

1 **Backtracking of influenza polymerase upon consecutive incorporation of nucleoside**
2 **analogue T1106 directly observed by high-resolution cryo-electron microscopy.**

3

4 Tomas Kouba¹, Anna Dubankova¹, Petra Drncova¹, Elisa Donati³, Pietro Vidossich³,
5 Valentina Speranzini¹, Alex Pflug¹, Johanna Huchting², Chris Meier², Marco De Vivo³
6 and Stephen Cusack^{1*}

7

8 ¹European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble
9 Cedex 9, France

10 ²Organic Chemistry, Department of Chemistry, Hamburg University, Martin-Luther-King-
11 Platz 6, D-20146 Hamburg, Germany

12 ³Molecular Modeling & Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30 -
13 Genova, 16163, Italy

14

15 *Corresponding author and lead contact: Stephen Cusack, European Molecular Biology
16 Laboratory, Grenoble Cedex 9, France. Tel. (33)476207238, Email: cusack@embl.fr

17

18 Submitted to bioRxiv

19 **Abstract**

20 The broad-spectrum antiviral pseudobase T705, a fluorinated pyrazinecarboxamide, is
21 incorporated via its triphosphate form into nascent viral RNA by viral RNA-dependent RNA
22 polymerases. Since it mimics guanine or adenine it can act as a mutagen, whereas consecutive
23 incorporation leads to chain termination. Here we examine the structural basis for incorporation
24 and stalling for the case of influenza polymerase, using T1106-TP, the nucleotide form of
25 T1105, the de-fluoro analogue of T705. We used a specially designed template that allows
26 single T1106-MP incorporation at a defined site followed by consecutive T1106-MP
27 incorporation and stalling four nucleotides later, as demonstrated by biochemical analysis. A
28 high-resolution cryoEM structure of influenza A/H7N9 polymerase, stalled after transcribing
29 this template, revealed that the entire product-template duplex has backtracked by five
30 nucleotides. Consequently, the singly incorporated T1106-MP resides at the +1 position and
31 forms an unexpected wobble base-pair with a U in the template. The relative stability of the
32 canonical and wobble T1106:U base-pairs in different contexts is investigated by molecular
33 dynamics simulations. Using a different template and influenza B polymerase we also observe
34 stalling after double incorporation of T1106-MP and structural analysis showed again that
35 backtracking occurs, this time by four nucleotides. These results show that, at least in early
36 elongation, consecutive T1106-MP incorporation into the product destabilises the proximal end
37 of the product-template duplex, promoting irreversible backtracking until a more favourable
38 overall configuration is achieved. These results give new insight into the unusual mechanism
39 of chain termination by pyrazinecarboxamide base analogues.

40

41 **Keywords:** Influenza; RNA-dependent RNA polymerase; antiviral drug; nucleoside analogue;
42 T705 (favipiravir); T1106; cap-dependent transcription; backtracking; single-particle cryo-
43 electron microscopy; molecular dynamics.

44 **Introduction**

45 Many concerning human pathogens are RNA viruses and, except for retroviruses, all
46 encode an RNA-dependent RNA polymerase that is responsible for replication and
47 transcription of the RNA genome. The core activity of this enzyme is template dependent
48 nucleotide addition to a growing product RNA and this is catalysed by a conserved active site
49 formed by several characteristic structural motifs. Nucleoside analogues that impede RNA
50 synthesis by various mechanisms therefore have the potential to be broad-spectrum inhibitors
51 of RNA virus replication. One such inhibitor is T705 (favipiravir), a fluorinated
52 pyrazinecarboxamide pseudo base, originally developed against influenza virus (Furuta *et al*,
53 2002; Shiraki & Daikoku, 2020; Sidwell *et al*, 2007), but also active against several other
54 viruses (Lagocka *et al*, 2021) including SARS-CoV-2 (Kaptein *et al*, 2020; Naydenova *et al*,
55 2021; Peng *et al*, 2021; Shannon *et al*, 2020). T705 is converted by cellular enzymes through
56 ribosylation and phosphorylation into T705 triphosphate (T705-TP), which is incorporated by
57 the viral polymerase opposite either U or C in the template, due to the ambiguous base-pairing
58 endowed by the rotatable carboxamide group of the pseudobase (Jin *et al*, 2013). It has been
59 reported that ATP and GTP are favoured over T705-TP as substrates by discriminatory factors
60 of respectively 30-fold and 19-fold (Jin *et al*, 2013). Two mechanisms of viral inhibition by
61 T705 have been proposed, lethal mutagenesis and chain termination. Firstly, dispersed
62 individual incorporation of T705-MP into the RNA product does not lead to chain termination,
63 but generates a product RNA that has ambiguous coding specificity, consistent with an
64 enrichment in G to A and C to U mutations being observed in viral RNAs upon treatment with
65 T705 (Baranovich *et al*, 2013; Goldhill *et al*, 2019). Secondly, it has been observed that
66 consecutive incorporation of T705-MP into product RNA leads to chain-termination consistent
67 with complete inhibition of RNA synthesis being observed at high T705 concentrations (Jin *et*
68 *al*, 2013; Wang *et al*, 2021). Although no favipiravir-resistant viruses have appeared in clinical

69 trials (Takashita *et al*, 2016), recently it has been possible to select for an influenza polymerase
70 mutant that has low susceptibility to T705. The PB1 K229R mutation in the context of the 2009
71 pH1N1 strain shows reduced incorporation of T705, probably due to enhanced fidelity, but also
72 reduced polymerase activity that could be compensated by an accompanying PA P653L
73 mutation (Goldhill *et al*, 2018). It has since been shown that an alternative, naturally occurring
74 mutation (PA N321K) can partially restore polymerase activity to the PB1 K229R resistant
75 virus in the context of a more recent H1N1 strain, suggesting that under certain circumstances
76 it might be possible that T705 resistance could be conferred by a single mutation (Goldhill *et*
77 *al*, 2021).

78 Here we investigate the structural basis for incorporation and stalling of influenza
79 polymerase by the active triphosphate form of nucleoside-analogue T1106, derived from
80 nucleobase T1105, the de-fluoro analogue of T705 (Furuta *et al*, 2013). This compound is more
81 stable, more readily metabolised and more potent than T705 (Barauskas *et al*, 2017; Huchting
82 *et al*, 2019; Huchting *et al*, 2018; Huchting *et al*, 2017). For instance, using purified influenza
83 vRNPs, the IC50 of T1106-TP (hereafter designated as simply T1106) was found to be 0.48
84 and 0.69 μ M for influenza A and B respectively (Huchting *et al.*, 2018). Since T1106 also
85 substitutes for ATP and GTP, we designed combinations of capped primer and non-native
86 template sequences that only require incorporation of UTP and CTP in the early steps of cap-
87 dependent transcription, but depend on T1106 for insertion opposite specifically placed U
88 (single incorporation) or UC (double incorporation) sites in the template. Using recombinant
89 polymerase from influenza A/Zhejiang/DTID-ZJU01/2013(H7N9) (Chen *et al*, 2013),
90 subsequently referred to as A/H7N9 polymerase we find biochemically that RNA synthesis is
91 indeed stalled upon double incorporation. A cryoEM structure at 2.51 \AA of the stalled complex
92 was determined that showed that the entire template-product duplex had backtracked by five
93 nucleotides. This unusual structure is compared with a 2.48 \AA structure of a normal early

94 elongation complex of the same A/H7N9 polymerase, in which no T1106 was used and the
95 transcription reaction was stalled, after incorporation of 5 nucleotides, by addition of the non-
96 hydrolysable CTP analogue, cytidine-5'-[(α,β) -methyleno]triphosphate (CMPcPP). Since these
97 are the first high-resolution structures of a complete A/H7N9 polymerase, particular features
98 of this polymerase will be highlighted, including the cryoEM structures of the homodimeric
99 apo- and 5' hook bound forms. To confirm that backtracking is a general phenomenon resulting
100 from double incorporation of T1106 in early transcription, we obtained a 2.58 Å structure of
101 stalled influenza B polymerase, backtracked by 4 nucleotides, using a slightly different
102 template that only has a double, and no single, T1106 incorporation site. This backtracked
103 structure can be compared with a previously determined structure of a normal early elongation
104 complex of the same polymerase (PDB:6QCT, 3.2 Å) (Kouba *et al*, 2019).

105 This is the first direct structural proof that nucleotide analogue incorporation can cause
106 influenza polymerase to backtrack, although T1106 induced backtracking has been detected by
107 single molecule techniques for positive-strand RNA viral polymerases (Dulin *et al*, 2017;
108 Janissen *et al*, 2021)(Seifert *et al*, 2021)(<https://www.biorxiv.org/content/10.1101/2020.08.06.240325v2>). Backtracking is used by
109 cellular (Cheung & Cramer, 2011), bacterial (Abdelkareem *et al*, 2019) and some viral (Malone
110 *et al*, 2021) polymerases to proofread and potentially correct misincorporation, provided a
111 means of excising the backtracked nucleotides is available.

113

114 **Results**

115 **Biochemical analysis of influenza polymerase transcription with and without T1106**
116 **incorporation**

117 In this study, we have made the first use of full-length, recombinant heterotrimeric
118 polymerase from A/Zhejiang/DTID-ZJU01/2013(H7N9), although crystal structures of a
119 truncated construct have been described previously (Wandzik *et al*, 2020). This is a human
120 isolate of an avian strain possessing adaptive mutations PB2/E627 and N701 (Chen *et al.*,
121 2013). In high-salt buffer, the full-length A/H7N9 polymerase purifies primarily as dimers of
122 heterotrimers (Figure S1A,C,D), as previously observed for the human A/H3N2 and avian
123 A/H5N1 polymerases (Fan *et al*, 2019). CryoEM structures of the apo- and 5' hook-bound
124 dimeric forms are described below. Upon incubation with the full vRNA promoter in low-salt
125 buffer, a large fraction of the promoter bound complex is monomeric (Figure S1B, D).

126 To obtain a stalled early elongation complex of the A/H7N9 polymerase we performed
127 a transcription reaction using the previously described extended 3' end 18+3-mer template
128 (Kouba *et al.*, 2019), capped 13-mer primer and 14-mer 5' vRNA activator ‘hook’, together
129 with ATP and GTP and non-hydrolysable CMPcPP (cytidine-5'-[α,β]-
130 methylene]triphosphate)(Figure 1A). The template translocated by five nucleotides from the
131 initiation state before stalling at the first guanine in the template sequence at position (9)
132 (bracketed numbers indicate the position from the native 3' end of the template). At this point,
133 the principle product is a capped 18-mer, as confirmed by the unambiguous base pair identity
134 of the product-template duplex visualised in the cryoEM density at 2.48 Å resolution (Figure
135 S2A).

136 To characterise transcription reactions with T1106 we used a modified 21-mer template
137 (denoted 21-mer-sd) that allows for one single T1106 and, later on, a double T1106
138 incorporation (Figure 1B left). First, we characterised the 21-mer-sd template in transcription

139 reactions using A/H7N9 polymerase, with regular NTPs, capped 12-mer primer and 14-mer 5'
140 vRNA activator ‘hook’ (Figure 1B right, lane 1-3). Stalled reactions using only UTP, ATP and
141 no CTP or GTP yielded a capped 18-mer product, the reaction lacking only GTP produced a
142 capped 20-mer, and the reaction with all NTPs gave the full-length capped 28-mer product.
143 Second, we utilized UTP, and T1106 instead of ATP. The transcription reaction incorporated
144 one T1106 at the U at position (6) of the template, and then stalled, due to lack of CTP, at the
145 same position as the reaction with UTP and ATP, resulting in the capped 18-mer product
146 (Figure 1B right, lane 4). This is in accord with the previous studies, showing that T1106 is
147 readily single-incorporated instead of ATP. Finally, we utilized UTP, CTP, and T1106 to
148 replace both ATP and GTP, resulting in a transcription product of the apparent size of a capped
149 21-mer (Figure 1B right, lane 5), which corresponds to a stalled product upon double
150 incorporation site of T1106 at the template (10)-UC-(11) position.

151 To characterise solely the effect of T1106 double incorporation, we designed a modified
152 21-mer-d template in which only pyrimidine bases are incorporated before the T1106 double
153 incorporation site at (10)-UC-(11) (Figure 1C left). The 21-mer-d sequence necessitated also a
154 modification in the corresponding 14-mer 5' vRNA hook in order to maintain a four base-pair
155 distal duplex in the promoter Figure 2C. Reactions were performed this time with influenza B
156 polymerase to assess the generality of backtracking. The reaction using only UTP, CTP and
157 stalled through lack of ATP produced a capped 19-mer, the reaction lacking only GTP
158 produced a capped 20-mer, and the reaction with all NTPs produced the full-length capped 28-
159 mer product (Figure 1C right, lane 1-3). The outcome of a transcription reaction utilizing UTP,
160 CTP and T1106 is a product of an apparent size of capped 21-mer (Figure 1C right, lane 4),
161 which correspond to a stalled product at the double incorporation site of T1106 at the template
162 (10)-UC-(11) position.

163 **Structure of A/H7N9 polymerase apo-dimer and partial polymerase activation upon 5'-
164 hook binding**

165 Consistent with the biochemical characterisation, the cryoEM structure of full-length
166 influenza A/H7N9 apo-polymerase revealed a C2 symmetric dimer determined at an average
167 resolution of 2.81 Å (Table S1). Only the open, dislocated (Wandzik *et al.*, 2020) dimeric core
168 (PA/202:716, PB1/1-670, PB2/41-120) is visualised due to disorder of essentially all, flexibly
169 linked, peripheral domains (Figure S3A). The homodimeric interface involves loops from all
170 three subunits as previously described (Fan *et al.*, 2019) and has been implicated in cRNA to
171 vRNA replication (Chen *et al.*, 2019; Fan *et al.*, 2019).

