGTCTTGGCGC	<i>Rv1668c</i>	1043	348	1488	12599	0.12	No
968426	A	AGCCGGGTTG	<i>PE_PGRS15</i>	1819	607	1331	2943	0.45	No
2137521	A	ACTCCGATCAC	<i>Rv1888c</i>	559	187	1155	12566	0.09	No
976897	T	TG	<i>PPE13</i>	1307	436	1126	3745	0.3	HT
1313337	A	AG	<i>Rv1179c-pks3</i>	None	None	674	16070	0.04	No
3296371	G	GCCGCGGC	<i>pks15</i>	1470	490	649	6145	0.11	No
976897	T	TGG	<i>PPE13</i>	1307	436	556	894	0.62	HT
976897	TG	T	<i>PPE13</i>	1307	436	438	3246	0.14	HT
3794867	C	CCA	<i>dxs2</i>	1	1	427	8059	0.05	No
854252	GCC	G	<i>Rv0759c-Rv0760c</i>	None	None	427	3139	0.14	HT
234496	C	CGT	<i>Rv0197</i>	2266	756	401	21397	0.02	No
55540	G	GCCGCCGCCT	<i>ponA1</i>	1878	626	397	2238	0.18	SSR
3842463	TA	T	<i>PPE57</i>	225	75	394	2651	0.15	No
976889	CT	C	<i>PPE13</i>	1315	439	371	1395	0.27	HT
3247864	C	CTAGG	<i>ppsA</i>	2420	807	324	469	0.69	SSR
2604156	TCAGTGCCAA	T	<i>lppP</i>	67	23	321	669	0.48	No
1418863	C	CGGGAGCCA	<i>Rv1269c</i>	91	31	311	1929	0.16	No
1992323	G	GC	<i>wag22</i>	255	85	308	1926	0.16	HT
4139183	A	AC	<i>glpK</i>	573	191	261	362	0.72	HT
1340652	AG	A	<i>PPE18-esxK</i>	None	None	238	1585	0.15	No
3462145	A	AGGCGC	<i>Rv3093c</i>	620	207	236	1864	0.13	No
2338194	A	AC	<i>Rv2081c</i>	312	104	235	803	0.29	HT
1277869	G	GT	<i>Rv1148c-Rv1149</i>	None	None	229	18450	0.01	No
854252	GC	G	<i>Rv0759c-Rv0760c</i>	None	None	224	24707	0.01	HT
4323354	C	CG	<i>Rv3848-espR</i>	None	None	214	690	0.31	HT
3590686	G	GC	<i>Rv3212-Rv3213c</i>	None	None	210	21953	0.01	No
4408100	GC	G	<i>gid</i>	103	35	202	388	0.52	No
79504	TCGGTGGACC	T	<i>Rv0071</i>	19	7	194	577	0.34	No
976896	TTG	T	<i>PPE13</i>	1308	436	188	3551	0.05	HT

1097

1098 **Table S3. INDELS with the 30 highest homoplasy scores.** The # Alternate column contains the
 1099 number of isolates harboring the alternate allele in our sample of 31,428 isolates. The recency ratio
 1100 (RcR = Homoplasy Score / # Alternate) is given in the rightmost column. **Table S4** lists all 655
 1101 INDELS with homoplasy score ≥ 5 and alternate allele frequency $> 0.1\%$ and the breakdown of
 1102 mutation arisals by lineage.

1103

1104 **Table S4. Homoplasy scores for 655 INDELS.** A full version of **Table S3.** Homoplasy scores
1105 for 655 INDELS with homoplasy score ≥ 5 and alternate allele frequency $> 0.1\%$ computed
1106 from the naïve phylogeny counting method (TopDis). The *Homoplasy Score* column contains the
1107 number of inferred independent arisals aggregated across all of the phylogenies. The *# Alternate*
1108 column contains the number of isolates harboring the alternate allele in our sample of 31,428
1109 isolates. The *Homoplasy Score / # Alternate* contains the ratio of these two columns. Columns
1110 *L1, L2, L3, L4A, L4B, L4C, L5, L6* correspond to number independent arisals broken down by
1111 phylogeny. (Excel spreadsheet)
1112

