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Abstract

Computational tools addressing various components of design-build-test-learn loops (DBTL) for the construction of
synthetic genetic networks exist, but do not generally cover the entire DBTL loop. This manuscript introduces an
end-to-end sequence of tools that together form a DBTL loop called DART (Design Assemble Round Trip). DART
provides rational selection and refinement of genetic parts to construct and test a circuit. Computational support for
experimental process, metadata management, standardized data collection, and reproducible data analysis is provided
via the previously published Round Trip (RT) test-learn loop. The primary focus of this work is on the Design Assemble
(DA) part of the tool chain, which improves on previous techniques by screening up to thousands of network topologies
for robust performance using a novel robustness score derived from dynamical behavior based on circuit topology only.
In addition, novel experimental support software is introduced for the assembly of genetic circuits. A complete design-
through-analysis sequence is presented using several OR and NOR circuit designs, with and without structural redundancy,
that are implemented in budding yeast. The execution of DART tested the predictions of the design tools, specifically
with regard to robust and reproducible performance under different experimental conditions. The data analysis depended
on a novel application of machine learning techniques to segment bimodal flow cytometry distributions. Evidence is
presented that, in some cases, a more complex build may impart more robustness and reproducibility across experimental
conditions.

Key words: Synthetic logic circuits, Design-Build-Test-Learn, flow cytometry, CRISPR, yeast, genetic circuits, machine
learning, automated experiments

1. Introduction

The construction of synthetic biology genetic circuits is a growing field that holds great promise for producing purpose-built cellular
machines that perform important tasks, such as monitoring environmental conditions and producing materials or therapeutics (1;
2; 3). The reproducibility of these constructs is of critical importance. The most common approaches to achieving reproducibility
in results seek to standardize protocols and analyses and tightly control experimental conditions. However, in the field of synthetic
biology, reproducible function of synthetic genetic circuits may be closely tied to the robustness of the construct design (4). By
incorporating measures of robustness into the design principles of synthetic biology, one may be able to generate constructs that
have functions that are robust to changes in genetic components or in experimental conditions, causing increased reproducibility
across laboratories.

© The Author 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com
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There are many stages in the design of synthetic constructs (5), including: (i) the choice of circuit structure (also called topology
in this work), (ii) the DNA sequence design of a genetic parts library, (iii) the choice of genetic parts (taken from the parts library)
used within the modular circuit structure, (iv) the choice of insertion points or landing pads in the genome or plasmid, and (v) the
design of the experimental protocol used to assess the resulting design. All of these stages are facilitated by the rational application
of computational tools to reduce experimental time and effort and to improve success rate.

Many computational tools are available for different parts of the design process. Examples include methods for DNA sequence
design of genetic parts (6; 7), for parts choice and construction into a linear DNA sequence (8; 9; 10), for landing pad choice (11),
and for circuit structure or topology (12). Experimental protocols are generally custom designed for each application, but tools exist
to facilitate the reproducibility of protocols (13; 14). Some tools integrate several stages of the design process together; for example,
the software tool Cello (15; 16) takes a logic function written in the Verilog language and identifies a single circuit structure using
design principles from electronic circuit design that employ NOT and NOR gates. Cello then optimizes the modular construction
of the logic circuit from a parts library to create a linear DNA sequence with the desired circuit. Another method (17) exhaustively
explores fan-out free circuit structures and jointly optimizes structure and parts assignment for a specific logic function.

Design methods are validated by the construction of the predicted optimal circuit design(s), which are then analyzed for
performance. The conjunction of the design stage with the build, experimentation, and analysis of a synthetically built genetic
circuit forms a design-build-test-learn (DBTL) loop (18), in which the results of the analysis can be used to refine the experimental
protocol or to tweak the design. The need for end-to-end tooling of DBTL loops, particularly when high-throughput data generation
is available, is recognized (19).

In this work, a design-build-test-learn loop called DART (Design Assemble Round Trip) is presented for the rational design
of synthetic biology genetic logic circuits. In principle the technology is generalizable to dynamically-complex circuit functions
beyond logic (20) that are of interest to the synthetic biology community (21; 22; 23). DART is comprised of tools for (i) the
prediction of robust circuit topologies, (ii) prediction of the most effective choice of parts to construct the topology, (iii) sequence
construction for selected designs, (iv) step-by-step instructions for build assembly, and (v) reproducible experimental submission,
data and metadata consolidation, data standardization, and automated data analysis using a previously published test-learn loop
called the Round Trip (RT).

The Design Assemble (DA) part of the tool chain is the primary focus in this work. DA, like Cello, starts with a logic function
and a library of genetic parts characterized by dosage-response curves and ultimately produces a linear DNA sequence. The design
stage differs from Cello by first screening alternative network topologies—possibly thousands depending on the allowed maximum
size of the circuit—and scoring them for dynamically robust performance. Using a similar approach, it was previously shown in (17)
that varying circuit topology can result in improved performance. Our approach differs from (17) by the choice of a robustness
score based solely on circuit topology that reduces the number of parts optimizations required. Once the most promising circuit
topologies are chosen by the design stage of DA, parts are assigned using a machine learning technique and assembled into a linear
sequence. Automated lab software then increases the reproducibility of the build stage.

Ideally, a genetic construct will function robustly under a variety of conditions, since in practice it can be difficult to reproduce
experiments across labs (24). Robust genetic constructs make it easier to achieve reproducibility, since they make design performance
less susceptible to differences between lab conditions. The primary purpose of DART is to produce synthetic logic circuit designs
embedded in cells that perform adequately under the widest possible range of conditions and provide reproducible and consistent
results.

1.1. Software tool chain

DART provides a systematic and standardized approach to building genetic constructs with desired functional properties. A
computational framework was developed that supports the design and construction of synthetic logic circuits from a library of
dosage-response characterized parts, DA (Design Assemble), and was attached to an existing tool chain RT (Round Trip, (25; 26))
that standardizes data collection, preprocessing, and analysis. A diverse set of tools was identified, collected, and unified to meet
the needs of cellular circuit construction from design to analysis. See Fig. 1 for a schematic of the connections between the tools.

The RT tool chain supports experimental metadata development and maintenance by automating tedious metadata design and
encoding and by reacting and repairing as deviations arise. The RT connects experimental data and subsequent analyses with
the deeply-represented experimental DA constructs via user-friendly construct names. For example, RT users develop experimental
requests referencing the common names for the constructs developed by DA, which are automatically resolved against SBOL (27; 28)
representations of the DA constructs. The RT carries these resolved references through the experimental process to link constructs
to experimental results. The resulting data and metadata represents a rich, Al-ready data set that the RT can automatically
analyze and present or package for alternative analysis tools.

The design and build aspects of DART have not been previously used in combination. The design/prediction tools are Dynamic
Signatures Generated by Regulatory Networks (DSGRN, (20; 29; 30)) and Combinatorial Design Model (CDM (31; 32)). The build
tools are DNA Assembly (DASi, (33; 34; 35)), the computer-aided process planning tool Terrarium (36; 35), and the lab software
Aquarium (14; 37).

DSGRN is a flexible and highly scalable tool for analyzing and predicting all possible long term dynamics of a regulatory network.
It requires only a network topology with annotations indicating whether regulatory interactions are activating or repressing. The
computed dynamics exhaustively describe the possible long-term behaviors that the network is capable of exhibiting. Although
used here to assess the equilibrium values of logic circuits, DSGRN is not limited to modeling and analysis of logic functions;
its capabilities greatly exceed that specialized problem. Its integration into DA involved the implementation of a user-friendly
DSGRN Design Interface (38) dedicated to the express purpose of designing synthetic logic circuits. The DSGRN Design Interface
incorporates qualitative build constraints in a plain language input file. Interpretation of the output circuit topology scoring is
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Fig. 1. Flow chart showing the details of DART, particularly the integration between Design Assemble (introduced here) and Round Trip (25).

Round Trip

readily accessible via figures and human-readable descriptions of constraints on the interaction of genetic parts, and there is also
the option of output in machine readable SBOL2 format (27).