172 The cryoEM structure of the vRNA 5'-hook bound dimer was determined at an average
173 resolution of 3.12 Å (Table S1, Figure S3A). Of particular interest are the conformational
174 changes that occur within the dimer upon 5'-hook binding, which have not been described
175 before for influenza polymerase (Figure S3B-D). 5'-hook binding induces a concerted
176 reconfiguration of PB1 peptides 23-35, 228-239 and 503-513 as well as adjacent regions of PA
177 (e.g. side-chain of PA/W577) (Figure S3D), without changing the overall dimer structure
178 (Figure S3A-B). This is probably initiated by distortion of PB1/23-35 to allow direct
179 interactions of H32 and T34 with the RNA. Displacement of PB1/23-35 removes the steric
180 hindrance to the structuring of the previously disordered fingertips loop PB1/228-239
181 (polymerase motif F) into its active configuration, which is locked in place, for example, by
182 the stacking of PB1/R233 between Y24 and P28. In turn, this can only occur upon repacking
183 of PB1/503-513. A similar allosteric activation of the fingertips loop by 5'-hook binding has
184 been reported for La Crosse bunyavirus (Gerlach *et al.*, 2015). We also observed 5'-hook bound
185 monomers with the same structure as in the dimers (not shown). However it is only with the
186 additional binding of the 3' end of the promoter that the dimer is fully destabilised (Figure S1)

187 and closure of the polymerase core and stabilisation of the peripheral domains occurs, resulting
188 in the monomeric, RNA synthesis active form of the polymerase (Wandzik *et al.*, 2020).

189

190 **Structure of an early transcription state of influenza A/H7N9 polymerase.**

191 The cryoEM structure of influenza A/H7N9 polymerase, after the incorporation of 5
192 nucleotides and stalled with the non-hydrolysable analogue CMPcPP at the +1 position (Figure
193 2A), was determined at an average resolution of 2.48 Å (Table 1). The structure (Figure 2D),
194 which has very good to reasonable density for the entire heterotrimer (Figure S2A), depicts an
195 early elongation state after the transition from initiation is complete. It is remarkably similar to
196 the equivalent elongation structure previously determined for bat influenza A/H17N10
197 (PDB:6T0V, (Wandzik *et al.*, 2020), RMSD 0.72 Å for PB1/1-560), as well as to the less
198 homologous influenza B polymerase elongation structure (PDB:6QCT, (Kouba *et al.*, 2019)
199 RMSD 0.84 Å PB1/1-560). Like these structures, the polymerase has slightly opened to
200 accommodate the full 9-mer template-product duplex in the active site cavity (positions -1 to -
201 9) and the priming loop is fully extruded (Figure 2G), allowing the template to enter the exit
202 channel after strand separation enforced by PB2/Tyr205 (from the helical lid) and PB1/R706.
203 The most significant differences to the bat influenza A early elongation structure are, firstly,
204 the incoming nucleotide, here CMPcPP compared to UMPnPP in PDB:6T0V, has an
205 alternative triphosphate conformation that does not support the catalytic configuration of
206 Mg(A) and Mg(B) (Figure 3A); instead there is a well-defined Mg(A') in the inactive position
207 close to PB1/E491 (Wandzik *et al.*, 2020). Secondly, the distal end of the PB1/β-ribbon is
208 poorly ordered and there is no clear formation of a three-stranded β-sheet together with residues
209 PB1/667-681 (Kouba *et al.*, 2019; Wandzik *et al.*, 2020). Thirdly, unlike the bat influenza A
210 and influenza B elongation structures, the entire 18-mer capped primer/product is visible. To
211 accommodate nucleotides 1-9 of the capped product between the cap and the product-template

212 duplex, the RNA takes up a very particular conformation (Figure S4A). Cap-proximal bases
213 A2, U3 and C4 are stacked on each other, with PB2/Arg144 (aliphatic part stacks on C4),
214 Arg213 (fortuitous base-specific interactions with C4) and Arg436 (packs against U3 ribose
215 and hydrogen bond to the 2' OH of A2) playing key roles in stabilising this configuration. This
216 is followed by a tight turn (with C4 ribose interacting with A7 phosphate) and then a distinct
217 stacking of bases of U5, A6, A8 and A9, with U5 packed on PB2/Arg423 and U7 being bulged
218 out (Figure S4A). Interestingly, the cap-proximal nucleotides 2-4 are orientated quite
219 differently in the A/H7N9 structure compared to both bat A/H17N10 (PDB:6T0V elongation,
220 PDB:6EVJ pre-initiation) and FluB (PDB:6QCT elongation, PDB:6QCX pre-initiation)
221 capped RNA bound structures, which have similar configurations (Kouba *et al.*, 2019; Pflug *et*
222 *al*, 2018; Wandzik *et al.*, 2020)(Figure S4B). This is likely attributable to the substitution in
223 human/avian influenza A of PB2/H432 by Y432 and Y434 in respectively bat A/H17N10 and
224 FluB polymerases. Capped primer nucleotides 2-4 are stacked on each other in all these cases,
225 but in bat A/H17N10 and FluB the tyrosine defines the orientation by stacking on the base of
226 nucleotide 2, with PB2/Arg217 stacking on the fourth base in the case of FluB (Figure S4B).
227 Comparing more specifically A/H7N9 and bat FluA, where essentially all other residues in the
228 vicinity are conserved, the plane of the side-chain of H432 in A/H7N9 is perpendicular to that
229 of Y432 in bat A/H17N10, allowing it to hydrogen bond to the first phosphate of the cap-
230 triphosphate as well as to the 2' OH of the second nucleotide. Furthermore, H432 does not stack
231 with nucleotides 2-4, which appear to be positioned by the arginine residues mentioned above.
232 It cannot be ruled out that other factors influence the particular conformation of the capped
233 primer/product, for instance the sequence (here m⁷GTP-AAUC for A/H7N9 and m⁷GTP-
234 GAAU for bat A/H17N10 and FluB). However, in the A/H5N1 pre-initiation structure with
235 bound promoter and capped RNA, the sequence of the primer (m⁷GTP-AAUC) and the position
236 of H432 is the same as in A/H7N9, but nucleotides 2-4 are arranged quite differently and not

237 stacked on each other. Furthermore, in the backtracked structures (see below), for the case of
238 A/H7N9, the stacking of the cap-proximal nucleotides 2-4 is preserved, but in the FluB
239 structure only the second primer base stacks on the tyrosine and bases 3-4 are in a different
240 orientation and sandwiched between PB2/R217 and R438 (Figure S4B). This suggests that the
241 length of the capped primer/product and the trajectory required to connect it to the active site
242 in initiation, or to the template-product duplex in elongation, determines how compact or,
243 alternatively, stretched, the capped oligomer conformation is, with PB2 residues, in particular
244 arginines (e.g. for A/H7N9, PB2/R144, R213, R423, R436), being able to accommodate to a
245 wide variety of alternatives by stacking and/or hydrogen bonding.

246

247 **Structure of stalled and backtracked state of influenza A/H7N9 polymerase.**

248 The cryoEM structure of influenza A/H7N9 polymerase, stalled and backtracked by
249 five nucleotides after double incorporation of T1106 and with singly incorporated T1106 at the
250 +1 position was determined at an average resolution of 2.51 Å (Table 1, Figure 2B, 2E). The
251 high resolution allows unambiguous assignment of the RNA sequence (Figure S2B).
252 According to the biochemistry, single incorporation of T1106 at U6 of the template followed
253 by double incorporation at template positions (10)-UC-(11) leads to a stalled product
254 corresponding to a capped 21-mer. This product corresponds to an addition of nine nucleotides
255 to the 12-mer capped primer, with T1106 incorporated at positions 16 and 20-21. If there was
256 no backtracking (Figure 2B top), one might expect a stalled elongation state of the polymerase
257 similar to that described above. This would have a 10-mer template-product duplex in the active
258 site cavity with T1106 at the -5, -1 and +1 positions of the product, the priming loop fully
259 extruded, the leading four nucleotides of the template in the exit channel and the promoter
260 duplex disrupted. However, this state appears to be unstable, as it is not observed on the
261 cryoEM grid. Instead, backtracking by five nucleotides of the entire RNA system is observed

262 presumably stopping when a stable state is reached. This backwards translocation results in a
263 9-mer template-product duplex in the active site cavity with T1106 at the +1, +5 and +6
264 positions of the product, no template nucleotides in the exit channel, partial reinternalization
265 of the priming loop and reformation of the promoter duplex, but with an unusually short
266 connection to the +1 position (Figure 2B, 2H). The backtracked 21-mer capped RNA product
267 is partitioned between only seven nucleotides connecting to the m⁷G cap bound in the cap-
268 binding site, forming a direct connection (i.e. eliminating the bulge seen in the elongation
269 structure, Figure S4C) to nine nucleotides in the template-product duplex and five nucleotides
270 in the +2 to +6 positions projecting back into and filling the incoming NTP channel. Of the
271 backtracked product, only the 17-UU-18 in the +2 and +3 positions are clearly defined by the
272 cryoEM density. The base of U17 is sandwiched between PB1/K253 (motif F) and PB1/K481
273 (motif D) and its phosphate interacts with PB1/K308 (motif A) and PB1/R239 (motif F) (Figure
274 3B). U18 base contacts PB1/K237 (motif F) and PB1/R45 and its phosphate is close to the
275 putative position of the gamma phosphate of an incoming NTP (Figure 3B, 4B). Lower
276 resolution density encompasses C19 at the +4 position, but not beyond, presumably because of
277 disorder of the extruded and untethered 3' end of the product. Thus, there is unfortunately no
278 direct structural conformation for the double incorporation of T1106, although the
279 biochemistry shows that this is the case.

280 Compared to the A/H7N9 elongation structure, there is an axial shift (base
281 displacement) of about 1 Å downwards of the template strand in the product-template duplex,
282 and a corresponding to 1.7-2.3 Å helical change in phosphate positions (Figure 4A). This
283 necessitates a correlated change in backbone of the PB1/125-128 to accommodate the shifted
284 phosphate of template nucleotide (A5) in the -1 position. In the normal elongation structures,
285 PB1/Met409 (motif B) stacks under the base at the product +1 (Kouba *et al.*, 2019). In the

286 backtracked structure, motif B backbone is slightly altered to allow reorientation of the Met409
287 sidechain so that it does not clash with the product base in the +1 position (T1106) (Figure 4A).

288 Two other consequences of the backtracking are reformation of the promoter duplex
289 and partial reinternalization of the priming loop. Backtracking by five nucleotides allows the
290 reformation of the same 4 base-pair promoter duplex between 5' end nucleotides 11-14 and 3'
291 template nucleotides (10)-(13), as expected for the pre-initiation state. However, in the pre-
292 initiation state the template takes an indirect path to the active site -1 position requiring six
293 nucleotides, whereas in the backtracked structure there is a taut connection requiring only three
294 nucleotides (Figure S4D). The backtracked conformation therefore mimics a late stage in the
295 initiation to elongation transition, in which the template has translocated by three nucleotides
296 through the active site, shortening and straightening the connection to the duplex region of the
297 promoter, but not breaking the duplex. Such a state has been observed in recent structures of
298 La Crosse bunyavirus polymerase (Arragain *et al*, 2022). Consistent with this, the polymerase
299 has opened to accommodate the product-template duplex in the active site cavity but the
300 priming loop is only partially extruded. The only other structure with a partially extruded
301 priming loop was for influenza B polymerase at an earlier stage in the transition. This had five
302 base-pairs in the active site cavity and most of the priming loop was still internalised with only
303 residues 636-640 disordered in the solvent (Kouba *et al.*, 2019). Here, there are nine base-pairs
304 in the product-template duplex and the priming loop is in a different conformation where it is
305 pushed further out but not fully (Figure 2H). In particular, priming loop residue PB1/Y657 is
306 intercalated between PB1/V525 and the ribose of template nucleotide U(-2) (with its OH group
307 hydrogen bonding to 2'OH of A(-1), forcing displacement of the distal part of the product-
308 template duplex away from its position when the priming loop is fully extruded (Figure S4C).
309 Finally, the active site is in a non-catalytic configuration with a single hydrated magnesium co-
310 ordinated by PB1/D305, D446 and E491 (Figure 3B).

311 It is generally assumed that T705 will form canonical (i.e. Watson-Crick like) base-
312 pairs with cytidine and uridine (Figure 5A) (Jin *et al.*, 2013; Wang *et al.*, 2021). However there
313 are two possible base-pairs that T705 or T1106 can form with uridine, a canonical base-pair
314 resembling a Watson-Crick A:U and an alternative wobble base-pair resembling G:U (Figure
315 5B). At the +1 position, U(6) of the template forms a wobble base-pair with the singly
316 incorporated T1106 at nucleotide 16 of the product (Figures 2B, 2H, 3B, 5). Whereas in a
317 Watson-Crick A:U base-pair, the two hydrogen bonds are to the N3 and O4 of uridine, here we
318 observe that the rotatable amide of T1106 hydrogen bonds the with O2 and N3 of U(6), similar
319 to a G:U wobble base-pair (Figure 5B). PB1/K229 interacts with the O4 of U(6) and more
320 distantly (3.2 Å) with the oxygen of the T1106 amide (Figure 5B). There is also a water model
321 in the same plane the other side of the base-pair, interacting with the O2 of U(6), the amide
322 NH2 of T1106 as well as the carbonyl oxygen of PB1/M409 and backbone of A242 (Figure
323 5B). The K229R substitution has been identified as imparting partial resistance to T705, whilst
324 at the same time reducing polymerase activity (Goldhill *et al.*, 2018). The nature of the
325 T1106:U base-pair is discussed further below.

