

1
2 **Mutation of the *Drosophila* serotonin transporter dSERT disrupts courtship**
3 **and feeding and increases both daytime and nighttime sleep**

5 Elizabeth M. Knapp¹, Andrea Kaiser², Rebecca C. Arnold¹, Maureen M. Sampson¹,
6 Manuela Ruppert², Li Xu², Matthew I. Anderson³, Shivan L. Bonanno¹, Henrike Scholz²,
7 Jeffrey M. Donlea⁴, and David E. Krantz^{1*}

10 ¹ Department of Psychiatry, University of California, Los Angeles, California 90095 USA

11 *² Department of Biology, Institute of Zoology, Albertus-Magnus University zu Köln, D-*
12 *50674 Köln, Germany*

13 *³ Hamilton College, Clinton, New York, 13323 USA*

15 ⁴ Department of Neurobiology, University of California, Los Angeles, California 90095
16 USA

19 * Corresponding Author

20 Dr. David Krantz

21 Tel. 310-206-8323

22 Email: dkrantz@ucla.edu

24 **Abstract**

25 The Serotonin Transporter (SERT) regulates extracellular serotonin levels and is the target of most
26 current drugs used to treat depression. The mechanisms by which inhibition of SERT activity
27 influences behavior are poorly understood. To address this question in the model organism
28 *Drosophila melanogaster*, we developed new loss of function mutations in *Drosophila SERT*
29 (*dSERT*). Previous studies in both flies and mammals have implicated serotonin as an important
30 neuromodulator of sleep, and our newly generated *dSERT* mutants show an increase in total sleep
31 and altered sleep architecture. Differences in daytime vs. nighttime sleep architecture as well as
32 genetic rescue experiments unexpectedly suggest that distinct serotonergic circuits may modulate
33 daytime versus nighttime sleep. *dSERT* mutants also show defects in copulation and food intake, akin
34 to the clinical side effects of SSRIs. Starvation did not overcome the sleep drive in the mutants.
35 Additionally in males, but not female *dSERT* mutants, the drive to mate also failed to overcome sleep
36 drive. *dSERT* may be used to further explore the mechanisms by which serotonin regulates sleep and
37 its interplay with other complex behaviors.

38

39 **Author Summary**

40 Many medications used to treat depression and anxiety act by changing serotonin levels
41 in the brain. Fruit flies also use serotonin and can be used as a model to study the brain. We have
42 made a fly mutant for the serotonin transporter (SERT), which is the target of antidepressants in
43 humans. The mutants sleep more, eat less, and have a decreased sex drive. These flies can be
44 used to study the neuronal pathways by which serotonin regulates sleep, eating and sexual
45 behaviors and may help us to understand the behavioral effects of antidepressants.

46

47 **Introduction**

48 Sleep is essential for life and is evolutionarily conserved from insects to mammals (1–3).
49 Both the amount and architecture of sleep are critical for cognition and disruption of sleep in
50 humans is linked to neurological and psychiatric disorders (4–6). The neuromodulator serotonin
51 (5-hydroxytryptamine, 5-HT) acts as a key regulator of sleep, and its involvement in sleep has
52 been known for decades (7,8). Previous studies in vertebrates have shown that serotonin
53 signaling can promote wakefulness, while paradoxically, others demonstrate that serotonin is
54 critical for sleep induction and maintenance (9–13). The circuits responsible for these effects and
55 the cellular mechanisms by which serotonin regulates sleep remain unclear.

56 For over two decades, *Drosophila* has been utilized as a model system to study sleep
57 (14,15) and both serotonin (16–20) and dopamine (21–25) have been shown to play significant
58 roles in regulating sleep duration and quality. A role for serotonin in promoting sleep in
59 *Drosophila* has been demonstrated in part by feeding the precursor 5-hydroxytryptophan (5-
60 HTP) (16) or by utilizing mutants for the serotonin rate-limiting synthetic enzyme tryptophan
61 hydroxylase (TRH) (20). Furthermore, of the five serotonin receptors expressed in *Drosophila*,
62 mutations in three (*d5-HT1A*, *d5-HT2B* and *d5-HT7*) disrupt sleep behaviors, including total
63 sleep amount, sleep rebound, and sleep architecture (16,18,20). The powerful molecular genetic
64 tools available in the fly have allowed some of the specific structures and cells required for sleep
65 to be identified (16,20,21,26–32). Similarly, these tools have the potential to uncover the
66 mechanisms by which specific circuits regulate sleep.

67 The primary mechanism by which serotonin is cleared from the extracellular space in
68 both mammals and flies is reuptake via the Serotonin Transporter (SERT) which localizes to the
69 plasma membrane of serotonergic neurons (33). Blockade of SERT activity increases the amount
70 of serotonin available for neurotransmission. It is the primary target for most current treatments

71 of depression and anxiety disorders, including the widely prescribed Selective Serotonergic
72 Reuptake Inhibitors (SSRIs) (34). In addition to their therapeutic effects, SSRIs can dramatically
73 influence a variety of other physiological functions and behaviors such as eating, libido, and
74 sleep (35–38). Consistent with the complex relationship between serotonin and sleep, SSRIs
75 often produce diverse and sometimes contradictory defects on sleep including insomnia,
76 decreased REM sleep efficiency and daytime somnolence (9,38,39). It remains unclear how
77 changes in SERT activity modifies sleep behavior in mammals.

78 A relatively weak hypomorph of *dSERT* has been previously described (40). The *dSERT*
79 MiMIC insertion lies within the first intron just upstream of the first coding exon of the gene and
80 reduces *dSERT* mRNA expression by ~50% (40). Its potential effects on sleep were not reported,
81 and in general, it can be difficult to make firm conclusions about mutations that are not null or at
82 least strong hypomorphs.

83 In this study, we have used P-element excision to generate new mutant alleles and find
84 that *dSERT* is required for regulating both sleep amount and architecture. Our work further
85 elucidates how the increased sleep drive exhibited in these *dSERT* mutants is affected in the
86 context of other critical behaviors that are regulated by serotonin signaling including mating and
87 feeding. Our data also suggest that *dSERT*'s role in daytime vs. nighttime sleep may be
88 modulated via distinct serotonergic circuits.

89

90 **Results**

91 **Disruption of *dSERT* increases sleep drive in *Drosophila***

92 To generate new mutant alleles of *dSERT*, we used imprecise excision of a transposable
93 element in the line *XP^{d04388}* (BDSC #85438). To ensure a consistent genetic background, *XP^{d04388}*

94 was first outcrossed into w^{1118} , and w^{1118} served as the primary control for our initial assays. The
95 proximal end of the P element in XP^{d04388} is 514 bp 5' of the predicted transcriptional start site of
96 *dSERT* (Figure 1A). We screened for loss of the *white* minigene in the P element and recovered
97 two imprecise excision alleles of 1121bp and 1178bp which we designate as *dSERT*¹⁰ and
98 *dSERT*¹⁶ respectively (Figure 1A). Both *dSERT*¹⁰ and *dSERT*¹⁶ delete the first non-coding exon
99 and the first intron of *dSERT*. We identified two additional lines as controls; *dSERT*¹ contains 41
100 additional bases that are remnants of the former P-element insertion but does not otherwise
101 disrupt the *dSERT* gene and *dSERT*⁴ with no detectable genomic alterations at the former P-
102 element insertion site.

103 To determine whether expression of *dSERT* was disrupted in *dSERT*¹⁰ and *dSERT*¹⁶, we
104 first used qRT-PCR to quantify mRNA expression, using w^{1118} as a control. The *dSERT*
105 transcript was not detectable in either of the mutant alleles (Figure 1B). By contrast, a previously
106 published mutant allele generated by insertion of a MiMIC cassette was reported to retain ~50%
107 expression relative to wild type (40). To confirm these results and determine whether *dSERT*
108 protein was similarly reduced, we performed western blots using a previously validated antibody
109 to *dSERT* (41). Compared to w^{1118} controls, both *dSERT*¹⁰ and *dSERT*¹⁶ show a decrease in
110 *dSERT* protein expression (Figure 1C). It is unclear whether a faint band present in the western
111 blots represents residual protein or non-specific background, and the intact coding sequence
112 suggests that they may not be null alleles. Nonetheless, since they appeared to represent
113 relatively strong hypomorphs with undetectable mRNA levels we proceeded with our behavioral
114 analyses.

115 We analyzed sleep in the *dSERT* mutants and found that both *dSERT*¹⁰ and *dSERT*¹⁶
116 mutants have drastically increased sleep compared to w^{1118} controls (Figure 1D). The probability

117 of transitioning from an awake to a sleep state, P(Doze), and the probability of transition from a
118 sleep to an awake state, P(Wake), were calculated to further analyze the changes in sleep drive
119 and arousal in the *dSERT* mutants. Compared to controls, both *dSERT* mutants show a significant
120 increase in P(Doze) (Figure 1E) and a reduction in P(Wake) (Figure 1F).

121 To confirm the increased sleep phenotypes are the result of *dSERT* disruption and not
122 from other spurious changes to the genetic background, transheterozygous *dSERT* mutants
123 (*dSERT*¹⁰/*dSERT*¹⁶) were assayed and shown to exhibit a significant increase in total sleep
124 compared to controls (Sup Figure 1A-B). Consistent with these findings, *dSERT*¹⁶ homozygotes
125 also demonstrated a significant increase in total sleep when compared either to heterozygous
126 *dSERT*¹⁶ flies (Sup Figure 1C-D) or the revertant *dSERT*⁴ control (Sup Figure 1E-F). Taken
127 together, these results demonstrate disruption of *dSERT* causes a significant increase in overall
128 sleep and sleep drive.

129

130 **Loss of *dSERT* significantly increases sleep and alters sleep architecture in daytime
131 and nighttime.**

132 The sleep phenotype we observed was stronger in *dSERT*¹⁶ compared to *dSERT*¹⁰, and we
133 therefore focused on *dSERT*¹⁶ for further analysis. To verify that the phenotype was not due to a
134 bias in the time spent on one end of the testing tube or to limited movements that do not carry the
135 flies past the tube's midline, we assayed activity with both single-beam and multibeam monitors
136 (42). Our results show that in both single-beam and multibeam monitors *dSERT*¹⁶ mutants
137 exhibit a significant increase in total sleep compared to controls (Figure 2A). These data
138 eliminate the potential confound that can be caused by artefactual retention of the flies at one end
139 of the assay tubes.

140 Previous studies have shown that stimulation of aminergic pathways can increase
141 grooming and alter other sensorimotor behaviors that might effect sleep (43–45). We therefore
142 tested whether grooming or negative geotaxis were altered in the *dSERT* mutants. We did not
143 detect any differences from controls in either grooming rate (Sup Figure 2A) or performance of
144 negative geotaxis in *dSERT*¹⁶ flies (Sup Figure 2B). Overall, these findings indicate that the
145 behavioral change we detect represents an increased sleep in *dSERT* mutants rather than an
146 artifact caused by changes in other amine-associated behaviors.

147 More specific analysis of both daytime and nighttime sleep behavior shows that *dSERT*¹⁶
148 flies have dramatically increased sleep during the daytime (Figure 2B). This is further
149 characterized by an increase in daytime bout frequency compared to controls (Figure 2C). In
150 addition, *dSERT*¹⁶ mutants also displayed reduced latency to sleep at night (Figure 2D). The
151 analysis of nighttime sleep behavior revealed that *dSERT*¹⁶ mutants similarly exhibit dramatically
152 increased nighttime sleep (Figure 2E) but in contrast to their daytime behavior, we observed
153 significant decrease in nighttime bout frequency (Figure 2F). Together, these findings indicate
154 that disruption of *dSERT* causes a significant increase in sleep and alters sleep architecture in
155 both the day and evening periods.