H37Rv Start	H37Rv End	polyNT	Gene Symbol	sum(Hs)	# Alternate
976897	976906	GGGGGGGGGG	<i>PPE13</i>	2317	8351
854252	854261	CCCCCCCCCC	<i>Rv0759c-Rv0760c</i>	776	28077
976889	976896	TTTTTTTT	<i>PPE13</i>	771	5641
1992323	1992331	CCCCCCCC	<i>wag22</i>	578	4052
2338194	2338202	CCCCCCCC	<i>Rv2081c</i>	360	4596
4139183	4139190	CCCCCCCC	<i>glpK</i>	282	388
1333661	1333668	GGGGGGGG	<i>Rv1190</i>	277	914
4323354	4323361	GGGGGGGG	<i>Rv3848-espR</i>	269	1355
2234247	2234254	GGGGGGGG	<i>Rv1990c-mazF6</i>	217	901
364498	364505	GGGGGGGG	<i>vapC2-Rv0302</i>	216	676
3742991	3742998	GGGGGGGG	<i>PE_PGRS50-Rv3346c</i>	214	2229
691887	691894	CCCCCCCC	<i>mce2D</i>	198	5158
4358979	4358986	GGGGGGGG	<i>espK</i>	192	902
1760164	1760171	GGGGGGGG	<i>frdB</i>	178	791
4099402	4099409	GGGGGGGG	<i>B11</i>	163	656
1700415	1700422	GGGGGGGG	<i>Rv1509</i>	153	399
2976558	2976565	CCCCCCCC	<i>Rv2652c-Rv2653c</i>	152	669
36470	36477	CCCCCCCC	<i>bioF2</i>	140	4903
2536625	2536632	GGGGGGGG	<i>Rv2264c</i>	138	8974
3308313	3308320	GGGGGGGG	<i>Rv2955c</i>	137	472
4337820	4337827	GGGGGGGG	<i>Rv3860</i>	131	337
4056480	4056487	TTTTTTT	<i>espA-ephA</i>	108	405
2796131	2796138	CCCCCCCC	<i>PE_PGRS42</i>	93	762
1026916	1026923	GGGGGGGG	<i>Rv0920c-Rv0921</i>	90	332
2881582	2881589	TTTTTTT	<i>Rv2560-Rv2563</i>	89	3701
799136	799143	CCCCCCCC	<i>Rv0698</i>	83	4229
2522481	2522488	GGGGGGGG	<i>Rv2248</i>	79	250
191391	191398	CCCCCCCC	<i>Rv0161</i>	73	274
2141408	2141415	GGGGGGGG	<i>Rv1894c</i>	72	433
1002282	1002289	CCCCCCCC	<i>Rv0897c</i>	69	294
2440187	2440194	GGGGGGGG	<i>Rv2177c-aroG</i>	69	819
1572680	1572687	CCCCCCCC	<i>PE_PGRS25</i>	68	1792
4325205	4325212	AAAAAAA	<i>Hns</i>	64	155
868160	868167	GGGGGGGG	<i>Rv0774c</i>	64	151
3112277	3112284	CCCCCCCC	<i>Rv2803</i>	63	130
4019546	4019553	GGGGGGGG	<i>Rv3577</i>	63	149
3539139	3539146	GGGGGGGG	<i>aofH</i>	62	2862
3602343	3602350	CCCCCCCC	<i>Rv3225c</i>	62	157
4251293	4251300	GGGGGGGG	<i>fadE35</i>	59	142
1546465	1546472	CCCCCCCC	<i>Rv1373</i>	58	333
2001789	2001796	GGGGGGGG	<i>PE_PGRS31</i>	57	361
3559990	3559997	CCCCCCCC	<i>Rv3192</i>	55	152
3377346	3377353	CCCCCCCC	<i>PPE46</i>	54	116
2867737	2867744	CCCCCCCC	<i>lppB</i>	50	262
4298220	4298227	GGGGGGGG	<i>pks2</i>	48	96