326

327 **Structure of stalled and backtracked state of influenza B/Memphis polymerase.**

328 The cryoEM structure of influenza B polymerase, stalled and backtracked by four
329 nucleotides after double incorporation of T1106 was determined at an average resolution of
330 2.58 Å (Table 1, Figure 2C,2F). The high resolution allows unambiguous assignment of the
331 RNA sequence (Figure S2C). According to the biochemistry, double incorporation at template
332 positions (10)-UC-(11) leads to a capped 21-mer product, corresponding to the addition of 8
333 nucleotides to the 13-mer capped primer, with T1106 incorporated at positions 20-21. Without
334 backtracking, one would expect a stalled elongation state of the polymerase that would have a
335 10-mer template-product duplex in the active site cavity with T1106 at the -1 and +1 positions

336 of the product, the priming loop fully extruded, the leading four nucleotides of the template in
337 the exit channel and the promoter duplex disrupted (Figure 2C top). Instead, backtracking by
338 four nucleotides of the entire RNA system is observed. This results in a 10-mer template-
339 product duplex in the active site cavity (abutted at the distal end against PB2/Y207 of the helical
340 lid), with T1106 at the +4 and +5 positions at the 3' end of the product and no template
341 nucleotides in the exit channel (Figure 2C bottom, 2F, 2I). However, unlike the backtracked
342 A/H7N9 structure, the priming loop remains fully extruded and the promoter duplex does not
343 reform (Figure 2I). The backtracked 21-mer capped RNA product is partitioned between seven
344 nucleotides connecting to the m⁷G cap bound in the cap-binding site (see Figure S4B for the
345 conformation of the cap-proximal nucleotides), ten nucleotides in the template-product duplex
346 and four nucleotides in the +2 to +5 positions projecting back into the incoming NTP channel
347 (Figure 2C, 2I). Of the backtracked product, 18-UC-19 in the +2 and +3 positions are clearly
348 defined by the cryoEM density, but they are in quite different positions than seen in the
349 A/H7N9 backtracked structure (Figure 3C). The base of U18 is stacked on PB1/T42 and R45.
350 The base of C19 is partially stacked on that of U18 and PB1/K237 on the other side; its
351 phosphate interacts with PB1/K235, R239 and K480. There is clear density in blurred maps for
352 the T1106 at position 20 and the backbone of T1106 at position 21, but not good enough to
353 confirm the base identities. The observation of backtracking upon consecutive T1106
354 incorporation also in the case of FluB polymerase, where there is no prior single incorporation,
355 strongly suggests that the backtracking in the case of A/H7N9 polymerase is due to the double
356 incorporation and not related to the prior single incorporation event.

357 The axial position of the product-template duplex in the FluB backtracked structure is
358 closer to that of the transcription elongation structure (Figure 4B). Although the FluB density
359 suggests alternate conformations of the motif B loop, the main conformation maintains
360 PB1/M410 (equivalent to M409 in A/H7N9) stacked under the product base in the +1 position

361 (Figure 3C), whereas in the A/H7N9 backtracked structure, the lower position of the base forces
362 the M409 into a different, non-clashing rotamer (Figure 4A).

363

364 **Discussion**

365 T705 is thought to have a dual mode of action, lethal mutagenesis in the case of single
366 incorporation and chain termination in the case of consecutive incorporation (Jin *et al.*, 2013;
367 Wang *et al.*, 2021). Similarly, it is shown here, biochemically and structurally, that T1106 can
368 be readily incorporated singly without termination but induces chain termination, without
369 further addition, after two successive incorporations. Possible explanations for chain
370 termination are that after double incorporation (a) the RNA does not translocate in the forward
371 direction, thus preventing NTP entry at the +1 position, (b) the RNA translocates but the next
372 incoming NTP cannot bind or (c) the RNA translocates, the next NTP binds but does not react.
373 A previous study of this phenomenon using biochemical assays and molecular dynamics (MD)
374 simulations concluded that consecutive incorporation of T705 disrupts the base stacking of the
375 product strand and destabilises the active site, such that the next incoming NTP is bound but
376 not productively and thus not incorporated, corresponding to explanation (c) (Wang *et al.*,
377 2021). However the MD results were based on models in which it was already assumed that
378 translocation in the forward direction had occurred. Here we provide new insight into the
379 structural basis for chain termination with the observation that in two distinct cases, involving
380 FluA and FluB polymerases, double incorporation of T1106 leads to RNA backtracking, which
381 can be considered as an extension of explanation (a). Furthermore, we observe an instance of
382 a singly incorporated T1106:U base-pair at the +1 position of the A/H7N9 backtracked
383 structure. The high resolution of our structure enables unambiguous assignment of a T1106:U
384 wobble base-pair, rather than canonical A:U like base pair (Figure 5). Interestingly, recent
385 quantum mechanical calculations of the relative stability of all possible base-pairs involving

386 T705 show that the T705:U wobble and canonical base-pairs have binding energies of
387 respectively -11.45 and -9.15 kcal/mol showing that the wobble base-pair is 2.3 kcal/mol more
388 stable (Fig S1 of (Jena, 2020)). We have made similar calculations and obtain an extra stability
389 of the wobble base pair of 2.70 and 2.09 kcal/mol for respectively T705 and T1106 (Figure
390 S5A). Further, we have assessed by microsecond long equilibrium molecular dynamics the
391 nature of the T1106:U base-pair over time when embedded in an RNA double-helix. With two
392 different flanking sequences, we find different behaviour including long-term stability of the
393 wobble base pair or rapid flipping between the two types (Figure 5C). This suggests that due
394 to the relative small energy differences, the local environment can play a determining role for
395 the configuration of the T1106:U base-pair. Indeed, the wobble base pair was stably maintained
396 in the A/H7N9-backtracked-T/U+1 complex throughout additional microsecond-long MD
397 simulations (RMSD value for the heavy atoms of T1106:U base pair of $1.0 \pm 0.2 \text{ \AA}$, Figure
398 S5B) This is likely due to the steady interaction of the drug with K229 (Figure S5C). In the
399 light of these considerations, our observation of a T1106:U wobble base-pair at the +1 position
400 in the back-tracked structure is perfectly plausible. However, in other situations, for instance
401 an incoming T1106-TP opposite a U in the template at the +1 position, it could be different.
402 To gain further insight into this, we examined other published polymerase structures that
403 contain T705, there being none containing T1106. Those containing T705 are all recent studies
404 of SARS-CoV-2 polymerase. There are two pre-incorporation structures of SARS-CoV-2
405 polymerase with incoming T705-TP opposite a C at the +1 position in the template
406 (PDB:7AAP (Naydenova *et al.*, 2021), PDB:7CTT (Peng *et al.*, 2021)). In both cases, the
407 canonical T705:C base-pair is observed, consistent with this being the only energetically stable
408 form (c.f. Fig S1 of (Jena, 2020)). There is also a deposited structure (PDB:7DFG), but without
409 publication, in which a post-incorporation, pre-translocation T705:U base-pair is modelled in
410 canonical form, together with pyrophosphate. However the cryoEM density (EMD-30663) for

411 the T705 moiety is very weak, indicating partial occupancy and furthermore, there appear to
412 be errors in assignment of some other bases in the template-product duplex, making the register
413 of the stalled reaction unclear.

414 In the MD simulations of T705 double incorporation by influenza polymerase (Wang
415 *et al.*, 2021) it was assumed, without discussion, that the incoming T705:U base-pair would be
416 canonical. Nevertheless, this MD study strongly suggests that two successive incorporations of
417 T705, but not just one insertion, destabilises the base stacking of the product strand as well as
418 hindering productive binding of the next NTP. Whether this is partly due to the possibility of
419 flipping between canonical and wobble T705:U base pairs is not clear. However, our structural
420 results suggest that what happens next is backtracking, with the primary driving force being to
421 remodel the overall RNA into a more stable configuration, as also evidenced by our MD
422 simulations (RMSD value for the heavy atoms of RNA-RdRp complex of $2.8 \pm 0.2 \text{ \AA}$, Figure
423 S5D). Backtracking achieves this by extruding the consecutive T705/T1106 bases into a single
424 stranded region and maximising the number of stable Watson-Crick base pairs in duplex
425 regions. However, the exact post-backtracking configuration likely depends on a complicated
426 energetic balance that results in an idiosyncratic response. In the two examples we present,
427 A/H7N9 and FluB, the presumed structure prior to backtracking (Figure 2BC, top) is very
428 similar as stalling occurs at the same point in the template with the capped product in both
429 cases being a 21-mer. The most significant difference is the occurrence of the single T1106:U
430 base pair in the middle of the product-template duplex in the A/H7N9 case compared to a U:A
431 in the FluB case. However, backtracking leads to two quite different structural outcomes. For
432 FluB, backtracking by only four nucleotides leaves the maximal 10 base-pair duplex (stabilised
433 at the distal end by packing against the helical lid) in the active site cavity and the priming-
434 loop remains extruded. For A/H7N9, a stable configuration is reached after backtracking by
435 five nucleotides leaving a 9 base-pair duplex in the active site cavity with a wobble T1106:U

436 base pair at the +1 position. The distal end of the slightly shorter product-template duplex is
437 stabilised by the partially reinserted priming loop, and loss of the tenth duplex base pair is
438 further compensated by reformation of the four base pair promoter. Other factors such as
439 strength of protein-RNA interactions and conformation of the product RNA connecting to the
440 cap-binding site (Figure S4) may also play a role in defining the final backtracked
441 conformation.

442 Most *in vitro* studies of T705 inhibition, like those on T1106 described here, have
443 detected chain termination in very early elongation. This is physiologically relevant because
444 the 3' end of the vRNA template is pyrimidine-rich with several opportunities for double
445 incorporation at a very early stage if the concentration of the nucleotide analogue is high
446 enough (Wang *et al.*, 2021). On the other hand, early elongation is particular in that it coincides
447 with the initiation to elongation transition, which involves promoter duplex breaking, extrusion
448 of the priming loop, opening of the polymerase and first establishment of the 10 base pair
449 product-template duplex (Kouba *et al.*, 2019). In this context, chain termination and
450 backtracking can lead to idiosyncratic conformations including partial reversal of the initiation
451 to elongation transition as described above. To characterise the effect of T1106 double
452 incorporation during steady-state elongation, we designed a 56-mer mini vRNA (i.e. with
453 connected 3' and 5' ends) with a purine-rich template that contains a double incorporation site
454 for T1106 at the template position (30)-CC-(31) (Figure S6). Due to the loop design and lack
455 of poly-adenylation signal, the canonical transcription stop site is expected to be at position
456 A40 (i.e. A17 from the template 5'-end)(Wandzik *et al.*, 2020). We then performed different
457 RNA synthesis reactions giving sufficiently long products that the 3' end of the translocating
458 template will have docked into the secondary 3' end binding site (Wandzik *et al.*, 2020). First,
459 we characterised this 56-mer template in transcription reactions primed with an un-capped 6-
460 mer primer and regular NTPs (Figure S6, lanes 1,4 and 5). The reaction using only UTP, CTP

461 and stalled through lack of GTP produced a 30-mer product, addition of UTP, CTP and GTP
462 as well as all NTPs produced the expected full-length 40-mer transcript. Next, we utilized UTP
463 and CTP in combination with 2'FdGTP (2'-deoxy-2'-fluoroguanosine triphosphate), which was
464 previously shown to be a non-obligate chain terminator for influenza virus polymerase (Tisdale
465 *et al*, 1995). Indeed, upon 2FdGTP incorporation, the transcription progressed by one base in
466 comparison to UTP/CTP product, and produced 31-mer product (Figure S6, lane 2). Finally,
467 the reaction containing UTP, CTP and T1106, produced a 32-mer product, which correspond
468 to a stalled product at the double incorporation site of T1106 at the template CC position (30-
469 31) (Figure S6, lane 3). Unfortunately, examination of cryoEM grids made with the latter
470 reaction did not yield any classes corresponding to stalled polymerase, only the pre-initiation
471 state. Thus, we were unable to determine whether backtracking took place upon T1106-induced
472 stalling in the steady-state elongation situation before product dissociation.

473 T1106-induced stalling and backtracking of poliovirus polymerase has recently been
474 deduced from single-molecule experiments using magnetic tweezers (Dulin *et al.*, 2017) and
475 these observations have recently been extended to enterovirus A-71 polymerase (Janissen *et*
476 *al.*, 2021) and SARS-CoV-2 (Seifert *et al.*, 2021). For poliovirus it was shown
477 (<https://www.biorxiv.org/content/10.1101/2020.08.06.240325v2>). For poliovirus it was shown
478 that incorporation of T1106 leads to prolonged pausing for tens to thousands of seconds often
479 associated with back-tracking by tens of nucleotides, although the system can eventually
480 recover and elongation proceed again. It is intriguing that backtracking has now been observed
481 in several quite different viral polymerases, uniquely for T1106 and not for other nucleoside
482 analogues, such classical chain terminators (e.g. 3'-dATP) or other mutagens (e.g. ribavirin). It
483 will be interesting to see whether the pyrimidine mimic and mutagen, NHC-TP (β -D-N4-
484 hydroxycytidine-TP), which has been developed as an anti-influenza compound (Toots *et al*,

485 2019) and as the anti-SARS-CoV-2 (Sheahan *et al*, 2020) drug Molnupiravir, also induces
486 backtracking.

487 Backtracking in response to misincorporation of normal NTPs or nucleoside analogues
488 is used by cellular (Cheung & Cramer, 2011), bacterial (Abdelkareem *et al.*, 2019) and
489 coronavirus (Malone *et al.*, 2021; Robson *et al*, 2020) RNA polymerases as a mechanism of
490 error correction by proof reading. The polymerase active site can theoretically use
491 pyrophosphate to catalyse the hydrolysis of the backtracked product RNA, thus creating a new
492 product 3' end that can be elongated, but this reaction is slow under physiological conditions.
493 Specific excision mechanisms and factors have therefore evolved to remove the backtracked
494 nucleotides e.g. TFIIS in eukaryotes (Cheung & Cramer, 2011), GreA and GreB in bacteria
495 (Abdelkareem *et al.*, 2019), or the coronavirus NSP14 exonuclease (Liu *et al*, 2021). For
496 influenza polymerase there is no evidence to date that such a mechanism exists and our
497 observed backtracked structures are sterically incompatible with pyrophosphate-mediated
498 hydrolysis of the RNA at the polymerase active site.

499

500 **Acknowledgments:** We thank the EMBL Grenoble Eukaryotic Expression Facility (Alice
501 Aubert) and the EMBL-ESRF-ILL-IBS Partnership for Structural Biology (PSB) biophysical
502 platform (Caroline Mas). We thank Felix Weis and Wim Hagen for access to the Titan Krios
503 at EMBL Heidelberg, Wojtek Galej and Erika Pellegrini for access to the Glacios at EMBL
504 Grenoble, and Aymeric Peuch and Thomas Hofmann for help using the joint EMBL-IBS or
505 EMBL Heidelberg computer clusters, respectively. We acknowledge the European
506 Synchrotron Radiation Facility (ESRF) and PSB for access to the Titan Krios CM01 and thank
507 Michael Hons and Eaazhisai Kandiah for assistance with data collection.