156

157 ***dSERT*¹⁶ mutants exhibit rhythmic circadian behaviors.**

158 In addition to sleep, serotonergic pathways in mammals have been implicated in the
159 regulation of circadian rhythmicity (46). To investigate a possible role for dSERT activity in
160 sustaining circadian rhythms, we analyzed circadian locomotor behaviors in *dSERT*¹⁶ mutants.
161 Both control and *dSERT*¹⁶ mutants exhibited robust locomotor rhythms with bimodal activity
162 peaks in 12h/12h light/dark (LD) cycles (Figure 3A-B) and their rhythmic behaviors persisted in

163 free-running constant darkness (DD) cycles (Figure 3E-F). Consistent with the increased sleep
164 behavior of *dSERT*^{l6} mutants, the average activity of *dSERT*^{l6} flies was significantly decreased
165 throughout both LD (Figure 3C) and DD (Figure 3G) conditions. Although the average activity
166 was dampened, *dSERT*^{l6} mutants did not exhibit a significant decrease in either morning or
167 evening anticipation behaviors for either LD (Figure 3D) or DD (Figure 3H) cycles. Periodogram
168 analysis confirmed that *dSERT*^{l6} mutants behave indistinguishably from wildtype controls
169 (Figure 3 I-J) and quantification of free-running circadian behaviors demonstrates that over 96%
170 of *dSERT*^{l6} flies ($\tau=23.6 \pm 0.04$) were rhythmic (Figure 3K) similar to control flies
171 ($\tau=23.5 \pm 0.01$). In addition, the circadian periods of *dSERT*^{l6} mutants did not appear
172 significantly changed (Figure 3L). In summary, we find that loss of *dSERT* does not appear to
173 disrupt circadian rhythmicity. These data are consistent with previous work showing the feeding
174 of either 5-HTP, the SSRI fluoxetine (Prozac), or overexpression of *d5-HT1B* in flies also did not
175 alter rhythms in free-running conditions (17).

176

177 **Loss of *dSERT* disrupts courtship and copulation behaviors.**

178 In clinical settings, SSRIs have number of side effects including sexual dysfunction,
179 raising the possibility that loss of *dSERT* could potentially influence these activities in the fly.
180 We first investigated whether *dSERT*^{l6} mutants show defects in courtship and copulation and
181 how this would interact with sleep. Previous work demonstrated that pairing male and females
182 flies together overnight dramatically suppresses sleep as a result of increased courtship activity
183 (47–49). Consistent with these findings, co-housing pairs of wildtype male and female flies
184 together resulted in a significant decrease in nighttime sleep compared to sleep recorded from
185 isolated male or female flies (Figure 4A). However, pairing male and female *dSERT*^{l6} mutants

186 together did not result in any significant sleep loss compared to isolated conditions (Figure 4A).

187 These results indicate the increased sleep drive outweighs copulation drive in *dSERT*^{l6} mutants

188 and suggest that loss of dSERT might decrease sexual activity.

189 To determine whether the reduced mating activity was a result of either decreased male

190 courting or female receptivity in *dSERT*^{l6} mutants, we paired the mutants with wild type flies.

191 Pairing *dSERT*^{l6} mutant females with control males significantly reduces sleep compared to

192 *dSERT*^{l6} male-female coupling. By contrast, we did not detect a statistically significant reduction

193 in sleep when *dSERT*^{l6} males were coupled with wild type control females (Figure 4B). These

194 behavioral analyses suggested that *dSERT*^{l6} males, but not females, exhibit defects in sexual

195 behavior.

196 To more directly test whether *dSERT* mutants would show defects in sexual activity, we

197 measured copulation rates. We did not observe a significant difference in copulation success in

198 *dSERT*^{l6} females compared to control females when paired with wildtype males. However, when

199 *dSERT*^{l6} males were paired with wildtype females none were found to copulate within one hour

200 in marked contrast to the majority of control males (Figure 4C).

201 In flies, copulation and courtship are regulated in part by distinct pathways. We therefore

202 assayed courtship in the *dSERT* mutant. *dSERT*^{l6} males exhibited significant defects in courtship

203 behavior including increased latencies to initiate orientation (Figure 4D) and wing song (Figure

204 4E).

205 As a further test of male sexual behavior, we measured reproductive output in wildtype

206 females paired for 2 days with *dSERT*^{l6} males. Wild type females paired with *dSERT*^{l6} males

207 showed a reduction in egg laying rate (Figure 4F) as well as an increase in the proportion of

208 unfertilized eggs (Figure 4G). These results indicate that while *dSERT*^{l6} males fail to copulate

209 within one hour, over an increased time-period mating can occur, albeit with reduced fecundity
210 compared to controls.

211

212 **Loss of *dSERT* reduces food intake.**

213 In addition to alterations in sexual activity, common clinical side effects of SSRIs include
214 changes in food intake, weight gain and gastrointestinal distress (37,50). Previous work has
215 demonstrated that starvation induces sleep loss in *Drosophila* and increases activity to search for
216 food (51). We therefore tested whether starvation was sufficient to suppress sleep in *dSERT*¹⁶
217 mutants. Consistent with previous studies, control flies dramatically suppressed their sleep when
218 starved on agar medium compared to their sleep on baseline or recovery days (Figure 5A). By
219 contrast, starvation did not have a significant effect on sleep in the *dSERT*¹⁶ mutants (Figure 5A).
220 Furthermore, we directly tested the feeding in these *dSERT* mutants and found that after 24 hours
221 of starvation food uptake in *dSERT*¹⁶ mutants was significantly decreased compared to controls
222 (Figure 5B). Taken together these results indicate that loss of *dSERT* not only enhances sleep but
223 reduces food intake.

224

225 **Transgenic expression of *dSERT* in serotonergic neurons is sufficient to rescue nighttime or
226 daytime sleep defects.**

227 To further confirm that defects seen in *dSERT*¹⁶ mutants are due to a loss of *dSERT* we
228 used “genetic rescue” and expressed a wild type *dSERT* transgene in the *dSERT*¹⁶
229 background, focusing primarily on defects in sleep. We first used the broad serotonergic
230 driver *TRH-Gal4* (52) to express *UAS-dSERT*. Although, sleep in the fly has been generally
231 approached as a single behavior, some genes and environmental factors can preferentially affect

232 one phase (53–56). Expression of *UAS-dSERT* using *TRH-Gal4* did not fully reverse the
233 increase in total sleep across the 24-LD cycle in *dSERT¹⁶* mutants (Figure 6A-B). However,
234 separately analyzing day versus night sleep shows that expression of *dSERT* using *TRH-Gal4* is
235 sufficient to restore the daytime sleeping pattern to control levels (Figure 6C). By contrast, night
236 sleep was not altered in the *dSERT¹⁶* mutants by *TRH-Gal4>UAS-dSERT* (Sup Figure 3A). We
237 further analyzed whether sleep architecture could be rescued. Expression of *UAS-dSERT* by
238 *TRH-Gal4* in *dSERT¹⁶* mutant was also able to restore bout frequency to the level of control flies
239 for daytime sleep (Figure 6D). Conversely, we did not observe rescue of the nighttime sleep
240 consolidation phenotype (Sup Figure 3B).

241 To extend our analysis we tested another broad serotonergic driver, *designated as “TPH-*
242 *Gal4”* (57). While both *TRH-Gal4* and *TPH-Gal4* include fragments of the *Tryptophan*
243 *Hydroxylase* gene, they have been reported to exhibit differences in expression (58) including a
244 relatively lower of expression for *TRH-Gal4* in processes that innervate the mushroom bodies
245 for. Similar to *TRH-GAL4*, total sleep levels were not fully rescued using *TPH-Gal4* expressing
246 *UAS-dSERT* in the *dSERT¹⁶* background (Figure 6E, F). However, in contrast to *TRH-GAL4*,
247 analysis of nighttime sleep demonstrates that rescue via *TPH-Gal4* is sufficient to restore
248 nighttime sleep levels to that of controls (Figure 6G). Moreover, unlike *TRH-Gal4*, *TPH-Gal4*
249 did not rescue daytime levels (Sup Figure 3D). Further analysis of sleep architecture revealed
250 that expression of *UAS-dSERT* with *TPH-Gal4* in *dSERT¹⁶* mutants was able to rescue the
251 nighttime consolidation phenotype (Figure 6H). while daytime architecture did not significantly
252 differ from the *dSERT¹⁶* mutant (Sup Figure 3E).

253 To further extend our rescue experiments to sexual and feeding in the context of sleep,
254 we repeated our experiments using either starvation or co-housing, focusing on nighttime sleep

255 and rescue with *TPH-Gal4*. Consistent with the results shown in Figure 4, control flies reduced
256 nighttime sleep when male and females were paired and *dSERT*¹⁶ mutants did not show any
257 significant decrease in sleep in co-housing conditions (Figure 6I). However, flies expressing
258 *UAS-dSERT* under the control of the *TPH-Gal4 driver*, significantly decrease their nighttime
259 sleep in co-housing conditions compared to sleep levels of individual male or females (Figure
260 6I). While we cannot yet clearly parse the specific effects of rescue on sexual behavior versus
261 sleep, these data suggest that expression of *UAS-dSERT* with *TPH-Gal4* restored the relative
262 balance of sexual behavior vs. sleep and most likely rescued both behaviors.

263 We next tested if genetic rescue using *TPH-Gal4* could also restore sleep to wild type
264 levels under starvation conditions. When starved, nighttime sleep was again decreased in control
265 flies but was not significantly reduced in *dSERT*¹⁶ mutants (Figure 6J). However, under
266 starvation conditions, expression of *dSERT* under the control of *TPH-Gal4* in *dSERT*¹⁶ mutants
267 did not significantly decrease nighttime sleep when starved (Figure 6J). Overall, these results
268 demonstrate that the sleep defects in *dSERT*¹⁶ mutants can genetically rescued, confirming that
269 this phenotype is due to disruption of the *dSERT* gene. In addition, they strongly suggest for the
270 first time that distinct serotonergic circuits may regulate day and night sleep separately.
271 Moreover, they suggest that while the serotonergic circuits that control nighttime sleep and
272 sexual behavior may share at least some of the same pathways, the serotonergic pathways
273 responsible for regulating feeding and nighttime sleep are likely to be independent.

274

275 **Discussion**

276 We find that dSERT functions as a critical modulator of sleep, with loss of *dSERT*
277 causing a severe increase in both daytime and nighttime sleep. Given that dSERT acts as the

278 primary mechanism by which serotonin is cleared from the extracellular space, it is likely that
279 *dSERT* mutants have an increase in the amount of serotonin available for neurotransmission.
280 Their behavior is consistent with phenotypes caused by other changes in serotonergic signaling:
281 feeding the serotonin precursor 5-HTP or overexpression of the rate-limiting enzyme *TRH* in
282 dopaminergic and serotonergic cells (16) (*Ddc-Gal4*) increases in total sleep, similar to *dSERT*
283 mutants. Conversely, a decrease in total sleep duration is exhibited by *TRH* mutants (20).

284 A role for serotonin has also been suggested to contribute to male courtship and mating
285 on based in part on studies of the gene *fruitless* (*fru*) (59,60). Male specific Fru^M positive
286 abdominal-ganglionic neurons that innervate the reproductive organs have been shown to be
287 serotonergic and *fru* mutants demonstrate defects in courting and mating events (59,60).
288 Furthermore, consistent with our findings, activation of serotonergic neurons causes defects in
289 male copulation behavior (58).

290 Previous studies have also addressed the complex relationship between increased
291 serotonin signaling and feeding behavior in *Drosophila*. The use of either *TPH-Gal4* or *TRH-*
292 *Gal4* to thermogenetically depolarize a broad population of serotonergic cells can significantly
293 decrease food intake (58,61), whereas the activation of a specific subset of serotonergic cells
294 drives a contradictory behavior and induces feeding in sated flies (61).

295 Our work demonstrates that the increase in overall sleep in *dSERT*¹⁶ mutants is mediated
296 by two different changes in sleep architecture that differ during daytime versus nighttime
297 periods. During the nighttime the increase in sleep in *dSERT*¹⁶ flies is characterized by
298 significantly decreased bout number (consolidated sleep) whereas during daytime sleep bout
299 number is increased. The differential rescue nighttime or daytime sleep via *TPH-Gal4* or *TRH-*
300 *Gal4* respectively, support the idea that different serotonergic circuits may regulate nighttime vs.

301 daytime sleep. Previous work has shown that knockdown of *TRH* in the dorsal paired median
302 (DPM) neurons that innervate the MB causes a decrease in nighttime sleep (19). We therefore
303 speculate that changes in nighttime sleep caused by dSERT may be mediated primarily through
304 an increase in serotonergic signaling to the mushroom body (MB). Consistent with our findings
305 that *TRH-Gal4* could rescue only daytime sleep, previous work has reported that the expression
306 pattern of the *TRH-Gal4* shows relatively little labeling of processes that innervate the MBs (18).
307 We have confirmed that *TRH-Gal4* shows less labeling to the of the MB compared to *TPH-Gal4*
308 (Sup Figure 3C, F). Further evidence for the possibility that the MBs mediate nighttime sleep
309 include the observation the *d5-HT1A* receptor mutant exhibits a decrease in nighttime sleep,
310 nighttime bout length, and an increase in nighttime bout number, and that all of these behaviors
311 can be genetically rescued via expression of a *d5-HT1A* transgene in the MBs (16). Previous
312 work has demonstrated the MBs are dispensable for sleep-feeding interactions (51), consistent
313 with our results showing that even though transgenic expression of *dSERT* with *TPH-Gal4* could
314 restore nighttime sleep levels, it did not rescue the a decrease in sleep via starvation seen in wt
315 flies. Together these data suggest that the increased and consolidated nighttime sleep seen in
316 *dSERT*¹⁶ mutants is the result of an increase in signaling through the d5-HT1A receptor caused
317 by an increase in extracellular serotonin in the MBs.