CDM is a neural-network based model that makes in-silico predictions of experiments by using context and data from a subset
of conditions and predicts the outcome in all combinations of conditions. The application of CDM in this work optimized a
combination of genetic parts for a given circuit using training data from single parts.

Terrarium bridges the gap between synthetic biology design specification and the build process through computer-aided process
planning. A biological design is encoded as a biological manufacturing file (BMF). Terrarium converts BMFs into executable
networks of protocols, called workflows. These workflows are uploaded to the laboratory software Aquarium, which manages
laboratory inventory, automates protocol execution, and generates human-readable instructions to execute the workflows. Terrarium
has an internal digital model of the laboratory that is periodically updated by metadata collected in Aquarium, specifically protocol
execution time, inventory usage, experimental errors, success rates, materials, and labor costs. Using this model, Terrarium can
predict lead times and costs that inform future workflow process planning for increased accuracy, economy, and efficiency. DASi
is a subordinate algorithm of Terrarium released as stand-alone software that provides assembly instructions for a DNA sequence
when that sequence does not already exist in lab inventory. It produces a BMF that is ingested by Terrarium to create a workflow
for Aquarium.

1.2. Biological Scenario

The main hypothesis is that the benefits of genetic network redundancy can outweigh the costs of circuit build complexity through
increased reproducibility and robustness across experimental conditions. A network with built-in redundancy and parts optimization
has the capacity to exhibit better performance (17), but increased complexity leads to more difficult builds.

Circuit robustness was examined by comparing the performance of simple and complex network topologies of OR and NOR
synthetic circuits in the yeast Saccharomyces cerevisiae, while also testing the predictions for two different sets of parts for each
topology using CDM. The performance of a circuit is evaluated as a circuit’s ability to express fluorescence (ON) or not (OFF) as
intended by the circuit’s logic given the presence or absence of chemical inputs. Logic circuits designed to exhibit OR and NOR
logic were chosen based on preliminary data analysis in which previously built OR and NOR circuits performed poorly ((4; 39)
and Fig. 6 in (25)). See Fig. 2 for schematics of the designs discussed in this work, where each quadrant shows one topology with
two CDM designs. The top row shows the simplest topologies that are capable of producing the desired circuit behavior. The
alternative topologies discovered using the DSGRN Design Interface are called DSGRN topologies and shown in the second row.

The parts labeled with r# are associated to constitutively expressed CRISPR guide RNA (gRNA) gene products introduced
in (40) that repress transcription when bound. Inducible versions of these parts were built in this study to use in tandem with the
previously built constitutively expressed parts. Specifically, binding sites for B-estradiol and doxycycline hyclate were added to the
gRNA promoters. In the presence of an inducer, the associated gRNA is expressed and represses the production of its downstream
target, either another gRNA or green fluorescent protein (GFP).

The inducible and constitutively expressed gRNA parts are combined into circuits that act as sensors. For example, OR logic is
realized when the absence of both inducers is associated to the absence of fluorescence while the presence of either inducer causes
the production of GFP. In other words, the OR circuit acts as a sensor to signal the presence of one or both molecules.
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1.3. Major contributions

The assessment of circuit performance was based on flow cytometry data. The flow cytometry samples frequently expressed bimodal
distributions spanning the ON and OFF fluorescence states (Fig. 3). Given the lack of resources available to repeat the experiments,
a machine learning method called Binary Event Prediction was developed to separate each bimodal distribution into an OFF
distribution and ON distribution (Fig. 4). The sample was then classified as primarily ON or OFF depending on which distribution
had greater mass. Using this technique useful information was extracted from suboptimal data.

After separation of bimodality, the analysis showed that most of the builds responded with better performance than a null model
(Fig. 5(a)-(b)). However, the performance of the engineered switches were not consistent with the CDM predictions of which parts
would lead to high performing circuits and which parts would lead to low performing circuits (Fig. 5(f)), likely due to assumptions
that were placed on the CDM method for this application (see Section 2.1.2). DSGRN predictions were partially fulfilled in that
DSGRN NOR topology outperformed the simple NOR topology, but no appreciable difference existed between the DSGRN and
simple OR topologies (Fig. 5(e)). There is therefore evidence that a more complex circuit may at times exhibit greater success
across experimental conditions.

2. Results

2.1. Predictions

2.1.1. DSGRN predictions of circuit topology performance

The DSGRN Design Interface provides robustness scores for a sample of network topologies exhibiting the desired truth table within
a user-specified size range. Higher robustness scores correspond to predictions of greater success across experimental conditions. In
principle, the robustness score can achieve a maximum of 1, but in reality this score is highly improbable. In Fig. 2, the DSGRN
NOR topology has a score of 0.22, more than twice the simple NOR topology with a score of 0.08. Similarly, the DSGRN OR
topology has a four-fold score of 0.28 compared to the original at 0.07. According to these predictions, the DSGRN topologies should
exhibit better performance over condition space, which consists of media conditions and inducer concentrations in the experiments
performed here. It is important to realize that DSGRN robustness scores are not to be taken as quantitative predictions. The
robustness scores for the OR topologies would naively indicate that the DSGRN topology should successfully show the correct
logic four times as often as the simple topology. However, that is at best an indicator of relative performance across all condition
space (empirical numerical evidence for this can be found in (41)), not the limited condition space that is available experimentally.
Therefore, only ordinal interpretation of the robustness scores is justified.

It is not always advantageous to build the circuit topology with the highest robustness score. As robustness increases, the
redundancy in the network and therefore the complexity of the network is also increasing. There is a trade-off between predicted
robustness and the ease of building the circuit. There were two NOR designs with the same number of parts as the DSGRN topology
in Fig. 2 with a score of 0.30 that were rejected due to doubts about build feasibility.

2.1.2. CDM predictions of various parts assignments

Given a circuit topology, it remains to assign parts to each node in the network. This was accomplished using a modification of the
Combinatorial Design Model (CDM), a neural network model designed to use partial data to predict the performance of genetic
constructs across untested experimental conditions. The data used to train the model were fourteen dosage response curves, a
BE-inducible and Dox-inducible version for each of the seven gRNA promoter regions evaluated in this study: rl, r2, r3, r5, r7, r9,
and r10.

CDM can be naturally used to predict the performance of simple NOR circuits; that is, it predicts the outcome of combining
two inducible parts together when information is only known about individual parts. It is not explicitly designed to choose parts
to construct larger circuits, and so assumptions had to be made in order to apply it. First, it was assumed that the independent
CDM scores for NOR units could be combined in a way that leads to an accurate prediction of whole circuit behavior. Second, the
model was trained on data for inducible parts only, but there were both inducible and constitutively-expressed parts in the parts
library. It was assumed that the rank-ordering induced by CDM scores on combinations of inducible parts was preserved for the
combinations of constitutively-expressed parts.

Using CDM predictions, two parts assignments were made for each circuit topology: one that was expected to be a better
performer and another that was expected to be a poorer performer. These parts assignments are shown in Fig. 2, along with the
difference between the high and low design CDM scores. While not interpretable in a quantitative manner, the difference in CDM
scores are roughly comparable across circuit topologies. Again, only ordinal rankings are appropriate in the interpretation of these
performance scores. As an example, compare the 1.49 difference in low and high simple NOR designs to the 2.54 difference in
simple OR designs. The interpretation is that a larger difference between low and high designs should be seen in the simple OR
topology versus the simple NOR topology. As a side effect of parts assignment, CDM was also able to reduce the intervals of
inducer concentrations to be tested.

2.2. Data Overview

There is a minimal amount of information the reader needs about the experiments to interpret the following two sections that
contain the major contributions. The eight builds in Fig. 2 were grown in three media types, YEP 2% Dextrose (rich media),
Synthetic Complete (standard media), and Synthetic Complete containing 1% Sorbitol (slow growth media). The three media will
be referred to as YEP, SC, and SB, respectively. The cultures were used to create fifteen 96-well plates, with five plates per media
condition. Each plate had titrated inducer concentrations for one or both of S-estradiol (BE) and doxycycline hyclate (Dox), see
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Fig. 2. The designs for the built circuits, with one topology and two CDM designs in each quadrant. Upper left: The simple NOR topology published
in (40), re-engineered with two different collections of gRNA inducible parts. The one on the left is predicted by CDM to perform worse than the one
on the right. Lower left: The DSGRN NOR circuit predicted by DSGRN to perform more robustly than the simple NOR circuit, with the two CDM
predicted gRNA arrangements. Upper right: The simple OR topology published in (40), with CDM-selected parts assignments. Lower right: The DSGRN
OR designs predicted to perform more robustly than the simple OR designs. Scoring: The difference in CDM scores between the low and high designs
is shown in each row above the corresponding topology. Topology robustness scores predicted by DSGRN for the NOR and OR circuit topologies are
shown in each row below the corresponding topology. These numerical scores should be interpreted ordinally rather than as absolute values with specific

interpretation.