1113

1114 **Table S5. Homopolymeric tracts with more than 45 independent frameshift arisals.** The
 1115 frameshift variants occurring within these HT regions have an aggregated homoplasy score of >
 1116 45. The *Homoplasy Score* column lists the number of independent frameshift mutation arisals in
 1117 the corresponding HT for HTs in coding regions and number of independent INDEL arisals for
 1118 HTs in intergenic regions. The *# Alternate* column gives the number of isolates that harbor a
 1119 frameshift alternate allele in this HT. These HT regions are highlighted in blue in **Figure 1C** and
 1120 some mutations within the HTs for the bolded rows are represented in **Figure 3B-D**. A full
 1121 version of this table that lists all 145 HT regions found in MTBC genome can be found in **Table**
 1122 **S6**.

1123 **Table S6. Homoplasy scores aggregated by homopolymeric tracts.** A full version of **Table S5**.
1124 This table lists all 145 HT regions found in the MTBC genome. For each HT, the homoplasy scores
1125 for all frameshifts occurring within HTs in coding regions and homoplasy scores for all INDELS
1126 occurring in intergenic regions are aggregated which yields a *Homoplasy Score* for each HT. The
1127 #*Alternate* column gives the number of isolates that harbor a frameshift alternate allele in this HT.
1128 (Excel spreadsheet)
1129

1130 **Table S7. DeSeq analysis.** Results from DeSeq analyses showing 22 significantly differentially
1131 expressed genes in *espA* mutant. (Excel spreadsheet)
1132

1133 **Table S8. SNV mutational density per gene.** The homoplasy scores for all SNVs within each
1134 gene were aggregated to approximate all SNV mutation events (independent arisals) that occurred
1135 within the gene body then normalized by the gene length. This table contains these calculations
1136 for each gene as well as columns for # *SNVs*, *Synonymous Homoplasy Score*, and *Non-Synonymous*
1137 *Homoplasy Score*. (Excel spreadsheet)
1138

1139 **Table S9. INDEL mutation density per gene.** The homoplasy scores for all INDELS within each
1140 gene were aggregated to approximate all INDEL mutation events (independent arisals) that
1141 occurred within the gene body then normalized by the gene length. This table contains these
1142 calculations for each gene as well as columns for # *INDELS*, *Inframe Homoplasy Score*, and
1143 *Frameshift Homoplasy Score*. (Excel spreadsheet)
1144

1145 **Table S10. SNV mutational density per pathway.** The homoplasy scores for all SNVs within
1146 each pathway were aggregated to approximate all SNV mutation events (independent arisals) that
1147 occurred within the genes in each pathway then normalized by the concatenate of the gene lengths.
1148 This table contains these calculations for each pathway as well as columns for *H37Rv Locus Tags*
1149 and *Gene Symbols* for the genes that belong to each pathway. (Excel spreadsheet)
1150

1151 **Table S11. INDEL mutation density per pathway.** The homoplasy scores for all INDELS within
1152 each pathway were aggregated to approximate all INDEL mutation events (independent arisals)
1153 that occurred within the genes in each pathway then normalized by the concatenate of the gene
1154 lengths. This table contains these calculations for each pathway as well as columns for *H37Rv*
1155 *Locus Tags* and *Gene Symbols* for the genes that belong to each pathway. (Excel spreadsheet)

1156 REFERENCES

1157 Bellerose MM, Baek S-H, Huang C-C, Moss CE, Koh E-I, Proulx MK, Smith CM, Baker RE,
1158 Lee JS, Eum S. 2019. Common Variants in the Glycerol Kinase Gene Reduce
1159 Tuberculosis Drug Efficacy. *mBio* **10**:e00663-19.

1160 Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. 2000. GenBank. *Nucleic
1161 Acids Res* **28**:15-18.