318 We speculate that some aspects of the daytime dSERT sleep phenotype, such as the
319 increased frequency of daytime sleep bouts may be mediated by the ellipsoid body and the d5-
320 HT7 receptor. Activation of EB neurons leads to an increase in the number of sleep episodes
321 specifically during the daytime (18). *d5-HT7* mutants and treatment with a 5-HT7 antagonist
322 similarly causes a reduction in sleep episode frequency (18). However, it is likely that the
323 daytime *dSERT* sleep phenotype is dependent on other circuits and/receptors, since *dSERT*

324 exhibit an increase in sleep amount that was not detected by disruption of *d5-HT7* (18). We plan
325 to use the *dSERT* mutants to further map serotonergic circuits that may differentially daytime vs
326 nighttime sleep.

327 Studies in mice underscore the complexity of serotonin's effects on sleep. For example,
328 an increase in serotonergic signaling caused by increased activity of raphe serotonergic cells
329 reduces REM sleep (62)(63)(64) while an increase in serotonin levels caused by a *SERT KO*
330 mouse has the opposite effects and increases REM (65,66). Knockouts of either 5-HT1B or 5-
331 HT1A also exhibit more REM (67,68), but the increase in REM caused by the SERT KO can be
332 reduced by developmental blockade of 5-HT1A (66).

333 In humans, the complex relationship between sleep, depression, and the effects of SSRIs
334 underscores the importance of understanding the role of SERT in sleep. Variation in the 5'
335 flanking region of the human *SERT* gene have been associated with a change in SERT
336 expression levels *in vitro* (69), that is linked to the efficacy of SSRIs (70) and sleep deprivation
337 (71). In addition to sleep, SSRIs impact other critical behaviors such as feeding and mating.
338 SSRIs can induce hypophagic effects and interfere with normal feeding behavior (72–75), and
339 sexual dysfunction is a well-documented side effect of SSRI treatment (35,36). Our work begins
340 to address the competition between the pathways that regulate these effects in the context of
341 *Drosophila* sleep, as we demonstrated that loss of *dSERT* induces an increased sleep drive that
342 outweighs the propensity for both normal feeding and mating behaviors (Figure 5). We speculate
343 that further studies of *dSERT* mutants may help to uncover the relationship between other
344 serotonergic pathways that regulate other complex behaviors common to mammals and flies such
345 as aggression and may be used further as a genetic model for the behavioral effects of SSRIs
346 (52,76–80).

347

348 **Materials & Methods**

349 **Fly Strains**

350 Fly stocks were reared on standard cornmeal media (per 1L H20: 12 g agar, 29 g Red Star yeast,
351 71 g cornmeal, 92 g molasses, 16mL methyl paraben 10% in EtOH, 10mL propionic acid 50% in
352 H20) at 25 °C with 60% relative humidity and entrained to a daily 12 h light, 12 h dark schedule
353 (12hr:12hr LD). *w¹¹¹⁸* flies were obtained from Dr. Seymour Benzer. *UAS-dSERT* (BL24464)
354 and *UAS-MCD8::GFP* (BL32185) were obtained from the Bloomington *Drosophila* Stock
355 Center. *TPH-Gal4* was from Dr. Jongkyeong Chung(57).

356

357 **P-element mutagenesis**

358 The *dSERT* alleles were generated by imprecise excision of the *P{XP}d04388* transposon that is
359 inserted 514 bases upstream of the *dSERT* gene on the second chromosome. First, the
360 *P{XP}d04388* line was backcrossed for five generation to the *w¹¹¹⁸* line of the Scholz lab to
361 isogenize the genetic background. Second, females of the *P{XP}d04388* were crossed to *w¹¹¹⁸*;
362 *CYO*+/; [Δ2-3; *Ki*]/*TM2* males. Next, *w¹¹¹⁸*; *P{XP}d04388/CYO*; [Δ 2-3; *Ki*]/+ males were
363 mated with *P{XP}d04388* females. In the next generation, 200 single male flies carrying possible
364 deletion of the *P{XP}d04388* over *P{XP}d04388* were crossed to *Df(2R) PX2/CYO* females that
365 carry a genomic lesion including the complete *dSERT* gene. The new *dSERT* alleles
366 complemented the lethality associated with the deficiency. The males of the F1 generation were
367 screened for loss of the P-element insertion, e.g. white-eyed male flies carrying the *CYO* allele.
368 89 lines were established as stocks. The new alleles were analyzed for genomic lesions using

369 PCR. The following primers were used to confirm lesion and amplify DNA for sequencing: 5'-
370 TGACCCACTAAATGCCATGA-3' and 5' CCAGAAAAAGCGAAATCTGC-3'.

371

372 **Quantitative Real Time PCR (qRT-PCR)**

373 Total RNA of 30 flies was isolated using Trizol™ method followed by a DNase digest for
374 30 min at 37° C. To synthesize cDNA, the SuperScript™ II Reverse Transcriptase
375 (Invitrogen™) and oligo^{dT} primers were used according manufacturer instruction. For
376 qRT-PCR analysis the MESA BLUE qPCR MasterMix Plus for SYBR® Assay
377 (Eurogentec) with 100 ng cDNA as template was used. The detection was performed
378 using the iCycler iQ5 Multicolour Real-Time PCR Detection System. The data were
379 analyzed using the $\Delta\Delta Ct$ method(81). The NormFinder software(82) was used for
380 control primers selection. The following control primers recognizing *RpLPO* were
381 selected: 5'-CAG CGT GGA AGG CTC AGT A-3' and 5'-CAG GCT GGT ACG GAT
382 GTT CT-3'. For *dSERT* the following primers recognizing sequences in the third and
383 fourth exon were used: 5'- GTTGCCTCAGCATCTGGAAG-3' and 5'-
384 CAGCCGATAATCGTGTGTA-3'. Data are shown as fold changes in *dSERT* relative to
385 the controls.

386

387 **Western blot analysis**

388 To isolate proteins of fly heads, 500-1000 flies were frozen in liquid nitrogen and heads were
389 separated with a sieve. The heads were pulverized with a sterile pestle and resuspended in buffer
390 containing 10mM NaCL, 25 mM Hepes, pH 7.5, 2mM EDTA and 1x cOmplete™ Mini protease
391 inhibitors (Merck). The suspension was kept on ice for 10 min with gentle mixing before

392 spinning it at 18300 x g at 4°C for 15 min. The remaining pellet was resuspended in a buffer
393 containing 10mM NaCL, 25 mM Hepes, pH 7.5, 1x cOmplete™ Mini protease inhibitors (Merck)
394 and 0.5% CHAPS and incubated at 4°C for 10 minutes with gentle mixing. The solution was
395 centrifuged at 3000 x g for 5 min to recover membrane extract. 20 µg protein of each sample
396 were used for western blotting according standard procedures. The membrane was blocked in 5%
397 milk and the primary rabbit anti-dSERT antibody (Giang et al., 2011) were used at a dilution of
398 1: 20 000 and mouse anti-β-Actin (mAbcam 8224) at 1:10 000.

399

400 **Behavioral Analysis**

401 *Sleep* : Sleep was measured as previously described(83). In brief, 3-5 day old female flies (co-
402 housing experiments also utilized male flies) were individually loaded into 65mm long glass
403 tubes and inserted into *Drosophila* activity monitors to measure locomotor activity (Trikinetics
404 Inc; Waltham MA, USA) and periods of inactivity for at least 5 minutes were classified as sleep.
405 Custom Visual Basic scripts(83) in Microsoft Excel were used to analyze Trikinetics activity
406 records for sleep behaviors. MB5 monitors (Trikinetics Inc; Waltham MA, USA) were used for
407 multibeam monitoring experiments.

408

409 *Starvation*: For starvation and sleep experiments 3-5 day old, mated females were loaded into
410 DAMs tubes with standard food for acclimation. After 1 day of acclimation, baseline sleep was
411 measured for 24 hours (Day 1). On the experimental day (Day 2) flies were transferred to tubes
412 containing 1% agar at ZT7 to be starved for 17 hours. Flies were then transferred back to fresh
413 tubes containing standard food at ZT0 (Day 3) and activity was recorded for 24-hour recovery
414 period.

415

416 *Co-housing*: For co-housing sleep experiments males and females were loaded individually into
417 DAMs tubes and baseline sleep was recorded for 2 days. On experimental day at ZT0 flies were
418 combined into male-female pairs (either same genotype or mixed as specified in the text) in new
419 DAMS tubes and sleep was recorded for 24 hours. The following day at ZT0 flies were separated
420 back into individual tubes and activity was recorded for 24-hour recovery period.

421

422 *Grooming*: For grooming experiments, 3–5-day old, mated females were observed in individual
423 chambers using a Dinolite USB video camera AM7023CT. A single grooming event was
424 scored when a fly rubbed its legs over its head or abdomen or rubbed legs together. For each fly,
425 grooming was analyzed over three separate 2 min periods and quantified as an average number
426 of grooming events per minute. Each scoring period was started by the observation of an initial
427 single grooming event.

428

429 *Negative Geotaxis*: For negative geotaxis experiments, 3 groups of 10 flies were placed in two
430 empty 28.5 x 95 mm polystyrene vials that are vertically joined by tape facing each other. After
431 gently tapping the vials, the flies were allowed to climb for 10s. Each group was scored for the
432 number of flies that climbed above the 8cm mark compared to those remaining below the 8cm
433 mark. Each group was tested 5 times (with one minute recovery between each trial), and the
434 average for those five trials was quantified.

435

436 *Locomotor Activity and Circadian Rhythmicity*: Experiments were performed with 3-5-day-old
437 females in *Drosophila* activity monitors (Trikinetics Inc; Waltham MA, USA) that were first

438 entrained for 2-3 days in 12hr:12hr LD. For DD analysis, data were analyzed for 3-6 days from
439 the second day in DD. Data analysis was done with Faas software 1.1 (Brandeis Rhythm
440 Package, Michel Boudinot). Rhythmic flies were defined by χ^2 periodogram analysis with the
441 following criteria: power ≥ 20 , width $\geq 2h$ with selection of $24hr \pm 8hr$ upon period value. Power
442 and width are the height and width of the periodogram peak, respectively, and give the
443 significance of the calculated period. Mean daily activity (number of events per $0.5hr \pm SEM$) is
444 calculated over 3-4-day period in LD or DD conditions. Morning anticipation index was
445 calculated as(84) (activity for 3hrs before lights-on)/(activity for 6hrs before lights-on) and
446 evening anticipation index as (activity for 3hrs before lights-off)/(activity for 6hrs before lights-
447 off).

448

449 *Courtship & Copulation Assays*: Virgin females were aged 3-5 days in groups ~10 and naïve
450 males 4 days individually. Single pairs of female and male flies were gently aspirated into a
451 chamber of a mating wheel and video recording was started. The percent of males achieving
452 copulation within 1 hour was measured as well as the time elapsed between the introduction into
453 the chamber and the male display of courtship steps such as orientation and wing extension.

454

455 *Egg Laying and Hatchability*: Five-day old virgin females fed with wet yeast for one day were
456 placed with males (5 females to 10 males) in one bottle for egg laying on molasses plates over 2
457 days (with removal and replacement of plates every 24 hours). Once molasses plates were
458 removed, they were kept in sealed Tupperware and after 24 hours in $25^{\circ}C$ the number of
459 unhatched eggs were manually counted under a microscope.

460

461 *Feeding Assays:* Groups of 10 flies were starved for 24 hours on 1% agar medium as a water
462 source. After starvation, flies were transferred to blue food (I will add food recipe) and allowed
463 to feed for 15 mins. The amount of blue food dye ingested was measured using visual inspecting
464 feeding scores as previously described(61). From 0 being no dye visible in the abdomen to 3, the
465 abdomen is swollen and filled with dye. The average feeding score was quantified by averaging
466 the feeding scores of each fly in the vial.