Appendix Table 1. The five titration experiments were BE titration into base media, Dox titration into base media, BE and Dox
simultaneous titration into base media, Dox titration into BE spike-in media, and BE titration into Dox spike-in media (the term
spike-in means that the inducer was added to the media before the incubation period). Flow cytometry (FC) data were collected
at three time points: 12, 24, and 36 hours after an incubation period of 16 hours. An event refers to a single flow cytometry
measurement and a sample is the collection of events associated to a well (a fixed location on a plate) at a single time point. The
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presence/absence of the inducers determines the expected outcome of the GFP signal in the FC measurements for the OR and
NOR circuits; see Appendix Table 2 for a key to the media and expected outcomes of the circuits for each plate.

2.3. Data Processing

The RT provided standardized FC data products for visualization and analysis. Plots of these data showed significant bimodal
distributions in both the OR and NOR builds, see Fig. 3 for an example plate. A possible explanation for bimodality in the data
is that induction times for the circuits are slow, and therefore there are populations of both sufficiently and insufficiently induced
cells.

However, there is also bimodality in the positive and negative controls, see the first column in Fig. 3 as well as the first row
of Fig. 4. In the positive controls, this suggests potential mutations where the GFP coding region has been compromised. In the
negative controls, this suggests possible contamination of the plates with GFP producing cells. Given these issues with the controls,
it would be ideal to redo the experiments.

In many situations, it is not feasible to redo experiments either due to lack of resources or inability to obtain more samples.
This is the case for the data presented here; another set of experiments was not possible to obtain. The challenge was to see how
much information could be drawn from data with anomalous controls. One solution would be to presume that the GFP-positive
population in the negative control is uniform throughout the plate and subtract that portion of the population from all of the
wells. This technique has the significant disadvantages that (i) the assumption of uniform contamination may be incorrect, (ii) it
takes significant manual effort, and (iii) it uses only one channel out of 16 to judge the identity of problematic events.

BL1-A
g8 &
T S
A
B
] L
PN l fommastit, N el (O i, PN bt Lt bt ol
D
|
|
G
H
1 2 3 4 5 6 7 8 9 10 11 12

Fig. 3. An example 96-well plate in SC media (plate id rifgsfkwxcccvé, see Table 2) sampled 12 hours post-incubation showing fluorescence area
distributions in arbitrary units. Controls (positive, negative, and bead) are in the first two columns. The remainder of the columns are data for the

eight builds, one per row, with varying inducer concentrations.

To address these issues, a machine learning technique referred to as Binary Event Prediction (BEP; (42)) was developed to
separate every bimodal distribution into low and high (or OFF and ON) distributions on a per-plate basis using 16 flow cytometry
channels, each with width, height, and area measurements. BEP uses a random forest classifier in two stages. In the first stage, the
pooled replicates of the positive and negative controls on a plate are used to train a random forest classifier. These classifiers, one
per plate, are then used to predict the training data. Those events that exceed an adaptive probability threshold (see Methods 4.5.2)
for either the high distribution in the positive control or a low distribution in the negative control were kept, producing “clean”
controls that often achieve reduced bimodality; see Fig. 4 for examples of effective versus ineffective cleaning. In stage two of BEP,
the cleaned controls trained new random forest classifier models, one per plate, that were used to predict the ON/OFF status of
all events on the plate. Appendix Fig. 8 shows the fluorescence distributions for the original and cleaned controls for each of the
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15 plates in the experiments. On the left are 9 plates with effective cleaning of the controls, i.e. they have achieved unimodality
after cleaning, and on the right are the remaining 6 plates that show ineffective cleaning.
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Fig. 4. Examples of effective (left two columns) and ineffective (right two columns) cleaning of controls after stage one of Binary Event Prediction.
Effective cleaning results in unimodal distributions, a low one for the negative control and a high one for the positive control. Ineffective cleaning either
does not eliminate bimodality or does not result in the low (high) distribution being associated to the negative (positive) control. Negative controls are
shown in red (first and third columns) and positive controls are shown in green (second and fourth columns). The histograms are fluorescence height
measurements in log arbitrary units. Top row: Unmodified controls pooled over replicates. Bottom row: Cleaned controls pooled over replicates.

A comparison was performed between the original log-transformed data and a subset of the data identified by BEP in order
to assess BEP performance. The BEP subset for each sample was determined by comparing the number of BEP-predicted ON
events versus predicted OFF events. Whichever predicted distribution comprised more than 50% of the total events was used as
the modified sample data. Both the original and modified datasets were analyzed via the Round Trip tools (i) Performance Metrics
(PM; Methods 4.5.3) to assess fold change between expected OFF and expected ON circuit states and (ii) Data Diagnosis (DD;
Methods 4.5.4) to assess variability in the fold change as function of experimental variables. PM computes the fold change in
median between all samples that are expected to be ON according to circuit function and all of those that are expected to be
OFF. The distributions of the median fold change per plate for the original and modified datasets are shown in Appendix Fig. 10.
The distributions are seen to be very similar, indicating that in aggregate the fold changes between circuit ON and circuit OFF
states are not improved by the BEP technology. However, DD shows that even though the fold change hovers around 1 for both
datasets, the BEP subset data has many more outliers at higher fold changes (> 5) than the original data; compare Appendix
Figs. 11 and 12. This indicates that circuit performance measured as fold change is greatly improved for a number of samples.

The BEP methodology reduces human labor in sorting through data and draws conclusions using all 16 channels and all 3 time
points of the flow cytometry data without assuming a uniform distribution of contamination. As is intuitive, the GFP channel
was the most important contributor to the model according to SHAP values (43), see Appendix Fig. 9. Moreover, as will be
demonstrated in the next section, the BEP event predictions of ON versus OFF state permit the evaluation of circuit performance,
which is otherwise problematic when the fold change between expected ON and OFF distributions is approximately 1.

2.4. Data Analysis

Circuit performance was assessed by examining the three time point flow cytometry distributions for GFP for each well in a plate.
Each FC distribution was required to meet conservative criteria for cell presence in order for a well to be assessed for success. The
total number of events in the distribution had to be at least ten thousand and there had to be a cell density of at least 500,000
cells/mL. If any time point did not meet these criteria, then the well was classified as a failure, with the following exception: one
plate (rifw4stb38ewsh, see Appendix Table 2) with SB media had such wide-spread insufficiency in cell density and number of
events that the whole plate was excluded from analysis. This plate was one of the plates with ineffectively cleaned controls (see
first row, right columns in Appendix Fig. 8) and was an SB media plate. The remaining fourteen plates consist of five plates for
each of SC and YEP media and four with SB.

Successful performance was assessed by the following scoring technique. For each time point, there is a proportion of events in
the FC distribution that are predicted by BEP to be ON (p) or OFF (1 — p), where p will be called the BEP ratio. If for a well
all three time points satisfied p > 0.6 (p < 0.4), then the build was declared to be exhibiting ON (OFF) behavior. Additionally,
if neither condition above was met but p increased (decreased) over time, then the build was said to exhibit ON (OFF) behavior.
This latter condition was chosen since some of the builds may still have been undergoing the temporal processes of induction and
GFP decay over the course of the experiment. Any well that did not meet one of these criteria was said to have indeterminate
behavior and was classified as a failure. A success for a well is defined to be any case where the exhibited behavior matched the
intended ON or OFF state of the circuit given the presence or absence of the inducers, otherwise it was classified as a failure.