508

509 **Grant support:** This work was supported by ANR grant (ANR-18-CE11-0028) to SC. This
510 work used the platforms of the Grenoble Instruct-ERIC Center (ISBG ; UMS 3518 CNRS-
511 CEA-UGA-EMBL) within the Grenoble Partnership for Structural Biology (PSB), supported
512 by FRISBI (ANR-10-INBS-05-02) and GRAL, financed by the Université Grenoble Alpes
513 graduate school (Ecole Universitaire de Recherche) CBH-EUR-GS (ANR-17-EURE-0003).

514

515 **Author contributions:** V.S. and P.D. expressed and V.S., P.D. and T.K. purified A/H7N9 and
516 B/Memphis polymerases. J.H and C.M synthesized and provided T1106-TP. A.D. and T.K
517 performed transcription assays. A.D. and T.K prepared cryoEM grids, A.D. and T.K. collected
518 cryoEM data, T.K. performed cryoEM image processing and 3D reconstruction. S.C. built and
519 refined atomic models. E.D. and P.V. performed and analyzed the molecular dynamics
520 computations, supervised by M.D.V. T.K and S.C conceived and supervised the project and
521 prepared the manuscript and figures with input from all other authors.

522

523 **Declaration of interests:** The authors declare no competing interests.

524 **Figure Legends**

525 **Figure 1. Templates and transcription (TRX) products**

526 **A. (Left)** 18+3-mer template (yellow) used for A/H7N9 transcription reactions with capped
527 13-mer primer (blue) and ATP, GTP (black) with and without CMPcPP (red). **(Right)** Gel
528 showing elongation products formed using A/H7N9 polymerase in transcription reactions.
529 Standards (RNAs with cap1) are indicated on the left and expected products on the right.

530

531 **B. (Left)** 21-mer-sd template (yellow) with T1106 single-incorporation site at position (6) and
532 double-incorporation site at position (10-11) from the 3' end of the native un-extended template
533 (bracketed numbers). Expected products from transcription reactions using 12-mer capped
534 primer (blue) and different combinations of nucleotides (black, green) and T1106 (magenta)
535 are shown schematically. **(Right)** Gel showing elongation and stalled products formed using
536 A/H7N9 polymerase in transcription reactions. Standards (RNAs with cap1) are indicated on
537 the right-hand lane and expected products on the left. The stalled product upon T1106 double
538 incorporation is visible in lane 4.

539

540 **C. (Left)** 21-mer-d template (yellow) with T1106 double-incorporation site at position (10-11).
541 Expected products from transcription reactions using 13-mer capped primer (blue) and
542 different combinations of nucleotides (black, green) and T1106 (magenta) are shown
543 schematically. **(Right)** Gel showing elongation and stalled products formed using FluB
544 polymerase in transcription reactions. Standards (RNAs with cap1) are indicated on the left
545 and expected products on the right. The stalled product upon T1106 double incorporation is
546 visible in lane 5.

547

548 **Figure 2. RNA configuration in the determined transcription and backtracked**
549 **structures**

550 **(A, B, C).** Sequence and schematic secondary conformation of the RNA moieties. **(A)** A/H7N9
551 transcription structure stalled by CMPcPP. **(B)** T1106-stalled and backtracked A/H7N9
552 structure. **(C)** T1106-stalled and backtracked FluB structure. In **(B)** and **(C)**, the top panel
553 shows the presumed structure prior to backtracking. The vRNA 5' and 3' ends are pink and
554 yellow respectively. The promoter duplex is disrupted except in the backtracked A/H7N9
555 structure where it is reformed. The bracketed numbers on the 3' vRNA indicate distance from
556 the native 3' end of the template. Nucleotides added beyond the native 3' vRNA end and the
557 modified distal promoter are in grey. Positions with respect to the active site contain + or -
558 signs. The capped primer is slate blue and added nucleotides black or red for analogues. Product
559 nucleotides are numbered from the 5' end, excluding the cap. Nucleotides not visible in the
560 corresponding structure are in pale colours.

561 **(D, E, F).** Ribbon diagrams for the complete cryoEM structures. **(D)** A/H7N9 transcription
562 structure stalled by CMPcPP. **(E)** T1106-stalled and backtracked A/H7N9 structure. **(F)**
563 T1106-stalled and backtracked FluB structure. The polymerase colour code is PA endonuclease
564 (forest green), PA-C (green), PB1 (cyan), PB2-N (red), PB2-midlink domain (magenta), PB2-
565 cap-binding domain (orange), PB2-627 domain (deep pink) and PB2-NLS domain (firebrick).
566 The RNA is coloured as in **A, B** and **C** with in **D**, the CMPcPP in red and in **E** and **F**, the
567 observed backtracked nucleotides in purple-blue.

568 **(G, H, I).** Determined structures of the RNA moieties. **(G)** A/H7N9 transcription structure
569 stalled by CMPcPP (red) with template (orange), 18-mer capped product (slate blue) and 5' end
570 (violet). **(H)** T1106-stalled and backtracked A/H7N9 structure with singly incorporated T1106
571 (magenta), template (pale orange), 21-mer capped product (pale blue) and 5' end (violet). **(I)**
572 the T1106-stalled and backtracked FluB structure with doubly incorporated T1106 (magenta),

573 template (yellow), 21-mer capped product (blue) and 5' end (violet). In each case the
574 conformation of the priming loop residues 632-660 in A/H7N9 (631-659 in FluB) are shown
575 in cyan, fully extruded in (G) and (I), partially extruded in (H) and with the position of Tyr657
576 (Tyr656 in FluB) highlighted.

577

578 **Figure 3. Active site details for elongation and backtracked structures**

579 **(A, B, C).** Key features and interactions within the polymerase active site region of each
580 determined structure. **(A)** A/H7N9 transcription structure stalled by CMPcPP (red) with
581 template (orange), product (slate blue) and PB1 cartoon and residues (cyan). **(B)** T1106-stalled
582 and backtracked A/H7N9 structure with singly incorporated T1106 (magenta) at the +1
583 position, template (pale orange), product (pale blue) and PB1 cartoon and residues (pale cyan).
584 **(C)** T1106-stalled and backtracked FluB structure with template (yellow), product (blue) and
585 PB1 cartoon and residues (light blue). Indicated nucleotide positions are relative to +1 at the
586 active site. Magnesium ions are green spheres and putative hydrogen bonds dotted green lines.

587

588 **Figure 4. Comparison of the RNA configuration between elongation and backtracked**
589 **structures**

590 **A)** Comparison of the position of the RNA in the active site region of the A/H7N9 transcription
591 structure (template orange, product slate-blue, PB1 cyan), stalled with CMPcPP (red) and
592 backtracked structure (template pale-orange, product light-blue, PB1 light cyan) stalled with
593 T1106 (magenta) after superposition of PB1 subunits (RMSD 0.45 Å for superposition of
594 PB1/1-560). To accommodate the small downward shift of the duplex RNA in the backtracked
595 structure requires local adjustment of the rotamer of PB1/M504 (motif B) and the position of
596 PB1/R126.

597 **B)** Comparison of the position of the RNA in the active site region of the A/H7N9 backtracked
598 structure (template pale-orange, product light-blue, PB1 light cyan, T1106 magenta) with that
599 in the FluB backtracked structure (template yellow, product blue) after superposition of the
600 PB1 subunits (RMSD 0.81 Å for superposition of PB1/1-560). The figure highlights the shifted
601 axial position of the duplex and the different disposition of backtracked nucleotides in the +2
602 and +3 positons.

603

604 **Figure 5. Canonical and wobble T1106:U base-pairing.**

605 **A)** Canonical T705:C (left) and T705:U (right) base-pairs from (Jin *et al.*, 2013).

606 **B)** Left: Observed T1106:U wobble base-pair at the +1 position of the A/H7N9 backtracked
607 structure showing interactions with PB1/K229 and a water molecule. Right: Wobble G:U base-
608 pair.

609 **C)**. Evolution of the T1106 amide group dihedral angle (defined by the circled atoms in the
610 molecular model of the canonical base-pairing) during the MD simulations of RNA duplexes
611 (left and center) and of the backtracked A/H7N9 structure (right). For each RNA duplex the
612 sequence is shown and simulations starting from either canonical or wobble U:T1106 base
613 pairing were performed (left, right respectively).

614

615 **Table 1. CryoEM structure determination and validation statistics of elongation and**
 616 **backtracked structures.**

Name of structure	A/H7N9-Elongation	A/H7N9-Backtracked-T/U+1	B/Mem-Backtracked
PDB ID	7QTL	7R0E	7R1F
EMDB ID	EMD-14144	EMD-14222	EMD-14240
Data collection and processing	EMBL DATA1	ESRF DATA 1	EMBL DATA2
Microscope	FEI Titan Krios	FEI Titan Krios	FEI Titan Krios
Voltage (kV)	300	300	300
Camera	Gatan K2 Quantum	Gatan K2 Quantum	Gatan K3 Quantum
Magnification	165,000	165,000	105,000
Nominal defocus range (μm)	0.5 – 1.8	0.4 – 2.1	0.5 – 2.5
Exposure time (s)	5	7.2	1.3
Electron exposure (e-/Å ²)	33.4	48	46.2
Number of frames collected (no.)	40	51	40
Number of frames processed (no.)	22	24	20
Pixel size (Å)	0.8127	0.827	0.822
Micrographs (no.)	3214	7336	13747
Total particle images (no.)	1,238,425	1,472,891	8,451,594
Refinement			
Particles per class (no.)	116,539	98,908	328,180
Map resolution (Å), 0.143 FSC	2.48	2.51	2.58
Model resolution (Å), 0.5 FSC			
Map sharpening <i>B</i> factor (Å ²)	-20.84	-67.66	-77.0
Map versus model cross-correlation (CCmask)	0.83	0.87	0.84
Model composition			
Non-hydrogen atoms	18397	18554	18387
Protein residues	2152	2162	2177
Nucleotide residues	44	49	42
Water	120	114	6
Ligands	4	4	6
B factors (Å²)			
Protein	36.77	61.83	64.46
Nucleotide	37.92	59.74	59.64
Ligand	29.45	58.35	146.15
Water	22.33	46.23	35.55
R.M.S. deviations			
Bond lengths (Å)	0.003	0.003	0.003
Bond angles (°)	0.611	0.474	0.466
Validation			
MolProbity score	2.01	1.33	1.74
All-atom clashscore	8.57	5.25	6.73
Poor rotamers (%)	3.98	1.15	1.89
Ramachandran plot			
Favored (%)	97.56	98.04	97.09
Allowed (%)	2.39	1.96	2.86
Outliers (%)	0.05	0	0.05

617

618

619

620 **Table 2. RNA sequences used for biochemical assays and cryoEM structures**

<i>Name</i>	<i>Sequence (5'→ 3')</i>
12-mer capped RNA	(m ⁷ Gppp)AAUCUAUAAUAG
13-mer capped RNA	(m ⁷ Gppp)AAUCUAUAAUAGC
14-mer 5' vRNA	pAGUAGUAACAAGAG
14-mer-mod 5' vRNA	pAGUAGUAACAAGUU
18+3-mer 3' vRNA	UAUACCUCUGCUUCUGCUAUU
21-mer-sd 3' vRNA	UAUACCUCUGAAUAAAACUAUU
21-mer-d 3' vRNA	UAUACAAACUGAGAAAGCUAUU
56-mer 5'-3' loop vRNA	pAGCAGAAGCACUCCAAAGAGAGAGGCCGAGAGA GAGAGAAAAGGAGAAGAAUCUGCU
6-mer primer	AGCAGA
621	
622	

623 **MATERIALS and CORRESPONDANCE**

624 Further information and requests for resources and reagents should be directed to and will be
625 fulfilled by the Lead Contact, Stephen Cusack (cusack@embl.fr).

626 **METHODS**

627 **Expression and purification**

628 Influenza A/Zhejiang/DTID-ZJU01/2013 (H7N9) polymerase heterotrimer was
629 expressed from a codon-optimized synthetic construct containing His8x-PA (Uniprot:
630 M9TI86) – PB1 (Uniprot:M9TLW3) – PB2-StrepII (Uniprot: X5F427) cloned into pET-DUAL
631 vector for co-expression under the control of the polH (for PA and PB1) and p10 (for PB2)
632 promoters. The A/H7N9 polymerase was produced using the baculovirus expression system in
633 HighFive insect cells, which were collected after 48-60h post-infection by centrifugation, re-
634 suspended in buffer A (50 mM HEPES/NaOH pH8, 500 mM NaCl, 10% (v/v) glycerol)
635 supplemented with protease inhibitors (Roche, complete mini, EDTA-free, leupeptin,
636 pepstatinA), and lysed by sonication on ice. The cell extract was then cleared by centrifugation
637 (30 min, 4 °C, 35,000g) and ammonium sulphate added to the supernatant with ratio 0.6 g/ml
638 lysate for protein selective precipitation and recovery. The recombinant protein was then
639 collected by centrifugation (30 min, 4 °C, 70,000 g) and re-suspended in buffer A and the
640 procedure repeated twice. H7N9 polymerase was then purified from the soluble fraction via
641 tandem affinity chromatography: Ni-sepharose metal binding, followed by strep-tactin (IBA,
642 Superflow), using buffer A (supplemented with 400 mM imidazole for Ni affinity) as mobile
643 phase in both cases. Protein-containing fractions were pooled and diluted with an equal volume
644 of buffer B (50 mM HEPES/NaOH pH 7.5, 10% (v/v) glycerol) before loading on to a third
645 affinity column (HiTrap Heparin HP, GE Healthcare). A step gradient (25-50-75-100%) of
646 buffer C (buffer B supplemented with 1 M NaCl) was applied, and polymerase was eluted as

647 single species at 600 mM NaCl. Finally, the protein was concentrated with Amicon® Ultra-15
648 (50 KDa cutoff) to ~6 μ M, flash-frozen and stored at -80C.