1162 Brennan MJ. 2017. The enigmatic PE/PPE multigene family of mycobacteria and
1163 tuberculosis vaccination. *Infect Immun* **85**:e00969-16.

1164 Brennan MJ, Delogu G. 2002. The PE multigene family: a 'molecular mantra' for
1165 mycobacteria. *Trends Microbiol* **10**:246-249.

1166 Brynildsrud OB, Pepperell CS, Suffys P, Grandjean L, Monteserin J, Debech N, Bohlin J,
1167 Alfsnes K, Pettersson JO-H, Kirkeleite I. 2018. Global expansion of *Mycobacterium*
1168 tuberculosis lineage 4 shaped by colonial migration and local adaptation. *Sci Adv*
1169 **4**:eaat5869.

1170 Chiner-Oms Á, Sánchez-Busó L, Corander J, Gagneux S, Harris S, Young D, González-
1171 Candelas F, Comas I. 2019. Genomic determinants of speciation and spread of the
1172 *Mycobacterium tuberculosis* complex. *Sci Adv* **5**:eaaw3307.

1173 Clemmensen HS, Knudsen NPH, Rasmussen EM, Winkler J, Rosenkrands I, Ahmad A,
1174 Lillebaek T, Sherman DR, Andersen PL, Aagaard C. 2017. An attenuated
1175 *Mycobacterium tuberculosis* clinical strain with a defect in ESX-1 secretion induces
1176 minimal host immune responses and pathology. *Sci Rep* **7**:1-13.

1177 Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T,
1178 Kauff F, Wilczynski B, others. 2009. Biopython: freely available Python tools for
1179 computational molecular biology and bioinformatics. *Bioinformatics* **25**:1422-1423.

1180 Cole ST. 2016. Inhibiting *Mycobacterium tuberculosis* within and without. *Philos Trans R
1181 Soc B Biol Sci* **371**:20150506.

1182 Coll F, Phelan J, Hill-Cawthorne GA, Nair MB, Mallard K, Ali S, Abdallah AM, Alghamdi S,
1183 Alsomali M, Ahmed AO. 2018. Genome-wide analysis of multi-and extensively
1184 drug-resistant *Mycobacterium tuberculosis*. *Nat Genet* **50**:307.

1185 Comas I, Chakravarthi J, Small PM, Galagan J, Niemann S, Kremer K, Ernst JD, Gagneux S.
1186 2010. Human T cell epitopes of *Mycobacterium tuberculosis* are evolutionarily
1187 hyperconserved. *Nat Genet* **42**:498-503.

1188 Coscolla M, Copin R, Sutherland J, Gehre F, de Jong B, Owolabi O, Mbayo G, Giardina F,
1189 Ernst JD, Gagneux S. 2015. *M. tuberculosis* T cell epitope analysis reveals paucity of
1190 antigenic variation and identifies rare variable TB antigens. *Cell Host Microbe*
1191 **18**:538-548.

1192 Coscolla M, Gagneux S. 2014. Consequences of genomic diversity in *Mycobacterium*
1193 tuberculosis. Presented at the Seminars in immunology. Elsevier. pp. 431-444.

1194 Coscolla M, Gagneux S, Menardo F, Loiseau C, Ruiz-Rodriguez P, Borrell S, Otchere ID,
1195 Asante-Poku A, Asare P, Sánchez-Busó L. 2021. Phylogenomics of *Mycobacterium*
1196 *africanum* reveals a new lineage and a complex evolutionary history. *Microb
1197 Genomics* **7**:000477.

1198 Covert BA, Spencer JS, Orme IM, Belisle JT. 2001. The application of proteomics in
1199 defining the T cell antigens of *Mycobacterium tuberculosis*. *PROTEOMICS Int Ed*
1200 1:574–586.

1201 DeJesus MA, Gerrick ER, Xu W, Park SW, Long JE, Boutte CC, Rubin EJ, Schnappinger D,
1202 Ehrt S, Fortune SM. 2017. Comprehensive essentiality analysis of the
1203 *Mycobacterium tuberculosis* genome via saturating transposon mutagenesis. *MBio*
1204 8:eo2133-16.