Successful or unsuccessful performance could be characterized by looking at the distribution of well successes across all plates
for each build. However, since BEP exhibited variable performance on a per-plate basis, successes were aggregated on the plate
level for each build. A plate performance score for a build is the number of successes divided by ten, since each build was measured
under five inducer conditions with two replicates on each plate.
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Fig. 5. (a) Distributions of 14 plate performance scores (proportion of successes per build per plate) across the eight designs. The vertical bars indicate

range with outliers as diamonds. The rectangles show 25-75 quartiles, with the horizontal bar showing the median and the black dot showing the mean.

(b) Baseline distributions for plate performance scores; each plate had its BEP ratios permuted over all well and time points 1000 times. (c) Plate

performance scores split by media (5 plates each for SC and YEP, 4 plates for SB). (d) Predicted probabilities of success for each build with 95%

confidence intervals for the true probabilities of success. (e)-(f) Distributions of plate performance scores pooled across media and CDM design (e) to

assess DSGRN predictions, and scores pooled across media and topology (f) to assess CDM predictions.

The fourteen plate performance scores form the distributions plotted in Fig. 5(a). The category labels indicate the topology,

circuit, and CDM prediction in order. Median performance shows a wide range of values and the interquartile ranges are generally
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large, therefore it is unclear whether or not any of these circuits can be declared successful on the whole. To address this, a baseline
distribution was created where each plate had its BEP ratios permuted over all 8 builds and 3 time points 1000 times. The baseline
plate performance score was computed for each circuit at each iteration and the distributions are shown in Fig. 5(b). Although
there is overlap in the interquartile differences, the means and medians of the true scores for DSGRN NOR, DSGRN OR/CDM
low designs, and simple OR topologies are all higher than those of the randomized empirical null.

In Fig. 5(c), the distributions in Fig. 5(a) are split over media condition. The distributions only have 4-5 points each, but
the boxplot shows suggestive patterns. First, the DSGRN NOR topologies perform either better or similarly to the simple
NOR topologies in all three media conditions, with particularly high performance in the SB media condition. Second, the
underperformance of the DSGRN OR/CDM high design seems to be due primarily to the SC media. Disappointingly, no build
seems to exhibit similar, and therefore reproducible, performance across media conditions. The closest is the simple OR/CDM high
design.

To provide some statistical quantification of the observed trends, the probability that a new observation will be a success for
a given build and media condition was estimated using a logistic regression model (Appendix D). Fig. 5(d) shows these predicted
probabilities along with a 95% confidence interval for the true probability of success. When the confidence intervals do not overlap,
that is suggestive of, though not a guarantee of, significantly different probabilities of success. Given a media condition and
circuit, the only time there is non-overlapping confidence intervals, and therefore possible significance, is between the simple NOR
topologies with lower predicted success and DSGRN NOR topologies with higher predicted success. This can be seen by choosing
a NOR circuit row and pairwise comparing the confidence intervals between the simple and DSGRN topologies. Additionally, by
examining the top half and bottom half of the table, it can be seen that the CDM low designs have higher probabilities of success
than the CDM high designs, but there is overlap in the confidence intervals.

The accuracy of the DSGRN robustness predictions and the CDM performance predictions are further assessed by pooling media
conditions and builds together, as shown in Fig. 5(e)-(f). In Fig. 5(e), the plate performance scores for the high and low CDM
builds are pooled to compare the DSGRN topologies against the simple topologies. The DSGRN NOR topology outperforms the
simple NOR topology, indicating that that circuit redundancy may indeed produce more robust performance, as also supported
by the statistical analysis in Fig. 5(d). On the other hand, the two OR topologies are not substantially different performers (in
mean and median). But Fig. 5(a) and (d) show that the DSGRN OR designs show a large differential performance from each
other, whereas the two simple OR designs do not. A possible contrary conclusion is that the DSGRN OR topologies are not as
reproducible as the simple OR designs in terms of the specific biological parts deployed, which is counter to DSGRN predictions.
In Fig. 5(f), the plate performance scores for the DSGRN and simple topologies are pooled to compare the CDM low performance
predictions to the CDM high performance predictions. The CDM low designs show a trend of higher performance than CDM high
designs, consistent with Fig 5(d).

The simple NOR design is an anomalously poor performer compared to all other designs. This is interesting because all the
other builds contain similar NOR gates, although they use different gRNA parts (see Fig. 2). Either the simple NOR builds are
unexpectedly fragile, or there is perhaps synergistic activity when multiple NOR gates act in concert. To further explore this
performance failure, a Hill function ordinary differential equation model of the designs was created using parameter fits (Methods
Section 4.5.5) from the same dosage response experiments used to train CDM.

In general, the Hill model predicted that circuits should respond more strongly to Dox (Fig. 6(a)), but that the dosage response
to BE was acceptable (Fig. 6(b)) except for the two simple NOR designs, in which the presence of BE alone is predicted to fail
to turn the circuit OFF (Fig. 6(c)). Fig. 6(a) shows the DSGRN OR/CDM high design and illustrates the difference in BE and
Dox performance. A success is a high GFP signal in all five bars, where the left-most bar is BE alone at its highest titration
concentration and the remaining four bars are combinations of BE and Dox, with Dox at various titration levels. High GFP signal
is achieved even for the BE-alone condition, since the low GFP steady state corresponded to about 1500-2000 a.u., substantially
lower than the left-most bar. However, the BE-induced GFP signal is markedly lower than that for the BE4Dox combinations.
Dox in isolation produced GFP signal in comparable amounts to BE4+Dox (Appendix E).

Fig. 6(b)-(c) shows the differential Hill-model predicted performance of the DSGRN and simple NOR topologies using parameters
for the CDM low designs. In this case, BE successfully represses the signal of the DSGRN NOR design to the 1500-2000 a.u. low
steady state, but does not suppress that of the simple NOR design. In the absence of both inducers (first bar) both designs are
predicted to exhibit a high fluorescence signal, but in the subsequent titrations, the simple design is predicted to have a GFP signal
more than twice the low steady state. The BE-inducible parts r10 and r5 are used only in the simple NOR designs and not in the
other designs (Fig. 2). One cannot exclude the hypothesis that the inclusion of the BE-inducible parts r5 and rl10 into the three
other topologies would also result in degraded performance.

3. Discussion
This manuscript introduces a set of tools for the design of circuit topology through performance prediction and a set of tools
to improve the efficiency and accuracy of building synthetic circuits. Together this Design Assemble toolchain is melded into a
previously published toolchain, the Round Trip. During the DA portion of this sequence, OR and NOR logical circuit topologies and
parts assignment were designed using the predictive tools DSGRN (29; 38) and CDM (32) and built using the laboratory software
tools DASI (33; 34), Terrarium (36), and Aquarium (37). The Round Trip (25) portion of the toolchain enhanced the reproducibility
of experimental results through the automation of experimental specification, subsequent data handling, and standardized analysis.
During data inspection, it became clear that contamination, of the negative controls with GFP-producing cells and of the positive
controls with mutated cells lacking GFP production, was a real concern—appearing as strong bimodality in the FC distributions.
However, there were insufficient resources to repeat this suite of experiments, and no guarantee that the issues would be resolved
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Fig. 6. Example predicted steady state values of the geometric mean of the flow cytometry distribution of GFP a.u. from Hill function models. (a)
The DSGRN OR/CDM high design as it transitions from an initial state of BE only to BE4+Dox for various titration levels of Dox. The logical circuit
should show a high fluorescence signal at all conditions. The BE-only steady state has a strong GFP signal in comparison to the low GFP steady state
(1500-2000 a.u.), but is significantly lower than inducer conditions where Dox is present. (b) The DSGRN NOR/CDM low design as it transitions from
an initial state of no inducers to BE at various titration levels. The condition (0,0) should show high fluorescence and all subsequent bars should show
low fluorescence. (c) The same as (b) for the simple NOR/CDM low design. It is seen that BE does not effectively repress GFP signal in panel (c).

through replicated experiments. A challenging goal is the development of methods that can use all data, whether optimal or
suboptimal, to inform future experiments. To this end, a machine learning technique called Binary Event Prediction (BEP) (42)
was developed to separate bimodal distributions based on 16 flow cytometry channels. The intent was to identify true ON/OFF
versus false ON/OFF events in order to assess circuit performance. Aside from this, BEP provided extra information that flow
cytometry channels correlated with cell size were not important in the classification.