649 The influenza B/Memphis/13/03 (FluB) polymerase self-cleaving polyprotein
650 heterotrimer construct was expressed in High Five insect cells as described previously (Reich
651 *et al*, 2014). Frozen cell pellets were re-suspended in lysis buffer (50 mM Tris-HCl, 500 mM
652 NaCl, 10% glycerol, pH 8) containing protease inhibitors (Roche, complete mini, EDTA-free).
653 Following lysis by sonication and centrifugation at 20,000 r.p.m. (JA20/Beckman Coulter) for
654 45 min at 10°C, the supernatant was precipitated by ammonium sulphate (0.5 g ml⁻¹) and
655 centrifuged at 45,000 r.p.m. for 45 min at 10°C (45Ti/Beckman Coulter). The pellet was re-
656 dissolved in lysis buffer, and finally re-centrifuged at the same settings. Cleared supernatant
657 was incubated with nickel resin (His60 NiNTA, Clontech) for one hour at 10° C. Protein was
658 eluted with lysis buffer supplemented with 500 mM imidazole and loaded on a Strep-Tactin
659 matrix (Superflow, IBA). Elution was performed with 2.5 mM d-dethiobiotin in low salt
660 buffer (50 mM Tris pH 8, 250 mM NaCl, 10% (v/v) glycerol). Pooled FluB polymerase
661 fractions were filtered with 0.22 μ m filter and loaded on a heparin column (HiTrap Heparin
662 HP, GE Healthcare). Elution was performed with a gradient using buffers A and B (2 mM
663 TCEP, 50 mM HEPES, pH 7.5, 150 mM (A) or 1 M NaCl (B), 5% glycerol). Homogeneous
664 monomeric polymerase was pooled and dialysed overnight with 6-8 kDa molecular weight cut-
665 off membrane tubing (Spectra/Por, Spectrum Labs) into 50mM HEPES, 500 mM NaCl, 5%
666 glycerol at pH 7. Finally, the protein was concentrated with Amicon® Ultra-15 (50 KDa
667 cutoff), flash-frozen and stored at -80 °C.

668

669 **Negative stain electron microscopy**

670 3 μ l of protein solution were applied to glow-discharged carbon coated copper grid (300
671 mesh, Electron Microscopy Science) and let adsorb for 30 s. Grids were then washed twice in

672 25 μ l drop of protein buffer and stained twice for 30 s with 6 μ l of 2 % (w/v) uranyl acetate.
673 Between each step, excess of protein/buffer solution/staining was blotted off using a filter
674 paper. Grids were dried on adsorbing paper for at least 5 min. Negative-stain grids were imaged
675 with a Tecnai 12 (FEI) TEM at 120 KV on a Ceta 16 M camera, at a nominal magnification of
676 16,000 \times .

677 **SEC-MALS analysis**

678 Purified A/H7N9 polymerase was injected on Superdex200 10/300 SEC column (GE
679 Healthcare) equilibrated in 50 mM HEPES (pH 7), 500 mM NaCl and 5% glycerol at 0.5
680 ml/min coupled to Wyatt Heleos II 18-angle light scattering instrument and to Wyatt Optilab
681 rEX online refractive index detector (Wyatt Technology Corporation). Protein concentration
682 was determined from the excess differential refractive index based on a 0.186 refractive index
683 increment for a protein solution (1 g/ml). The concentration and the observed scattered
684 intensity at each point in the chromatogram were used to calculate the absolute molecular mass
685 from the intercept of the Debye plot using the Zimm model as implemented in Wyatt's ASTRA
686 software.

687 **Cap-dependent transcription assays**

688 Separated 3' and 5' vRNA ends or loop mini-vRNA were used for transcription assays.
689 21-mer-sd or 21-mer-d 3' and 14-mer 5' ends vRNAs (IBA) were used in combination with
690 synthetic 12- or 13-mer capped RNA (TriLink Biotechnologies) as primer (Table 2, Figure 1).
691 A 56-mer loop vRNA was used in combination with a 6-mer primer. For the cap-dependent
692 transcription assay, 0.2 μ M A/H7N9 or FluB polymerase, 0.22 μ M vRNAs, 0.4 μ M capped
693 RNA primer, 100 μ M mix of NTPs, w/o 600 μ M T1106-TP, and 2.5 pM α -³²P-ATP were mixed
694 and incubated in reaction buffer (150 mM NaCl, 50 mM HEPES, pH 7.4, 5 mM MgCl₂ and 2
695 mM TCEP) at 28 °C for 4 hours.

696 For the 6-mer dependent transcription assay, 1 μ M FluB polymerase, 1.5 μ M 56-mer

697 vRNA, 20 μ M 6-mer primer (Table 2), 100 μ M NTPs, w/wo 1 mM 2'FdGTP or 600 μ M T1106-
698 TP and 0.04 μ Ci/ μ l α -³²P-UTP or α -³²P-ATP were mixed and incubated in reaction buffer (130
699 mM NaCl, 50 mM HEPES, pH 7.4, 5 mM MgCl₂ and 0.4 mM TCEP) at 28 °C for 6 hours.

700 Samples were separated on a 7 M urea, 20% acrylamide gel in TBE buffer, exposed on
701 a storage phosphor screen and read with a Typhoon scanner. The capped markers were
702 synthetized as products of previously characterized transcription reactions (Kouba *et al.*, 2019).

703 T1106-TP was synthesised as described (Huchting *et al.*, 2018).

704 **CryoEM sample preparation and data collections**

705 To capture distinct states of transcription cycle w/o T1106, specific sample preparation
706 protocols (see below) were applied. All complexes were assembled in cryoEM buffer (50 mM
707 HEPES pH 7.5, 150 mM NaCl, 5 mM MgCl₂, 2 mM TCEP).

708 **Sample 1:** For the A/H7N9-Elongation complex, 0.8 μ M FluA/H7N9 polymerase, 0.96 μ M 3'
709 vRNA (18+3-mer) and 5' vRNA (14-mer) and 1.6 μ M 13-mer capped primer were mixed in
710 cryoEM buffer and incubated for 4 hours at 28°C with 100 μ M ATP and GTP, 300 μ M
711 CMPcPP, and then cooled to 4°C.

712 **Sample 2:** For the A/H7N9-Backtracked-T/U+1 complex, 0.9 μ M A/H7N9 polymerase, 1.2
713 μ M 3' vRNA (21-mer-sd) and 5' vRNA (14-mer) and 1.8 μ M 12-mer capped primer were
714 mixed in cryoEM buffer and incubated for 4 hours at 28°C with 100 μ M UTP and CTP, and
715 600 μ M T1106-TP and then cooled to 4°C.

716 **Sample 3:** For the B/Mem-Backtracked complex, 0.9 μ M FluB polymerase, 1.2 μ M 3' vRNA
717 (21-mer-d) and 5' vRNA (14-mer-mod, Table 2) and 2 μ M 13-mer capped primer were mixed
718 in cryoEM buffer and incubated for 4 hours at 28°C with 100 μ M UTP and CTP, and 600 μ M
719 T1106-TP and then cooled to 4°C.

720 **Sample 4:** For the A/H7N9-Apo dimer, 0.9 μ M A/H7N9 polymerase was dialysed to 50 mM
721 HEPES/NaOH, pH 7.5 and 570 mM NaCl.

722 **Sample 5:** For the A/H7N9-5' hook-bound dimer and monomer, 0.9 μ M A/H7N9 polymerase
723 was first supplemented with 1.25 molar excess of 14-mer 5' vRNA, 18+3-mer 3' vRNA, and
724 15-mer capped primer and then dialysed for 12 hours to 50 mM HEPES/NaOH, pH 7.5 and
725 150 mM NaCl. Additional ~0.5 molar excess of 14-mer 5' vRNA, 18+3-mer 3' vRNA, and 15-
726 mer capped primer was added to the sample mixture before plunge-freezing. Only the 14-mer
727 5' vRNA was visible in the cryoEM structures.

728

729 For each sample, aliquots of 3 μ l were applied to glow discharged grids (R2/1 or
730 R1.2/1.3, Au 300, Quantifoil), blotted for 2 s and immediately plunge-frozen in liquid ethane
731 using an FEI Vitrobot IV at 4°C and 100 % humidity. Grids were loaded onto 300 kV FEI Titan
732 Krios and data were acquired in electron counting mode. Further details regarding each data
733 collection are presented in Table 1 (elongation and backtracked structures) or Table S1
734 (A/H7N9 dimer structures).

735

736 **CryoEM image processing**

737 All movie frames were aligned and dose-weighted using MotionCor2 program (Zheng
738 *et al*, 2017). Thon rings, either from summed power spectra of every 4e⁻/ \AA^2 or non-dose-
739 weighted micrographs, were used for contrast transfer function parameter calculation with
740 CTFFIND 4.1 (Zhang, 2016). Particles were selected with WARP (Tegunov & Cramer, 2019)
741 or Gautomatch (<http://www.mrc-lmb.cam.ac.uk/kzhang/>). Further 2D and 3D cryo-EM image
742 processing was performed in RELION 3.1 (Zivanov *et al*, 2020). First, particles were iteratively
743 subjected to two rounds of 2D-classification and those in classes with poor structural features
744 were removed.

745 *3D analysis of the of A/H7N9-Elongation complex*

746 1.8 times binned particles (754.2 k) were subjected to global 3D auto-refinement with

747 60 Å low-pass filtered PDB ID 6T0V structure as initial model. The resulting global refinement
748 was then subjected to global 3D classification (Figure EM-2) with fine angular searches using
749 regularization parameter $T = 4$. The most defined class (116 k particles) was re-extracted to
750 native pixel size and globally 3D auto-refined using aberration correction schemes in RELION.

751 *3D analysis of the A/H7N9-Backtracked-T/U+1 complex*

752 1.8 times binned particles (1,067 k) were subjected to 3D-classifications with image
753 alignment (Figure EM-4). The 3D-classification was restricted to eight classes and
754 performed using 60 Å low-pass filtered PDB ID 6T0V structure as initial model. Particles in
755 classes with poor structural features were removed. The remaining particles (776 k) were
756 subjected to global 3D auto-refinement and then subjected to another round of global 3D
757 classification with fine angular searches using regularization parameter $T = 4$. The most defined
758 class (172 k particles) was re-extracted to native pixel size and globally 3D auto-refined. The
759 resulting global refinement was subjected to final round of 3D-classification focused on the
760 core region of the complex. The most defined class (98.9 k particles) was globally 3D auto-
761 refined using aberration correction schemes in RELION.

762 *3D analysis of the B/Mem-Backtracked complex*

763 3.52 times binned particles (5,479 k) were globally 3D auto-refined and then
764 subjected to 3D-classifications with image alignment restricted to eight classes (Figure EM-
765 6). Particles in classes with poor structural features were removed and remaining particles
766 (3,619 k) were re-extracted and subjected to another round of global 3D auto-refinement
767 followed by 3D-classifications to ten classes. Particles in classes with poor structural
768 features were removed and remaining particles (1,540 k) were re-extracted to native pixel
769 size, globally 3D auto-refined and finally focus-refined on the core region of the complex.
770 The resulting global refinement was subjected to final round of 3D-classification with fine
771 angular searches using regularization parameter $T = 12$, restricted to 8 classes and focused on

772 the core region of the complex. The most defined classes were pooled (328,2 k particles) and
773 globally 3D auto-refined using aberration correction schemas in RELION.

774 *3D analysis of the of A/H7N9 apo-dimer*

775 2 times binned particles (314.8 k) were subjected to global 3D classification with 60 Å
776 low-pass filtered PDB ID 3J9B structure as initial model. The most defined classes (156.7)
777 were pooled, re-extracted to native pixel size, and globally 3D auto-refined. The resulting
778 global refinement was then subjected to global 3D classification (Figure EM-8) with fine
779 angular searches using regularization parameter $T = 8$. The most defined class (101.9 k
780 particles) was globally 3D auto-refined using C2 symmetry and aberration correction schemes
781 in RELION.

782 *3D analysis of the of A/H7N9 5' hook bound dimer*

783 Un-binned particles (84.2 k) were subjected to global 3D classification (Figure EM-
784 10) with 60 Å low-pass filtered PDB ID 3J9B structure as initial model using regularization
785 parameter $T = 4$. The most defined class (58.8 k particles) was globally 3D auto-refined using
786 C2 symmetry and aberration correction schemes in RELION.

787 *3D analysis of the of A/H7N9 5' hook bound monomer*

788 2 times binned particles (500.9 k) were subjected to global 3D classification with 60 Å
789 low-pass filtered one protomer PDB ID 3J9B structure as initial model. The most defined
790 classes (124 k) were pooled, re-extracted to native pixel size, and globally 3D auto-refined.
791 The resulting global refinement was then subjected to global 3D classification (Figure EM-10)
792 with fine angular searches using regularization parameter $T = 4$. The most defined class (37.7
793 k particles) was globally 3D auto-refined using aberration correction schemes in RELION.

794

795 All final cryo-EM density maps were generated by the post-processing feature in
796 RELION and sharpened or blurred into MTZ format using CCP-EM (Burnley *et al*, 2017). The

797 resolutions of the cryo-EM density maps were estimated at the 0.143 gold standard Fourier
798 Shell Correlation (FSC) cut off (Figure EM 1d, 3d, 5d, 7d, 9d). A local resolution (Figure EM
799 1e, 3e, 5e, 7e, 9e) was calculated using RELION and reference-based local amplitude scaling
800 was performed by LocScale (Jakobi *et al*, 2017).

801 **CryoEM model building and refinement.**

802 The A/H7N9 elongation and backtracked and FluB backtracked structures were
803 constructed by first rigid-body fitting into the cryoEM density using respectively the promoter
804 bound A/H5N1 (PDB:6RR7) and FluB elongation (PDB:6QCT) polymerase structures as
805 starting points. For the apo- and 5' hook bound A/H7N9 dimer structures a previous crystal
806 structure of a truncated A/H7N9 dimer (PDB:6TU5) was used as initial model. The models
807 were iteratively improved by manual adjusting with COOT(Emsley & Cowtan, 2004) and
808 refinement with PHENIX real-space-refinement (Afonine *et al*, 2018). Validation was
809 performed using the PHENIX validation tool and model resolution was estimated at the 0.5
810 FSC cut off (Table 1, Table S1).