1205 Edwards DJ, Duchêne S, Pope B, Holt KE. 2020. SNPPar: identifying convergent evolution
1206 and other homoplasies from microbial whole-genome alignments. *bioRxiv*.

1207 Ektefaie Y, Dixit A, Freschi L, Farhat MR. 2021. Globally diverse *Mycobacterium*
1208 tuberculosis resistance acquisition: a retrospective geographical and temporal
1209 analysis of whole genome sequences. *Lancet Microbe* 2:e96–e104.

1210 Estrem ST, Ross W, Gaal T, Chen ZS, Niu W, Ebright RH, Gourse RL. 1999. Bacterial
1211 promoter architecture: subsite structure of UP elements and interactions with the
1212 carboxy-terminal domain of the RNA polymerase α subunit. *Genes Dev* 13:2134–
1213 2147.

1214 Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, Victor TC, Warren RM,
1215 Streicher EM, Calver A, Slutsky A, others. 2013. Genomic analysis identifies
1216 targets of convergent positive selection in drug-resistant *Mycobacterium*
1217 tuberculosis. *Nat Genet* 45:1183–1183.

1218 Fortune S, Jaeger A, Sarracino D, Chase M, Sassetti C, Sherman D, Bloom B, Rubin E.
1219 2005. Mutually dependent secretion of proteins required for mycobacterial
1220 virulence. *Proc Natl Acad Sci* 102:10676–10681.

1221 Freschi L, Vargas R, Hussain A, Kamal SM, Skrahina A, Tahseen S, Ismail N, Barbova A,
1222 Niemann S, Cirillo DM. 2021. Population structure, biogeography and
1223 transmissibility of *Mycobacterium tuberculosis*. *Nat Commun* In-press.

1224 Gagneux S. 2018. Ecology and evolution of *Mycobacterium tuberculosis*. *Nat Rev
1225 Microbiol* 16:202–213.

1226 Garces A, Atmakuri K, Chase MR, Woodworth JS, Krastins B, Rothchild AC, Ramsdell TL,
1227 Lopez MF, Behar SM, Sarracino DA. 2010. EspA acts as a critical mediator of ESX1-
1228 dependent virulence in *Mycobacterium tuberculosis* by affecting bacterial cell wall
1229 integrity. *PLoS Pathog* 6:e1000957.

1230 Gerrick ER, Barbier T, Chase MR, Xu R, François J, Lin VH, Szucs MJ, Rock JM, Ahmad R,
1231 Tjaden B. 2018. Small RNA profiling in *Mycobacterium tuberculosis* identifies MrsI
1232 as necessary for an anticipatory iron sparing response. *Proc Natl Acad Sci* 115:6464–
1233 6469.

1234 Gill WP, Harik NS, Whiddon MR, Liao RP, Mittler JE, Sherman DR. 2009. A replication
1235 clock for *Mycobacterium tuberculosis*. *Nat Med* 15:211–214.

1236 Gillet-Markowska A, Louvel G, Fischer G. 2015. bz-rates: A web tool to estimate mutation
1237 rates from fluctuation analysis. *G3 Genes Genomes Genet* 5:2323–2327.

1238 Gröschel MI, Owens M, Freschi L, Vargas R, Marin MG, Phelan J, Iqbal Z, Dixit A, Farhat
1239 MR. 2021. GenTB: A user-friendly genome-based predictor for tuberculosis
1240 resistance powered by machine learning. *Genome Med* 13:1–14.

1241 Guinn KM, Hickey MJ, Mathur SK, Zakel KL, Grotzke JE, Lewinsohn DM, Smith S,
1242 Sherman DR. 2004. Individual RD1-region genes are required for export of ESAT-
1243 6/CFP-10 and for virulence of *Mycobacterium tuberculosis*. *Mol Microbiol* **51**:359–
1244 370.