Although the simplest topologies for OR and NOR circuits are well-known to synthetic biologists, there are many circuit
topologies that also exhibit the correct logical behavior. DSGRN predicts that many OR and NOR circuit designs with redundancy
should show more robust behavior over experimental conditions. CDM predicted groupings of parts that should show better versus
worse circuit performance.

The simple and DSGRN NOR circuit performance exhibits a trend consistent with DSGRN predictions of circuit robustness,
namely that a circuit design with redundancy may indeed be more robust with regard to diverse experimental conditions. However,
there are mixed conclusions to be drawn for the OR circuit. On the one hand, DSGRN OR topologies show a smaller interquartile
range, consistent with greater average reproducibility. On the other hand, the CDM-predicted high and low builds of the DSGRN
OR topology show a much greater difference in median than the analogous builds for the simple OR designs, indicating lower
reproducibility.

The designs which CDM predicted would be high performance were often outperformed by those CDM predicted would be low
performers. This is likely due to faulty assumptions when creating a purpose-built version of CDM for this application. Either
the scores for combinations of NOR genetic subunits were incorrectly calibrated or the assumption that genetic parts with gRNA
binding sites exhibited similar behavior to their BE and Dox-inducible counterparts was incorrect. An alternative future route is
to combine DSGRN topology generation with stochastic parts assignment optimization, such as that in Cello (15), or with the
Wasserstein metric-based parts optimization in (17).

The trends in performance are suggestive rather than significant. These trends can be used to hypothesize the most promising
directions for future experimentation. Possible avenues of exploration involve the choice of topology, particularly for the OR
circuit, the choice of parts assignment, particularly for the simple NOR designs, the choice of experimental conditions, or the
experimental platforms and protocols used. From the work here, better experimental controls and different assignments of parts
are clear choices. A wider range of parts assignments and experimental conditions would lead to a better exploration of the
operational envelope of the construct, and would therefore put higher confidence in the topology rankings produced by DSGRN.
Lastly, alternative topologies for OR logic could provide further evidence for or against increased robustness of performance when
comparing structural redundancy to build complexity.

In conclusion, synthetic logic circuits predicted to exhibit OR and NOR logic behavior were designed, built, observed using flow
cytometry, and analyzed for performance using a toolchain designed to enhance robustness and reproducibility. A machine learning
technique was developed and trained on all measured flow cytometry channels to mitigate unexpected experimental complications.
The results indicate that more complex circuits exhibiting structural redundancy may provide more robust and reproducible
behavior in a synthetic biology setting despite increased build difficulty.

4. Methods

4.1. Design tools

4.1.1. DSGRN design software

Dynamic Signatures Generated by Regulatory Networks (DSGRN) is a Python package (29) that permits a user to comprehensively
describe the long-term dynamical behavior of a network topology. In this context, it predicts the equilibrium behavior of a logic
circuit under DSGRN parameterizations. A DSGRN parameterization is actually a large region of high-dimensional parameter
space across which equilibrium behavior is constant. This is a finite decomposition of high-dimensional parameter space, called
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Fig. 7. Example CDM prediction based on parts r5 and r7. The y-axis shows fluorescence in arbitrary units, and the z-axis has combinations of the
inducers B-estradiol (BE) and doxycycline-hyclate (Dox). Blue and orange denote data taken for parts r5 and r7 respectively in the presence of a high
concentration of BE. Likewise, green and red show data for r5 and r7 respectively in the presence of a high concentration of Dox. Purple and brown
show CDM predictions for the combination of BE-inducible r7 and Dox-inducible r5 and for the combination of BE-inducible r5 and Dox-inducible r7,
respectively, at all inducer conditions, including the case where both BE and Dox are present and no data were gathered.

the DSGRN parameter graph, so that DSGRN exhaustively predicts all behaviors available to a network topology. To predict the
robustness of a dynamical behavior, DSGRN computes the percentage of the finite number of regions in the DSGRN parameter
graph that exhibit the behavior of interest.

While powerful and flexible, DSGRN currently requires custom scripting to ask specific questions, such as the enumeration of
the range of behaviors of a synthetic biology construct. A wrapper Python package dsgrn_design_interface (38) was written to
permit a plain language interface for a non-expert user to design a collection of feed-forward network topologies that satisfy a
desired logic circuit behavior. Using this tool, thousands of network topologies can be screened for the desired logic behavior.

The input is a json configuration file, where the user specifies the desired circuit, whether the inducible inputs are activated
or repressed, the size of the network topology, and the local logic of individual parts that are available to build the circuit (i.e.
independent or dependent repressors or activators). The output is a collection of files accessible through an automatically generated
Jupyter notebook that can be browsed for final choices of network topologies. An SBOL2 (Synthetic Biology Open Language) (28)
formatted document can be created for any of the desired topologies. Comprehensive documentation is provided.

Given the user inputs, a DSGRN design parameter or set of parameters is identified that is consistent with the local logic of
the parts. A successful output topology is one that exhibits the desired logic behavior at a design parameter. The neighboring
parameters to the design parameters in the DSGRN parameter graph are well-defined, and are associated to small malfunctions
in the intended operation of the circuit. Each successful output topology is accompanied by a numerical score that rank orders
networks according to their predicted robustness based on these neighbors. For some successful network, let D be the number of
design parameters with the correct equilibrium behavior, let N be the number of neighbors of all design parameters, let N. be the
number of these neighbors that exhibit the correct logic, and let E be the number of essential DSGRN parameters (44). Then the
topology robustness score (e.g. Fig. 2) assigned to the network is a value between 0 and 1 defined by

D+ N,
T E+4+ N’

See (30) for a similar scoring method in another design application of DSGRN.

4.1.2. Combinatorial Design Model (CDM)

Experiment and circuit designs are often additive, namely, single conditions are combined to elicit a collective response. For a
circuit constructed of multiple parts, the challenge is to select the best combination of parts that produces the best response (e.g.
the largest dynamic range). While there are tools that exist to support this task, such as Cello (16), they require a thorough
characterization of every part (e.g. a titration of inducer for each part) to construct the circuit. The CDM is a neural network
based model that is trained with a subset of conditions and predicts the left out conditions. The conditions need not cover a full
range of titrations, but the predictions will then be limited to only the combinations of inducer concentrations and gates tested. For
this effort, ON/OFF conditions for each part were tested and the flow cytometry distributions were predicted over all combinations
of inducers and parts (e.g. Fig. 7). The CDM was structured to make predictions using multiple stages, each stage aligned with a
given topology. For example, the six-node DSGRN NOR topology with two input nodes, an intermediate node, and two nodes with
promoters at the GFP coding region had a three stage model corresponding to each of these “layers”. At each layer, a measure of
deviation of predicted fold change was computed, with details of normalization varying at each stage. Since CDM scores change
with topology size, it is more comparable to look at differences between high and low scores as in Fig. 2, rather than to interpret
absolute scores.
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4.2. Build tools
4.2.1. Aquarium

For plasmid and yeast construction, Aquarium software (14; 37) was used to manage inventory, experimental workflows, and
protocol execution. The input to Aquarium is a workflow, or linked set of protocols. During the execution of a workflow, data and
metadata are logged and tracked to a database, which is used for future automated planning. Aquarium workflows are executed
by technicians following on-screen instructions generated by Aquarium. Occasionally, the same protocol is executed by multiple
technicians at the same time or sequentially (one technician leaving and another starting where the other left off). Technicians
are trained beforehand, but had various skill levels and experience. During execution of the protocols for the build steps and
parts library dosage response experiments conducted at the UW BIOFAB (45), technicians were unaware of project goals and were
instructed to exactly follow the steps and instructions provided by Aquarium.