467

468 **Immunohistochemistry**

469 Immunostaining was performed following a standard procedure comprising
470 brain dissection, fixation in 3% glyoxal for 25 min, blocking in PBTG (PBS plus 0.2% Triton,
471 0.5% BSA and 2% normal goat serum), and primary and secondary antibody staining diluted in
472 PBTG. The following primary antibodies were used: rabbit anti-GFP (1:500, Invitrogen) and
473 mouse anti-DLG (1:20, 4F3 -Developmental Study Hybridoma Bank). Alexa Fluor 488 and
474 Alexa Flour 555 goat secondary antibody (1:500; Invitrogen) were used as secondary antibodies.
475 Confocal images were obtained using a Zeiss LSM 880 confocal microscope with Zen software.
476 Images were processed using Fiji/Image J software.

477

478 **Statistics**

479 Data were analyzed in Prism 9 (GraphPad; San Diego CA, USA). Group means were compared
480 using two-tailed t tests or one- or two-way ANOVAs, with repeated-measures where appropriate,
481 followed by planned pairwise comparisons with Holm-Sidak multiple comparisons tests. Sample
482 sizes for each experiment are depicted in each figure panel or in the appropriate figure legend.
483 All group averages shown in data panels depict mean \pm SEM.

484

485 **Acknowledgements**

486 We thank Drs Jongkyeong Chung for sharing fly lines. We thank Dr. Ceazar Nave and Prabhjit
487 Singh in J.D.'s laboratory for technical support and discussion. We thank Dr. Tim Lebestky and
488 Mikhayla Armstrong for their early contributions to the analysis of the *dSERT* mutants.

489

490 **Financial Disclosure Statement**

491 Funding for this work included R01 MH107390, (DEK), R01 MH114017 (DEK),
492 a seed grant from the UCLA Depression Grand Challenge (DEK), R01NS105967
493 (JMD), an Early Career Development Award from the Sleep Research Society Foundation to
494 (JMD), a Career Development Award from the Human Frontiers Science Program (CDA00026-
495 2017-C) (JMD), a Grant of the Thyssen Foundation (HS) and TR 1340: Ingestive Behaviour:
496 Homeostasis and Reward (HS). Additional support included a National Science Foundation
497 GRFP (MMS), a UCLA Cota-Robles fellowship (MMS), F99 NS113454 (MMS) and F32
498 NS123014 (EMK).

499

500 **Competing interests statement**

501 The authors declare that they have no competing financial interests.

502

503 **Figure Legends**

504 **Figure 1. *dSERT* imprecise excision alleles.** (A) Schematic of *dSERT* gene: grey and blue
505 boxes indicate non-coding exons and coding exons respectively. Deletions of the *dSERT*¹⁰ and
506 *dSERT*¹⁶ flies are indicated with red dotted lines. (B) qRT-PCR was performed on cDNA

507 synthesized from whole male flies with *RplP0* for reference. Gene expression of *dSERT* in the
508 mutant was normalized to controls with +1 representing expression in *w¹¹¹⁸*. *dSERT* transcript
509 levels were significantly down-regulated in *dSERT¹⁰* (0.01±0.02) and *dSERT¹⁶* (0.001±0.003).
510 Error bars represent SD. P***≤0.001 (Student's t-test). (C) Western blot analysis shows a band
511 representing dSERT at ~65kD that is reduced in intensity in both mutants. Actin was used as a
512 loading control and shows no difference across genotypes. (D) Hourly sleep traces in wild-type
513 *w¹¹¹⁸* (black) *dSERT¹⁰* (orange) and *dSERT¹⁶* (red) flies. (E-F) Quantification of P(Doze) (E) and
514 P(Wake) (F) during the light period (LP) and dark period (DP) in control *w¹¹¹⁸* (grey), *dSERT¹⁰*
515 mutants (orange), and *dSERT¹⁶* mutants (red). Sleep trace shows mean ± SEM and graphs show
516 individual datapoints and group means ± SEM. P****≤0.0001 (one-way ANOVA with Holm-
517 Sidak multiple comparisons tests).

518

519 **Supplemental Figure 1. Genetic controls.** Hourly sleep traces (A) and quantification of total
520 sleep (B) in control *w¹¹¹⁸* (grey), transheterozygous *dSERT¹⁰/dSERT¹⁶* mutants (yellow), *dSERT¹⁰*
521 mutants (orange), and *dSERT¹⁶* mutants (red). Hourly sleep traces (C) and quantification of total
522 sleep (D) in control *w¹¹¹⁸* (grey), *dSERT¹⁶* heterozygotes (purple), and *dSERT¹⁶* homozygous
523 mutants (red). Hourly sleep traces (E) and quantification of total sleep (F) in control *w¹¹¹⁸* (grey),
524 *dSERT⁴* revertants (blue), and *dSERT¹⁶* mutants (red). Sleep traces show mean ± SEM and graphs
525 show individual datapoints and group means ± SEM, p≤0.0001****, one-way ANOVA, Holm-
526 Sidak multiple comparisons tests.

527

528 **Figure 2. *dSERT¹⁶* mutants exhibit increased sleep behavior and changes in sleep**
529 **architecture.** Sleep was recorded with both single-beam and multibeam monitors. (A)

530 Quantification of total sleep in wild-type w^{1118} (grey) and $dSERT^{16}$ (red) flies. Analysis of
531 daytime sleep (B) and daytime bout frequency (C). (D) Latency after light-off was significantly
532 decreased in $dSERT^{16}$ mutants. Quantification of nighttime sleep (E) and nighttime bout
533 frequency (F). Graphs show individual datapoints and group means \pm SEM. Student's t-test, two-
534 way, unpaired, $p \leq 0.0001****$

535

536 **Supplemental Figure 2. $dSERT^{16}$ mutant sleep phenotype is not an artifact of additional**
537 **amine-linked behaviors.** (A) $dSERT^{16}$ mutants (purple) show no change in grooming behavior
538 compared to wild-type w^{1118} flies (grey). Mean \pm SEM, unpaired Student's t-test. (B) Male and
539 female $dSERT^{16}$ mutants behave indistinguishably from control flies in negative geotaxis assays.
540 Mean \pm SEM, one-way ANOVA.

541

542 **Figure 3. $dSERT^{16}$ mutants exhibit rhythmic circadian behaviors.** (A-B) 12h:12h LD and (E-
543 F) 12h:12h DD locomotor activity group analysis for w^{1118} (A,E) and $dSERT^{16}$ (B,F) flies.
544 Histograms represent the distribution of activity through 24 h, averaged over three days, number
545 of flies indicated in C, D, G, H. Lighter and darker bars indicate day and night phases,
546 respectively. Dots indicate the SEM of the activity for each 0.5 hr (0900 is lights-on and 2100 is
547 lights-off). (C,G) Mean daily activity for $dSERT^{16}$ mutants is reduced during both LD (C) and
548 DD (G) cycles, individual datapoints and group means \pm SEM. Student's t-test, two-way,
549 unpaired, $p**** \leq 0.0001$. Calculation of morning and evening anticipation indexes for $dSERT^{16}$
550 and control flies in LD (D) and DD (H) cycles. (I-J) Representative periodograms derived from
551 activity records of individual w^{1118} (I) and $dSERT^{16}$ (J) flies in constant darkness. (K) Percentage

552 of flies with detectable rhythmicity was calculated for control and *dSERT*^{l6}. (L) Circadian
553 periods in DD were averaged from rhythmic flies per each genotype, error bars indicate SEM.

554

555 **Figure 4. *dSERT*^{l6} mutants exhibit defects in courtship and copulation.** (A) Quantification of
556 nighttime sleep for males (blue) and females (red) individually housed in DAMs tubes for both
557 control *w¹¹¹⁸* (open bars/circles) and *dSERT*^{l6} (shaded bars/circles). Following 2 days of
558 individual housing male and females were paired together in DAMs tubes (purple) and nighttime
559 sleep was quantified for both *w¹¹¹⁸* (open bar/circles) and *dSERT*^{l6} (shaded bar/circles). (B)
560 Quantification of nighttime sleep for *dSERT*^{l6} males (shaded blue) and females (shaded red)
561 individually housed or in male-female pairs (shaded purple). Nighttime sleep averages are also
562 shown for mixed co-housing of control males with *dSERT*^{l6} females (open bars with red circles)
563 or *dSERT*^{l6} males with control females (open bars with blue circles). (C-G) Mating pairs made
564 up of either wildtype (WT) males (red) or WT females (blue) with controls (open bars) or
565 *dSERT*^{l6} mutants (shaded bars). (C) Percentage of pairs that copulated within 1 hr.
566 Quantification of average latency to orientation (D), and wing song (E). Quantification of egg
567 laying (F) and percentage of eggs that failed to hatch 24 hours after being laid (G). All graphs
568 (except C) show means \pm SEM. P**** \leq 0.0001 (A-C, one-way ANOVA); (D-G Two-way
569 unpaired t test).

570

571 **Figure 5. *dSERT*^{l6} mutants exhibit defects in feeding.**

572 (A) Quantification of nighttime sleep for wild-type *w¹¹¹⁸* (grey) and *dSERT*^{l6} mutants (red) over
573 a 3-day period that began 1 day after initial loading into DAMs tubes. Day 1 (Baseline): flies
574 kept on standard food. Day 2 (Starvation): flies transferred to agar for food deprivation. Day 3

575 (Recovery): flies transferred to fresh food. (B) Food uptake is significantly reduced in starved
576 *dSERT*^{l6} mutants (red) compared to controls (grey). (C) Representative images depict visual
577 feeding score used to assay food uptake. All graphs show individual datapoints and group means
578 \pm SEM. P**** \leq 0.0001 (two-way ANOVA (A), two-way unpaired t test (B)).

579

580 **Figure 6. Transgenic expression of *dSERT* with *TRH-Gal4* or *TPH-Gal4* is sufficient to**
581 **rescue daytime defects or nighttime defects respectively in *dSERT*^{l6} mutants.** (A) Hourly
582 sleep traces in wild-type *w¹¹¹⁸*; *TRH-Gal4* (grey), *dSERT*^{l6}; *TRH-Gal4* (red), *TRH-Gal4/UAS-*
583 *dSERT* (blue), and *dSERT*^{l6}; *TRH-Gal4/UAS-dSERT* (green) flies. Quantifications of total sleep
584 (B), daytime sleep (C), and daytime bout number (D). (E) Hourly sleep traces in wild-type
585 *w¹¹¹⁸*; *TPH-Gal4* (grey), *TPH-Gal4*, *dSERT*^{l6} (red), *TPH-Gal4;UAS-dSERT* (blue), and *TPH-*
586 *Gal4*, *dSERT*^{l6}; *UAS-dSERT* (green) flies. Quantifications of total sleep (F), nighttime sleep (G)
587 and nighttime bout number (H). (I) Quantification of nighttime sleep for males and females
588 individually housed in DAMs tubes for control wild-type *w¹¹¹⁸*; *TPH-Gal4* (grey), *TPH-Gal4*,
589 *dSERT*^{l6} (red), and *dSERT*^{l6}; *TRH-Gal4/UAS-dSERT* (green) flies. Following 2 days of
590 individual housing male and females were paired together in DAMs tubes and nighttime sleep
591 was quantified. (J) Quantification of nighttime sleep for wild-type *w¹¹¹⁸*; *TPH-Gal4* (grey), *TPH-*
592 *Gal4*, *dSERT*^{l6} (red), and *dSERT*^{l6}; *TRH-Gal4/UAS-dSERT* (green) flies over a 3-day period that
593 began 1 day after initial loading into DAMs tubes. Day 1 (Baseline): flies kept on standard food.
594 Day 2 (Starvation): flies transferred to agar for food deprivation. Day 3 (Recovery): flies
595 transferred to fresh food. Sleep traces show mean \pm SEM and graphs show individual datapoints
596 and group means \pm SEM. P**** \leq 0.0001 (one-way ANOVA (B-D, F-H) and two-way ANOVA
597 (I-J)).

598

599 **Supplemental Figure 3.** Quantification of nighttime sleep (A) and nighttime bout frequency (B)

600 in wild-type $w^{1118}; TRH-Gal4$ (grey), $dSERT^{l6}; TRH-Gal4$ (red), $TRH-Gal4/UAS-dSERT$ (blue),

601 and $dSERT^{l6}; TRH-Gal4/UAS-dSERT$ (green) flies. (C,F) Representative pictures show

602 expression of UAS-MCD8::GFP (green) driven by $TRH-Gal4$ (C) or $TPH-Gal4$ (F) and DLG

603 (magenta) in mushroom bodies. The different lobes of the mushroom body are labeled in white.