1245 Holt KE, McAdam P, Thai PVK, Thuong NTT, Ha DTM, Lan NN, Lan NH, Nhu NTQ, Hai
1246 HT, Ha VTN. 2018. Frequent transmission of the *Mycobacterium tuberculosis*
1247 Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. *Nat
1248 Genet* **50**:849–849.

1249 Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ, Morin PM, Marks CB, Padiyar J,
1250 Goulding C, Gingery M. 2003. The primary mechanism of attenuation of bacillus
1251 Calmette–Guerin is a loss of secreted lytic function required for invasion of lung
1252 interstitial tissue. *Proc Natl Acad Sci* **100**:12420–12425.

1253 Hunter JD. 2007. Matplotlib: A 2D graphics environment. *Comput Sci Eng* **9**:90–95.

1254 Ioerger TR, O’Malley T, Liao R, Guinn KM, Hickey MJ, Mohaideen N, Murphy KC, Boshoff
1255 HI, Mizrahi V, Rubin EJ. 2013. Identification of new drug targets and resistance
1256 mechanisms in *Mycobacterium tuberculosis*. *PloS One* **8**:e75245.

1257 Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS. 2017. ModelFinder:
1258 fast model selection for accurate phylogenetic estimates. *Nat Methods* **14**:587–589.

1259 Kim J-H, O’Brien KM, Sharma R, Boshoff HI, Rehren G, Chakraborty S, Wallach JB,
1260 Monteleone M, Wilson DJ, Aldrich CC. 2013. A genetic strategy to identify targets
1261 for the development of drugs that prevent bacterial persistence. *Proc Natl Acad Sci*
1262 **110**:19095–19100.

1263 Kirubakar G, Schäfer H, Rickerts V, Schwarz C, Lewin A. 2020. Mutation on lysX from
1264 *Mycobacterium avium hominissuis* impacts the host–pathogen interaction and
1265 virulence phenotype. *Virulence* **11**:132–144.

1266 Lewis KN, Liao R, Guinn KM, Hickey MJ, Smith S, Behr MA, Sherman DR. 2003. Deletion
1267 of RD1 from *Mycobacterium tuberculosis* mimics bacille Calmette-Guerin
1268 attenuation. *J Infect Dis* **187**:117–123.

1269 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler
1270 transform. *Bioinformatics* **25**:1754–1760.

1271 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin
1272 R. 2009. The sequence alignment/map format and SAMtools. *Bioinformatics*
1273 **25**:2078–2079.

1274 Lim ZL, Drever K, Dhar N, Cole ST, Chen JM. 2022. *Mycobacterium tuberculosis* EspK
1275 Has Active but Distinct Roles in the Secretion of EsxA and EspB. *J Bacteriol*
1276 **eo00060-22**.

1277 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion
1278 for RNA-seq data with DESeq2. *Genome Biol* **15**:1–21.

1279 Manson AL, Cohen KA, Abeel T, Desjardins CA, Armstrong DT, Barry CE, Brand J,
1280 Chapman SB, Cho S-N, Gabrielian A. 2017. Genomic analysis of globally diverse
1281 *Mycobacterium tuberculosis* strains provides insights into the emergence and
1282 spread of multidrug resistance. *Nat Genet* **49**:395–402.

1283 Marin M, Vargas R, Harris M, Jeffrey B, Epperson LE, Durbin D, Strong M, Salfinger M,
1284 Iqbal Z, Akhundova I. 2022. Benchmarking the empirical accuracy of short-read
1285 sequencing across the *M. tuberculosis* genome. *Bioinformatics*.

1286 McKinney W. 2010. Data structures for statistical computing in python. *Proc 9th Python
1287 Sci Conf* **445**:51–56.

1288 Menardo F, Duchêne S, Brites D, Gagneux S. 2019. The molecular clock of *Mycobacterium
1289 tuberculosis*. *PLoS Pathog* **15**:e1008067.