4.2.2. Terrarium

There are two inputs to the computer-assisted process planning software Terrarium (36): metadata from previously run Aquarium
workflows and a biological design encoded in a biological manufacturing file (BMF) using the JSON (JavaScript Object Notation)
standard. A BMF defines three components: (i) the laboratory configuration, (ii) relationships between biological sub-components
in a given design, and (iii) biological definitions, which include the type of biological sample (yeast, bacteria, DNA, sequences,
etc.). Terrarium uses lab inventory information from the BMF plus metadata from previously executed Aquarium workflows to
generate a model of the laboratory. This enables predictions for lead time, costs, labor, and predictions of experimental errors for
proposed workflows that permit the creation of an optimized Aquarium workflow.

4.2.3. DAS1

In some cases the sequence provided in a BMF is not available in the laboratory as inventory. In these cases, DNA sequences
can be created in the laboratory by a combination of DNA subcloning or DNA synthesis from outside vendors. For this type of
planning, Terrarium uses a planning subroutine, DASi (33), to automatically generate an economical DNA cloning assembly plan
from sequences, using available lab inventory whenever possible. DASi has flexible input requirements for a DNA sequence, and
may be either a string of characters, a GenBank file, an SBOL file, or a BMF. Unlike other cloning automation software, DASi does
not require further design specifications beyond the DNA sequence to effectively create DNA assembly plans. Once an assembly
is returned from DASIi, the output file can be converted into a BMF that is processed by Terrarium into a validated Aquarium
workflow.

4.3. Round Trip (RT)

DART relies upon the RT tool chain (25) to test assembled designs and then process experimental data. The RT accomplishes this by
accepting a semi-structured Experimental Request (ER). The ER represents human-readable descriptions of the experiment and a
set of structured tables that describe controls, builds, reagents, conditions, and measurements. The RT uses a tool called the Intent
Parser (46) to resolve human-readable terms to their representations in SBOL, including their design and assembly. The Intent
Parser validates the ER and converts the experiment description into a machine-readable format that goes through experimental
planning. The experimental planner, XPlan (13), partitions and allocates the requested builds, conditions, and measurements to
experimental runs that are launched at a laboratory with compatible software.

The RT processes the data through three main steps: a) database ingest, b) standardization and versioning, and c) automated
analysis. The database ingest, a process called Extract-Transform-Load (ETL), checks that the measurements requested in the ER
are fulfilled by each experimental run, and then stores the data and metadata in a database called the data catalog. The Data
Converge (DC) tool converts the data catalog records for each experiment into several standardized and versioned data products.
These versioned products, such as data frames of log transformed flow cytometry events or per sample absorbance measurements,
provide a standard schema across experiments that use different builds, reagents, and protocols. The standardization provides a
common format, which enables generic analysis tools that can apply to many different experiments without extensive per-experiment
customization. The versioning supports more effective analyst-to-analyst comparisons that are based upon the same version of the
data. The RT uses a final tool called the Precomputed Data Table (PDT) (42) to apply a suite of analysis tools to the standardized
dataframes. Each analysis tool (described below) processes the data to pre-compute (rather than have the user manually compute)
the resulting data. The resulting analyses, in conjunction with any ad hoc analyses performed by the user, can be used to inform
additional experiments with the RT or inform new designs with the DA components.

In this work, the experimental planning tools automatically launched experimental runs at the Strateos (47) robotic cloud
laboratory. Each run produced data that Strateos uploaded to the Texas Advanced Computing Center (TACC) (48) infrastructure
for RT processing and analysis. TACC provided the Synergistic Discovery and Design Environment (SD2E; (49)) on which the
various components of the RT are integrated. RT packages (and other SD2 packages) are also freely available at (50).

4.4. Experimental process

4.4.1. Plasmid construction

Backbone and insert fragments were amplified with PCR, gel extracted, purified, and assembled using Gibson assembly (51)
using standardized assembly linkers. Backbones contained a high-copy E. coli origin of replication and ampicillin resistance for
propagation. The yeast expression cassettes were flanked upstream and downstream by approximately 500 bases of chromosomal
homology to the yeast genome and Pmel restriction sites for linearization before transformations. Plasmids were sequence-verified
using Sanger sequencing.
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4.4.2. Build construction
Yeast builds were constructed using genomic integration from linearized DNA into the CEN.PK113-7D strain of S. cerevisae.
Builds were constructed using genomic integration from linearized DNA. Integrative plasmids were linearized using Pmel digestion
(37C, 30 min) to cut upstream and downstream of the chromosomal homology. Unpurified, linearized DNA was transformed into
yeast cells using a standard lithium acetate protocol (52). Build selection was performed on solid synthetic-complete (SC) using
auxotrophic or antibiotic markers. Diagnostic colony PCR was performed to verify integration into the proper locus. Builds were
picked from single colonies and stored long-term at -80°C in a sterilized 30% glycerol and media solution. Build retrieval was
performed by plating glycerol stocks onto solid media plates (YPAD) grown for 2-3 days at 30°C and picking single colonies for
liquid culture. All yeast cultures and assays were grown at 30°C shaking at 275 RPM.

Builds consisted of both individual inducible parts and full circuits. Individual parts were characterized via dosage response
flow cytometry experiments to confirm functional response to inducer presence.

4.4.3. Plate layout for circuits
Each 96-well plate had eight data rows, one for each build. The columns had five different inducer concentrations, two replicates
for each, as well as two columns for controls. Each plate had one of three media: standard (SC), rich (YEP), or slow (SB) and one

logical input transition (see Tables 1-2).

4.4.4. Automated Laboratory

The Strateos robotic cloud lab provides three main functions to DART: (i) the development of replicable, robotically-executed
experimental protocols, (ii) the execution of requested experimental runs, and (iii) the delivery of the measurement data to the
SD2E platform on TACC.

The protocols developed as part of this and related projects are variations of high-throughput screening with 96-well plates.
Each protocol involves commanding a robotic workcell to incubate samples overnight, and then dilute, apply reagents, and gather
a time series of plate reader and flow cytometery measurements. Strateos executes experimental runs that it receives from the RT.
Each run references a container that includes the samples that include the various designs developed by DA components. Users ship
these containers to Strateos and create container metadata describing each sample. The RT’s XPlan planner allocates the requested
samples in each ER to the container aliquots using this metadata. The Strateos platform validates each requested experimental run,
constructs a sequence of Autoprotocol (53) instructions, and informs the RT of the run identifier. After completing the protocol,
the Strateos platform uploads the experimental data and metadata referenced by the run identifier. The RT then ingests the run
data as described above.

4.5. Analysis tools
4.5.1. Precomputed Data Table (PDT)

The PDT is a component of RT and is responsible for executing a suite of analyses on data products generated by Data Converge
(briefly described in Methods 4.3) and storing and versioning the respective results. The PDT provides DART with (i) rapid,
consistent analysis of data of different types and from different experiments and (ii) the ability to automatically add additional
data features (results from analyses) for higher-level analyses and modeling. These two features enable an increase in the rate at
which DART can be iterated as actionable results are available within hours of data availability and more advanced analyses can
be applied sooner. The PDT contains several types of analyses and not all are executed on all available data due to incompatibility
of analysis types and data types. The next three subsections are descriptions of the analyses that the PDT was programmed to
execute for the experiments at hand. The full suite of analyses are listed in (25).

4.5.2. Binary Event Prediction (BEP)

The Binary Event Prediction tool (42; 54) develops a classifier to predict whether an event within a flow cytometry sample
corresponds to a “high” or a “low” signal, in the same sense as digital logic. Properly interpreting flow cytometry data collected
from cells expressing a fluorescent protein requires the use of a positive and a negative control. In the case of the current experiments,
the positive controls are cells that constitutively express GFP and the negative controls are cells that do not express GFP due to the
lack of the GFP coding sequence. Using these controls, BEP develops the classifier for each pair of high/positive and low/negative
controls. The tool trains the classifier on all flow cytometry events for the high/positive and low/negative controls, labeling each
respective event as either 0 (low) or 1 (high), and then uses it to predict for each event within each sample whether the event is
low or high.

Compared to techniques that define a linear threshold to a single flow cytometry channel measuring GFP to separate low and
high, BEP constructs a multi-dimensional nonlinear threshold (represented as a random forest). The classifier not only subsumes
the threshold method, but also incorporates all flow cytometry channels, such as forward scatter, side scatter, and other color
channels.