811 **Computational Methods**

812 **Models systems.** The experimental A/H7N9 backtracked structure was used to set up a model
813 system of the polymerase. Missing loops in the protein structure were added using SwissModel
814 (Waterhouse *et al*, 2018). The protein/RNA complex was solvated in a rhombic dodecahedral
815 box of water molecules, with a buffer distance of 16 Å between each wall and the closest atom
816 in each direction. The system was then neutralized with K+, and additional K+ and Cl- ions
817 were added to reach ~100 mM ionic concentrations. The final model includes a total of
818 ~241,000 atoms. To investigate the conformational properties of the U:T1106 base pair
819 incorporated in an RNA double helix, two RNA dodecamers with different sequences were
820 considered (T = T1106):

821 CCCUCUGCUUGG

822 **GGGAGTCGAACC**

823 in which the U:T1106 pair is flanked by CG pairs, and

824 **CGCGAAUUCGCG**

825 **GCGCUUTAGCGC**

826 in which the U:T1106 pair is flanked by AU pairs. Duplexes structures were built in standard

827 helical A-form. For each sequence, initial geometries corresponding to canonical and wobble

828 U:T1106 base pairing were generated superimposing the Density Functional Theory (DFT)-

829 optimized geometries to the corresponding base pair. Each duplex was solvated with ~9000

830 water molecules and 22 sodium ions were added randomly to neutralize the charge of the

831 systems.

832 **Quantum Mechanical calculations.** Quantum chemical calculations were performed using

833 the hybrid B3LYP (Becke, 1993; Lee *et al*, 1988) density functional method as implemented

834 in Gaussian09 (<https://gaussian.com/glossary/g09/>). Geometry optimization was performed

835 using the 6-31G* basis set, accounting for solvent effects (water) via the PCM continuum

836 model (Tomasi *et al*, 2005).

837 **MD simulations.** Molecular dynamics (MD) simulations were performed with the pmemd

838 module of Amber20 (<https://ambermd.org/doc12/Amber20.pdf>). The AMBER-ff14SB (Maier

839 *et al*, 2015) and AMBER-ff12SB (ff99 + bsc0 + χ OL3) (Perez *et al*, 2007) force fields were

840 used for protein and RNA, respectively. Atom types and bonding parameters for the m⁷G cap

841 and the T1106 drug were adapted from the same AMBER force field, and atomic point charges

842 were derived using the RESP procedure (Bayly *et al*, 1993). Monovalent and divalent metal

843 ions were described with Li and Merz 12-6 parameters (Li *et al*, 2015). The TIP3P model was

844 adopted for water (Jorgensen *et al*, 1983). Simulations were performed with a distance cutoff

845 of 10 Å. Long-range electrostatics were treated with the particle mesh Ewald method (Li *et al*,

846 2013). Bonds involving hydrogen atoms were constrained, allowing a time step of 2 fs. After

847 solvent equilibration, the entire system was energy minimized and gently heated to 310 K
848 during 0.5 ns while restraining protein and RNA backbone atoms. The Andersen-like
849 temperature-coupling scheme (Åqvist *et al*, 2004) and a Monte Carlo barostat (Åqvist *et al.*,
850 2004) were used to maintain temperature and pressure close to room temperature conditions.
851 About 1 μ s MD simulation in the NPT ensemble was accumulated for each model system.

852

853 **Structure data availability:**

854 Influenza A/H7N9 polymerase elongation complex PDB:7QTL and EMDB:EMD-14144
855 Early transcription elongation state of influenza A/H7N9 polymerase backtracked due
856 to double incorporation of nucleotide analogue T1106 and with singly incorporated
857 T1106 at the +1 position PDB:7R0E and EMDB:EMD-14222
858 Early transcription elongation state of influenza B polymerase backtracked due to
859 double incorporation of nucleotide analogue T1106 PDB:7R1F and EMDB:EMD-14240
860 Influenza A/H7N9 apo-dimer complex PDB: 7ZPM and EMDB:EMD-14858
861 Influenza A/H7N9 5' hook bound dimer complex PDB: 7ZPL and EMDB:EMD-14857
862

863 **References**

864 Abdelkareem M, Saint-Andre C, Takacs M, Papai G, Crucifix C, Guo X, Ortiz J, Weixlbaumer
865 A (2019) Structural Basis of Transcription: RNA Polymerase Backtracking and Its
866 Reactivation. *Molecular cell* 75: 298-309 e294

867 Afonine PV, Poon BK, Read RJ, Sobolev OV, Terwilliger TC, Urzhumtsev A, Adams PD
868 (2018) Real-space refinement in PHENIX for cryo-EM and crystallography. *Acta
869 crystallographica Section D, Structural biology* 74: 531-544

870 Åqvist J, Wennerström P, Nervall M, Bjelic S, Brandsdal BO (2004) Molecular dynamics
871 simulations of water and biomolecules with a Monte Carlo constant pressure algorithm.
872 *Chemical Physics Letters* 384: 288-294

873 Arragain B, Durieux Trouilletton Q, Baudin F, Provaznik J, Azevedo N, Cusack S, Schoehn G,
874 Malet H (2022) Structural snapshots of La Crosse virus polymerase reveal the mechanisms
875 underlying Peribunyaviridae replication and transcription. *Nat Commun* 13: 902

876 Baranovich T, Wong SS, Armstrong J, Marjuki H, Webby RJ, Webster RG, Govorkova EA
877 (2013) T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro.
878 *Journal of virology* 87: 3741-3751

879 Barauskas O, Xing W, Aguayo E, Willkom M, Sapre A, Clarke M, Birkus G, Schultz BE,
880 Sakowicz R, Kwon H *et al* (2017) Biochemical characterization of recombinant influenza A
881 polymerase heterotrimer complex: Polymerase activity and mechanisms of action of nucleotide
882 analogs. *PloS one* 12: e0185998

883 Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential
884 based method using charge restraints for deriving atomic charges: the RESP model. *The
885 Journal of Physical Chemistry* 97: 10269-10280

886 Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. *The
887 Journal of chemical physics* 98: 5648-5652

888 Burnley T, Palmer CM, Winn M (2017) Recent developments in the CCP-EM software suite.
889 *Acta crystallographica Section D, Structural biology* 73: 469-477

890 Chen KY, Santos Afonso ED, Enouf V, Isel C, Naffakh N (2019) Influenza virus polymerase
891 subunits co-evolve to ensure proper levels of dimerization of the heterotrimer. *PLoS pathogens*
892 15: e1008034

893 Chen Y, Liang W, Yang S, Wu N, Gao H, Sheng J, Yao H, Wo J, Fang Q, Cui D *et al* (2013)
894 Human infections with the emerging avian influenza A H7N9 virus from wet market poultry:
895 clinical analysis and characterisation of viral genome. *Lancet* 381: 1916-1925

896 Cheung AC, Cramer P (2011) Structural basis of RNA polymerase II backtracking, arrest and
897 reactivation. *Nature* 471: 249-253

898 Dulin D, Arnold JJ, van Laar T, Oh HS, Lee C, Perkins AL, Harki DA, Depken M, Cameron
899 CE, Dekker NH (2017) Signatures of Nucleotide Analog Incorporation by an RNA-Dependent
900 RNA Polymerase Revealed Using High-Throughput Magnetic Tweezers. *Cell reports* 21:
901 1063-1076

902 Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. *Acta
903 crystallographica Section D, Biological crystallography* 60: 2126-2132

904 Fan H, Walker AP, Carrique L, Keown JR, Serna Martin I, Karia D, Sharps J, Hengrung N,
905 Pardon E, Steyaert J *et al* (2019) Structures of influenza A virus RNA polymerase offer insight
906 into viral genome replication. *Nature* 573: 287-290

907 Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL (2013) Favipiravir (T-
908 705), a novel viral RNA polymerase inhibitor. *Antiviral research* 100: 446-454

909 Furuta Y, Takahashi K, Fukuda Y, Kuno M, Kamiyama T, Kozaki K, Nomura N, Egawa H,
910 Minami S, Watanabe Y *et al* (2002) In vitro and in vivo activities of anti-influenza virus
911 compound T-705. *Antimicrobial agents and chemotherapy* 46: 977-981

912 Gerlach P, Malet H, Cusack S, Reguera J (2015) Structural Insights into Bunyavirus
913 Replication and Its Regulation by the vRNA Promoter. *Cell* 161: 1267-1279

914 Goldhill DH, Langat P, Xie H, Galiano M, Miah S, Kellam P, Zambon M, Lackenby A, Barclay
915 WS (2019) Determining the Mutation Bias of Favipiravir in Influenza Virus Using Next-
916 Generation Sequencing. *Journal of virology* 93

917 Goldhill DH, Te Velthuis AJW, Fletcher RA, Langat P, Zambon M, Lackenby A, Barclay WS
918 (2018) The mechanism of resistance to favipiravir in influenza. *Proceedings of the National
919 Academy of Sciences of the United States of America* 115: 11613-11618

920 Goldhill DH, Yan A, Frise R, Zhou J, Shelley J, Gallego Cortes A, Miah S, Akinbami O,
921 Galiano M, Zambon M *et al* (2021) Favipiravir-resistant influenza A virus shows potential for
922 transmission. *PLoS pathogens* 17: e1008937

923 Huchting J, Vanderlinden E, Van Berwaer R, Meier C, Naesens L (2019) Cell line-dependent
924 activation and antiviral activity of T-1105, the non-fluorinated analogue of T-705 (favipiravir).
925 *Antiviral research* 167: 1-5

926 Huchting J, Vanderlinden E, Winkler M, Nasser H, Naesens L, Meier C (2018) Prodrugs of the
927 Phosphoribosylated Forms of Hydroxypyrazinecarboxamide Pseudobase T-705 and Its De-
928 Fluoro Analogue T-1105 as Potent Influenza Virus Inhibitors. *Journal of medicinal chemistry*

929 Huchting J, Winkler M, Nasser H, Meier C (2017) Synthesis of T-705-Ribonucleoside and T-
930 705-Ribonucleotide and Studies of Chemical Stability. *ChemMedChem* 12: 652-659

931 Jakobi AJ, Wilmanns M, Sachse C (2017) Model-based local density sharpening of cryo-EM
932 maps. *eLife* 6

933 Janissen R, Woodman A, Shengjuler D, Vallet T, Lee KM, Kuijpers L, Moustafa IM, Fitzgerald
934 F, Huang PN, Perkins AL *et al* (2021) Induced intra- and intermolecular template switching as
935 a therapeutic mechanism against RNA viruses. *Molecular cell* 81: 4467-4480 e4467

936 Jena NR (2020) Role of different tautomers in the base-pairing abilities of some of the vital
937 antiviral drugs used against COVID-19. *Physical chemistry chemical physics : PCCP* 22:
938 28115-28122

939 Jin Z, Smith LK, Rajwanshi VK, Kim B, Deval J (2013) The ambiguous base-pairing and high
940 substrate efficiency of T-705 (Favipiravir) Ribofuranosyl 5'-triphosphate towards influenza A
941 virus polymerase. *PloS one* 8: e68347

942 Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of
943 simple potential functions for simulating liquid water. *The Journal of chemical physics* 79:
944 926-935

945 Kaptein SJF, Jacobs S, Langendries L, Seldeslachts L, Ter Horst S, Liesenborghs L, Hens B,
946 Vergote V, Heylen E, Barthelemy K *et al* (2020) Favipiravir at high doses has potent antiviral
947 activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks activity.
948 *Proceedings of the National Academy of Sciences of the United States of America* 117: 26955-
949 26965

950 Kouba T, Drncova P, Cusack S (2019) Structural snapshots of actively transcribing influenza
951 polymerase. *Nature structural & molecular biology* 26: 460-470

952 Lagocka R, Dziedziejko V, Klos P, Pawlik A (2021) Favipiravir in Therapy of Viral Infections.
953 *J Clin Med* 10

954 Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula
955 into a functional of the electron density. *Phys Rev B Condens Matter* 37: 785-789

956 Li P, Roberts BP, Chakravorty DK, Merz KM (2013) Rational Design of Particle Mesh Ewald
957 Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent. *Journal of
958 Chemical Theory and Computation* 9: 2733-2748

959 Li P, Song LF, Merz KM (2015) Systematic Parameterization of Monovalent Ions Employing
960 the Nonbonded Model. *Journal of Chemical Theory and Computation* 11: 1645-1657

961 Liu C, Shi W, Becker ST, Schatz DG, Liu B, Yang Y (2021) Structural basis of mismatch
962 recognition by a SARS-CoV-2 proofreading enzyme. *Science* 373: 1142-1146

963 Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB:
964 Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. *J Chem*
965 *Theory Comput* 11: 3696-3713

966 Malone B, Chen J, Wang Q, Llewellyn E, Choi YJ, Olinares PDB, Cao X, Hernandez C, Eng
967 ET, Chait BT *et al* (2021) Structural basis for backtracking by the SARS-CoV-2 replication-
968 transcription complex. *Proceedings of the National Academy of Sciences of the United States*
969 *of America* 118

970 Naydenova K, Muir KW, Wu LF, Zhang Z, Coscia F, Peet MJ, Castro-Hartmann P, Qian P,
971 Sader K, Dent K *et al* (2021) Structure of the SARS-CoV-2 RNA-dependent RNA polymerase
972 in the presence of favipiravir-RTP. *Proceedings of the National Academy of Sciences of the*
973 *United States of America* 118

974 Peng Q, Peng R, Yuan B, Wang M, Zhao J, Fu L, Qi J, Shi Y (2021) Structural Basis of SARS-
975 CoV-2 Polymerase Inhibition by Favipiravir. *Innovation (N Y)* 2: 100080

976 Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, 3rd, Laughton CA, Orozco M (2007)
977 Refinement of the AMBER force field for nucleic acids: improving the description of
978 alpha/gamma conformers. *Biophys J* 92: 3817-3829

979 Pflug A, Gaudon S, Resa-Infante P, Lethier M, Reich S, Schulze WM, Cusack S (2018) Capped
980 RNA primer binding to influenza polymerase and implications for the mechanism of cap-
981 binding inhibitors. *Nucleic acids research* 46: 956-971

982 Reich S, Guilligay D, Pflug A, Malet H, Berger I, Crepin T, Hart D, Lunardi T, Nanao M,
983 Ruigrok RW *et al* (2014) Structural insight into cap-snatching and RNA synthesis by influenza
984 polymerase. *Nature* 516: 361-366