1290 Montoya-Rosales A, Provvedi R, Torres-Juarez F, Enciso-Moreno JA, Hernandez-Pando R,
1291 Manganelli R, Rivas-Santiago B. 2017. *lysX* gene is differentially expressed among
1292 *Mycobacterium tuberculosis* strains with different levels of virulence. *Tuberculosis*
1293 **106**:106–117.

1294 Murphy KC. 2021. Oligo-Mediated Recombineering and its Use for Making SNPs,
1295 Knockouts, Insertions, and Fusions in *Mycobacterium tuberculosis*. *Mycobacterial
1296 Protocols*. Springer. pp. 301–321.

1297 Ngabonziza JCS, Loiseau C, Marceau M, Jouet A, Menardo F, Tzfadia O, Antoine R,
1298 Niyigena EB, Mulders W, Fissette K. 2020. A sister lineage of the *Mycobacterium
1299 tuberculosis* complex discovered in the African Great Lakes region. *Nat Commun*
1300 **11**:1–11.

1301 Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective
1302 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol
1303 Evol* **32**:268–274.

1304 O'Neill MB, Shockley A, Zarley A, Aylward W, Eldholm V, Kitchen A, Pepperell CS. 2019.
1305 Lineage specific histories of *Mycobacterium tuberculosis* dispersal in Africa and
1306 Eurasia. *Mol Ecol* **28**:3241–3256.

1307 Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S,
1308 Parrello B, Shukla M. 2013. The SEED and the Rapid Annotation of microbial
1309 genomes using Subsystems Technology (RAST). *Nucleic Acids Res* **42**:D206–D214.

1310 Pandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F, Behr MA, Fitzgerald KA, Sasetti
1311 CM, Kelliher MA. 2009. NOD2, RIP2 and IRF5 play a critical role in the type I
1312 interferon response to *Mycobacterium tuberculosis*. *PLoS Pathog* **5**:e1000500.

1313 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
1314 Prettenhofer P, Weiss R, Dubourg V. 2011. Scikit-learn: Machine learning in
1315 Python. *J Mach Learn Res* **12**:2825–2830.

1316 Pepperell C, Hoeppner VH, Lipatov M, Wobeser W, Schoolnik GK, Feldman MW. 2010.
1317 Bacterial genetic signatures of human social phenomena among *M. tuberculosis*
1318 from an Aboriginal Canadian population. *Mol Biol Evol* **27**:427–440.

1319 Pepperell CS, Casto AM, Kitchen A, Granka JM, Cornejo OE, Holmes EC, Birren B,
1320 Galagan J, Feldman MW. 2013. The role of selection in shaping diversity of natural
1321 *M. tuberculosis* populations. *PLoS Pathog* **9**:e1003543.

1322 Pérez F, Granger BE. 2007. IPython: a system for interactive scientific computing. *Comput
1323 Sci Eng* **9**:21–29.

1324 Phelan JE, Coll F, Bergval I, Anthony RM, Warren R, Sampson SL, van Pittius NCG, Glynn
1325 JR, Crampin AC, Alves A, Others. 2016. Recombination in pe/ppe genes contributes
1326 to genetic variation in *Mycobacterium tuberculosis* lineages. *BMC Genomics* **17**:151.

1327 Safi H, Gopal P, Lingaraju S, Ma S, Levine C, Dartois V, Yee M, Li L, Blanc L, Liang H-PH.
1328 2019. Phase variation in *Mycobacterium tuberculosis* glpK produces transiently
1329 heritable drug tolerance. *Proc Natl Acad Sci* **116**:19665–19674.

1330 Sasseetti CM, Boyd DH, Rubin EJ. 2003. Genes required for mycobacterial growth defined
1331 by high density mutagenesis. *Mol Microbiol* **48**:77–84.

1332 Sasseetti CM, Rubin EJ. 2003. Genetic requirements for mycobacterial survival during
1333 infection. *Proc Natl Acad Sci* **100**:12989–12994.

1334 Schmieder R, Edwards R. 2011. Quality control and preprocessing of metagenomic
1335 datasets. *Bioinformatics* **27**:863–864.