In the redesign effort described above, bimodality was observed in GFP-positive cytometer channels for the positive and negative
controls. This caused ambiguity in determining what events are high and low by the classifier as subpopulations of events in one
control were consistent with subpopulations in the opposite control. BEP was used to overcome this bimodality in the positive and
negative controls. The poor control data were culled using the classifier’s training/test split of the controls during cross-validation
to identify the probability of each label predicted in the test set of each cross-validation fold. The control data was then “cleaned”
where for each control type, a threshold on probability was applied that dropped events found below the threshold but maintained
a minimal total event count of 10,000 events. A new classifier was constructed on the remaining “clean” data and used to predict
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signals for the non-control samples. The resulting model self-assesses the probability that each control data point should be used
in a respective group of labeled points and keeps only the most probable.

4.5.3. Performance Metrics (PM)

Performance Metrics (55) measures the performance of experiments where the samples should be in two different states (e.g. ON
and OFF states) and should have a separation in experimental measurements between these two states. The user defines how to
aggregate samples (e.g. by build, condition, time) and the experimental measurement (e.g. fluorescence), and the tool computes a
suite of metrics that compare the measured values for the two states. The tool returns metrics of how large the separation between
the two defined states are for each group in the aggregation.

The metrics compare the distributions of aggregates of samples in each state (ON versus OFF) to compute the differences (ON
- OFF) and ratios (ON/OFF) between the two states. The tool compares the left versus right hand side of the distributions via
percentiles and standard deviations at different thresholds. For example, PM will aggregate samples by build, condition, and time
point, and then for each group, it computes the difference between the 50% percentile of the ON samples and the 50% percentile
of the OFF samples. It then computes per sample metrics by comparing each individual sample in one state to the opposite state’s
distribution. For example, for each group, for each individual ON sample, it computes the difference and ratio to the median of
the OFF states; and then vice versa for each of the OFF samples.

PM reads in a configuration file and data and metadata files. The configuration file specifies the column name of the experiment
output, information about the states (e.g. ON and OFF, or any other identifier), as well as a dictionary of what columns to use to
make aggregates (e.g. group by build; group by build, condition, time). The per sample metrics for aggregates of build, condition,
and time can be used as inputs by Data Diagnosis.

4.5.4. Data Diagnosis (DD)

Data Diagnosis (56) performs diagnostic tests for both experimental design and experimental performance. These test for variables
that are associated with variations in performance, and identify which values of the variables are associated with good or bad
performance. Additionally, our tests identify if there appears to be any dependence between variables, for example, two variables
contain the same information and should not be debugged separately.

DD has two tests for performance and one test for dependence. Our first performance test is the Kruskal-Wallis H-test for
categorical variables. This completes a non-parametric analysis of variance for the categorical variables grouped by a user selected
variable. The continuous variable analysis uses the Spearman correlation coefficient to measure the association between the
performance variable and each continuous variable. Finally, there is the dependence test for randomization. This is primarily
to study whether the experimental design has redundancies or has missed combinations of variables. It should be run prior to the
experiment, but can also be run afterwards to aid in analysis and troubleshooting of the experiment. This test determines if the
dependent variables were properly randomized by running a Chi-Squared Test for Independence between all pairs of categorical
features. If the experiment was properly randomized then none of the pairs should be dependent. Together all of these tests provide
researchers valuable information on how their experiment performed, and most importantly if certain variables are associated with
good or poor performance.

DD reads in a configuration file and data and metadata files. The configuration file specifies the column name of the performance
values (in this case, coming from performance metrics), as well as a dictionary of what columns to use to perform analysis on subsets
of the metadata.

4.5.5. Parameter Value Estimations and ODE Modeling

A data-fitting algorithm using a Nelder-Mead minimization method (57) was implemented to determine the Hill function (58)
parameter values for the induction and repression dynamics of the different genetic parts used in the OR/NOR circuit designs. The
experimental data used for the fitting algorithm was obtained from the geometric mean of flow cytometry data distributions from
the dosage response experiments as described in section 4.4.2. The experimental data were fitted to Equation 1 (for activations),
and Equation 2 (for repressions) derived from Cello (16):

1

Yittss = Yimin T Winar = Yinin) 7 (1)
(72)" +1
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where y;., is the steady-state output promoter activity of part i; y;,,, and y; . are the minimal and maximal output promoter

activities (obtained from experimental results), respectively, for part ¢; k; and n; are the affinity and cooperativity of transcription
factor binding (obtained with the fitting algorithm); and, finally, y;_1,, is the steady-state input promoter activity from the
previous part’s output (calculated also using Equations 1 or 2). Using the Hill function parameter value estimations a resulting
ODE model is then analyzed using the Runge-Kutta-Fehlberg (4,5) method (59) implemented in iBioSim (60) to obtain steady-state
output predictions for each design under different input concentrations (shown in Appendix Figs. 14 and 15).

5. Data availability

Processed data and scripts used in the generation of figures in this manuscript are available in a public repository. The code
packages cited in the manuscript are all open source.
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A. Experiment-to-design keys

Inducer concentrations per plate: (BE, Dox) in nM

Logical input | Plate cols.  Plate cols.  Plate cols. Plate cols. Plate cols.

transition 3-4 5-6 7-8 9-10 11-12

00 — 10 (0, 0) (40, 0) (100, 0) (150, 0) (200, 0)

00 — 01 (0, 0) (0, 12) (0, 40) (0, 50) (0, 60)

00 — 11 (0, 0) (42.5, 12.25) (85, 24.5) (170, 49) (212.5, 61.25)

01 — 11 (0, 40) (40, 40) (100, 40) (150, 40) (200, 40)

10 — 11 (200, 0) (200, 12) (200, 40) (200, 50) (200, 60)

Table 1. The inducer concentrations in nM for each logical transition. For each plate there is a distinct logical transition that represents
the change between the replicate columns 3-4 on each plate in comparison to all subsequent plate columns (recall that plate columns 1-2 are
controls). Each logical transition corresponds to three plates, one for each media condition (see Table 2), and each inducer concentration
was sampled at three time points during the experiment. To read the table, consider any pair of inducer concentrations (B,D). The Boolean
translation of this pair is B=0 if BE is absent and B=1 otherwise; similarly, D=0 if Dox is absent and D=1 otherwise. So the first row 00 —
10 indicates that there are no inducers in the “Plate cols. 3-4” column, but that BE is present at some titration level in all the rest of the
columns. This combination of Boolean states for BE and Dox allows the assessment of two different circuit input states for each design on
each plate at each time point. The last two rows 01 — 11 and 10 — 11 represent the spike-in conditions, since Dox or BE is present in the
inducer pair in “Plate cols. 3-4”.

. . . Logical input NOR expected OR expected
Media | Plate identifier . . .
transition outcome transition | outcome transition
rifqsfkuxcccvé 00 — 10 1—=0 0—1
rifgsfutgcbbab 00 — 01 1—0 0—1
SC | rifw4sqpyb7sww 00 — 11 1—0 0—1
rifgsfn8au7bvp 01 — 11 0—0 1—1
rifgsfwb43tey6 10 — 11 0—0 1—1
r1fqsfs6pm98h9 00 — 10 1—0 0—1
rifqsg227dzvkj 00 — 01 1—0 0—1
SB rifw4stb38ewsh 00 — 11 1—-0 0—1
rifgsftgsftdtw 01 — 11 0—0 1—1
r1fqsg3bptd4mj 10 — 11 0—0 1—1
rifgsfpj7ubprt 00 — 10 1—0 0—1
rifgsfxekah8dh 00 — 01 1—0 0—1
YEP | rifw4srzbdcaew 00 — 11 1—-0 0—1
rifgsfqupgtnkv 01 — 11 0—0 1—1
rifgsfyqupyc24 10 — 11 0—0 1—1

Table 2. Media condition and logical transitions for each plate’s unique identifier. For the logical input transitions, BE is in the first place
and Dox is in the second place; see Table 1 for details. The expected outcome transition indicates whether GFP is supposed to be produced
or not. For NOR, case 0 — 0 means that the NOR circuit should not be producing GFP in either input transition condition, while case 1 — 0
means that the NOR circuit should stop producing GFP after an initial growth period where it has been active. Similarly, OR is tested on
the outcome transitions 1 — 1 and 0 — 1. The success of the outcome transition is dependent on the temporal processes of induction and
GFP decay.