985 Robson F, Khan KS, Le TK, Paris C, Demirbag S, Barfuss P, Rocchi P, Ng WL (2020)
986 Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. *Molecular cell*
987 79: 710-727

988 Shannon A, Selisko B, Le NT, Huchting J, Touret F, Piorkowski G, Fattorini V, Ferron F,
989 Decroly E, Meier C *et al* (2020) Rapid incorporation of Favipiravir by the fast and permissive
990 viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis. *Nat Commun* 11:
991 4682

992 Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML, Leist SR, Schafer A,
993 Dinnon KH, 3rd, Stevens LJ *et al* (2020) An orally bioavailable broad-spectrum antiviral
994 inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in
995 mice. *Science translational medicine* 12

996 Shiraki K, Daikoku T (2020) Favipiravir, an anti-influenza drug against life-threatening RNA
997 virus infections. *Pharmacol Ther* 209: 107512

998 Sidwell RW, Barnard DL, Day CW, Smee DF, Bailey KW, Wong MH, Morrey JD, Furuta Y
999 (2007) Efficacy of orally administered T-705 on lethal avian influenza A (H5N1) virus
1000 infections in mice. *Antimicrobial agents and chemotherapy* 51: 845-851

1001 Takashita E, Ejima M, Ogawa R, Fujisaki S, Neumann G, Furuta Y, Kawaoka Y, Tashiro M,
1002 Odagiri T (2016) Antiviral susceptibility of influenza viruses isolated from patients pre- and
1003 post-administration of favipiravir. *Antiviral research* 132: 170-177

1004 Tegunov D, Cramer P (2019) Real-time cryo-electron microscopy data preprocessing with
1005 Warp. *Nature methods*

1006 Tisdale M, Ellis M, Klumpp K, Court S, Ford M (1995) Inhibition of influenza virus
1007 transcription by 2'-deoxy-2'-fluoroguanosine. *Antimicrobial agents and chemotherapy* 39:
1008 2454-2458

1009 Tomasi J, Mennucci B, Cammi R (2005) Quantum Mechanical Continuum Solvation Models.
1010 *Chemical Reviews* 105: 2999-3094

1011 Toots M, Yoon JJ, Cox RM, Hart M, Sticher ZM, Makhsoos N, Plesker R, Barrena AH, Reddy
1012 PG, Mitchell DG *et al* (2019) Characterization of orally efficacious influenza drug with high
1013 resistance barrier in ferrets and human airway epithelia. *Science translational medicine* 11

1014 Wandzik JM, Kouba T, Drncova P, Karuppasamy M, Pflug A, Provaznik J, Azevedo N, Cusack
1015 S (2020) A structure-based model for the complete transcription cycle of influenza polymerase.
1016 *Cell*

1017 Wang Y, Yuan C, Xu X, Chong TH, Zhang L, Cheung PP, Huang X (2021) The mechanism
1018 of action of T-705 as a unique delayed chain terminator on influenza viral polymerase
1019 transcription. *Biophys Chem* 277: 106652

1020 Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer
1021 TAP, Rempfer C, Bordoli L *et al* (2018) SWISS-MODEL: homology modelling of protein
1022 structures and complexes. *Nucleic acids research* 46: W296-W303

1023 Zhang K (2016) Gctf: Real-time CTF determination and correction. *Journal of structural
1024 biology* 193: 1-12

1025 Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA (2017) MotionCor2:
1026 anisotropic correction of beam-induced motion for improved cryo-electron microscopy. *Nature
1027 methods* 14: 331-332

1028 Zivanov J, Nakane T, Scheres SHW (2020) Estimation of high-order aberrations and
1029 anisotropic magnification from cryo-EM data sets in RELION-3.1. *IUCrJ* 7: 253-267

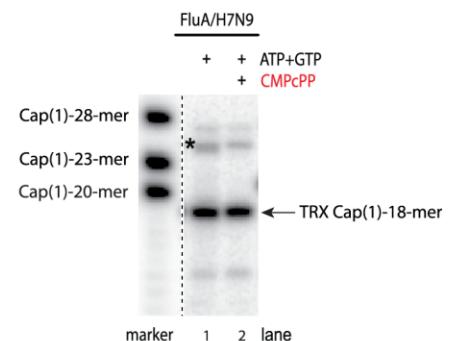
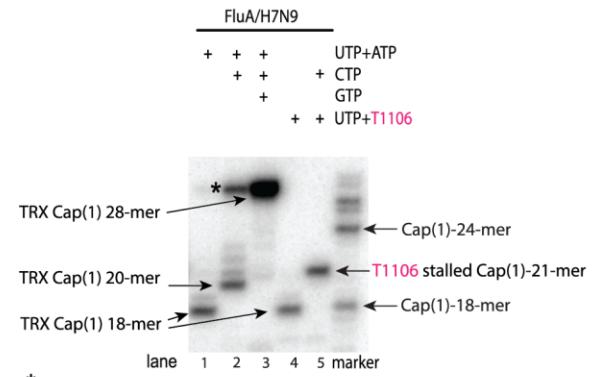


Figure 1

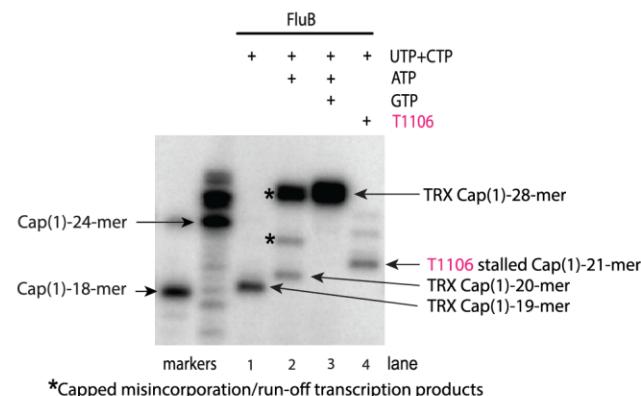
A

A/H7N9 TRX - CMPcPP


ATP+GTP	GAAGACGAUAAAUCUA^{Apmpm'G}	Cap(1)-18-mer
5' - UAUACCUCUGCUUCUGCUAUU - 3' (10) (6) (1)		
CMPcPP	CGAAGACGAUAAAUCUA^{Apmpm'G}	Cap(1)-18-mer
5' - UAUACCUCUGCUUCUGCUAUU - 3' (10) (6) (1)		

* Capped misincorporation/run-off transcription products

B A/H7N9 T1106


		TRX product
UTP+ATP	•UUAUUU <u>GAUAUAUCUAAppm⁷G</u> 5' -UAUACCUCUGAA <u>AAACU</u> AUU- '3 (10) (6) (1)	Cap(1)-18-mer
UTP+ATP+CTP	•ACU <u>UAUUU<u>GAUAUAUCUAAppm⁷G</u></u> 5' -UAUACCUCUGAA <u>AAACU</u> AUU- '3	Cap(1)-20-mer
UTP+ATP+CTP+GTP	AUAUGGAGACUUAUUU <u>GAUAUAUCUAAppm⁷G</u> 5' -UAUACCUCUGAA <u>AAACU</u> AUU- '3	Cap(1)-28-mer
UTP+T1106	•UUTUU <u>GAUAUAUCUAAppm⁷G</u> 5' -UAUACCUCUGAA <u>AAACU</u> AUU- '3 (10) (6) (1)	Cap(1)-18-mer
UTP+T1106+CTP	TTCU <u>TUUU<u>GAUAUAUCUAAppm⁷G</u></u> 5' -UAUACCUCUGAA <u>AAACU</u> AUU- '3 (10) (6) (1)	Cap(1)-21-mer

* Capped misincorporation/run-off transcription products

C FluB T1106

		TRX product
UTP+CTP	•CUCUUU CGAUAAAUCUA Appm ⁷ G 5' - UAUACAAACUGAGAAAGCUAUU - '3 (10) (1)	Cap(1)-19-mer
UTP+CTP+ATP	•A CUCUUU CGAUAAAUCUA Appm ⁷ G 5' - UAUACAAACUGAGAAAGCUAUU - '3	Cap(1)-20-mer
UTP+CTP+ATP+GTP	AUAUGUUG GACUCUUU CGAUAAAUCUA Appm ⁷ G 5' - UAUACAAACUGAGAAAGCUAUU - '3	Cap(1)-28-mer
UTP+CTP+T1106	TT CUCUUU CGAUAAAUCUA Appm ⁷ G 5' - UAUACAAACUGAGAAAGCUAUU - '3 (10) (1)	Cap(1)-21-mer