604 Quantification of daytime sleep (D) and daytime bout frequency (E) in wild-type $w^{1118}; TPH-$

605 $Gal4$ (grey), $TPH-Gal4$, $dSERT^{l6}$ (red), $TPH-Gal4; UAS-dSERT$ (blue), and $TPH-Gal4$, $dSERT^{l6}$

606 ; $UAS-dSERT$ (green) flies. All graphs show individual datapoints and group means \pm SEM.

607 P**** ≤ 0.0001 (one-way ANOVA).

608

609

610 References

- 611 1. Crocker A, Sehgal A. Genetic analysis of sleep. *Genes Dev.* 2010 Jun
612 15;24(12):1220–35.
- 613 2. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. CONTROL OF
614 SLEEP AND WAKEFULNESS. *Physiol Rev.* 2012 Jul;92(3):1087–187.
- 615 3. Keene AC, Duboue ER. The origins and evolution of sleep. *J Exp Biol.* 2018 Jun
616 1;221(11):jeb159533.
- 617 4. Spira AP, Chen-Edinboro LP, Wu MN, Yaffe K. Impact of Sleep on the Risk of
618 Cognitive Decline and Dementia. *Curr Opin Psychiatry.* 2014 Nov;27(6):478–83.
- 619 5. Goel N, Rao H, Durmer JS, Dinges DF. Neurocognitive Consequences of Sleep
620 Deprivation. *Semin Neurol.* 2009 Sep;29(4):320–39.
- 621 6. Bonnet MH, Arand DL. Clinical effects of sleep fragmentation versus sleep
622 deprivation. *Sleep Med Rev.* 2003 Aug 1;7(4):297–310.
- 623 7. Jouvet M. Biogenic Amines and the States of Sleep. *Science.* 1969 Jan
624 3;163(3862):32–41.
- 625 8. Monti JM. Serotonin control of sleep-wake behavior. *Sleep Med Rev.* 2011 Aug
626 1;15(4):269–81.
- 627 9. Ursin R. Serotonin and sleep. *Sleep Med Rev.* 2002 Feb 1;6(1):55–67.
- 628 10. Jouvet M. Sleep and Serotonin: An Unfinished Story. *Neuropsychopharmacology.*
629 1999 Aug;21(1):24–7.
- 630 11. Portas CM, Bjorvatn B, Ursin R. Serotonin and the sleep/wake cycle: special
631 emphasis on microdialysis studies. *Prog Neurobiol.* 2000 Jan 1;60(1):13–35.
- 632 12. Solarewicz JZ, Angoa-Perez M, Kuhn DM, Mateika JH. The sleep-wake cycle and
633 motor activity, but not temperature, are disrupted over the light-dark cycle in mice
634 genetically depleted of serotonin. *Am J Physiol-Regul Integr Comp Physiol.* 2014
635 Nov 12;308(1):R10–7.
- 636 13. Oikonomou G, Altermatt M, Zhang R wei, Coughlin GM, Montz C, Gradinaru V, et
637 al. The Serotonergic Raphe Promote Sleep in Zebrafish and Mice. *Neuron.* 2019
638 Aug 21;103(4):686-701.e8.
- 639 14. Shaw PJ, Cirelli C, Greenspan RJ, Tononi G. Correlates of Sleep and Waking in
640 *Drosophila melanogaster.* *Science.* 2000 Mar 10;287(5459):1834–7.
- 641 15. Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A, et al. Rest
642 in *Drosophila* Is a Sleep-like State. *Neuron.* 2000 Jan 1;25(1):129–38.

643 16. Yuan Q, Joiner WJ, Sehgal A. A Sleep-Promoting Role for the Drosophila
644 Serotonin Receptor 1A. *Curr Biol*. 2006 Jun 6;16(11):1051–62.

645 17. Yuan Q, Lin F, Zheng X, Sehgal A. Serotonin modulates circadian entrainment in
646 Drosophila. *Neuron*. 2005 Jul 7;47(1):115–27.

647 18. Liu C, Meng Z, Wiggin TD, Yu J, Reed ML, Guo F, et al. A Serotonin-Modulated
648 Circuit Controls Sleep Architecture to Regulate Cognitive Function Independent of
649 Total Sleep in Drosophila. *Curr Biol CB*. 2019 04;29(21):3635-3646.e5.

650 19. Haynes PR, Christmann BL, Griffith LC. A single pair of neurons links sleep to
651 memory consolidation in *Drosophila melanogaster*. Davis GW, editor. *eLife*. 2015
652 Jan 7;4:e03868.

653 20. Qian Y, Cao Y, Deng B, Yang G, Li J, Xu R, et al. Sleep homeostasis regulated by
654 5HT2b receptor in a small subset of neurons in the dorsal fan-shaped body of
655 *drosophila*. Sehgal A, editor. *eLife*. 2017 Oct 6;6:e26519.

656 21. Tomita J, Ban G, Kato YS, Kume K. Protocerebral Bridge Neurons That Regulate
657 Sleep in *Drosophila melanogaster*. *Front Neurosci*. 2021;15:647117.

658 22. Driscoll M, Buchert SN, Coleman V, McLaughlin M, Nguyen A, Sitaraman D.
659 Compartment specific regulation of sleep by mushroom body requires GABA and
660 dopaminergic signaling. *Sci Rep*. 2021 Oct 8;11(1):20067.

661 23. Karam CS, Williams BL, Jones SK, Javitch JA. The Role of the Dopamine
662 Transporter in the Effects of Amphetamine on Sleep and Sleep Architecture in
663 *Drosophila*. *Neurochem Res*. 2021 Feb 25;

664 24. Kasture A, El-Kasaby A, Szöllősi D, Asjad HMM, Grimm A, Stockner T, et al.
665 Functional Rescue of a Misfolded *Drosophila melanogaster* Dopamine Transporter
666 Mutant Associated with a Sleepless Phenotype by Pharmacological Chaperones. *J
667 Biol Chem*. 2016 Sep 30;291(40):20876–90.

668 25. Kume K, Kume S, Park SK, Hirsh J, Jackson FR. Dopamine is a regulator of
669 arousal in the fruit fly. *J Neurosci Off J Soc Neurosci*. 2005 Aug 10;25(32):7377–
670 84.

671 26. Lee J, Lim C, Han TH, Andreani T, Moye M, Curran J, et al. The E3 ubiquitin ligase
672 adaptor Tango10 links the core circadian clock to neuropeptide and behavioral
673 rhythms. *Proc Natl Acad Sci U S A*. 2021 Nov 23;118(47):e2110767118.

674 27. Chatterjee A, Lamaze A, De J, Mena W, Chélot E, Martin B, et al. Reconfiguration
675 of a Multi-oscillator Network by Light in the *Drosophila* Circadian Clock. *Curr Biol*.
676 2018 Jul 9;28(13):2007-2017.e4.

677 28. Jackson FR, Ng FS, Sengupta S, You S, Huang Y. Glial cell regulation of rhythmic
678 behavior. *Methods Enzymol*. 2015;552:45–73.

679 29. Flores CC, Loschky SS, Marshall W, Spano GM, Massaro Cenere M, Tononi G, et
680 al. Identification of Ultrastructural Signatures of Sleep and Wake in the Fly Brain.
681 *Sleep*. 2021 Sep 18;zsab235.

682 30. Shafer OT, Keene AC. The Regulation of Drosophila Sleep. *Curr Biol CB*. 2021 Jan
683 11;31(1):R38–49.

684 31. Li Q, Jang H, Lim KY, Lessing A, Stavropoulos N. insomniac links the development
685 and function of a sleep regulatory circuit. *eLife*. 2021 Dec 15;10:e65437.

686 32. Driscoll ME, Hyland C, Sitaraman D. Measurement of Sleep and Arousal in
687 *Drosophila*. *Bio-Protoc*. 2019;9(12):e3268.

688 33. Rudnick G, Krämer R, Blakely RD, Murphy DL, Verrey F. The SLC6 transporters:
689 perspectives on structure, functions, regulation, and models for transporter
690 dysfunction. *Pflugers Arch*. 2014 Jan;466(1):25–42.

691 34. Blakely RD, El Mestikawy S, Robinson MB. The brain in flux: Genetic, physiologic,
692 and therapeutic perspectives on transporters in the CNS. *Neurochem Int*. 2019
693 Feb;123:1–6.

694 35. Kennedy SH, Rizvi S. Sexual Dysfunction, Depression, and the Impact of
695 Antidepressants. *J Clin Psychopharmacol*. 2009 Apr;29(2):157–64.

696 36. Schweitzer I, Maguire K, Ng C. Sexual Side-Effects of Contemporary
697 Antidepressants: Review. *Aust N Z J Psychiatry*. 2009 Sep 1;43(9):795–808.

698 37. Serotonin and Norepinephrine Reuptake Inhibition and Eating Behavior - HAINER -
699 2006 - Annals of the New York Academy of Sciences - Wiley Online Library
700 [Internet]. [cited 2022 Apr 28]. Available from:
701 <https://nyaspubs.onlinelibrary.wiley.com/doi/full/10.1196/annals.1367.017>

702 38. Wichniak A, Wierzbicka A, Walęcka M, Jernajczyk W. Effects of Antidepressants
703 on Sleep. *Curr Psychiatry Rep* [Internet]. 2017 [cited 2020 Sep 9];19(9). Available
704 from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548844/>

705 39. Biard K, Douglass AB, Koninck JD. The effects of galantamine and buspirone on
706 sleep structure: Implications for understanding sleep abnormalities in major
707 depression: *J Psychopharmacol (Oxf)* [Internet]. 2015 Aug 10 [cited 2020 Sep 9];
708 Available from: <https://journals.sagepub.com/doi/10.1177/0269881115598413>

709 40. Hidalgo S, Molina-Mateo D, Escobedo P, Zárate RV, Fritz E, Fierro A, et al.
710 Characterization of a Novel Drosophila SERT Mutant: Insights on the Contribution
711 of the Serotonin Neural System to Behaviors. *ACS Chem Neurosci*. 2017 Oct
712 18;8(10):2168–79.

713 41. Giang T, Rauchfuss S, Ogueta M, Scholz H. The Serotonin Transporter Expression
714 in *Drosophila melanogaster*. *J Neurogenet*. 2011 Mar 1;25(1–2):17–26.

715 42. Garbe DS, Bollinger WL, Vigderman A, Masek P, Gertowski J, Sehgal A, et al.
716 Context-specific comparison of sleep acquisition systems in *Drosophila*. *Biol Open*.
717 2015 Oct 30;4(11):1558–68.

718 43. Yellman C, Tao H, He B, Hirsh J. Conserved and sexually dimorphic behavioral
719 responses to biogenic amines in decapitated *Drosophila*. *Proc Natl Acad Sci*. 1997
720 Apr 15;94(8):4131–6.

721 44. McClung C, Hirsh J. Stereotypic behavioral responses to free-base cocaine and the
722 development of behavioral sensitization in *Drosophila*. *Curr Biol*. 1998 Jan
723 15;8(2):109–12.

724 45. Chang HY, Grygoruk A, Brooks ES, Ackerson LC, Maidment NT, Bainton RJ, et al.
725 Overexpression of the *Drosophila* vesicular monoamine transporter increases
726 motor activity and courtship but decreases the behavioral response to cocaine. *Mol*
727 *Psychiatry*. 2006 Jan;11(1):99–113.

728 46. Morin LP. Serotonin and the regulation of mammalian circadian rhythmicity. *Ann*
729 *Med*. 1999 Feb;31(1):12–33.

730 47. Fujii S, Krishnan P, Hardin P, Amrein H. Nocturnal Male Sex Drive in *Drosophila*.
731 *Curr Biol CB*. 2007 Feb 6;17(3):244–51.

732 48. Machado DR, Afonso DJ, Kenny AR, Öztürk-Çolak A, Moscato EH, Mainwaring B,
733 et al. Identification of octopaminergic neurons that modulate sleep suppression by
734 male sex drive. Griffith LC, editor. *eLife*. 2017 May 16;6:e23130.

735 49. Beckwith EJ, Geissmann Q, French AS, Gilestro GF. Regulation of sleep
736 homeostasis by sexual arousal. Griffith LC, editor. *eLife*. 2017 Sep 12;6:e27445.

737 50. Fava M. Weight gain and antidepressants. *J Clin Psychiatry*. 2000;61 Suppl 11:37–
738 41.