1336 Seabold S, Perktold J. 2010. Statsmodels: Econometric and statistical modeling with
1337 python. *Proc 9th Python Sci Conf* **57**:61.

1338 Shell SS, Wang J, Lapierre P, Mir M, Chase MR, Pyle MM, Gawande R, Ahmad R,
1339 Sarracino DA, Ioerger TR. 2015. Leaderless transcripts and small proteins are
1340 common features of the mycobacterial translational landscape. *PLoS Genet*
1341 **11**:e1005641.

1342 Stanley SA, Johndrow JE, Manzanillo P, Cox JS. 2007. The Type I IFN response to infection
1343 with *Mycobacterium tuberculosis* requires ESX-1-mediated secretion and
1344 contributes to pathogenesis. *J Immunol* **178**:3143–3152.

1345 Stanley SA, Raghavan S, Hwang WW, Cox JS. 2003. Acute infection and macrophage
1346 subversion by *Mycobacterium tuberculosis* require a specialized secretion system.
1347 *Proc Natl Acad Sci* **100**:13001–13006.

1348 Tak U, Dokland T, Niederweis M. 2021. Pore-forming Esx proteins mediate toxin secretion
1349 by *Mycobacterium tuberculosis*. *Nat Commun* **12**:1–17.

1350 Torres Ortiz A, Coronel J, Vidal JR, Bonilla C, Moore DA, Gilman RH, Balloux F, Kon OM,
1351 Didelot X, Grandjean L. 2021. Genomic signatures of pre-resistance in
1352 *Mycobacterium tuberculosis*. *Nat Commun* **12**:1–13.

1353 Uplekar S, Heym B, Friocourt V, Rougemont J, Cole ST. 2011. Comparative genomics of esx
1354 genes from clinical isolates of *Mycobacterium tuberculosis* provides evidence for
1355 gene conversion and epitope variation. *Infect Immun* **IAI**--05344.

1356 Van Der Walt S, Colbert SC, Varoquaux G. 2011. The NumPy array: a structure for efficient
1357 numerical computation. *Comput Sci Eng* **13**:22–30.

1358 Van Der Woude MW, Bäumler AJ. 2004. Phase and antigenic variation in bacteria. *Clin
1359 Microbiol Rev* **17**:581–611.

1360 Vargas R, Farhat MR. 2020. Antibiotic treatment and selection for glpK mutations in
1361 patients with active tuberculosis disease. *Proc Natl Acad Sci* **117**:3910–3912.

1362 Vargas R, Freschi L, Marin M, Epperson LE, Smith M, Oussenko I, Durbin D, Strong M,
1363 Salfinger M, Farhat MR. 2021. In-host population dynamics of *Mycobacterium*
1364 tuberculosis complex during active disease. *Elife* **10**:e61805.

1365 Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E,
1366 Peterson P, Weckesser W, Bright J. 2020. SciPy 1.0: fundamental algorithms for
1367 scientific computing in Python. *Nat Methods* **1**–12.

1368 Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q,
1369 Wortman J, Young SK, others. 2014. Pilon: an integrated tool for comprehensive

1370 microbial variant detection and genome assembly improvement. *PLoS One*
1371 9:e112963–e112963.

1372 Walker TM, Ip CLC, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, Eyre DW, Wilson DJ,
1373 Hawkey PM, Crook DW, others. 2013. Whole-genome sequencing to delineate
1374 Mycobacterium tuberculosis outbreaks: a retrospective observational study. *Lancet*
1375 *Infect Dis* 13:137–146.

1376 Wood DE, Salzberg SL. 2014. Kraken: ultrafast metagenomic sequence classification using
1377 exact alignments. *Genome Biol* 15:1–12.

1378 World Health Organization. 2020. Global Tuberculosis Report.
1379 <https://apps.who.int/iris/rest/bitstreams/1312164/retrieve>

1380 Zhou X, Stephens M. 2012. Genome-wide efficient mixed-model analysis for association
1381 studies. *Nat Genet* 44:821–824.

1382