*Capped misincorporation/run-off transcription products

Figure 2

A

B

C

template vRNA

5' hook

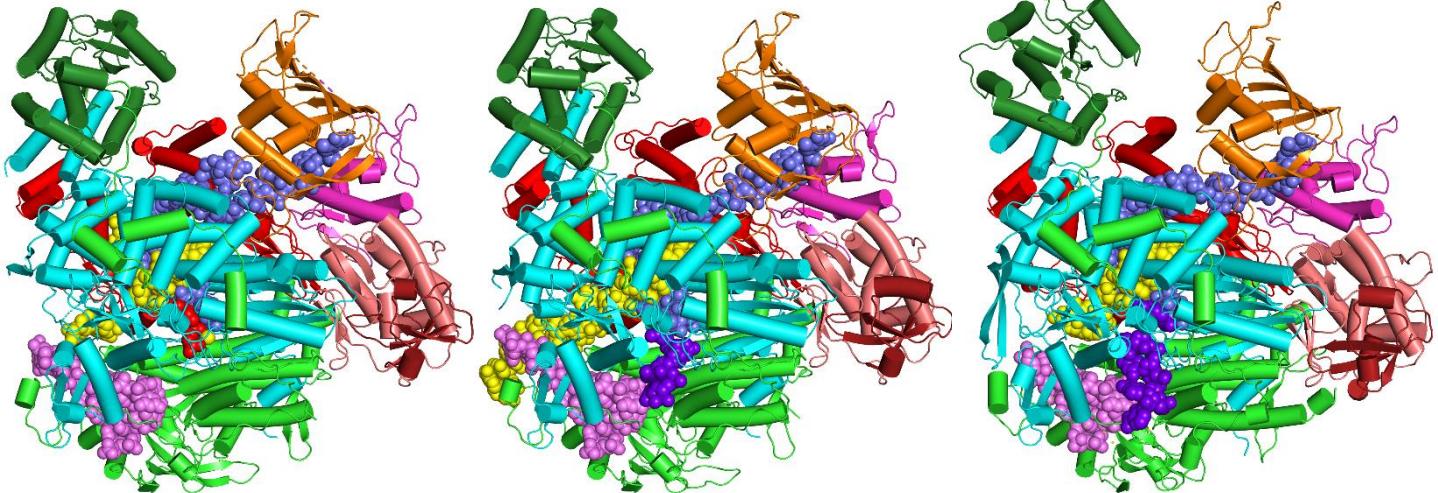
primer

product

v3' 18+3-mer

v3' 21-mer-sd

v3' 21-mer-sd


v3' 21-mer-e

v3' 21-mer-d

D

E

F

G

4

1

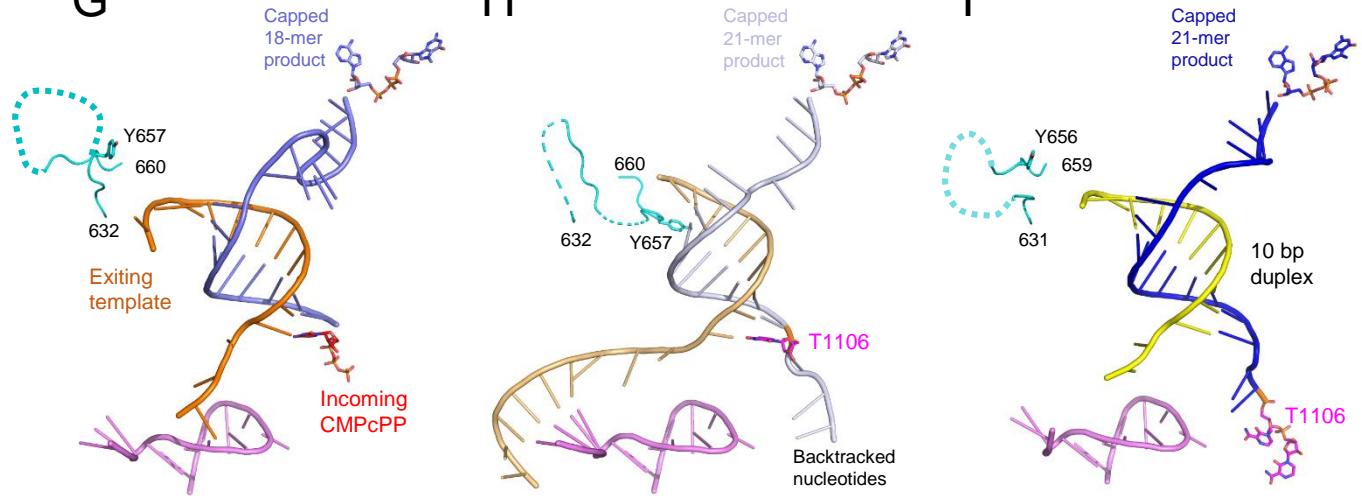


Figure 3

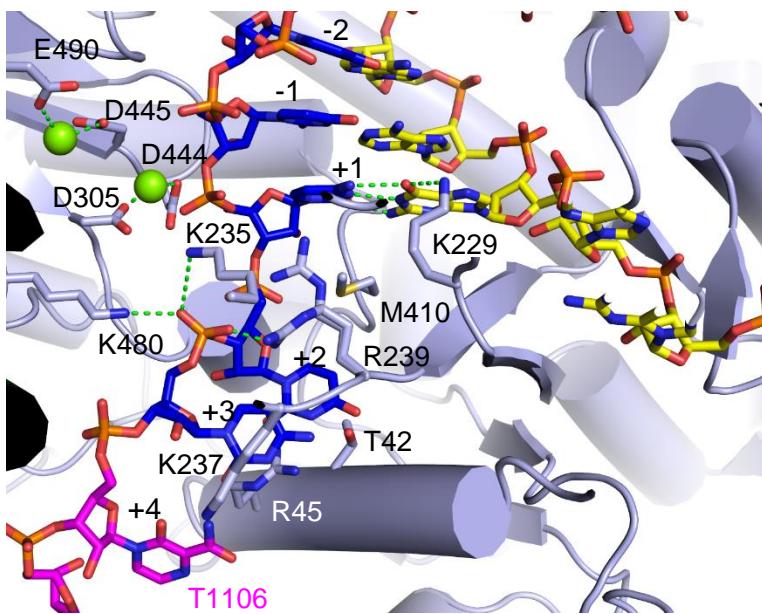
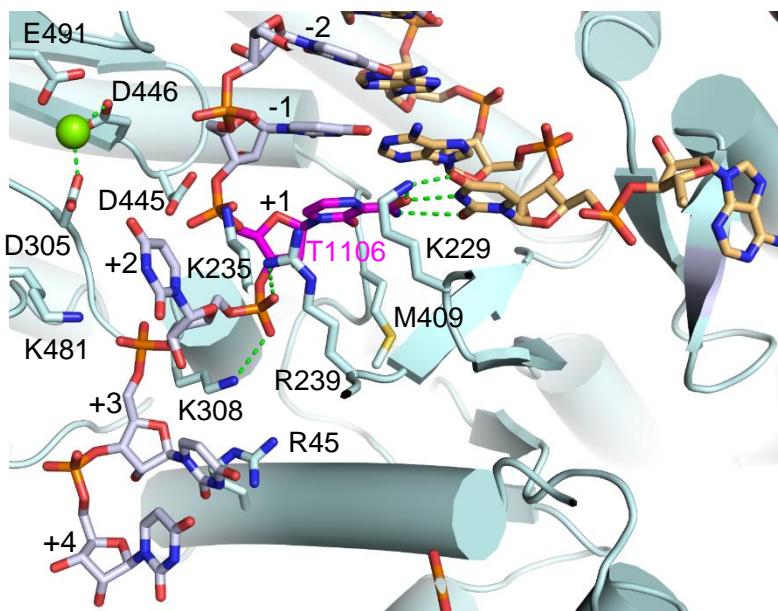
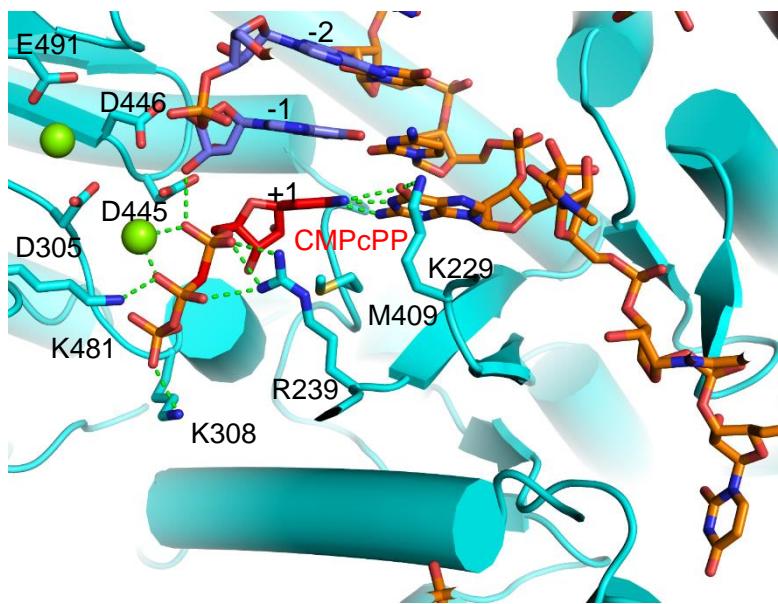
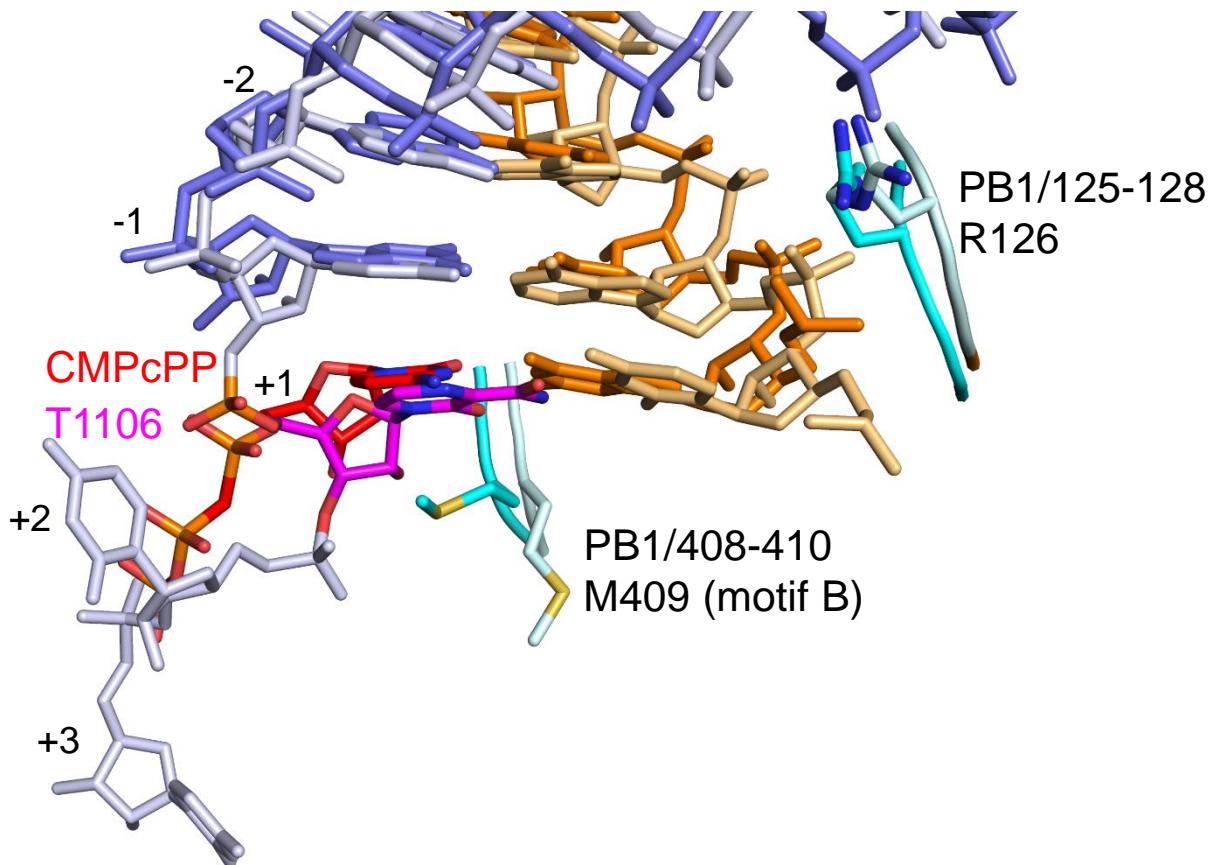





Figure 4

A

H7N9-elongation, template, PB1
H7N9-backtracked, template, PB1

B

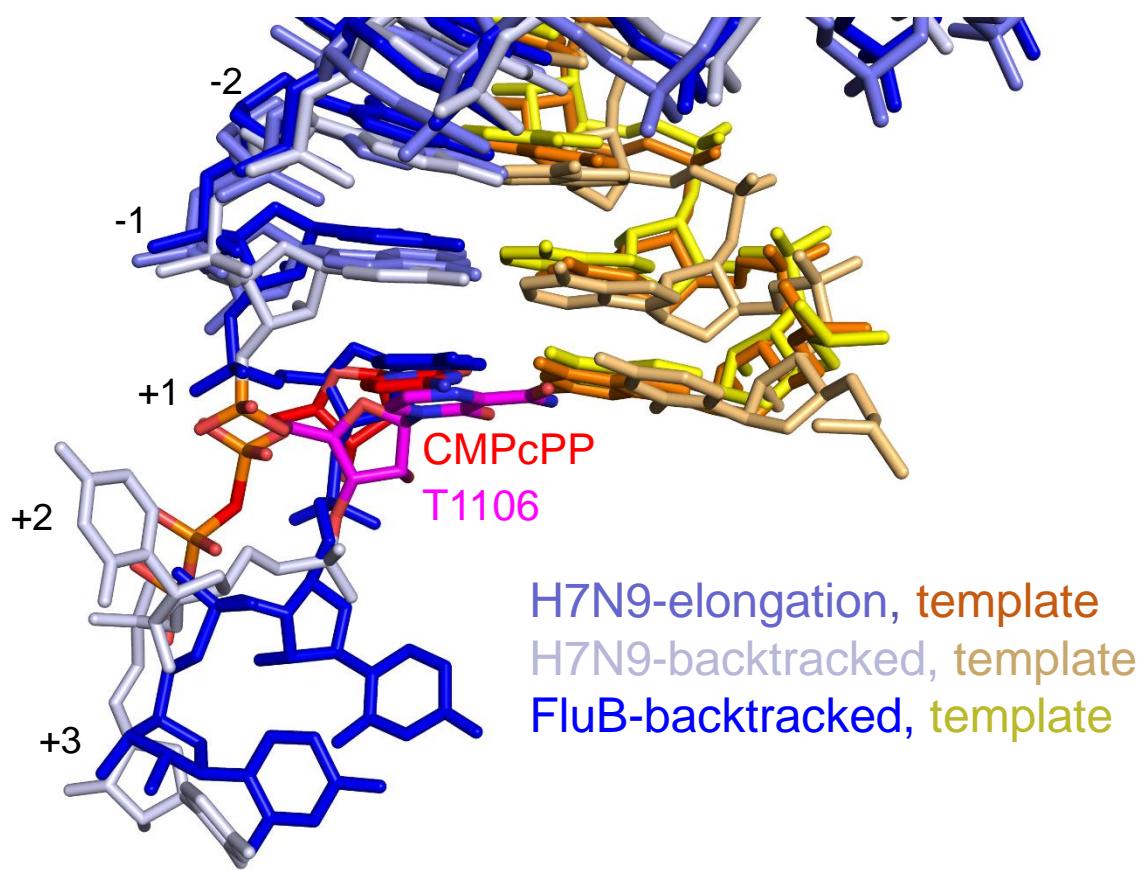
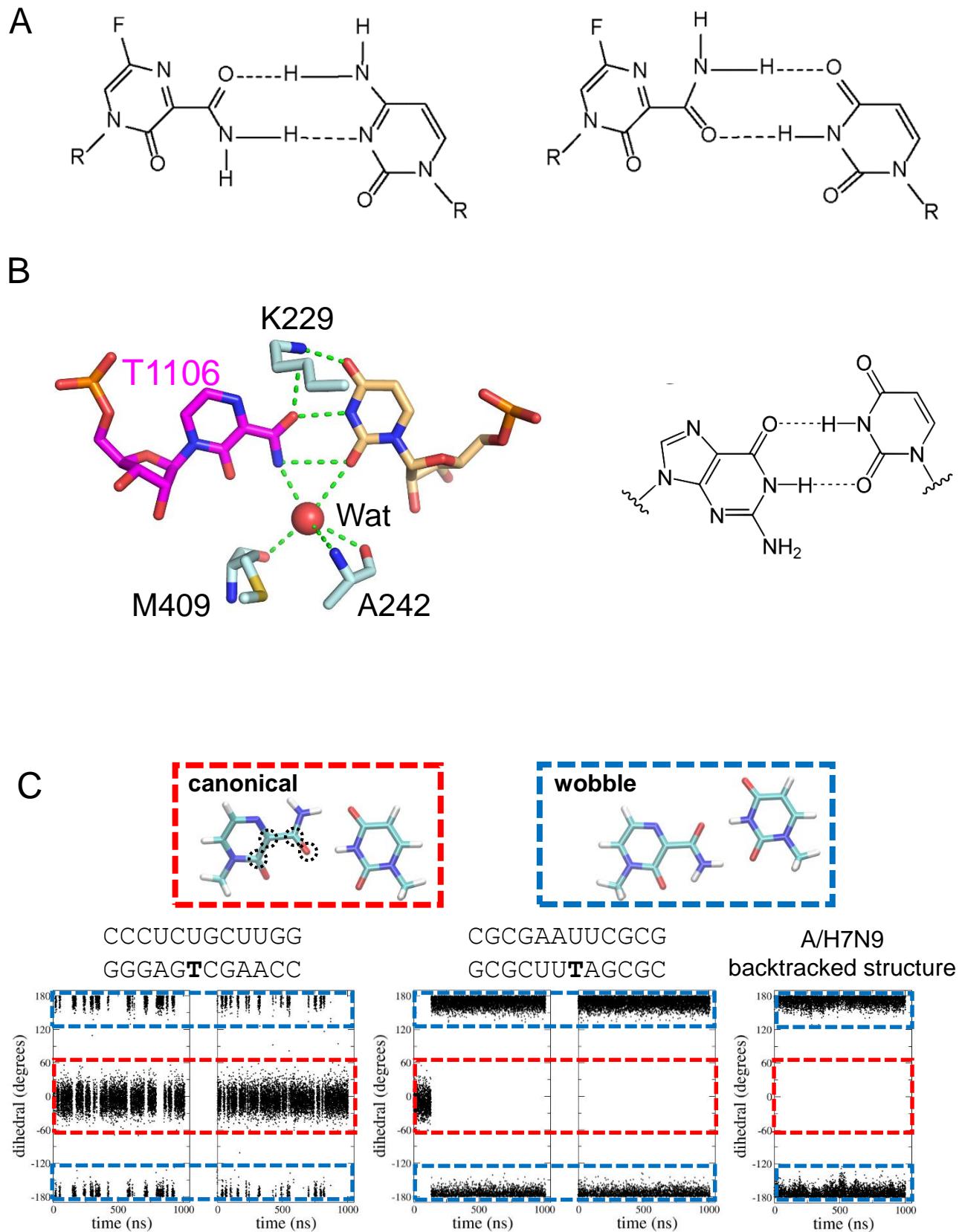



Figure 5