739 51. Keene AC, Duboué ER, McDonald DM, Dus M, Suh GSB, Waddell S, et al. Clock
740 and cycle Limit Starvation-Induced Sleep Loss in *Drosophila*. *Curr Biol*. 2010 Jul
741 13;20(13):1209–15.

742 52. Alekseyenko OV, Lee C, Kravitz EA. Targeted manipulation of serotonergic
743 neurotransmission affects the escalation of aggression in adult male *Drosophila*
744 *melanogaster*. *PLoS One*. 2010 May 24;5(5):e10806.

745 53. Yang Y, Edery I. Daywake, an Anti-siesta Gene Linked to a Splicing-Based
746 Thermostat from an Adjoining Clock Gene. *Curr Biol CB*. 2019 May
747 20;29(10):1728-1734.e4.

748 54. Wang J, Fan JY, Zhao Z, Dissel S, Price J. DBT affects sleep in both circadian and
749 non-circadian neurons. *PLoS Genet*. 2022 Feb;18(2):e1010035.

750 55. Lone SR, Pottdar S, Venkataraman A, Sharma N, Kulkarni R, Rao S, et al.
751 Mechanosensory Stimulation via Nanchung Expressing Neurons Can Induce
752 Daytime Sleep in Drosophila. *J Neurosci Off J Soc Neurosci*. 2021 Nov
753 10;41(45):9403–18.

754 56. Ishimoto H, Lark A, Kitamoto T. Factors that Differentially Affect Daytime and
755 Nighttime Sleep in *Drosophila melanogaster*. *Front Neurol*. 2012 Feb 27;3:24.

756 57. Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, et al. Mitochondrial dysfunction in
757 *Drosophila* PINK1 mutants is complemented by parkin. *Nature*. 2006
758 Jun;441(7097):1157–61.

759 58. Pooryasin A, Fiala A. Identified Serotonin-Releasing Neurons Induce Behavioral
760 Quiescence and Suppress Mating in *Drosophila*. *J Neurosci*. 2015 Sep
761 16;35(37):12792–812.

762 59. Lee G, Hall JC. Abnormalities of Male-Specific FRU Protein and Serotonin
763 Expression in the CNS of fruitless Mutants in *Drosophila*. *J Neurosci*. 2001 Jan
764 15;21(2):513–26.

765 60. Lee G, Villella A, Taylor BJ, Hall JC. New reproductive anomalies in fruitless-
766 mutant *Drosophila* males: Extreme lengthening of mating durations and infertility
767 correlated with defective serotonergic innervation of reproductive organs. *J
768 Neurobiol*. 2001;47(2):121–49.

769 61. Albin SD, Kaun KR, Knapp JM, Chung P, Heberlein U, Simpson JH. A Subset of
770 Serotonergic Neurons Evokes Hunger in Adult *Drosophila*. *Curr Biol CB*. 2015 Sep
771 21;25(18):2435–40.

772 62. Klianmaa K, Fuxe K. The effects of 5,7-dihydroxytryptamine-induced lesions of the
773 ascending 5-hydroxytryptamine pathways on the sleep wakefulness cycle. *Brain
774 Res*. 1977 Aug 12;131(2):287–301.

775 63. Trulson ME, Jacobs BL. Raphe unit activity in freely moving cats: correlation with
776 level of behavioral arousal. *Brain Res*. 1979 Mar 9;163(1):135–50.

777 64. Benington JH, Kodali SK, Heller HC. Scoring transitions to REM sleep in rats based
778 on the EEG phenomena of pre-REM sleep: an improved analysis of sleep
779 structure. *Sleep*. 1994 Feb;17(1):28–36.

780 65. Wisor JP, Wurts SW, Hall FS, Lesch KP, Murphy DL, Uhl GR, et al. Altered rapid
781 eye movement sleep timing in serotonin transporter knockout mice. *Neuroreport*.
782 2003 Feb 10;14(2):233–8.

783 66. Alexandre C, Popa D, Fabre V, Bouali S, Venault P, Lesch KP, et al. Early Life
784 Blockade of 5-Hydroxytryptamine 1A Receptors Normalizes Sleep and Depression-
785 Like Behavior in Adult Knock-Out Mice Lacking the Serotonin Transporter. *J
786 Neurosci*. 2006 May 17;26(20):5554–64.

787 67. Boutrel B, Franc B, Hen R, Hamon M, Adrien J. Key role of 5-HT1B receptors in the
788 regulation of paradoxical sleep as evidenced in 5-HT1B knock-out mice. *J Neurosci*
789 *Off J Soc Neurosci*. 1999 Apr 15;19(8):3204–12.

790 68. Boutrel B, Monaca C, Hen R, Hamon M, Adrien J. Involvement of 5-HT1A
791 receptors in homeostatic and stress-induced adaptive regulations of paradoxical
792 sleep: studies in 5-HT1A knock-out mice. *J Neurosci Off J Soc Neurosci*. 2002 Jun
793 1;22(11):4686–92.

794 69. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, et al. Association
795 of Anxiety-Related Traits with a Polymorphism in the Serotonin Transporter Gene
796 Regulatory Region. *Science*. 1996;274(5292):1527–31.

797 70. Smeraldi E, Zanardi R, Benedetti F, Di Bella D, Perez J, Catalano M.
798 Polymorphism within the promoter of the serotonin transporter gene and
799 antidepressant efficacy of fluvoxamine. *Mol Psychiatry*. 1998 Nov;3(6):508–11.

800 71. Benedetti F, Serretti A, Colombo C, Campori E, Barbini B, di Bella D, et al.
801 Influence of a functional polymorphism within the promoter of the serotonin
802 transporter gene on the effects of total sleep deprivation in bipolar depression. *Am
803 J Psychiatry*. 1999 Sep;156(9):1450–2.

804 72. Blundell JE, Hill AJ. Dexfenfluramine and appetite in humans. *Int J Obes Relat
805 Metab Disord J Int Assoc Study Obes*. 1992 Dec;16 Suppl 3:S51-59.

806 73. Goudie AJ, Thornton EW, Wheeler TJ. Effects of Lilly 110140, a specific inhibitor of
807 5-hydroxytryptamine uptake, on food intake and on 5-hydroxytryptophan-induced
808 anorexia. Evidence for serotonergic inhibition of feeding. *J Pharm Pharmacol*.
809 1976 Apr;28(4):318–20.

810 74. Clifton PG, Barnfield AMC, Philcox L. A behavioural profile of fluoxetine-induced
811 anorexia. *Psychopharmacology (Berl)*. 1989 Jan 1;97(1):89–95.

812 75. Simansky KJ, Vaidya AH. Behavioral mechanisms for the anorectic action of the
813 serotonin (5-HT) uptake inhibitor sertraline in rats: comparison with directly acting
814 5-HT agonists. *Brain Res Bull*. 1990 Dec;25(6):953–60.

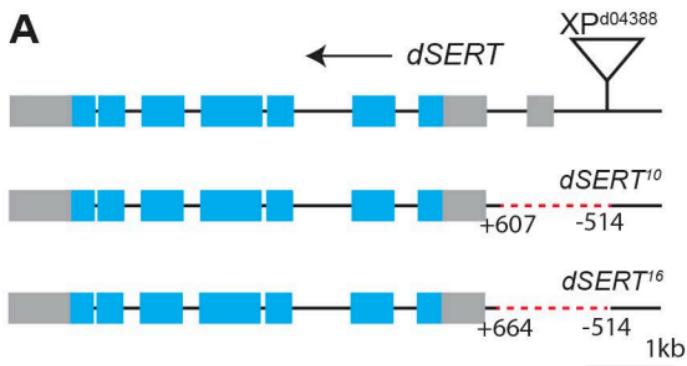
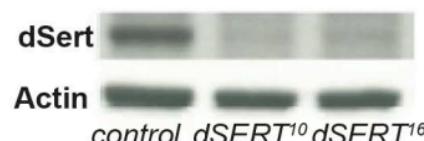
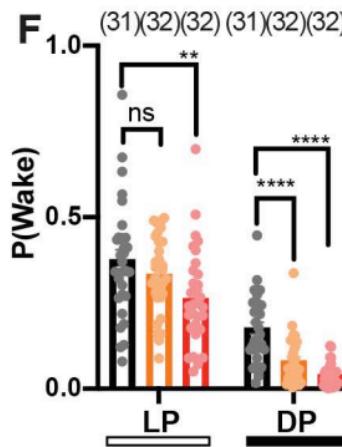
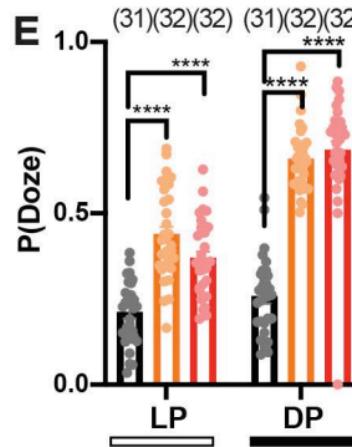
815 76. Alekseyenko OV, Chan YB, de la Paz Fernandez M, Bülow T, Pankratz MJ, Kravitz
816 EA. Single serotonergic neurons that modulate aggression in *Drosophila*. *Curr Biol
817 CB*. 2014 Nov 17;24(22):2700–7.

818 77. Falkner AL, Dollar P, Perona P, Anderson DJ, Lin D. Decoding Ventromedial
819 Hypothalamic Neural Activity during Male Mouse Aggression. *J Neurosci*. 2014 Apr
820 23;34(17):5971–84.

821 78. Lin D, Boyle MP, Dollar P, Lee H, Perona P, Lein ES, et al. Functional identification
822 of an aggression locus in the mouse hypothalamus. *Nature*. 2011 Feb
823 10;470(7333):221–6.

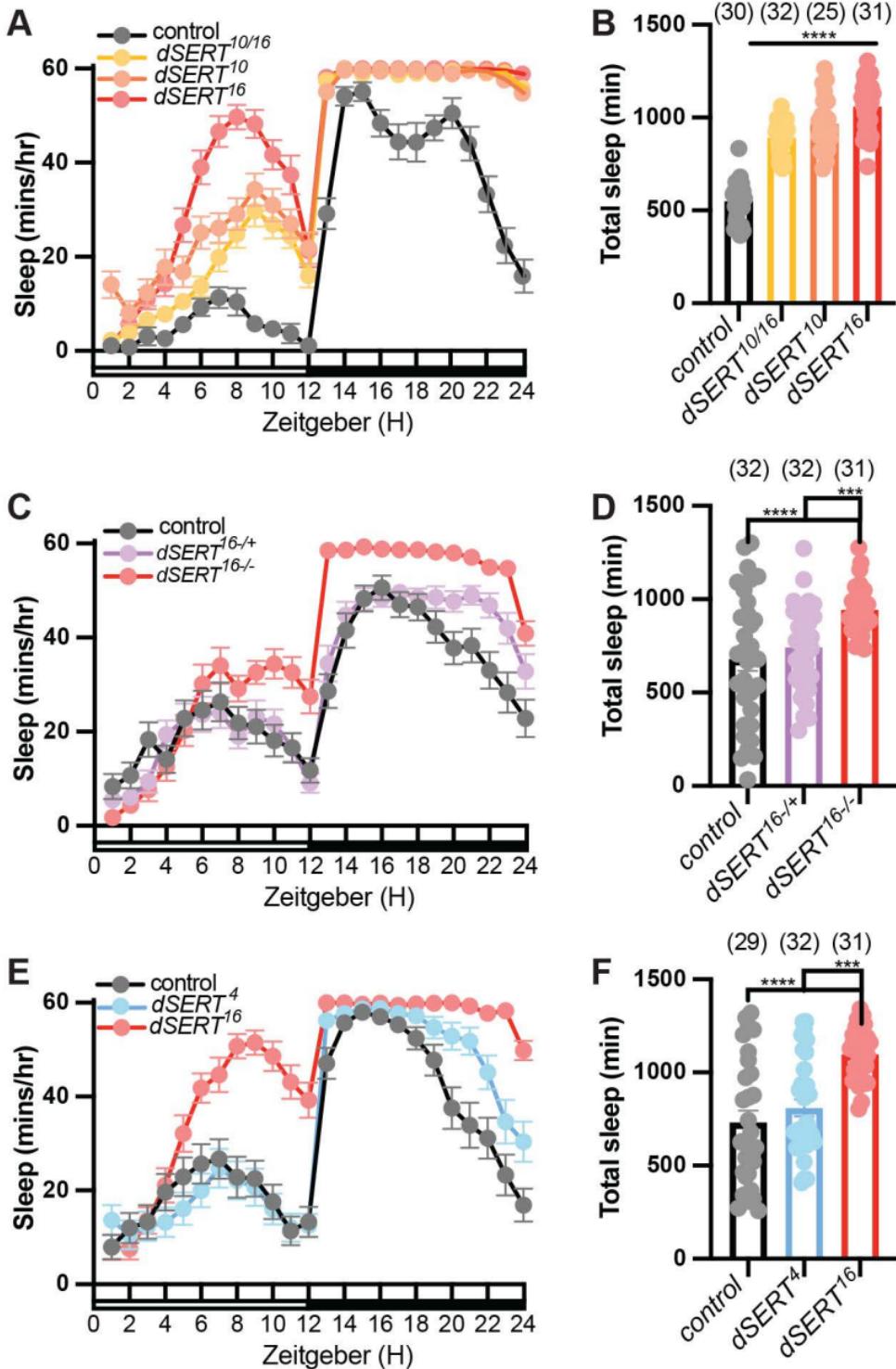
824 79. Dierick HA, Greenspan RJ. Molecular analysis of flies selected for aggressive
825 behavior. *Nat Genet.* 2006 Sep;38(9):1023–31.