Build Identifier | Design
UWBF_36564 DSGRN NOR, CDM low
UWBF_36565 DSGRN NOR, CDM high
UWBF_36566 DSGRN OR, CDM low
UWBF_36567 DSGRN OR, CDM high
UWBF_36568 Simple NOR, CDM low
UWBF_36569 Simple NOR, CDM high
UWBF_36570 Simple OR, CDM low
UWBF_36571 Simple OR, CDM high

Table 3. Key relating experimental build identifiers to the design nomenclature as seen in Fig. 11 and 12.
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B. Binary Event Prediction

High Confidence Low Confidence
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Fig. 8. This figure shows the GFP height distribution for the negative and positive controls pooled across replicates for each of the 15 plates, including
the dropped plate rifw4stb38ewsh shown in the first row in the right two columns. The 9 plates on the left had an effective cleaning procedure, resulting
in unimodal low (high) distributions for the negative (positive) controls. The plates on the right did not achieve unimodality in one or both controls.
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Fig. 9. SHAP values showing the importance of various flow cytometry channels to the BEP classifier. The primary GFP channel is BL1, with the -H,
-W, and -A modifiers indicating height, width, and area, respectively. BL2 is the secondary GFP channel. FSC and SSC are forward and side-scatter,

respectively, that roughly correlate with cell size and shape. FSC and SSC are the only channels that measure characteristics other than fluorescence.

C. Fold change of the BEP cleaned data compared with unmodified data

For technical reasons in the software, the plates were split between those that titrated a single inducer (Titration, 12 plates) and
those that required simultaneous addition of both inducers (Fixed Ratio, 3 plates). The figures in this section are split by these
two experiments. Fig. 10 is the output of Performance Metrics and Fig. 11-12 are produced by Data Diagnosis. The BEP cleaned
data are the subset of the log-transformed unmodified data associated to the greater BEP ratio.

As seen in Fig. 10, fold changes hover around 1, likely due to strong bimodality. Median fold changes less than 1 indicate
circuit failures. The BEP clean model does not increase median fold change. The primary difference induced by BEP cleaning is
the production of outliers with high fold change that skew the average.
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Fixed Ratio
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Fig. 10. Fold change distributions for the clean model and the unmodified log-transformed data computed by Performance Metrics. Top: Three plates

in the dual-inducer experiment. Bottom: Twelve plates in the single-inducer experiment.

Fig. 11 and 12 show the variance in fold change as a function of different variables, including the OR or NOR circuit
(build_circuit), the design (build, see Table 3), plate (experiment_id, see Table 2), media condition, and time point. The
remaining categories have difficulties with their interpretation due to the aggregations involved. Fig. 11 shows the analysis for
the log-transformed unmodified data and Fig. 12 shows the analysis for the BEP cleaned data. The unmodified data show slight
differences in performance in circuit and design, but for the BEP-cleaned data these patterns are swamped by large outliers in fold
change.
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Fig. 11. Data Diagnosis analysis of original log-transformed data. Left: Three plates from the dual inducer titration experiment. Right: Twelve plates
from the single inducer titration experiment. The plate identifier is given under the label experiment_id. See Table 2 for information on the plate
conditions. The plate dropped from further analysis is rifw4stb38ewsh, one of the three plates on the left.
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Fig. 12. Data Diagnosis analysis of clean model showing the presence of large outliers in comparison to the raw loglO-transformed data in Fig. 11. Left:
Three plates from the dual inducer titration experiment. Right: Twelve plates from the single inducer titration experiment. The plate identifier is given
under the label experiment_id. See Table 2 for information on the plate conditions. The plate dropped from further analysis is rifw4stb38ewsh, one of the

three plates on the left.
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D. Logistic regression model and diagnostics

In order to assess the impact of each variable on the probability of success and produce estimated probabilities of success, a logistic
regression model was fit. To account for the dependencies between plates, first a mixed effects model was fit with a random intercept
for the plate variable. Since the variance of the random intercepts was negligibly different from zero, the model was refit without
the random effect for plate. As the removal of the random effect allows for models accounting for overdispersion, variability in
the responses beyond what is expected under the binomial distribution, a second model was fit with the overdispersion parameter
estimated as 1.016. Since the overdispersion parameter is one in the absence of overdispersion, a final model was fit without allowing
for overdispersion.

This model included interaction effects for circuit with both topology and CDM low/high design in order to test whether the
effect of topology or CDM low/high design depends on the circuit. The estimated model is as follows:

logit(p) = log(%) =0.36 — 0.63Isc(2) — 0.84Iy pp(z) + 0.05I0 R (x) — 1.28Tsimpre(x) + 0.511 1 0u (2)
+ 1.71Ior(x)Isimpie(x) — 0.1910 r(x) L ow ()

where Isc(X) is an indicator function with Igc(X) = 1 if the observation, z, is in the SC media category and Isc(X) = 0

otherwise. Note that the estimates can be exponentiated to produce estimates of the multiplicative effects on the odds of success

%. The table of estimates with p-values and 95% confidence intervals are below.

Parameter | Estimate | p-value | Multiplicative Estimate | Confidence Interval
(Intercept) 0.3565 0.0702 1.4283 (0.9718, 2.1050)
SC -0.6298 0.0003 0.5327 (0.3773, 0.7494)
YEP -0.8382 <0.0001 0.4325 (0.3056, 0.6096)
OR 0.0513 0.8206 1.0527 (0.6754, 1.6419)
Simple -1.2802 <0.0001 0.2780 (0.1850, 0.4133)
Low 0.5089 0.0115 1.6634 (1.1231, 2.4752)
OR:Simple 1.7139 <0.0001 5.5506 (3.2197, 9.6383)
OR:CDM -0.1924 0.4865 0.8250 (0.4793, 1.4177)

Table 4. Estimates, p-values, and confidence intervals for logistic regression model.

There is very strong evidence that the effect of circuit depends on topology (p-value<0.0001) and very weak evidence that
the effect of circuit depends on CDM prediction (p-value=0.4865). A Normal Q-Q plot using quantile residuals, which should be
normally distributed with the choice of an appropriate link function, is included below and indicated no issues with the logit link
function. This link function transforms the probability of success, which does not have a linear relationship with the predictors, to
one that does: the log odds of success.

Normal Q-Q Plot

Sample Quantiles

-2 —

Theoretical Quantiles

Fig. 13. Normal Quantile-Quantile plot with quantile residuals for logistic regression model
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E. Comprehensive results for ODE simulations
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Fig. 14. Predicted steady-state values of the geometric mean of the flow cytometry distribution of GFP a.u. using estimated Hill function parameter
values for: (a) Simple OR/CDM high design, (b) Simple OR/CDM low design, (¢) DSGRN OR/CDM high design, and (d) DSGRN OR/CDM low
design. An OFF circuit state corresponds to approximately 1500-2000 a.u.; robust ON circuit states occur at about 8000 a.u. and up, and weak ON
states occur at about 4000 a.u. Columns 1-3 (transitions 00 — 10, 00 — 01, 00 — 11): The left-most bar in each bar graph should be OFF. All other
bars should be ON. Columns 4-5 (transitions 01 — 11, 10 — 11): All bars should be ON.
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Fig. 15. Predicted steady-state values of the geometric mean of the flow cytometry distribution of GFP a.u. using estimated Hill function parameter
values for: (a) Simple NOR/CDM low design, (b) Simple NOR/CDM low design, (c) DSGRN NOR/CDM high design, and (d) DSGRN NOR/CDM low
design. An OFF circuit state corresponds to approximately 1500-2000 a.u.; robust ON circuit states occur at about 8000 a.u. and up, and weak ON
states occur at about 4000 a.u. Columns 1-3 (transitions 00 — 10, 00 — 01, 00 — 11): The left-most bar in each bar graph should be ON. All other
bars should be OFF. Columns 4-5 (transitions 01 — 11, 10 — 11): All bars should be OFF.
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