826 80. Dierick HA, Greenspan RJ. Serotonin and neuropeptide F have opposite
827 modulatory effects on fly aggression. *Nat Genet.* 2007 May;39(5):678–82.

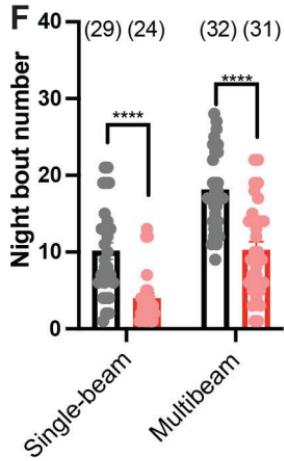
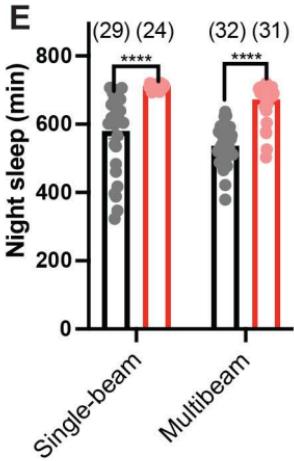
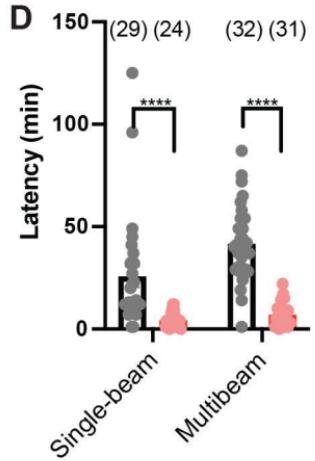
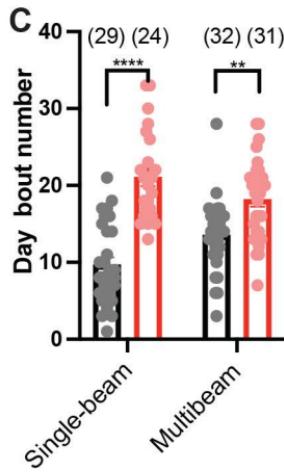
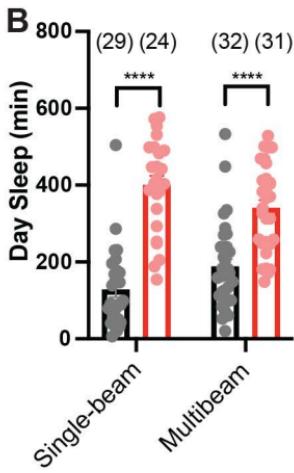
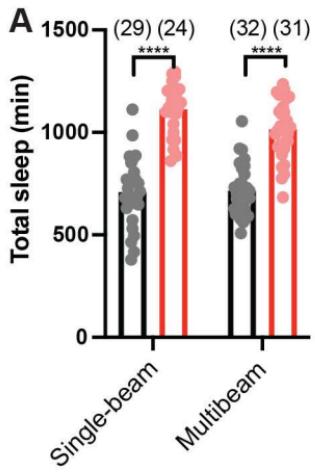
828 81. Pfaffl MW. A new mathematical model for relative quantification in real-time RT–
829 PCR. *Nucleic Acids Res.* 2001 May 1;29(9):e45.

830 82. Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative
831 reverse transcription-PCR data: a model-based variance estimation approach to
832 identify genes suited for normalization, applied to bladder and colon cancer data
833 sets. *Cancer Res.* 2004 Aug 1;64(15):5245–50.

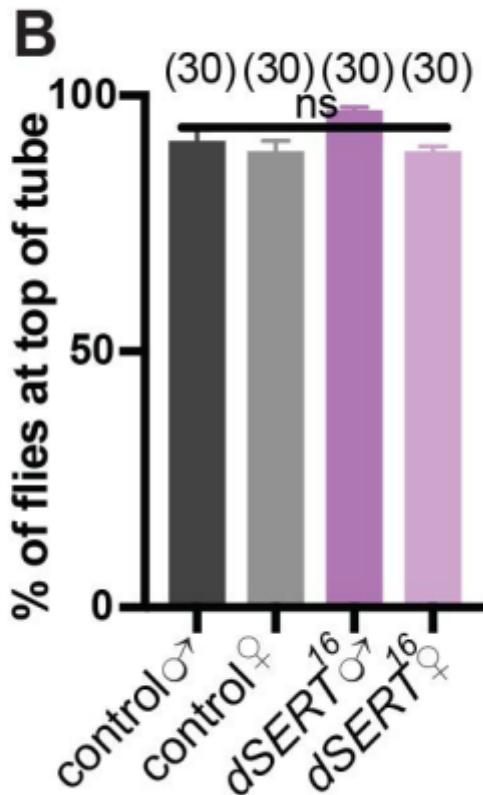
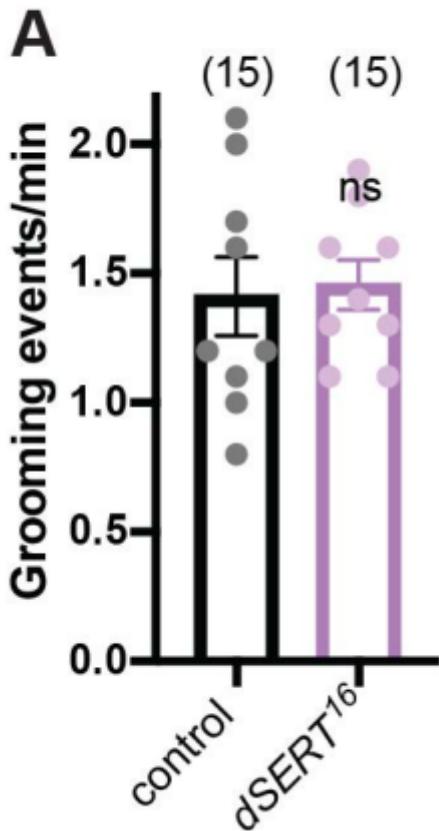

834 83. Shaw PJ, Tononi G, Greenspan RJ, Robinson DF. Stress response genes protect
835 against lethal effects of sleep deprivation in *Drosophila*. *Nature.* 2002 May
836 16;417(6886):287–91.

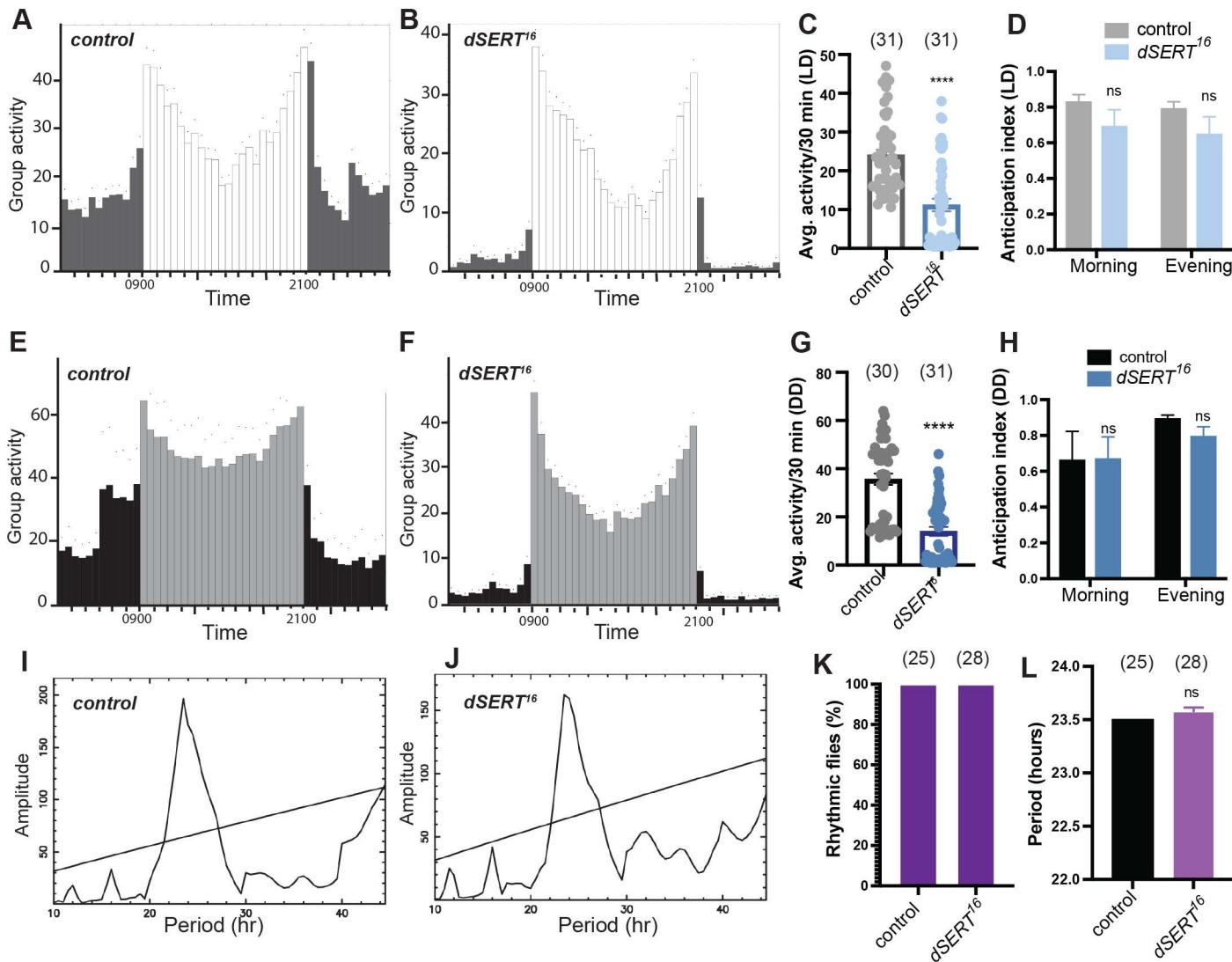
837 84. Im SH, Taghert PH. PDF Receptor Expression Reveals Direct Interactions between
838 Circadian Oscillators in *Drosophila*. *J Comp Neurol.* 2010 Jun 1;518(11):1925–45.

839







Figure 1**A****C****D**

Supplemental Figure 1

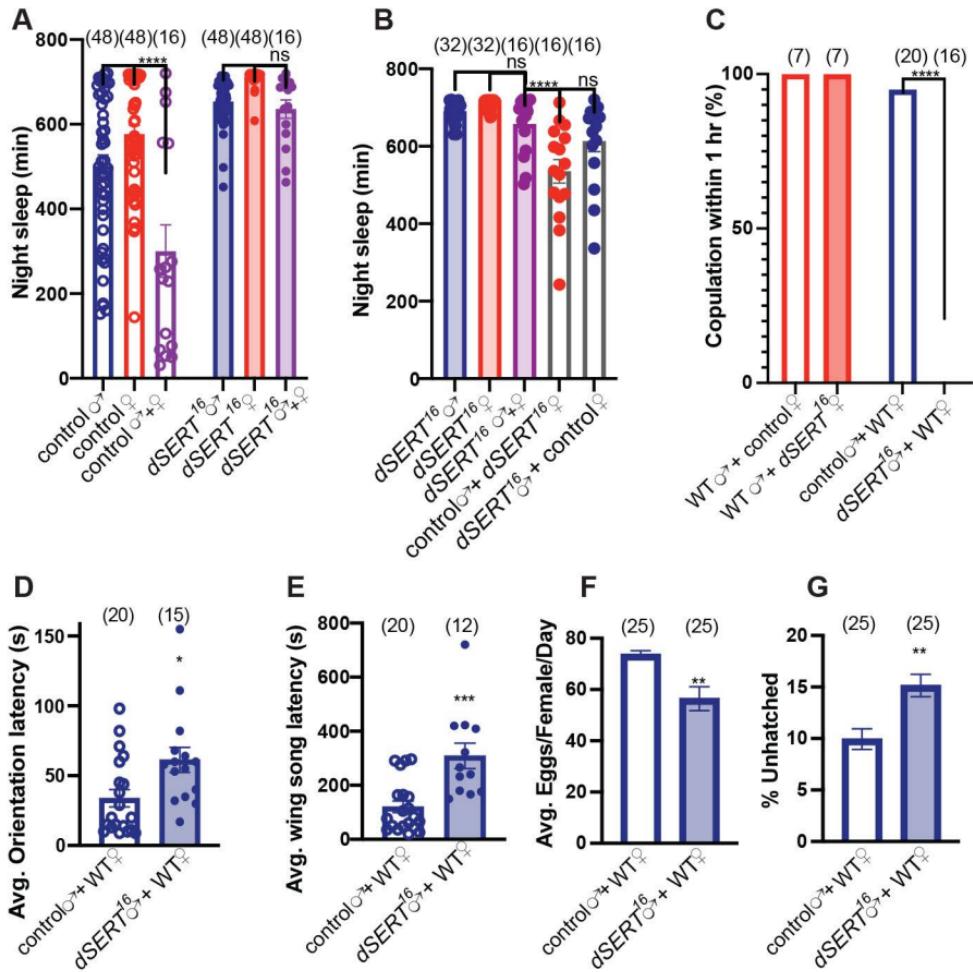
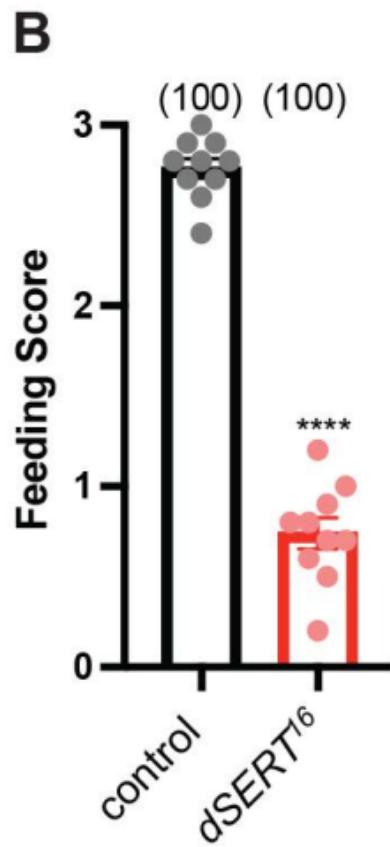
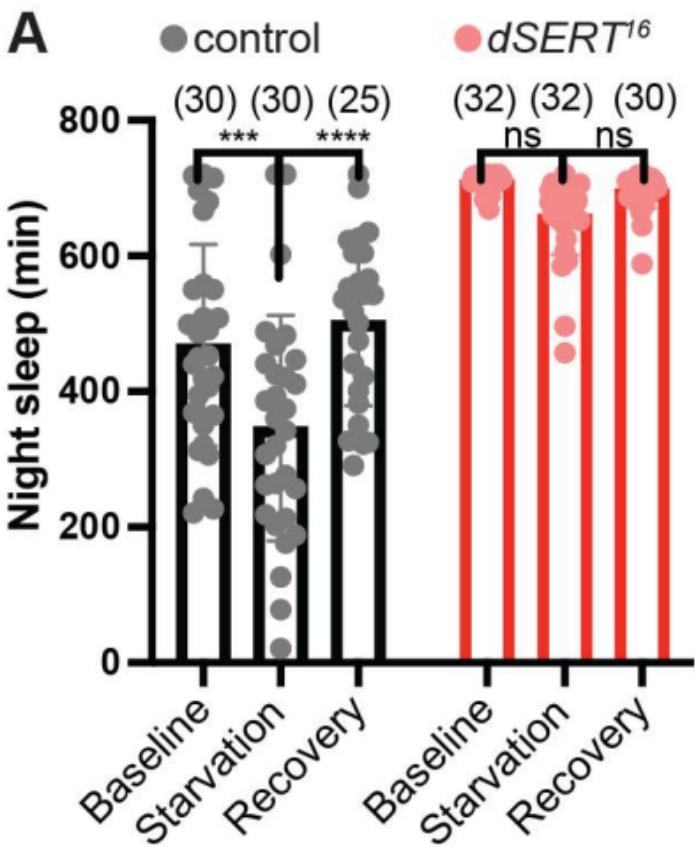
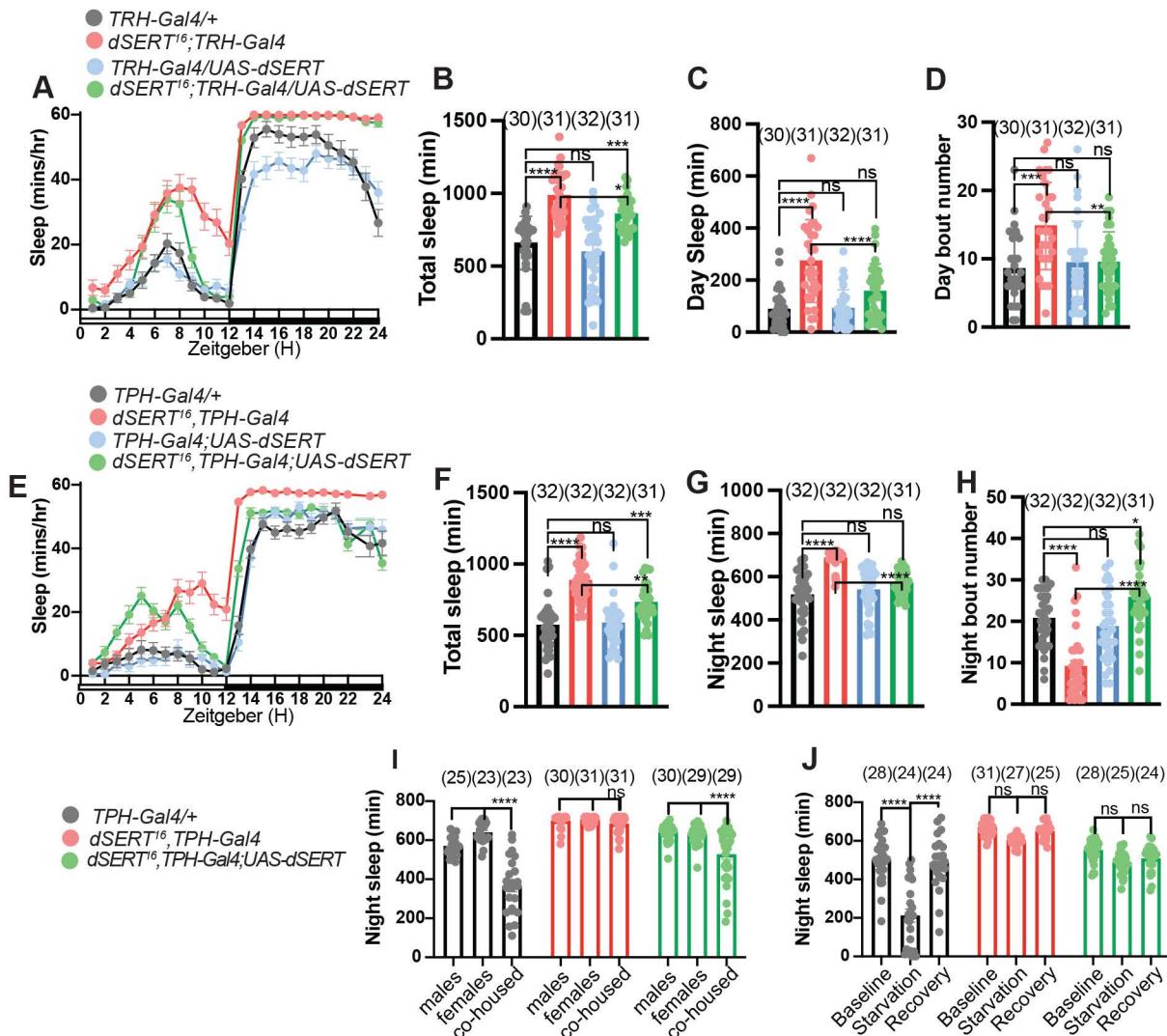




Figure 2

control dSERT¹⁶

Supplementary Figure 2

Figure 3





Figure 4

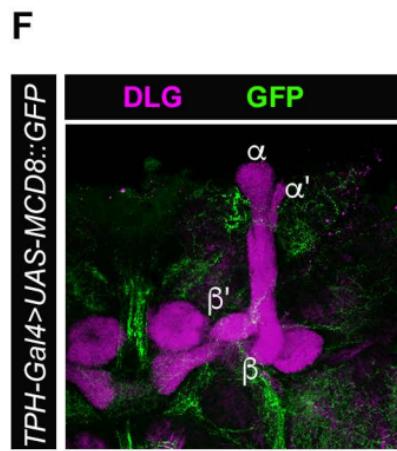
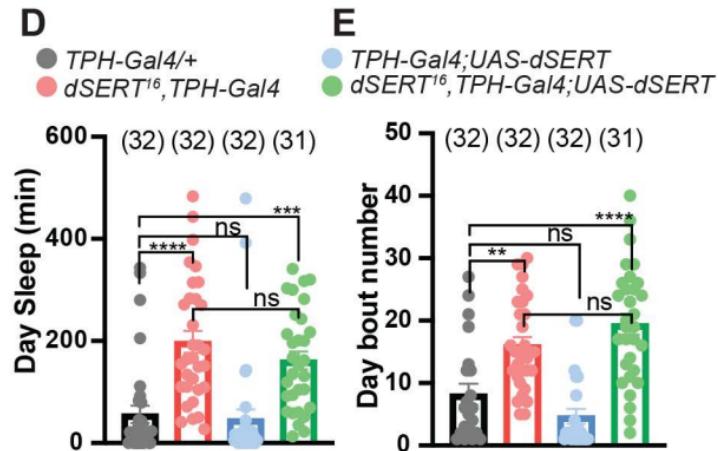
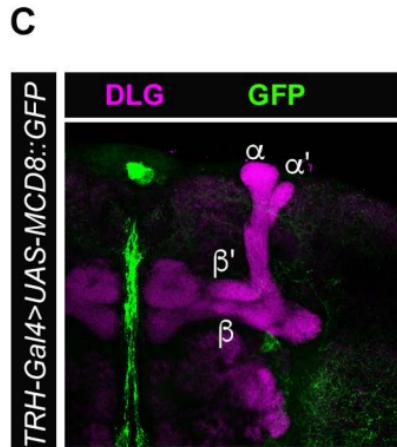
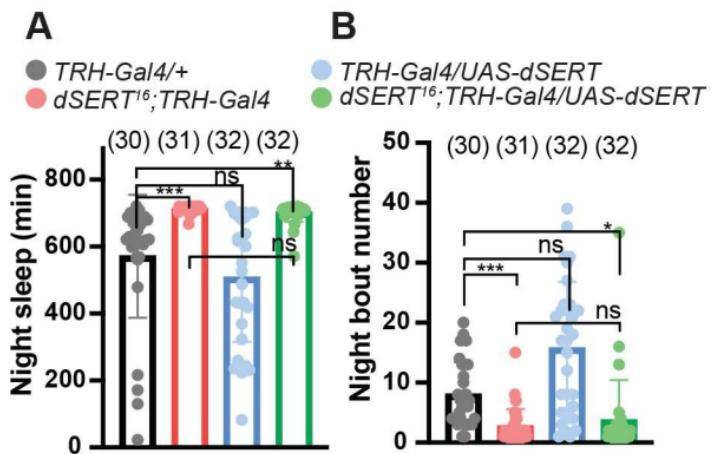




Figure 5

Figure 6

Supplemental Figure 3

